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A typical day in the quantum-optics lab 
course: two gifted and enthusiastic 
third-year students have just 

proved quantum theory to be wrong. Its 
predictions do not match the experimental 
observation. When repeated measurements 
confirm the results, one of the two already 
starts developing faint hopes for a Nobel 
Prize — until an instructor enters the scene 
and explains to the students where their 
measurement had gone wrong. One of the 
wave plates involved in the measurement of 
photon polarization was labelled incorrectly 
by a previous user. Quantum theory has been 
saved, once again. But still, the experience 
highlights a general problem: how can we 
be sure that a certain measurement device 
used in the laboratory ‘behaves’ according to 
our expectations? Or, to put it the other way 
around, given a real measurement device, 
how do we best describe its effect in the 
framework of quantum theory? Jeff Lundeen 
and colleagues1 now provide an experimental 
solution to answer this question: by 
measuring the measurement apparatus.

In quantum physics, each experiment 
resembles a specific ‘observational situation’2, 
in which the wavefunction of the experiment 
contains the probabilities of all possible 
outcomes for all possible measurements. A 
complete description of a given quantum-
physics experiment therefore boils down to 
knowing its wavefunction, which typically 
comprises knowledge about the produced 
state, its dynamics and about the performed 
measurement. In the language of modern 
quantum theory, this knowledge is described 
by (positive semidefinite) operators on a 
Hilbert space. Every working quantum 
physicist is then left with the 
question: which operators 
best represent the system and 
measurement at hand? The system 
side has been covered by quantum-
state tomography3,4. There, a sequence 
of calibrated measurements on identically 
prepared states enables the reconstruction 
of the full density matrix (which provides 
complete knowledge of the quantum system). 
Using maximum-likelihood estimation 
methods eventually recovers the operator 
that comes closest to the experimental 

observations5,6. Recently, this procedure has 
also been used to quantify the dynamics 
of a quantum state via quantum process 
tomography7–9, which has become a powerful 
analysis tool for quantum-information 
processing. The calculation of experimental 
expectation values, however, requires an 
accurate knowledge of the detector used for 
the tomography measurements.

To realize quantum-detector tomography, 
Lundeen et al. have been turning the 
tables. Instead of performing calibrated 
measurements on identically prepared 
quantum systems, they use a well-calibrated 
quantum system as a meter for measuring 
the measurement apparatus. The idea is the 
same as above: as experimental outcomes 
are determined by both the system and the 
measurement device, accurate knowledge 
of the system can be used to reconstruct the 
density matrix of the measurement apparatus 
that best describes the experimentally 
observed values. To accommodate 
experimental imperfections (that could lead 
to a non-physical reconstructed density 
matrix), they make use of so-called convex 
optimization to find the optimal physical 
representation of the unknown detector.

Their experiment is geared towards 
characterizing single-photon detectors, 
one of the core ingredients in modern 
quantum-optics and photon-based quantum-
information experiments. For these detectors, 
a calibrated quantum meter is naturally 
available in the form of coherent states, 
which describe to a very good 
approximation the states of laser 
radiation10. A complete set of 
tomographic measurements 

is provided by probing 
the detector with 

coherent 

states of 
different amplitudes.

Lundeen et al.1 compare two types 
of detectors: a commercial avalanche 
photodiode that is sensitive to single photons 
but cannot tell how many photons participate 
in a detection event, and a home-made 
single-photon detector that can resolve 

the number of detected photons. Their 
experimental reconstruction reveals the 
striking difference between the measurement 
operators that need to be used to correctly 
describe these two systems. But it also 
provides a direct quantitative comparison 
between the two. This is a particularly 
relevant feature as measurement procedures 
are becoming increasingly important in the 
context of quantum metrology and quantum-
information processing. One could even 
envisage a calibrated measurement apparatus 
that is optimized to a specifically tailored 
quantum circuit. From a purely practical 
point of view, the detector tomography 
demonstrated by Lundeen et al. provides a 
direct operational approach to comparing 
and calibrating the performance of different 
photon detectors — without the need for a 
specific model of the apparatus.

