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Tying quantum knots
D. S. Hall1*, M.W. Ray1†, K. Tiurev2, E. Ruokokoski2, A. H. Gheorghe1† and M. Möttönen2,3

As topologically stable objects in field theories, knots have been put forward to explain various persistent phenomena
in systems ranging from atoms and molecules to cosmic textures in the universe. Recent experiments have reported the
observation of knots in di�erent classical contexts. However, no experimental observation of knots has yet been reported
in quantum matter. Here we demonstrate the experimental creation and detection of knot solitons in the order parameter
of a spinor Bose–Einstein condensate. The observed texture corresponds to a topologically nontrivial element of the third
homotopy group and exhibits the celebrated Hopf fibration, which unites many seemingly unrelated physical phenomena. Our
work calls for future studies of the stability and dynamics knot solitons in the quantum regime.

Knots are defined mathematically as closed curves in
three-dimensional space1. Although knots are commonly
associated with physical strings, they also occur in the

orientations of liquid crystals2–4 and strands of DNA (ref. 5), as well
as in the paths described by the cores of line-like vortices in fluids.
A celebrated example of the latter is Kelvin’s early atomic theory,
which is connected to the existence and dynamics of knotted
vortex rings in an ethereal fluid6. More recently, nontrivial vortex
knots have been created and identified experimentally in water7
and optical beams8,9, and discussed theoretically in the context of
superfluid turbulence10.

Knots can also appear as non-singular particle-like solitons in
classical and quantum fields11, the nature of which has been a subject
of intense mathematical interest for more than eighty years12–14. A
knot soliton consists of an infinite number of rings, each linked with
all of the others to generate a toroidal knotted field structure15. For
example, Maxwell’s equations admit solutions that involve solitons
in which these linked rings are electric or magnetic field lines16,17.
Quantum-mechanical examples of such knot solitons have been
theoretically proposed18,19 for the Faddeev–Skyrme model, in which
each of the linked rings consists of the points in space sharing a
particular direction of the field. We focus below on knot solitons
with linked rings that are associated with orientations of a nematic
vector in a superfluid20.

Previous experiments have identified one-dimensional soli-
tons and singular vortex lines in superfluids21–24, both of which
belong to the fundamental homotopy group25, π1. Two-dimensional
skyrmions26 and singular monopoles27, belonging to the second
homotopy group, π2, have also been observed. In contrast to these
examples, knot solitons change smoothly and nontrivially in all
three spatial dimensions. As members of the third homotopy group,
π3, they are representatives of the only general texture type that
has not previously been identified experimentally within a medium
described by a quantum-mechanical order parameter.

In this Article, we demonstrate the creation and observation of
knot solitons in a spinor Bose–Einstein condensate. We adopt and
implement the theoretical proposal of ref. 20 using experimental
techniques that have recently been used to create Dirac monopoles

in synthetic magnetic fields28,29 and isolated monopoles27. Images of
the knot resolve not only the core of the soliton but also pairs of
linked rings that demonstrate its knotted character.

The full order parameter describing a spin-1 Bose–Einstein
condensate may be expressed as

Ψ (r, t)=
√

n(r, t)eiφ(r,t)ζ(r, t) (1)

where n is the atomic density, φ is a scalar phase, and
ζ =(ζ+1,ζ0,ζ−1)Tz is a three-component z-quantized spinor
with ζm= z〈m|ζ 〉. Note that a condensate is required to describe our
many-particle system in terms of such a simple order parameter.We
restrict our attention here to the polar phase, which is completely
specified by spin rotations of the initial spinor ζP = (0, 1, 0)Tz by
angles β and α about the y and z axes, respectively:
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Here, themost general spin rotation acting nontrivially on the initial
spinor can be represented as D(α, β)= exp(−iFzα) exp(−iFyβ),
where Fx and Fy are dimensionless spin-1matrices. The key element
in equation (2) is the nematic vector d̂, given by (dx , dy , dz)=

(cosα sinβ , sinα sinβ , cosβ).
The polar order parameter may therefore be expressed as

