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An asymmetry exists between time and space in the
sense that physical systems inevitably evolve over
time, whereas there is no corresponding ubiquitous
translation over space. The asymmetry, which is
presumed to be elemental, is represented by equations
of motion and conservation laws that operate
differently over time and space. If, however, the
asymmetry was found to be due to deeper causes,
this conventional view of time evolution would
need reworking. Here we show, using a sum-over-
paths formalism, that a violation of time reversal (T)
symmetry might be such a cause. If T symmetry is
obeyed, then the formalism treats time and space
symmetrically such that states of matter are localized
both in space and in time. In this case, equations
of motion and conservation laws are undefined or
inapplicable. However, if T symmetry is violated,
then the same sum over paths formalism yields
states that are localized in space and distributed

without bound over time, creating an asymmetry
between time and space. Moreover, the states satisfy
an equation of motion (the Schrédinger equation)
and conservation laws apply. This suggests that the
time-space asymmetry is not elemental as currently
presumed, and that T violation may have a deep
connection with time evolution.

1. Introduction

There is nothing unphysical about matter being localized
in a region of space; matter can simply exist at one
location and not another. But for it to be localized in
a finite period of time is altogether different. Indeed,
as the matter would exist only for that period and

) o no other, the situation would be a direct violation of
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mass conservation. In conventional quantum mechanics,
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this undesirable situation is avoided axiomatically by requiring matter to be represented by
a quantum state vector whose norm is fixed over time. There is, however, no corresponding
restriction of the state vector over space.

The underlying time-space asymmetry here can be traced to the fact that the state, and the
matter it represents, is presumed to undergo continuous translation over time (as time evolution),
but there is no corresponding presumption about the state undergoing translations over space.
Even in relativistic quantum field theory, where both time and space are treated equally as the
coordinates of a space-time background, a similar asymmetry holds, because time evolution and
conservation laws are presumed to operate differently over time and space.

Nevertheless, time and space could have an equivalent footing at a fundamental level if
any asymmetry between them were to arise phenomenologically rather than being imposed
axiomatically. Such a prospect is well worth pursuing, because it would help us to understand
the relationship between time and space. It would require finding an underlying mechanism that,
owing to phenomenological conditions, affects the spatial and temporal translational degrees of
freedom in different ways to the extent matter can be localized in space but not in time. This
suggests that we should examine the phenomenological character of the operations associated
with the translational degrees of freedom. The generators of translations in space and time are
given by the momentum and Hamiltonian operators, respectively, and with them lies a difference
that sets space and time apart in the quantum regime.

In fact, the last 50 years [1-6] have shown that Nature is not invariant to particular
combinations of the discrete symmetry operations of charge conjugation (C), parity inversion (P)
and time reversal (T). The violation of these discrete symmetries is observed in various particle
decays independent of position in space, and so they occur over translations in time and not
translations in space. In terms of the corresponding generators, this implies that the Hamiltonian
violates the discrete symmetries, whereas the momentum operator does not.

The discrete symmetry violations are accounted for in the standard model of particle physics
by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [7,8]. Studies of the violations have been
made in relation to baryogenesis in the early universe [9], the arrow of time and irreversibility
[10-13], the time operator [14], quantum entanglement and Bell inequalities [15-31], decay and
decoherence [32,33], complementarity and quantum information [34-36], quantum walks [37]
and the potential for T violation to have large-scale physical effects [38,39]. In particular, in
reference [38], I modelled the state of the universe as a superposition of paths that zigzag through
time, and showed that T violation can, in principle, affect the time evolution in a global way.
Then, in reference [39], I showed that the effect on time evolution is greater when the paths are
constructed in the limit of infinitely small steps.

Here we explore the potential impact the violations of the discrete symmetries may have
for giving quantum states different representations in space and time. The aim is not to study
specific instances of the violations as observed experimentally, but rather to look for possible
consequences of the violations in general terms. For this, the definitions of the P and T operations
given by Wigner in relation to non-relativistic quantum mechanics [40] are sufficient and so we
shall undertake the analysis using the same theory as a basis. Many previous studies have used
the same framework [10-37]. A relativistic analysis will be left for a future study.

We will need, however, to depart from conventional quantum mechanics in three important
ways. The justification for these departures lies in the eventually recovery of the conventional
formalism under appropriate conditions. The first departure is that we will not impose any
equation of motion, such as the Schrédinger equation, on states because to do so would directly
build in the asymmetry between time and space mentioned above. Instead, we anticipate that an
effective equation of motion will arise phenomenologically in some way. Second, we will consider
states that describe the location of a material object either in space or in time. While the location
in space can simply be given by a wave function, say ¥ (x), in the position representation, the
location in time is quite unconventional as it would need to be given by a wave function, say
#(t), in what might be called the ‘time representation’. Here, |¢()|? gives the probability density
for the object being at time # just as |y (x)|> gives the probability density for the object being at
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position x. Note that, in general, ¢(t) violates mass conservation as it describes the object as having
potential existence at the points in time where lp(5)]? #0 and definitely not existing at the points
where |$(#)|? = 0. This lack of mass conservation is the price we must pay to keep the formalism
symmetric with respect to time and space. Nevertheless, we anticipate that mass conservation will
arise phenomenologically rather than being imposed on the formalism. The third departure from
conventional quantum mechanics is that we need to include the P and T symmetry operations in
the formalism explicitly, even in the situation where the corresponding symmetries are obeyed
and the actions of P and T are redundant. This will ensure that we have a consistent formalism
that operates both when the symmetries are obeyed and also when they are violated.

The particular way in which we include the P and T discrete symmetry operators is motivated
by the fact that they reverse the directions of spatial and temporal translations, respectively. A
one-dimensional path in space that consists of a sequence of translations that alternate in direction
can, therefore, be expressed explicitly in terms of parity inversions P. The same can be said for the
T operation in relation to a sequence of time translations that alternate in direction. The roles
that P and T play will be greater in mathematical constructions that involve a greater number
of direction reversals. Such constructions have the potential to display the effects of any discrete
symmetry violation to a greater extent. Feynman’s path integral formalism immediately comes
to mind as one that involves a superposition of all paths that zigzag through configuration space
between two states. However, this formalism is inextricably associated with dynamics and thus
is tied to the space—time asymmetry mentioned above. We need to develop a different approach
if we are to keep time and space on an equal footing at a fundamental level.

