
264	 NATURE PHYSICS | VOL 10 | APRIL 2014 | www.nature.com/naturephysics

Quantum mechanics is, without any doubt, our best theory of 
nature. Apart from gravity, quantum mechanics explains vir-
tually all known phenomena, from the structure of atoms, 

the rules of chemistry and properties of condensed matter to 
nuclear structure and the physics of elementary particles. And it 
does all this to an unprecedented level of accuracy. Yet, almost 80 
years since its discovery, there is a general consensus that we still 
lack a deep understanding of quantum mechanics. Indeed, novel, 
puzzling and even paradoxical situations are frequently discovered. 
And I’m not talking about the well-known interpretational puzzles 
related to the measurement problem, but about a variety of quan-
tum effects, from the Aharonov–Bohm effect1, which was hidden in 
plain sight, to Bell inequality violations2, to the multitude of strange 
effects related to entanglement and quantum information. They 
are all puzzling and paradoxical only because we do not yet have 
the intuition and understanding that would allow us to predict and 
expect them.

Surprisingly however, with very few notable exceptions, for many 
years research on the fundamental aspects of quantum mechanics 
was put on the back burner; there seemed to always be more impor-
tant, pressing issues. During the past couple of years, however, there 
has been a strong renewed interest in the subject and there seems to 
be hope that we will finally reach a much deeper understanding of 
the nature of quantum mechanics. In what follows, I will describe a 
small part of this research.

As was noted long ago, the axioms of quantum mechanics are 
far less natural, intuitive and ‘physical’ than those of other theo-
ries, such as special relativity. Special relativity can be completely 
deduced from two axioms: (1) all inertial frames of reference are 
equivalent and (2) there is a finite maximum speed for propaga-
tions of signals. Contrast these with the very mathematical and 
physically obscure axioms of quantum mechanics: every state is a 
vector in a complex Hilbert space, every observable corresponds 
to a Hermitian operator acting on that Hilbert space, and so on. 
Furthermore, when trying to make physical statements about 
nature, they are all sort of negative: nature is uncertain, we cannot 
predict the result of a measurement, if we measure this we disturb 
that, and so on. Clearly there is no way to reconstruct the whole 
theory from such physical statements. Yet, there is a glimmer of 
hope. As both Aharonov (ref. 3 and personal communication) and 
Shimony4 independently noticed, the fundamental non-determin-
ism of quantum mechanics, one of the most unpleasant aspects of 
the theory and the very subject of Einstein’s famous complaint “God 
doesn’t play dice”, actually plays a positive role: it opens the window 
to a new phenomenon  — nonlocality. And Aharonov even went 
a step further (ref. 3 and personal communication). He remarked 
that it is possible, in principle, to have a theory that is non-deter-
ministic without being nonlocal. On the other hand, it is impossible 
to have a nonlocal theory that respects relativistic causality but is 
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deterministic. Indeed, very roughly speaking, if by moving some-
thing here, something else instantaneously wiggles there, the only 
way in which this doesn’t lead to instantaneous communication is 
if that ‘wiggling thing’ is uncertain and the wiggling can be only 
spotted a posteriori. The bottom line, therefore, is that if we take 
nonlocality to be the starting point, then fundamental non-deter-
minism — the most characteristic property of quantum mechan-
ics  — immediately follows as a consequence. Hence, we should 
consider nonlocality and not non-determinism as a basic axiom of 
quantum mechanics.

