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Incompatible observables can be approximated by compatible observables in joint measurement
or measured sequentially, with constrained accuracy as implied by Heisenberg’s original formulation
of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off
relations based on statistical distances between probability distributions of measurement outcomes

[Phys. Rev. Lett.

111, 160405 (2013); Phys. Rev. A 89, 012129 (2014)]. Here we reformulate

their theoretical framework, derive an improved relation for qubit measurement, and perform an
experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly
bounded from below by the incompatibility of target observables, and is verified by the experiment
employing joint measurement in which two compatible observables designed to approximate two
incompatible observables on one qubit are measured simultaneously.

The uncertainty principle was first proposed by Heisen-
berg in the context of a measurement process [1]. He
conceived of a y-ray microscope and pointed out that the
measurement of an electron’s position ) disturbs the mo-
mentum P inevitably, and that the product of the error
¢(Q) and disturbance n(P) cannot be arbitrarily small. A
qualitative relation was written as e(Q)n(P) ~ h, where
h is Planck’s constant. In the ensuing few years, Ken-
nard [2], Weyl [3], Robertson [4], and Schrédinger [5]
derived mathematically rigorous versions, including the
famous relation o(A)o(B) > 1 |([4, B])|, where the angle
brackets represent expectations, the standard deviation
o (A) = /(A%) — (A)? is called preparation uncertainty,
and [A, B] = AB — BA. However, these formal inequal-
ities, together with well-developed entropic uncertainty
relations [6-12], do not handle the problem Heisenberg
discussed, but refer to the uncertainties intrinsic to quan-
tum states.

The attempts to quantify Heisenberg’s original idea
have a long history [13]. A dozen years ago, Ozawa
proved a universally valid error-disturbance relation
[14]. Shortly thereafter, Hall and Ozawa independently
showed that the inaccuracies of any joint measurement
estimating two incompatible observables satisfy similar
relations [15-17]. Later, tighter inequalities were derived
by Branciard [18, 19] and Weston et al. [20]. These
relations have been experimentally verified using polar-
ized neutrons [21, 22| and photons [20, 23-26]. Never-
theless, the physical validity of the definitions of error
and disturbance in Ozawa’s relation is in dispute [27-
33]. Information-theoretic definitions for noise and dis-
turbance were introduced and a state-independent trade-
off relation was derived by Buscemi et al [34], and this

relation has been verified by neutron spin qubits [35].

Recently, Busch, Lahti, and Werner (BLW) formu-
lated uncertainty relations dealing with the imprecisions
in joint measurements approximating incompatible ob-
servables [32, 33, 36]. The imprecisions or uncertain-
ties, based on statistical distances between probability
distributions of measurement outcomes, are processed
into state independent and regarded as figures of merit
of joint-measurement devices. Besides, the joint mea-
surement scenario covers the successive measurement sce-
nario with errors and disturbances. In this work, we re-
formulate BLW’s theoretical framework, derive an im-
proved relation for qubit measurement, and perform an
experimental test on a spin system.

Consider a pair of incompatible observables A, B. In-
compatible means A, B are not jointly measurable, i.e.,
cannot be measured simultaneously. For qubit measure-
ments, A, B can be selected as two sharp observables
with the spectral projections AL = (1+a-0)/2 and By
= (1+b-0)/2, where a,b are unit vectors. If @ and b
are noncollinear, the observables A, B are incompatible.
Approximate measurements of A, B can be performed
simultaneously by a device composed of compatible ob-
servables C, D, each being used as an approximation of
A, B, respectively. The observable C' consists of posi-
tive operators Cy = (¢l +¢-0)/2, C_ = 1 — C4,
with |e] < min{cg,2 — ¢p} < 1 for the positivity. Simi-
larly, the observable D counsists of D = (dol +d-0)/2,
D_ =1- D, with |d| < min{dy,2 — dp} < 1. Com-
patible or jointly measurable requires that there ex-
ists a positive-operator valued measure (POVM) M of
which C, D are the marginals, namely, C; = >~ M;; and
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FIG. 1. (color online). Sketch of the theory. (a) Outline
of the inaccuracy trade-off relation in Eq. (2). Here com-
patible observables C, D are jointly measured to approximate
incompatible observables A, B. (b) An example of Bloch vec-
tors a, b, ¢,d. The lengths of ¢, d are usually less than 1. (c)
Bloch vectors ¢, d of the optimal compatible observables C, D
that approximate A, B. The dashed chords are legs of an in-
scribed isosceles right triangle. The vectors @ — c and b —d
are orthogonal to these dashed chords, and the end points of
¢, d are the perpendicular feet. The whole pattern is coplanar
and symmetric.

