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Single-shot simulations of dynamic quantum
many-body systems
Kaspar Sakmann1,2* and Mark Kasevich1

Single experimental shots of ultracold quantum gases sample
the many-particle probability distribution. In a few cases such
single shots could be successfully simulated from a given
many-body wavefunction1–4, but for realistic time-dependent
many-body dynamics this has been di�cult to achieve. Here,
we show how single shots can be simulated from numerical
solutions of the time-dependent many-body Schrödinger
equation. Using this approach, we provide first-principle
explanations for fluctuations in the collision of attractive
Bose–Einstein condensates (BECs), for the appearance of
randomly fluctuating vortices and for the centre-of-mass
fluctuationsofattractiveBECs inaharmonic trap.Wealsoshow
how such simulations provide full counting distributions and
correlation functions of any order. Such calculations have not
been previously possible and our method is broadly applicable
to many-body systems whose phenomenology is driven by
information beyond what is typically available in low-order
correlation functions.

A postulate of quantum mechanics states that the positions
r1, . . . , rN of N particles measured in an experiment are
distributed according to the N -particle probability density
P(r1, . . . ,rN )=|Ψ (r1, . . . ,rN )|2, where Ψ (r1, . . . , rN ) is the many-
body wavefunction of the system. In many experiments the
positions of individual particles cannot be measured directly.
Ultracold atom experiments provide a rare exception to this rule,
which is why we focus on ultracold atoms in the following, but
the concept is completely general. If Ψ (r1, . . . , rN ) is known, single
experimental shots can be simulated by drawing the positions
of all particles from P(r1, . . . , rN ), which results in a vector of
positions (r′1, . . . ,r′N ) that we refer to as a single shot. This has been
realized for time-invariant many-body systems1–4. However, for
time-dependent many-body systems it has remained a challenge.
The difficulty stems from the fact that the functional form of the
wavefunction is generally not known in many-body dynamics.

Attempts at simulating single shots have been reported in
the context of semiclassical dynamics: several authors have
interpreted classical trajectories obtained within the truncated
Wigner approximation as individual realizations of experiments5,6.
Under the strict condition that theWigner function is non-negative,
some authors consider this interpretation plausible7 or have fewer
objections to it8. Here we show that this interpretation must also
be dismissed for positive Wigner functions (see Supplementary
Information). Although quantum Monte Carlo algorithms9 sample
theN -particle probability to obtain lower ground state energies, for
time-dependent many-body systems not even the nodal structure
of the wavefunction is known in advance, and hence quantum
Monte Carlo methods are less suited. For further details see
Supplementary Information.

For sampling P(r1, . . . ,rN ) it helps to realize that

P(r1, . . . ,rN )=P(r1)P(r2|r1)×·· ·×P(rN |rN−1, . . . ,r1) (1)

where, for example, P(r2|r1) denotes the conditional probability
to find a particle at r2 given that another one is at r1. First,
r′1 is drawn from P(r1), then r′2 from P(r2|r′1), then r′3 from
P(r3|r′2, r′1) and so on. Note that a histogram of a single
shot (r′1, . . . , r′N ) is analogous to an image obtained in an
experiment. Here we provide an algorithm to simulate single
shots from any N -boson wavefunction |Ψ 〉=

∑
nCn|n〉, where

|n〉 = |n1, . . . , nM 〉 are configurations constructed by distributing
N bosons over M orbitals φi (see Methods and Supplementary
Information). In the following we show how single-shot simulations
provide insights into strongly correlated many-body systems. The
wavefunctions are obtained by numerically solving the time-
dependent many-body Schrödinger equation i(∂/∂t)|Ψ 〉 = Ĥ |Ψ 〉
using the multiconfigurational time-dependent Hartree method for
bosons (MCTDHB; refs 10–12). Here,

H=
N∑
i=1

−
1
2
∂2

∂r2i
+V (ri)+λ0

∑
i<j

δε(ri−rj) (2)

denotes a general many-body Hamiltonian in D dimensions with
an external potential V (r) and a regularized contact interaction
δε(r)= (2πε2)−D/2e−r

2/2ε2 . The mean-field parameter λ=λ0(N −1)
characterizes the interaction strength (see Methods).

