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Preface

Quantum field theory (QFT) provides an extremely powerful set of computational methods
that have yet to find any fundamental limitations. It has led to the most fantastic agreement
between theoretical predictions and experimental data in the history of science. It provides
deep and profound insights into the nature of our universe, and into the nature of other
possible self-consistent universes. On the other hand, the subject is a mess. Its foundations
are flimsy, it can be absurdly complicated, and it is most likely incomplete. There are often
many ways to solve the same problem and sometimes none of them are particularly satisfy-
ing. This leaves a formidable challenge for the design and presentation of an introduction
to the subject.

This book is based on a course I have been teaching at Harvard for a number of years.
I like to start my first class by flipping the light switch and pointing out to the students
that, despite their comprehensive understanding of classical and quantum physics, they
still cannot explain what is happening. Where does the light comes from? The emission
and absorption of photons is a quantum process for which particle number is not conserved;
it is an everyday phenomenon which cannot be explained without quantum field theory. I
then proceed to explain (with fewer theatrics) what is essentially Chapter 1 of this book.
As the course progresses, I continue to build up QFT, as it was built up historically, as the
logical generalization of the quantum theory of creation and annihilation of photons to the
quantum theory of creation and annihilation of any particle. This book is based on lecture
notes for that class, plus additional material.

The main guiding principle of this book is that QFT is primarily a theory of physics, not
of mathematics, and not of philosophy. QFT provides, first and foremost, a set of tools for
performing practical calculations. These calculations take as input measured numbers and
predict, sometimes to absurdly high accuracy, numbers that can be measured in other exper-
iments. Whenever possible, I motivate and validate the methods we develop as explaining
natural (or at least in principle observable) phenomena. Partly, this is because I think hav-
ing tangible goals, such as explaining measured numbers, makes it easier for students to
understand the material. Partly, it is because the connection to data has been critical in the
historical development of QFT.

The historical connection between theory and experiment weaves through this entire
book. The great sucess of the Dirac equation from 1928 was that it explained the magnetic
dipole moment of the electron (Chapter 10). Measurements of the Lamb shift in the late
1940s helped vindicate the program of renormalization (Chapters 15 to 21). Measurements
of inelastic electron–proton scattering experiments in the 1960s (Chapter 32) showed that
QFT could also address the strong force. Ironically, this last triumph occurred only a few
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xvi Preface

years after Geoffrey Chew famously wrote that QFT “is sterile with respect to strong inter-
actions and that, like an old soldier, it is destined not to die but just to fade away.” [Chew,
1961, p. 2]. Once asymptotic freedom (Chapter 26) and the renormalizability of the Stan-
dard Model (Chapter 21 and Part IV) were understood in the 1970s, it was clear that QFT
was capable of precision calculations to match the precision experiments that were being
performed. Our ability to perform such calculations has been steadily improving ever since,
for example through increasingly sophisticated effective field theories (Chapters 22, 28,
31, 33, 35 and 36), renormalization group methods (Chapter 23 and onward), and on-shell
approaches (Chapters 24 and 27). The agreement of QFT and the Standard Model with
data over the past half century has been truly astounding.

Beyond the connection to experiment, I have tried to present QFT as a set of related
tools guided by certain symmetry principles. For example, Lorentz invariance, the symme-
try group associated with special relativity, plays a essential role. QFT is the theory of the
creation and destruction of particles, which is possible due to the most famous equation of
special relativityE = mc2. Lorentz invariance guides the definition of particle (Chapter 8),
is critical to the spin-statistics theorem (Chapter 12), and strongly constrains properties of
the main object of interest in this book: scattering or S-matrix elements (Chapter 6 and
onward). On the other hand, QFT is useful in space-times for which Lorentz invariance
is not an exact symmetry (such as our own universe, which since 1998 has been known
to have a positive cosmological constant), and in non-relativistic settings, where Lorentz
invariance is irrelevant. Thus, I am reluctant to present Lorentz invariance as an axiom of
QFT (I personally feel that as QFT is a work in progress, an axiomatic approach is prema-
ture). Another important symmetry is unitarity, which implies that probabilities should add
up to 1. Chapter 24 is entirely dedicated to the implications of unitarity, with reverberations
throughout Parts IV and V. Unitarity is closely related to other appealing features of our
description of fundamental physics, such as causality, locality, analyticity and the cluster
decomposition principle. While unitarity and its avatars are persistent themes within the
book, I am cautious of giving them too much of a primary role. For example, it is not clear
how well cluster decomposition has been tested experimentally.

I very much believe that QFT is not a finished product, but rather a work in progress.
It has developed historically, it continues to be simplified, clarified, expanded and applied
through the hard work of physicists who see QFT from different angles. While I do present
QFT in a more or less linear fashion, I attempt to provide multiple viewpoints whenever
possible. For example, I derive the Feynman rules in five different ways: in classical field
theory (Chapter 3), in old-fashioned perturbation theory (Chapter 4), through a Lagrangian
approach (Chapter 7), through a Hamiltonian approach (also Chapter 7), and through the
Feynman path integral (Chapter 14). While the path-integral derivation is the quickest,
it is also the farthest removed from the type of perturbation theory to which the reader
might already be familiar. The Lagrangian approach illustrates in a transparent way how
tree-level diagrams are just classical field theory. The old-fashioned perturbation theory
derivation connects immediately to perturbation theory in quantum mechanics, and moti-
vates the distinct advantage of thinking off-shell, so that Lorentz invariance can be kept
manifest at all stages of the calculation. On the other hand, there are some instances where
an on-shell approach is advantageous (see Chapters 24 and 27).
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Other examples of multiple derivations include the four explanations of the spin-
statistics theorem I give in Chapter 12 (direct calculation, causality, stability and Lorentz
invariance of the S-matrix), the three ways I prove the path integral and canonical formula-
tions of quantum field theory equivalent in Chapter 14 (through the traditional Hamiltonian
derivation, perturbatively through the Feynman rules, and non-perturbatively through the
Schwinger–Dyson equations), and the three ways in which I derive effective actions in
Chapter 33 (matching, with Schwinger proper time, and with Feynman path integrals).
As different students learn in different ways, providing multiple derivations is one way in
which I have tried to make QFT accessible to a wide audience.

This textbook is written assuming that the reader has a solid understanding of quantum
mechanics, such as what would be covered in a year-long undergraduate class. I have found
that students coming in generally do not know much classical field theory, and must relearn
special relativity, so these topics are covered in Chapters 2 and 3. At Harvard, much of the
material in this book is covered in three semesters. The first semester covers Chapters 1 to
22. Including both QED and renormalization in a single semester makes the coursework
rather intense. On the other hand, from surveying the students, especially the ones who only
have space for a single semester of QFT, I have found that they are universally glad that
renormalization is covered. Chapter 22, on non-renormalizable theories, is a great place to
end a semester. It provides a qualitative overview of the four forces in the Standard Model
through the lens of renormalization and predictivity.

The course on which this textbook is based has a venerable history, dominated by the
thirty or so years it was taught by the great physicist Sidney Coleman. Sidney provides
an evocative description of the period from 1966 to 1979 when theory and experiment
collaborated to firmly establish the Standard Model [Coleman, 1985, p. xii]:

This was a great time to be a high-energy theorist, the period of the great triumph of
quantum field theory. And what a triumph it was, in the old sense of the word: a glori-
ous victory parade, full of wonderful things brought back from far places to make the
spectator gasp with awe and laugh with joy.

Sidney was able to capture some of that awe and joy in his course, and in his famous Erice
Lectures from which this quote is taken. Over the past 35 years, the parade has continued.
I hope that this book may give you a sense of what all the fuss is about.
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Microscopic theory of radiation 1

On October 19, 1900, Max Planck proposed an explanation of the blackbody radiation
spectrum involving a new fundamental constant of nature, h = 6.626× 10−34 J s [Planck,
1901]. Although Planck’s result precipitated the development of quantum mechanics (i.e.
the quantum mechanics of electrons), his original observation was about the quantum
nature of light, which is a topic for quantum field theory. Thus, radiation is a great moti-
vation for the development of a quantum theory of fields. This introductory topic involves
a little history, a little statistical mechanics, a little quantum mechanics, and a little quan-
tum field theory. It provides background and motivation for the systematic presentation of
quantum field theory that begins in Chapter 2.

1.1 Blackbody radiation

In 1900, no one had developed a clear explanation for the spectrum of radiation from
hot objects. A logical approach at the time was to apply the equipartition theorem, which
implies that a body in thermal equilibrium should have energy equally distributed among
all possible modes. For a hot gas, the theorem predicts the Maxwell–Boltzmann distribu-
tion of thermal velocities, which is in excellent agreement with data. When applied to the
spectrum of light from a hot object, the equipartition theorem leads to a bizarre result.

A blackbody is an object at fixed temperature whose internal structure we do not
care about. It can be treated as a hot box of light (or Jeans cube) in thermal equilib-
rium. Classically, a box of size L supports standing electromagnetic waves with angular
frequencies

ωn =
2π
L
|�n|c (1.1)

for integer 3-vectors �n, with c being the speed of light. Before 1900, physicists believed
you could have as much or as little energy in each mode as you want. By the (classical)
equipartition theorem, blackbodies should emit light equally in all modes with the intensity
growing as the differential volume of phase space:

I(ω) ≡ 1
V

d

dω
E(ω) = const× c−3ω2kBT (classical). (1.2)

More simply, this classical result follows from dimensional analysis: it is the only quantity
with units of energy × time × distance−3 that can be constructed out of ω, kBT and

3



4 Microscopic theory of radiation

Classical

Observed

ω

I(ω)

�Fig. 1.1 The ultraviolet catastrophe. The classical prediction for the intensity of radiation coming
from a blackbody disagrees with experimental observation at large frequencies.

c. We will set c = 1 from now on, since it can be restored by dimensional analysis (see
Appendix A).

The classical spectrum implies that the amount of radiation emitted per unit frequency
should increase with frequency, a result called the ultraviolet catastrophe. Experimen-
tally, the distribution looks more like a Maxwell–Boltzmann distribution, peaked at some
finite ω, as shown in Figure 1.1. Clearly the equipartition theorem does not work for
blackbody radiation.

The incompatibility of observations with the classical prediction led Planck to postu-
late that the energy of each electromagnetic mode in the cavity is quantized in units of
frequency:1

En = �ωn =
2π
L

�|�n| = |�pn|, (1.3)

where h is the Planck constant and � ≡ h
2π . Albert Einstein later interpreted this as imply-

ing that light is made up of particles (later called photons, by the chemist Gilbert Lewis).
Note that if the excitations are particles, then they are massless:

m2
n = E2

n − |�pn|2 = 0. (1.4)

If Planck and Einstein are right, then light is really a collection of massless photons. As
we will see, there are a number of simple and direct experimental consequences of this
hypothesis: quantizing light resolves the blackbody paradox; light having energy leads to
the photoelectric effect; and light having momentum leads to Compton scattering. Most
importantly for us, the energy hypothesis was the key insight that led to the development
of quantum field theory.

With Planck’s energy hypothesis, the thermal distribution is easy to compute. Each mode
of frequency ωn can be excited an integer number j times, giving energy jEn = j(�ωn)

1 Planck was not particularly worried about the ultraviolet catastrophe, since there was no strong argument why
the equipartition theorem should hold universally; instead, he was trying to explain the observed spectrum. He
first came up with a mathematical curve that fit data, generalizing previous work of Wilhelm Wien and Lord
Rayleigh, then wrote down a toy model that generated this curve. The interpretation of his model as referring
to photons and the proper statistical mechanics derivation of the blackbody spectrum did not come until years
later.



1.2 Einstein coefficients 5

in that mode. The probability of finding that much energy in the mode is the same
as the probability of finding energy in anything, proportional to the Boltzmann weight
exp(−energy/kBT ). Thus, the expectation value of energy in each mode is

〈En〉 =

∑∞
j=0(jEn)e

−jEnβ∑∞
j=0 e

−jEnβ =
− d
dβ

1
1−e−�ωnβ

1
1−e−�ωnβ

=
�ωn

e�ωnβ − 1
, (1.5)

where β = 1/kBT . (This simple derivation is due to Peter Debye. The more modern
one, using ensembles and statistical mechanics, was first given by Satyendra Nath Bose in
1924.)

Now let us take the continuum limit, L → ∞. In this limit, the sums turn into integrals
and the average total energy up to frequency ω in the blackbody is

E(ω) =
∫ ω

d3�n
�ωn

e�ωnβ − 1
=
∫ 1

−1

d cos θ
∫ 2π

0

dφ

∫ ω
0

d|�n| |�n|
2�ωn

e�ωnβ − 1

= 4π�
L3

8π3

∫ ω
0

dω′ ω′3

e�ω′β − 1
. (1.6)

Thus, the intensity of light as a function of frequency is (adding a factor of 2 for the two
polarizations of light)

I(ω) =
1
V

dE(ω)
dω

=
�

π2

ω3

e�ωβ − 1
. (1.7)

It is this functional form that Planck showed in 1900 correctly matches experiment.
What does this have to do with quantum field theory? In order for this derivation, which

used equilibrium statistical mechanics, to make sense, light has to be able to equilibrate. For
example, if we heat up a box with monochromatic light, eventually all frequencies must be
excited. However, if different frequencies are different particles, equilibration must involve
one kind of particle turning into another kind of particle. So, particles must be created and
destroyed. Quantum field theory tells us how that happens.