Dj; = %" M;j, with i,j = + or — (hereinafter the same)

and M;; = (Csz + chz)/Q When ¢y = dg = 1, the cri-
terion of compatibility takes a simple form as [33, 37, 38]

le+d|+|c—d <2 (1)

Compatibility allows C,D to be performed simultane-
ously, but imposes a strong restriction that prevents C, D
approaching A, B freely. The overall deviation of C, D
from A, B, or the performance of the device, is rooted in
probability distributions of measurement outcomes.

The operators O+ (O = A, B,C, D) are called effects,
and the probabilities of measurement outcomes are pg =
tr (pOx), where p = (1 4 r - 0)/2 is the density operator
of a qubit. We scale the outcomes of these measurements
to be £1, and then the observable O is given as a map
+1 +— O4. The statistical difference between the mea-
surements of A and C, namely, the inaccuracy or uncer-
tainty, can be quantified as §, (4,C) := 2 |p;4 — plc} =

2

2|1 —¢cop+7r-(a—c)| [33]. Likewise, the statistical dif-
ference between the measurements of B and D is written
as 6,(B,D) =2 [pP —pP| =2|1-do+7-(b—d)|

Since the observablles C, D are jointly measured, they face
the same quantum state p and the combined difference
A,(A,B;C,D) = 6,(A,C) + 6,(B,D) is the inaccu-

racy of the joint measurement for a specific state. The
state-dependent quantity A,(A, B;C, D) has a vanish-
ing lower bound for any given A, B, and p. In other
words, A,(A, B;C,D) vanishes when minimizing over
all C,D for any given A, B, and p (see Sec. ILLA in
Ref. [39]). By maximizing A,(A, B;C, D) over all p,
one obtains A(A4, B;C, D) := mg,x A,(A,B;C, D) as the

worst-case inaccuracy of the joint measurement. The
state-independent quantity A(A, B;C, D) characterizes
the integrated deviation of C, D from A, B and thus is a
figure of merit of the measurement device. The inaccu-
racy trade-off relation is

A(A,B;C,D) :=max[d, (A, C) + 6, (B, D)]
! (2)
> Ap(A,B) :==|a+b| +|a—b| -2,

as outlined in Fig. 1(a). The lower bound A(A, B)
is the amount of violation of the inequality (1), and is
termed as the degree of incompatibility of A, B [33]. This
lower bound is attained when C, D are the best approx-
imations of A, B, and such C, D have ¢y = dyg = 1 and
¢,d depicted in Fig. 1(c). Compared with BLW’s orig-
inal relation, the characteristic quantity A(A, B;C, D)
possesses an explicit physical meaning as the worst-case
inaccuracy and has a delicate lower bound without an ex-
tra coefficient (see Sec. II.B in Ref. [39]). Additionally, as
a modification of BLW’s conceptual framework, the im-
proved approach also applies to any pair of incompatible
observables such as position and momentum although the
combined inaccuracy may not be in the additive form.

The nuclear spin system, operated on a 400 MHz
liquid-state nuclear magnetic resonance (NMR) spec-
trometer, is employed to experimentally demonstrate the
relation in Eq. (2). We use diethyl fluoromalonate as the
sample dissolved in 2H-labeled chloroform at 304 K. As
shown in Fig. 2(a), the °F, 'H, and '*C nuclear spins
serve as the system, ancilla, and probe qubits, respec-
tively. The Hamiltonian of the three-qubit system in the
triple-resonance rotating frame is

H=2r >  Julfl, (3)

1<k<I<3

with the scalar couplings Jy; listed in Fig. 2(b).