We briefly recall that a BEC is condensed if its reduced
single-particle density matrix has one non-zero eigenvalue of
order N (ref. 13). The eigenvalues ρ1 ≥ ρ2 ≥ . . . are known as
natural occupations, the eigenvectors as natural orbitals. A BEC
is fragmented if more than one natural occupation is of order
N (ref. 14) (see Methods). Fully condensed states, that is, states
with ρ1=N , are of the form φ(r1)φ(r2)×·· ·×φ(rN ). All particle
detections are then independent of each other, because every
conditional probability in equation (1) is given by |φ(r)|2. Single
shots of such states merely reproduce the single-particle density
ρ(r)=N |φ(r)|2. Gross–Pitaevskii (GP) mean-field states are of this
form. For any other type of state, each conditional probability in (1)
depends on the values of the previously detected particles and single
shots do not reproduce the single-particle density.

As a first examplewe investigate a collision between independent,
attractively interacting condensates that collide in D= 2 spatial
dimensions—that is, r= (x ,y) in an elongated trap V (r) with a flat
bottom (see Methods for details of the trap). On the GP mean-field
level, such BECs are known to pass through or bounce off each other,
depending on the value of the relative phase15. GPmean-field theory
assumes the many-body state to be fully condensed at all times.
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Figure 1 | Collision of independent attractively interacting condensates.
Two independent attractively interacting condensates collide in an
elongated trap in two spatial dimensions. a, Single-particle density at
di�erent times. The condensates approach each other without spreading,
and bounce o� one another. b, Random samples of the N-particle
probability density (single shots) at the time of the collision. Shown are
histograms of the positions of the particles in each shot. Correlations lead
to either a single strongly localized density maximum containing practically
all particles or two smaller maxima containing about half the particles each.
c, Fragmentation of the condensate as a function of time. The initial state is
two-fold fragmented with ρ1/N=ρ2/N=49.4%. During the collision, two
additional natural occupations become significantly occupied and the
system can no longer be separated into two independent condensates.
Parameter values: N= 100 bosons. Interaction strength λ=−5.94. See text
for details. All quantities shown are dimensionless.

However, for experimentally relevant strongly interacting states, the
mean-field description is fundamentally inconsistent: interactions
erode the structure of the ansatz state on a timescale which is fast
compared to the collision time; fully condensed attractive BECs
that are spread out over large distances are not stable and fragment
quickly16. We therefore choose a more stable initial state consisting
of two independently created attractive BECs of 50 bosons each.
It is impossible to define a relative phase for such BECs (ref. 17).
Specifically, we use λ=−5.94 as an interaction strength, which
is about 2% above the threshold for collapse of the ground state
of all N = 100 bosons. The initial state is prepared by computing
the many-body ground state of 50 bosons in the trap using M =2
orbitals and imaginary time propagation. A copy of the ground state
is placed off-centre at r= (−19.8, 0). The resulting initial state is
fragmented with natural occupations ρ1/N =ρ2/N =49.4%,
ρ3/N = ρ4/N = 0.6%, and is subsequently propagated
in time.

Figure 1a shows the single-particle density at different times. The
condensates approach each other without spreading significantly,
collide and separate again. During the collision the single-particle
density exhibits two maxima, such that the condensates seem to
bounce off each other. However, single shots at the time of the
collision reveal a different result (see Fig. 1b). In about half of all
shots a strongly localized density maximum is visible, whereas in
the other half two smaller well-separated maxima appear. We stress
that at no point was a (possibly random) phase relationship between
the colliding parts assumed. In fact, such an assumption would be at
variance with quantum mechanics17.

