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Quantum superposition at the half-metre scale
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The quantum superposition principle allows massive particles to 
be delocalized over distant positions. Though quantum mechanics 
has proved adept at describing the microscopic world, quantum 
superposition runs counter to intuitive conceptions of reality and 
locality when extended to the macroscopic scale1, as exemplified 
by the thought experiment of Schrödinger’s cat2. Matter-wave 
interferometers3, which split and recombine wave packets in order 
to observe interference, provide a way to probe the superposition 
principle on macroscopic scales4 and explore the transition to 
classical physics5. In such experiments, large wave-packet separation 
is impeded by the need for long interaction times and large 
momentum beam splitters, which cause susceptibility to dephasing 
and decoherence1. Here we use light-pulse atom interferometry6,7 
to realize quantum interference with wave packets separated 
by up to 54 centimetres on a timescale of 1 second. These results 
push quantum superposition into a new macroscopic regime, 
demonstrating that quantum superposition remains possible at 
the distances and timescales of everyday life. The sub-nanokelvin 
temperatures of the atoms and a compensation of transverse optical 
forces enable a large separation while maintaining an interference 
contrast of 28 per cent. In addition to testing the superposition 
principle in a new regime, large quantum superposition states are 
vital to exploring gravity with atom interferometers in greater detail. 
We anticipate that these states could be used to increase sensitivity 
in tests of the equivalence principle8–12, measure the gravitational 
Aharonov–Bohm effect13, and eventually detect gravitational 
waves14 and phase shifts associated with general relativity12.

Progress in the ability to manipulate quantum systems has enabled 
experimental tests of the foundations of quantum mechanics. These 
include studies of entanglement15, tests of local realism with Bell exper-
iments16,17, and exploration of wave–particle duality in delayed choice 
experiments with photons18 and atoms19. The quantum superposition 
principle is a central axiom of quantum mechanics, and efforts to test 
its universal validity have attracted much interest1. A breakdown of 
quantum superposition at large scales could arise from fundamental 
modifications to quantum dynamics4,5, interaction with a field of cos-
mological origin5, or quantum gravitational effects1,5. Currently, the 
best bounds on such decoherence mechanisms at large length scales 
come from matter-wave interference experiments1,4. No violations 
of the quantum superposition principle have yet been detected. To 
bound or discover such violations at macroscopic scales requires a well- 
controlled system that limits dephasing and decoherence from conven-
tional and technical sources.

Atom interferometry offers a way to create and characterize atomic 
superpositions. The field of atom interferometry has developed as a 
long series of experiments originating from Bordé’s realization of the 
importance of recoil effects in precision Ramsey laser spectroscopy6,20, 
which led to the Bordé–Ramsey technique6,20. Other important devel-
opments include the demonstration of atom interferometers using 
mechanical gratings21 and two-photon transitions7.

To create large atomic quantum superpositions, a significant  
challenge is to combine large momentum transfer (LMT) atomic 
beam splitters22,23 with long-time (>2 s) atom interferometry24,25. 

Interferometers with LMT beam splitters are susceptible to dephas-
ing from laser intensity inhomogeneity and wavefront perturbations 
across the atom cloud. These dephasing mechanisms are coupled to the 
transverse expansion of the atom cloud and are therefore exacerbated 
by long interferometer durations.

We achieve long free-fall times by launching a Bose–Einstein con-
densed cloud of ~105 ultracold 87Rb atoms into a 10 m atomic foun-
tain using a chirped optical lattice24. After the lattice launch, we use 
a sequence of optical pulses to apply a beam splitter that places each 
atom into a superposition of two wave packets with different momenta, 
corresponding to the two arms of a Mach–Zehnder interferometer7. We 
then allow the two wave packets to spatially separate vertically during 
a drift time T = 1.04 s. Subsequently, we redirect the two wave pack-
ets back towards each other with additional optical pulses (the mir-
ror sequence), and cause them to interfere using a final beam splitter 
when they once again spatially overlap after another drift interval of 
T = 1.04 s. Finally, we image the two interferometer output ports using 
a CCD camera (see Fig. 1).

