
also in two dimensions. Realization of the paradig-
matic quantum phase transition from such an
artificial valence bond solid to a Heisenberg anti-
ferromagnet (41) therefore seems within reach
of present experiments.
Recently, we became aware of similar exper-

imental results in two dimensions (42, 43).
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QUANTUM SIMULATION

Observation of spatial charge and
spin correlations in the 2D
Fermi-Hubbard model
Lawrence W. Cheuk,1* Matthew A. Nichols,1* Katherine R. Lawrence,1 Melih Okan,1

Hao Zhang,1 Ehsan Khatami,2 Nandini Trivedi,3 Thereza Paiva,4

Marcos Rigol,5 Martin W. Zwierlein1†

Strong electron correlations lie at the origin of high-temperature superconductivity. Its
essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting
fermions on a lattice. Here we report on the site-resolved observation of charge and spin
correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold
atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken
monotonically upon doping. At large doping, nearest-neighbor correlations between singly
charged sites are negative, revealing the formation of a correlation hole, the suppressed
probability of finding two fermions near each other. As the doping is reduced, the
correlations become positive, signaling strong bunching of doublons and holes, in
agreement with numerical calculations. The dynamics of the doublon-hole correlations
should play an important role for transport in the Fermi-Hubbard model.

A
central question in the study of cuprate
high-temperature superconductors is how
spin and charge correlations give rise to
thewealth of observedphenomena. Antifer-
romagnetic order present in the absence of

doping quickly gives way to superconductivity
upon doping with holes or electrons (1), suggest-
ing the viewpoint of competing phases. On the
other hand, antiferromagnetic correlations can
also occur in the form of singlet bonds between
neighboring sites. In fact, it has been proposed (2)
that superconductivity could result, upon doping
a Mott insulator, from the condensation of such
resonating valence bonds. It has also been argued
(1) that the pseudogap and “strange metal” re-
gions are supported by a liquid of spin-singlets.
This argument has spurred the simultaneous ex-
amination of nearest-neighbor spin and charge
correlations, which might reveal the underlying
mechanisms of pairing and transport.
In recent years, ultracold atomic gases have

been established as pristine quantum simulators
of strongly correlated many-body systems (3–5).
The Fermi-Hubbard model is of special impor-
tance, thanks to its paradigmatic role for the
study of high–critical temperature cuprates. At
low temperatures and away from half-filling,
solving the Fermi-Hubbard model theoretically

is very challenging because of the fermion sign
problem. Central properties of Fermi-Hubbard
physics—from the reduction of double occupancy
(6, 7) and of compressibility (8, 9) as the repulsion
is increased, to short-range antiferromagnetic
correlations (10–12) and the equation of state
(9, 13, 14)—have been observed in ultracold atom
experiments. The recently developed Fermi gas
microscopes (13, 15–19) have led to the direct ob-
servation of two-dimensional (2D) fermionicMott
insulators, band insulators, andmetals with single-
atom, single-site–resolved detection (20, 21). The
strength of this technique, however, is on full dis-
play when single-site detection is used to direct-
ly measure correlations in the gas, as has been
achieved with bosons (22–24).
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In our study, we used a Fermi gas microscope
of 40K atoms to directly observe charge and spin
correlations in the 2D Fermi-Hubbard model
(15, 21). Spin correlations displaying antiferro-
magnetic behavior have also been observed very
recently with fermionic 6Li in one (25) and two
(26) dimensions. We employ the local resolution
to simultaneously obtain correlations in the entire
range from zero doping (half-filling) to full doping
(zero filling), as the density varies in the under-
lying trapping potential. The microscope mea-
sures the parity-projected density on a given lattice
site—that is, doubly occupied sites (doublons) ap-
pear empty. For a two-spinmixture of fermions in
the lowest band of the optical lattice, the parity-
projected density is described by the magnetic
momentoperator (21) ^m2

z;i ¼ ðn̂↑;i − n̂↓;iÞ2,where
n̂s;i ¼ ĉ

†
s;i ĉs;i is the number operator and ĉs;i

ð ĉ†s;iÞ are fermion annihilation (creation) oper-
ators for spin s ¼ ↑;↓ on site i. Many repeated
measurements yield the average local moment on
each site (Fig. 1, A and D), which is a thermody-
namic quantity that quantifies the interaction
energy. This is evident when one rewrites the
interaction energy term U ^n↑;i

