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Synthetic photonic materials are an emerging platform for 
exploring the interface between microscopic quantum dynamics 
and macroscopic material properties1–5. Photons experiencing 
a Lorentz force develop handedness, providing opportunities to 
study quantum Hall physics and topological quantum science6–8. 
Here we present an experimental realization of a magnetic field for 
continuum photons. We trap optical photons in a multimode ring 
resonator to make a two-dimensional gas of massive bosons, and 
then employ a non-planar geometry to induce an image rotation 
on each round-trip9. This results in photonic Coriolis/Lorentz and 
centrifugal forces and so realizes the Fock–Darwin Hamiltonian 
for photons in a magnetic field and harmonic trap10. Using  
spatial- and energy-resolved spectroscopy, we track the resulting 
photonic eigenstates as radial trapping is reduced, finally observing 
a photonic Landau level at degeneracy. To circumvent the challenge 
of trap instability at the centrifugal limit10,11, we constrain the 
photons to move on a cone. Spectroscopic probes demonstrate flat 
space (zero curvature) away from the cone tip. At the cone tip, we 
observe that spatial curvature increases the local density of states, 
and we measure fractional state number excess consistent with the 
Wen–Zee theory, providing an experimental test of this theory 
of electrons in both a magnetic field and curved space12–15. This 
work opens the door to exploration of the interplay of geometry 
and topology, and in conjunction with Rydberg electromagnetically 
induced transparency, enables studies of photonic fractional 
quantum Hall fluids16,17 and direct detection of anyons18,19.

The Lorentz force on a charged particle moving in a magnetic field 
leads to the unique topological features of quantum Hall systems, 
including precisely quantized Hall conductance, topologically pro-
tected edge transport, and, in the presence of interactions, the predicted 
anyonic and non-Abelian braiding statistics that form the basis of topo-
logical quantum computing20. To controllably explore the emergence of 
these phenomena, efforts have recently focused on realizing synthetic 
materials in artificial magnetic fields, and in particular, upon imple-
mentations for cold atoms and photons. Successful photonic imple-
mentations have employed lattices with engineered tunnelling6,21–24. 
However, it is desirable to realize artificial magnetic fields in the simpler 
case of a continuum (lattice-free) material7,25,26, where strong inter-
actions are more easily accessible and the theory maps more directly 
to fractional quantum Hall systems. In this work, we develop a new 
approach and demonstrate the first continuum synthetic magnetic field 
for light.

To achieve photonic Landau levels we harness the powerful analogy 
between photons in a near-degenerate multimode cavity and massive, 
trapped 2D particles27,28. Owing to mirror curvature, the transverse 
dynamics of a running wave resonator are equivalent to those of a 2D 
quantum harmonic oscillator (Fig. 1a). Non-planar reflections cause 
the transverse properties of the light field—for example, field profile 
(image) and polarization vectors—to rotate by an angle φ upon a round 
trip (Fig. 1b). Polarization rotation splits the energy of circularly polar-
ized eigenmodes, while image rotation, in analogy to a rotating frame, 
introduces Coriolis and centrifugal forces. As the anti-confinement 
from the rotation compensates the confinement from the mirror 

curvature, we are left primarily with a Coriolis force, or equivalently, a 
Lorentz force. When dynamics are coarse-grained over many round-
trips, we arrive at the Fock–Darwin Hamiltonian (see Supplementary 
Information) ˆ( ) ω= − × +( )p z r rH m
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dynamical particle mass, p is the particle’s transverse momentum vector,  
r is the particle’s transverse position vector, ẑ is the longitudinal unit 
vector, and ωtrap/2π​ is the (residual) harmonic trapping frequency. The  
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where La and θ are the on-axis resonator length and opening half-angle  
(Fig. 1c), and λ is the wavelength of light. When the resonator length 
is tuned to eliminate residual harmonic trapping, only a Lorentz force 
remains, and the Hamiltonian describes massive particles in Landau  
levels, where the nth Landau level has energy ħ ( )ω +nc
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 , with ωc being  
the cyclotron frequency, and consists of states with angular momentum 
l =​ −n, −n + 1, … in units of the angular momentum quantum ħ. The 
synthetic magnetic field is then equivalently given by ħ( ) / = /qB w4syn

0
2  , 

that is, one flux quantum per area π /w 40
2 , where w0 is the resonator l =​ 0 

mode waist (1/e2 intensity radius). The magnetic length lB may there-
fore be identified as w0/2.