Ψ (r, t)=
√

n(r, t)eiφ(r,t)d̂(r, t) (3)

where the spatially dependent nematic vector represents the
magnetic order of the condensate. Physically, the nematic vector
specifies, at each point in space, the quantization axis with respect to
which the order parameter is fully in the m=0 spinor component.
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Figure 1 | Structure of the knot soliton and the method of its creation. a,b, Schematic magnetic field lines before (a) and during (b) the knot formation,
with respect to the condensate (green ellipse). c,d, As the knot is tied, the initially z-pointing nematic vector (black arrows) precesses about the direction
of the local magnetic field (cyan lines) to achieve the final configuration (coloured arrows). The dashed grey line shows where dz=0, the white line
indicates the soliton core (dz=−1), and the dark grey line defines the boundary of the volume V (dz= 1). e, The knot soliton configuration in real space and
its relation to the nematic vector d̂ in S2 (inset). The inner white ring (dz=−1) defines the core of the knot soliton. The surrounding coloured bands (dz=0)
define the surface of a torus, with colours representing the azimuthal angle of d̂, which winds by 2π in both the toroidal and poloidal directions. The outer
dark grey rings (dz∼ 1) indicate the approximate outer boundary of the soliton, where the field assumes its initial direction.

For this reason, it is also known as the local magnetic axis.
Importantly, the knot soliton in our experiment is created in the
nematic vector field.

From equation (2) and the definition of d̂, we observe that spin
rotations D(α,β) applied to ζP rotate the initial d̂P= ẑ as a classical
vector by the Euler angles α and β . Additional spin rotations of ζ
therefore result in corresponding vector rotations of d̂. The principal
consequence of this behaviour is that the nematic vectors precess
in applied magnetic fields just as do spins. We focus below on the
nematic vector field description of the order parameter, returning to
a formulation in terms of spinor components only for the purpose
of imaging the nematic vector field.

The nematic vector field d̂(r) maps points in real space r∈R3

to points on the surface of the unit sphere d̂ ∈ S2 (Fig. 1e).
In our case, the nematic vector assumes a constant value,
d̂0, at the boundary of a certain volume V . We restrict our
studies to textures inside the volume V , which consequently can
be identified with S3, the surface of a four-dimensional ball.
Nontrivial mappings d̂(r) from S3 to S2 lead to knotted field
configurations characterized by integer topological charges or
Hopf invariants11, Q, as determined by the third homotopy group
π3(S2) ∼= Z. Field configurations with different Hopf invariants
cannot be continuously deformed into one another and are therefore
topologically distinct.

The points inV at which d̂ assumes the same direction, d̂c, define
a closed curve known as the preimage of d̂c. In a knotted field
configuration, any given preimage is linked with all of the others,
each associated with a different d̂, exactly Q times. Thus the linking
number is equivalent to the Hopf invariant11, and provides an
alternative perspective on its physical significance.

Our experiment realizes the Hopf map12, which has Q= 1 and
is generated physically in our system by precession of the nematic
vector in an inhomogeneous magnetic field. We begin with an
optically trapped 87Rb condensate described by the nematic vector
d̂= d̂0 = ẑ (see Methods). The inhomogeneous magnetic field is

given by the superposition of a quadrupole gradient with a uniform
bias field as

B(r′, t)=bq(x ′x̂+y ′ŷ−z ′ẑ)+Bb(t) (4)

where the condensate is taken to be at the origin of the rescaled
coordinate system x ′=x , y ′=y and z ′=2z . Choosing the gradient
bq=4.3(4)Gcm−1 and an effective bias field Bz =30mG, the zero
point of the magnetic field is initially 35 µm away from the centre
of the condensate. The creation of the knot is initiated by a sudden
change of Bb(t) that places the field zero at the centre of the
condensate, ideally leaving its state unchanged (see Fig. 1a,b and
Supplementary Fig. 1). The nematic vectors then precess about the
direction of the local magnetic field at their spatially dependent
Larmor frequencies

ωL(r′)=
gFµB|B(r′, t)|

~
=

gFµBbqr ′

~
(5)

where gF is the atomic Landé g -factor, µB is the Bohr magneton,
and r ′=

√
x ′2+y ′2+z ′2. Ideally, this precession results in the time-

dependent nematic vector field

d̂(r′)=exp
[
−iωL(r′)t B̂(r′) ·F

]
d̂0 (6)

where F is the vector of dimensionless spin-1 matrices in the
Cartesian basis. Importantly, d̂(r′, t)= d̂0 for all points satisfying
ωL(r′)t = 2π, thereby establishing the boundary condition that
permits the choice of volume V to be a ball of radius

