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Weak measurement allows one to empirically determine a set of average trajectories for an ensemble of quantum
particles. However, when two particles are entangled, the trajectories of the first particle can depend nonlocally on
the position of the second particle. Moreover, the theory describing these trajectories, called Bohmian mechanics,
predicts trajectories that were at first deemed “surreal” when the second particle is used to probe the position of
the first particle. We entangle two photons and determine a set of Bohmian trajectories for one of them using weak
measurements and postselection. We show that the trajectories seem surreal only if one ignores their manifest
nonlocality.
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INTRODUCTION

The concept of a trajectory, the path followed by a particle, is ubiquitous
in classical mechanics. In orthodox quantum mechanics, however, a
particle does not follow a trajectory, because it does not have a simul-
taneous position and momentum. Nonetheless, it is possible to re-
interpret the quantum formalism as describing particles following
definite trajectories, each with a precisely defined position at each instant
in time. However, in this interpretation, called Bohmian mechanics (1–4),
or the de Broglie–Bohm interpretation (5, 6), the trajectories of the par-
ticles are quite different from those of classical particles, because they
are guided by the wave function. This allows for phenomena such as
double-slit interference, as has been investigated experimentally for
single photons (7). Note that this is very different from the Feynman
path formalism of quantum mechanics (8), where the transition prob-
ability between two points in phase space is calculated using all pos-
sible paths between those two points. In contrast to the Feynman
formalism, Bohmian mechanics says that each quantum particle in a
given experiment follows a trajectory in a deterministic manner. Thus,
much of the intuition of classical mechanics is regained.

As with any interpretation of quantummechanics, the experimental
predictions of Bohmian mechanics are the same as those in the oper-
ational theory. The stochastic nature of measurement outcomes for which
quantum mechanics is famous is ascribed to ignorance about the initial
configuration of the particle(s) in the experiment, an uncertainty that is
described precisely by the wave function prepared by the experimenter
(1–4, 6, 9). This tidily allows features of operational quantum theory,
such as the Heisenberg uncertainty principle, to be explained within
the Bohmian formalism. A consequence of this is that the trajectory of
a single Bohmian particle cannot be observed in an experiment on that
particle; any measurement of a particle’s position changes the wave
function and thus the guiding potential that the particle experiences.
Note that this change does not occur through a “collapse” that is added
to the theory (as in other interpretations of quantum mechanics) but is
rather due to the evolution of the global wave function, describing the
interaction of the particle of interest with a measurement device that has
its own Bohmian degrees of freedom. Although a single particle’s tra-
jectory cannot be directly observed, a set of trajectories of an ensemble of
particles can be mapped out. This can be done by making a so-called
weak measurement of the momentum of a particle at a given instant in
time. The weakness ensures that the system is not disturbed appreciably,
so that it is sensible to make a subsequent measurement of position.
Repeating the experiment many times, one can calculate the average mo-
mentum as a function of position. This entire process can then be re-
peated at many instants in time, allowing a set of average trajectories
to be reconstructed. It was shown byWiseman (9) how these trajectories,
in the limit of very weak measurements, correspond exactly to the tra-
jectories obtained from the Bohmian interpretation.

To explain nonlocal phenomena such as Bell nonlocality (10), any
realistic interpretation of quantum mechanics must also be nonlocal,
and Bohmian mechanics is no exception (2). This can be seen in the
Bohmian velocity law (shown later), where the velocity of a particle can
depend explicitly on the position of a second particle, even when the
particles are far apart and not interacting by any conventional mecha-
nism and even though the second particle may be influenced, indepen-
dently of the first particle, by the apparatus chosen by the experimenter.

Here, as proposed by Braverman and Simon (11), we experiment
on two entangled particles (photons) and map out the trajectories of one
of them as it traverses a double-slit apparatus. We show that the trajec-
tories of this first particle (and therefore both its position and its velocity)
are indeed affected by an externally controlled influence on the distant
second particle. For some choices of that control, the second particle in
our experiment can be used to determine through which slit the first
particle has gone. Englert, Scully, Süssmann, and Walther (ESSW) (12)
asserted that in the presence of such a Welcher Weg measurement
(WWM) device, the particle’s Bohmian trajectories can display seem-
ingly contradictory behavior: There are instances when the particle’s
Bohmian trajectory goes through one slit, and yet the WWM result
indicates that it had gone through the other slit. ESSW concluded that
these trajectories predicted by Bohmian mechanics could not correspond
to reality and they dubbed them “surreal trajectories.” This serious as-
sertion was discussed at length in the literature (13–17), after which a
resolution of this seeming inconsistency was proposed by Hiley et al.
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THEORY