^n↓;i as U
2 ð ^n↑;i þ

^n↓;i − ^m
2
z;iÞ. The Fermi-Hubbard Hamiltonian

can be written in terms of local moments as

^
H ¼ −t

X
hi;ji;s

ð^c†s;i ^cs; j þ h:c:Þ − U

2

X
i

^m
2

z;i −

m
X
i

ð ^n↑;i þ ^n↓;iÞ ð1Þ

which is a form that highlights the particle-hole
symmetry of theHamiltonian. Here, hi; ji denotes
nearest-neighbor sites i and j, t is the nearest-
neighbor hopping amplitude, U is the on-site
interaction energy, and m is the chemical poten-
tial. At moderate temperatures and depending
on the fillings ni ¼ hn̂↑;i þ n̂↓;ii, this model can
yield metallic, band insulating, or Mott insulating
states. At half-filling (ni = 1) and at temperatures
below the superexchange scale 4t2/U, quasi-long-
range antiferromagnetic correlations arise. For a
fixed temperature, these correlations are expected
to be maximal when U ≈ 8t, where the interac-
tion energy equals the single-particle bandwidth.
Upondoping, a pseudogap phase emerges; at even
lower temperatures, one expects a d-wave super-
conducting state (1). Although the superexchange
scale is about a factor of 2 lower than the tem-
peratures achieved here, site-resolved detection of
short-range correlations should already reveal pre-
cursory signs of physics at this energy scale.
Figure 1A shows a typical measurement of the

site-resolved average localmagneticmoment from
~90 individual experimental realizations atU/t =
7.2(1). Atoms are confined in a radially symmetric
trapping potential. Under the local density appro-
ximation, this results in a varying local chemical
potential and, thus, a spatially varying filling n
throughout the sample. We prepared samples
where the maximum filling, which occurs in the
center of the trap, lies above n = 1. From radially
averaged profiles (Fig. 1D), the half-filling point
is identified as the radial position where the mo-
ment reaches its maximum. This follows from the

particle-hole symmetry of the moment operator
m̂

2
z;i , a property that holds for all of its averages

and cumulants (21).

Because the local moment satisfies the operator
identity ð ^m

2
z;iÞ2 ¼ ^m

2
z;i , fluctuations of the local

moment do not yield additional information.

SCIENCE sciencemag.org 16 SEPTEMBER 2016 • VOL 353 ISSUE 6305 1261

Fig. 1. Local moment and nearest-neighbor charge and spin correlations. An ultracold atom
realization of the Fermi-Hubbardmodel forU/t =7.2(1) is shown. (A toC) Localmoment, nearest-neighbor
moment correlator, and nearest-neighbor spin correlator, respectively, as functions of position, averaged
over ~90 shots. The spatial variations reflect the varying local doping due to the underlying trapping
potential. (D to F) Radial averages of (A), (B), and (C), respectively. The half-filling point is marked by
vertical dotted lines.

Fig. 2. Spin and moment correlators as functions of doping and temperature for U/t = 7.2(1).
(A and B) Nearest-neighbor moment correlator [Cm(1)] (A) and spin correlator [Cs(1)] (B) as functions of
the local moment, denoted by blue circles. Results from NLCE (and DQMC) for temperatures T/t = 0.89
and 1.22 are shown in green lines (and gray triangles), with the intermediate temperature range indicated
by green shading. (C) Themaximum andminimum of themoment correlator as functions of temperature
are denoted by blue circles and red squares, respectively. Corresponding results are obtained from NLCE
(solid blue line and solid red line, respectively), for the noninteracting gas (black dashed and dotted lines,
respectively), and from DQMC for the correlator at half-filling (gray triangles). (D) Nearest-neighbor spin
correlator at half-filling as a function of temperature (blue circles). Solid blue line, NLCE results; gray
triangles, DQMC results; black dotted line, noninteracting gas. For all graphs, theory curves are not
adjusted for the experimental imaging fidelity of 95%.
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However, correlations of the moment between
different sites do (27). We experimentally mea-
sured the moment correlator at a separation of one
site, Cm(1), defined as

Cmð1Þ ¼ 1

4

X
j∈nni

�D
^m
2

z;i
^m
2

z;j

E
−
D

^m
2

z;i

ED
^m
2

z;j

E�

ð2Þ
where the sum is over all four nearest neighbors.
The locally resolved correlator Cm(1) at each site
i and its radial average are shown in Fig. 1, B
and E, respectively. Cm(1) displays nonmono-
tonic behavior, changing sign as the filling is
lowered.
The local moment correlator, however, is not

sensitive to the sign of the spin
^
Sz;i ¼ 1

2 ð ^n↑;i −
^n
↓;i
Þ.

