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Abstract. Quantum tomography has come a long way from early reconstruc-
tions of Wigner functions from projections along quadratures to the full char-
acterization of multipartite systems. Now, it is routinely carried out in a wide
variety of systems. And yet, many fundamental questions remain unanswered.
In recent years, a spate of radical new experimental, theoretical and mathemat-
ical developments have occurred. The appeal of the subject lies largely in the
breadth of techniques that must be brought together in order to fully understand
the problem. This ‘focus on’ collection provides a platform for facilitating the
exchange of ideas between the different communities involved in this process.

The ability to completely characterize the state and dynamics of a quantum system through
physical measurements is an essential element in the emerging field of quantum technologies.
Owing to extensive early research on the reconstruction of Wigner functions from their
projections along a collection of quadratures [1, 2], this task is now commonly known as
quantum tomography. Theoretical work on this problem dates back at least to the 1970s, and
experimental implementations are routinely carried out in a wide variety of systems—in this
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collection alone, the reader will encounter characterizations of single-photon and continuous-
variable states and polarization transformations [3–9], cavity fields [10], atomic ensembles
[11–13], trapped ions [14] and of optical detectors [15–17].

Despite this success, many fundamental questions remain unanswered. What is more,
a variety of new experimental and theoretical developments have given rise to a substantial
surge of research activity in this area in recent years. The most obvious development is the
tremendous progress in controlling large, highly accessible quantum systems composed, for
example, of trapped ions [18]. In these experimental platforms, measurements of arbitrary
observables on individual systems can be performed with great accuracy. As a consequence,
the bottleneck limiting further progress in estimating the states of such systems has shifted from
physical controllability to the problem of handling the massive quantity of data resulting from
the exponential scaling of the number of parameters describing quantum many-body states.
This curse of dimensionality renders any naive approach to quantum tomography manifestly
impossible, even for moderately large systems. Ultimately, this scaling problem cannot be
overcome, it is a necessary feature of quantum processing devices outperforming the classical.
It turns out, however, that the boundary where classical methods fail can be pushed significantly
if non-trivial structural information on the quantum systems under consideration is utilized. We
list a few examples: due to either physical reasons (low temperature) or ‘engineering’ reasons (in
which one aims to prepare a pure state, which is commonly the case), states encountered in the
laboratory are often fairly pure in the sense that their effective rank is small. This allows for state
reconstruction with a square root improvement [14, 19–22]. The state under consideration may
be the ground or thermal state of a local Hamiltonian, which are known to be well approximated
by matrix product states and operators [23], allowing for a reconstruction that may be achieved
with linearly many measurement settings [24–27]. A state may have been prepared such that
it is permutationally invariant, which allows for its reconstruction using polynomial resources
[28, 29]. Turning from states to processes, a structural feature of channels may be that they
are given by a network of gates. Under suitable assumptions on the figure of merit, it turns out
that independent measurements on the components are optimal [30]. This illustrates the more
general challenge of building estimation schemes that utilize structure and symmetry of the
underlying system—be it physically or operationally motivated. We believe that there is both
the potential and the urgent need to explore this line of research further.

New impetus for quantum tomography developments has repeatedly come from novel
non-trivial developments in classical machine-learning theory. Indeed, the problem of turning
huge and noisy data sets into meaningful information is by no means unique to the quantum
laboratory. In the classical world, the ubiquity of the internet and the availability of cheap
sensors in areas as diverse as life sciences and industrial applications has given rise to the
paradigm of big data. We have recently seen several instances—compressed sensing being a
prominent example—where ideas have flowed in both directions between researchers working
on classical high-dimensional data analysis on the one hand, and quantum physicists thinking
about new theoretical models for tomography on the other.

We would also like to draw attention to the fact that new directions in tomography have
recently been driven by the unique needs of quantum cryptography. Here, the need for absolutely
rigorous statements concerning the uncertainties of the available resources is particularly acute.
This has led to a new perspective on the concept of region estimators for quantum problems
and to the revisiting of intrinsic challenges such as incomplete measurements, imperfectly
characterized detectors, finite data and other error sources [31–41]. This development also
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serves as a reminder that generic, off-the-shelf methods are often insufficient for highly
specialized applications.

The editors agree that the appeal of the subject lies largely in the breadth of techniques
that must be brought together in order to fully understand the problem. To live up to the
highest standards, it is essential to have a thorough understanding of the particular experiment
generating the data; one needs a solid grasp of theoretical physics to understand the uniquely
quantum mechanical aspects; a rigorous error analysis requires knowledge of mathematical
statistics; and lastly, non-trivial problems in numerical analysis need to be solved. We believe
that more communication between researchers working in these very different fields is crucial
for further progress. It is our hope that this ‘focus on’ collection provides a platform for
facilitating this necessary exchange of ideas.
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[18] Häffner H, Hänsel W, Roos C F and Benhelm J 2005 Scalable multiparticle entanglement of trapped ions
Nature 438 643–6

[19] Gross D, Liu Y-K, Flammia S T, Becker S and Eisert J 2010 Quantum state tomography via compressed
sensing Phys. Rev. Lett. 105 150401

[20] Gross D 2011 Recovering low-rank matrices from few coefficients in any basis IEEE Trans. Inform. Theory
57 1548–66

[21] Flammia S T, Gross D, Liu Y-K and Eisert J 2012 Quantum tomography via compressed sensing: error
bounds, sample complexity and efficient estimators New J. Phys. 14 095022

[22] Ohliger M, Nesme V and Eisert J 2013 Efficient and feasible state tomography of quantum many-body
systems New J. Phys. 15 015024

[23] Hastings M B 2006 Solving gapped Hamiltonians locally Phys. Rev. B 73 085115
[24] Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and

Liu Y-K 2010 Efficient quantum state tomography Nature Commun. 1 149
[25] Landon-Cardinal O and Poulin D 2012 Practical learning method for multi-scale entangled states New J.

Phys. 14 085004
[26] Baumgratz T, Gross D, Cramer M and Plenio M B 2013 Scalable reconstruction of density matrices Phys.

Rev. Lett. 111 020401
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