The maximum spatial separation reached in the interferometer is 
Δz = n(ħk/m)T, where k is the laser wave number, n is the number of 
photon recoils (ħk) transferred by the beam splitter, and m is the atomic 
mass (ħk/m is the velocity associated with a single photon momentum 
recoil). Our LMT beam splitters transfer up to 90ħk, yielding super-
positions with much larger spatial separation than is possible with 
conventional 2ħk atom optics (54 cm for 90ħk, as shown in Fig. 2). We 
realize the beam splitters with sequential 2ħk Bragg transitions23 (see 
Methods). The laser beams that drive the Bragg transitions are sent 
into the atomic fountain from the top and retroreflected by a mirror 
at the bottom.

To quantify the coherence of the macroscopic superposition states, 
we measure the contrast of the interferometer. To determine the con-
trast, we record the amount of variation in the normalized popula-
tion in one of the output ports as it varies between constructive and 
destructive interference. The normalized population in output port i is  
Pi ≡ Ni/(N1 + N2), where Ni is the measured atom number in output 
port i. Owing to interference between the two arms of the interfero
meter, the population oscillates between the two output ports24. 
Examples of fluorescence images showing this population modulation 
are given in Fig. 3.

Owing to the large enclosed space-time area ΔzT, the interferom-
eter is highly sensitive to acceleration. Specifically, the sensitivity of 
the interferometer phase φ to an acceleration a can be expressed as7 
Δφ = maΔzT/ħ. This leads to an acceleration response for our inter-
ferometer of 2 × 108 rad per g for 2ħk beam splitters and 8 × 109 rad 
per g for 90ħk beam splitters (g is the acceleration due to gravity). 
Consequently, the interferometer phase fluctuates by much more than 
2π from shot to shot due to vibration of the retroreflection mirror, 
causing the output ports to vary randomly between constructive and 
destructive interference. Therefore, we see significant contrast, but the 
large acceleration sensitivity prevents the observation of a stable fringe 
as the phase is scanned. Since the contrast quantifies the coherence 
of the macroscopic superposition states, the contrast is the relevant 
metric for this work (as in photon recoil measurements with contrast 
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interferometry26). In many future experiments to explore gravitational 
physics, differential measurement schemes27 (for example, gravity 
gradiometry) will be used to exploit the increased sensitivity offered 
by large superposition states while cancelling the vibration-induced 
phase noise as a common mode12–14. In the work presented here,  
common-mode cancellation of the vibration-induced phase noise 
between different parts of the atom cloud allows us to observe con-
trast and additionally to see spatial interference fringes across the atom 
cloud (see below).

To further demonstrate interference, we measure the contrast enve-
lope, that is, the variation of P1 as a function of a timing delay δT before 
the final beam-recombining pulse sequence. At suitably large delays, 
contrast is suppressed, thus allowing characterization of technical noise 
sources which might be conflated with contrast at shorter delays.  
The timing asymmetry leads to a phase shift nkvzδT that depends  
on the vertical velocity vz (refs 24, 25). Integrating over the vertical 
velocity distribution of the atom cloud after the interferometer (r.m.s. 
width Δvz), the contrast is expected to decay with δT as the envelope 

function28 T n k v T T Texp[ 2] exp[ 2 ]z
2 2 2 2 2

c
2Γ(δ )≡ − Δ δ / = −δ / δ    , where 

the coherence time is given by δTc ≡ 1/(nkΔνz). Figure 4a displays the 
contrast envelopes and comparison to theory for 30ħk, 60ħk, and 90ħk 
beam splitters. We plot σ(P1), the standard deviation of the set of 
observed P1 values after a sequence of 20 shots at the specified δT, as 
δT is varied (see also Extended Data Fig. 2). Note that σ( )P2 2 1  is 
approximately equal to the contrast22. The data closely match the 
expected decay dependence Γ(δT) for the known values of n, k and Δvz. 

  54 cm  

Figure 2 | Wave packets separated by 54 cm. We adjust the launch height 
of the millimetre-sized atom cloud so that it passes the detector when the 
wave packets (corresponding to the two peaks in the image) are maximally 
separated. In order to visualize the full extent of the wave function, we take 
36 snapshots of different slices of the distribution. The images are taken 
at slightly different times between the atom launch and the fluorescence 
imaging and are stitched together according to the velocity of the atoms. 
The vertical height in the plot corresponds to atom density (red indicates 
higher density).
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Figure 3 | Fluorescence images of output ports. The two atom clouds 
resulting from the final beam splitter constitute the output ports of the 
interferometer. A single fluorescence image allows us to extract the atom 
number in each port. a, The 2ħk interferometer shows high contrast with 
nearly full population oscillation between the upper port (front image) and 
the lower port (back image). b, For the 90ħk interferometer, the population 
oscillates by more than 40%. Owing to spontaneous emission and velocity 
selectivity, the detected atom number is more than ten times smaller 
than for 2ħk. All displayed images are normalized to have the same peak 
height and are labelled with δφ corresponding to the interferometer phase 
modulo 2π. Each image is 13.8 × 9.7 mm, and the data are smoothed with 
a Gaussian filter with radius 0.5 mm.