One important spin-sensitive correlator is
h ^
Sz;i

^
Sz;ji, which can reveal antiferromagnetic or-

dering, expected to occur at half-filling and at
low temperatures. This correlator can be ex-

pressed as 1
2

X
s
h ^ps;i p̂s; ji − 1

4hm̂2
z;i m̂

2
z;ji (28),

where p̂s;i ¼ n̂s;i − n̂↑;i n̂↓;i , which we measured
by removing one spin state via resonant light,
before imaging. All terms can be obtained exper-
imentally in separate runs and are averaged
separately. Analogous to the nearest-neighbor
moment correlator Cm(1), we define the nearest-
neighbor spin correlator at site i

Csð1Þ ¼
X
j∈nni

ðh ^
Sz;i

^
Sz;ji − h ^

Sz;iih ^
Sz;jiÞ ð3Þ

Figure 1, C and F, show the locally resolved
nearest-neighbor spin correlation Cs(1) and its
corresponding radial average, respectively. The
fact that Cs(1) is negative suggests antiferromag-
netic correlations, as expected (29–31). However,
even without interactions, Pauli-blocking of like
spins suppresses Cs(1). One can see this by noting

that Cs(1) contains density correlations of either
spin species separately ½hn̂s;i n̂s;ji − hn̂s;ii2�, which
are negative even for the noninteracting gas thanks
to Pauli suppression. For the lowest temperatures
reached, we observed a maximum absolute spin
correlation of about a factor of 2 larger than that
of a noninteracting Fermi gas.
Figure 2, A and B, show the nearest-neighbor

moment and spin correlations versus the mea-
sured local moment hm̂2

z;i
i. This representa-

tion allows for comparison with theory under
minimal assumptions. As a thermodynamic quan-
tity, themoment can replace the role of the chem-
ical potential m. All thermodynamic variables
can then be viewed as functions of the local
moment, the spin correlation at half-filling, U,
and t. In fact, the local spin correlation at half-
filling is itself a thermometer that does not re-
quire any fit (32). Also shown in Fig. 2, A and B,
are numerical linked-cluster expansion (NLCE)
(33) and determinantal quantum Monte Carlo
(DQMC) (34) calculations (28), which display sim-
ilar behavior as the experimental data. Note that
there are no free parameters; the temperature
T/t = 1.16(16) is obtained from the spin correla-
tion at half-filling.
As expected, the antiferromagnetic spin corre-

lations are maximum at half-filling and decrease
in absolute value with increased doping. Moment
correlations instead are negative at low to inter-
mediate fillings, crossing zero around a moment
of 0.75 (doping ≈0.21) before turning positive
toward half-filling. This implies that moments
change their character from effectively repulsive
(antibunching) to effectively attractive (bunching).
The antibunching and bunching behaviors in the
moments, as well as the antiferromagnetic spin
correlations, becomemore pronounced as the tem-
perature is lowered. Figure 2C shows the moment

correlation at half-filling (maximumpositive value),
aswell as itsminimumvalue versus temperature.
The spin correlator at half-filling (minimum value)
(Fig. 2D) displays a similar temperature dependence,
reaching –0.09 at the lowest temperatures in
our experiment. This is about 30% of the max-
imum spin correlation expected for the spin-½
Heisenberg model at zero temperature in two
dimensions (35).
To interpret the moment correlations, one

may recast them in terms of the two-point
correlator

g2ðrÞ ¼
hm̂2

zðrÞm̂
2

zð0Þi
hm̂2

zðrÞihm̂
2

zð0Þi
ð4Þ

which measures the probability of finding two
moments a distance r from each other. In the
absence of correlations, g2 = 1. At low filling,
for which the doublon density is negligible and
the moment hm̂2