Figure 1c shows the natural occupations of the system. Until
the collision the natural occupations remain close to their initial
values, which reflects the stability of the initial state. However,
during the collision, two additional natural orbitals become
occupied, indicating a build-up of even stronger correlations. As a
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Figure 2 | Fluctuating vortices. A repulsive condensate in the ground state
of a harmonic trap is stirred by a rotating potential in two spatial
dimensions. Over the course of time the system fragments and, in single
shots, many-body vortices appear at random positions. a, First column:
single-particle density at di�erent times. Second to fourth column: single
shots at the same times. b, Fragmentation of the condensate as a function
of time. Starting from a condensed state, the system of bosons fragments
as it is stirred. While the system is condensed, single shots and the
single-particle density look alike. When the system is fragmented, vortices
appear at random positions. Parameter values: N= 10,000. Interaction
strength: λ= 17. See text for details. All quantities shown are dimensionless.

consequence, after the collision the system can not be separated into
two independent condensates.

Note that in a recent experiment similar fluctuations during the
collision of two attractive BECswere observed18. However, the initial
state was prepared very differently, namely by splitting a single
BEC in two instead of preparing two independent BECs. Whether
the BEC was fragmented or not in that experiment is not clear.
Moreover, the BEC was then imaged multiple times in a partially
destructive way during the dynamics. The impact that partially
destructive measurements have on a BEC depend strongly on the
quantum state the atoms are in.Wediscuss such partially destructive
measurements in the Supplementary Information.

In the previous example already the initial state required going
beyondGPmean-field theory.Wenowdemonstrate how single-shot
simulations explain fluctuating many-body vortices that emerge
dynamically from a GP mean-field initial state. Quantized vortices
are a hallmark of GP mean-field theory and typically exhibit a
density node at the centre of the vortex19. Moreover, they appear
from some critical rotation velocity of the condensate onwards19.
However, it recently became clear that stirring a BEC can also lead to
many-body vortices far below the mean-field critical velocity. These
many-body vortices typically have a finite single-particle density
at the centre, such that the vortex is barely visible4,20,21. We now
demonstrate how such vortices form dynamically and, similar to
their mean-field counterparts, exhibit a vanishing density in single
shots of an experiment.

Consider the ground state of a repulsively interacting BEC of
N =10,000 bosons in a two-dimensional (2D) harmonic trap with
ωx = ωy = 1 at an interaction strength λ= 17. The many-body
ground state using M = 2 orbitals is practically fully condensed,
with ρ1/N = 99.99%, and therefore described well by GP mean-
field theory. We then switch on a time-dependent stirring potential
Vs(r, t)=(1/2)η(t)[x(t)2−y(t)2] that imparts angular momentum
onto the BEC. Here x(t) and y(t) vary harmonically and the
amplitude η(t) is linearly ramped up from zero to a finite value,
kept there for some time and ramped back down again to zero
(see Methods).
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Figure 3 | Full counting distribution of the centre-of-mass operator. Shown
are 10,000 random samples of the centre-of-mass operator of the ground
state of an attractively interacting condensate in one spatial dimension. The
centre-of-mass fluctuations of the mean-field result (blue) are significantly
smaller than those of the many-body results where the bosons are allowed
to occupy M=2,3, 10 (green, magenta, red) orbitals. The M= 10 result
coincides with the exact analytical result (black). Parameter values: N= 10
bosons; interaction strength λ=−0.423, trap frequency ωx= 1/100. All
quantities shown are dimensionless.

Figure 2a shows the density together with single shots at different
times. The evolution of the natural occupations is shown in Fig. 2b.
While the system is condensed, single shots reproduce the single-
particle density, as expected for a condensed state. However, over
the course of time an additional natural orbital becomes occupied
and the BEC becomes fragmented. The outcome of single shots
fluctuates more and more, and vortices appear at random locations,
with no significant density at the vortex core.