Figure 1 | Fountain interferometer. a, After evaporative cooling and a 
magnetic lensing sequence (see Methods), the ultra-cold atom cloud is 
launched vertically from below the cylindrical magnetic shield using an 
optical lattice. At t = 0, the first beam splitter sequence splits the cloud into 
a superposition of momentum states separated by nħk. At t = T, the wave 
packet is fully separated, and a mirror sequence reverses the momentum 
states of the two halves of the cloud. At t = 2T, the clouds spatially overlap, 
and a final beam splitter sequence is applied. After a short drift time, the 
output ports spatially separate by 6 mm owing to their differing momenta, 
and the two complementary ports are imaged. This diagram is not to scale, 
and the upward- and downward-going clouds are shown horizontally 
displaced for clarity. The red, cylindrical arrows illustrate the counter-
propagating laser beams that drive the Bragg transitions. The blue spheres 

represent the atomic wave packets. The solid and dashed lines show the 
trajectories of the atomic wave packets (solid lines correspond to nħk 
greater momentum in the upward direction than the dashed lines), and the 
yellow arrowheads indicate the direction of motion. b, Pulse sequence of 
a 16ħk interferometer, see Methods for details. The main plot depicts the 
spacetime trajectories of the wave packets, and the pulse train underneath 
shows the temporal profile of the laser pulse sequences. c, A moving 
standing wave (red wave, direction of motion indicated by red arrow) 
induces a Bragg transition of one specific velocity class and changes its 
momentum by 2ħk, for example, from 2ħk to 4ħk. The black lines show a 
zoomed-in view of the spacetime trajectories, labelled by momentum.  
The black dot indicates the point at which the transition from momentum 
2ħk to 4ħk occurs.
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Given that the atom cloud has a known time te = 2.6 s to expand, the 
vertical size of the interferometer output ports provides us with an 
independent measurement of Δvz = 0.20 ± 0.04 mm s−1. The measured 
coherence times, as determined by fits of the contrast envelope widths, 
show quantitative agreement with their theoretically predicted values 
(see Fig. 4a).

Figure 4b shows the interference contrast for various values of n. To 
determine the contrast value for a given n, we use maximum likelihood 
estimation on the data corresponding to the highest point in the con-
trast envelope (see Methods). The model used to estimate the contrast 

corrects for the technical noise measured away from the contrast peak 
(that is, at large δT). Also, Fig. 4b inset shows the exponential scaling 
of atom loss with n. Atom loss derives from two factors: spontaneous 
emission decay with 1/e point n = 75 ± 10, and residual velocity selec-
tion of the π-pulses.

A complementary demonstration of interference is the observation 
of spatial interference fringes across the atom cloud for small timing 
delays δT (refs 25,29). The predicted fringe wavelength is λz =2πte/
(nk|δT − δT0|), where te is the cloud expansion time and δT0 accounts 
for velocity-dependent phase shifts from force gradients29 (see 
Methods). Figure 5a shows an unsmoothed example of the directly 
observed fringe from a single shot. The 1σ uncertainty in the phase 
extracted from fitting the fringe is 0.1 rad, which is near the atom shot 
noise limit for the observed contrast. For δT = −50 μs the fitted wave-
length λz = 1.5 ± 0.1 mm (1σ error from fit uncertainty) agrees with the 
theoretical value of λz = 1.4 mm (taking δT0 = 0). Assuming a spherical 
Earth’s gravity gradient would shift the prediction to λz = 1.5 mm. This 
is equivalent to δT0 = −3.5 μs, which is likely to be the reason why δT0 is 
slightly negative for the contrast envelopes in Fig. 4a. While the overall 
position of the spatial fringes varies from shot to shot, the fringes on 
the two ports always have complementary phases, as expected. Using 
principal component analysis on a set of 20 images, we extract the two 
orthogonal modes describing the spatial fringe24 (Fig. 5b).