The experiment begins with preparing the pseudopure
state (PPS) ppps = (1 —€)1/8 + ¢ |+ + +) (+ + +| from
the thermal equilibrium state using the line-selective
method [40, 41]. Here € ~ 107> denotes the polarization
and 1 denotes the 8 x 8 identity matrix. In this paper,
|+) and |—) represent the eigenvectors of the Pauli ma-
trix Z. A shape pulse based on the gradient ascent pulse
engineering (GRAPE) algorithm [42] and a pulsed field
gradient are utilized for this step. After such initializa-
tion, a local operation Rg on the system qubit prepares
the state |¢) = Rg |+) that maximizes A,. In our exper-
iment, all involved C, D have ¢y = dg = 1, and the state
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FIG. 2. (color online).

Experimental system and methods.

(a),(b) Molecular structure and NMR parameters of diethyl

fluoromalonate. The chemical shifts and scalar couplings are on and below the diagonal of the table. The relaxation times are
in the right half of the table. (¢) Quantum circuit for the joint measurement of C, D. (d) Quantum circuit for the measurement
of A or B. (e) Experimental process for the joint measurement of C, D. All the square pulses are hard pulses with negligible
duration compared to the free evolution time 71 and 72. The operation U is implemented by the pulse sequence in the dashed
frame (see Sec. ITT in Ref. [39]). The 7 pulses applied on **C are for decoupling, and the final 7/2 pulse is for readout. (f) **C
spectra for the joint measurement of C, D via M (upper panel) and the measurement of A or B (lower panel). The jittering
blue curves represent the experimental data and the smooth red curves are from Lorentzian fitting.

|1} is simply determined by a, b, ¢, d (see Section IV in
Ref. [39]). If the angle between the vectors @ — ¢ and
b — d is an acute or obtuse angle, the Bloch vector of |¢)
should be collinear with a+b—c—d or a—b—c+d, re-
spectively. If the angle is a right angle, the Bloch vector
should be collinear with either.

For the measurement, different schemes are utilized to
implement the observables A, B and C,D. The com-
patible observables C, D are measured in a joint way.
In other words, we measure the joint observable M in-
duced by C,D as previously mentioned. As a POVM
with four components, M can be extended to orthogo-
nal projective measurements on a certain two-qubit ba-
sis |xij) by encompassing the ancilla qubit. The logic
circuit is illustrated in Fig. 2(c). A local operation R
on the ancilla qubit prepares the state |w) = Ra |+).
After that, a global operation U on the two qubits is
performed with the controlled gates realized by hard
pulses and free evolution. Finally, the probabilities on
lij) is measured. The combined effect of U and the
measurement on [ij) amounts to the measurement on
Ixij) = UT[ij), and the POVM on the system qubit is
yielded as M;; = tra [|Xij> <Xij| (]]. ® |w> <UJD], where 1
denotes the identity operator on the system qubit and
tra the partial trace over the ancilla. The explicit form
of M is

Mas = |(— | @) |£) (],
Mas = |(+ | w)PR |2 (£] R.

In this way, different M and thus C,D can be imple-
mented by adjusting the operations R and Ra. As the

upper panel of Fig. 2(f) shows, the statistics of M’s
four outcomes are displayed as four peaks on the NMR
spectrum at once by introducing the '3C nuclear spin
as the probe qubit. The peak areas are proportional
to the probabilities on [ij), and hence the probabili-
ties relating to M. Therefore, the two compatible but
typically non-commutative observables C, D are simulta-
neous measured with the outcome distributions derived
from that of M.

The incompatible observables A and B are measured
separately, and the ancilla qubit is not required. The
logic circuit is illustrated in Fig. 2(d). The system qubit
in the state [1)) is measured on the basis VT|i) con-
structed as the eigenstates of AL or BL. The statistics
of measurement outcomes are displayed as two peaks on
the spectrum as the lower panel of Fig. 2(f) shows. By
comparing the outcome distributions of C, D with that
of A, B, one obtains the state-dependent inaccuracy A,,.
For the special preselected state 1), the value of A, is
identical to the state-independent inaccuracy A.