1.2 Einstein coefficients

A straightforward way to quantify the creation of light is through the coefficient of spon-
taneous emission. This is the rate at which an excited atom emits light. Even by 1900, this
phenomenon had been observed in chemical reactions, and as a form of radioactivity, but
at that time it was only understood statistically. In 1916, Einstein came up with a simple
proof of the relation between emission and absorption based on the existence of thermal
equilibrium. In addition to being relevant to chemical phenomenology, his relation made
explicit why a first principles quantum theory of fields was needed.

Einstein’s argument is as follows. Suppose we have a cavity full of atoms with energy
levels E1 and E2. Assume there are n1 of the E1 atoms and n2 of the E2 atoms and let
�ω = E2−E1. The probability for an E2 atom to emit a photon of frequency ω and transi-
tion to state E1 is called the coefficient for spontaneous emission A. The probability for



6 Microscopic theory of radiation

a photon of frequency ω to induce a transition from 2 to 1 is proportional to the coefficient
of stimulated emission B and to the number of photons of frequency ω in the cavity, that
is, the intensity I(ω). These contribute to a change in n2 of the form

dn2 = − [A+BI(ω)]n2. (1.8)

The probability for a photon to induce a transition from 1 to 2 is called the coefficient of
absorption B′. Absorption decreases n1 and increases n2 by B′I(ω)n1. Since the total
number of atoms is conserved in this two-state system, dn1 + dn2 = 0. Therefore,

dn2 = −dn1 = −[A+BI(ω)]n2 +B′I(ω)n1. (1.9)

Even though we computed I(ω) above for the equilibrium blackbody situation, these equa-
tions should hold for any I(ω). For example, I(ω) could be the intensity of a laser beam
we shine at some atoms in the lab.

At this point, Einstein assumes the gas is in equilibrium. In equilibrium, the number
densities are constant, dn1 = dn2 = 0, and determined by Boltzmann distributions:

n1 = Ne−βE1 , n2 = Ne−βE2 , (1.10)

where N is some normalization factor. Then[
B′e−βE1 −Be−βE2

]
I(ω) = Ae−βE2 (1.11)

and so

I(ω) =
A

B′e�βω −B . (1.12)

However, we already know that in equilibrium

I(ω) =
�

π2

ω3

e�βω − 1
(1.13)

from Eq. (1.7). Since equilibrium must be satisfied at any temperature, i.e. for any β, we
must have

B′ = B (1.14)

and
A

B
=

�

π2
ω3. (1.15)

These are simple but profound results. The first, B = B′, says that the coefficient of
absorption must be the same as the coefficient for stimulated emission. The coefficients B
and B′ can be computed in quantum mechanics (not quantum field theory!) using time-
dependent perturbation theory with an external electromagnetic field. Then Eq. (1.15)
determines A. Thus, all the Einstein coefficients A, B and B′ can be computed without
using quantum field theory.

You might have noticed something odd in the derivation of Eqs. (1.14) and (1.15). We,
and Einstein, needed to use an equilibrium result about the blackbody spectrum to derive
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the A/B relation. Does spontaneous emission from an atom have anything to do with
equilibrium of a gas? It does not seem that way, since an atom radiates at the same rate no
matter what is around it. The calculation of A/B from first principles was not performed
until 10 years after Einstein’s calculation; it had to wait until the invention of quantum field
theory.

1.3 Quantum field theory

The basic idea behind the calculation of the spontaneous emission coefficient in quan-
tum field theory is to treat photons of each energy as separate particles, and then
to study the system with multi-particle quantum mechanics. The following treatment
comes from a paper of Paul Dirac from 1927 [Dirac, 1927], which introduced the
idea of second quantization. This paper is often credited for initiating quantum field
theory.

Start by looking at just a single-frequency (energy) mode of a photon, say of energy
Δ. This mode can be excited n times. Each excitation adds energy Δ to the system. So,
the energy eigenstates have energies Δ, 2Δ, 3Δ, . . . . There is a quantum mechanical sys-
tem with this property that you may remember from your quantum mechanics course: the
simple harmonic oscillator (reviewed in Section 2.2.1 and Problem 2.7).

The easiest way to study a quantum harmonic oscillator is with creation and annihilation
operators, a† and a. These satisfy

[a, a†] = 1. (1.16)

There is also the number operator N̂ = a†a, which counts modes:

N̂ |n〉 = n|n〉. (1.17)

Then,

N̂a†|n〉 = a†aa†|n〉 = a†|n〉+ a†a†a|n〉 = (n+ 1)a†|n〉. (1.18)

Thus, a†|n〉 = C |n+ 1〉 for some constantC, which can be chosen real. We can determine
C from the normalization 〈n|n〉 = 1:

C2 = 〈n+ 1|C2|n+ 1〉 = 〈n|aa†|n〉 = 〈n|
(
a†a+ 1

)
|n〉 = n+ 1, (1.19)

so C =
√
n+ 1. Similarly, a|n〉 = C ′|n− 1〉 and

C ′2 = 〈n− 1|C ′2|n− 1〉 = 〈n|a†a |n〉 = n, (1.20)

so C ′ =
√
n. The result is that

a†|n
〉

=
√
n+ 1|n+ 1

〉
, a|n〉 =

√
n|n− 1

〉
. (1.21)

While these normalization factors are simple to derive, they have important implications.
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Now, you may recall from quantum mechanics that transition rates can be computed
using Fermi’s golden rule. Fermi’s golden rule says that the transition rate between two
states is proportional to the matrix element squared:

Γ ∼ |M|2δ(Ef − Ei), (1.22)

where the δ-function serves to enforce energy conservation. (We will derive a similar for-
mula for the transition rate in quantum field theory in Chapter 5. For now, we just want to
use quantum mechanics.) The matrix element M in this formula is the projection of the
initial and final states on the interaction Hamiltonian:

M = 〈f |Hint|i〉 . (1.23)

In this case, we do not need to know exactly what the interaction Hamiltonian Hint is. All
we need to know is that Hint must have some creation operator or annihilation operator to
create the photon. Hint also must be Hermitian. Thus it must look like2

Hint = H†
Ia

† +HIa, (1.24)

with HI having non-zero matrix elements between initial and final atomic states.
For the 2 → 1 transition, the initial state is an excited atom we call atom2 with nω

photons of frequency ω = Δ/�:

|i〉 = |atom2;nω〉. (1.25)

The final state is a lower energy atom we call atom1 with nω + 1 photons of energy Δ:

〈f | = 〈atom1;nω + 1|. (1.26)

So,

M2→1 = 〈atom1;nω + 1|(H†
Ia

† +HIa)|atom2;nω〉
= 〈atom1|H†

I |atom2〉〈nω + 1|a†|nω〉+ 〈atom1|HI |atom2〉〈nω + 1|a|nω〉
= M†

0〈nω + 1|nω + 1〉
√
nω + 1 + 0

= M†
0

√
nω + 1 (1.27)

whereM†
0 = 〈atom1|H†

I |atom2〉. Thus,

|M2→1|2 = |M0|2(nω + 1). (1.28)

If instead we are exciting an atom, then the initial state has an unexcited atom and nω
photons:

|i〉 = |atom1;nω〉 (1.29)

2 Dirac derivedHI from the canonical introduction of the vector potential into the Hamiltonian:H = 1
2m

�p2 →
1

2m
(�p + e �A)2. This leads to Hint ∼ e

m
�A · �p representing the photon interacting with the atom’s electric

dipole moment. In our coarse approximation, the photon field �A is represented by a and so HI must be
related to the momentum operator �p. Fortunately, all that is needed to derive the Einstein relations is that HI

is something with non-zero matrix elements between different atomic states; thus, we can be vague about its
precise definition. For more details consult [Dirac, 1927] or [Dirac, 1930, Sections 61–64].
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and the final state has an excited atom and nω − 1 photons:

〈f | = 〈atom2;nω − 1|. (1.30)

This leads to

M1→2 = 〈atom2;nω − 1|H†
Ia

† +HIa|atom1;nω〉
= 〈atom2|HI |atom1〉〈nω − 1|a|nω〉
= M0

√
nω (1.31)

and therefore,

dn2 = −dn1 = −|M2→1|2n2 + |M1→2|2n1 = −|M0|2(nω + 1)n2 + |M0|2(nω)n1.

(1.32)
This is pretty close to Einstein’s equation, Eq. (1.9):

dn2 = −dn1 = −[A+BI(ω)]n2 +B′I(ω)n1. (1.33)

To get them to match exactly, we just need to relate the number of photon modes of fre-
quency ω to the intensity I(ω). Since the energies are quantized by Δ = �ω = � 2π

L |�n|, the
total energy is

E(ω) =
∫ ω

d3�n(�ω)nω = (4π)�L3

∫ ω
0

dω

(2π)3
ω3nω. (1.34)

We should multiply this by 2 for the two polarizations of light. (Dirac actually missed this
factor in his 1927 paper, since polarization was not understood at the time.) Including the
factor of 2, the intensity is

I(ω) =
1
L3

dE

dω
=

�ω3

π2
nω. (1.35)

This equation is a standard statistical mechanical relation, independent of what nω actually
is; its derivation required no mention of temperature or of equilibrium, just a phase space
integral.

So now we have

dn2 = −dn1 = −|M0|2
[
1 +

π2

�ω3
I(ω)
]
n2 + |M0|2

[
π2

�ω3
I(ω)
]
n1 (1.36)

and can read off Einstein’s relations,

B′ = B,
A

B
=

�

π2
ω3, (1.37)

without ever having to assume thermal equilibrium. This beautiful derivation was one of
the first ever results in quantum field theory.



2 Lorentz invariance and second
quantization

In the previous chapter, we saw that by treating each mode of electromagnetic radiation in a
cavity as a simple harmonic oscillator, we can derive Einstein’s relation between the coeffi-
cients of induced and spontaneous emission without resorting to statistical mechanics. This
was our first calculation in quantum electrodynamics (QED). It is not a coincidence that
the harmonic oscillator played an important role. After all, electromagnetic waves oscil-
late harmonically. In this chapter we will review special relativity and the simple harmonic
oscillator and show how they are connected. This leads naturally to the notion of second
quantization, which is a poorly chosen phrase used to describe the canonical quantization
of relativistic fields.

It is worth mentioning at this point that there are two ways commonly used to quan-
tize a field theory, both of which are covered in depth in this book. The first is canonical
quantization. This is historically how quantum field theory was understood, and closely
follows what you learned in quantum mechanics. The second way is called the Feynman
path integral. Path integrals are more concise, more general, and certainly more formal,
but when using path integrals it is sometimes hard to understand physically what you are
calculating. It really is necessary to understand both ways. Some calculations, such as the
LSZ formula which relates scattering amplitudes to correlation function (see Chapter 6),
require the canonical approach, while other calculations, such as non-perturbative quan-
tum chromodynamics (see Chapter 25), require path integrals. There are other ways to
perform quantum field theory calculations, for example using old-fashioned perturbation
theory (Chapter 4), or using Schwinger proper time (Chapter 33). Learning all of these
approaches will give you a comprehensive picture of how and why quantum field theory
works. We start with canonical quantization, as it provides the gentlest introduction to
quantum field theory.

From now on we will set � = c = 1. This gives all quantities dimensions of mass to
some power (see Appendix A).

2.1 Lorentz invariance

Quantum field theory is the result of combining quantum mechanics with special relativity.
Special relativity is relevant when velocities are a reasonable fraction of the speed of light,
v ∼ 1. In this limit, a new symmetry emerges: Lorentz invariance. A system is Lorentz
invariant if it is symmetric under the Lorentz group, which is the generalization of the
rotation group to include both rotations and boosts.

10
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Normally, the more symmetric a system, the easier it is to solve problems. For example,
solving the Schrödinger equation with a spherically symmetric potential (as in the hydro-
gen atom) is much easier than solving it with a cylindrically symmetric potential (such as
for the hydrogen molecule). So why is quantum field theory so much harder than quantum
mechanics? The answer, as Sidney Coleman put it, is because E = mc2. This famous
relation holds for particles at rest. When particles move relativistically, their kinetic energy
is comparable to or exceeds their rest mass, Ekin � m, which is only a factor of 2 away
from the threshold for producing two particles. Thus, there is no regime in which the rel-
ativistic corrections of order v/c are relevant, but the effect from producing new particles
is not.

2.1.1 Rotations

Lorentz invariance is symmetry under rotations and boosts. If you get confused, focus on
perfecting your understanding of rotations alone. Then, consider boosts as a generalization.

Rotations should be extremely familiar to you, and they are certainly more intuitive than
boosts. Under two-dimensional (2D) rotations, a vector (x, y) transforms as

x→ x cos θ + y sin θ, (2.1)

y → −x sin θ + y cos θ. (2.2)

We can write this as(
x

y

)
→
(
x cos θ + y sin θ
−x sin θ + y cos θ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
x

y

)
, (2.3)

or as

xi → Rijxj , xi =
(
x

y

)
, i = 1, 2. (2.4)

When an index appears twice, as inRijxj , that index should be summed over (the Einstein
summation convention), so Rijxj = Ri1x1 +Ri2x2. This is known as a contraction.

Technically, we should write xi = Ri
jxj . However, having upper and lower indices on

the same object makes expressions difficult to read, so we will often just lower or raise all
the indices. We will be careful about the index position if it is ever ambiguous. For the row
vector,

xi =
(
x y
)
→
(
x y
)( cos θ − sin θ

sin θ cos θ

)
= xj
(
RT
)ji
. (2.5)

Note that RT = R−1. That is,(
RT
)
ij
Rjk = δik =

(
1 0
0 1

)
ij

= 1ij (2.6)

or equivalently,

RTR = 1. (2.7)
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This property (orthogonality) along with R preserving orientation (detR = 1) is enough
to characterize R as a rotation. This algebraic characterization in Eq. (2.7) is a much more
useful definition of the group than the explicit form of the rotation matrices as a function
of θ. The group of 2D rotations is also called the special orthogonal group SO(2). The
group of 3D rotations is called SO(3).