R′=
2π~

gFµBbqt
(7)

Figure 1c,d illustrates how the nematic vector assumes its
knot soliton configuration as a result of the spatially dependent
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Figure 2 | Tying the knot soliton by winding the nematic vector. Experimental side (a) and top (b,c) images of the atomic column density of the m=0 (a,b)
and m=−1 (c) spinor components at the indicated evolution times. Continuous rotation of the nematic vector brings the knot soliton into the condensate
through its boundary, where the vectors rotate by 2π in∼455 µs. The intensity peaks inside the circular intensity dips in a show the core of the knot soliton.
The dips correspond to the colourful torus shown in Fig. 1e occupied by the m=±1 components (see also Fig. 3). The analytically calculated locations of the
core and regions for which dz= 1 (see equation (7)) are shown as ticks on the horizontal axes. For a the field of view is 246 µm× 246 µm and the maximum
pixel intensity corresponds to column densities in excess of ñp=8.5× 108 cm−2; for b,c these quantities are respectively 219 µm× 219 µm and
ñp= 1.0× 109 cm−2.
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Figure 3 | Comparison of experiment with theory. Side (a,b) and top (c,d) images of the experimentally (a,c) and theoretically (b,d) obtained
atomic column densities in all di�erent spinor components as indicated. The number of particles is 2.4× 105, and the knot is tied for Tevolve=558 µs. For
a,b the field of view is 246 µm× 246 µm and the maximum pixel intensity corresponds to column densities in excess of ñp=8.5× 108 cm−2; for c,d these
quantities are 219 µm× 219 µm and ñp= 1.0× 109 cm−2, respectively.
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Figure 4 | Numerical simulation of the knot creation before expansion. Horizontally (a) and vertically (b) integrated particle densities of a condensate just
before the projection ramp after an evolution time of 558 µs, with parameters matching those in Fig. 3. The field of view is 13 µm× 13 µm in each frame, and
the maximum pixel intensity corresponds to ñp=3.8× 1011 cm−2.
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Figure 5 | Linked preimages. Experimental (a) and simulated (b) top images of the m=0 spinor component for Tevolve=508 µs and projections along−x,
where the maximum pixel intensity corresponds to column densities in excess of ñp= 1.0× 109 cm−2 and the field of view 219 µm× 219 µm. c, Simulated
top image of the condensate in b before expansion, with ñp=2.6× 1011 cm−2. Projection along α∈{±x,±y} results in a column density with pronounced
intensity along the preimages of dα= 1 and dα=−1. d, Preimages of dx=±1 from the simulation of panel c, with colours corresponding to those of Fig. 1e.
The field of view in c,d is 13 µm× 13 µm. e–h, Same as a–d, but for images taken from the side. The field of view in e,f is 246 µm× 246 µm with
ñp=8.5× 108 cm−2, and the field of view in g,h is the same as in c,d. i–l, Same as a–d, but for projection along y and preimages dy=±1. m–p, Same as e–h,
but for projection along y and preimages dy=±1.

Larmor precession. The core of a knot soliton is conventionally
identified with the preimage of the south pole of S2, that is,
d̂core=−d̂0, which lies in the x ′y ′-plane. Here, this ring is a circle
(Fig. 1c–e). The comparable preimage of the north pole of S2, d̂= d̂0,
includes the z ′-axis and the points on the boundary of V . The
preimages of the equatorial points on the two-sphere consist of

linked rings that, taken together, define a toroidal tube enclosing
the core, as shown in Fig. 1e. Elsewhere, d̂ varies smoothly between
these directions.

