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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
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Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high-intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states |​Ψphysical〉​ which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =​ 0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin |​↑​〉​ or |​↓​〉​. These states can be manipulated using laser beams  
(see Methods for details).
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dynamics with four qubits, exemplified here by the creation of  
electron–positron pairs (Fig. 1).

To this end, we experimentally study the Schwinger model, which 
describes quantum electrodynamics in one dimension. This model is 
extensively used as a testbed for lattice gauge theories as it shares many 
important features with quantum chromodynamics, including con-
finement, chiral symmetry breaking, and a topological theta vacuum6. 
In the Kogut–Susskind Hamiltonian formulation of the Schwinger 
model8,9,
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describes the interaction of fermionic field operators Φ̂n at sites 
n =​ 1…N with gauge fields that are represented by the canonically com-
muting operators ˆ ˆθ δ=L i[ , ]n m n m, . L̂n and θ̂n correspond to the electro-
magnetic field and vector potential on the connection between sites  
n and n +​ 1. The latter can be eliminated by a gauge transformation (see 
Methods). The fields Φ̂n represent Kogut–Susskind fermions (Fig. 2), 
where the presence of an electron (positron) is mapped to an unoccu-
pied odd (occupied even) lattice site, allowing for a convenient incor-
poration of particles and antiparticles in a single fermion field. 
Accordingly, the third term in equation (1), representing the rest mass 
m, obtains a staggered sign. The first term corresponds to the creation 
and annihilation of particle–antiparticle pairs, and the second term 
reflects the energy stored in the electric field. Their energy scales  
w =​ 1/(2a) and J =​ g2a/2 depend on the lattice spacing a and the  
fermion light coupling constant g. We use natural units ħ =​ c =​ 1;  

therefore, a and t have the dimension of length, while w, J, m and g have 
the dimension of inverse length.

To realize the model using trapped ions, we map the fermionic oper-
ators Φ̂n to spin operators (Fig. 2a) by a Jordan–Wigner transforma-
tion12, which converts the short-range hopping in equation (1) into 
nearest-neighbour spin flip terms. In this formulation, the Gauss  
law takes the form ˆ ˆ σ̂− = +(− )−L L [ 1 ],n n n

z n
1

1
2

 where σn are the Pauli 
matrices. This law is the lattice version of the continuum law ∇​E =​ ρ, 
where ρ is the charge density. As illustrated in Fig. 2c, the Gauss law 
completely determines the electric fields for a given spin configuration 
and choice of background field. Following ref. 12, we use this constraint 
to eliminate the operators L̂n from the dynamics, adapting a scheme 
that has previously proven advantageous for numerical calculations25 
to a quantum simulation experiment, where the Gauss law is fulfilled 
by construction.

The elimination of the gauge fields maps the original problem to 
a spin model with long-range interactions that reflect the Coulomb 
interactions between the simulated particles. This allows an efficient 
use of resources, since N spins can be used to simulate N particles and 
their accompanying N −​ 1 gauge fields. However, as shown in Fig. 2d, 
the required couplings and local terms have a very unusual distance 
and position dependence. The challenge has thus been moved from 
engineering a constrained dynamics of 2N −​ 1 quantum systems on 
a gauge-invariant Hilbert space to the realization of an exotic and  
asymmetric interaction of N spins.

Our platform is ideally suited for this task, since long-range interac-
tions and precise single qubit operations are available in trapped-ion 
systems. These capabilities allow us to realize the required interactions 
by means of a digital quantum simulation scheme17. To this end, the 
desired Hamiltonian, =∑ =H H ,k

K
k1  is split into K parts that can be 

directly implemented and are applied separately in subsequent time 
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Figure 2 | Encoding Wilson’s lattice gauge theories in digital quantum 
simulators. Matter fields, represented by one-component fermion fields  
Φ̂n at sites n, interact via equation (1) with gauge variables defined on the 
links connecting the sites. a, Unoccupied odd (occupied even) sites, 
represented by filled (empty) circles, indicate the presence of an electron 
(positron). b, Gauge variables (shown as horizontal blue thick lines) are 
represented by operators L̂n with integer eigenvalues Ln =​ 0, ±​1,…, ±​∞​.  
c, By mapping the fields Φ̂n to Pauli operators σ̂n, we obtain a spin model 
(the spins are represented by filled/empty arrows). In this language, the 
Gauss law governing the interaction of fermions and gauge variables reads 
ˆ ˆ σ̂− = + (− )−L L [ 1 ]n n z

n n
1

1
2

, where σ̂z is the diagonal Pauli matrix. The 
realization of the Schwinger model on a small-scale device requires an 
optimized use of resources. We achieve this by eliminating the gauge fields 
at the cost of obtaining a model with long-range couplings (and additional 