If we contract the upper and lower indices of a vector, we find

xixi = (x, y)
(
x

y

)
= x2 + y2. (2.8)

This is just the norm of the vector xi and is invariant under rotations. To see that, note that
under a rotation

xixi →
(
xiRTij
)
(Rjkxk) = xiδikxk = xixi, (2.9)

since RT = R−1. In fact, another way to define the rotation group is as the set of linear
transformations on Rn preserving the inner product xixi = δijx

ixj :

RkiRljδkl = [(RT )1(R)]ij = (RTR)ij = δij , (2.10)

which you can check explicitly using Eq. (2.3).

2.1.2 Lorentz transformations

Lorentz transformations work exactly like rotations, except with some minus signs here and
there. Instead of preserving r2 = x2+y2+z2 they preserve s2 ≡ t2−x2−y2−z2. Instead
of 3-vectors vi = (x, y, z) we use 4-vectors xμ = (t, x, y, z). We generally use Greek
indices for 4-vectors and Latin indices for 3-vectors. We write x0 for the time component
of a 4-vector.

Lorentz transformations acting on 4-vectors are matrices Λ satisfying

ΛT gΛ = g =

⎛⎜⎝ 1
−1

−1
−1

⎞⎟⎠ . (2.11)

In this and future matrices, empty entries are 0. gμν is known as the Minkowski metric.
Sometimes we write ημν for this metric, with gμν reserved for a general metric, as in
general relativity. But outside of quantum gravity contexts, which will be clear when
we encounter them, taking gμν = ημν will cause no confusion in quantum field theory.
Equation (2.11) says that Lorentz transformations preserve the Minkowskian inner product:

xμxμ = gμνx
μxν = t2 − x2 − y2 − z2. (2.12)

A rotation around the z axis leaves x2 +y2 invariant while a boost in the z direction leaves
t2 − z2 invariant. So, instead of being sines and cosines, which satisfy cos2θ+ sin2θ = 1,
boosts are made from hyperbolic sines and cosines, which satisfy cosh2β − sinh2β = 1.

The Lorentz group is the most general set of transformations preserving the Minkowski
metric. Up to some possible discrete transformations (see Section 2.1.3 below), a general
Lorentz transformation can be written as a product of rotations around the x, y or z axes:
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⎛⎜⎝1
1

cos θx sin θx

− sin θx cos θx

⎞⎟⎠ ,
⎛⎜⎝1

cos θy − sin θy

1
sin θy cos θy

⎞⎟⎠ ,
⎛⎜⎝1

cos θz sin θz

− sin θz cos θz

1

⎞⎟⎠
(2.13)

and boosts in the x, y or z direction:⎛⎜⎝coshβx sinhβx

sinhβx coshβx

1
1

⎞⎟⎠ ,
⎛⎜⎝coshβy sinhβy

1
sinhβy coshβy

1

⎞⎟⎠ ,
⎛⎜⎝coshβz sinhβz

1
1

sinhβz coshβz

⎞⎟⎠ .
(2.14)

The θi are ordinary rotation angles around the i axis, with 0 ≤ θi < 2π, and the βi
are hyperbolic angles sometimes called rapidities, with −∞ < βi < ∞. Note that these
matrices do not commute, so the order in which we do the rotations and boosts is important.
We will rarely need an actual matrix representation of the group elements like this, but it
is helpful to see.

To relate the βi to something useful, such as velocity, recall that for velocities v 
 1 well
below the speed of light, a boost should reduce to a Galilean transformation x → x + vt.
The unique transformations that preserve t2−x2 and reduce to the Galilean transformations
at small v are

x→ x+ vt√
1− v2

, t→ t+ vx√
1− v2

. (2.15)

Thus we can identify

coshβx =
1√

1− v2
, sinhβx =

v√
1− v2

. (2.16)

These equations relate boosts to ordinary velocity. In particular, βx = v to leading order
in v.

Scalar fields are functions of space-time that are Lorentz invariant. That is, under an
arbitrary Lorentz transformation the field does not change:

φ(x) → φ(x). (2.17)

Sometimes the notation φ(xμ) → φ(
(
Λ−1
)μ
ν
xν) is used, which makes it seem like the

scalar field is changing in some way. It is not. While our definitions of xμ change in dif-
ferent frames xμ → Λμνx

ν , the space-time point labeled by xμ is fixed. That equations
are invariant under relabeling of coordinates tells us absolutely nothing about nature. The
physical content of Lorentz invariance is that nature has a symmetry under which scalar
fields do not transform. Take, for example, the temperature of a fluid, which can vary from
point to point. If we change reference frames, the labels for the points change, but the
temperature at each point stays the same. A scalar (not scalar field) is just a number. For
example, � and 7 and the electric charge e are scalars.

Under Lorentz transformations Λμν , 4-vectors Vμ transform as

V μ → ΛμνV
ν . (2.18)
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This transformation law is the defining property of a 4-vector. If V μ is not just a number
but depends on x, we write V μ(x) and call it a vector field. Under Lorentz transforma-
tions, vector fields transform just like 4-vectors. For a vector field, as for a scalar field,
the coordinates of x transform but the space-time point to which they refer is invariant.
The difference from a scalar field is that the components of a vector field at the point x
transform into each other as well. If you need a concrete example, think about how the
components of the electric field �E(�x) rotate into each other under 3D rotations, while a
scalar potential φ(�x) for which �E(�x) = �∇φ(�x) is rotationally invariant.

A vector field Vμ(x) is a set of four functions of space-time. A Lorentz-invariant theory
constructed with vector fields has a symmetry: the result of calculations will be the same
if the four functions are mixed up according to Eq. (2.18). For example, gμν∂μVν(x) is
Lorentz invariant at each space-time point x if and only if Vμ(x) transforms as a vector
field under Lorentz transformations. If Vμ(x) were just a collection of four scalar fields,
gμν∂μVν(x) would be frame-dependent.

Some important 4-vectors are position:

xμ = (t, x, y, z), (2.19)

derivatives with respect to xμ:

∂μ =
∂

∂xμ
= (∂t, ∂x, ∂y, ∂z), (2.20)

and momentum:

pμ = (E, px, py, pz). (2.21)

Tensors transform as

Tμν → ΛμαΛνβT
αβ . (2.22)

Tensor fields are functions of space-time, such as the energy-momentum tensor Tμν(x)
or the metric gμν(x) in general relativity. If you add more indices, such as Zμναβ , we still
call it a tensor. The number of indices is the rank of a tensor, so Tμν is rank 2, Zμναβ is
rank 4, etc.

When the same index appears twice, it is contracted, just as for rotations. Contractions
implicitly involve the Minkowski metric and are Lorentz invariant. For example:

V μWμ = Vμg
μνWν = V0W0 − V1W1 − V2W2 − V3W3. (2.23)

Such a contraction is Lorentz invariant and transforms like a scalar (just as the dot product
of two 3-vectors �V · �W , which is a contraction with δij , is rotationally invariant). So, under
a Lorentz transformation,

V μWμ = V gW → (V ΛT )g(ΛW ) = V gW = V μWμ. (2.24)

When writing contractions this way, you can usually just pretend g is the identity matrix.
You will only need to distinguish g from δ when you write out components. This is one of
the reasons the 4-vector notation is very powerful. Contracting indices is just a notational
convention, not a deep property of mathematics.
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It is worth adding a few more words about raising and lowering indices in field theory.
In general relativity, it is important to be careful about distinguishing vectors with lower
indices (covariant vectors) and vectors with upper indices (contravariant vectors). When
an index appears twice (in a contraction) the technically correct approach is for one index
to be upper and one to be lower. However, that can make the notation very cumbersome.
For example, if the indices are ordered, you must write V μ(x) → ΛμνV

ν(x), which is
different from V μ(x) → Λ μ

ν V ν(x). It is easier just to write V μ → ΛμνV ν where the
index order is clear. In special relativity, we always contract with the Minkowski metric
gμν = ημν . So, we will often forget about which indices are upper and which are lower
and just use the modern contraction convention for which all contractions are equivalent:

VμW
μ = V μWμ = VμWμ = V μWμ. (2.25)

Index position is important only when we plug in explicit vectors or matrices.
Although the index position is not important for us, the actual indices are. You should

never have anything such as

VμWμXμ (2.26)

with three (or more) of the same indices. To avoid this, be very careful about relabeling.
For example, do not write

(V 2)(W 2) = VμVμWμWμ; (2.27)

instead write

(V 2)(W 2) = V 2
μW

2
ν = VμVμWνWν = gμαgνβVμVαWνWβ . (2.28)

You will quickly get the hang of all this contracting.
The simplest Lorentz-invariant operator that we can write down involving derivatives is

the d’Alembertian:

� = ∂2
μ = ∂2

t − ∂2
x − ∂2

y − ∂2
z . (2.29)

This is the relativistic generalization of the Laplacian:

� = �∇2 = ∂2
x + ∂2

y + ∂2
z . (2.30)

Finally, it is worth keeping the terminology straight. We say that objects such as

V 2 = VμV
μ, φ, 1, ∂μV

μ (2.31)

are Lorentz invariant, meaning they do not depend on our Lorentz frame at all, while
objects such as

Vμ, Fμν , ∂μ, xμ (2.32)

are Lorentz covariant, meaning they do change in different frames, but precisely as
the Lorentz transformation dictates. Something such as energy density is neither Lorentz
invariant nor Lorentz covariant; it is instead the 00 component of a Lorentz tensor Tμν .
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2.1.3 Discrete transformations

Lorentz transformations are defined to be those that preserve the Minkowski metric:

ΛT gΛ = g. (2.33)

Equivalently, they are those that leave inner products such as

VμW
μ = V0W0 − V1W1 − V2W2 − V3W3 (2.34)

invariant. By this definition, the transformations

P : (t, x, y, z) → (t,−x,−y,−z) (2.35)

known as parity and

T : (t, x, y, z) → (−t, x, y, z) (2.36)

known as time reversal are also Lorentz transformations. They can be written as

P =

⎛⎜⎜⎝
1
−1

−1
−1

⎞⎟⎟⎠, T =

⎛⎜⎜⎝
−1

1
1

1

⎞⎟⎟⎠ . (2.37)

Parity and time reversal are special because they cannot be written as the product of rota-
tions and boosts, Eqs. (2.13) and (2.14). Discrete transformations play an important role in
quantum field theory (see Chapter 11).

We say that a vector is timelike when

V μVμ > 0 (timelike) (2.38)

and spacelike when

V μVμ < 0 (spacelike). (2.39)

Naturally, time = (t, 0, 0, 0) is timelike and space = (0, x, 0, 0) is spacelike. Whether
something is timelike or spacelike is preserved under Lorentz transformations since the
norm is preserved. If a vector has zero norm we say it is lightlike:

V μVμ = 0 (lightlike). (2.40)

If pμ is a 4-momentum, then (since p2 = m2) it is lightlike if and only if it is massless.
Photons are massless, which is the origin of the term lightlike.

Many more details of the mathematical structure of the Lorentz group (such as its unitary
representations) will be covered in Chapters 8 and 10.

2.1.4 Solving problems with Lorentz invariance

Special relativity in quantum field theory is much easier than the special relativity you
learned in your introductory physics course. We never need to talk about putting long cars
in small garages or engineers with flashlights on trains. These situations are all designed
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to make your non-relativistic intuition mislead you. In quantum field theory, other than
the perhaps unintuitive notion that energy can turn into matter through E = mc2, your
non-relativistic intuition will serve you perfectly well.

For field theory, all you really need from special relativity is the one equation that defines
Lorentz transformations:

ΛT gΛ = g. (2.41)

This implies that contractions such as p2 ≡ pμpμ are Lorentz invariant. For problems that
involve changing frames, usually you know everything in one frame and are interested in
some quantity in another frame. For example, you may know momenta pμ1 and pμ2 of two
incoming particles that collide and are interested in the energy of an outgoing particle E3

in the center-of-mass frame (the center-of-mass frame is defined as the frame in which
the total 3-momenta, �ptot = 0). For such problems, it is best to first calculate a Lorentz-
invariant quantity such as p2

tot = (pμ1 +pμ2 )2 in the first frame, then go to the second frame,
and solve for the unknown quantity. Since p2

tot is Lorentz invariant, it has the same value
in both frames. Usually, when you input everything you know about the second frame (e.g.
�ptot = 0 if it is the center-of-mass frame), you can solve for the remaining unknowns. If
you find yourself plugging in explicit boost and rotation matrices, you are probably solving
the problem the hard way. This trick is especially useful for situations in which there are
many particles, say pμ1 , . . . , p

μ
5 , and therefore many Lorentz-invariant quantities, such as

pμ1p4μ or (pμ5 + pμ4 )2.

2.2 Classical plane waves as oscillators

We next review the simple harmonic oscillator and discuss the connection to special
relativity.