The de Broglie–Bohm dynamics can be formulated in a number of dif-
ferent ways (1, 3–6, 9). Here, we present the formulation that is simplest
and most appropriate to our method of empirical determination via
weak values (4, 9). Being a complete interpretation of quantum mechan-
ics, Bohmian mechanics applies to arbitrarily many particles and allows
for internal degrees of freedom (such as spin). Here, we are concerned
with a two-particle entangled state |Y〉. Denoting the positions (in one
dimension for simplicity) of the two particles by x1 and x2, the Bohmian
velocity of particle 1 is (4, 9)

v1ðx1; x2Þ ¼ Re
〈Yjv

ˇ

1jx1〉jx2〉 〈x2j〈x1jY〉

〈Yjx1〉jx2〉 〈x2j〈x1jY〉
ð1Þ

where v

ˇ

1 ¼ ðp

ˇ

1=m1Þ is the velocity operator for particle 1.
The existence of entanglement entails counterintuitive effects in

Bohmian mechanics, which ESSW used to attack the foundations of
the theory as follows. Consider an experiment where a particle traverses
a double-slit apparatus, thus preparing it in a state described by the double-

slit wave function, y x1; t ¼ 0ð Þ ¼ 1ffiffiffi
2

p yuðx1; 0Þ þ ylðx1; 0Þð Þ. Here,
the two wave functions yu(x1;t) and yl(x1;t) describe symmetric
single-slit wave functions for slits centered at x1 = d/2 and x1 = − d/2,
the specific form of which is not necessary for this discussion. Now, say
the apparatus includes a WWM device—another quantum system that
acts as a qubit memory, storing the single bit of information about which
slit the particle goes through. This can be modeled by the following joint
state of the double-slit particle and the WWM device at times t > 0

j Y tð Þ〉 ¼ 1ffiffiffi
2

p ∫dx1dx2j x1〉j x2〉 Yuðx1; tÞfH ðx2; tÞ jH〉 þ½

y1ðx1; tÞfV ðx2; tÞ jV 〉� ð2Þ

Here, the WWM device is described as a particle with a spin degree
of freedom, denoted (with forethought of the experiment described later
in this text) by the kets |H〉 and |V〉 and a position x2. The spin degree of
freedom provides the qubit that stores the WWM information, and the
two states are correlated with the wave function for particle 1 initially
localized at the upper and lower slit, respectively. The reason for choos-
ing a spin degree of freedom for this role is that, unlike position, spin
has no autonomous hidden variable assigned to it in standard Bohmian
mechanics. [In some extensions to Bohmian mechanics, autonomous
hidden variables are assigned to degrees of freedom other than position,
such as spin (19). See Hiley and Callaghan (20) for a discussion in the
context of the original ESSW proposal. To avoid the surreal trajectories
of ESSW in the scenario we are considering, the hidden variable theory
would have to assign a value to the particular spin observable with |H〉
and |V〉 as its eigenstates.] That is, Bohmian mechanics does not neces-
sarily ascribe a definite value to the bit (H orV) storing theWWM infor-
mation, and this is essential to the ESSW phenomenon. However, the
position x2 of particle 2 (which is ascribed a value in Bohmian me-
chanics) can be used to “read out” this WWM information, by sending
particle 2 to different detectors depending on its spin state. Because these
two states are orthogonal (〈H|V〉 = 0), it would be intuitive to conclude that
such ameasurement of the spin of particle 2 would indicate through which
Mahler et al. Sci. Adv. 2016; 2 : e1501466 19 February 2016
slit particle 1 had gone (even though, in orthodox quantummechanics, the
particle has no trajectory and hence did not “go through” either slit).