The previous examples have demonstrated that low-order
correlation functions, such as the single-particle density, can provide
an inappropriate picture of the physical outcomes of single shots of
an experiment. Even second-order correlationswould not have been
sufficient to predict the outcomes in the examples above. As a last
example we demonstrate the importance of N th order correlations
and the possibility to obtain full distribution functions using single-
shot simulations. For this purpose we consider a seemingly simple
system consisting ofN attractively interacting bosons in a harmonic
trap in one dimension—that is, D=1 and r=x .

Independent of the type of the interaction between the bosons
and its strength λ, the exact wavefunction of the centre-of-mass
coordinate X=(1/N )

∑
i xi of the many-body ground state is given

by a Gaussian Ψmb(X)=(
√
πXmb)

−1/2e−X2/2X2
mb , with Xmb=1/

√
Nωx

(ref. 22). For increasingly strong attractive interaction one expects
the bosons to localize near the centre of the trap. However, note that
Ψmb(X) is independent of the interaction and delocalizes entirely in
the limit ωx→ 0. On the other hand, if one calculates the ground
state using GP mean-field theory, the variance of the centre-of-
mass coordinate is simply X 2

mf = (1/N 2)
∑N

i σmf = σmf/N , where
σmf=〈φmf|x2

|φmf〉
1/2 and φmf(x) is the mean-field orbital.

The widths Xmb and Xmf of the centre-of-mass distribution are
generally very different. Even going to large particle numbers does
not change this discrepancy: for small values of ωx or for strong
attractive interaction, the mean-field orbital φmf(x) approaches
a soliton ∼

√
λ/4sech(λx/2) and σmf = π/(

√
3|λ|)—that is, the

width of the mean-field centre-of-mass wavefunction becomes
Xmf=π/(

√
3N |λ|), whereas Xmb = 1/

√
Nωx . The width Xmb can

then exceed Xmf regardless of N by any amount. The difference
between the two is entirely due to correlation effects that are not
captured by mean-field theory.

To illustrate this point we compute the many-body ground
state of N = 10 attractively interacting bosons in a harmonic
trap, ωx = 1/100, in one dimension at an interaction strength
λ=−0.423 using imaginary time propagation for different numbers
of orbitals. From the obtained ground states we generate 10,000
single shots to obtain the full distribution function of the
centre-of-mass coordinate. Figure 3 shows fits to the respective
histograms of the centre-of-mass distributions together with the
exact analytical result. The many-body result for M = 10 orbitals
is indistinguishable from the exact result and significantly broader
than the mean-field (M = 1) result. The full counting distribution
of the centre of mass can thus be obtained by means of
single-shot simulations. In the present example the many-body
correlations are the cause of the onset of the delocalization of the
ground state.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Bose–Einstein condensation. For an N -boson state |Ψ 〉=

∑
nCn(t)|n〉 and a

bosonic field operator Ψ̂ (r)=
∑

j b̂jφj(r) the reduced single-particle density matrix
is defined as

ρ(1)(r|r′)=〈Ψ |Ψ̂ †(r′)Ψ̂ (r)|Ψ 〉=
∑
i,j

ρijφ
∗

i (r
′)φj(r) (3)

with ρij=〈Ψ |b̂†
i b̂j|Ψ 〉. By diagonalizing ρij one obtains

ρ(1)(r|r′)=
∑

i ρiφ
NO
i (r)φNO∗

i (r′). The eigenvalues ρ1≥ρ2≥ . . . satisfy
∑
ρi=N

and are known as natural occupations, the eigenvectors φNO
i (r) as natural orbitals.

If there is only one eigenvalue ρ1=O(N ) the BEC is condensed13, if more than one
ρi=O(N ) the BEC is fragmented14. The diagonal ρ(r)≡ρ(1)(r|r′=r) is the
single-particle density of the N -boson wavefunction.