2.2.1 Simple harmonic oscillator

Anything with a linear restoring potential (any potential is linear close enough to equilib-
rium), such as a spring, or a string with tension, or a wave, is a harmonic oscillator. For
example, a spring has

m
d2x

dt2
+ kx = 0, (2.42)

which is satisfied by x(t) = cos
(√

k
m t

)
, so it oscillates with frequency

ω =

√
k

m
. (2.43)

A more general solution is

x(t) = c1e
iωt + c2e

−iωt. (2.44)
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The classical Hamiltonian for this system is the sum of kinetic and potential energies:

H =
1
2
p2

m
+

1
2
mω2x2. (2.45)

To quantize the harmonic oscillator, we promote x and p to operators and impose the
canonical commutation relations

[x, p] = i. (2.46)

Analysis of the harmonic oscillator spectrum is simplest if we change variables to

a =
√
mω

2

(
x+

ip

mω

)
, a† =

√
mω

2

(
x− ip

mω

)
, (2.47)

which satisfy

[a, a†] = 1, (2.48)

so that

H = ω

(
a†a+

1
2

)
. (2.49)

Thus, energy eigenstates are eigenstates of the number operator

N̂ = a†a, (2.50)

which is Hermitian. The results we derived in Section 1.3:

N̂ |n〉 = n|n〉, (2.51)

a†|n〉 =
√
n+ 1|n+ 1〉, (2.52)

a|n〉 =
√
n|n− 1〉, (2.53)

follow from these definitions. We can also calculate how the operators evolve in time (in
the Heisenberg picture):

i
d

dt
a = [a,H] =

[
a, ω

(
a†a+

1
2

)]
= ω(aa†a− a†aa) = ω[a, a†]a = ωa. (2.54)

This equation is solved by

a(t) = e−iωta(0). (2.55)

2.2.2 Connection to special relativity

To connect special relativity to the simple harmonic oscillator we note that the simplest
possible Lorentz-invariant equation of motion that a field can satisfy is �φ = 0. That is,

�φ = (∂2
t − �∇2)φ = 0. (2.56)

The classical solutions are plane waves. For example, one solution is

φ(x) = ap(t)ei�p·�x, (2.57)

where

(∂2
t + �p · �p)ap(t) = 0. (2.58)
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This is exactly the equation of motion of a harmonic oscillator. A general solution is

φ(x, t) =
∫

d3p

(2π)3
[
ap (t) ei�p·�x + a�p (t) e−i�p·�x

]
, (2.59)

with (∂2
t + �p · �p)ap(t) = 0, which is just a Fourier decomposition of the field into plane

waves. Or more simply

φ(x, t) =
∫

d3p

(2π)3
(
ape

−ipx + a�pe
ipx
)
, (2.60)

with ap and a�p now just numbers and pμ ≡ (ωp, �p) with ωp ≡ |�p|. To be extra clear about
notation, px contains an implicit 4-vector contraction: px = pμxμ = ωpx0 − �p · �x.

Not only is �φ = 0 the simplest Lorentz-invariant field equation possible, it is one of
the equations that free massless fields will always satisfy (up to some exotic exceptions).
For example, recall that there is a nice Lorentz-covariant treatment of electromagnetism
using

Fμν ≡

⎛⎜⎜⎝
0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0

⎞⎟⎟⎠ . (2.61)

This Fμν transforms covariantly as a tensor under Lorentz transformations and thus con-
cisely encodes how �E and �B rotate into each other under boosts. In terms of Fμν ,
Maxwell’s equations in empty space have the simple forms

∂μFμν = 0, ∂μFνρ + ∂νFρμ + ∂ρFμν = 0. (2.62)

Any field satisfying these equations can be written as

Fμν = ∂μAν − ∂νAμ. (2.63)

Although not necessary, we can also require ∂μAμ = 0, which is a gauge choice (Lorenz
gauge). We will discuss gauge invariance in great detail in Chapters 8 and 25. For now, it
is enough to know that the physical �E and �B fields can be combined into an antisymmetric
tensor Fμν , which is determined by a 4-vector Aμ satisfying ∂μAμ = 0. In Lorenz gauge,
Maxwell’s equations reduce to

∂μFμν = �Aν − ∂ν(∂μAμ) = �Aν = 0. (2.64)

Thus, each component of Aν satisfies the minimal Lorentz-invariant equation of motion.
That �φ = 0 for a scalar field and �Aμ = 0 for a vector field have the same form is not a

coincidence. The electromagnetic field is made up of particles of spin 1 called photons. The
polarizations of the field are encoded in the four fields Aν(x). In fact, massless particles
of any spin will satisfy �χi = 0 where the different fields, indexed by i, encode different
polarizations of that particle. This is not obvious, and we are not ready to prove it, so let us
focus simply on the electromagnetic field. For simplicity, we will ignore polarizations for
now and just treat Aν as a scalar field φ (such approximations were used in some of the
earliest QED papers, e.g. [Born et al., 1926]). A general solution to Maxwell’s equations
in Lorenz gauge is therefore given by Eq. (2.60) for each polarization (polarizations will
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be explained in Chapter 8). Such a solution simply represents the Fourier decomposition
of electromagnetic fields into plane waves. The oscillation of the waves is the same as the
oscillation of a harmonic oscillator for each value of �p.

2.3 Second quantization

Since the modes of an electromagnetic field have the same classical equations as a simple
harmonic oscillator, we can quantize them in the same way. We introduce an annihilation
operator ap and its conjugate creation operator a†p for each wavenumber �p and integrate
over them to get the Hamiltonian for the free theory:

H0 =
∫

d3p

(2π)3
ωp

(
a†pap +

1
2

)
, (2.65)

with

ωp = |�p| . (2.66)

This is known as second quantization. At the risk of oversimplifying things a little, that
is all there is to quantum field theory. The rest is just quantum mechanics.

First quantization refers to the discrete modes, for example, of a particle in a box. Second
quantization refers to the integer numbers of excitations of each of these modes. However,
this is somewhat misleading – the fact that there are discrete modes is a classical phe-
nomenon. The two steps really are (1) interpret these modes as having energy E = �ω and
(2) quantize each mode as a harmonic oscillator. In that sense we are only quantizing once.
Whether second quantization is a good name for this procedure is semantics, not physics.

There are two new features in second quantization:

1. We have many quantum mechanical systems – one for each �p – all at the same time.
2. We interpret the nth excitation of the �p harmonic oscillator as having n particles.

Let us take a moment to appreciate this second point. Recall the old simple harmonic
oscillator: the electron in a quadratic potential. We would never interpret the states |n〉 of
this system as having n electrons. The fact that a pointlike electron in a quadratic potential
has analogous equations of motion to a Fourier component of the electromagnetic field is
just a coincidence. Do not let it confuse you. Both are just the simplest possible dynamical
systems, with linear restoring forces.1

In second quantization, the Hilbert space is promoted to a Fock space, which is defined
at each time as a direct sum,

F = ⊕nHn, (2.67)

1 To set up a proper analogy we need to first treat the electron as a classical field (we do not know how to do
that yet), and find a set of solutions (such as the discrete frequencies of the electromagnetic waves). Then we
would quantize each of those solutions, allowing |n〉 excitations. However, if we did this, electrons would have
Bose–Einstein statistics. Instead, they must have Fermi–Dirac statistics, so we would have to restrict n to 0 or
1. The second quantization of electrons will be discussed in Chapters 10 through 12, and the interpretation of
an electron as a classical field, which requires Grassmann numbers, in Chapter 14.
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of Hilbert spaces, Hn, of physical n-particle states. If there is one particle type, states in
Hn are linear combinations of states {|pμ1 , . . . , pμn〉} of all possible momenta satisfying
p2
i = m2 with p0

i > 0. If there are many different particle types, the Fock space is the
direct sum of the Hilbert spaces associated with each particle. The Fock space is the same
at all times, by time-translation invariance, and in any frame, by Lorentz invariance. Note
that the Fock space is not a sum over Hilbert spaces defined with arbitrary 4-vectors, since
the energy for a physical state is determined by its 3-momentum �pi and its mass mi as
p0
i =
√
�p 2
i +m2

i . We thus write |�p 〉, |pμ〉 and |p〉 interchangeably.

2.3.1 Field expansion

Now let us get a little more precise about what the Hamiltonian in Eq. (2.65) means. The
natural generalizations of [

a, a†
]

= 1 (2.68)

are the equal-time commutation relations[
ak, a

†
p

]
= (2π)3δ3(�p− �k). (2.69)

The factors of 2π are a convention, stemming from our convention for Fourier transforms
(see Appendix A). These a†p operators create particles with momentum p:

a†p|0〉 =
1√
2ωp

|�p 〉, (2.70)

where |�p 〉 is a state with a single particle of momentum �p. This factor of
√

2ωp is
just another convention, but it will make some calculations easier. Its nice Lorentz
transformation properties are studied in Problem 2.6.

To compute the normalization of one-particle states, we start with

〈0|0〉 = 1, (2.71)

which leads to

〈�p |�k〉 = 2
√
ωpωk〈0|apa†k|0〉 = 2ωp(2π)3δ3(�p− �k). (2.72)

The identity operator for one-particle states is

1 =
∫

d3p

(2π)3
1

2ωp
|�p 〉〈�p |, (2.73)

which we can check with

|�k〉 =
∫

d3p

(2π)3
1

2ωp
|�p 〉〈�p |�k〉 =

∫
d3p

(2π)3
1

2ωp
2ωp(2π)3δ3(�p− �k)|�p 〉 = |�k〉. (2.74)

We then define quantum fields as integrals over creation and annihilation operators for
each momentum:

φ0(�x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

i�p�x + a†pe
−i�p�x), (2.75)



22 Lorentz invariance and second quantization

where the subscript 0 indicates this is a free field. The factor of
√

2ωp is included for later
convenience.

This equation looks just like the classical free-particle solutions, Eq. (2.59), to Maxwell’s
equations (ignoring polarizations) but instead of ap and a†p being functions, they are now
the annihilation and creation operators for that mode. Sometimes we say the classical ap is
c-number valued and the quantum one is q-number valued. The connection with Eq. (2.59)
is only suggestive. The quantum equation, Eq. (2.75), should be taken as the definition of
a field operator φ0(�x) constructed from the creation and annihilation operators ap and a†p.

To get a sense of what the operator φ0 does, we can act with it on the vacuum and project
out a momentum component:

〈�p|φ0(�x)|0〉 = 〈0|
√

2ωpap
∫

d3k

(2π)3
1√
2ωk

(
ake

i�k�x + a†ke
−i�k�x
)
|0〉

=
∫

d3k

(2π)3

√
ωp
ωk

[
ei
�k�x〈0|apak|0〉+ e−i�k�x〈0|apa†k|0〉

]
= e−i�p�x. (2.76)

This is the same thing as the projection of a position state on a momentum state in one-
particle quantum mechanics:

〈�p|�x〉 = e−i�p�x. (2.77)

So, φ0(�x)|0〉 = |�x〉, that is, φ0(�x) creates a particle at position �x. This should not be sur-
prising, since φ0(x) in Eq. (2.75) is very similar to x = a + a† in the simple harmonic
oscillator. Since φ0 is Hermitian, 〈�x| = 〈0|φ0(�x) as well.

By the way, there are many states |ψ〉 in the Fock space that satisfy 〈�p|ψ〉 = e−i�p�x. Since
〈�p| only has non-zero matrix elements with one-particle states, adding to |x〉 a two- or zero-
particle state, as in φ2

0 (�x) |0〉, has no effect on 〈�p|�x〉. That is, |ψ〉 =
(
φ0 (�x) + φ2

0(�x)
)
|0〉

also satisfies 〈�p|ψ〉 = e−i�p�x. The state |�x〉 ≡ φ0(�x)|0〉 is the unique one-particle state with
〈�p|ψ〉 = e−i�p�x.

2.3.2 Time dependence

In quantum field theory, we generally work in the Heisenberg picture, where all the time
dependence is in operators such as φ and ap. For free fields, the creation and annihilation
operators for each momentum �p in the quantum field are just those of a simple harmonic
oscillator. These operators should satisfy Eq. (2.55), ap(t) = e−iωptap, and its conjugate
a†p(t) = eiωpta†p, where ap and a†p (without an argument) are time independent. Then, we
can define a quantum scalar field as

φ0(�x, t) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + a†pe
ipx
)
, (2.78)

with pμ ≡ (ωp, �p ) and ωp = | �p | as in Eq. (2.60). The 0 subscript still indicates that these
are free fields.
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To be clear, there is no physical content in Eq. (2.78). It is just a definition. The physical
content is in the algebra of ap and a†p and in the Hamiltonian H0. Nevertheless, we will
see that collections of ap and a†p in the form of Eq. (2.78) are very useful in quantum field
theory. For example, you may note that while the integral is over only three components
of pμ, the phases have combined into a manifestly Lorentz-invariant form. This field now
automatically satisfies �φ(x) = 0. If a scalar field had mass m, we could still write it in
exactly the same way but with a massive dispersion relation: ωp ≡

√
�p2 +m2. Then the

quantum field still satisfies the classical equation of motion: (� +m2)φ(x) = 0.
Let us check that our free Hamiltonian is consistent with the expectation for time

evolution. Commuting the free fields with H0 we find

[H0, φ0(�x, t)] =
∫

d3p

(2π)3

∫
d3k

(2π)3
1√
2ωk

[
ωp

(
a†pap +

1
2

)
, ake

−ikx + a†ke
ikx

]
=
∫

d3p

(2π)3
1√
2ωp

[−ωpap e−ipx + ωpa
†
pe
ipx
]

= −i∂tφ0(�x, t), (2.79)

which is exactly the expected result.
For any Hamiltonian, quantum fields satisfy the Heisenberg equations of motion:

i∂tφ(x) = [φ,H] . (2.80)

In a free theory, H = H0, and this is consistent with Eq. (2.78). In an interacting theory,
that is, one whose Hamiltonian H differs from the free Hamiltonian H0, the Heisenberg
equations of motion are still satisfied, but we will rarely be able to solve them exactly. To
study interacting theories, it is often useful to use the same notation for interacting fields
as for free fields:

φ(�x, t) =
∫

d3p

(2π)3
1√
2ωp

[
ap(t)e−ipx + a†p(t)e

ipx
]
. (2.81)

At any fixed time, the full interacting creation and annihilation operators a†p(t) and ap(t)
satisfy the same algebra as in the free theory – the Fock space is the same at every time, due
to time-translation invariance. We can therefore define the exact creation operators ap(t)
to be equal to the free creation operators ap at any given fixed time, ap(t0) = ap and so
φ(�x, t0) = φ0(�x, t0). However, the operators that create particular momentum states |p〉 in
the interacting theory mix with each other as time evolves. We generally will not be able to
solve the dynamics of an interacting theory exactly. Instead, we will expandH = H0+Hint

and calculate amplitudes using time-dependent perturbation theory with Hint, just as in
quantum mechanics. In Chapter 7, we use this approach to derive the Feynman rules.