zi ¼ hn̂i − 2hn̂↑n̂↓i ≈ n is essen-
tially the density, g2(r) measures density correla-
tions. These are nontrivial even for the spin-polarized
noninteracting Fermi gas, where fermion statis-
tics lead to anticorrelations at short distances,
reflecting the fact that two fermions cannot oc-
cupy the same site. This leads to Pauli suppres-
sion of g2 that persists to a distance on the order
of the average interparticle spacing, a feature
known as the Pauli hole. Although implications
of this fermion antibunching have been observed
in the suppression of density fluctuations (36, 37)
and momentum space correlations (38, 39), the
real space suppression g2(r) has not been observed
in situ before. In a noninteracting two-spin mix-
ture, the anticorrelations are halved, as only two
identical fermions experience the Pauli hole. How-
ever, repulsive interactions between opposite spins
also suppress g2(r), leading to a combined Pauli
and correlation hole.
In Fig. 3A, we show the directlymeasured g2(1)

as a function of moment at an intermediate in-
teraction of U/t = 7.2. The strong suppression of
g2(1) at low fillings (large interparticle spacing) is
observed and is stronger than Pauli suppression
alone, reflecting short-range anticorrelations due
to repulsive interactions. The data are well des-
cribed by NLCE andDQMC calculations (Fig. 3A).
Whereas g2(r) measures the probability of

finding twomoments a distance r from each other,
near half-filling, where hm̂2

zi ∼ 1, the correlations
arisemainly from sites where themoment is zero
(i.e., sites with holes and doublons). The number
of holes and doublons, which appear empty after
imaging, is given by h1 − m̂

2
zi. The corresponding

two-point correlation function g� 2ðrÞ of these anti-
moments is thus

g
�
2ðrÞ ¼

hð1 − m̂
2
zðrÞÞð1 − m̂

2

zð0ÞÞi
h1 − m̂2

zðrÞih1 − m̂
2

zð0Þi
ð5Þ

In Fig. 3B, we show that g� 2ð1Þ is strongly en-
hanced near half-filling beyond the uncorrelated
value of 1. g� 2ð1Þ thus reveals the strong bunching
ofholes anddoublons.Thereare three contributions

1262 16 SEPTEMBER 2016 • VOL 353 ISSUE 6305 sciencemag.org SCIENCE

Fig. 3. Two-point correlation functions. g2 is the correlation function for moments and g2 for anti-
moments at a separation of one lattice site for U/t = 7.2(1). (A) g2(1) for moments. (B) g2ð1Þ for
antimoments. Blue circles, experimental data; blue solid line, NLCE theory; gray triangles, DQMC theory.
Both NLCE and DQMC calculations are performed at T/t = 1.22, and neither are adjusted for the
experimental imaging fidelity of 95%. Black dotted lines, noninteracting gas. The doping x as a function
of local moment is determined from NLCE theory at T/t = 1.22, without adjustment for imaging fidelity.
(Inset) Typical image showing neighboring antimoments (imaged holes) near half-filling.
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to g� 2ð1Þ: correlations between pairs of holes,
between pairs of doublons, and between holes
and doublons. One expects neighboring holes
and neighboring doublons to show negative cor-
relations due to Pauli suppression and strong
repulsion. Hence, the bunching behavior must
originate from positive correlations between
neighboring doublon-hole pairs. This expecta-
tion is confirmed by NLCE and DQMC calcu-
lations (28).
The strong doublon-hole correlation near half-

filling in the presence of antiferromagnetic cor-
relations can be qualitatively captured by a simple
two-site Hubbardmodel, experimentally realized
in (40). In the strongly interacting limit ðU ≫ tÞ,
the doublon density vanishes and the ground state
is a spin singlet. However, at intermediate in-
teraction strengths, tunneling admixes a doublon-
hole pair into the ground state wave function,
with an amplitude ~t/U. Thus, short-range sing-
let correlations at moderate U/t occur naturally
together with nearest-neighbor doublon-hole
correlations.
At a separation of one lattice site, we have re-

vealed the competition between the combined
Pauli- and interaction-driven repulsion of singly
occupied sites and the effective attraction of
doublons and holes, which manifests itself in a
sign change of the correlator. The ability of the
microscope tomeasure at a site-resolved level also
allows investigation of longer-distance correla-
tions. In Fig. 4, A and B, we show the moment
and spin correlations Cm(i, j) and Cs(i, j), respec-
tively, as a function of separation distance ix̂ þ jŷ.
Near half-filling, even at the temperatures of this
graph (T/t ≈ 1.2), antiferromagnetic spin correla-
tions beyond the next neighbor are visible. With
increased doping, they give way to a more isotro-

pic negative spin correlation. For example, Cs(1,1)
changes sign from positive at half-filling to nega-
tive at large dopings. This resembles the effect of
Pauli suppression that is already present for non-
interacting fermions. For themoment correlator,
we clearly observe the sign change of Cm(1,0) at a
doping of x ≈ 0.21 and that the correlations do
not extend substantially beyond one site.
The measurement of nonlocal moment cor-

relations also results in direct access to the as-
sociated potential energy fluctuations (DEpot).
From the Fermi-Hubbard Hamiltonian in Eq. 1,
we find that