Although Landau levels exhibit ‘topological protection’ against local-
ized disorder, long-range potentials may guide the particles to infinity, 
inducing loss11,29. In our system, the dominant source of long-range 
disorder is trap asymmetry (astigmatism) that arises from mirror 
imperfections and off-axis reflection and drives Δ​l =​ ±​2 transitions 
(see Supplementary Information). We circumvent this by imposing 
an additional discrete three-fold rotational symmetry on our Landau 
levels. To achieve this, we carefully balance transverse and longitudinal 
energy scales such that only every third angular momentum state is 
degenerate (see Supplementary Information).

The three-fold symmetry of the Landau levels induces a conical 
geometry on the 2D space for transverse photon dynamics. To see this, 
consider a particle which leaves the edge of a particular 120° wedge of 
the plane; the discrete rotational symmetry requires it to appear on 
the other side, which is equivalent to wrapping this wedge into a cone  
(Fig. 1d). Working away from the apex of the cone gives access to flat 
space Landau levels with every angular momentum state accessible, 
while working near the apex allows experimental investigation of par-
ticle dynamics near a singularity of spatial curvature.

Our experimental resonator consists of four mirrors with nominal 
radii of curvature R =​ (2.5, 5, 5, 2.5) cm arranged as shown in Fig. 1c, 
and has an l =​ 0 mode finesse of 2.0 ×104. The on-axis length 
La =​ 1.816 cm and the opening half-angle θ =​ 16° were chosen to create 
a photonic Landau level while minimizing residual astigmatism. 
Varying the resonator length by ~​20 μ​m adjusts the splitting between 
states by ~​1 MHz (see Supplementary Information). Tuning this split-
ting to zero results in a free spectral range at degeneracy of 
νFSR =​ 3.8209(2) GHz. The resonator has an l =​ 0 waist size w0 =​ 43 μ​m 
and a cyclotron frequency ωc =​ 2π​ ×​ 2.1671(2) GHz, which together 
yield a photon dynamical mass of ħ=

ω
m

wdyn
4

c 0
2  =​ 1.84 ×​ 10−5me, where 

me is the electron mass.
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In practice, we tune our resonator to degeneracy by varying its 
length, which primarily changes the harmonic trapping without chang-
ing the effective magnetic field, and we track the energy spectrum and 
spatial profiles of resonator modes by observing the transmission of 
circularly polarized light with a holographically programmed spatial 
profile (Fig. 2, see Supplementary Information). Figure 2a shows the 
evolution of a number of mode energies in numerous Landau levels 
as we adjust the resonator length over almost a centimetre. Using the 
observed mode-profiles (shown as insets), we identify the four lowest 
modes in the figure as those comprising the lowest conical Landau 
level, and centre the graph on their approximate degeneracy point. 
Figure 2b shows high-resolution spectroscopy of a larger number of 
modes in the lowest Landau level near the length where the harmonic 
confinement is cancelled. We precisely extract the change in resonator 
length from the spectroscopically measured free spectral range and 
compensate the residual harmonic trapping to zero. At this point,  
the residual non-degeneracy comes from local disorder, which causes 
an observed level repulsion for high angular momentum states (Fig. 2b,  
main panel) that is not observed at lower angular momentum  
(Fig. 2b, top inset) as well as a significant reduction in mode lifetime 
(Fig. 2c). Away from degeneracy the modes are nearly ideal rings with 
2π​ ×​ l phase winding (experimentally determined by varying the phase 
profile of the injected light, see Supplementary Information); at degen-
eracy these modes mix due to local disorder potentials (Fig. 2d). This 
effect is apparent because of the long particle lifetime (high finesse of 
our resonator) and, in only causing mode distortion, is qualitatively 
different from global potentials such as astigmatism that cause mode 
deconfinement (see Supplementary Information). The local disorder 
merely creates chiral, localized states; it does not break topological 

protection so long as it only mixes modes within a single Landau level 
and, in an interacting system, is weaker than the interactions. This 
insensitivity to weak disorder is a notable advantage of our set-up as 
compared to, for example, injecting angular momentum modes into a 
two mirror resonator19 (see Supplementary Information).