The first-quantized (quantum mechanics) limit of the second-quantized theory (quantum
field theory) comes from restricting to the one-particle states, which is appropriate in the
non-relativistic limit. A basis of these states is given by the vectors 〈x| = 〈�x, t|:

〈x| = 〈0|φ(�x, t). (2.82)

Then, a Schrödinger picture wavefunction is

ψ(x) = 〈x|ψ〉 , (2.83)
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which satisfies

i∂tψ(x) = i∂t〈0|φ(�x, t)|ψ〉 = i 〈0|∂tφ(�x, t)|ψ〉 . (2.84)

In the massive case, the free quantum field φ0(x) satisfies ∂2
t φ0 =
(
�∇2 −m2

)
φ0 and we

have from Eq. (2.79) (with the massive dispersion relation ωp =
√
�p 2 +m2 ):

i〈0|∂tφ(�x, t)|ψ〉 = 〈0|
∫

d3p

(2π)3

√
�p 2 +m2√

2ωp

(
ape

−ipx − a†peipx
)
|ψ〉

= 〈0|
√
m2 − �∇2φ0(x)|ψ〉 . (2.85)

So,

i∂tψ(x) =
√
m2 − �∇2ψ(x) =

(
m−

�∇2

2m
+O
(

1
m2

))
ψ(x). (2.86)

The final form is the low-energy (large-mass) expansion. We can then define the non-
relativistic Hamiltonian by subtracting off the mc2 contribution to the energy, which is
irrelevant in the non-relativistic limit. This gives

i∂tψ(x) = −
�∇2

2m
ψ(x), (2.87)

which is the non-relativistic Schrödinger equation for a free theory. Another way to derive
the quantum mechanics limit of quantum field theory is discussed in Section 33.6.2.

2.3.3 Commutation relations

We will occasionally need to use the equal-time commutation relations of the second-
quantized field and its time derivative. The commutator of a field at two different points is

[φ(�x), φ(�y)] =
∫

d3p

(2π)3

∫
d3q

(2π)3
1√

2ωp2ωq

[(
ape

i�p�x + a†pe
−i�p�x), (aqei�q�y + a†qe

−i�q�y)]
=
∫

d3p

(2π)3

∫
d3q

(2π)3
1√

2ωp2ωq

(
ei�p�xe−i�q�y

[
ap, a

†
q

]
+ e−i�p�xei�q�y

[
a†p, aq
])
.

(2.88)

Using Eq. (2.69), [ak, a†p] = (2π)3δ3(�p− �k), this becomes

[φ(�x), φ(�y)] =
∫

d3p

(2π)3

∫
d3q

(2π)3
1√

2ωp2ωq

[
ei�p�xe−i�q�y − e−i�p�xei�q�y

]
(2π)3 δ3(�p− �q)

=
∫

d3p

(2π)3
1

2ωp

[
ei�p(�x−�y) − e−i�p(�x−�y)

]
. (2.89)

Since the integral measure and ωp =
√
�p 2 +m2 are symmetric under �p→ −�p we can flip

the sign on the exponent of one of the terms to see that the commutator vanishes:
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[φ(�x), φ(�y)] = 0. (2.90)

The equivalent calculation at different times is much more subtle (we discuss the general
result in Section 12.6 in the context of the spin-statistics theorem).

Next, we note that the time derivative of the free field, at t = 0, has the form

π(�x) ≡ ∂tφ(x)
∣∣∣
t=0

= −i
∫

d3p

(2π)3

√
ωp
2
(
ape

i�p�x − a†pe−i�p�x
)
, (2.91)

where π is the operator canonically conjugate to φ. As φ(�x) is the second-quantized analog
of the x̂ operator, π(�x) is the analog of the p̂ operator. Note that π(�x) has nothing to do
with the physical momentum of states in the Hilbert space: π(�x) |0〉 is not a state of given
momentum. Instead, it is a state also at position �x created by the time derivative of φ(�x).

Now we compute

[φ(�x), π(�y)] = −i
∫

d3p

(2π)3

∫
d3q

(2π)3

√
ωp
2

1√
2ωq

(
ei�p�ye−i�q�x

[
a†q, ap
]
−ei�q�xe−i�p�y

[
aq, a

†
p

])
=
i

2

∫
d3p

(2π)3
[
ei�p(�x−�y) + e−i�p(�x−�y)

]
. (2.92)

Both of these integrals give δ3(�x− �y), so we find

[φ(�x), π(�y)] = iδ3(�x− �y), (2.93)

which is the analog of [x̂, p̂] = i in quantum mechanics. It encapsulates the field theory
version of the uncertainty principle: you cannot know the properties of the field and its rate
of change at the same place at the same time.

In a general interacting theory, at any fixed time, φ(�x) and π(�x) have expressions in
terms of creation and annihilation operators whose algebra is identical to that of the free
theory. Therefore, they satisfy the commutation relations in Eqs. (2.90) and (2.93) as well
as [π(�x), π(�y)] = 0. The Hamiltonian in an interacting theory should be expressed as a
functional of the operators φ(�x) and π(�x) with time evolution given by ∂tO = i[H,O].
Any such Hamiltonian can then be expressed entirely in terms of creation and annihilation
operators using Eqs. (2.75) and (2.91); thus it has a well-defined action on the associated
Fock space. Conversely, it is sometimes more convenient (especially for non-relativistic or
condensed matter applications) to derive the form of the Hamiltonian in terms of ap and
a†p. We can then express ap and a†p in terms of φ(�x) and π(�x) by inverting Eqs. (2.75) and
(2.91) for ap and a†p (the solution is the field theory equivalent of Eq. (2.47)).

In summary, all we have done to quantize the electromagnetic field is to treat it as an
infinite set of simple harmonic oscillators, one for each wavenumber �p. More generally:

Quantum field theory is just quantum mechanics with an infinite number of harmonic
oscillators.
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2.3.4 Einstein coefficients revisited

In quantum mechanics we usually study a single electron in a background potential V (x).
In quantum field theory, the background (e.g. the electromagnetic system) is dynamical, so
all kinds of new phenomena can be explained. We already saw one example in Chapter 1.
We can now be a little more explicit about what the relevant Hamiltonian should be for
Dirac’s calculation of the Einstein coefficients.

We can always write a Hamiltonian as

H = H0 +Hint, (2.94)

where H0 describes some system that we can solve exactly. In the case of the two-state
system discussed in Chapter 1, we can take H0 to be the sum of the Hamiltonians for the
atom and the photons:

H0 = Hatom +Hphoton. (2.95)

The eigenstates of Hatom are the energy eigenstates |ψn〉 of the hydrogen atom, with
energies En. Hphoton is the Hamiltonian in Eq. (2.65) above:

Hphoton =
∫

d3k

(2π)3
ωk

(
a†kak +

1
2

)
. (2.96)

The remaining Hint is hopefully small enough to let us use perturbation theory.
Fermi’s golden rule from quantum mechanics says the rate for transitions between two

states is proportional to the square of the matrix element of the interaction between the two
states:

Γ ∝ | 〈f |Hint|i〉 |2δ(Ef − Ei), (2.97)

and we can treat the interaction semi-classically:

Hint = φHI . (2.98)

As mentioned in Footnote 2 in Chapter 1, HI can be derived from the e
m�p · �A interaction

of the minimally coupled non-relativistic Hamiltonian, H = 1
2m (�p + e �A)2. Since we are

ignoring spin, it does not pay to be too precise about HI ; the important point being only
that Hint has a quantum field φ in it, representing the photon, and HI has non-zero matrix
elements between different atomic states.

According to Fermi’s golden rule, the transition probability is proportional to the matrix
element of the interaction squared. Then,

M1→2 = 〈atom�;nk − 1|Hint|atom;nk〉 ∝ 〈atom�|HI |atom〉√nk, (2.99)

M2→1 = 〈atom;nk + 1|Hint|atom�;nk〉 ∝ 〈atom|HI |atom�〉
√
nk + 1, (2.100)

where we have used

〈nk − 1|φ|nk〉 =
∫

d3p

(2π)3
1√
2ωp

〈nk − 1|ap|nk〉 ∝
√
nk, (2.101)
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〈nk + 1|φ|nk〉 =
∫

d3p

(2π)3
1√
2ωp

〈
nk + 1|a†p|nk

〉
∝
√
nk + 1. (2.102)

Thus, M1→2 and M2→1 agree with what we used in Chapter 1 to reproduce Dirac’s
calculation of the Einstein coefficients. Note that we only used one photon mode, of
momentum k, so this was really just quantum mechanics. Quantum field theory just gave
us a δ-function from the d3p integration.

Problems

2.1 Derive the transformations x → x+vt√
1−v2 and t → t+vx√

1−v2 in perturbation theory. Start
with the Galilean transformation x → x + vt. Add a transformation t → t + δt and
solve for δt assuming it is linear in x and t and preserves t2−x2 toO

(
v2
)
. Repeat for

δt and δx to second order in v and show that the result agrees with the second-order
expansion of the full transformations.

2.2 Special relativity and colliders.
(a) The Large Hadron Collider was designed to collide protons together at 14 TeV

center-of-mass energy. How many kilometers per hour less than the speed of light
are the protons moving?

(b) How fast is one proton moving with respect to the other?
2.3 The GZK bound. In 1966 Greisen, Zatsepin and Kuzmin argued that we should

not see cosmic rays (high-energy protons hitting the atmosphere from outer space)
above a certain energy, due to interactions of these rays with the cosmic microwave
background.
(a) The universe is a blackbody at 2.73 K. What is the average energy of the photons

in outer space (in electronvolts)?
(b) How much energy would a proton (p+) need to collide with a photon (γ) in outer

space to convert it to a 135 MeV pion (π0)? That is, what is the energy threshold
for p+ + γ → p+ + π0?

(c) How much energy does the outgoing proton have after this reaction?
This GZK bound was finally confirmed experimentally 40 years after it was conjec-
tured [Abbasi et al., 2008].

2.4 Is the transformation Y : (t, x, y, z) → (t, x,−y, z) a Lorentz transformation? If so,
why is it not considered with P and T as a discrete Lorentz transformation? If not,
why not?

2.5 Compton scattering. Suppose we scatter an X-ray off an electron in a crystal, but we
cannot measure the electron’s momentum, just the reflected X-ray momentum.
(a) Why is it OK to treat the electrons as free?
(b) Calculate the frequency dependence of the reflected X-ray on the scattering angle.

Draw a rough plot.
(c) What happens to the distribution as you take the electron mass to zero?
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(d) If you did not believe in quantized photon momenta, what kind of distribution
might you have expected? [Hint: see [Compton, 1923].]

2.6 Lorentz invariance.
(a) Show that ∫ ∞

−∞
dk0δ(k2 −m2)θ(k0) =

1
2ωk

, (2.103)

where θ(x) is the unit step function and ωk ≡
√
�k2 +m2.

(b) Show that the integration measure d4k is Lorentz invariant.
(c) Finally, show that ∫

d3k

2ωk
(2.104)

is Lorentz invariant.
2.7 Coherent states of the simple harmonic oscillator.

(a) Calculate ∂z(e−za
†
aeza

†
) where z is a complex number.

(b) Show that |z〉 = eza
† |0〉 is an eigenstate of a. What is its eigenvalue?

(c) Calculate 〈n|z〉.
(d) Show that these “coherent states” are minimally dispersive: ΔpΔq = 1

2 , where

Δq2 = 〈q2〉−〈q〉2 and Δp2 = 〈p2〉−〈p〉2, where 〈q〉 = 〈z|q|z〉
〈z|z〉 and 〈p〉 = 〈z|p|z〉

〈z|z〉 .

(e) Why can you not make an eigenstate of a†?
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We have now seen how quantum field theory is just quantum mechanics with an infinite
number of oscillators. We already saw that it can do some remarkable things, such as
explain spontaneous emission. But it also seems to lead to absurdities, such as an infinite
shift in the energy levels of the hydrogen atom (see Chapter 4). To show that quantum field
theory is not absurd, but extremely predictive, we will have to be very careful about how we
do calculations. We will begin by going through carefully some of the predictions that the
theory gets right without infinities. These are called the tree-level processes, which means
they are leading order in an expansion in �. Since taking � → 0 gives the classical limit,
tree-level calculations are closely related to calculations in classical field theory, which is
the subject of this chapter.

3.1 Hamiltonians and Lagrangians

A classical field theory is just a mechanical system with a continuous set of degrees
of freedom. Think about the density of a fluid ρ(x) as a function of position, or the
electric field �E(x). Field theories can be defined in terms of either a Hamiltonian or a
Lagrangian, which we often write as integrals over all space of Hamiltonian or Lagrangian
densities:

H =
∫
d3xH, L =

∫
d3xL. (3.1)

We will use a calligraphic script for densities and an italic script for integrated quantities.
The word “density” is almost always omitted.