In some situations, Bohmian mechanics accords with that intui-
tion. If the WWM is read out as described above, at time tr > 0, then
for times t < tr, fH(x2; t) and fV (x2; t) are identical, whereas for
times t > tr, fH(x2; t) and fV(x2; t) have disjoint support. If, at the time
tr, particle 1 is still in the near field of the double-slit apparatus, as in
Fig. 1A, then the measurement outcome (the position of particle 2) is
perfectly correlated with the origin (upper slit or lower slit) of each
Bohmian trajectory. The velocity formula (Eq. 1) for particle 1 and
t > tr, as it traverses the apparatus toward the far field, gives

Re
−iℏyu′ðx1; tÞ
myuðx1; tÞ

� �
or Re

−iℏyl′ðx1; tÞ
mylðx1; tÞ

� �
, respectively, as expected from

single-particle Bohmian mechanics.
ESSW, however, consider a situation where the readout via the po-

sition of particle 2 does not take place until after particle 1 has traversed
the double-slit apparatus into the far field. In this case, while particle
1 traverses the apparatus, fH (x2; t) = fV(x2; t) and the velocity formula
(Eq. 1) is independent of x2

v1 x1; tð Þ ¼ 1

2
Re

−iℏyu′ðx1; tÞ
myuðx1; tÞ

� �
þ 1

2
Re

−iℏyl′ðx1; tÞ
mylðx1; tÞ

� �
ð3Þ

This function is odd in x1 because yu(−x1; t) = yl(x1; t), for all t, by
construction. Furthermore, the one-dimensional trajectories defined by
using this velocity cannot cross because the velocity field is single-valued
in x1. A consequence of these two properties is that no trajectory can
A

B

WWM
readout

WWM
readout

Pointer

Pointer

x1

x1

z1 = ct

z1 = ct

Fig. 1. Bohmian trajectories in a double-slit apparatus. (A and B)
Conceptual diagram of the result of reading out the WWM in a double-slit

apparatus in the near field (A) and in the midfield (B). Color indicates the slit
of origin of a Bohmian trajectory, and vertical position indicates the result
of the WWM (the position x2 of the second, “pointer,” particle). When the
WWM is read out in the near field, the Bohmian trajectories are perfectly
correlated with the result of the WWM. When the WWM measurement is
read out in the midfield, the Bohmian trajectories are only correlated with
the WWM outcome near the edges of the diagram. Near the line of
symmetry of the apparatus, both outcomes of the WWM are equally likely,
regardless of which slit the Bohmian trajectory originates from.
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cross the x1 = 0 line. Thus, Bohmian mechanics in this situation predicts
that, when particle 1 is detected in the far field, if x1 > 0, then it must
have come from the upper slit, and if x1 < 0, then it must have come
from the lower slit. Moreover, one can show that, in the far field, the
position of particle 1 is almost completely uncorrelated with the spin of
particle 2. Thus, upon detection of particle 1 anywhere in the far field, a
measurement of particle 2 can yield either |H〉 or |V〉. A conceptualiza-
tion of this is displayed in Fig. 1B in which the WWM readout actually
occurs in the midfield for clarity. The trajectories corresponding to the
measurement outcomes are “surreal” in the sense that the orthodox
quantum intuition is that particle 2 should reliably carry the WWM
information about which slit particle 1 “actually” went through, and
yet we find that the trajectories predicted by Bohmian mechanics often
fail to agree with the outcome of the WWM as read out via particle 2.

The resolution [presented by Hiley et al. (18)] of the apparent par-
adox is in the nonlocality of Bohmian mechanics. In Bohmian me-
chanics, the spin of particle 2 is described by a Bloch vector s2 that
depends on the actual position of the two particles (21) in a manner
exactly analogous to Eq. 1

s2 x1; x2; tð Þ ¼ 〈YðtÞjs

ˇ

2jx1〉jx2〉 〈x1j〈x2jYðtÞ〉
〈YðtÞjx1〉jx2〉 〈x1j〈x2jYðtÞ〉 ð4Þ

where ŝ = (sx, sy, sz). We define |H〉 and |V〉 to be eigenstates of sz
with eigenvalues +1 and −1, respectively. Then, for the situation of
Fig. 1A, Eq. 4 evaluates to (1, 0, 0)T or (−1, 0, 0)T, depending on which
slit particle 1 went through. For the situation in Fig. 1B (a delayed
measurement), it evaluates to

s2 x1; x2; tð Þ ¼
�
y*u ðx1; tÞ〈H j þ y*l ðx1; tÞ〈V jÞs

ˇ
2ðjH 〉yuðx1; tÞ þ jV 〉ylðx1; tÞ

�
jyuðx1; tÞj2 þ jylðx1; tÞj2

ð5Þ
What we find here is that in Bohmian mechanics, contrary to the

intuition one may have from orthodox quantum mechanics, the spin
of particle 2 is not a constant of motion for propagation in free space.
Rather, it evolves, as particle 1 moves along a trajectory. Thus, it is not
surprising that in Bohmian mechanics, the spin of particle 2 is not a
reliable indicator of which slit particle 1 went through. Similar un-
reliable behavior can result if the Welcher Weg information were stored
in disjoint positional wave functions of the second particle, if those two
wave functions are subsequently allowed to overlap, as in the experi-
ment proposed by Braverman and Simon (11).
6