Finally, the advent of quantum-detector 
tomography also raises an interesting 
philosophical question. Does the completion 
of the ‘triad’ of state, process and detector 
tomography mean that we can indeed 
fully specify, from a quantum-theory 
perspective, an experiment without any 
additional assumptions? It is hard to avoid 
being caught in a circular argument; state 
tomography requires perfect knowledge 
about the detector, and process and detector 
tomography rely on exact knowledge of the 
state — a real chicken-or-egg dilemma. 
What we can 
say is that, 

even if it includes 
minor assumptions, the 

now-completed triad illustrates 
the remarkable feature of quantum physics 
that it does not make sense to divide the 
world into quantum states, quantum 
processes and quantum detectors. Once we 
have decided on the experiment — that is, 
once the apparatus is set up — we can obtain 
a full description of its overall wavefunction 
and hence on the probabilities of all possible 
outcomes. And it is completely up to us 
what to call state, process or detection in 
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Measured measurement
A method for characterizing quantum measurement devices completes the suite of ‘tomography techniques’, 
which should enable us to learn all there is to know about a given quantum-physics experiment.
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the experiment. Lundeen and colleagues 
have strikingly demonstrated that quantum 
tomography serves as the ideal method for 
translating our assembled experiment into 
the language of quantum theory.  ❐

Markus Aspelmeyer is at the Institute for 
Quantum Optics and Quantum Information, 

Austrian Academy of Sciences, Boltzmanngasse 3, 
A‑1090 Vienna, Austria. 
e‑mail: markus.aspelmeyer@quantum.at

References
1. Lundeen, J. S. et al. Nature Phys. 5, 27–30 (2009).
2. Heisenberg, W. Der Teil und das Ganze (Piper, Munich, 1969).
3. Paris, M. G. A. & Rehacek, J. (eds) Quantum State Estimation 

(Lecture Notes in Physics Vol. 649) (Springer, 2004).

4. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G.  

Phys. Rev. A 64, 052312 (2001).
5. Hradil, Z. Phys. Rev. A 55, R1561–R1564 (1997).
6. Banaszek, K., D’Ariano, G. M., Paris, M. G. A. & Sacchi, M. F. 

Phys. Rev. A 61, 010304 (1999).
7. Chuang I. L. & Nielsen, M. A. J. Mod. Opt. 44, 2455–2467 (1997).
8. Poyatos J. F., Cirac, J. I. & Zoller, P. Phys. Rev. Lett.  

78, 390–393 (1997).
9. Lobino, M. et al. Science 322, 563–566 (2008).
10. Glauber, R. J. Phys. Rev. Lett. 10, 84–86 (1963).

Central to any applications in 
spintronics and spin-based quantum-
information processing is the ability 

to control the spin degree of freedom and, 
in particular, transitions and superpositions 
between ‘spin-up’ and ‘spin-down’ states 
of electrons. One way of achieving this 
is through electron spin resonance: an 
oscillating magnetic field is applied with 
a frequency tuned to the Zeeman energy 
splitting of localized states, induced by 
an additional static magnetic field. For 
practical purposes, though, the use of 
electric fields would be more desirable as 
their high-frequency, on-chip localized 
generation is more readily achieved than 
for magnetic fields. However, unlike 
magnetic fields, which couple directly to 
the spin degree of freedom, electric fields 
couple directly only to the charge. There 
are, nevertheless, indirect ways to ‘entangle’ 
charge and spin such that electron spins 
can be controlled by electric fields. This 
was recently shown in three independent 
experimental demonstrations1–3 of 
electric-dipole spin resonance (EDSR) — 
the electrical analogue to electron spin 
resonance — in quantum dots. Remarkably, 
it was found that the indirect interaction 
between the applied oscillating electric 
field and the localized electron spins in 
these experiments is mediated by three 
very different mechanisms. Writing in 
Physical Review B, Emmanuel Rashba now 
provides a unifying theoretical description 
of the three observed types of EDSR, and 
also describes the crucial role of nuclear 
spins in determining their properties4. 