Formally, the Hamiltonian (density) is a functional of fields and their conjugate
momentaH[φ, π]. The Lagrangian (density) is the Legendre transform of the Hamiltonian
(density). Formally, it is defined as

L[φ, φ̇] = π[φ, φ̇] φ̇−H[φ, π[φ, φ̇]], (3.2)

where φ̇ = ∂tφ and π[φ, φ̇] is implicitly defined by ∂H[φ,π]
∂π = φ̇. The inverse transform is

H[φ, π] = π φ̇[φ, π]− L[φ, φ̇[φ, π]], (3.3)

where φ̇[φ, π] is implicitly defined by ∂L[φ,φ̇]

∂φ̇
= π.

29
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To make this more concrete, consider this example:

L =
1
2
(∂μφ)(∂μφ)− V[φ] =

1
2
φ̇2 − 1

2
(�∇φ)2 − V[φ], (3.4)

where V[φ] is called the potential (density). Then π = ∂L
∂φ̇

= φ̇, which is easy to solve for

φ̇: φ̇[φ, π] = π. Plugging in to Eq. (3.3) we find

H = π φ̇[φ, π]− L[φ, φ̇[φ, π]] =
1
2
π2 +

1
2
(�∇φ)2 + V[φ]. (3.5)

We often just write H = 1
2 φ̇

2 + 1
2 (∇φ)2 + V[φ] so that we do not have to deal with the π

fields. For a more complicated Lagrangian it may not be possible to produce a closed-form
expression for φ̇[φ, π]. For example, L = φ2φ̇2 + φφ̇3 would imply π = 2φ2φ̇ + 3φφ̇2

from which φ̇[φ, π] is a mess. There are also situations where the Legendre transform may
not exist, so that a Hamiltonian does not have a corresponding Lagrangian, or vice versa.1

Equations (3.4) and (3.5) inspire the identification of the Hamiltonian with the sum of
the kinetic and potential energies of a system:

H = K + V, (3.6)

while the Lagrangian is their difference:

L = K − V. (3.7)

Matching onto Eqs. (3.4) and (3.5), the kinetic energy is the part with time derivatives,
K = 1

2 φ̇
2, and the potential energy is the rest, V = 1

2 (�∇φ)2 + V[φ].
The Hamiltonian corresponds to a conserved quantity – the total energy of a system –

while the Lagrangian does not. The problem with Hamiltonians, however, is that they are
not Lorentz invariant. The Hamiltonian picks out energy, which is not a Lorentz scalar;
rather, it is the 0 component of a Lorentz vector: Pμ = (H, �P ). The Hamiltonian density
is the 00 component of a Lorentz tensor, the energy-momentum tensor Tμν . Hamiltonians
are great for non-relativistic systems, but for relativistic systems we will almost exclusively
use Lagrangians.

We do not usually talk about kinetic and potential energy in quantum field theory. Instead
we talk about kinetic terms and then about interactions, for reasons that will become clear
after we have done a few calculations. Kinetic terms are bilinear, meaning they have
exactly two fields. So kinetic terms are

LK ⊃
1
2
φ�φ, ψ̄ /∂ψ,

1
4
F 2
μν ,

1
2
m2φ2,

1
2
φ1�φ2, φ1∂μAμ, . . . (3.8)

where

Fμν = ∂μAν − ∂νAμ. (3.9)

1 The Legendre transform is just trading velocity, φ̇, for a new variable called π, which corresponds to momentum
in simple cases. It does this trade at each value of φ, so φ just goes along for the ride in the Legendre transform.
So let us hold φ fixed and write L[φ̇]. No information is lost in writing φ̇ as π as long as π = L′[φ̇] and
φ̇ are in one-to-one correspondence. For a function f(x), x and f ′(x) are in one-to-one correspondence as
long as f ′′(x) > 0 or f ′′(x) < 0 for all x, that is, if the function is convex. Therefore, one can go back
and forth between the Hamiltonian and the Lagrangian as long as L[φ, φ̇] is a convex function of φ̇ at each
value of φ and H [φ, π] is a convex function of π. For multiple fields, φn and πn, the requirement is that
Mij = ∂H [φn, πn] /∂πi∂πj be an invertible matrix.
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It is standard to use the letters φ or π for scalar fields, ψ, ξ, χ for fermions, Aμ, Jμ, Vμ for
vectors and hμν , Tμν for tensors.

Anything with just two fields of the same or different type can be called a kinetic term.
The kinetic terms tell you about the free (non-interacting) behavior. Fields with kinetic
terms are said to be dynamical or propagating. More precisely, a field should have time
derivatives in its kinetic term to be dynamical. It is also sometimes useful to think of a
mass term, such as m2φ2, as an interaction rather than a kinetic term (see Problem 7.4).

Interactions have three or more fields:

Lint ⊃ λφ3, gψ̄ /Aψ, g∂μφAμφ
�, g2A2

μA
2
ν ,

1
MPl

∂μhμν∂νhαβhαβ , . . . (3.10)

Since the interactions are everything but the kinetic terms, we also sometimes write

Lint = −V = −Hint. (3.11)

It is helpful if the coefficients of the interaction terms are small in some sense, so that the
fields are weakly interacting and we can do perturbation theory.

3.2 The Euler–Lagrange equations

In quantum field theory, we will almost exclusively use Lagrangians. The simplest reason
for this is that Lagrangians are manifestly Lorentz invariant. Dynamics for a Lagrangian
system are determined by the principle of least action. The action is the integral over time
of the Lagrangian:

S =
∫
dtL =

∫
d4xL(x). (3.12)

Say we have a Lagrangian L[φ, ∂μφ] that is a functional only of a field φ and its first
derivatives. Now imagine varying φ→ φ+ δφ where δφ can be any field. Then,

δS =
∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂μφ)
δ(∂μφ)

]
=
∫
d4x

{[
∂L
∂φ

− ∂μ
∂L

∂(∂μφ)

]
δφ+ ∂μ

[
∂L

∂(∂μφ)
δφ

]}
. (3.13)

The last term is a total derivative and therefore its integral only depends on the field values
at spatial and temporal infinity. We will always make the physical assumption that our
fields vanish on these asymptotic boundaries, which lets us drop such total derivatives
from Lagrangians. In other words, it lets us integrate by parts within Lagrangians, without
consequence. That is

A∂μB = −(∂μA)B (3.14)

in a Lagrangian. We will use this identity constantly in both classical and quantum field
theory.

In classical field theory, just as in classical mechanics, the equations of motion are deter-
mined by the principle of least action: when the action is evaluated on fields that satisfy the
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equations of motion, it should be insensitive to small variations of those fields, δSδφ = 0. If
this holds for all variations, then Eq. (3.13) implies

∂L
∂φ

− ∂μ
∂L

∂(∂μφ)
= 0. (3.15)

These are the celebrated Euler–Lagrange equations. They give the equations of motion
following from a Lagrangian.

For example, if our action is

S =
∫
d4x

[
1
2
(∂μφ)(∂μφ)− V[φ]

]
, (3.16)

then the equations of motion are

− V ′[φ]− ∂μ(∂μφ) = 0. (3.17)

Or, more simply, �φ + V ′[φ] = 0, recalling the d’Alembertian � ≡ ∂2
μ. In particular, if

L = 1
2 (∂μφ)(∂μφ)− 1

2m
2φ2, the equations of motion are

(� +m2)φ = 0. (3.18)

This is known as the Klein–Gordon equation. The Klein–Gordon equation describes the
equations of motion for a free scalar field.

Why do we restrict to Lagrangians of the form L [φ, ∂μφ]? First of all, this is the form
that all “classical” Lagrangians had. If only first derivatives are involved, boundary condi-
tions can be specified by initial positions and velocities only, in accordance with Newton’s
laws. In the quantum theory, if kinetic terms have too many derivatives, for example
L = φ�2φ, there will generally be disastrous consequences. For example, there may be
states with negative energy or negative norm, permitting the vacuum to decay (see Chap-
ters 8 and 24). But interactions with multiple derivatives may occur. Actually, they must
occur due to quantum effects in all but the simplest renormalizable field theories; for exam-
ple, they are generic in all effective field theories, which are introduced in Chapter 22 and
are the subject of much of Part IV. You can derive the equations of motion for general
Lagrangians of the form L [φ, ∂μφ, ∂ν∂μφ, . . .] in Problem 3.1.

3.3 Noether’s theorem

It may happen that a Lagrangian is invariant under some special type of variation φ →
φ+ δφ. For example, a Lagrangian for a complex field φ is

L = |∂μφ|2 −m2|φ|2. (3.19)

This Lagrangian is invariant under φ → e−iαφ for any α ∈ R. This transformation is
a symmetry of the Lagrangian. There are two independent real degrees of freedom in a
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complex field φ, which we can take as φ = φ1 + iφ2 or more conveniently φ and φ�. Then
the Lagrangian is

L = (∂μφ) (∂μφ�)−m2φφ�, (3.20)

and the symmetry transformations are

φ→ e−iαφ, φ� → eiαφ�. (3.21)

You should check that the equations of motion following from this Lagrangian are(
� +m2

)
φ = 0 and

(
� +m2

)
φ� = 0.

When there is such a symmetry that depends on some parameter α that can be taken
small (that is, the symmetry is continuous), we find, similar to Eq. (3.13), that

0 =
δL
δα

=
∑
n

{[
∂L
∂φn

− ∂μ
∂L

∂(∂μφn)

]
δφn
δα

+ ∂μ

[
∂L

∂(∂μφn)
δφn
δα

]}
, (3.22)

where φn may be φ and φ� or whatever set of fields the Lagrangian depends on. In contrast
to Eq. (3.13), this equation holds even for field configurations φn for which the action is
not extremal (i.e. for φn that do not satisfy the equations of motion), since the variation
corresponds to a symmetry.

When the equations of motion are satisfied, then Eq. (3.22) reduces to ∂μJμ = 0, where

Jμ =
∑
n

∂L
∂(∂μφn)

δφn
δα

. (3.23)

This is known as a Noether current.
For example, with the Lagrangian in Eq. (3.19),

δφ

δα
= −iφ, δφ�

δα
= iφ�, (3.24)

so that

Jμ =
∂L

∂(∂μφ)
δφ

δα
+

∂L
∂(∂μφ�)

δφ�

δα
= −i
(
φ∂μφ

� − φ�∂μφ
)
. (3.25)

Note that the symmetry is continuous so that we can take small variations. We can check
that

∂μJμ = −i [φ�φ� − φ��φ] , (3.26)

which vanishes when the equations of motion �φ = −m2φ and �φ� = −m2φ� are
satisfied.

A vector field Jμ that satisfies ∂μJμ = 0 is called a conserved current. It is called
conserved because the total charge Q, defined as

Q =
∫
d3xJ0, (3.27)

satisfies

∂tQ =
∫
d3x ∂tJ0 =

∫
d3x �∇ · �J = 0. (3.28)
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In the last step we have assumed �J vanishes at the spatial boundary, since, by assumption,
nothing is leaving our experiment. Thus, the total charge does not change with time, and is
conserved.

We have just proved a very general and important theorem known as Noether’s
theorem.

Box 3.1 Noether’s theorem

If a Lagrangian has a continuous symmetry then there exists a current asso-
ciated with that symmetry that is conserved when the equations of motion
are satisfied.

Recall that we needed to assume the symmetry was continuous so that small variations δL
δα

could be taken. So, Noether’s theorem does not apply to discrete symmetries, such as the
symmetry under φ→ −φ of L = 1

2φ�φ−m2φ2 − λφ4 with φ real.
Important points about this theorem are:

• The symmetry must be continuous, otherwise δα has no meaning.
• The current is conserved on-shell, that is, when the equations of motion are satisfied.
• It works for global symmetries, parametrized by numbers α, not only for local (gauge)

symmetries parametrized by functions α(x).

This final point is an important one, although it cannot be fully appreciated with what we
have covered so far. Gauge symmetries will be discussed in Chapter 8, where we will see
that they are required for Lagrangian descriptions of massless spin-1 particles. Gauge sym-
metries imply global symmetries, but the existence of conserved currents holds whether or
not there is a gauge symmetry or an associated massless spin-1 particle.

3.3.1 Energy-momentum tensor

There is a very important case of Noether’s theorem that applies to a global symmetry of
the action, not the Lagrangian. This is the symmetry under (global) space-time translations.
In general relativity this symmetry is promoted to a local symmetry – diffeomorphism
invariance – but all one needs to get a conserved current is a global symmetry. The current
in this case is the energy-momentum tensor, Tμν .

Space-time translation invariance says that physics at a point x should be the same as
physics at any other point y. We have to be careful distinguishing this symmetry which
acts on fields from a trivial symmetry under relabeling our coordinates. Acting on fields, it
says that if we replace the value of the field φ(x) with its value at a different point φ(y),
we will not be able to tell the difference. To turn this into mathematics, we consider cases
where the new points y are related to the old points by a simple shift: yν = xν − ξν with
ξν a constant 4-vector. Scalar fields then transform as φ(x) → φ(x+ ξ). For infinitesimal
ξμ, this is

φ(x) → φ(x+ ξ) = φ(x) + ξν∂νφ(x) + · · · , (3.29)
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where the · · · are higher order in the infinitesimal transformation ξν . To be clear, we are
considering variations where we replace the field φ(x) with a linear combination of the
field and its derivatives evaluated at the same point x. The point x does not change. Our
coordinates do not change. A theory with a global translation symmetry is invariant under
this replacement.