Even for the 54 cm delocalization and a total of 180 applied optical 
Bragg pulses, we observe a contrast of 28%. We attribute the ability 
to maintain this level of contrast to two factors: the low temperature 
of the atoms and an absolute light shift compensation technique (see 
Methods). The ultra-cold cloud remains smaller than 1 mm throughout 
the interferometer. This reduces the contrast loss due to larger-scale 
inhomogeneities in laser intensity and wavefront (for example, from 
the 2 cm laser radial waist). The small cloud also minimizes pollution 
of the output ports by non-interfering atoms originating from spon-
taneous emission and imperfect transfer efficiency. The importance 
of absolute light shift compensation is demonstrated by the fact that 
operating without compensation almost fully eliminates the contrast for 
a 30ħk interferometer (see Extended Data Fig. 1). Further improvement 
of the contrast at large nħk is likely to require reduction of wavefront 
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Figure 5 | Spatial interference fringes. a, Horizontally integrated 
fluorescence images of the two 30ħk output ports (upper and lower 
panel) for a single run with δT = −50 μs (red). The images are fitted to 
a sinusoidally modulated Gaussian profile. For comparison, the output 
ports for δT = 100 μs have a Gaussian profile without interference fringes 
(blue). y axis in arbitrary units. b, Cosine (left panel) and sine (right 
panel) principal components of a set of 30ħk interferometer runs with 
δT = −50 μs, which show the effects of a vertical phase gradient across the 
cloud. All observed fringes are linear combinations of these basis images. 
Red and blue regions are anti-correlated.

Figure 4 | Contrast metrics. a, The contrast envelopes establish the 
interference effect. We plot σ( )P2 2 1  versus the timing delay δT, where 
σ(P1) is the standard deviation of the set of observed P1 values after a 
sequence of 20 shots at the specified δT (P1 is the normalized population in 
output port 1). The data points corresponding to the blue squares, black 
circles and red triangles are for 30ħk, 60ħk and 90ħk. The solid curves 
show the theory A + BΓ(δT − δT0), with coherence time δTc, offset A, 
centre δT0, and amplitude B as fitting parameters. Examples of the traces 
that lead to the points in the contrast envelopes are shown in Extended 
Data Fig. 2. Inset, comparison of fitted coherence times (points, 1 s.d. error 
bars from fit uncertainty) to theory (grey curve). The grey, shaded region 
indicates 1 s.d. theoretical uncertainty arising from uncertainty in the 
measured velocity spread Δvz. b, Trends in maximum observed contrast 
(blue data points, main panel) and normalized atom number Na in the 
output ports (red data points, inset) with nħk. The data points are for 
n = 2, 16, 30, 60 and 90. The atom number is normalized to the average 
number of atoms after a 2ħk interferometer. The thin, red curve in the 
inset shows the predicted atom number based on the measured 
spontaneous emission loss rate and π-pulse velocity selectivity. Error bars, 
1 s.d. uncertainties computed with the analysis discussed in Methods.
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perturbations, since these are intrinsically imprinted on the cloud at 
each pulse.

We probe the quantum superposition principle in an unprecedented 
regime. Extended Data Table 1 compares the wave-packet separation, 
interferometer duration, and mass of our superposition states to those 
of other matter-wave interferometers, showing that we occupy a new 
region of large wave-packet separation and long time. As a result, we 
set new bounds on macroscopic extensions of quantum mechanics 
(see Extended Data Fig. 3 and Methods) that introduce a decoher-
ence mechanism for superpositions larger than a certain critical size 
(the critical size is a free parameter of the theory)4. For instance, as 
shown in Extended Data Fig. 3, our bound on the decoherence rate 
for critical sizes >∼1 m is 104 times stronger than those placed by other 
experiments. In addition, these large superposition states pave the 
way for a new generation of fundamental physics tests using ultra- 
sensitive atom interferometers12–14. The wave-packet delocalization and 
coherence time demonstrated here already meet the requirements for 
certain proposed atomic gravitational wave detectors14. The demon-
strated enclosed space-time area combined with optical atomic clock 
states could also enable the study of decoherence induced by general 
relativistic proper time30.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Atom source. A 2D magneto optical trap (MOT) loads a 3D MOT in the centre 
of our 10 m vacuum tube for 4 s. We evaporate the 87Rb atoms in a time-orbiting 
potential (TOP) trap for 14 s and apply a magnetic lensing sequence to further 
reduce their kinetic energy31. The ultra-cold atoms are then launched upwards 
into the interferometer region with a chirped optical lattice. Overall, we have a 
cycle time of roughly 22 s.
Atom optics. For the initial beam splitter, a π/2-pulse splits the interferometer 
arms in momentum space by 2ħk, followed by a sequence of (n/2) − 1 π-pulses 
that selectively accelerate one of the arms to increase the momentum splitting to 
nħk. The mirror sequence consists of n − 1 sequential π-pulses that interchange 
the momenta of the two interferometer arms23,32, and the final beam splitter 
sequence once again contains (n/2) − 1 π-pulses applied to one arm followed 
by a π/2-pulse.