Our approach is as follows. We will first consider the effects of P violation on spatial
localization. We will begin with a quantum state that represents some material object as being
localized in space, and for this, we will need the variance in the object’s position to be finite. We
will place no other constraint on the position and so we will need a quantum state that yields the
least information about position (and thus maximum entropy) for a fixed variance; the optimum
pure state fitting this requirement has a Gaussian wave function in the position representation
[41]. Note that a classical particle undergoing a one-dimensional Wiener process has a position
probability density that is Gaussian; it also has trajectories that consist of infinitely many reversals
in direction of the kind we have been considering. With this in mind, we will decompose the
Gaussian quantum state into a superposition of infinitely many paths through space where each
path has infinitely many reversals in direction. The reversals in the direction of each path will
be expressed explicitly in terms of the P symmetry operation and the translations in terms of
the momentum operator. We will find that the violation of P symmetry has no effect on the
construction. Then, we will apply the same sum-over-paths construction to a quantum state that
represents the object as being localized in time, but with the path reversals expressed explicitly
in terms of the T symmetry operator and the translations in terms of the Hamiltonian. Using the
same construction will ensure that the formalism is symmetric with respect to the representation of states
of matter in both space and time when the discrete symmetries hold. The situation will be found to
change dramatically when T symmetry is violated. Only then will the formalism exhibit a time—
space asymmetry that is consistent with conventional quantum mechanics. The important point
to be made here is that the asymmetry will not be imposed on the formalism at a fundamental
level, but rather it will arise phenomenologically due to the T violation.

Given the fundamental character of the issues involved, one should not be surprised to find
that to make any progress we need to pay due attention to quite subtle mathematical details.
In particular, while the concept of the limit of an infinite sequence has rigorous meaning in
a mathematical context, there is no a priori reason to suppose that it automatically carries a
corresponding value in a theory that is designed to underpin experimental physics. After all, the
accuracy of observations made in experimental physics is always restricted by finite resources.
For example, consider a theory in which the limit point a of the convergent sequence ay, a,
as, ... (i.e. where a, — a as n — 00) represents an experimental parameter, and let € represent
the experimental accuracy of measuring a for a given level of resources. The convergence of the
sequence implies that there exists a natural number N, that depends on € for which |a —a,| <€
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for all n> N, and so it is not possible to physically distinguish (using the given resources),
the limit point a4 from any of the terms a, for n > N.. Under such circumstances, the set {a; :
n > N} would be more representative of the physical situation than just the limit point a. Set
representations of this kind will be important for expressing quantum states in a manner which
better represents their physical implications.

The structure of the remainder of the paper is as follows. We develop a sum-over-paths
construction of a quantum state that is localized in space and examine the effects of the violation
of P symmetry in §2. We apply the same construction to quantum states that are localized in time
and examine the effects of the violation of T symmetry in §3. Following that, in §4, we show how
the conventional Schrodinger equation and conservation of mass emerge as a result of coarse
graining over time, and explore how the new formalism might be tested experimentally. We end
with a discussion in §5.

2. Mathematical construction of quantum states in space

(a) Developing the construction

We first need to develop the mathematical construction of quantum states that are localized
in space and consist of a superposition of infinitely many paths each of which has possibly
infinitely many reversals in direction. For this, consider a simple one-dimensional model universe
composed of a single ‘galaxy’ as our material object. The galaxy is representative of any spatially
localized physical system with mass and could in fact be a star, a planet or just a single particle;
its details are not important for this study. The location of the galaxy is described by a set of
observables that represent all its spatial degrees of freedom. Imagine that at a particular time, each
observable is in some localized state that is uncorrelated with respect to every other observable
in the set. This will almost certainly result in the galaxy being far from its minimum energy
state, however neither the energetics nor the dynamics are important in this section. In addition,
because the same analysis applies to each observable, we will only treat one representative
observable explicitly. Let that observable be the centre of mass coordinate, which we assume
to have a finite variance. As mentioned above, the best choice for a pure state under these
circumstances is one described by a Gaussian wave function [41], which we write as follows

2
[¥) 0<J.dxexp (—2);2> 1)y, (2.1)

X

where x and |x)y are the eigenvalue and corresponding eigenstate of X, the operator representing
the x component of the centre of mass position, and oy is a width parameter. This state can be
written explicitly in terms of spatial translations as

2
W) o J dxexp (— 2"2> exp(—iPx)[0)y, 2.2)

Ox

where the operator representing the total momentum of the galaxy, P, generates spatial
translations according to

exp(—iISé)‘x)pc)X = |x + 8x)x

as illustrated in figure 1a. Here and throughout this paper, we use units in which 7 = 1. Inserting
the resolution of the identity 1= i dplp)pp (pl into equation (2.2) gives

2
ly) o || dxdpexp (—23;2) exp(—ipx)|1p)pp (pl10)x,

X
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Figure 1. Sketches illustrate the translation of wave functions along (a) the x-axis and (b) the time axis. In (a), the wave
functions represent the position eigenket |x), and an arbitrary state | x ) and the translation is by a distance x. In (b), the
wave function represents the state |f) and the translation is by an interval t.

where {|p)p :l5|p)p =plp)p} is the momentum basis. Carrying out the Fourier transform with
respect to x yields |) oc exp(— %15203)|0)X and making use of the result

A? , N A
exp (—2> _A}Eréo cos (ﬁ) (2.3)
then leads to
1 b po \ 1"
. Lox oy
o« lim — |exp|i—= | +exp | —i 0)x. 2.4
) Nwzw[ P(m) P( m)} 10)x (24)

Expanding the N-fold product in equation (2.4) gives a series of terms each of which comprise
N translations (or ‘steps’) of +0y/+/N along the x-axis. For example, a term of the form

- exp (—iﬁu) exp (—iﬁa) exp (iﬁa) exp (—if’a) [0)x, (2.5)

where 2 = 0, /+/N, describes a path on the x-axis from the origin 0 through the sequence of points
a, 0, a, 2a and so on, as illustrated in figure 2a. Equation (2.4) can be viewed, therefore, as a
superposition of random paths away from the origin |0)x in the limit of infinitely small steps,
and shares similarities with both quantum walks [42] and Feynman’s sum over paths [43]. Note
that here, however, the random path is traversed without reference to time, and so it should be
considered to be traversed in a zero time interval. Each random path is, therefore, a generalization
of the virtual displacements in D’ Alembert’s principle in classical mechanics [44]. For this reason,
each individual path shall be called a random virtual path and the superposition of a set of random
virtual paths like that in equation (2.4) shall be called a quantum virtual path.