Single-shot algorithm.Here we show how single shots can be simulated from a
general N -boson wavefunction expanded inM orbitals |Ψ 〉=

∑
nCn|n〉, where

|n〉=|n1, . . . ,nM 〉 and
∑M

i=1 ni=N . The special caseM=2 has been treated in
earlier works1,3,4. The goal is to draw the positions r′1, . . . ,r′N of N bosons from the
probability distribution P(r1, . . . ,rN ). We achieve this by evaluating the conditional
probabilities in (1).

For this purpose we define reduced wavefunctions

|Ψ (k)
〉=

{
|Ψ 〉, if k=0
NkΨ̂ (r′k)|Ψ (k−1)

〉, if k=1, . . . ,N −1
(4)

of n=N −k bosons with normalization constantsNk. The respective
single-particle densities are given by ρk(r)=〈Ψ (k)

|Ψ̂ †(r)Ψ̂ (r)|Ψ (k)
〉 and

Nk=ρk−1(r′k)−1/2. The first position r′1 is drawn randomly from the
distribution P(r)=ρ0(r)/N . Assuming that positions r′k, . . . ,r′1 have already
been drawn, the conditional probability density for the next particle
P(r|r′k, . . . ,r′1)=P(r,r′k, . . . ,r′1)/P(r′k, . . . ,r′1) is given by

P(r|r′k, . . . ,r
′

1)∝ρk(r) (5)

because P(r′k, . . . ,r′1) is a constant. The problem is thus reduced to obtaining the
wavefunction |Ψ (k)

〉=
∑

nC (k)
n |n〉 from the wavefunction |Ψ (k−1)

〉=
∑

nC (k−1)
n |n〉,

where the sums over run over all configurations of n and n+1 bosons, respectively.
Defining nq

=(n1, . . . ,nq+1, . . . ,nM ) one finds from (4) that

C (k)
n =Nk

M∑
q=1

φq(r′k)C
(k−1)
nq
√

nq+1 (6)

Using (6) in a generalM-orbital algorithm requires an ordering of the
(n+M−1

n

)
configurations |n〉 for all particle numbers n=1, . . . ,N . Combinadics11 provide
such an ordering by assigning the index

J (n1, . . . ,nM )=1+
M−1∑
i=1

(
n+M−1− i−

∑i
j=1 nj

M− i

)
(7)

to each configuration |n〉. Using (7) all coefficients C (k)
n can then be obtained by

evaluating the sums in (6) andNk is determined by normalization. Using the
coefficients C (k)

n we evaluate ρk(r) and by means of (5) we then draw r′k+1 from
P(r|r′k, . . . ,r′1). This concludes the algorithm to simulate single shots. It is now easy
to see that also correlation functions of arbitrary order can be evaluated. By
realizing that

〈Ψ |Ψ̂ †(r1) . . . Ψ̂ †(rk)Ψ̂ (rk) . . . Ψ̂ (r1)|Ψ 〉=
k∏

j=1

ρj−1(rj) (8)

the kth order correlation function is evaluated at r1, . . . ,rk as the product of the
reduced densities ρj−1(rj). Thus, to evaluate the correlation function
〈Ψ |Ψ̂ †(r′1) . . . Ψ̂ †(r′k)Ψ̂ (r′k) . . . Ψ̂ (r′1)|Ψ 〉 the only modification to the single-shot
algorithm above consists in choosing the positions r′1, . . . ,r′k rather than drawing
them randomly.

MCTDHB. In the MCTDHB (refs 10–12) method the many-boson wavefunction
is expanded in all configurations that can be constructed by distributing N bosons
overM time-dependent orbitals φi(r, t). The ansatz for the time-dependent
many-boson wavefunction reads:

|Ψ (t)〉=
∑

n

Cn(t)|n; t〉 (9)

In (9) the Cn(t) are time-dependent expansion coefficients and the |n; t〉 are
time-dependent permanents built from the orbitals φi(r, t):

|n1,n2, . . . ,nM ; t〉=
1

√
n1!n2! · · ·nM !