Bragg transitions couple different momentum states of the hyperfine level 
F = 2, mF = 0. In contrast to Raman transitions7,33, a Bragg scheme does not suffer 
from light-shift-induced variations of the hyperfine splitting between F = 1 and 
F = 2. The optical pulses that drive the Bragg transitions have Gaussian tempo-
ral profiles with full-width at half-maximum (FWHM) 60 μs for π-pulses and 
30 μs for π/2-pulses. Before the first beam splitter, the vertical velocity width is 
filtered by a 300 μs π-pulse that transfers only a narrow velocity slice. The two 
atom optics laser beams each contain 3 W of power 30 GHz detuned from the 
excited state resonance and are generated by frequency doubling the outputs of 
1,560 nm fibre amplifiers in nonlinear crystals34. These beams are combined on 
a polarizing beam splitter and enter the atomic fountain from the top. They have 
a radial waist of 2 cm and are retroreflected by a mirror at the bottom of the foun-
tain. The mirror’s angle is adjusted between pulse sequences by a piezo-actuated 
tip-tilt stage to compensate for Coriolis forces from Earth’s rotation24. Given 
that the laser intensity is limited by the large beam waist, sequential 2ħk Bragg 
transitions offer lower spontaneous emission losses than higher order Bragg  
transitions35.
Absolute light shift compensation. We implement a technique to compensate 
optical dipole forces on the atoms from imperfections in the laser beam profile. 
Dipole forces arise from gradients in the laser intensity, since the energy of 
an atomic state is shifted by an amount proportional to the local laser inten-
sity (light shift)3. These forces can distort the cloud and cause large differen-
tial phase shifts across the cloud. The differential phase shifts occur because 
the laser intensity profile varies with vertical position and is therefore not fully 
common to the two interferometer arms. To perform this compensation, we 
adjust the laser spectrum so that the absolute light shift from the blue-detuned 
spectral content, including the frequency components that drive the Bragg tran-
sitions, is cancelled by the absolute light shift from the red-detuned spectral  
content.

We achieve a light-shift-compensating spectrum by phase modulating each of 
the two atom optics lasers at 30 GHz, with the carrier 3.4 GHz blue-detuned from 
resonance and nearly fully suppressed. The two atom optics lasers are offset by an 
AOM shift of 160 MHz so that only one pair of sidebands drives Bragg transitions. 
The phase modulation occurs on the 1,560 nm light seeding the fibre amplifiers. 
To tune the asymmetry between the red and blue sidebands, we adjust the temper-
ature of the frequency doubling crystals. We measure the optical spectrum with a 
scanning Fabry–Perot cavity.
Contrast metrics data analysis. Following similar analysis from previous work11, 
we model P1 as a random variable. Our model for the probability density function 
(PDF) of P1 includes additive Gaussian noise11. P1 is related to the phase Φ and 
contrast c of the interferometer by:

Φ Φ( ) = + + ( ) ( )P X c w c X w, ; , 1
2 2

cos 11

We assume that the interferometer phase is uniformly distributed, so the PDF  
of Φ is given by φ( ) =Φ π

f 1  where [0, ]φ π∈ , and that the amplitude noise X is 
normally distributed with standard deviation w. We also assume that Φ and X are 
independent, so the PDF of P1 in the presence of noise X is equal to the convolution 
of the PDF of P1 in the absence of noise (w → 0) with the PDF of X.