Although they share similarities, a quantum virtual path is quite distinct from Feynman’s sum
over paths [43]. For example, Feynman’s method is used to calculate the probability amplitude
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Figure 2. Binary tree diagrams represent virtual paths in (a) space and (b) time. Each edge (white dashed line) in the tree
represents a virtual displacement along the black horizontal axis. The thick blue edges in (a) represents a virtual path that

passes through the sequence of points 0, a, 0, a, 2a on the x-axis. In (), four different virtual paths from 0 to 25t on the ¢ axis
are represented in the tree by thick edges coloured yellow, red, blue and purple.

for a system to evolve from one state to another. The paths represent potential classical trajectories
between the same starting and ending points and the sum gives the total probability amplitude
for evolving between the points. In contrast, a quantum virtual path represents a single state.
The accumulated displacement over one random virtual path, like that in equation (2.5), gives
a potential classical position of the system, and the whole quantum virtual path represents the
state given by equation (2.4) in terms of a distribution of potential classical positions. Moreover,
calculating the inner product of two states where one (or both) is represented by a quantum
virtual path would result in a Feynman-like sum over paths calculation. So in this sense, a
quantum virtual path is a precursor of Feynman’s sum over paths.

The right-hand side of equation (2.4) is not the only way to decompose the state in
equation (2.1). But what makes equation (2.4) special is that it consists of a superposition of an
infinite number of continuous paths with the property that if one path is picked at random,
it will effectively consist of a sequence of infinitesimal segments where each segment has an
equal likelihood of representing a step in the positive or negative x directions. The set of paths
is unbiased with respect to direction in this sense. Another feature that sets the decomposition
in equation (2.4) apart is that it comprises all possible paths. The justification of why it should is
that in decomposing the state in equation (2.1) in terms of a superposition of paths, we have no
reason for leaving out particular paths or, alternatively, for including only particular paths; in the
absence of such reasons, all possible paths should be included.

As N — oo, the step length oy/ VN in equation (2.4) will eventually breach the fundamental
lower bound, say 8xmin, that is expected for physically distinguishable positions. For example,
there are reasons [45] to believe that points in space are indistinguishable at the scale of the

Planck length fp~ 1.6 x 107 m. Let Nfifr?ce) be the value of N, where the step length ox/v/N
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Nf;}i)r?ce) =02 /6x2 . . This implies that the limit on the right-hand side

becomes equal to Sxmin, i.e. i

of equation (2.4) can be replaced by a term corresponding to any value of N larger than Nfif;ce)
without any physically meaningful consequences. There are an infinite number of such terms,

each of which has an equal status in representing the state of the universe. They form the set

v={ly)n:N= NG, (2.6)
where
1 |4 Poy \ & Po N
[¥)N = N |:P1 exp <—i\/ﬁx> P+ exp <_1\/Nx>i| 10)x- 2.7)

In equation (2.7), we have written the translations explicitly in terms of the parity inversion
operator P. It has the property that

exp (if’x’) =P lexp (—if’x') P (2.8)

which expresses the fact that a translation along the x axis by —x’ (left side of equation (2.8)) can
be produced by first performing a parity inversion, translating by x” and then reversing the parity
inversion (right-hand side). Every element in the set ¥ can serve equally well as a representation
of the state in equation (2.1) as far as the physically distinguishable spatial limit allows; they all
have equal status in this respect.

The mathematical construction represented by equations (2.6) and (2.7) is in the form of the
explicit translations and discrete symmetry operations that we need for comparing the difference
between quantum states in space and time. Although being equivalent to equation (2.1), we shall
henceforth regard equations (2.6) and (2.7) as being a more fundamental description of the state of
the galaxy owing to this explicit form. Note that the interpretation of equation (2.7) in terms of
quantum virtual paths does not hinge on the state |0)x being the eigenstate of position with zero
eigenvalue. In fact, any state |x) with a variance in position very much smaller than ¢2/2 (and,
correspondingly, a variance in total momentum very much larger than 1/2¢.2) could be used in its
place; in that case, the steps in a path represent translations of |x) along the x axis, as illustrated
in figure 1a, rather than steps along the x axis itself. While this situation allows some ambiguity
in the formalism, it does not have any effect on results provided that corresponding adjustments
to [¢) and oy are duly taken.

(b) Parity inversion invariance and its violation

Given that the Hamiltonian does not appear explicitly in the construction of spatial states, we
should not expect to find any effects of discrete symmetry violation here. In particular, regardless
of whether the galaxy obeys parity inversion symmetry or not

P 1pP=-P (2.9)
always holds, and so equation (2.7) can be rewritten as a binomially weighted superposition of

spatially translated states, i.e.

N A~
Poy
=§ B, —i(2n — N)—= | |0}y, 2.10
N 2 exP[ i(2n )m}l ) (2.10)

By = ziN (N) . (2.11)

In the large N limit, |y)n tends to the Gaussian state |y) in equation (2.1), i.e.

where

I\}im [ )N o J dx g(x, ox) %), (2.12)
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* 0.6
=

Figure 3. The position representation of the state |1/ )y as a function of the scaled position x / . The dots represent the exact
values By, given by equation (2.11), and the solid curves represent the Gaussian approximation g(x, o) given by equation (2.13).
The abscissae for the discrete coefficients B, are given by x /oy, = (2n — N)/~/N in accord with equation (2.10). For clarity,
B, and g(x, oy) have been scaled to give a maximum of unity, and the green (N = 100) and blue (V = 1000) dots and curves
have been displaced vertically by 0.2 and 0.4, respectively.

where

22
g(x, 0x) =exp ( 20,%) . (2.13)

Figure 3 compares the coefficients B, (shown as dots) with their large-N limit g(x, ox)
(continuous curves) for a number of different N values. The values of N have been chosen
purposely to exaggerate the discreteness of the state [¢)y in comparison with the limiting
state |/) from equation (2.1). In truth, for every [¢)y € ¥ in equation (2.6), the values of N are
sufficiently large (viz. N ENS};?CQ)) that the dots representing B, for consecutive n values are
physically indistinguishable, and the locus of points representing B, is essentially equivalent to
the curve g(x, ox) up to a proportionality constant. As a consequence, every |/)n € ¥ is physically
indistinguishable from the state |) in equation (2.1).