local terms). More specifically, the Gauss law determines the gauge fields 
for a given matter configuration and background field ε0. The elimination 
of the operators L̂n transforms the original model with nearest-neighbour 
terms into a pure spin model with long-range couplings that corresponds 
to the Coulomb interaction between the charged particles. d, Coupling 
matrix of the resulting interactions for N =​ 10, along with the total spin 
Hamiltonian ĤS. For illustration, e shows the couplings involving the  
fifth spin. The colours (and thicknesses) of lines represent the different 
interaction strengths cij according to the matrix shown in d. For 
implementing ĤS in a scalable and efficient way, we introduce time steps  
of length T (f), each subdivided into three sections (g). In each of these 
(length not to scale), one of the three parts of ĤS is realized as explained in 
Methods. h, The protocol for realizing Ĥzz for N =​ 10. The ions interact 
according to the Mølmer–Sørensen (MS) Hamiltonian ĤMSz. During each 
short time window of length Δ​tI, a different set of ions is coupled by ĤMSz.

© 2016 Macmillan Publishers Limited. All rights reserved
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windows. By repeating the sequence multiple times, the resulting time 
evolution of the system U(t) closely resembles an evolution where the 
individual parts of the Hamiltonian act simultaneously, as can be shown 
using the Suzuki–Lie–Trotter expansion:

ˆ ˆ( )= =


 ⊗





−

→∞ =

− /U t e lim eiHt
n k

K
iH t n

n

1
k

Our scheme is depicted in Fig. 2f–h. It allows for an efficient realization 
of the required dynamics and implements the coupling matrix shown 
in Fig. 2d, e with a minimal number of time steps, scaling only linearly 
in the number of sites N. The scheme is therefore scalable to larger 
systems. A discussion of finite size effects can be found in Methods.

We realize the simulation in a quantum information processor based 
on a string of 40Ca+ ions confined in a macroscopic linear Paul trap 
(Fig. 1b). There, each qubit is encoded in the electronic states |​↓​〉​ =​ 4S1/2 
(with magnetic quantum number m =​ −​1/2), |​↑​〉​ =​ 3D5/2 (m =​ −​1/2) 
of a single ion. The energy difference between these states is in the 
optical domain, so the state of the qubit can be manipulated using laser 
light pulses. More specifically, a universal set of high-fidelity quantum 
operations is available, consisting of collective rotations around the 
equator of the Bloch sphere, addressed rotations around the z axis and 

entangling Mølmer–Sørensen (MS) gates26. With a sequence of these 
gates, arbitrary unitary operations can be implemented27. Thus, we 
are able to simulate any Hamiltonian evolution, and in particular the 
interactions required here, by means of digital quantum simulation 
techniques, as shown in Fig. 2. Each of the implemented time evolu-
tions consists of a sequence of over 200 quantum gates (see Extended 
Data Fig. 3). In order to realize the non-local interactions Hzz and H± 
with their specific long-range interactions, we use global MS entan-
gling gates together with a spectroscopic decoupling method to tailor 
the range of the interaction. For the decoupling, the population of the 
ions that are not involved in the specific operations are shelved into 
additional electronic states that are not affected by the light for the 
entangling operations (see Methods). The local terms in Hz correspond 
to z rotations that are directly available in our set of operations. The 
strength of all terms can be tuned by changing the duration of the laser 
pulses corresponding to the physical operations.

Within our scheme, a wide range of fundamental properties in 
one-dimensional lattice gauge theories can be studied. To demonstrate 
our approach, we concentrate on simulating the coherent quantum 
real-time dynamics of the Schwinger mechanism, that is, the creation 
of particle–antiparticle pairs out of the bare vacuum |​vacuum〉​,  
where matter is entirely absent (see Methods). After initializing the 
system in this state, which corresponds to the ground state for m →​ ∞​ 
(Fig. 3a), we apply ĤS (Fig. 2d) for different masses and coupling 
strengths. As a first step, we measure the particle number density 
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Figure 3 | Time evolution of the particle number density, ν. a, We show 
the ideal evolution under the Schwinger Hamiltonian ĤS shown in Fig. 2d, 
the ideal evolution considering time discretization errors (see Fig. 2),  
the expected evolution including an experimental (exp.) error model  
(see Methods) and the experimental data for electric field energy J =​ w  
and particle mass m =​ 0.5w (see equation (1)). After postselection of the 
experimental data (see Methods), the remaining populations are {86 ±​ 2, 
79 ±​ 1, 73 ±​ 1, 69 ±​ 1}% after {1, 2, 3, 4} time steps (averaged over all  
data sets). Error bars correspond to standard deviations estimated from a 
Monte Carlo bootstrapping procedure. The insets show the initial state  
of the simulation (left inset), corresponding to the bare vacuum with 
particle number density ν =​ 0, as well as one example of a state containing 
one pair (right inset), that is, a state with ν =​ 0.5, represented as  
filled/empty arrows as in Fig. 2. b, Experimental data and c, theoretical 
prediction for the evolution of the particle number density ν as a function 
of the dimensionless time wt and the dimensionless particle mass m/w, 
with J =​ w.