Since the contrast approaches zero for large δT, all remaining fluctuations in 
P1 at large δT are due to amplitude noise. Therefore, we estimate w by computing 
the standard deviation of data taken at large values of δT. To estimate c, we use 
maximum likelihood estimation36 on the data set corresponding to the highest 
point in each contrast envelope, taking w to be a fixed parameter. The resulting 
contrast estimates are plotted in Fig. 4b. To calculate the uncertainty in the contrast 
estimates, we use the observed Fisher information for each data set36. We also 
propagate the uncertainty in the measured value of w. We discuss this contrast 
estimation procedure in greater detail below.

Error bars for the atom number in Fig. 4b are computed from statistical 
standard deviation. The curve showing the predicted atom number in Fig. 4b 
accounts for atom loss due to spontaneous emission and imperfect π-pulse trans-
fer efficiency. We measure the spontaneous emission loss rate by illuminating 
the launched cloud with a detuned interferometer pulse sequence. Specifically, 
all pulses are detuned from their respective two-photon resonances so that there 
is no transfer. Therefore, the ratio of the number of atoms remaining after such a 
pulse sequence to the number of atoms remaining after a launch with no pulses 
allows us to determine the fraction of the atoms lost due to spontaneous emis-
sion. To measure the π-pulse transfer efficiency, we apply a π/2-pulse followed by  
44 π-pulses and compare the number of atoms in the transferred peak (90ħk total 
momentum kick) to the number of atoms in the peak that is left untransferred by 
the π/2-pulse. Spontaneous emission loss is the same for both peaks and therefore 
does not confound the measurement. We note that the two peaks have the same 
height, while the transferred peak has a narrower vertical width (for example, see 
Fig. 2). This indicates that the imperfect transfer efficiency arises from π-pulse 
velocity selectivity.
Spatial interference fringes. Owing to the long expansion time te, the launched 
atom cloud is effectively a point source, meaning that by the time of detection 
the vertical velocity distribution has been mapped onto the vertical position z 
through the relation z ≈ vzte (vz is the vertical velocity). The velocity dependent 
phase shift nkvzδT then leads to a position dependent phase shift29 with corre-
sponding wavelength λz = 2πte/(nk|δT − δT0|). Here δT0 accounts for any veloci-
ty-dependent phase shifts from force gradients29. To observe the fringes, we reduce 
the fluorescence imaging time to 2.5 ms (see Fig. 5). We choose δT = −50 μs so that 
a full wavelength is visible on the atom cloud. For δT = 100 μs the smaller fringe 
period is completely blurred out by imaging heating of the atom cloud. The direct 
spatial interference contrast for δT = −50 μs is lower than the contrast with δT = 0 
reported in Fig. 4b due to this blurring.

We use principal component analysis (PCA) to extract spatial fringes from a 
set of 20 interferometer runs. In addition to the fringe pattern, PCA is sensitive 
to shot-to-shot variation of the centre of mass position of the cloud. To minimize 
crosstalk between these effects, we correct for the vertical and horizontal motion 
before performing PCA. We find the position of the cloud centre of mass for each 
shot using Gaussian fits and then shift each image appropriately to remove the 
motion. The data are also smoothed with a 400 μm Gaussian filter before PCA. We 
identify the first principal component as the shape of the overall cloud envelope. 
Principal components two and three correspond to the cosine and sine components 
of the fringe pattern (Fig. 5).
Testing macroscopic extensions of quantum mechanics. In Extended Data  
Fig. 3, we show exclusion curves for the parameter space of a general class of 
minimal modifications to quantum mechanics4. The theory is characterized by 
two parameters: a critical length scale ħ/σq beyond which quantum superpositions 
decay (σq corresponds to the magnitude of spontaneous momentum kicks intro-
duced by the modification), and a survival time τe that it takes for this decay to 
happen for an electron superposition larger than ħ/σq. Therefore, different exper-
iments can be referenced to an electron for comparison4. The critical length scale 
and survival time are free parameters of the theory that must be determined by 
experiment—there is no a priori assumption as to what their values should be4.

To compare the bounds set by our experiment to the previous experimental sta-
tus quo, we include exclusion curves for a number of other matter wave interference 
experiments that place bounds on this parameter space: atom interferometry with 
rubidium25, caesium37–39 and sodium40; neutron interferometry41; and interfer-
ometry with large molecules42,43. Molecular interferometry provides its strongest 
bounds on modifications to quantum mechanics of this form for submicrometre 
critical length scales, whereas the bounds from atom interferometry dominate at 
larger critical length scales due to the large wave packet separation.