3. Applying the construction to quantum states in time

(a) Adapting the construction

We now use our construction to explore the temporal analogy of equation (2.1) in which the galaxy
is represented in time rather than space. We begin by recalling that the Hamiltonian H generates
translations through time according to

exp (—ifit) |f)=|f),

where |f) and |f’) represent states at times differing by ¢, as illustrated in figure 1b. Next,
we construct a set of states analogous to equation (2.6) but with each state representing a
superposition of random virtual paths through time as

Yo ={mon:N= NG 3.1)

min

where

~ A N
1T3)N & ziN {Tl exp (—ii%) T +exp (—llj/%ﬂ 6). (3.2)
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Here 2 distinguishes different physical situations that will be specified later, N (m;le) =0}/ Stmm is

the value of N for which the step size ot/+/N reaches some fundamental resolution limit in time
Stmin (e.g. taking the resolution limit as the Planck time would mean that 8ty =5.4 x 10~%5s),
and T is Wigner’s time reversal operator [40]. The state |¢) plays the role of |0)x in equation (2.7)
and is assumed to be sharply defined in time and, correspondingly, to have a broad distribution
in energy [46]. More specifically, |¢) must have a variance in energy that is very much larger than
1/207 in analogy with the requirement for any state |x) to be used in place of |0)x. Other details
of |¢) are not crucial for our main results.

It is perhaps worth elaborating a little on what is meant by |¢) being sharply defined in time
given that there are well-known difficulties associated with defining an operator to represent
time [46,47]. Fortunately, the absence of a universally accepted time operator does not prevent
uncertainties in time from being physically meaningful. Rather, we can use the fact that the
Hamiltonian is the generator of translations in time to probe the time uncertainty of a state. For
example, |¢r) =exp(—iI:Ir)|(p0> represents the state |¢g) translated in time by t. If the overlap
(¢rlpo) is negligible for all values of v except for |t| 20, then |gg) can be regarded as sharply
defined in time, at least for the purposes needed here. A more rigorous definition of such states
is given by Moyer’s timeline states [47]. The ambiguity mentioned at the end of §2a also occurs
here regarding the choice of the state |¢), and can be treated in a similar way. We will return to
this point in §4a.

The violation of T symmetry is expressed by T-1AT #+ H which 1mphes that there are two
versions of the Hamiltonian [38,39]. We label the two versions as Hg = H and Hg = T-'HT. In
this construction, one direction of time is not physically distinguishable from the other and the
subscripted labels F and B simply refer to opposite directions; nevertheless, it may be convenient
to think of the labels as referring to the customary ‘forwards’ and ‘backwards’ directions of time.
Using these definitions together with the fact [40] that T-1T = —i then gives

1T N o 21 [exp <1H36t) +exp ( iHF8t>]N #), (3.3)

where, for convenience, we have set

Ot

St = (3.4)

=l

as the step in time.

Equation (3.3) shows that Hr and Hp are responsible for translations in opposite directions of
time. This is an important point that warrants particular emphasis: a translation in time in the
opposite direction to that given by exp(—iHFt) is not produced by its inverse exp(iI:IFt) but rather
by its time reverse:

exp (iHBt) =11 exp (—iHﬁ) T

Evidently, we need to associate the operators exp(—iHgt) and exp(iHgt) with physical evolution
in different directions of time according to equation (3.3). This leaves their respective inverses
exp(iI:IFt) and exp(—iI:IBt) to be associated with the mathematical operations of rewinding that
physical evolution. In short, physical time evolution is described by the former pair of operators,
and not by the latter.

In fact, these associated meanings follow from conventional quantum mechanics. For example,
let | f(t)) represent the state of an arbitrary closed system at time ¢. Unitary evolution implies that

() =exp (=ifit) 1fO), (35)

where |f(0)) is the state at t=0 and I is the corresponding Hamiltonian. Recall that Wigner’s
time-reversal operator T reverses the direction of all momenta and spin [40]. Let the time-reversed
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states at times 0 and f be |b(0)) = T_llf(())) and |b(—t)) = "i"_llf(t)), respectively. Using TT-1=1
and rearranging shows that [b(—t)) = exp(i"i"*lh"i‘t‘)'i’*1 If(0)), i.e.

|b(—t)) = exp (iT*lith) 1b(0)), (3.6)

and so the time-reversed state |b(—t)) represents the evolution from the time-reversed state |b(0))
according to the Hamiltonian T-1iT for the time —t. That is, evolving from the state |f(0)) for the
time t with the Hamiltonian / is equivalent to evolving from the time-reversed state |b(0)) for the
time —t with the Hamiltonian T~/ T. Clearly, h generates translations in one direction of time and
Tt generates translations in the opposite direction, which is consistent with equation (3.3).

If our model universe satisfied T symmetry, Hr and Hp would be commuting operators and
the terms in equation (3.3) would be able to be manipulated algebraically in exactly the same
way as those in equation (2.7) were manipulated to give equation (2.10). Thus, for the temporal
quantum virtual path to be qualitatively distinct from the spatial one, the model universe must
violate T symmetry to the extent of giving a non-zero commutator [Hg, Hg]. We could model such
a commutator using details of the T violation that has been observed in the decay of mesons [3-6]
or that has been speculated for a Higgs field [48,49]. However, the potential repercussions of T
violation will be manifest most clearly for the simplest departure from time-reversal invariance.
Accordingly, we shall imagine that our model universe contains an unspecified T-violating
mechanism that is consistent with the commutator

[I%IB,HF] —ix 3.7)

for real-valued . This is the origin of the parameter A that appears in equations (3.1) and (3.2).
Equations (6) and (8) of reference [38] show that the operator on the right-hand side of
equation (3.3) can be expanded and reordered using the Zassenhaus formula [50] as follows