EXPERIMENT

Here, we perform an experiment using the spin of particle 2 as carrier
of the Welcher Weg information, as per the above theory. We deter-
mine the trajectories of particle 1 in an operational manner that does
not rely on a particular interpretation of quantum mechanics (9), as
realized by Kocsis et al. (7), using weak measurements of velocity post-
selected on the positions of the particles. The particles in this article
(Although “the particles in this article” is in this particular article, con-
sider “the particles in an article” as part of an article. As any articulate
party would know, the particles in “the particles in an article” are
“the” and “in,”whereas the articles in “the particles in an article” are “the”
and “an,” but the particular article in “the particles in an article” is “the.”
“p.s.” is all that is left when you take the “article” out of “particles.”) are
Mahler et al. Sci. Adv. 2016; 2 : e1501466 19 February 2016
photons, as was the case in Kocsis et al. (7). Bohmian-like trajectories of
massless spin 0 and spin 1 particles have been studied (22), but in the
case of this experiment, we instead make use of the equivalence between
the one-dimensional Schrodinger equation and the two-dimensional
Helmholtz equation in the paraxial approximation. The evolution of
the transverse position x and momentum kx of a single photon propa-
gating close to the z direction has an exact mathematical correspondence
with the quantum theory of a nonrelativistic particle of mass m = ℏw/c2

propagating in one dimension with position x and momentum p = ℏkx.
As described previously, the mapping out of a set of possible Bohmian

trajectories for a particle requires a measurement of momentum followed
by a measurement of position, repeated many times (that is, using an
ensemble of identically prepared systems) to obtain averages, and re-
peated at many instants in time to connect the trajectory segments. It
is the measurement of both position and momentum that makes map-
ping out the set of trajectories challenging: Quantum mechanics tells us
that any measurement of momentum will necessarily disturb the posi-
tion of the particle being measured. To circumvent this, we measure the
momentum in such a way that a single shot yields virtually no infor-
mation and causes virtually no disturbance, so that the subsequent
strong measurement of position reveals [in the Bohmian interpretation
(4)] the Bohmian position of the particle at the point where its mo-
mentum was measured (4, 9). Because the signal-to-noise ratio in
any individual momentum measurement is so small, it is necessary
to use a very large ensemble to obtain reliable averages. This technique
of averaging such weak measurement results to obtain a so-called weak
value (23) has been important in fundamental quantum experiments,
including probing Hardy’s Paradox (24, 25), testing measurement-
disturbance and complementarity relations (26–29), demonstrating
violation of macrorealism (30, 31), and elucidating Feynman’s expla-
nation of Bell correlations (32). It is not immediately obvious that this
measurement will tell us anything about the Bohmian velocity of the
particle being measured, because this velocity does not have the same
statistics as the quantum mechanical momentum (divided by m).
Nonetheless, it can be shown that this technique yields exactly (in the
limit of infinite weakness) the Bohmian velocity for the particle at a given
position (9). Thus, we can use our measurements of the average mo-
mentum for different positions and at different slices of time to recon-
struct a set of Bohmian trajectories, as done by Kocsis et al. (7).

As stated, the particles in our experiment are photons and, in
reference to the theory presented above, the spin operator ŝ corresponds
to their polarization, with sz being diagonal in the H/V basis. The ex-
perimental apparatus is depicted in Fig. 2. We generate polarization-
entangled photon pairs via type II downconversion (for details, see
Materials and Methods). Photon 1 is sent through a 50-m-long single-
mode fiber to a double-slit apparatus. The photon’s wave function is
prepared in a double-slit superposition using a polarizing beamsplitter
and a pair of prism mirrors, such that if the polarization of photon 1 is
horizontal, it is prepared in the upper slit wave function, whereas if it
is vertical, it is prepared in the lower slit wave function. These virtual
slits are separated by 2.61 mm, and each has a root mean square width
of 0.55 mm. The polarization of the photons in both paths is made the

same, jD〉 ¼ 1ffiffiffi
2

p jH〉þ jV 〉ð Þ, by a set of half waveplates and a polarizer.
Because of the initial polarization entanglement, the path of photon 1 is now
entangled with the polarization of photon 2, as described in Eq. 2.