In the years following Aharonov and Shimony’s suggestion 
and due to the advent of quantum information and the extremely 
intense study of entanglement in particular, nonlocality came 
indeed to be appreciated as a fundamental property of nature. Yet, 
there is an even more interesting twist in the story. Rohrlich and I5 
took the Aharonov–Shimony suggestion seriously and investigated 
whether or not quantum mechanics can be deduced from the axi-
oms of (1)  relativistic causality and (2) the existence of nonlocal-
ity. In other words, we asked: “Is quantum mechanics the unique 
theory that allows for nonlocal phenomena consistent with special 
relativity?” Surprisingly, we discovered that this is not the case: 
nature could be even more nonlocal than that quantum mechan-
ics predicts, yet be fully consistent with relativity! This immediately 
raises two questions. Perhaps nature is indeed more nonlocal than is 
described in quantum mechanics says, but we haven’t yet observed 
such a situation experimentally. Alternatively, if such stronger non-
local correlations do not exist, why don’t they? Is there any deep 
principle that allows for nonlocality but limits its strength? This 
Review is dedicated to reporting the very intense present research 
into this question.

Before going forward, I want to reiterate that the scope of this 
Review is, by necessity, very limited and what is presented here is 
only a small part of a much larger effort to understand the founda-
tions of quantum mechanics that is going on at present. To start with, 
I would like to mention the intensive work in characterizing quan-
tum nonlocality itself6–25, where not even the simple algebraic ques-
tion — of fundamental importance — of which nonlocal correlations 
can be obtained from quantum mechanics is yet completely solved; 
see seminal works by Tsirelson26–29 (Cirel’son) as well as others30,31. 
Another interesting direction is that of generalized probabilistic the-
ories32–38. I also cannot cover the fascinating flow of ideas back from 
this research into quantum information theory, where it has led to a 
variety of new ideas, concepts and applications, out of which I would 
like to mention the newly emerged area of device-independent phys-
ics (including device-independent key distribution39–49 and device-
independent randomness generation50–60). A recent review article61 
covers these results and many more in detail. Further afield, I would 
like to single out the intense activity in searching for natural axioms 
of quantum mechanics along the lines initiated by Hardy62–69. Finally, 
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I would like to mention a completely different type of nonlocality, 
namely dynamic nonlocality70.

Model-independent statements about physics 
Physics is usually discussed in very concrete terms, indicating the 
systems of interest and the specific interactions between them. A 
very important recent development, however, was the realization 
that physics can also be presented in a ‘model independent’ way, 
that is, in a way that is largely independent of the details of the 
specific underlying theories; this allows one to compare various 
possible theories.

For our purpose, it is very convenient to view experiments as 
input–output black-box devices. Every experiment can be viewed 
as a ‘black box’. For example, suppose Alice has a box that accepts 
inputs x and yields outputs a (Fig. 1). One can imagine that inside 
the box there is an automated laboratory, containing particles, 
measuring devices, and so on. The laboratory is prearranged to per-
form some specific experiments; the input x simply indicates which 
experiment is to be performed. Suppose also that for every meas-
urement we know in advance the set of the possible outcomes; the 
output a is simply a label that indicates which of the results has been 
obtained. In this framework, the entire physics is encapsulated in 
P(a|x), the probability that output a occurs given that measurement 
x was made.

In our discussion, we are interested in the constraints that rela-
tivistic causality imposes on experiments carried out by two parties, 
Alice and Bob, who are situated far from each other. The physics is 
encapsulated in P(a,b|x,y), the joint probability that Alice obtains 
a and Bob obtains b when Alice inputs x and Bob inputs y. We are 
interested in the case when the experiments of Alice and Bob are 
space-like separated, that is, each experiment takes place before any 
information about the other’s input and output could reach it. We 
allow, however, the boxes to have been prepared long in advance, so 
that they could have been prepared in some correlated way, and they 
may also be connected by radios, telephone cables and so on. Also, 
obviously, to determine the joint probability, we need time to collect 
the entire information in one place.

Nonlocality
Consider the simple case when x, y, a and b have only two pos-
sible values, conventionally denoted 0  and 1. Suppose that Alice 
and Bob would like to construct some boxes that will yield outputs 
a and b such that:

	 a ⊕ b = xy � (1)

where ⊕ denotes addition modulo 2 (that is, a ⊕ b = 0 if a = 0 and 
b = 0 or a = 1 and b = 1 and a ⊕ b = 1 if a = 0 and b = 1 or a = 1 
and b = 0). In simple terms, what the above equation says is that 
when the inputs are x = y = 1, the outputs must be different from 
each other, whereas for any other pair of inputs, the outputs must 
be equal to each other. The question is, how well can they succeed?