. . N X R N
[exp(iHBBt) + exp(—inét)] = Z exp [iHB(N — n)St] exp(—iHgnst)

n=0

N-n s L
x 530S exp [(v Fo O+ KPR, gl + Q)] . (38)
v=0

£=0 k=0

where Q contains terms representing higher-order commutators of the form [[I:IB,I:IF],. )Tt
follows from equation (3.7) that Q =0 here. Substituting equation (3.8) into equation (3.3) and
then simplifying the resulting expression using equations (B.14) and (B.15) in appendix B of
reference [38] yields

N
173N 0 Y INnn(88°2) expliFp(N — m)3t] exp[—iFTpndt]|¢), (3.9)
n=0

where

in(N — n)z] ﬁ sin[(N + 1 — g)z/2]

IN—nn(z) =exp [_ 2 sin(qz/2)

(3.10)
q=1

is an interference function that takes account of the non-commutativity of Hy and Hp.

To relate this to what an observer in the galaxy would see, imagine that the galaxy contains
a clock that is constructed from T-invariant matter. We will refer to any time shown by the clock
as ‘clock time” and use the symbol ¢ to represent its value. Let the state |¢) represents the clock
showing the time t. = 0. The state

exp[iHB(N — n)t] exp[—iI:IFn(St]lqb) (3.11)
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represents evolution by exp[—iHgnst] in one direction of time followed by exp[iHp(N — n)8t] in
the opposite direction which, by convention, first increases t. by nt and then decreases it by
(N — n)st, respectively. The state in equation (3.11) would therefore represent the clock showing
the net clock time of

te = (2n — N)st, (3.12)

and so the state in equation (3.9) represents a weighted superposition of states over the range of
net clock times from f. = —N§t to Nét.

(b) Time-reversal invariance

It is useful to first consider the special case where the universe is invariant under time reversal.
For this, we set A =0, Hp = Hg = H in equation (3.9). The interference function for A =0 is the
binomial coefficient In_;, ,,(0) = (ﬁ,\] ) and so

N

Yol o< ) By expl—i(2n — N)H3t] ), (3.13)
n=0

where By, is given by equation (2.11). The coefficient B, becomes proportional to the Gaussian
function exp[—(2n — N )2 /2N] for large N and so

N 2
2n — N X~
[To)IN K E exp |:_(;12N)} exp[—i(2n — N)H6t]|¢).
n=0

Re-expressing the summation in terms of the index m =2n — N and using the definition §t =
ot/+/N then yields

2
20

2
70N & Z exp |:— (m3t) i| exp(—iﬁmét)|¢), (3.14)

meS

where S ={—N,—N +2,...,N}. We define the large-N limit as

(1o} = lim_ o) o | e 6, 00) exp(—ifiDNg), (3.15)

where g(t, o) is given by equation (2.13). Although figure 3 is explicitly for the spatial case, it
can also be used here as a comparison of B, and g(t, ot) in equations (3.13) and (3.15) provided
we interpret the horizontal axis as t/ot. Likewise, for N > Ngliir:e), the locus of points representing
B, is essentially equivalent to the curve g(t,01) up to a proportionality constant, and so every
[Yo)n € Yo in equation (3.1) is physically indistinguishable from the state |7p) in equation (3.15).

Hence, for time-reversal invariance, the construction yields a state, given by equation (3.15),
that is a Gaussian-weighted superposition of the time-translated states exp(—iHt)|¢). This state
represents the galaxy existing in time only for a duration of the order of oy and is analogous to
equation (2.1) which represents the centre of mass of the galaxy existing only in a spatial region
with a size of the order of oyx. Our construction, therefore, allows for the same kind of quantum
state in time as in space, in the absence of T violation. In other words, there is a symmetry between
time and space for quantum states in this special case. As discussed in the Introduction, this
symmetry comes at the cost of the non-conservation of mass.

(c) Violation of time-reversal invariance

Next, we examine the quite different situation of T violation where A # 0 and HF #+ HB. In that case,
the amplitudes for different virtual paths to the same point in time, as illustrated in figure 2b, can
interfere leading to undulations in In_; ,(2) as a function of n. To find the values of n where the
modulus of the interference function In_; ,(z) is maximized it is sufficient to look for the position,
where |Iy_;,1(2)| is unchanged for consecutive values of 1, i.e. where |In_(;1—1),1—1(2)| = IN—,n(2)].
This condition reduces, on using equation (3.10) and performing some algebraic manipulation,
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to | sin[(N + 1 — n)z/2]| = | sin(nz/2)|. Note that equations (3.9) and (3.10) imply z = 8t2x and given
8t =ot/+/N from equation (3.4), this means z is inversely proportional to N; thus we let z=6/N,
where

0 = oy 25

is the coefficient of proportionality (i.e. 8 is independent of N). Hence we wish to know the values
of n that satisfy |sin[(N + 1 — n)8/2N]| = | sin(n6/2N)|. Writing x =6(N + 1)/2N and y =n6/2N
transforms this equation into |sin(x — y)| = | sin(y)| which has the solutions y = (x — 7)/2 + mn
for integer m. Re-expressing the solutions in terms of n then gives

_N+1 +N(2m—1)7r
== 7 .
The modulus of the interference function reaches a maximum value at this value of n and one

less (i.e. for n — 1). Taking the midpoint and choosing the particular values m =0, 1 then gives the
positions of two maxima (or ‘peaks’) at n = n4 where

1 =
=N|-%+—-). 3.16
ne=N(3%7) G.16)
Substituting n+ for n in equation (3.12) gives the corresponding clock times as
2oV N
Pk 0 Nyt = :t%, (3.17)

where t(pea )

is defined to be positive.
The modulus of the interference function equation (3.10) is shown in Section A of the electronic
supplementary material to be approximately Gaussian about these maxima, which allows us to

write |7})n in equation (3.9) as a superposition of two states as follows

TN o )N+ 1)), (3.18)
where
T(i) x Zf(i) ,(1i) exp 1HB(N — n)dt]exp[— iI:IFnSt]|¢) (3.19)

n=0

for 27 <0 < 4m. Here

. o _ 2 9
) _ oxp {_1[n+n (0o’ } (320)
and )
& _ _ (n—n4)7|0 tan(6/4)]
S —eXP|: N } (3.21)

are a complex phase function and a Gaussian weighting function, respectively. Keeping in mind
the definition of the clock time ¢, from equation (3.12) for the state in equation (3.11), we find that
|T(i)) N is a Gaussian-weighted superposition of states over a range of clock times with a mean
of tc= :tt(peak) and a variance of (At.)? ~2/|1 tan(d/4)|. In other words, the states |T,\(+)>N and
|T( )) N represent the universe localized in time for a duration of the order of Af. about the mean
times t. = t(peak) and t. = (pea ) , respectively.