The first main ingredient in the three 
experimental demonstrations of EDSR was 
the sensitive ability to create, manipulate 
and detect single electron spins localized 
in each of the dots in an electrostatically 

defined GaAs double-dot system subject 
to a static magnetic field1–3. The second 
crucial ingredient was the application of an 
oscillating electric field to induce transitions 
between spin-up and spin-down states in 
one of the dots (Fig. 1a) and the subsequent 
selective charge detection via the Pauli 
spin-blockade phenomenon — essentially, 
electrons can only tunnel when the electron 
spins in the double-dot system are in an 
anti-parallel configuration. The probability 
for the electrically induced spin-flip 
transition, P(t), is an oscillating function of 
the burst time (the duration of the applied 
oscillating electric field), a phenomenon 
known as Rabi oscillations. Since the charge 
transfer through the double-dot system is 
directly related to P(t) owing to the spin-
blockade mechanism, a carefully executed 
transport measurement should therefore 
reveal signatures of spin resonance.

The third crucial prerequisite for the 
observation of EDSR is a mechanism that 
mediates the coupling between the applied 
electric field and the electrons’ spin degree 
of freedom. The three experiments reported 
in refs. 1–3 relied on entirely different 
mechanisms. In the experiment by Novack 
and co-workers1, the mediating interaction 
was based on spin–orbit (SO) coupling, 
the most ‘traditional’ way to entangle spin 
and charge in semiconductor spintronics. 
An alternative coupling mechanism can be 
realized by the use of an inhomogeneous 
magnetic field, as observed by Pioro-Ladrière 
and co-workers, in an experiment where 
a slanted magnetic field was explicitly 
generated on-chip by a micro-magnet2.

A third, more intricate, way to entangle 
the spin and charge degrees of freedom 
is via the hyperfine interaction between 
the electron spin and the nuclear spins 
of the atoms in the quantum dots, as 

demonstrated in the EDSR experiment 
conducted by Laird and colleagues3. 
The basic mechanism there is similar 
to the inhomogeneous magnetic-field 
case of Pioro-Ladrière et al.2. However, 
the inhomogeneous magnetic field that 
the electron spins experience originates 
intrinsically from the so-called ‘Overhauser 
field’, an effective magnetic field caused by 
fluctuations of the nuclear spins (Fig. 1b).

The unifying approach outlined by 
Rashba4 is able to describe the SO, magnetic 
and hyperfine-mediated EDSR phenomena 
in quantum dots. Using a semi-classical 
mean-field theory, the presented theoretical 
framework describes the spin dynamics 
of quantum dot electrons in a sea of 
nuclear spins. The mean-field character 
of the theoretical description essentially 
means neglecting the quantum nature of 
the nuclear spins and focusing solely on 
the contribution of the single-site pair 
correlation function of the nuclear angular 
momenta. This assumption can be justified 
by the fact that the interaction between 
the nuclear spins is weak and higher order 
correlations can be neglected for a large 
number of nuclei.

Although the charge detection process 
in the experimental EDSR observations 
is in principle sensitive to the spin-flip 
probability, P(t), in reality, the charge 
detection requires an integration over a 
large number of electric-field bursts and 
thus, the measured signal, W(t), contains 
information about P(t) averaged over 
many pulses. The averaging process covers 
timescales exceeding the nuclear-spin 
diffusion time. W(t) therefore represents 
an average of all possible nuclear-
spin configurations. In the theoretical 
description, this corresponds to a Gaussian 
integration over the longitudinal and 
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Electric spin orchestra
Localized electron spins can be manipulated electrically through electric-dipole spin resonance. The ensemble of 
mechanisms involved has now been brought under the baton of a unifying theoretical description.
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