Suppose, without loss of generality, that Alice and Bob pre-arrange 
that if x = 0 then Alice’s box yields a = 0. Now, to ensure that they win 
the game when the inputs are x = 0 and y = 0, they obviously must 
arrange that when y = 0 Bob’s box should yield b = 0. Furthermore, 
to ensure success when x = 0 and y = 1, they must also arrange that 
when y = 1 Bob’s box must also yield b = 0. Now, as Bob’s box will yield 
b = 0 when y = 0, to ensure success if the inputs are x = 1 and y = 0, 
Alice’s box must be such that it yields a = 0 when x = 1. But by now 
we have fixed the behaviour of both boxes for all the inputs. And we 
have a problem: if x = 1 and y = 1 the outputs will be a = 0 and b = 0, 
which constitutes a failure. Hence for one in four inputs, Alice and 
Bob fail. If the inputs x and y are given at random, 0 and 1 with equal 
probability, then Alice and Bob’s probability of success is at most 3/4.

Of course, if the boxes could communicate with each other, 
then they could always succeed: Alice’s box tells Bob’s something 
like, “My input was x = 0, I output a = 0, take care what you do!”. 
But, the whole point of the set-up was that Alice and Bob’s experi-
ments are space-like separated from each other, so any such sig-
nal would have to propagate faster than light. The upper bound 
of 3/4 on the probability of success derives from ‘locality’ (that 
is, no superluminal communication between the boxes), and it is 
called a Bell inequality2. There are many different Bell inequalities, 
describing constraints derived from locality in similar tasks; the 
particular one discussed here is the Clauser–Horne–Shimony–Holt 
(CHSH) inequality71.

John Bell’s seminal discovery2 was that if the boxes contain quan-
tum particles prepared in an appropriate entangled quantum state, 
and if appropriate measurements are performed on them, one can 
arrange a situation such that the probability of success of the above 
game is larger than 3/4.

Quantum particles, therefore, somehow communicate with each 
other superluminally. One could wonder if this doesn’t immediately 
contradict Einstein’s relativity. Here is precisely where the probabil-
istic nature of quantum mechanics comes into play. All that Alice 
and Bob can immediately see are the probabilities of their experi-
ments; to learn the joint probabilities takes time. Suppose, for 
example, that for Alice the outcomes a = 0 and a = 1 are equally 
probable, regardless of what x and y are. Then Bob has no way of sig-
nalling superluminally to Alice: all he can do is to choose the value 
of y, but this doesn’t affect the probabilities of Alice’s outcomes. 
Similarly, Alice could also be prevented from signalling to Bob. So, 
in Shimony’s words, the probabilistic nature of quantum mechanics 
allows for the “peaceful co-existence of relativity and nonlocality”: 
the particles could communicate to each other superluminally, but 
the experimentalists cannot use them to communicate superlumi-
nally with each other.

Nonlocality beyond quantum mechanics
As discussed above, quantum mechanics allows for a probability 
of success larger than 3/4 in the correlation game, meaning that 
the boxes (or the particles contained within) somehow commu-
nicate superluminally with each other. This is now recognized as 
being one of the most important aspects of quantum mechanics. 
However, quantum mechanics cannot always win in the game  — 
the quantum probability of success is at most (2 + √

-2)/4, as proved 
by Cirel’son29. That this is the case is a simple consequence of the 
Hilbert-space structure of quantum mechanics. But the deeper 
question is, why?5 Is there a deep principle of nature that limits the 
amount of nonlocality?