To demonstrate our system’s stability out to large displacements from 
the cone tip, Fig. 3a, b shows large-angular-momentum orbits. Figure 3a  
presents a large displaced state composed of modes with angular 
momentum up to l ≈​ 60, which exhibits three-fold symmetry and 
interferes with itself, producing a strongly fringed pattern due to the 
rapid phase winding of each ring. Figure 3b unwraps another large- 
angular-momentum mode showing that if an orbit encircles the cone 
tip, then it must do so three times, as a consequence of the three-fold 
symmetry.

Remarkably, photons in our resonator may live on three  
distinct cones, distinguished by additional magnetic flux threaded 
through their tips. To understand this, note that the planar lowest 
Landau level may be spanned by angular momentum states 

( )ψ = ∝ (− | | )+z z zexpl
x iy

w
l 2

0
   for l = 0, 1, 2, …, with the transverse posi-

tion vector r =​ (x, y)T. In our resonator these are partitioned into three 
separately degenerate sets corresponding to lowest Landau levels on 
different cones. These sets are the l =​ 0, 3, 6, … modes, the l =​ 1, 4, 7, …  
modes, and the l =​ 2, 5, 8, … modes and satisfy the angular symmetry 
condition ψl(θ +​ 2π​/3) =​ e2π​ic/3ψl(θ), where c =​ 0, 1, or 2 is the lowest 
angular momentum state in the set and serves as the cone’s label. c =​ 0 
defines the symmetry relation that describes an unthreaded cone; with 
c ≠​ 0, the cone has an additional Aharanov–Bohm phase arising from 
c/3 magnetic flux quanta threaded through its tip (Fig. 3c). Angular 
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Figure 1 | Resonator structure and transverse manifold geometry.  
a, Top, ray trajectories (black lines) in a curved mirror resonator oscillate 
transversely (green arrows). In a particular transverse plane, the 
stroboscopic time evolution of the ray positions samples a harmonic 
oscillator trajectory (blue points). In paraxial optics, the solutions for the 
transverse modes are Hermite–Gauss profiles (red curve). The transverse 
degrees of freedom of a resonator are precisely those of a 2D quantum 
harmonic oscillator (bottom). b, Top, as a four mirror resonator is made 
non-planar (purple arrows), the light rays are induced to rotate (blue 
arrow) about the optic axis. In the transverse plane (represented below), 
this corresponds to flattening the 2D harmonic potential (centrifugal 
force) and the introduction of an effective magnetic field (Coriolis force). 

c, Our non-planar resonator consists of four mirrors (blue and purple) in a 
stretched tetrahedral configuration of on-axis length La and opening half-
angle θ. The image rotates about the optic axis (red) on every round trip.  
d, Left, we depict the transverse plane at the resonator waist pierced by a 
uniform perpendicular (along ẑ) magnetic field B of magnitude B, and 
show a generic profile (red curve) with three-fold symmetry. When the 
plane is cut arbitrarily into three equal sections, the entire profile is fully 
determined within any one-third section of the plane: when a trajectory 
leaves one side of a section, it reappears on the other side. Each section 
may be wrapped into a cone on which the original profile appears once 
(right; this would be true for any discrete rotational symmetry). The 
effective magnetic field is everywhere perpendicular to the cone’s surface.

© 2016 Macmillan Publishers Limited. All rights reserved
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momentum states encircling the cone tip enclose this flux three times, 
so states experience integer flux, reflected in their l  radial 
extension.

Away from the apex, photons on each cone behave as in a flat space 
lowest Landau level. In Fig. 3d, we identify each cone by the lowest 
angular momentum state supported around its apex. Then, on each 
cone, we show that we can create arbitrary angular momentum states 
(l =​ 0, 1) about displaced points so long as the displaced mode does not 
self intersect or encircle the cone tip. Beyond reflecting the invariance 
of our system under magnetic translations, this permits the creation 
of canonical fractional quantum Hall states in a future interacting  
system, in addition to novel Laughlin states accessible at the cone 
tip (see Supplementary Information). As a visualization, Fig. 3e, f  
projects these displaced l =​ 0 and l =1 modes onto a cone, further 
demonstrating that, away from the apex, modes on the cone closely 
resemble modes on a regular plane.