a b

c d

0.0

1.0

J/w = 2.0

m/w = 1.5

1.0

0.5

0.0

|G
(t)

|2

E
n

x | (0)〉 =

|vacuum〉

Experimental data Error model

wt
π/2

wt

1.0

0.0

1.4

0.0

|G
(t)

|2

1.0

0.0

E
n

1.4

0.0
0 0 π/2

Ψ

| (t)〉Ψ

t

e

Figure 4 | Time evolution of the vacuum persistence amplitude and 
entanglement. We show the square of the vacuum persistence amplitude 
|​G(t)|​2 (the Loschmidt echo), which quantifies the decay of the unstable 
vacuum, and the logarithmic negativity En, a measure of the entanglement 
between the left and the right halves of the system. a, b, The time evolution 
of |​G(t)|​2 (a) and En (b) for different values of the particle mass m and 
fixed electric field energy J =​ w, where w is the rate of particle–antiparticle 
creation and annihilation (compare equation (1)), as a function of the 
dimensionless time wt. c, d, The time evolution of |​G(t)|​2 (c) and En (d) 
changes for different values of J and fixed particle mass m =​ 0. Circles 
correspond to the experimental data and squares connected by solid lines 
to the expected evolution assuming an experimental error model explained 
in Methods. Error bars correspond to standard deviations estimated from 
a Monte Carlo bootstrapping procedure. e, Illustration of the creation of a 
particle–antiparticle pair starting from the bare vacuum state.
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ˆν σ( )= ∑ 〈(− ) ( )+ 〉=t t1 1
N l

N l
l
z1

2 1  generated after a simulated time evo-
lution of duration t. The value ν =​ 0.5 corresponds to a state containing 
on average one pair (Fig. 2b). As Fig. 3c shows, an initial phase of rapid 
pair creation is followed by a reduction of ν(t) due to recombination 
effects. The measured evolution shows excellent agreement with theo-
retical predictions, assuming uncorrelated dephasing with an error 
probability p =​ 0.038 per qubit and per step, as explained in Methods. 
In Fig. 3b, we probe the particle–antiparticle generation for a broad 
range of masses m. Larger values of m increase the energy cost of pair 
production and thus lead to faster oscillations with a suppressed  
magnitude (see also Methods and Extended Data).

Our platform allows direct measurements of the vacuum persistence 
amplitude and of the generated entanglement. The vacuum persistence 
amplitude ˆ( )= 〈 | | 〉−G t vacuum e vacuumiH tS  quantifies the decay of the 
unstable vacuum (see Methods). The associated probability |​G(t)|​2 
shown in Fig. 4a, c, also known as the Loschmidt echo, is important in 
contexts such as quantum chaos28 and dynamical critical phenomena 
far from equilibrium29.

The vacuum decay continuously produces entanglement, as particles 
and antiparticles are constantly generated and propagate away from 
each other, thus correlating distant parts of the system. Entanglement 
plays a crucial role in the characterization of dynamical processes in 
quantum many-body systems, and its analysis permits us to quantify 
the quantum character of the generated correlations. To this end, we 
reconstruct the density matrix after each time step by full state tomo
graphy, and evaluate the entanglement of one half of the system with 
the other by calculating the logarithmic negativity. This quantity is an 
entanglement measure for mixed states30, which is defined as the sum 
of the negative eigenvalues of the partially transposed density matrix. 
The entanglement between two contiguous blocks of our spin system 
is equivalent to the entanglement in the simulated fermionic system 
described by equation (1), that is, including the gauge fields (C.A.M. 
et al., manuscript in preparation). In Fig. 4b, d, we show the real-time 
dynamics of the logarithmic negativity for different parameter regimes. 
Entanglement between the two halves of the system is due to the pres-
ence of a pair distributed across them. Accordingly, less entanglement 
is produced for increasing particle masses m and field energies J. The 
latter has a stronger influence, as it not only raises the energy cost  
for the creation of a pair but also for increasing the distance between 
particle and antiparticle.