The first guess was that stronger nonlocal correlations would 
be forbidden by relativistic causality; perhaps the randomness that 
provides the umbrella under which nonlocality can coexist with 
relativistic causality is not enough to allow for stronger nonlocality. 
So the very first question to ask is: could — theoretically — nonlocal 
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Figure 1 | The black-box model of two experiments. Each black box is 
a whole laboratory. The inputs, x and y, are instructions indicating the 
experiment to be performed in the box and a and b are the outcomes of 
the experiments.
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correlations stronger than quantum mechanical ones exist, without 
violating relativity? When Bell discovered nonlocality, the problem 
was not formulated in a model-independent way but by using the 
specific language of quantum mechanics: entangled quantum states, 
Hermitian operators, eigenvalues and so on. From this point of view, 
the very question of whether or not nonlocal correlations stronger 
than the quantum mechanical ones could exist was very difficult 
to even envisage, let alone to answer. In the above box framework, 
however, the question and its answer are almost trivial: as long as 
locally a and b are 0 or 1 with equal probability, there is nothing that 
prevents the game from being won with certainty. These particular 
correlations are now known as Popescu–Rohrlich (PR) boxes5,72.

Super-quantum correlations
The existence of super-quantum nonlocal correlations shows that 
quantum mechanics cannot be deduced from the two axioms of 
(1)  relativistic causality and (2)  the existence of nonlocal correla-
tions. Something else is needed. But what? What could be a supple-
mentary, very natural, axiom that could rule out such correlations?

The statement that super-quantum correlations could  — in 
principle  — exist is very far from a fully fledged physical theory. 
Therefore, it may seem very unlikely that one could make further 
progress in answering the above question before such a full theory, 
which could explain all the known results — hydrogen atoms and 
so on — but also incorporate super-quantum correlations, is for-
mulated. Surprisingly enough, it turns out that there is a lot one can 
do with even just the above particular example. Help came at first 
from computer science, and now this is one of the hottest areas in 
the foundations of physics. Various very interesting situations have 
been discussed, including communication complexity73,74, nonlocal 
computation75, information causality76, macroscopic locality77, local 
orthogonality78 and nonlocality swapping79. In this Review, I will 
discuss only a few examples.

Communication redundancy
Almost all of our communication is redundant, and that is not only 
because some of us like to talk too much, but also because it is a law 
of nature. Indeed, consider the following problem. Suppose Alice 
and Bob would like to meet, but are both very busy. They speak 
on the telephone and try to find a day this year when they could 
meet. To make the problem more interesting, suppose that they do 
not want to find out a precise day, but first they want to establish 
whether the number of days when they could meet is even or odd 
(zero counting as even). To make the problem simpler, suppose it is 
only Bob that sends information to Alice, and Alice has to decide 
the result. The question is, how much information must Bob send 
to Alice?

We have now a problem in which the result is a single bit, a sin-
gle yes or no answer: yes = even, no = odd. On the other hand, it 
is obvious that Bob needs to inform Alice about the status of each 
day of the year in his calendar. Indeed, one of the possible situa-
tions is that Alice is free only one single day. To decide whether they 
can meet or not, she has to know whether Bob is free that day; as 
Bob doesn’t know anything about Alice’s calendar, he has to tell her 
about each of his days. He has therefore to send Alice 365 bits of 
information, a ‘yes = I’m free’ or ‘no = I’m not free’ for each day of 
the year; all this for Alice to find out a single bit of information. Very 
redundant indeed.

Clearly, in the process Alice learns much more than what she 
wanted to know. Indeed, not only will she find out if the total num-
ber of days when they could meet is even or odd, but also she will 
know the precise days they can meet. She didn’t want to learn that, 
but there is no other way.

Wim  van  Dam73 observed in his PhD thesis, however, that if 
Alice and Bob have access to PR boxes, they could reduce the com-
munication to a single bit, eliminating therefore the entire redun-
dancy. They can do this by not attempting to directly communicate 
information about their calendars, but using this as input to their 
boxes and communicating information about their outputs.