The topological numbers that characterize quantum Hall phases are 
predicted to specify the response of the photonic local density of states 
(LDOS) to magnetic field and spatial curvature, as described by the 
Wen–Zee theory12–15 (see Supplementary Information). We perform 
an experimental test of this theory by measuring the LDOS (Fig. 3g–i) 

via transmission images of each state in the relevant weakly split Landau 
level and summing these images (see Supplementary Information). We 
then compare the LDOS near the cone tip with the flat space density 
away from the tip (within each panel Fig. 3g–i) and compare the LDOS 
with different quantities of flux threaded (between panels Fig. 3g–i). 
We clearly observe a density build-up for the c =​ 0 cone; however, we 
find a vanishing LDOS on the other two cones, reflecting additional 
magnetic flux threaded through their tips equal to −Φ0/3 and −2Φ0/3, 
where Φ0 is the magnetic flux quantum (Fig. 3c). According to the 
Wen–Zee theory, the expected excess state number is given by 
δ = −N s c2

3 3
, where c/3 is the number of flux quanta threaded through 

the cone tip and s is a parameter called the mean orbital spin that char-
acterizes particles’ coupling to spatial curvature and is predicted to be 
1/2 for the lowest Landau level12 (see Supplementary Information). We 
therefore expect δ​N =​ 1/3, 0, and −1/3 of a state near the tips of the 
c =​ 0, 1, and 2 cones, respectively. By integrating the measured LDOS 
excess or deficit near the apex, we measure the state number excess to 
be 0.31(2) on the c =​ 0 cone, −0.02(1) on the c =​ 1 cone, and −0.35(2) 
on the c =​ 2 cone, yielding the experimentally measured value 
s =​ 0.47(1). We find quantitative agreement between our measured 
results and the Wen–Zee theory.
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Figure 2 | Building a Landau level. The modes of our resonator follow the 
Fock–Darwin Hamiltonian of a massive, harmonically trapped particle in 
magnetic field: the magnetic field creates a ladder of Landau levels 
uniformly spaced by the cyclotron frequency, ωc, while the harmonic trap 
of frequency ωtrap uniformly splits levels within each Landau level by 
ω ω/trap

2
c (see Supplementary Information). We probe this spectrum  

versus resonator length Lrt, and demonstrate that, for each Lrt, the 
spectrum is determined by two energies ν(1,0) and ν(0,1) according to 
ν(α,β) =​ αν(1,0) +​ βν(0,1) mod νFSR, where ωc =​ 2π​ ×​ ν(1,1) gives the cyclotron 
frequency and ω ω ν/ = π × ( )2trap

2
c 3,0  provides the harmonic trapping 

frequency. Furthermore, fine-tuning Lrt drives ωtrap to zero, bringing 
specific sets of angular momentum eigenmodes into degeneracy, thereby 
forming Landau levels. a, The frequency separations between several 
modes and a reference l =​ 0 mode are plotted as the harmonic confinement 
is coarsely tuned relative to an approximately degenerate reference length 
Lrt =​ 78.460 mm (corresponding free spectral range νFSR =​ 3.8209 GHz). 
Solid lines are obtained as integer linear combinations of fits to the modes 
labelled (1,0) and (0,1) and the free spectral range. For details on mode 
indexing, see Supplementary Information. b, Main panel, we plot the 
transmission spectrum of the first ~​10 modes in the lowest Landau level 
against small deviations from nominal degeneracy. Top inset, low order 

modes become degenerate to within a resonator linewidth, κ ≈​ 200 kHz, 
while in the main panel, we observe weak level repulsion (approximately 
equal to the resonator linewidth) in the higher order modes consistent 
with mode mixing due to mirror imperfections of ~​λ/5,000. ωtrap is 
presented on the upper horizontal axis. Bottom insets, as the resonator  
is tuned through degeneracy, the harmonic potential (orange surface) 
changes sign, while the magnetic field (blue arrows) remains nearly 
unchanged. c, The lifetimes (and corresponding finesses) of representative 
modes decrease for higher mode numbers both away from degeneracy 
(blue circles) and near degeneracy (green squares). Here Δ​L is the offset  
of the round-trip resonator length from nominal degeneracy. d, With 
significant residual harmonic trapping (Δ​L =​ 124 μ​m), angular 
momentum modes are simple rings. As the trapping is reduced  
(Δ​L =​ 32 μ​m), high angular momentum modes begin to mix owing to local 
disorder. When the trapping is precisely cancelled (Δ​L =​ −​3 μ​m), mirror 
imperfection consistent with a single nanoscopic scratch dramatically 
alters the modes’ shape away from the predicted near-Laguerre–Gauss 
profiles. Even the first resonator mode is noticeably triangular, indicating 
at least a mixing of Laguerre–Gauss l =​ 0 and l =​ 3 modes. Overcoming 
this disorder necessitates only ~​MHz photon–photon interactions to 
explore strongly correlated physics.