We note that there are experiments demonstrating the preservation of entangle-
ment over long distances, such as Bell experiments with photons44 and the entan-
glement of many atomic spins15. While these experiments test quantum mechanics 
in a complementary way by generating entangled states, they do not create spatial 
superpositions of massive particles and thus do not bound the parameter space 
considered here.
Interferometer noise model and contrast estimation. Following ref. 11, we model 
the normalized population P1 ≡ N1/(N1 + N2) of an interferometer port as a ran-
dom variable. P1 is related to the phase Φ and contrast c of the interferometer by 
equation (1) above. We also assume that the interferometer noise X is normally 
distributed with PDF

f x w
w

e; 1
2

2X
x w22 2

π
( ) = ( )− /

and that Φ and X are independent.
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In the absence of noise (w → 0), the PDF of P1 is given by

g p c
c p

; 2 1
2 1

3P 2 21 π
( ) =

− ( − )
. ( )

This function is supported on ( )− +,c c1
2 2

1
2 2

 and has asymptotes at the  
boundaries. Since Φ and X are independent, the PDF of P1 for non-zero w can be 
computed by convolving g p c;P1

( ) with fX (x; w):

∫ τ τ τ( ) = ( ) ( − ) ( )
/ − /

/ + /

f p c w g c f p w; , ; ; d 4
P c

c

P X1 2 2

1 2 2

1 1

To experimentally determine w, we make the interferometer asymmetry δT large 
enough that c → 0. In this case, P1 is normally distributed, and the observed resid-
ual fluctuation in P1 is used to estimate w. For the data reported in this work, we 
typically find w ≈ 0.03 ± 0.005. To estimate c, we use the maximum likelihood 
method36 on a sequence of shots {p1, …,pm} at fixed δT. Specifically, we compute 
the likelihood

L c w p p f p c w; , { , } ; , 5m
i

m

P i1
1

1∏( … )= ( ) ( )
=

taking the data points pi and the measured value of w to be fixed parameters. The 
most likely value of c given the data is found by maximizing L as a function of c, 
or equivalently by solving

c
L

c
f p c wln 0 ln ; , 0 6

i

m

P i
1

1∑
∂
∂

= ⇒
∂
∂

( )= . ( )
=

We maximize L numerically to generate the contrast estimates plotted in Fig. 4b.
The uncertainty in these contrast estimates arises from two sources. First, the 

standard error σc(c) of the maximum likelihood method scales as the square root 
of the inverse of the Fisher information in the limit of a large number of samples 
m. The Fisher information F(c) is defined by

F c
c

f p c w f p c w pln ; , ; , d 7P P

2

1 1∫( )=



∂
∂

( )


 ( ) ( )

In the asymptotic limit m → ∞, we have:

σ ( ) =
( )

( )c
m F c
1 1

8c
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For m ≥ 20, the error in the asymptotic approximation does not significantly 
contribute to the uncertainty. We verify this by computing the observed Fisher 
information Fo for each data set, where:

F c w p p
m c

f p c w; , { , , } 1 ln ; , 9m
i

m

P io 1

2

2
1
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∂
∂
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Second, statistical uncertainty in the measurement of w propagates into uncertainty 
in the estimate of c. Both of these sources of uncertainty are reflected in the error 
bars shown in Fig. 4b.
Sample size. No statistical methods were used to predetermine sample size.
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Extended Data Figure 1 | Dependence of contrast on absolute light shift 
compensation. For 30ħk, the contrast as a fraction of its maximum value is 
plotted as a function of the asymmetry between the red and blue sidebands 
for one of the atom optics laser beams. To change the sideband asymmetry, 
we adjust the temperature of one of the frequency doubling crystals while 
keeping the sidebands of the second atom optics laser beam symmetric. 
Where Pred and Pblue are the respective optical powers in the red and blue 
sidebands, we define an asymmetry parameter 1 − (Pred/Pblue). Since the 
blue sideband is used to drive the Bragg transitions, we keep Pblue fixed in 
order to maintain constant Rabi frequency. This prevents us from reaching 
large negative values of the asymmetry parameter, because there is only 