In particular, all Alice and Bob have to do is to associate with 
each day i a variable xi (yi) that is equal to 0 if the day is busy and to 
1 if the day is free and use them as inputs for their PR boxes. The 
sum of their outputs is even (odd) if the number of days when they 
can meet is even (odd). For Alice to find out whether the sum of 
their outputs is even or odd, Bob only needs to inform her whether 
the sum of his outputs is even or odd, that is, a single bit of com-
munication (Box 1). 

The result is particularly important, as the above calendar 
problem is not just some silly communication task; it is in fact 
the most difficult communication task possible (technically called 
the ‘inner product’ problem). Indeed, every other communication 
problem can be mapped onto this one, so removing the redundancy 
from this calendar problem means removing the redundancy from 
all communication problems.

Crucially, quantum mechanical nonlocal correlations cannot 
help with this task80 (though they can help in easier communica-
tion problems81), hence, they cannot eliminate all redundancy from 
communication. Quantum nonlocal correlations (Box 2) are there-
fore dramatically different from PR boxes.

Prompted by the above result, Brassard  et  al.74 raised a tanta-
lizing possibility: maybe not only the perfect PR boxes, which are 
the strongest nonlocal correlations possible, but all super-quantum 
nonlocal correlations could eliminate all redundancy from com-
munication. If that were the case, it would single out quantum 
mechanics as the maximal nonlocal theory that doesn’t make all 
communication efficient.

Brassard et al.74 took the first steps towards answering their ques-
tion. Recall that quantum mechanical boxes can yield outputs a 
and b such that a ⊕ b = xy with a probability of success of at most 
(2 + √

-2)/4 ≈ 0.85, whereas perfect PR boxes have a probability of suc-
cess of 1. Using error-correction techniques, they showed that even 
imperfect PR boxes can eliminate all communication redundancy, 
as long as their probability of success is larger than approximately 
0.91. However, there is still a gap, from 0.85 to 0.91, about which we 
know nothing. Hence, we don’t know yet if the task of eliminating 
communication redundancy can single out quantum mechanics.

Nonlocal computation
While the status of communication complexity (as the above general 
problem is technically known) versus quantum mechanics is yet 
unsettled, a different task, nonlocal computation75, has for the first 
time singled out the quantum–super-quantum transition.

Suppose Alice associates a variable xi with each of her days, 
i  =  1 ... 365 with xi  = 0  if she is busy and xi  = 1  if she is free. 
Similarly, Bob defines yi. Now, Alice and Bob could meet on the 
ith day if and only if the product xiyi = 1. To find out if the num-
ber of days when they can meet is even or odd, all Alice must do 
is establish whether the sum of the products Σi xiyi is even or odd. 
Suppose now that Alice and Bob use their variables as inputs into 
PR boxes. By definition, PR boxes yield ai and bi such that the 
sum ai + bi is even (odd) if the product xiyi is even (odd). Hence, 
the sum of the products, Σi xiyi, is even (odd) if and only if the 
sum of all outputs Σi ai +bi is even (odd). To find this out, all Alice 
needs to know from Bob is if the sum of his outputs, Σi bi is even 
or odd, that is, a single bit of information.

Box 1 | Eliminating communication redundancy.
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Consider an ordinary computation in which the input consists 
of N bits, z1, ..., zN  and the output is a single bit, c = f(z1, ..., zN). To 
this computation we can associate a ‘nonlocal computation’ in the 
following way. The computation is carried out by two devices, one 
at Alice’s location and one at Bob’s. To each bit zi of the original 
computation we associate two bits, xi given to Alice and yi given to 
Bob, such that zi = xi ⊕ yi. For each value of zi, there are two possible 
combinations of xi and yi: xi = 0, yi = 0 and xi = 1, yi = 1 for zi = 0 and 
xi = 1, yi = 0 and xi = 0, yi = 1 for zi = 1. For a given value of zi, each 
combination is selected with equal probability. As a consequence, 
by looking only at their own variables, neither Alice nor Bob can 
determine the original variables zi. Alice is required to output a bit a 
and Bob a bit b such that a ⊕ b = c = f(z1, ..., zN). Alice and Bob know 
what the function f is and are allowed to communicate in advance 

and set up their devices in a correlated manner; they only don’t 
know what the values of the inputs will be. The question is, how well 
can they succeed? More precisely, if the values of the original inputs 
zi are chosen at random, what is the probability that the nonlocal 
computation gives the correct result?