b̂†n1
1 (t)b̂†n2

2 (t) · · · b̂†nM
M (t)|vac〉 (10)

The MCTDHB equations of motion are derived by requiring stationarity of the
many-body Schrödinger action functional

S[{Cn(t)}, {φj(x , t)}] =
∫

dt

〈Ψ (t)|H− i ∂∂t |Ψ (t)〉

−

M∑
k,j=1

µkj(t)[〈φk|φj〉−δkj]

 (11)

with respect to variations of the coefficients and the orbitals. The µkj(t) are
time-dependent Lagrange multipliers that ensure the orthonormality of the
orbitals. With increasingM the solution of the MCTDHB equations converges to
an exact solution of the time-dependent many-body Schrödinger equation and
numerically exact results have been obtained previously23,24. For bosons interacting
via a delta-function interaction andM=1, the MCTDHB equations of motion
reduce to the time-dependent Gross–Pitaevskii equation. For more information see
the literature10–12.

Parameters. For all D=2 dimensional simulations in this work we assume tight
harmonic confinement with a frequency ωz and a harmonic oscillator length
lz=
√
h̄/(mωz ) along the z-direction. The bosons interact via a 2D regularized

contact interaction potential (h̄2λ0/m)δε(r), with δε(r)=(2πε2)−1e−r
2/2ε2 , r=(x ,y)

and a dimensionless interaction strength λ0=
√
8πa/lz , where a is the scattering

length andm the mass of boson. We note that it is important to regularize contact
interaction potentials for D>1 (refs 25,26). For the collision of attractively
interacting BECs the external potential used for the simulations is given by
V (r)=Vx(x)+Vg (x)+Vy(y), with Vx(x)=(1/2)mω2

xx2, Vy(y)=(1/2)mω2
yy2,

and Vg (x)=Ce−x
2/2σ 2 , where C=mσ 2ω2

x . We obtain dimensionless units h̄=m=1
and the Hamiltonian (2) by measuring energy in units of h̄ωy , length in units of
ly=
√

h̄/(mωy) and time in units of 1/ωy . We use a plane-wave discrete variable
representation to represent all orbitals and operators. The width of the contact
interaction is ε=0.15 and the grid spacing is1x=1y=ε/2 unless stated
otherwise. For the elongated trap the parameter values are ωx=0.07,ωy=1 and
σ =10 on a grid [−43.2,43.2]×[−3.6,3.6], which creates a trap with a flat bottom
at the centre. For the rotating BEC the parameter values are ωx=ωy=1. η(t) is
linearly ramped up from zero to ηmax=0.1 over a time span tr=80. η(t) is then
kept constant for tup=220 and ramped back down to zero over a time span tr . The
potential Vs(r, t)=(1/2)η(t)[x(t)2−y(t)2] rotates harmonically with
x(t)=x cos(Ωt)+y sin(Ωt) and y(t)=−x sin(Ωt)+y cos(Ωt), where
Ω=π/4. The grid size is [−8,8]×[−8,8] with 214 grid points in
each direction.

For the D=1 dimensional simulations we assume tight harmonic confinement
along the y- and z-directions with a radial frequency ω⊥=ωy=ωz and an
oscillator length l⊥=

√
h̄/(mω⊥). The contact interaction potential is then given by

(2h̄2a/ml2
⊥
)δε(x), with δε(x)=(2πε2)−1/2e−x

2/2ε2 . We use h̄ω⊥ as the unit of energy
and l⊥ as the unit of length. The dimensionless interaction strength is then given by
λ0=2a/l⊥. The harmonic potential along the x-direction ωx=1/100 is much
weaker than the radial confinement ω⊥=1. The grid size is [−90,90].

Image processing. The histograms of the positions of particles obtained using the
single-shot algorithm have a resolution that is determined by the grid spacing. For
better visibility and in analogy to a realistic imaging system we convolved the data
points of each histogram with a point-spread function (PSF). As a PSF we used a
Gaussian of width 3×3 pixels.
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