After an evolution time Tevolve we apply a projection ramp in
which the bias field Bz is rapidly changed to move the field zero
far from the centre of the condensate27,28. The condensate is then
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Figure 6 | Comparison of experiment with theory for x and y projections.
Side images after−x (a,b) and y (c,d) projection ramps, with
experimentally (a,c) and theoretically (b,d) obtained atomic column
densities in all di�erent spinor components as indicated. The knot is tied for
Tevolve=508 µs. The field of view is 246 µm× 246 µm and the maximum
pixel intensity corresponds to column densities in excess of
ñp=8.5× 108 cm−2. These images yield phase information complementary
to the density profile of the rightmost column of Fig. 2 through interference
between the spinor components as a result of the orthogonal projections.

released from the optical trap, whereupon it expands and falls
under the influence of gravity. Subsequently, the different spinor
components are separated and imaged simultaneously along both
the vertical (z) and horizontal (y) axes. According to the relationship
between the nematic vector d̂ and the spinor ζ , equation (2), the
m=0 component is populated by the preimages of nematic vectors
with dz=1 (the boundary of V and the axis of the soliton) and dz=

−1 (the core of the soliton). Both appear in the m=0 component
because any two antipodal points on S2 correspond to the same
spinor up to a sign (equation (3)). Similarly, the toroidal tube
with dz = 0, consisting of the equatorial points of S2, appears in
overlappingm=±1 components of the z-quantized spinor.

The temporal evolution of the particle column densities in the
m= 0 component,

∫
nd2

z dy , is shown in Fig. 2a,b. The winding of
the nematic vector in the inhomogeneous magnetic field generates
the soliton core, which appears as a ring of enhanced particle
density that first emerges at the boundary of the condensate and
subsequently shrinks inwards. The preceding analytical result for
the core radius, R′/2 from equation (7), agrees well with the
experimental observations. Immediately surrounding the soliton
core is the toroidal tube: a region of depleted density in the m= 0
component and of enhanced density in them=1 spinor component
(Fig. 2c). As expected, regions outside the tube and along the axis of
the soliton appear with enhanced density in them=0 component.

Figure 3 provides a detailed comparison of the experimentally
obtained knot soliton with numerical simulations of the

corresponding Gross–Pitaevskii equation (see Methods) with
no free parameters. The very good correspondence between the
experiment and the simulation, together with the qualitatively
correct behaviour of the m=±1 spinor components that jointly
accumulate in the vicinity of the intensity minima of the m= 0
component, provide further evidence that the observed texture is
that of a knot soliton. Note that the m=±1 components do not
fully overlap, as a result of mutual repulsion during expansion after
release from the trap27. The simulation results presented in Fig. 4
demonstrate that them=±1 components accurately overlap before
expansion, and thus the condensate remains polar during the knot
creation process.

By definition (equation (2)) the nematic vector is aligned with
the local spin quantization axis, along which the condensate is fully
in the m= 0 component, that is, ζ = (0, 1, 0)Td̂ . In the spirit of
equation (2), we obtain0

1
0


d̂

=
1
√
2

−dx̃+ idỹ√
2dz̃

dx̃+ idỹ


z̃

(8)

where z̃ is an arbitrary quantization axis. Thus a projection
ramp taken along an arbitrary axis z̃ populates the m = 0
component with the preimages of the antipodal points in S2
corresponding to dz̃ = ±1. Performing the projection ramp
along x and y , for example, we can observe the preimages of
dx = ±1 and dy = ±1 in the m = 0 component, respectively,
as shown in Fig. 5. The images closely match the results of
simulations and exhibit the predicted density profiles of the linked
preimages, providing a striking experimental visualization of the
Hopf fibration.

One can reconstruct the full nematic vector profile up to
signs from images taken of the m= 0 component when projected
along all three axes x , y and z . Furthermore, projections along x
and y generate interference patterns that appear in the m=±1
spinor components. These interference patterns provide verification
of the expected relative phase structure between the different
spinor components. We include experimental images of all three
components for these two projections in Fig. 6, alongside the
simulated density profiles corresponding to these experimental
conditions. The very good agreement between the experiments
and theory provides conclusive evidence for the existence of the
knot soliton.

Our observations suggest future experiments on the dynamics,
stability and interactions of knot solitons30. Experimental creation of
multiply charged and knotted-core solitons in quantum fields stands
as another promising research direction. Furthermore, stabilizing
the knot soliton against dissipation, a feature associated with
textures in the Faddeev–Skyrme model18,19, remains an important
experimental milestone.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Condensate production and initialization. The experimental techniques
employed here are essentially identical to those of ref. 27. The condensate is initially
produced in the |F=2,mF =2〉 spin state using a combination of evaporative
cooling in magnetic and crossed-beam optical dipole traps. The optical dipole trap
operates at a wavelength λ=1,064 nm with trapping frequencies ωr∼2π×130Hz
and ωz∼2π×170Hz in the radial and axial directions, respectively. A two-photon
Landau–Zener sweep then drives the condensate into the |F=1,m=0〉 spin state,
which is described by the spinor ζ =(0, 1, 0)Tz .