An important notion is that of the ‘best linear approximation’ of 
a computation. To each function f(z1, ...., zN) we associate a linear 
function fL(z1, ..., zN) = α1z1 ⊕ α2z2 ⊕  ... ⊕ αNzN, where αi are con-
stants equal to 0 or 1. In other words, fL is the sum of a subset of 
the original variables. The function fL is chosen in such a way that 
it is equal to f for as many inputs as possible. For example, if f is the 
logical AND function, that is, the product f AND = z1z2, the best linear 
approximation is f L

AND = 0. Indeed, by always yielding 0, f L
AND = f AND 

in 3 out of 4 cases, the exception being z1 = z2 = 1.

To better understand nonlocal correlations, a geometric repre-
sentation is very useful28,73. For any given pair of boxes, the entire 
physics is encapsulated in the joint probabilities P(a,b|x,y). We 
can think of these joint probabilities as coordinates of a point 
in an n dimensional space (16 dimensional space in the simple 
example considered here, corresponding to all combinations of 
a,b,x,y = 0,1). The set of all possible correlations fills a polytope, 
the intersection of the hypercube defined by the linear inequalities 
0 ≤ P(a,b|x,y) ≤ 1 and the hyperplanes corresponding to the prob-
ability normalization constraints:

	 Σ
a,b

 P(a,b|x,y) = 1 � (2)

Furthermore, we are only interested in the ‘non-signalling’ boxes, 
which do not allow Alice to signal instantaneously to Bob or vice 
versa, that is, the boxes that do not violate special relativity. For 
this to be the case, the probabilities of Alice’s box outputs must be 
independent of Bob’s input and vice versa:

	 Σ
b
 P(a,b|x,y) = Σ

b
 P(a,b|x,y′) � (3)

for any y and y′, and:

	 Σ
a
 P(a,b|x,y) = Σ

a
 P(a,b|x′,y) � (4)

for any x and x′. The non-signalling constraints define hyper-
planes; the intersection of these hyperplanes with the polytope of 
all correlations defines the polytope of non-signalling correlations 
illustrated below.

Each point of the figure represents an entire physical set-up. 
The big polytope, including the purple, red and green regions, 
constitutes the set of all non-signalling boxes. The internal green 
polytope represents the set of local correlations; boxes acting 
according to classical mechanics can produce all the local corre-
lations, and only these correlations. The vertices of the local poly-
tope are deterministic correlations in which Alice’s box outcome 
depends deterministically on her income (such as a  =  x) and 
similar for Bob. (Obviously these deterministic boxes are local — 
what Alice’s box does is independent of Bob’s box input and vice 
versa.) All other points of the classical polytope are obtained as 
mixtures of deterministic probabilities; more precisely, one can 
prepare the boxes to act, with pre-prescribed probability, accord-
ing to a different deterministic strategy. The faces of the classical 
polytope are defined by the Bell inequalities; every correlation 
that is outside the local polytope is nonlocal. The round body 
consisting of the red and green parts represents all the quantum 