Our study should be understood as a first step in the effort to sim-
ulate increasingly complex dynamics, including quantum simulations 
of lattice gauge theories5, that cannot be tackled by classical numeri-
cal methods. Building on these results, future challenges include the 
quantum simulation of non-Abelian lattice gauge theories and systems 
beyond one dimension.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Encoding of the lattice Schwinger model. Our starting point is the Kogut–
Susskind Hamiltonian formulation of the lattice Schwinger model8,9, see equation 
(1) in the main text. This model describes one-component fermion fields Φ̂n that 
are located at lattice sites n and interact with gauge fields that are represented by the 
canonically commuting operators ˆ ˆθ δ=L i[ , ]n m n m,  as illustrated in Fig. 2. θ̂n and L̂n 
represent the vector potential and electromagnetic field on the link connecting  
sites n and n +​ 1. The dynamics is contained by local conservation laws.  
Formally, these are described in terms of local symmetry generators 
ˆ ˆ ˆ ˆ ˆ†

Φ Φ= − − + − (− ) .−G L L [1 1 ]i n n n n
n

1
1
2

 Physical states are eigenstates of these 
generators ˆ Ψ Ψ| 〉 = | 〉G q ,i iphysical physical  where the qi are background charges. In the 
continuum limit, we recover the familiar form of the Gauss law ∇​E =​ ρ, where ρ is 
the total charge density. The Schwinger Hamiltonian Ĥlat commutes with the local 
symmetry generators ˆ ˆH G[ , ]ilat  and does not mix eigenstates of Ĝi with different 
eigenvalues. Thus, the Hilbert space is divided into different sectors with different 
static charge configurations. We are interested in the case qi =​ 0, that is, in the zero 
charge sector with an equal number of particles and antiparticles. Our dynamics is 
therefore constrained by the Gauss law:

ˆ ˆ ˆ ˆ†
Φ Φ− = − − (− ) ( )−L L 1

2
[1 1 ] 2n n n n

n
1

Equation (2) can be understood by considering a fixed field operator L̂n and an 
adjacent spin Φ̂n to its right. As shown in Fig. 2a, spins in state |​↑​〉​ (|​↓​〉​) on an odd 
(even) lattice site indicate that this lattice site is in the vacuum state, that is, not 
occupied by a particle or antiparticle. Accordingly, ˆ ˆ= −L Ln n 1. Spins in the state  
|​↑​〉​ on even lattice sites (corresponding to positrons) generate (+​1) unit of electric 
flux to the right ˆ ˆ= +−L L 1n n 1 . Similarly, spins in the state |​↓​〉​ on odd lattice sites 
(corresponding to electrons) lead to a decrease of one unit, ˆ ˆ= −−L L 1n n 1  . In order 
to cast the lattice Schwinger Hamiltonian given in equation (1) in the main text in 
the form of a spin model, the one-component fermion operators Φ̂n are mapped 
to Pauli spin operators by means of a Jordan–Wigner transformation31:

ˆ ˆ ˆ ˆ ˆ ˆ
†

∏ ∏Φ σ σ Φ σ σ= = −
<

−

<

+i i[ ] , [ ]n
l n

l
z

n n
l n

l
z

n

This leads to

ˆ ˆ ˆ

ˆ ˆ

ˆ∑

∑ ∑

σ σ
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=
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= =

−

H w

m J L

[ e h c ]

2
1

n

N

n
i

n

n

N
n

n
z
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1

1

1

1 1
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where constant terms (energy offsets) have been omitted. Using this expression, 
the gauge degrees of freedom are eliminated in a two-step procedure12. First, the 
operators θ̂n are eliminated by a gauge transformation:

ˆ ˆˆ∏σ σ→ θ−

<

− −[e ]n
l n

i
n

l

In a second step, the electric field operators L̂n are eliminated iteratively using the 
spin version of the Gauss law given in equation (2):

ˆ ˆ σ̂− = + (− )−L L 1
2

[ 1 ]n n n
z n

1

This yields the pure spin Hamiltonian which is realized in our simulation scheme:

ˆ ˆ ˆ ˆ
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The free parameter ε0 corresponds to the boundary electric field on the link to the 
left of the first lattice site (see Fig. 2b, c). Throughout this paper we consider the 
case of zero background field, where ε0 =​ 0.