© 2016 Macmillan Publishers Limited. All rights reserved
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We have demonstrated a synthetic magnetic field for continuum 
photons. Furthermore, we have created an integer quantum Hall sys-
tem in curved space, a long-standing challenge in condensed matter 
physics. We can extend our tests of the Wen–Zee theory by measuring 
fractional state number excess in higher Landau levels and examining 
the connection between the mean orbital spin and the Hall viscosity30  
(see Supplementary Information). Our approach clears a path to the 

photonic fractional quantum Hall regime, as it is compatible with 
Rydberg-mediated strong photon–photon interactions16, and does 
not require the low particle densities (and thus weakened interactions)  
necessary to map Laughlin physics onto a lattice. Simply avoiding the 
cone apex will allow the spectroscopic creation and detection of flat 
space fractional quantum Hall states such as the Laughlin wavefunction 
(see Supplementary Information), while exploring the apex will afford 
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Figure 3 | Photonic lowest Landau levels on a cone. a, At degeneracy, 
all resonator modes display three-fold symmetry. We present a very large 
displaced angular momentum mode with radial extent up to 8 times the 
mode waist, w0, implying that ~​20 modes must be degenerate. The rapid 
phase winding for large l modes causes the strong fringing pattern when 
the mode self-interferes. Inset, an l =​ 0 mode at the same scale. b, We 
project another large-angular-momentum mode onto a cone and view it 
from above the apex. We observe a general property that circular orbits 
must encircle the cone apex either zero or three times. Inset, the original 
image of the mode. The pair of rays overlaying the inset image corresponds 
to the cut in the main image. c, The twisted resonator corresponds to 
Landau levels on three cones with differing quantities of magnetic flux 
threaded through the tip. The cone built out of l =​ 0, 3, 6, … has no flux 
threading; the cone built out of l =​ 1, 4, 7, … is threaded by Φ0/3; and 
the cone built out of l =​ 2, 5, 8, … is threaded by 2Φ0/3, where Φ0 is the 
magnetic flux quantum. d, With the resonator tuned to degeneracy, we 
identify the energies of the l =​ c modes for c =​ 0, 1, or 2 by the transmission 
peaks (blue, orange, and green curves, respectively) that correspond the 
correct observed transmitted modes’ profiles (single images, labelled). 
The degenerate sets starting with these modes each form a lowest Landau 
level on different cones. Except at the apex, each cone is flat, so away from 

the tip each lowest Landau level supports modes of—and therefore the 
dynamics of—a planar lowest Landau level with l =​ 0, 1, 2, … defined 
about a displaced point. On each cone, we show displaced l =​ 0 (bottom 
two) and l =​ 1 (top two) modes. For large displacements (right two), these 
modes are undistorted; however, for small displacements (left two), where 
there is significant mode amplitude at the tip, we observe distortions  
due to self-interference, similar to a. e, f, Displaced l =​ 0 and l =​ 1 modes  
from d are projected onto a cone to show how observed mode images  
may be interpreted on a conical surface. g–i, We explore the effects of 
curvature and flux threading near the tip by measuring the local density of 
photonic states. For the c =​ 0 cone (i), we find an approximately threefold 
increase in local state density near the cone apex above a constant 
background plateau of density. This corresponds to an additional one-
third of a state localized near the apex. For the cones with c =​ 1 and 2  
(h and g, respectively), we find a vanishing local density of states near the 
apex, reflecting the negative magnetic flux threading through the cone 
apex. Each unit of flux removes one-third of a state local to the apex so  
that the c =​ 1 cone has no additional states, and the c =​ 2 cone is missing 
one-third of one state. The data to the right display a slice through the 
middle of each image; the grey curves are fits to the expected analytic form 
(see Supplementary Information).

© 2016 Macmillan Publishers Limited. All rights reserved
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the opportunity to investigate the interplay of geometry and topology 
in strongly correlated quantum materials.
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