DE2
pot ¼

1

4
U 2ðh ^

M
2i − h ^

Mi2Þ
¼ 1

4
U 2

X
i;j

ðh ^m
2
z;i

^m
2
z;ji − h ^m

2
z;iihm2

z;jiÞ
ð6Þ

where
^
M ¼

X
i

^
m

2

z;i is the total moment ope-
rator. At half-filling, the contribution to the
fluctuations from the nearest-neighbormoment
correlations is thus U2Cm(1) ≈ 0.8t2 for T/t ≈
1 and U/t = 7.2(1). This suggests that doublon-
hole correlations can arise from coherent tun-
neling of particles bound in spin singlets.
Away from half-filling, both NLCE and DQMC

calculations are currently limited to a temper-
ature range around T/t ≈ 0.5, not far below what
is reached experimentally in this work. Further
reduction in experimental temperatureswill pro-
vide a valuable benchmark for theoretical tech-
niques, especially away from half-filling, where
the sign problem arises. The clear importance
of doublon-hole correlations will prompt further
studies of their dynamics, especially away from

half-filling, which could elucidate their role for
the transport properties of a possible strange
metal phase and potential pseudogap behavior.
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Fig. 4. Spin and
moment correlations as
functions of distance
and doping. (A) Moment
and spin correlations for
U/t = 7.2(1) are shown in
the top and bottom rows,
respectively, at various
values of the local
moment. Correlation
values are averaged over
symmetric points. The
moment correlator
Cm(0,1) changes sign
near a local moment of

m̂
2
z ≈ 0:75. The anticorre-

lation of spins Cs(0,1) is
observed to weaken upon
increasing doping
(decreasing moment). In
contrast, the next-nearest-
neighbor spin correlator
Cs(1,1) changes from positive at zero doping to negative at large doping. (B) Moment and spin correlations
obtained from DQMC theory for U/t = 7.2(1) and T/t = 1.00 are shown in the top and bottom rows,
respectively, at various values of doping x. The nonzero value of the moment and spin correlators at
distance (i,j) = (0,0) are omitted for clarity. They are both local quantities determined by the value of the
moment. NLCE and DQMC results for the correlators at all distances shown are in good agreement (28).
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Quantifying the impact of molecular
defects on polymer network elasticity
Mingjiang Zhong,1,2* Rui Wang,2* Ken Kawamoto,1*
Bradley D. Olsen,2† Jeremiah A. Johnson1†

Elasticity, one of the most important properties of a soft material, is difficult to quantify in
polymer networks because of the presence of topological molecular defects in these
materials. Furthermore, the impact of these defects on bulk elasticity is unknown.We used
rheology, disassembly spectrometry, and simulations to measure the shear elastic
modulus and count the numbers of topological “loop” defects of various order in a
series of polymer hydrogels, and then used these data to evaluate the classical phantom
and affine network theories of elasticity. The results led to a real elastic network theory
(RENT) that describes how loop defects affect bulk elasticity. Given knowledge of the loop
fractions, RENTprovides predictions of the shear elastic modulus that are consistent with
experimental observations.

M
olecular defects fundamentally govern
the properties of all real materials (1–3).
The language of crystallography has been
successfully used to describe defects and
to model their impact in materials with

a degree of periodicity, such as silicon, steel, block
copolymers, and liquid crystals. However, under-
standing defects in amorphous materials presents
a continued challenge. In polymer networks, the
relevant defects are largely of a topological nature:
The properties of these amorphous materials
depend primarily upon the way the molecules
in the material are connected. Understanding
the correlation between the network topology
and properties is one of the greatest outstanding
challenges in soft materials.
Polymer networks can have a wide range of

shear elastic moduli (G′) from ~102 to ~107 Pa
(4, 5), with different applications requiring moduli
across this entire range. Covalent polymer networks
are generally formed via kinetically controlled
processes; consequently, they possess cyclic topo-
logical defects. The classical affine and phantom
network theories of network elasticity neglect
the presence of such defects (4, 5); they rely on
idealized end-linked networks (Fig. 1A) that con-
sider only acyclic tree-like structures, which leads
to overestimation of G′ (6, 7). In practice, G′ is
frequently calculated according to the equation