The gauge fields do not appear explicitly in this description. Instead, 
they effectively generate a non-local long-range interaction that corre-
sponds to the Coulomb interaction between the simulated charged parti-
cles. So far, this encoding approach has only been employed as a tool for 
analytical or numerical calculations12,32,33. In contrast, we investigate here 
the use of this idea for a quantum simulation scheme, that is, the realization 

of the Schwinger model in its encoded form in an actual physical sys-
tem. This approach has the advantage that, by construction, the dynamics  
takes place in the physically allowed subspace where the Gauss law is obeyed. 
In typical proposals for the quantum simulation of lattice gauge theories, this is 
fulfilled only up to some energy scale, as it is typically imposed energetically or 
by exploiting mechanisms where imperfections due to gauge-variant terms are 
strongly suppressed6.
Digital quantum simulation of the encoded Schwinger model. We realize ĤS 
given in equation (3) by means of a digital quantum simulation scheme17, which 
will be described in detail elsewhere (C.A.M. et al., manuscript in preparation). 
For convenience, we express the simulated Hamiltonian in the form

ˆ ˆ ˆ ˆ= + + ( )±H H H H 4S zz z

where the three parts of the Hamiltonian correspond to the two different types of 
two-body couplings Ĥzz and ˆ±H , as well as local terms Ĥz:

ˆ ˆ ˆ∑ σ σ=
<

H J czz
n m

nm n
z

m
z

ˆ ˆ ˆ ˆ ˆ∑ σ σ σ σ= ( + )±
+

+
−

+
+ −H w

n
n n n n1 1

ˆ ˆ ˜ ˆ∑ ∑σ σ= +H m c J cz
n

n n
z

n
n n

z

The simulation protocol is based on time-coarse graining, where the desired 
dynamics of the Hamiltonian given by equation (3) is obtained within a time- 
averaged description. As illustrated in Fig. 2f, the total simulation time tsim is 
divided into individual time windows of duration T. During each of these time 
windows, a full cycle of the protocol that is described below is performed. This cycle 
is repeated multiple times from t =​ 0 to t =​ tsim and consists of three sections, as 
shown in Fig. 2g. Each of these sections corresponds to one of the three parts of the 
desired Hamiltonian given by equation (4). In the first section, Ĥzz is simulated, in 
the second, the nearest-neighbour terms ˆ±H  are realized and in the third, the single 
particle rotations Ĥz are performed. In this way, the simulation scheme uses only 
two types of interactions, local rotations and an infinite-range entangling operation

ˆ ˆ ˆ∑σ σ= ( )H J 5
n m

n
x

m
x

MSx 0
,

which is routinely implemented in trapped ions by means of MS gates26. In the 
following, we explain how the individual parts of the Hamiltonian are realized. 
More detailed explanations can be found elsewhere (C.A.M. et al., manuscript in 
preparation). The relative strengths of the individual parts of ĤS, J, w and m, can 
be tuned by adjusting the length of the elementary time windows or the strength 
of the underlying interaction J0 accordingly.
Long-range interactions Ĥzz. The first part of equation (4) originates from the third 
term in equation (3) representing the electric-field energy. It takes the form

ˆ ˆ ˆ∑ ∑ σ σ= ( − ) ( )
=

−

= +

−
H J N n

2
6zz

m

N

n m

N

m
z

n
z

1

2

1

1

and describes two-body interactions with an asymmetric distance dependence, 
where each spin interacts with constant strength with all spins to its left, while the 
coupling to the spins on its right decreases linearly with distance (see Fig. 2d, e).  
As the number of elements in the spin coupling matrix is proportional to N2, a 
brute force digital simulation approach to this problem would require N2 time 
steps. Using our protocol, which is inspired by techniques put forward in ref. 34, the 
required resources scale only linearly in N. This is accomplished using the scheme 
illustrated in Fig. 2h. We introduce N −​ 2 time windows, which can be shown 
to be the minimal number of time steps required to simulate the Hamiltonian 
in equation (6). Each elementary time window has length Δ​tI. In the nth time 
window, the Hamiltonian

ˆ ˆ ˆ∑σ σ=
( ) +

H J
n

i j

n

i
z

j
z

MSz 0
,

1

is applied. ˆ ( )H
n

MSz is realized by applying the Hamiltonian given in equation (5) in 
combination with local rotations, ˆ ˆ†( ) ( ) =R y H R y H ,MSx MSz  where ˆ( ) = σ∑π =R y ei i

N
i
y

4 1 . 
The resulting time-averaged Hamiltonian for the first section of the time interval T,  