correlations. This body is rounded as quantum correlations obey 
Schwartz inequalities, due to the vector nature of the Hilbert 
space. All points in the red region represent nonlocal boxes, as 
they are outside the local polytope. The boundary of quantum 
mechanics is a generalized Cirel’son inequality. Incidentally, one 
of the great unsolved problems of fundamental quantum mechan-
ics is to determine the boundary of quantum correlations27–29,31,32. 
In fact, it is even difficult to determine if a given correlation (that 
is, a point in the big polytope) is quantum or not. As the complete 
non-signalling set is a polytope, whereas the quantum one is a 
round body, it is clear that points outside quantum mechanics 
that are nevertheless non-signalling exist  — the purple region. 
These are the non-signalling super-quantum correlations. The 
vertices of this polytope other than the local deterministic ones 
are ‘maximal’ nonlocal correlations; in the simplest case of boxes 
with two inputs and two outputs, these are the perfect PR boxes. 
The challenge is to find fundamental properties by which the pur-
ple points differentiate from all others. In the process, we learn 
more about what all the others — that is, the quantum mechani-
cal ones — really are.

Box 2 | The polytope of non-signalling correlations.
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Nonlinearity is the core of computation, so, in some sense, a lin-
ear approximation means no computation at all. Now, it turns out 
that if Alice and Bob have at their disposal only devices functioning 
according to the laws of classical physics, the best they can do is the 
best linear approximation of the desired computation. Even more 
surprisingly, although quantum mechanical nonlocal correlations 
are, in general, stronger than the classical ones — after all, this is the 
whole point of nonlocality — these correlations do not help nonlo-
cal computation: quantum devices cannot do better than the best 
linear approximation either. On the other hand, the very moment 
we allow for super-quantum correlations, we can do nonlocal com-
putation better than the best linear approximation. Hence, as far 
as nonlocal computation is concerned, there is a sharp transition 
between quantum and super-quantum correlations.

Information causality
Suppose Alice sends to Bob a message consisting of a single binary 
digit (0 or 1). By this procedure, Alice cannot send Bob more than 
one bit of classical information, even if they also share some nonlo-
cal particles and perform measurements on them according to the 
information they wish to transmit or receive. Indeed, if by such a pro-
cedure Alice could communicate to Bob more than one bit of infor-
mation, they could also communicate superluminally. This is easy to 
prove — Bob wouldn’t actually need to wait for Alice’s message; he 
could simply guess it, perform his measurements according to the 
guess, simultaneously with those of Alice, and learn, with a success 
probability of 1/2, more than one bit of information. This can then 
easily be converted into learning some information with certainty.

An interesting possibility emerges, however. Suppose Alice has 
two bits that she wants to communicate to Bob. Even though by 
sending a one-bit message she cannot communicate both bits to Bob, 
perhaps Bob could choose which bit to learn, even though he can 
make the decision at the last moment, long after Alice has already 
sent her message. Surprisingly, if Alice and Bob share a PR box, 
this is possible. Indeed, let x0 and x1 be Alice’s two bits. She inputs 
x = x0 ⊕ x1 into her box and sends Bob the message m = x0 ⊕ a. If 
Bob wants to learn x0 he inputs in his box y = 0, whereas if he wants 
to learn x1 he inputs y = 1. Bob then calculates m ⊕ b. He obtains 
m ⊕ b = x0 ⊕ a ⊕ b = x0 ⊕ xy = x0 ⊕ (x0 ⊕ x1)y. It is easy to see that 
if y = 0 then m ⊕ b = x0 and if y = 1 then m ⊕ b = x1.

On the other hand, one may feel uneasy with this result. Indeed, 
although Bob cannot find both x0 and x1, one may consider that even 
the ability of Bob to choose which bit to learn should be unphysi-
cal. Indeed, the message sent by Alice consists of just one binary 
digit; how can it allow Bob to retrieve information about two bits, 
even if he cannot read both of them? Imposing the restriction that 
this is impossible yields a new principle, which was proposed by 
Pawlowski et al.76 and called ‘information causality’.

As shown above, PR boxes violate information causality. 
However, it turns out that both classical physics and quantum 
mechanics obey information causality. And here comes the really 
exciting thing: for a restricted class of nonlocal correlations (namely 
the unbiased ones, where the local probabilities of all outcomes 
are equal), information causality breaks exactly at the boundary 
between quantum and super-quantum nonlocal correlations. That 
is, suppose we make the PR boxes weaker by adding white noise 
until they become only as strong as quantum mechanical corre-
lations. Exactly here information causality ceases to be violated. 
Information causality is, therefore, yet another example that singles 
out part of the quantum–super-quantum boundary.