This transformation law,
δφ

δξν
= ∂νφ, (3.30)

applies for any field, whether tensor or spinor or anything else. It is also applies to the
Lagrangian itself, which is a scalar:

δL
δξν

= ∂νL. (3.31)

Since this is a total derivative, δS =
∫
d4x δL = ξν

∫
d4x ∂νL = 0, which is why we

sometimes say this is a symmetry of the action, not the Lagrangian.
Proceeding as before, using the equations of motion, the variation of the Lagrangian is

δL[φn, ∂μφn]
δξν

= ∂μ

(∑
n

∂L
∂(∂μφn)

δφn
δξν

)
. (3.32)

Equating this with Eq. (3.31) and using Eq. (3.30) we find

∂νL = ∂μ

(∑
n

∂L
∂(∂μφn)

∂νφn

)
(3.33)

or equivalently

∂μ

(∑
n

∂L
∂(∂μφn)

∂νφn − gμνL
)

= 0. (3.34)

The four symmetries have produced four Noether currents, one for each ν:

Tμν =
∑
n

∂L
∂(∂μφn)

∂νφn − gμνL, (3.35)

all of which are conserved: ∂μTμν = 0. The four conserved quantities are energy and
momentum. Tμν is called the energy-momentum tensor.

An important component of the energy-momentum tensor is the energy density:

E = T00 =
∑
n

∂L
∂φ̇n

φ̇n − L, (3.36)

where φ̇n = ∂tφn. For Lagrangians that satisfy φ̇ = ∂L
∂φ̇
≡ π the energy density is identical

to the Legendre transform of the Lagrangian, Eq. (3.3), so that the energy density and the
Hamiltonian density are identical.

The conserved charges corresponding to the energy-momentum tensor are Qν =∫
d3x T0ν . The components of Qν are the total energy and momentum of the system,

which are time independent since ∂tQν = 0 following from ∂μTμν = 0. This symmetry
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(invariance of the theory under space-time translations) means that physics is independent
of where in the universe you conduct your experiment. Noether’s theorem tells us that this
symmetry is why energy and momentum are conserved.

By the way, the energy-momentum tensor defined this way is not necessarily symmetric.
There is another way to derive the energy-momentum tensor, in general relativity. There,
the metric gμν is a field, and we can expand it as gμν = ημν +

√
GNhμν . If you insert this

expansion in a general relativistic action, the terms linear in hμν that couple to matter will
have the form hμνTμν . This Tμν is the energy-momentum tensor for matter, and is con-
served. The energy-momentum tensor defined by Eq. (3.35) is often called the canonical
energy-momentum tensor.

3.3.2 Currents

Both the conserved vector Jμ associated with a global symmetry and the energy-
momentum tensor Tμν are types of currents. The concept of a current is extremely useful
for field theory. Currents are used in many ways. For example:

1. Currents can be Noether currents associated with a symmetry.
2. Currents can refer to external currents. These are given background configurations, such

as electrons flowing through a wire. For example, a charge density ρ(x) with velocity
vi(x) has the current

Jμ(x) :
{

J0(x) = ρ(x),
Ji(x) = vi(x).

(3.37)

3. Currents can be used as sources for fields, appearing in the Lagrangian as

L(x) = · · · −Aμ(x)Jμ(x). (3.38)

This current can be the Noether current, an explicit external current such as the charge
current above, or just a formal place-holder. The current is never a dynamical field; that
is, it never has its own kinetic terms. We may include time dependence in Jμ(�x, t), but
we will not generally try to solve for the dynamics of Jμ at the same time as solving for
the dynamics of real propagating fields such as Aμ.

4. Currents can be place-holders for certain terms in a Lagrangian. For example, if our
Lagrangian is

L = −1
4
F 2
μν − φ��φ− ieAμ(φ�∂μφ− φ∂μφ�) , (3.39)

we could write it as

L = −1
4
F 2
μν − φ��φ−AμJμ (3.40)

with Jμ = ie (φ�∂μφ− φ∂μφ�). The point of this use of currents is that it is indepen-
dent of the type of interaction. For example, AμJμ could mean Aμψ̄γμψ, in which case
we would have Jμ = ψ̄γμψ. This notation is particularly useful when we are only inter-
ested in the fieldAμ itself, not in whether it was created by φ or ψ. Using currents helps
separate the problem into two halves: how the field φ or ψ produces the field Aμ and
then how Aμ affects other fields. Often we are interested in only half of the problem.
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3.4 Coulomb’s law

The best way to understand classical field theory is by doing some calculations. In this
section we derive Coulomb’s law using classical field theory.

Start with a charge of strength e at the origin. This can be represented with an external
current:

Jμ(x) :
{
J0(x) = ρ(x) = eδ3(x),
Ji(x) = 0.

(3.41)

The Lagrangian is

L = −1
4
F 2
μν −AμJμ. (3.42)

To calculate the equations of motion, we first expand

L = −1
4
(∂μAν − ∂νAμ)2 −AμJμ = −1

2
(∂μAν)

2 +
1
2
(∂μAμ)

2 −AμJμ, (3.43)

and note that

∂μ
∂(∂αAα)2

∂(∂μAν)
= ∂μ

[
2(∂αAα)

∂(∂βAγ)
∂(∂μAν)

gβγ

]
= ∂μ[2(∂αAα)gβμgγνgβγ ] = 2∂ν(∂αAα) .

(3.44)
Then, the Euler–Lagrange equations ∂L

∂Aν
− ∂μ ∂L

∂(∂μAν)
= 0 imply

− Jν − ∂μ(−∂μAν)− ∂ν(∂μAμ) = 0, (3.45)

which gives

∂μFμν = Jν . (3.46)

These are just Maxwell’s equations in the presence of a source.
Expanding out Fμν we find

Jν = ∂μ(∂μAν − ∂νAμ) = �Aν − ∂ν(∂μAμ). (3.47)

Now choose Lorenz gauge, ∂μAμ = 0. Then,

�Aν(x) = Jν(x), (3.48)

which has a formal solution

Aν(x) =
1
�Jν(x), (3.49)

where 1
� just means the inverse of �, which we will define more precisely soon. This type

of expression comes about in almost every calculation in quantum field theory. It says that
the Aν field is determined by the source Jν after it propagates with the propagator

ΠA =
1
� . (3.50)

We will understand these propagators in great detail as we go along.
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For the particular source we are interested in, the point charge at the origin, Eq. (3.41),
the equations of motion are

Ai = 0, (3.51)

A0(x) =
e

�δ3(x). (3.52)

There are also homogeneous solutions for which �Aμ = 0. These are electromagnetic
waves that do not have anything to do with our source, so we will ignore them for now.

3.4.1 Fourier transform interlude

Continuing with the Coulomb calculation, we next take the Fourier transform. Recall that
the Fourier transform of a δ-function is just 1: δ̃(k) = 1. That is

δ3(�x) =
∫

d3k

(2π)3
ei
�k�x. (3.53)

Since the Laplacian is� = ∂2
�x, we have

�nδ3(�x) =
∫

d3k

(2π)3
�nei

�k�x =
∫

d3k

(2π)3
(−�k2)nei�k�x. (3.54)

Thus, we identify

[̃�nδ](�k) = (−�k2)n. (3.55)

This also works for Lorentz-invariant quantities:

δ4(x) =
∫

d4k

(2π)4
eikμxμ , (3.56)

�nδ4(x) =
∫

d4k

(2π)4
�neikμxμ =

∫
d4k

(2π)4
(−k2)neikμxμ . (3.57)

More generally,

�nf(x) =
∫

d4k

(2π)4
�nf̃(k)eikμxμ =

∫
d4k

(2π)4
(−k2)nf̃(k)eikμxμ . (3.58)

So,

[̃�nf ](k) = (−k2)nf̃(k). (3.59)

Thus, in general,

�↔ −�k2 and � ↔ −k2. (3.60)

We will use this implicitly all the time. For a field theorist, box means “−k2”.
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3.4.2 Coulomb potential

Since δ3(�x) is time independent, our scalar potential simplifies to

A0(x) =
e

�δ3(�x) = − e

�δ3(�x). (3.61)

We can solve this equation in Fourier space:

A0(x) =
∫

d3k

(2π)3
e

�k2
ei
�k�x

=
e

(2π)3

∫ ∞

0

k2dk

∫ 1

−1

d cos θ
∫ 2π

0

dφ
1
k2
eikr cos θ

=
e

(2π)2

∫ ∞

0

dk
eikr − e−ikr

ikr

=
e

8π2

1
ir

∫ ∞

−∞
dk
eikr − e−ikr

k
. (3.62)

Note that the integrand does not blow up as k → 0. Thus, it should be insensitive to a
small shift in the denominator, and we can simplify it with∫ ∞

−∞
dk
eikr − e−ikr

k
= lim
δ→0

[∫ ∞

−∞
dk
eikr − e−ikr
k + iδ

]
. (3.63)

If δ > 0 then the pole at k = −iδ lies on the negative imaginary axis. For eikr we must
close the contour up to get exponential decay at large k. This misses the pole, so this term
gives zero. For e−ikr we close the contour down and get∫ ∞

−∞
dk
−e−ikr
k + iδ

= −(2πi)(−e−δr) = 2πie−δr. (3.64)

Thus,

A0(x) =
e

4π
1
r
. (3.65)

This result can also be derived through the m → 0 limit of the potential for a massive
vector boson, as in Problem 3.6.

3.5 Green’s functions

The important point is that we found the Coulomb potential by using

Aμ =
1
�Jμ. (3.66)

Even if Jμ were much more complicated, producing all kinds of crazy-looking electromag-
netic fields, we could still use this equation.



40 Classical field theory

For example, consider the Lagrangian

L = −1
4
F 2
μν − φ��φ− ieAμ(φ�∂μφ− φ∂μφ�) , (3.67)

where φ represents a charged object that radiates the A field. Now A’s equation of motion
is (in Lorenz gauge)

�Aμ = ie (φ�∂μφ− φ∂μφ�) . (3.68)

This is just what we had before but with Jμ = ie (φ�∂μφ− φ∂μφ�). And again we will
have Aμ = 1

�Jμ.
Using propagators is a very useful way to solve these types of equations, and quite gen-

eral. For example, let us suppose our Lagrangian had an interaction term such as A3 in it.
The Lagrangian for the electromagnetic field does not have such a term (electromagnetism
is linear), but there are plenty of self-interacting fields in nature. The gluon is one. Another
is the graviton. The Lagrangian for the graviton is heuristically

L = −1
2
h�h+

1
3
λh3 + Jh, (3.69)

where h represents the gravitational potential, as A0 represents the Coulomb potential. We
are ignoring spin and treating gravity as a simple scalar field theory. The h3 term represents
a graviton self-interaction, which is present in general relativity and so λ ∼

√
GN . The

equations of motion are

�h− λh2 − J = 0. (3.70)

Now we solve perturbatively in λ. For λ = 0,

h0 =
1
�J. (3.71)

This is what we had before. Then we plug in

h = h0 + h1 (3.72)

with h1 = O(λ1). Then

�(h0 + h1)− λ(h0 + h1)2 − J = 0, (3.73)

which implies

�h1 = λh2
0 +O(λ2), (3.74)

so that

h1 = λ
1
� (h0h0) = λ

1
�

[(
1
�J

)(
1
�J

)]
. (3.75)

Thus, the solution to order λ is

h =
1
�J + λ

1
�

[(
1
�J

)(
1
�J

)]
+O(λ2). (3.76)

We can keep this up, resulting in a nice expansion for h.
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This is known as the Green’s function method. The object

Π = − 1
� (3.77)

is known as a 2-point Green’s function or propagator. Propagators are integral parts of
quantum field theory. Classically, they tell us how a field propagates through space when
it is sourced by a current J(x). Note that the propagator has nothing to do with the source.
In fact it is entirely determined by the kinetic terms for a field.

It is not hard to be more precise about this expansion. We can define Π = − 1
� as the

solution to

�xΠ(x, y) = −δ4(x− y) , (3.78)

where �x = gμν ∂
∂xμ

∂
∂xν . Up to some subtleties with boundary conditions, which will be

addressed in future chapters, the solution is

Π(x, y) =
∫

d4k

(2π)4
eik(x−y)

1
k2
, (3.79)

which is easy to check:

�xΠ(x, y) = −
∫

d4k

(2π)4
eik(x−y) = −δ4(x− y) . (3.80)

Note that Π(x, y) = Π(y, x).
Using �yΠ(x, y) = −δ4(x− y) we can then write a field as

h(x) =
∫
d4y δ4(x− y)h(y) = −

∫
d4y [�yΠ(x, y)]h(y) = −

∫
d4yΠ(x, y) �yh(y),

(3.81)
where we have integrated by parts in the last step. This lets us solve the free equation
�yh0(y) = J(y) by inserting it on the right-hand side of this identity, to give

h0(x) = −
∫
d4yΠ(x, y) J(y). (3.82)

The next term in the expansion is Eq. (3.74), whose more precise form is

�wh1(w) = λh2
0(w) = λ

∫
d4yΠ(w, y)J(y)

∫
d4zΠ(w, z) J(z). (3.83)

Substituting again into Eq. (3.81) and combining with the leading-order result, we find

h(x) = −
∫
d4yΠ(x, y) J(y)

+ λ

∫
d4w

∫
d4y

∫
d4zΠ(x,w) Π(w, y) Π(w, z) J(y)J(z) +O(λ2), (3.84)

which is what was meant by Eq. (3.76).
There is a nice pictorial representation of this solution:

h(x) =
x

J(y) +
x

J(y)

J(z)w

+ · · · (3.85)
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These are called Feynman diagrams. The rules for matching equations such as Eq. (3.84)
to pictures like this are called Feynman rules. The Feynman rules for this classical field
theory example are:

1. Draw a point x and a line from x to a new point xi.
2. Either truncate a line at a source J or let the line branch into two lines adding a new

point and a factor of λ.
3. Repeat previous step.
4. The final value for h(x) is given by graphs up to some order in λ with the ends capped

by currents J(xi), the lines replaced by propagators Π(xi, xj), and all internal points
integrated over.