ˆ= ∑
− =

− ( )
H HI N n

N n1
2 1

2
MSz  is proportional to the desired Hamiltonian in equation (6), 

=
−

H HI N
J
J zz

2
2

0 .
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As shown in Fig. 2h, only ions 1 to n +​ 1 participate in the entangling interaction 
in time step n. Since the interaction is implemented via a global beam that couples 
to the entire ion string (see Fig. 1b), ions n +​ 2 to N are decoupled by applying 
hiding pulses. The population in the qubit states of these ions is transferred to 
electronic levels that are not affected by the interaction using suitable laser pulses. 
The population in the state |​↓​〉​ =​ 4S1/2 (magnetic number m =​ −​1/2) is transferred 
to the state 3D5/2 (m =​ −​5/2), and the population in |​↑​〉​ =​ 3D5/2 (m =​ −​1/2) is 
transferred to the state 3D5/2 (m =​ −​3/2) via 4S1/2 (m =​ +​1/2).
Nearest-neighbour terms ˆ±H . The second part of equation (4),

ˆ ˆ ˆ∑ σ σ= ( + . .)±
=

−
+

+
−H w h c

n

N

n n
1

1

1

corresponds to the creation and annihilation of particle–antiparticle pairs (see 
Fig. 2a, c). For realizing this Hamiltonian, the interaction given in equation (5) 
needs to be modified not only in range, but also regarding the type of coupling. 
This is accomplished by dividing the time window dedicated to realizing ˆ±H  (see 
Fig. 2g) into N −​ 1 elementary time slots of length Δ​tII. Each of these is used for 
inducing the required type of interaction between a specific pair of neighbouring 
ions. For example, the first elementary time slot of length Δ​tII is used to engineer 
an interaction of the type ˆ σ̂ σ∝ + . .+ −H h cij i j  between the first and the second spin, 
the second time slot is used to do the same for the second and the third spin, and 
so on. This can be done by applying suitable hiding pulses to all spins except for a 
selected pair of ions i and j. The selected pair undergoes a sequence of gates, which 
transforms the ˆ ˆσ σi

x
j
x -type coupling in equation (5) into an interaction of the 

required form and consists of four steps: (i) a single qubit operation on the two 
selected spins i and j, ˆ ˆ= σ σ( + )πU ei i

z
j
z

4 ; (ii) an evolution under the Hamiltonian given 
in equation (5) for the selected pair of spins, ˆ ( )H

ij
MSx during a time Δ​tII/2, 

ˆ− ∆ /
( )

e iH t 2
ij

IIMSx ; (iii) another single qubit operation U†; and finally (iv) another two-
qubit gate ˆ ∆ /

( )
eiH t 2

ij
IIMSx . The time evolution operator associated with the described 

sequence of gates is given by ∆( )eiH tII
ij

II with

ˆ ˆ ˆ ˆ ˆ† σ σ= 

 + 


 = ( + . .)

( ) ( ) ( ) + −H H U H U J1
2

h cII
ij ij ij

i jMSx MSx 0

as desired. The relative strength of the nearest-neighbour terms ˆ±H  and the long-
range couplings Ĥzz, w/J can be adjusted by tuning the ratio of the lengths of the 
elementary time windows Δ​II/Δ​I.
Single-particle terms Ĥz. The last contribution to the Hamiltonian in equation (4) 
consists of two terms ˆ ˆ ˜ ˆσ σ= ∑ + ∑H m c J cz n n n

z
n n n

z . The first term in this expression 
reflects the rest masses of the fermions. The second term is an effective single- 
particle contribution originating from the third part of equation (3) and corre-
sponds to a change in the effective fermion masses due to the elimination of the 
electric fields. The local terms of the simulated Hamiltonian are given by:

ˆ ˆ ˆ∑ ∑ ∑σ σ= (− ) − ( )
= =

−

=

H m J n
2

1
2

mod 2z
n

N
n

n
z

n

N

l

n

l
z

1 1

1

1

These are implemented by means of AC-Stark shifts, induced by laser pulses that 
are far red-detuned from the qubit transition13,27.
Measurement and postselection. For each set of system parameters and number 
of simulation time steps, we perform a full state tomography to determine the 
density matrix that corresponds to the quantum state of the system. The electronic 
state of the ions is detected via a fluorescence measurement using the electron 
shelving technique27. The entire string is imaged by a CCD camera, performing a 
full projective measurement in the z basis. This procedure is repeated 100 times 
to gather sufficient statistics.