The symmetry of the clock times associated with |T )N and |T )N about the time t. =0
reflects the symmetry of the construction equations (3.1) and (3.2) which has no bias towards one
direction of time or the other. Moreover, if the state |¢) is T-invariant (i.e. if T|¢) o< [¢)) and we
shall assume that it is, then TlT)t(Jr)) N X |T/\(7)) N and "i"l’n) N o |73 )n. This symmetry also arises
in time-symmetric cosmological and gravitational studies of the direction of time [51,52]. As
the time evolution in one component of the superposition in equation (3.18) is mirrored in the
other, it suffices for us to consider just |T(+)> N and its corresponding value of f Peak) _ o7 N Noy /6.

£ (peak)

Accordingly, we will call this value of the representative clock time and use it to label the
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Figure 4. |ly_,,(2)| plotted as a function of the scaled clock time (f — t7%) /o, where t = (2n — N)St. The
points (|ly_nn(@)], (tc — tﬁpeak)) /oy) are generated parametrically by varying n. The dots represent the exact values from
equation (3.10), and the solid curves represent the approximation given by |fF g | in equation (3.19). The numerical values
used arez = 6 /N, where § = 2.3t and N =100 (red), N = 1000 (green) and N = 10 000 (blue). For clarity, the functions
have been scaled to give a maximum of unity, and the green (N = 1000) and blue (V =10 000) dots and curves have been
displaced vertically by 0.2 and 0.4, respectively. Note that the value of tépeak) varies as /.

whole state |73,)n. The minimum representative clock time of a state in the set V', is found, using
equation (3.17) with N=N (time) _ =0y 2/8t2 . and 6 = a,tzk, to be

min min
(peak) _ 27
L 3.22
c,min )L Stmin ( )
(p

A discussion of the values of A and 8t in relation to £,
supplementary material.

Figure 4 compares the coefficients In_, ,(z) of the state |73)n in equation (3.9) with their
Gaussian approximation f,f gn in equation (3.19) near a maximum. The coefficients have been
plotted as a function of (f. — (peak)) /ot to centre them in the figure, where t(p ) s the position of
the maxima given by equation (3.17). As in figure 3, the values of N have been chosen purposely

to exaggerate the discreteness of the state |73)n. However, for every |73 )y € V' in equation (3.1),
N(tlme

1s given in Section C of the electronic

the values of N are sufficiently large (i.e. N > ) that the locus of points representing Iy, (z)
is essentially equivalent to the Gaussian approximation f,/ ¢; up to a proportionality constant. It
follows that each |7})n € Y, is physically indistinguishable from a state given by equations (3.18)
and (3.19) with the same value of N but where the sum over 1 in equation (3.19) is replaced with
its integral equivalent.

The broad properties of the states |13)y are illustrated in figure 5 which shows [In_,(z)|
plotted as a function of the scaled clock time f. /at The black curve corresponds to the time-
reversal invariance case where » =0 (and so 8 =2 =0). All other curves correspond to the
violation of time-reversal invariance (i.e. » #0) and have been generated for § =2.237 which
gives the minimum uncertainty in energy and time (see Section B of the electronic supplementary
material for details). The figure illustrates how the location of the maxima at t. = :i:t(p eak) ; increases
with N as given by equation (3.17).

For clarity, |In—n,n(2)| is plotted in figure 5 only for a select few values of N for which the peaks
in the corresponding curves are widely separated. To see how close the peaks can be, consider the
difference St(p ) in the representative clock times t(p k)
of N, which is found from equation (3.17) to be

spPeak) _ 2rot/N +1 B 20otV/N o
c 0 0 0N

of states |7; )N with consecutive values
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Figure 5. |Iy_,,(2)| as a function of the scaled clock time ¢, /oy, where t. = (2n — N)&t for different values of A and N.
As in figure 4, the points (|/y_n ()|, t/ot) are generated parametrically by varying n. For clarity, in each case, straight lines
connect consecutive discrete points of |Iy_p ,(2)| to form a continuous curve. However, as discussed in the textand illustrated by
figure 4, the locus of points representing |/ly_, »(2)| is essentially a continuous curve for N' > Ngii:‘e). The black curve represents
the T-invariant case (i.e. . = 0) and has been generated for N =1000. It does not visibly change with increasing values of
N. The remaining curves represent the T violation case (i.e. A % 0) for & = 2.237r and a range of N values as follows: red
curve for N = 300 and £7® = 15.5 5, green curve for N = 1200 and 1" = 3116, light blue curve for N = 2600 and
1P — 457 5, and dark blue curve for N = 4600 and t*¥ = 60.8 . All curves have been scaled to give a maximum

of unity.

for large N. Noting that N > Ngfg:e) =at2/5tfnm gives Stgp eak) <(7/0)8tmin and as 2w <6 < 4w
we find
stPM < Lsp .
. . (peak)
Hence, for any given time f > ¢ o min ’

representative clock time tgpeak) is equal to ¢ to within the resolution limit 8.