G′ = CneffkT, where kT is the thermal energy,
neff is the density of elastically effective chains,
and C is a constant that has a value of 1 for the
affine network model and 1 − 2/f for the phantom
network model (where f is the functionality of the
network junctions). Because polymer networks
include elastically defective chains, neff is never
known precisely, and thus neither theory is able
to accurately fit experimental data; a contro-
versy continues over which theory, if either, is
correct. Thus, despite decades of advances in
polymer network design, our inability to quan-
titatively calculate the effects of defects on shear
elastic modulus and to measure the correspond-
ing defect densities in real polymer networks
precludes quantitative prediction of G′ and val-
idation of the affine and phantom network mod-
els (4, 8–12).
To understand howmolecular structure affects

G′ and to use this knowledge to create a predictive
theory of elasticity, it is first necessary to quantify
the density of topological defects in a polymer
network and to determine the impact of these
defects on the mechanical properties of the net-
work. Cyclic defects, created from intrajunction
reactions during network formation, are chem-
ically and spectroscopically almost identical to
noncyclic junctions, making them difficult to dis-
tinguish and quantify (5, 13–16). We have devel-
oped symmetric isotopic labeling disassembly
spectrometry (SILDaS) as a strategy to precisely
count the number of primary loops (Fig. 1B), the
simplest topological defects, in polymer networks
formed fromA2+B3 andA2 +B4 reactions (17–20).
Furthermore, we have developed Monte Carlo

simulations and kinetic rate theories that show
that cyclic defects in these polymer networks
are kinetically linked, such that experimental
measurement of only the primary loops deter-
mines the densities of all higher-order defects
including secondary (Fig. 1C) and ternary loops
(Fig. 1D) (21). Here, we measured loop fractions
and G′ for a series of hydrogels, thus providing
quantitative relationships between these param-
eters. With this information, we examined the
classical affine and phantom network theories
of elasticity, and we derived a modified phan-
tom network theory—real elastic network theory
(RENT)—that accounts for topological molec-
ular defects.
To rigorously determine how molecular topo-

logical defects affect elasticity, it is necessary
to measure the topological defect density and
modulus in the same gel. A class of stable yet
chemically degradable gels was developed from
bis-azido-terminated polyethylene glycol (PEG)
(number-average molecular weight Mn = 4600,
dispersity index Đ = 1.02) polymers with non-
labeled or isotopically labeled segments near
their chain ends, A2H and A2D, respectively (22)
(structures are shown in Fig. 1A; for synthesis
and characterization details, see figs. S1 to S3
and figs. S17 to S34). Such labeling provides a
convenient method for precise measurement of
primary loops by SILDaS (19). The PEG molec-
ular weight ensures that the polymer solutions
used to form gels are well below the entangle-
ment regime (5, 12). The labeled (A2D) and non-
labeled (A2H) polymers (referred to herein as
“A2 monomers”) were mixed in a 1:1 molar ratio,
and this mixture was allowed to react with a
tris-alkyne (B3) or a tetra-alkyne (B4) (structures
are shown in Fig. 1A) in propylene carbonate
solvent to provide end-linked gels via copper-
catalyzed azide-alkyne cycloaddition (23, 24).
When the reactive group stoichiometry—azide
and alkyne in this case—was carefully controlled
to be 1:1, spectroscopic analysis demonstrated
that dangling functionalities (unreacted azides
or alkynes) could be minimized (19) such that
their impact on elasticity is negligible. Gels with
varied fractions of topological defects were syn-
thesized by varying the initial concentrations of
A2 and B3 or B4 monomers (22).
For measurement of the shear elastic modulus

as a function of gel preparation conditions, gel
samples 1.59 mm thick were formed in situ in
Teflon molds under an inert atmosphere (fig.
S4). Gel disks (diameter 12 mm) were punched
(Fig. 1A) and loaded onto an oscillatory shear
rheometer equippedwith parallel-plate geometry.
Propylene carbonate was chosen as the solvent
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