Magnetic field control. A set of three mutually orthogonal field coils controls the
magnetic bias field, and the spherical quadrupole field is generated by an additional
pair of coils with oppositely circulating currents, as shown in Supplementary Fig. 1.
The key technical difference between ref. 27 and the present experiments is that we
bring the magnetic field zero rapidly into the condensate centre, in contrast to the
adiabatic creation ramp in ref. 27. Supplementary Fig. 1 also shows the measured
temporal evolution of the electric current controlling Bz during its excursion,
expressed in units of the magnetic field. We define t=0 to be the moment at which
the field zero has traversed 90% of the distance towards its final location at the
centre of the condensate. The strength of the quadrupole gradient field is estimated
by repeating the knot creation experiment with a 18mG bias field offset applied
along the x-axis, which introduces a fringe pattern that winds at a rate proportional
to the strength of the gradient.

Imaging. After the condensate is released it undergoes 5.5ms of free expansion
under the influence of gravity. It is then exposed to a 3.5-ms application of a
70-G cm−1 magnetic field gradient along x that serves to separate the spinor
components spatially. After an additional 14ms of free expansion under the
influence of gravity, the condensate is imaged simultaneously along the vertical and
horizontal axes using resonant absorption imaging. The total number of particles
in the condensate at the moment of imaging is typically 2.5×105.

Stabilization of the polar order parameter. The polar order parameter of a 87Rb
condensate is dynamically unstable at low magnetic fields because the quadratic
Zeeman energy is lower than the ferromagnetic spin–spin interaction energy. As
discussed in ref. 27, the timescale for the decay of the polar phase to the

ferromagnetic phase is greatly extended by the presence of a magnetic field
gradient. As a result, the lifetime is orders of magnitude longer than the knot
creation time, and hence the instability does not play any significant role in
the experiment.

Data. The experimentally obtained images of knot solitons shown in this
manuscript represent typical results selected from among several hundred
successful realizations taken under similar conditions over the course of more than
a year. Remarkably, almost identical knot solitons have been created with several
minutes of time elapsed between the realizations without changing the applied
control sequences.

Simulation.We theoretically describe the low-temperature dynamics of the
condensate using the full three-dimensional spin-1 Gross–Pitaevskii equation

i~∂tΨ (r)={h(r)+n(r)[c0+c2S(r) ·F]− iΓ n2(r)}Ψ (r) (9)

where we denote the single-particle Hamiltonian by h(r), the spin vector by
S(r)=ζ(r)†Fζ(r), and the density–density and spin–spin coupling constants by
c0=4π~2(a0+2a2)/(3m) and c2=4π~2(a2−a0)/(3m), respectively. We employ
the literature values for the three-body recombination rate
Γ =2.9×~×10−30 cm6 s−1, the 87Rb massm=1.443×10−25 kg, and the s-wave
scattering lengths a0=5.387 nm and a2=5.313 nm. The single-particle
Hamiltonian assumes the form h(r)=−~2

∇
2/(2m)+Vopt(r)+gFµBB(r, t) ·F+

q[B(r, t) ·F]2, where the strength of the quadratic Zeeman effect is given by
q=2π~×70HzG−2 and the optical trapping potential is approximated by
Vopt(r)=[mω2

r (x2
+y2)+mω2

zz2
]/2. The Gross–Pitaevskii equation is integrated

using a split-operator method and fast Fourier transforms on a discrete
(200×200×200)-point grid. The computations are carried out using
state-of-the-art graphics processing units. The simulations reproduce the
experimental results with no free parameters: Only literature values for constants
and independently measured parameters, such as the temporal dependence of the
magnetic field, are employed. The magnetic field gradient that is briefly applied to
separate the different spinor components during the time-of-flight imaging is not
included in the simulations.
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