To perform a WWM on photon 1, we measure the polarization of
photon 2 using a set of waveplates and polarizing beamsplitters. For
3 of 7
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details on how we perform measurements on photon 1 using a charge-
coupled device (CCD) camera, in coincidence with measurements on
photon 2, see Materials and Methods. Next, we weakly (23, 33) mea-
sured the velocity v1 = ckx/|k| of photon 1, before strongly measuring
its position. To weakly measure the transverse velocity of photon 1, we
coupled the k vector of photon 1 to its polarization using the angle-
dependent birefringent phase shift produced by a piece of calcite (7) that
is thin enough that spatial walk-off of the beam inside the crystal is
negligibly small, but thick enough that the polarization rotation that the
beam undergoes is measurable. The crystal’s optic axis was oriented in
the horizontal plane; hence, photons with different transverse velocities
experienced different indices of refraction and therefore received differ-
ent phase shifts. The phase shift is well approximated over our range of
incident angles (transverse momenta) by the linear expansion

F kxð Þ ¼ z
kx
jkj þ Fo ð6Þ

where the dimensionless coupling strength, z, was determined to be
550.2 ± 0.96. This momentum-dependent phase shift serves to weakly
correlate the photon’s momentum with its polarization. By measuring
the polarization, a weak measurement of momentum is thus per-
formed. The photon’s polarization was measured in the right-hand

circular (R)/left-hand circular (L) basis [jR=L〉 ¼ 1ffiffiffi
2

p jH〉+−ijV 〉ð Þ] using
a quarter waveplate oriented at 45° and a beam displacer, the combina-
Mahler et al. Sci. Adv. 2016; 2 : e1501466 19 February 2016
tion of which displaces the L-polarized beam vertically relative to the
R. Using this polarization measurement, the photon’s weak-valued ve-
locity takes on a particularly simple form (7)

vw1
c
¼ kx

jkj
� �w

¼ 1

z
sin−1

IR − IL
IR þ IL

� �� �
ð7Þ

where IR/L is the ensemble average of the photon flux of the cor-
responding polarizations, measured at a particular point in space using
the CCD camera. For details on how this point can be identified with
the position of the photon at the time of the momentum measurement,
see Materials and Methods.
RESULTS

In Fig. 3, we demonstrate the nonlocality present in Bohmian mechan-
ics by showing that the trajectory of photon 1 is affected by the remote
choice of how to measure photon 2. We measure the polarization of
photon 2 in two different bases and postselect the measurement out-
comes of photon 1 on a particular result, as described above. Defining

states jyF〉 ¼ 1ffiffiffi
2

p jH〉 − eiFjV 〉� �
, the two different bases are {|y0〉,

|yp〉} and {|yp/2〉, |y3p/2〉}. All four final states |yF〉 are equally likely,
and for each, we measure the set of trajectories that photon 1 follows. In
this way, it is possible to plot a single trajectory beginning with the same
initial conditions and show that the path depends on the choice of dis-
tant measurement. For clarity, the measured weak velocity distribution
of photon 1 is also plotted in two planes to show the effect the post-
selection of photon 2 has on the motion of photon 1. Thus, one can
see that even though the position of a particle is a locally defined hidden
variable in Bohmian mechanics, the guiding equations that determine
its possible trajectories are nonlocal.

Next, we aim to demonstrate the surreal behavior discussed by ESSW.
We measure the trajectories of photon 1 without performing a postselec-
tion on photon 2. In this way, the position x2 of photon 2 is uncorrelated
with its polarization, giving Eq. 3 for the velocity of photon 1. To reject
spurious background sources of photons, we actually do postselect on de-
tecting photon 2, but we average over the two cases H and V by the
weights with which these two outcomes occur (which are close to one-
half). In fact, we get the same result regardless of the basis in which we
measure the polarization of photon 2; thus, we average the data from
three different bases, |D/A〉, |R/L〉, and |H/V〉, to most accurately calcu-
late the velocity. The result in Fig. 4 shows that the particles are con-
fined to the half-plane in which they begin, as ESSW predicted. In the
far field and near the line of symmetry, the polarization of photon 2 is
equally likely to be found to beH or V and therefore (one would naïvely
think) the photon is equally likely to have come from the upper slit or
the lower slit. Because each Bohmian trajectory originates from one or
the other slit, these trajectories demonstrate the surreal behavior pre-
dicted by ESSW.