Quantum mechanics is special (or maybe not)
So what is the status of this research now? In this Review, I have 
discussed only a few examples; there is, however, intense, ongoing 
effort along similar lines82–96.

Although it is early days, one can already see that quantum 
mechanics is special. Starting from various completely unrelated 
tasks that have nothing to do with the dynamics of microscopic par-
ticles, but are general purpose questions, such as nonlocal computa-
tion, information causality, macroscopic locality, the possibility of 
nonlocality swapping and so on, quantum mechanics emerges. It is 
precisely at the boundary between quantum mechanical and super-
quantum correlations that qualitative changes in the performance 
of the above tasks occur. True, these are only glimpses — there is 
no known task yet that completely differentiates quantum corre-
lations from super-quantum ones; only part of the boundary has 
emerged so far. Indeed, it is now known that any task that would be 
able to completely single out quantum mechanics has to be multi-
partite, as opposed to the bi-partite tasks discussed here19. However, 
it is remarkable that parts of the quantum boundary appeared at 
all — there was no a priori reason whatsoever for this to happen. 
Yet, quantum mechanics starts to appear from the fog. That quan-
tum mechanics has special significance in at least some of such 
tasks means that quantum mechanics is special, and one should 
not expect that the ultimate theory of nature should be some slight 
deviation from quantum mechanics  — there are basic statements 
about nature that have to be changed. It also means that quantum 
mechanics is probably here to stay — at least much longer than one 
would have imagined.

At the same time, one can legitimately question the relevance of 
such computer science-inspired tasks in the grand scheme of things. 
Why should we care about such things as communication complex-
ity, nonlocal computation or information causality? Why should we 
let our quest for a new theory of nature — or the justification for the 
present one — be guided by such ideas?

The very first indication that this line of thought is good is the 
simple fact that it seems to work. Quantum mechanics appears 
unexpectedly in various contexts. The fact that it does so is fascinat-
ing, and certainly non-trivial.

Second, whereas the tasks discussed here may appear quite ran-
dom and completely insignificant from the point of view of hard-
core physics — certainly they tell us nothing about the spectra of 
atoms or about phase transitions — from the point of view of infor-
mation theory they are actually fundamental. (A pair of perfect PR 
boxes is a device that transforms the basic nonlinear function, the 
product, into a linear one, xy = a ⊕ b. At the same time, it can be 
viewed as the maximal zero-capacity communication channel.)

Yet again, it might not be quantum mechanics that we see emerg-
ing, but something altogether different. A few years ago Navascués 
and collaborators30 discovered a hierarchy of sets of ‘self-consistent’ 
nonlocal correlations, each set is larger than quantum mechanics, 
but their boundaries coincide with quantum mechanics in some 
places. Maybe it is one of these sets that we are starting to see. These 
sets were discovered based on some rather obscure mathematical 
considerations, going opposite to the direction of considering natu-
ral tasks, which was the whole point of the research discussed above.

But recently, quantum gravity led to a tantalizing result: moti-
vated by considerations of quantum gravity, a class of generalized 
theories was proposed by Gell-Mann and Hartle97,98, which was 
further developed by Sorkin99. And in a very recent (yet unpub-
lished) paper100, it was shown that these theories lead to stronger-
than-quantum correlations, namely to the Navascués-Pironio-Acín 
set known as Q(1+AB), which is known to coincide with quantum 
mechanics in most of the places where the information tasks indi-
cated quantum mechanics. Hence, maybe what those tasks indicate 
is Q(1+AB), not quantum mechanics. The jury is still out.

To conclude, all the above is great fun. Each answer raises new 
questions, completely different in nature from the ones one started 
with; this, more than anything else, indicates that finally we might 
be on the right track.
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