Figure 5 clearly shows that the inclusion of the violation of time-reversal invariance
dramatically changes the set V', in equation (3.1) from one containing elements that are physically
equivalent (represented by the black curve), to one containing states that are diverging in time
(other curves). This striking outcome warrants careful consideration. Both sets YV—g and Yo
have the same mathematical construction given by equation (3.1); the difference between them is
due solely to the phenomenological Hamiltonian and whether it respects T symmetry (1 =0) or
not (A # 0). All the states in V', —¢ are physically equivalent to a unique state, |Yp), which represents
the galaxy as existing for one particular finite period in time. This constitutes phenomenology
associated with T symmetry. In contrast, with T violation there are infinitely many different states
in the set ;9. There is no reason to suppose that any of them has special significance and so, by
default, all states in Y,y have equal status in representing the state of the galaxy in time. This
pluralism constitutes phenomenology associated with T violation. That different states can equally
represent the galaxy is not contradictory, because each state represents the galaxy at a different
representative clock time. In fact, the same pluralism is assumed in conventional quantum
physics, and is the root of the asymmetry between time and space discussed in the Introduction.

there is a state in the set Y, given by equation (3.1) whose

(d) Impact for quantum states in time and space

These remarkable results manifest a fundamental difference between quantum states in time and
space. All the states in the set ¥, irrespective of whether the discrete symmetries are obeyed or
not, represent the galaxy existing only in a region of order oy near x = 0. Likewise, all the states
in the set Y _¢ associated with T symmetry represent the galaxy existing only for a duration of
order ot near t. = 0. The fact that the states in the set Y'; —y do not conserve mass is testament to
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mass conservation not being an explicit property of the construction defined by equations (3.1)
(peak)

and (3.2). But for a set Y associated with T violation with 1" #0, for any given time ¢ > ¢ e min 7

. . . . k) .
we have just seen that there is a state | T3/)n € Y, whose representative clock time tﬁpea ) is equal

to t to within the resolution limit §tpin. In other words, the set Y, contains a state that represents
the galaxy’s existence at each corresponding moment in time. That being the case, it would not be
unreasonable to regard the set as representing a history of the universe. It follows that the set Y/
represents the persistence of the mass of the galaxy over the same period of time, in so far as the
Hamiltonians Hg and Hp conserve mass. This raises a subtle point regarding conservation laws;
while they may be due to deep principles (such as Noether’s theorem), they are not manifested in
quantum mechanics unless the state persists over a period of time. The crucial point being that in
conventional quantum mechanics, the persistence of the state is essentially axiomatic and ensured
by adopting a compliant dynamical equation of motion whereas here it arises phenomenologically
as a property of the set of states Y. Finally, on comparing the two sets Y,—p and Y/, one could
even venture to say that T violation, in effect, causes the contents of the universe to be translated
or, indeed, to evolve, over an unbounded period of time.

4. Emergence of conventional quantum mechanics

(a) Coarse graining over time

The spread of the state |73)y along the time axis, as illustrated by the plots of |[Iy_;,(2)| in
figure 5, represents a significant departure from conventional quantum mechanics for which
states are interpreted as having no extension in time. Nevertheless, the conventional formalism
can be recovered in the following way. Imagine that observations of the galaxy are made with a
resolution in time that is much larger than the width of the Gaussian weighting function gi in
equation (3.19). Under such coarse graining, the summation in equation (3.19) can be replaced by
the term corresponding to the maximum in gi and so, for example,

17 % expliflp(N — n4.)5t] exp(—iflpn..81)|).
We can re-express this state in terms of its representative clock time, tgpeak), which we shall shorten
to t. for brevity, as
17PN & exp(iflptea_) exp(—iflteas)|g), (41)
where ax =ny/(ny —n_) and we have used t. = (2ny — N)st=(ny —n_)stand N —ny =n_. At

this level of coarse graining, the time step é¢ is effectively zero, and t. is effectively a continuous
variable. Making use of the Baker-Campbell-Hausdorff formula [50] in equation (4.1) yields

1. S ~
|T;+))N X exp (§1a+a_tgk> exp [—1 (Hpa+ - HBa_> tc] |p). (4.2)

The complex phase factor can be accommodated by transforming to a new state, |7 (t)), as follows

|7 (te)) = exp (—%ma,tix) 17y ocexp [—i (Fipas — HBa,) tc] 6. (4.3)

On taking the derivative with respect to t., we recover Schrédinger’s equation,
S Py & i (Aras — Hna ) 170, @4
dte

Here, the coarse-grained Hamiltonian (I:IFa+ - I:IBa_) is a linear combination of Hp and HB due
to the fact that the quantum virtual path involves contributions from both.

Note that the differential equation (4.4) does not depend on the state |¢). The ambiguity
associated with loosely specifying |¢) as being sharply defined in time does not play a role
here. It is true that different choices for |¢) will lead to different states |7 (t.)), but that is no
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concern when the goal is to show that conventional quantum mechanics is recovered. The fact
that equation (4.4) results for all allowed choices of |¢) is all that is needed for this.

It is useful at this point to divide the galaxy into two non-interacting subsystems, one
whose Hamiltonian HV =T-1ADT is T-invariant and the remainder whose Hamiltonian
I:Ig’) = 'i"*llill(gv)'i" #* I:Ig/) is T-violating; in that case, we can write

Ar=A9 21" +1” @AY and As=00 01" +1¥ 0 A, (45)

sz

where the superscripts ‘i’ and ‘v’ label operators associated with the state space of the

T-invariant and T-violating Hamiltonians, respectively, and i is an appropriate identity
operator. Equation (4.4) can then be rewritten as

Vi iVe ), ) ), (4.6)

d . o) 3
T & ~i(AY @1 e

where I:II(D\Q on

subsystem.

It is straightforward to show that the commutator of ﬁgﬁen = H;V)a+ — Hgl)a, with its time-
reversed version is

:I:I;V)m_ —I:I](SV)a_ is the phenomenological Hamiltonian for the T-violating

AV e 2l P
[then’ T thenT] __lg)‘

which is /27 times the commutator [I:Ig),l:l](;)]. Thus, in principle, the commutation relation
could be used to distinguish the phenomenological Hamiltonians ﬁggen and "i"*lf:lggen"i" from the

more elementary versions I:Iév) and I:Ig/).