The apparent contradiction, however, is resolved by also measuring
the polarization of photon 2 as a function of the position of photon 1.
The measurements that we have performed on photon 2 (|D/A〉, |R/L〉,
and |H/V〉), in correlation with the measurement of the position of
photon 1, are sufficient to perform quantum state tomography (34)
on the polarization of photon 2, along a trajectory of photon 1. Unlike
the case of Eq. 1, it is not necessary to use a weak measurement of
ŝ2 to determine Eq. 4, because ŝ2 commutes with the position of all
f

Fig. 2. Experimental setup for measuring Bohmian trajectories: The
trajectories of a single photon (photon 1) are measured, postselected

on a detection of another photon (photon 2) by a single photon
counting module (SPCM). A Sagnac interferometer-based source of entan-
gled photons prepares two photons in a maximally entangled state that are
then spectrally filtered using two band-pass (BP) filters. Photon 1 is sent into
a double-slit apparatus and immediately split at a polarizing beamsplitter
(PBS) to prepare the double-slit wave function. The lower arm’s polarization
is changed to match the upper arm using a half waveplate (HWP). Both
upper and lower arms passed through a polarizer, a Pockels cell (PC),
and another polarizer, to postselect upon the detection of photon 2. The
transverse velocity of photon 1 is weakly measured using a 0.7-mm-thick
piece of calcite with its optic axis oriented at 42° to the normal in the hor-
izontal plane, followed by a quarter waveplate (QWP) and a beam displacer.
Finally, the wave function of photon 1 is imaged in different planes using an
imaging system composed of three lenses, and its position is measured
using a single-photon cooled CCD. Photon 2 is sent through an HWP and
a QWP, followed by a PBS to measure its polarization in different bases.
4 of 7
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Fig. 4. Observation of surreal trajectories. (A) The set of reconstructed trajectories for photon 1 without postselection onto a particular polarization of
photon 2, corresponding to the delayed WWM of ESSW. The trajectories are plotted over the range z = 1.7 m to z = 5.9 m, using 67 different planes. A

single trajectory beginning at x = −0.98 mm is plotted with a thicker, colored line. (B) The polarization of photon 2, represented by its Bloch vector, as a
function of the position of photon 1 as it traverses the colored trajectory plotted in (A). The polarization of photon 2 is calculated by performing quantum
state tomography (34) on photon 2 and correlating those counts with the counts observed on the single-photon camera. The photons have been en-
tangled such that if photon 1 were to be found in the lower slit, photon 2 would be vertically polarized. This is the case at the start of the single trajectory
we consider. However, as photon 1 traverses the double slit, it enters a region where the wave function emanating from the upper slit (for which photon 2
is horizontally polarized) interferes with that from the lower slit, leading to nonlocal coupling between the motion of photon 1 and the polarization of
photon 2. As a consequence, the polarization of photon 2 changes over time and its final state no longer faithfully records the WWM information about
photon 1.
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Fig. 3. Observation of nonlocality in Bohmian mechanics. (A) The reconstructed trajectories when photon 2 is found in the state jA〉 ¼ 1ffiffiffi
2

p jH〉− jV 〉ð Þ.

The trajectories are drawn over a range of z = 1.7 m to z = 5.9 m, using 67 different planes. The state of photon 1 after postselection contains no infor-
mation about the state of photon 2, and thus, interference is observed. (B) A single postselected trajectory beginning at the same initial con-

dition, x = − 1.12 mm, for four different postselected polarization states of photon 2,
1ffiffiffi
2