As a consequence of charge conservation, an equal number of particles and 
antiparticles is created during the ideal dynamics of the system. Since our evolu-
tion starts with the vacuum state, the physical Hilbert space of the simulation is 
spanned by the six states {|​0000〉​ =​ |​↑​↓​↑​↓​〉​, |​e−e+00〉​ =​ |​↓​↑​↑​↓​〉​, |​0e+e−0〉​ =​ |​↑​↑​↓​↓​〉​,  
|​00e−e+〉​ =​ |​↑​↓​↓​↑​〉​, |​e−00e+〉​ =​ |​↓​↓​↑​↑​〉​, and |​e−e+e−e+〉​ =​ |​↓​↑​↓​↑​〉​}, where |​0〉​ 
denotes the vacuum, |​e−〉​ a particle and |​e+〉​ an antiparticle. However, experi-
mental errors during the simulation produce leakage from this subspace, such 
that non-physical states such as |​e−000〉​ =​ |​↓​↓​↑​↑​〉​ get populated. Therefore, the 
raw measured density matrices ρraw are projected onto the Hilbert space spanned 
by the physical states and normalized,

ρ
ρ
ρ

=
( )
P P
P Ptrphys

raw

raw

where P is the projector onto the physical subspace. All experimental data pre-
sented in this work correspond to physical density matrices ρphys postselected in 

this way. The populations remaining in the physical subspace along the evolution 
are discussed in the following section.
Experimental errors. The bulk of the quantum gates in the simulation consists of 
hiding/unhiding pulses and MS gates. Each π​ pulse on a hiding transition has a 
fidelity of around 99.5%, and there are 30 such pulses per step, yielding a lower 
bound on the fidelity per step of (0.995)30 =​ 0.86. The fidelity of a fully-entangling 
(π​/2) MS gate on 4 ions is around 97.5%, and one simulation step has 8 quarter- 
entangling (π​/8) gates, yielding a lower bound of (0.975)8/4 =​ 0.95. The total lower 
bound for the fidelity per step is = ( . ) ⋅ ( . ) =/F 0 995 0 975 7630 8 4        %; it is indeed lower  
than the average fidelity of the raw (not postselected) state after the first step, which 
is 89%. The sequence performs better than might be expected from the raw  
fidelities; we believe this is because the ideal evolution stays at all times in a  
decoherence-free subspace.

A useful measure of the performance of the evolution is the population leakage 
from the physical subspace. After {1, 2, 3, 4} evolution time steps, the measured 
populations remaining in the physical subspace were on average {86 ±​ 2, 79 ±​ 1, 
73 ±​ 1, 69 ±​ 1}% of the populations before postselection (the average is taken over 
the 7 simulation runs shown in the paper). The population loss per simulation 
step seems consistent with the errors induced by the hiding/unhiding operations.

The remaining errors can be quantified by the average fidelity of the postselected 
state with the ideal state. After the first evolution step this is 96%, which is consist-
ent with the total fidelity of the MS gates. To quantify the performance of the 
simulation along the whole evolution, we compare the experimental data to a 
simple phenomenological error model. Since the postselection already partially 
corrects for population errors, we considered an error model that consists of uncor-
related dephasing, parameterized with an phase flip error probability p per qubit 
and per evolution time step. The density matrix ρ is then, at each evolution step, 
subject to the composition (denoted �) of the error channels Ei for each qubit

ρ ρ→ ( )� � �E E E E4 3 2 1

where

ρ ρ σ ρσ( ) = ( − ) +E p p1i i
z

i
z

The value for the error probability p was extracted from a fit to all of the experi-
mental data collected. For all the data taken with non-zero J we found a value of 
p =​ 0.038. Whenever J =​ 0, the simulation does not require any zz interactions. 
Thus, several entangling gates are omitted from the sequence and consequently 
higher fidelities are expected. Indeed, for this case the error probability per time 
step was found to be p =​ 0.031.
Quantum simulation of the Schwinger mechanism. We simulate the coherent 
real-time dynamics in the Schwinger model focusing on the Schwinger mecha-
nism, that is, spontaneous particle–antiparticle production out of the unstable 
vacuum. This effect is at the heart of quantum electrodynamics and its observation 
is currently pursued at high intensity laser facilities ELI and XCELS18 (theoretical 
proposals for its quantum simulation can for example be found elsewhere6,7,35,36). 
To simulate the dynamics of pair creation, we consider as is usual2,10 the bare 
vacuum as initial state, where matter is completely absent, |​vacuum〉​ =​ |​0000〉​. In 
the spin representation this state is accordingly given by |​↑​↓​↑​↓​〉​. Note that the bare 
vacuum is different from the so-called dressed vacuum state, which is the ground 
state of the full Hamiltonian.
Decay of the vacuum. The natural quantity characterizing the decay of the unstable 
vacuum is the vacuum persistence amplitude introduced by Schwinger37, which is 
defined as the overlap of the initial state |​Ψ(0)〉​ =​ |​vacuum〉​ with the time-evolved state

ˆ( ) = 〈 | | 〉−G t vacuum e vacuumiH tS

Within the original formulation, the Schwinger mechanism was considered for the 
continuum system and a classical electric field of strength E (ref. 37). There, it has 
been shown that the particle number density ν(t) is directly related to the rate func-
tion λ(t) that characterizes the decay of the vacuum persistence probability |​G(t)|​2:

λ( ) =− | ( )|
→∞

t
N

G tlim 1 log[ ]
N

2

Specifically, in the limit of large fermion masses �m qE  with q the electric 
charge, as relevant in the high-energy context, λ(t) =​ ν(t) for thermodynamically 
large systems in the continuum.