To experimentally validate the inaccuracy trade-off re-
lation, we select several configurations of A, B and C, D
with all the Bloch vectors in the xzz plane. Every pair
of a,b is symmetric about the z axis, and is expressed
as a = (—sin(6/2),cos(0/2)),b = (sin(6/2),cos(8/2)),
where the former and latter components of a vector cor-
respond to x and z, respectively (hereinafter the same).
In the case where 6§ = 90°, the vectors a, b are perpendic-
ular to each other and the relevant observables A, B are
maximally incompatible. Consider a series of compati-
ble observables C, D with ¢ = (— sin y cos 7, sinzfy) ,d =
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FIG. 3. (color online). Experimental demonstration of the in-
accuracy trade-off relation with maximally incompatible A, B.
(a) Bloch vectors of observables. The whole configuration is
coplanar. The vectors a,b are mutually perpendicular and
incline symmetrically about the vertical direction, which is
the z direction. The end points of vectors ¢,d are the di-
ameter ends of the small circle which is internally tangent
to the semicircle and passes through its center. The cen-
ter of the semicircle is the origin and the tangent point is in
the z axis. (b) The inaccuracy A as a function of the angle
~v = arctan (|c|/|d|). The circles, solid curves, and dashed
curves represent the experimental, theoretical, and simulated
values of A, respectively. The numerical simulation takes de-
coherence into account. The dashed straight line denotes the
lower bound Ajp. (c),(d) Experimental statistics of measure-
ment outcomes for v = 15°,45°.

(sinvcos ~, cosz'y) as illustrated in Fig. 3(a). The in-
accuracy A varies with v and is bounded by Ay, =
2(V2—1) ~ 0.83 as shown in Fig. 3(b). When
v = 45°, the corresponding C, D are the optimal ap-
proximations to A, B and the inaccuracy A reaches its
lower bound Aj,. The statistics of measurement out-
comes for two instances where v = 15°,45° are listed
in Figs. 3(c) and 3(d), which visually support the su-
periority of the optimal C,D. Another series of C, D
with ¢ = (=1/[1 4 cot(p/2)],1/[1 + tan(p/2)]),d =
(1/[1 4+ cot(p/2)],1/[1 + tan(p/2)]) are illustrated in
Fig. 4(a). For A, B with 6§ = 90°, the optimal C, D are
reached when ¢ = 90° as shown in Fig. 4(b). This series
of C, D are also used to approximate other A, B which
are less incompatible. For 6 = 45° or 135°, the inaccu-
racy A is bounded by Ay, = 2/v/2 — V2 —2 ~ 0.61 as
illustrated in Fig. 4(c). In the limit where § = 0° or 180°,
A, B reduce to compatible with a vanishing Ay, as shown
in Fig. 4(d), and the optimal C, D are just A, B. All the
experimental results confirm the inaccuracy trade-off re-
lation in Eq. (2).

In conclusion, we have reformulated BLW’s theoretical
framework, derived an improved relation for qubit mea-
surement, and performed an experimental test using the
NMR technique. We show that as a figure of merit of the
measurement device, the worst-case inaccuracy is tightly
bounded by the incompatibility of target observables in
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FIG. 4. (color online). Experimental demonstration of the
inaccuracy trade-off relation with several pairs of A, B. (a)
Bloch vectors of observables. The whole configuration is
coplanar and symmetric. The dashed chords have the same
meaning as that in Fig. 1(c). The angle between the vec-
tors a,b is 6 and the angle between the vectors ¢, d is .
(b)-(d) The inaccuracy A as a function of the angle ¢ for
several pairs of A, B with § = 90°(b), 6§ = 45°,135°(c), and
6 = 0°,180°(d). The lower bound Ay, varies with 6, and is
the same for § and 180° — 6. The symbols in these diagrams
have the same meanings as that in Fig. 3(b).

the qubit case. In the experiment, the device is simu-
lated by joint measurement which measures two compat-
ible observables simultaneously. Our work represents an
advance in quantitatively understanding and experimen-
tal verification of Heisenberg’s uncertainty principle, and
could have implications for the area of quantum informa-
tion technology.
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