enough total optical power available to increase Pred slightly without 
suppressing Pblue. In order to achieve a more negative effective value of the 
asymmetry parameter, we suppress the power in the carrier to half its usual 
amount for the one negative point in the plot. The carrier is blue detuned, 
so decreasing its power pulls the absolute light shift in the same direction 
as decreasing Pblue. To account for this, we plot the fractional contrast 
versus the effective asymmetry parameter that would yield the same 
light shift as the one that we implement, but at a fixed carrier power. The 
observed dependence of contrast on the sideband asymmetry indicates the 
importance of absolute light shift compensation for LMT interferometry. 
Error bars, 1σ.
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Extended Data Figure 2 | Examples of data showing interference 
contrast. Plots of P1 versus experimental trial for 2ħk, 30ħk, 60ħk and 
90ħk. The red traces have small values of δT and therefore display 
interference contrast. As discussed in the main text, we do not observe a 
stable fringe because of the vibration of the retroreflection mirror.  
For comparison, the grey traces have large values of δT so that contrast is 

eliminated, and they therefore show the amount of background amplitude 
noise in P1. Panels from left to right as follows. 2ħk: red trace, δT = 0 μs; 
grey trace, δT = 2 ms. 30ħk: red trace, δT = −15 μs; grey trace, δT = 100 μs. 
60ħk: red trace, δT = 0 μs; grey trace, δT = 100 μs. 90ħk: red trace, δT = 1 μs; 
grey trace, δT = −50 μs.
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Extended Data Figure 3 | Bounds on macroscopic extensions of 
quantum mechanics. Exclusion curves for the minimal modification to 
quantum mechanics proposed in ref. 4. Points in this parameter space 
below a given curve in the plot have been ruled out by the corresponding 
experiment. The green curves show the bounds placed by the 2ħk and 
90ħk atom interferometry results presented in this work. The grey, shaded 
area illustrates the region of parameter space excluded by these results. For 
sub-micrometre critical lengths, affected atoms would receive sufficiently 
large spontaneous momentum kicks to move out of the interferometer 
output ports. This results in atom loss and in a reduced sensitivity of 
the interference contrast to the decoherence rate. Therefore, we cut off 

the curves arising from our interferometry data at 1 μm. We also show 
exclusion curves from a sodium interferometer from 199240 (solid black), 
a caesium interferometer from 200137 (solid red), a neutron interferometer 
from 200241 (dashed red), a C70 molecular interferometer from 200242 
(dashed black), a caesium interferometer from 200938 (solid blue), a 
caesium interferometer from 201239 (dashed blue), a C284H190F320N4S12 
molecular interferometer from 201343 (solid orange), and a rubidium 
interferometer from 201325 (solid cyan). For all of the exclusion curves, 
the change in slope occurs at a critical length scale value equal to the wave 
packet separation.
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Extended Data Table 1 | Comparison with other matter-wave interference experiments

Descrip�on

Wave packet

separa�on ∆ (m)z Dura�on (s)T Mass (amu)m

Accelera�on sensi�vity

factor ∆ /ħ (m/s )m zT ²
�1

0.54 1.04 86.9 8 x 108This work, Rb, 90 ħk

Cs, 2012 9 × 10-3 0.25 132.9 5 x 106

3 × 10-3 0.4 132.9 3 x 106

4 × 10-3 0.35 86.9 2 x 106

1.1 × 10-3 0.16 132.9 4 x 105

Cs, 2009

Rb, 2013

Cs, 2001

Na, 1992 3 × 10-3 0.05 23 5 x 104

̴3 × 10-7 1.2 × 10-3 ̴10⁴ 60

0.07 4 × 10-5 1.01 40

C284H190F320N4S12, 2013

Neutrons, 2002

C70, 2002 ̴10-6 1.9 × 10-3 840 30

We compare the wave packet separation Δz, the duration T between the beam splitter and mirror sequences, and the mass m to those of a sodium interferometer from 199240, a caesium 
interferometer from 200137, a neutron interferometer from 200241, a C70 molecular interferometer from 200242, a caesium interferometer from 200938, a caesium interferometer from 201239, 
a C284H190F320N4S12 molecular interferometer from 201343, and a rubidium interferometer from 201325. Additionally, we compare the factor mΔzT/h- , which is directly related to the acceleration 
sensitivity (see the discussion of acceleration sensitivity in the main text). The wave-packet separation in our experiment is nearly an order of magnitude larger than the next largest value (from a 
neutron interferometer), and the duration in our experiment is more than four orders of magnitude longer than in the neutron interferometer with a nearly hundred times larger mass.
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