p jH〉 − eiFjV〉� �
, where F ∈ {0, p/2, p, 3p/2}. The pairs {0, p}

and {p/2, 3p/2} correspond to measuring the polarization of photon 2 in two different bases. (Inset) The weak velocity values measured at z = 1.8 m and z =
5.9 m. The velocity distributions are initially independent of phase shift applied to photon 2 but depend strongly on it in the far field. The error bars on the
individual velocity measurements are consistent with the scatter observed but are not displayed because they detract from rather than enhance its clarity.
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particles at all times. Hence, we can make a strong measurement of
the polarization of particle 2, in the three directions (in different runs),
conditioned on finding particle 1 at particular positions at particular
times. The results of this measurement are plotted in Fig. 4. As a func-
tion of the progress of photon 1 along any trajectory that it may follow,
the state of photon 2 changes. Initially, for a trajectory originating in
the lower slit, photon 2 is found to be vertically polarized (indicating
that the outcome of the WWM was “lower slit”). Further along this
trajectory, the polarization of photon 2 gradually becomes less vertical-
ly polarized and ends up with polarization close to |D〉 (see Fig. 4). Thus,
a WWM in the H/V basis (or “upper”/“lower” basis) for this photon,
at this time, is equally likely to indicate that it came from the upper slit
as from the lower slit.
 on F
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DISCUSSION

We have verified the effect pointed out by ESSW that for a WWM
with a delayed readout, Bohmian trajectories originating at the lower
slit may be accompanied by WWM results associated with either the
upper or the lower slit. However, this surreal behavior is merely the flip
side of the nonlocality we also demonstrated. In Fig. 3, we showed that
the trajectory of photon 1 depends on the choice of measurement (po-
larization basis) for photon 2. In Fig. 4, we see that the polarization of
photon 2 depends on the choice of when (that is, at what point along
the trajectory) to measure the position of photon 1. This nonlocality is
due to the entanglement of the two photons, which, in Bohmian me-
chanics, makes their evolution inseparable even when the photons
themselves are separated. Because entanglement is necessary for the
delayed measurement scenario of ESSW, this nonlocal behavior is to
be expected and is the reason for the surreal behavior they identify.
Indeed, our observation of the change in polarization of a free space
photon, as a function of the time of measurement of a distant photon
(along one reconstructed trajectory), is an exceptionally compelling
visualization of the nonlocality inherent in any realistic interpretation
of quantum mechanics.
ebruary 27, 2016
MATERIALS AND METHODS

To generate entangled photon pairs, we used a periodically poled KTP
(potassium titanyl phosphate) crystal embedded in a polarization Sagnac
interferometer (35–37). The source generates entangled photon pairs
(at a rate of approximately 25,000 pairs/s and a coupling efficiency of
∼10%) in a state r that has fidelity F = 〈f+|r|f+〉 = 99.04 ± 0.02 % with

the Bell state jfþ〉 ¼ 1ffiffiffi
2

p jHH〉þ jVV 〉ð Þ, where H and V correspond

to horizontal and vertical polarization, respectively.
To perform measurements on photon 1 in coincidence with mea-

surements on photon 2, we triggered a Pockels cell to block photon
1 unless photon 2 was detected. The Pockels cell is set to apply a p phase
shift to the vertical polarization upon receiving a TTL (transistor-
transistor logic) pulse from the single-photon counter. This phase shift

converts the polarization of photon 1 from |D〉 to jA〉 ¼ 1ffiffiffi
2

p jH〉− jV 〉ð Þ,
allowing it to pass through a polarizer following the cell. That is, the
detection of photon 2 effectively opens a fast shutter for photon 1, en-
abling coincidence detection on the nanosecond time scale using a
Mahler et al. Sci. Adv. 2016; 2 : e1501466 19 February 2016
single-photon cooled CCD (Andor iDus) whose response time is six
orders of magnitude slower.

To obtain the data for the trajectories, photon 1 was imaged in dif-
ferent planes using two fixed lenses (with focal lengths of 10 and 15 cm)
and a third translatable lens (with a focal length of 2.5 cm) in between
them. The magnification and imaging distance of the imaging system
(consisting of the three lenses and the CCD camera) were determined
by sweeping the position of the middle lens with one slit blocked and
the weak measurement calcite removed. The magnification of the system
was then given by 1/x, where x is the distance from the imaged spot to
the line of symmetry of the imaging system. The imaging distance as a
function of the lens position was determined by stretching the calibration
images (by a factor inversely proportional to the magnification) so that
the true image can be extracted for each position of the middle lens.
Finally, the width of the spot in the true image was determined, from
which the imaging distance can be determined using Gaussian beam pro-
pagation equations. Note that because Bohmian trajectories do not cross
in one dimension, these propagation equations also relate the Bohmian
position of the particle at the plane where the momentummeasurement
was performed with that in the plane where it was imaged.
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