(b) Conventional formalism and potential experimental tests

These results are important because they not only show how the conventional formalism of
quantum mechanics is recovered, but they also show how the construction introduced here may
be verified experimentally. To see this consider the following three points. First, equation (4.6)
shows that the T-invariant subsystem behaves in accord with the conventional Hamiltonian H®
with respect to clock time t.. This means that conventional quantum mechanics is recovered for
this subsystem. Second, equation (4.6) shows that, owing to the coarse graining, the role of the
clock time t. has been reduced from being a physical variable that describes the location and
uncertainty of the galaxy with respect to time as illustrated in figure 5, to being simply a parameter
that labels a different state in the set V', according to the time f. = tipeak) of the maximum in g;'".
Indeed, its demoted role is the very reason we are able to recover Schrodinger’s equation. Third,
any experiments involving T-violating matter that are performed by observers in the galaxy
would give results that are consistent with equation (4.6) and so they would provide evidence

of the phenomenological Hamiltonian ﬁ;‘gen in the same way that experiments in our universe

give evidence of the Hamiltonian associated with meson decay. Any demonstration that I:Iggen

differs from the more elemental Hamiltonians I:Iév) and I:Ig’) represents a ‘smoking gun’ for the
construction introduced here. Of course, this specific result cannot be used in practice because it
applies to the simple model of T violation chosen here for its clarity rather than accuracy, and also
because the present knowledge of T violating Hamiltonians is based on empirical results and so
it is limited to the phenomenological version of the Hamiltonians. More realistic models of the
universe and T violating mechanisms may provide experimentally testable predictions, such as
novel deviations from exponential decay for T violating matter or local variations in clock time.
But these are beyond the scope of the present work whose aim is to show, in the clearest way
possible, how T violation may underlie differences between time and space.
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5. Discussion

We began by drawing attention to the asymmetry between time and space in conventional
quantum theory where states are presumed to undergo continuous translation over time, whereas
there is no corresponding presumption about states necessarily undergoing translations over
space. We set out to explore an alternate possibility by introducing a new quantum formalism that
gives both space and time analogous quantum descriptions. In developing the formalism, we paid
particular attention to subtle mathematical details that play no significant role in conventional
quantum mechanics. These details involve explicitly taking into account the P and T symmetry
operations, translations of states in space and time, and fundamental limits of precision. We
incorporated them in a mathematical construction where quantum states are represented as
a superposition of random paths in space or time. We found that with no P or T symmetry
violations, quantum states had analogous representations in space and time: just as matter can
be represented as existing only in a finite region of space, it can also be represented as existing
only for a finite interval of time. Clearly, the price we pay for this symmetry is absence of the
conservation of mass. However, with the violation of T symmetry, dramatic differences between
the representation of quantum states in space and time arise through the quantum interference
between different paths. The state (and the matter it describes) is found to persist over an
unbounded range of time values. This result gives a new appreciation of conservation laws:
while they may be due to deep principles, they are not manifested unless the state persists over
a sufficient period of time. The Schrédinger equation of conventional quantum mechanics, where
time is reduced to a classical parameter, also emerges as a result of coarse graining over time. As
such, T violation is seen in the new formalism as being responsible for fundamental differences
between space and time in conventional quantum mechanics.

The new formalism may also help resolve other perplexing issues associated with space and
time. For example, the arrows of time indicate a preferred direction from “past’ to ‘future” [53],
but there is no analogous preferred direction of space. The new formalism appears to offer a
basis for understanding why. Indeed, the set of states in time, Y, for A # 0 in equation (3.1), has a
natural order over time in the following sense. First recall that our interpretation of equation (3.3)
is that exp(—ifﬁ:t) and exp(iﬁBt) are associated with physical evolution in different directions
of time, whereas the inverses exp(iﬁpt) and exp(—iﬁBt) are associated with the mathematical
operations of rewinding that physical evolution. Within this context, the coarse-grained state
|7 (tc)) in equation (4.3) is interpreted as resulting from evolution by t.a.. in the positive direction
of time and t.a_ in the reverse direction, giving a net evolution of t.(a4 — a_) =t in time from the
state |¢). Correspondingly, the state |}~"(t’c)> with t/. > t, represents a more evolved state than |7 (t)).
In fact writing

|7 () o« expl—i(Hgay. — Hpa_)At]| T (t)), (5.1)

where At =1, —t. >0 shows that |7~”(t/c)) evolves from |7 (tc)). One might be tempted to argue
that we could equally well regard |7 (t.)) as evolving from |’1~”(t’c)>, because

|7 (ko)) o< expli(Hpay — Hpa_)AH]|T (), (5.2)

but doing so would be inconsistent with our interpretation of equation (3.3). According to that
interpretation, equation (5.2) represents the mathematical rewinding of the physical evolution
represented by equation (5.1). Note that the state |7 (.)) is a coarse-grained version of the
component |T)f+)) ~ of [73)n in equation (3.18); an analogous argument also applies to the coarse-
grained version of the other component |T/\(7)) N, and thus to the whole state |73)y. Hence, the
set of states V', for A #0 are ordered by the degree of time evolution from the state |¢). This
gives two preferred directions of time away from the origin of the time axis and so represents
a symmetric arrow of time. Time-symmetric arrows have also been explored by Carroll et al. and
Barbour et al. [51,52]. In stark contrast, there is no analogous ordering for ¥ in equation (2.6), the
set of states distributed over space. Indeed, all the states in ¥ are physically indistinguishable.
Also the ordering of the set V', vanishes at A =0 which corresponds to T symmetry. It appears,
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therefore, that T violation is also responsible giving time a direction (in the sense of orientating
time away from the occurrence of |¢)).

In addition to these conceptual results, the new formalism was also found to have potential
experimentally testable consequences. Indeed, for a subsystem associated with T violation, the

formalism predicts that the experimentally determined Hamiltonian, ﬁ;v}zen

in equation (4.6),
will be different to the Hamiltonians, I:Ig’) or I:Ig’) in equation (4.5), associated with conventional
quantum mechanics. Further work is needed to develop feasible experiments for testing predicted
departures from conventional theory like this. An experimental verification of the new formalism
would have profound impact on our understanding of time.

In conclusion, the importance of Feynman’s sums over paths for describing quantum
phenomena is well beyond doubt [43]. A distinctive feature of the quantum virtual paths in the
new formalism is that they explicitly take into account the violation of T symmetry. The new
formalism has the advantage of giving time and space an equal footing at a fundamental level while
allowing familiar differences, such as matter being localized in space but undergoing unbounded
evolution in time, to arise phenomenologically due to the fact that T violation is a property of
translations in time and not space. As such, the violation of the discrete symmetries is seen to
play a defining role in the quantum nature of time and space.
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