آیا خلا واقعا خالی است یا نیروی‌های اسرارآمیزی مثل اصطکاک در خلا وجود دارند؟!

1

داستان از اینجا شروع شد که برای اولین بار، سه فیزیکدان از طریق محاسبات دریافتند که اتم در حال واپاشی که در خلا حرکت می‌کند، یک نیروی شبه اصطکاک را تجربه می‌کند. این نتیجه بسیار شک‌برانگیز بود چرا که اصطکاک در خلا قابل باور نبود. در واقع به‌نظر می‌رسید این نتایج برخلاف قوانین فیزیک باشند؛ چرا که خلا به صورت فضایی خالی تعریف می‌شود که هیچ نیروی اصطکاکی بر اشیای درونش وارد نمی‌کند. از طرفی اگر این نتایج درست می‌بودند، اصل نسبیت نیز رد می‌شد، زیرا براساس آنها، ناظران در دو چارچوب مرجع متفاوت، اتم‌های در حال حرکت را با سرعت‌های متفاوتی می‌دیدند (اکثر ناظران، اتم را به علت اصطکاک، آهسته‌تر می‌دیدند، اما در مورد ناظر در حال حرکت با اتم،‌ اینطور نبود). فیزیکدانان می‌دانستند که یک جای کار می‌لنگد، اما دقیقا نمی‌دانستند کجا! اما سرانجام دانشمندان در مقاله ای که چند روز پیش در مجله Physical Review Letters منتشر شد، این معمای جالب را رمزگشایی کردند. با دیپ لوک همراه باشید…

نویسنده اول این مقاله، Sonnleitner می‌گوید:

ما مدت زمان زیادی در جستجوی اشتباهی که در محاسبات رخ داده بودیم و حتی زمان بیشتری را برای کشف اثرات عجیب دیگر صرف کردیم تا وقتی که به این راه‌حل ساده رسیدیم!

فیزیکدانان فهمیدند که قطعه پازل گم‌شده، جرم اندک و اضافی بود که «نقص جرمی» نامیده می‌شود. نقص جرمی، میزان جرم بسیار اندکی است که تاکنون هیچگاه اندازه‌گیری نشده است. این جرم، همان جرم ظاهر شده در معادله‌ی مشهور اینشتین، یعنی E = mc2 است که میزان انرژی لازم برای شکستن هسته یک اتم به پروتون‌ها و نوترون‌هایش را نشان می‌دهد. این انرژی،‌ «انرژی اتصال درونی» نامیده می‌شود که همیشه در فیزیک هسته‌ای، درنظرگرفته می‌شود اما معمولا در چارچوب اپتیک‌ اتمی، به خاطر انرژی‌های بسیار کمتر، از آن چشم‌پوشی می‌شود.

این جز بسیار کوچک،‌ اما واقعا مهم، به محققان اجازه می‌دهد تا یک تصویر بسیار متفاوت از چیزی که وجود داشت را نقاشی کنند. واقعیت این است که وقتی یک اتم در حال واپاشی در خلا حرکت می‌کند، نیروهایی مشابه اصطکاک را تحربه می‌کند. شهود فیزیکی ما می‌گوید نیروی اصطکاک باید حرکت اتم را بسیار آهسته‌تر کند؛ اما این چیزی نیست که رخ می‌دهد! چیزی که وقعا رخ می‌دهد این است: از آنجایی که اتم در حال حرکت و در حال واپاشی، مقدار اندکی انرژی از دست می‌دهد، اندازه حرکت را هم از دست می‌دهد و نه سرعت را. در واقع، اگرچه خلا، خالی است و هیچ نیرویی به اتم وارد نمی‌کند، اما هنوز با اتم برهمکنش می‌کند و این برهمکنش باعث می‌شود تا اتم برانگیخته، واپاشی کند! همانطور که اتم در حال حرکت، به حالت انرژی کمتر، واپاشی می‌کند، از خود، فوتون‌ تابش می‌کند که باعث می‌شود مقداری اندکی انرژی متناسب با مقدار معینی جرم را ازدست بدهد. از آنجایی که اندازه حرکت، حاصلضرب جرم و سرعت (p=mv) است، کاهش جرم باعث می‌شود تا اتم،‌ مقدار اندکی اندازه حرکت، از دست بدهد، درست همانطور که از بقای انرژی و اندازه حرکت در نسبیت خاص،‌ انتظار می‌رود. بنابراین اگرچه جرم اتم (انرژی) و اندازه حرکتش، کاهش می‌یابد، اما سرعتش، ثابت باقی می‌ماند.