Since vacuum persistence amplitudes have so far not been measured, this con-
nection between λ(t) and ν(t) has not yet been tested experimentally. In Extended 
Data Fig. 1, we show the measured rate function λ(t) and find good qualitative 
agreement with ν(t), even for the few qubits in our digital quantum simulation.
Finite size effects. In the following, we discuss the dependence of the results on the 
number of lattice sites N. Extended Data Fig. 2 shows the time evolution of the 

© 2016 Macmillan Publishers Limited. All rights reserved
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particle number density and the entanglement for different system sizes N. For our 
experimental system with N =​ 4, we already find qualitative agreement with respect 
to the results expected for larger N. By scaling up the system, the dynamics quickly 
converges for the considered parameters. We address elsewhere the continuum 
limit a →​ 0, N →​∞​ for fixed values of the coupling g and the mass m (C.A.M.  
et al., manuscript in preparation).
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Extended Data Figure 1 | Comparison of the evolutions of the particle 
number density ν(t) and the rate function λ(t). The decay of the 
vacuum persistence probability is characterized by the rate function λ(t), 
defined by |​G(t)|​2 =​ e−Nλ(t). a, b, Time evolution of ν(t) (a) and λ(t) (b) 
for different values of the particle mass m and fixed electric field energy 
J =​ w, where w is the rate of particle–antiparticle creation and annihilation 

(see equation (1) in the main text). c, d, Evolution of ν(t) (c) and λ(t) (d) 
for different values of J and fixed particle mass m =​ 0 as a function of the 
dimensionless time wt. e, Comparison the evolutions of ν(t) and λ(t) 
for J =​ w and masses m =​ 0 (upper two curves) and m =​ w/2 (lower two 
curves). Error bars correspond to standard deviations estimated from a 
Monte Carlo bootstrapping procedure.

© 2016 Macmillan Publishers Limited. All rights reserved



LetterRESEARCH

Extended Data Figure 2 | Finite size effects. Evolution of the particle 
number density ˆν σ= ∑ 〈(− ) ( )+ 〉= t1 1N l

N l
l
z1

2 1  (top) and the logarithmic 
negativity En (bottom) for different system sizes N. The logarithmic 
negativity is evaluated with respect to a cut in the middle of the considered 

spin chain and quantifies the entanglement between the two halves of the 
system. Both quantities are shown as a function of the dimensionless  
time wt for J =​ m =​ w. The shaded area corresponds to the time interval 
explored in the experiment.
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Extended Data Figure 3 | Experimental pulse sequence. This laser pulse 
sequence implements the evolution described in Fig. 2f, g. The pulses are 
listed in the order in which they are applied, as indicated by the arrows. 
The pulses in the first box prepare the initial state, those in the second 
box implement one step of the time evolution, and those in the third box 
recouple the ions to the computational subspace, that is, bring back their 
populations to the qubit transition 4S1/2(m =​ −​1/2) to 3D5/2(m =​ −​1/2). 
The operations shown in the middle box are repeated once per evolution 
step, resulting in a total number of 12 +​ 51 ×​ 4 +​ 6 =​ 222 pulses for  
4 evolution steps. The pulses are labelled in the form Pulse(θ, φ, target 

qubit), where θ is the rotation angle (length) of the pulse, φ its phase,  
and the target qubit is an integer from 1 to 4 for addressed operations 
or ‘all’ for global operations. ‘R’ denotes a pulse on the qubit transition 
4S1/2(m =​ −​1/2) to 3D5/2(m =​ −​1/2). ‘MS’ corresponds to an MS gate  
on the same transition. The hiding pulses ‘HidingA,B,C’ are applied  
on the transitions as follows: A, 4S1/2(m =​ −​1/2) to 3D5/2(m =​ −​5/2);  
B, 4S1/2(m =​ +​1/2) to 3D5/2(m =​ −​1/2); C, 4S1/2(m =​ +​1/2) to  
3D5/2(m =​ −​3/2). These transitions are shown in the level scheme at  
the bottom right. The pulses shown in italics serve the purpose of 
correcting addressing crosstalk.
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