این تصویر هر دو مشکل و تناقضی که در ابتدا مطرح کردیم را حل می‌کند:

  1. هیچ نیرویی بین خلا و اتم، عمل نمی‌کند.
  2. دو ناظر در چارچوب‌های مرجع متفاوت، اتم در حال حرکت را با سرعت یکسانی خواهند دید؛ حتی باوجود اینکه اتم، مقداری از انداره حرکتش را به خاطر واپاشی،‌ از دست می‌دهد.

Sonnleitner می‌گوید:

خیلی وقت است که فیزیک کار ما شناخته شده، اما نتیجه‌ای که ما بدست آوردیم دارای اهمیت مفهومی است. ما نشان دادیم که هر مدل بسیار موفقی که برای توصیف برهمکنش بین اتم‌ها و نور استفاده می‌شود، می‌تواند این تغییر اصطکاک‌مانند را در اندازه حرکت ایجاد کند. این نتیجه فقط زمانی، قابل حصول است که هم‌ارزی بین جرم و انرژی را درنظر بگیریم. اما از آنجایی که هیچ‌کس انتظار نداشت این جنبه از نسبیت خاص (E = mc2)، واقعا نقشی در برهمکنش‌ اتم-نور در این انرژی پایین داشته باشد، آن را در این مدل، لحاظ نکرده بود. در نتیجه، این معما نشان داد که چگونه نسبیت خاص به طور غیرمنتظره، به یک مدل بسیار موفق و کاملا شناخته شده‌ی اپتیک کوانتومی، وارد می‌شود.

احتمالا اولین بار است که انرژی اتصال درونی اتم، چنین تفاوت مهمی را در اپتیک کوانتومی، ایجاد می‌کند. فیزیکدانان تاکید می‌کنند که این اثر به تابش خودبخودی یک فوتون، محدود نمی‌شود، بلکه هرجایی که یک اتم، انرژی داخلی‌اش را تغییر می‌دهد (مانند فرآیندهای جذب و نشر)،‌ ظاهر می‌شود؛ اما نکته جالب اینجاست که در این موارد (جذب و نشر)، اتم، نیروهای وابسته به سرعت را هم حس می‌کند که در نتیجه، اثر بحث‌شده در اینجا را مخفی می‌کنند!

در حال حاضر، اندازه‌گیری این اثر به طور آزمایشگاهی، امکان‌پذیر نیست، زیرا انرژی موردنظر، از چیزی که امروزه می‌توان با استفاده از دقیق‌ترین تکنیک‌های اندازه‌گیری، آشکارسازی کرد، سه مرتبه کوچکتر است. محققان در پژوهش‌های بعدی خود به دنبال تاثیر این اثر بر مدل سنتی برهمکنش‌های نور-ماده هستند. Sonnleitner می‌‌گوید:

ما تلاش خواهیم کرد تا این مدل موفق را که در حال حاضر برای توصیف برهمکنش‌ نور-ماده، استفاده می‌شود به مدلی با درنظرگرفتن احتمال یک جرم در حال تغییر،‌ توسعه دهیم. البته فقط یک تصحیح کوچک لازم است، اما همین تصحیح کوچک به کامل کردن تصویر فیزیکدانان کمک می‌کند. اگر لازم باشد، دوباره دیدن و دوباره اندیشیدن در مورد یک نظریه موفق، هیچگاه اشتباه نیست!

مقاله اصلی را در زیر مشاهده کنید:

[gview file=”http://www.deeplook.ir/wp-content/uploads/2017/02/10.1103@PhysRevLett.118.053601.pdf” save=”1″]

دکترای شیمی کوانتومی/فیزیک اتمی از دانشگاه شهید بهشتی، سردبیر دیپ لوک، طراح وب،گرافیک و موشن. مشتاق دیدن، فهمیدن و کشف‌ کردن رازهای شگفت‌انگیز هستی، به ویژه‌ دنیای اتم‌های سرکش.

گفتگو۱ دیدگاه

  1. اگه اشتباه نکنم به زبان ساده برای اینکه اتم که در اثر حرکت دارای انرژی بیشتر شده برای میل به سطح انرژی پایین تر مقداری از انرژی اش را به صورت تابش از دست بدهد و منشا این تابش مطابق اصل هم ارزی مقداری از جرم ان خواهد بود که به انرژی تبدیل شده ,

ارسال نظر