As we will see in Chapter 7, the Feynman rules for quantum field theory are almost
identical, except that for � �= 0 lines can close in on themselves.

Returning to our concrete example of classical gravity, these diagrams describe the way
the Sun affects Mercury. The zigzag lines represent gravitons and the blobs on the right
represent the source, which in this case is the Sun. Mercury, on the left, is also drawn as a
blob, since it is classical. The first diagram represents Newton’s potential, while the second
diagram has the self-interaction in it, proportional to λ ∼

√
GN . You can use this pictorial

representation to immediately write down the additional terms. Drawing the next-order
picture translates immediately into an integral expression representing the next term in the
perturbative solution for h(x). In this way, one can solve the equations of motion for a
classical field by drawing pictures.

Problems

3.1 Find the generalization of the Euler–Lagrange equations for general Lagrangians,
of the form L [φ, ∂μφ, ∂ν∂μφ, . . .].

3.2 Lorentz currents.
(a) Calculate the conserved currents Kμνα associated with (global) Lorentz

transformations xμ → Λμνxν . Express the currents in terms of the energy-
momentum tensor.

(b) Evaluate the currents for L = 1
2φ
(
� +m2

)
φ. Check that these currents satisfy

∂αKμνα = 0 on the equations of motion.
(c) What is the physical interpretation of the conserved quantitiesQi =

∫
d3xK0i0

associated with boosts?
(d) Show that dQidt = 0 can still be consistent with i∂Qi∂t = [Qi,H]. Thus, although

these charges are conserved, they do not provide invariants for the equations of
motion. This is one way to understand why particles have spin, corresponding
to representations of the rotation group, and not additional quantum numbers
associated with boosts.



Problems 43

3.3 Ambiguities in the energy-momentum tensor.
(a) If you add a total derivative to the Lagrangian L → L + ∂μX

μ, how does the
energy-momentum tensor change?

(b) Show that the total energy Q =
∫
T00 d

3x is invariant under such changes.
(c) Show that Tμν �= Tνμ is not symmetric for L = − 1

4F
2
μν . Can you find an Xμ

so that Tμν is symmetric in this case?
3.4 Write down the next-order diagrams in Eq. (3.85) and their corresponding integral

expressions using Feynman rules. Check that your answer is correct by using the
Green’s function method.

3.5 Spontaneous symmetry breaking is an important subject, to be discussed in depth in
Chapter 28. A simple classical example that demonstrates spontaneous symmetry
breaking is described by the Lagrangian for a scalar with a negative mass term:

L = −1
2
φ�φ+

1
2
m2φ2 − λ

4!
φ4. (3.86)

(a) How many constants c can you find for which φ(x) = c is a solution to the
equations of motion? Which solution has the lowest energy (the ground state)?

(b) The Lagrangian has a symmetry under φ → −φ. Show that this symmetry
is not respected by the ground state. We say the vacuum expectation value
of φ is c, and write 〈φ〉 = c. In this vacuum, the Z2 symmetry φ → −φ is
spontaneously broken.

(c) Write φ(x) = c+π(x) and substitute back into the Lagrangian. Show that now
π = 0 is a solution to the equations of motion. How does π transform under
the Z2 symmetry φ→ −φ? Show that this is a symmetry of π’s Lagrangian.

3.6 Yukawa potential.
(a) Calculate the equations of motion for a massive vectorAμ from the Lagrangian

L = −1
4
F 2
μν +

1
2
m2A2

μ −AμJμ, (3.87)

where Fμν = ∂μAν − ∂νAμ. Assuming ∂μJμ = 0, use the equations to find a
constraint on Aμ.

(b) For Jμ the current of a point charge, show that the equation of motion for A0

reduces to

A0(r) =
e

4π2ir

∫ ∞

−∞

k dk

k2 +m2
eikr. (3.88)

(c) Evaluate this integral with contour integration to get an explicit form forA0(r).
(d) Show that as m→ 0 you reproduce the Coulomb potential.
(e) In 1935 Yukawa speculated that this potential might explain what holds protons

together in the nucleus. What qualitative features does this Yukawa potential
have, compared to a Coulomb potential, that make it a good candidate for the
force between protons? What value for m might be appropriate (in MeV)?

(f) Plug the constraint on Aμ that you found in part (a) back into the Lagrangian,
simplify, then rederive the equations of motion. Can you still find the con-
straint? What is acting as a Lagrange multiplier in Eq. (3.87)?
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3.7 Nonlinear gravity as a classical field theory. In this problem, you will calculate the
perihelion shift of Mercury simply by dimensional analysis.
(a) The interactions in gravity have

L = M2
Pl

(
−1

2
hμν�hμν + (∂αhμν)(∂βhμα)hνβ + · · ·

)
− hμνTμν , (3.89)

where MPl = 1√
GN

is the Planck scale. Rescaling h, and dropping indices and
numbers of order 1, this simplifies to

L = −1
2
h�h+ (MPl)ah2�h− (MPl)bhT. (3.90)

What are a and b (i.e. what are the dimensions of these terms)?
(b) The equations of motion following from this Lagrangian are (roughly)

�h = (MPl)a�(h2)− (MPl)bT. (3.91)

For a point source T = mδ(3)(x), solve Eq. (3.91) for h to second order in the
source T (or equivalently to third order in M−1

Pl ). You may use the Coulomb
solution we already derived.

(c) To first order, h is just the Newtonian potential. This causes Mercury to
orbit. What is Mercury’s orbital frequency, ω = 2π

T ? How does it depend on
mMercury, mSun, MPl and the distance R between Mercury and the Sun?

(d) To second order, there is a correction that causes a small shift Mercury’s orbit.
Estimate the order of magnitude of the correction to ω in arcseconds/century
using your second-order solution.

(e) Estimate how big the effect is of other planets on Mercury’s orbital fre-
quency. (Dimensional analysis will do – just get the right powers of masses
and distances.)

(f) Do you think the shifts from either the second-order correction or from the
other planets should be observable for Mercury? What about for Venus?

(g) If you derive Eq. (3.91) from Eq. (3.90), what additional terms do you get?
Why is it OK to use Eq. (3.91) without these terms?

3.8 How does the blackbody paradox argument show that the electromagnetic field
cannot be classical while electrons and atoms are quantum mechanical? Should
the same arguments apply to treating gravity classically and electrons quantum
mechanically?

3.9 Photon polarizations (this problem follows the approach in [Feynman et al., 1996]).
(a) Starting withL = − 1

4F
2
μν+JμAμ, substitute inAμ’s equations of motion. This

is called integrating out Aμ. In momentum space, you should get something
like Jμ 1

k2 Jμ.
(b) Choose kμ = (ω, κ, 0, 0). Use current conservation (∂μJμ = 0) to formally

solve for J1 in terms of J0, ω and κ in this coordinate system.
(c) Rewrite the interaction Jμ 1

k2 Jμ in terms of J0, J2, J3, ω and κ.
(d) In what way is a term without time derivatives instantaneous (non-causal)?

How many causally propagating degrees of freedom are there?
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(e) How do we know that the instantaneous term(s) do not imply that you can
communicate faster than the speed of light?

3.10 Graviton polarizations. We will treat the graviton as a symmetric 2-index tensor
field. It couples to a current Tμν also symmetric in its two indices, which satisfies
the conservation law ∂μTμν = 0.
(a) Assume the Lagrangian is L = − 1

2hμν�hμν + 1
MPl

hμνTμν . Solve hμν’s
equations of motion, and substitute back to find an interaction like Tμν 1

k2Tμν .
(b) Write out the 10 terms in the interaction Tμν

1
k2Tμν explicitly in terms of

T00, T01, etc.
(c) Use current conservation to solve for Tμ1 in terms of Tμ0, ω and κ. Substitute in

to simplify the interaction. How many causally propagating degrees of freedom
are there?

(d) Add to the interaction another term of the form cTμμ
1
k2Tνν . What value of c

can reduce the number of propagating modes? How many are there now?
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The slickest way to perform a perturbation expansion in quantum field theory is with Feyn-
man diagrams. These diagrams will be the main tool we will use in this book, and we will
derive the diagrammatic expansion in Chapter 7. Feynman diagrams, while having advan-
tages such as producing manifestly Lorentz-invariant results, can give a very unintuitive
picture of what is going on. For example, they seem to imply that particles that cannot exist
can appear from nowhere. Technically, Feynman diagrams introduce the idea that a particle
can be off-shell, meaning not satisfying its classical equations of motion, for example, with
p2 �= m2. They trade on-shellness for exact 4-momentum conservation. This conceptual
shift was critical in allowing the efficient calculation of amplitudes in quantum field theory.
In this chapter, we explain where off-shellness comes from, why you do not need it, but
why you want it anyway.

To motivate the introduction of the concept of off-shellness, we begin by using our
second-quantized formalism to compute amplitudes in perturbation theory, just as in quan-
tum mechanics. Since we have seen that quantum field theory is just quantum mechanics
with an infinite number of harmonic oscillators, the tools of quantum mechanics such
as perturbation theory (time-dependent or time-independent) should not have changed.
We will just have to be careful about using integrals instead of sums and the Dirac
δ-function instead of the Kronecker δ. So, we will begin by reviewing these tools and
applying them to our second-quantized photon. This is called old-fashioned perturbation
theory (OFPT).

As a historical note, OFPT was still a popular way of doing calculations through at least
the 1960s. Some physicists, such as Schwinger, never embraced Feynman diagrams and
continued to use OFPT. It was not until the 1950s through the work of Dyson and others
that it was shown that OFPT and Feynman diagrams gave the same results. Despite the
prevalence of Feynman’s approach in modern calculations, and the efficient encapsulation
by the path integral formalism (Chapters 14 and onward), OFPT is still worth understand-
ing. It provides complementary physical insight into quantum field theory. For example, a
souped-up version of OFPT is given by Schwinger’s proper-time formalism (Chapter 33),
which is still the best way to do certain effective-action calculations. Also, OFPT is closely
related to the reduction of loop amplitudes into sums over on-shell states using unitarity
(see Section 24.1.2).

This chapter can be skipped without losing continuity with the rest of the text.
46
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4.1 Lippmann–Schwinger equation

Just as in quantum mechanics, perturbation theory in quantum field theory works by
splitting the Hamiltonian up into two parts:

H = H0 + V, (4.1)

where the eigenstates of H0 are known exactly, and the potential V gives corrections that
are small in some sense. The difference from quantum mechanics is that in quantum field
theory the states often have a continuous range of energies. For example, in a hydrogen
atom coupled to an electromagnetic field, the associated photon energies, E = ωk = |�k|,
can take any values. Because of the infinite number of states, the methods look a little
different, but we will just be applying the natural continuum generalization of perturbation
theory in quantum mechanics.

We are often interested in a situation where we know the state of a system at early times
and would like to know the state at late times. Say the state has a fixed energy E at early
and late times (of course, it is the same E). There will be some eigenstate of H0 with
energy E, call it |φ〉. So,

H0|φ〉 = E|φ〉 . (4.2)

If the energies E are continuous, we should be able to find an eigenstate |ψ〉 of the full
Hamiltonian with the same eigenvalue:

H|ψ〉 = E|ψ〉, (4.3)

and we can formally write

|ψ〉 = |φ〉+
1

E −H0
V |ψ〉, (4.4)

which is trivial to verify by multiplying both sides by E − H0. This is called the
Lippmann–Schwinger equation.1 The inverted object appearing in the Lippmann–
Schwinger equation is a kind of Green’s function known as the Lippmann–Schwinger
kernel:

ΠLS =
1

E −H0
. (4.6)

The Lippmann–Schwinger equation is useful in scattering theory (see Chapter 5). In
scattering calculations the potential acts at intermediate times to induce transitions among
states |φ〉 that are assumed to be free (non-interacting) at early and late times. It says
the full wavefunction |ψ〉 is given by the free wavefunction |φ〉 plus a scattering term.

1 Formally, the inverse of E − H0 is not well defined. Since E is an eigenvalue of H0, det(E −H0) = 0

and (E −H0)−1 is singular. To regulate this singularity, we can add an infinitesimal imaginary factor iε,
leading to

|ψ〉 = |φ〉 +
1

E −H0 + iε
V |ψ〉, (4.5)

with the understanding that ε should be taken to zero at the end of the calculation.
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What we would really like to do is express |ψ〉 entirely in terms of |φ〉. Thus, we define
an operator T by

V |ψ〉 = T |φ〉 , (4.7)

where T is known as the transfer matrix. Inserting this definition turns the Lippmann–
Schwinger equation into

|ψ〉 = |φ〉+
1

E −H0
T |φ〉, (4.8)

which formally gives |ψ〉 in terms of |φ〉. Multiplying this by V and demanding the two
sides be equal when contracted with any state 〈φj | gives an operator equation for T :

T = V + V
1

E −H0
T. (4.9)

We can then solve perturbatively in V to get

T = V + V
1

E −H0
V + V

1
E −H0

V
1

E −H0
V + · · ·

= V + V ΠLS V + V ΠLS V ΠLS V + · · · . (4.10)

If we insert the complete set
∑
j |φj〉〈φj | of eigenstates |φj〉 of H0, the matrix elements

become

〈φi|T |φf 〉 = 〈φi|V |φf 〉+ 〈φf |V
1

E −H0
|φj〉〈φj |V |φi〉+ · · · . (4.11)

Writing Tfi = 〈φf |T |φi〉 and Vij = 〈φi|V |φj〉, this becomes

Tfi = Vfi + VfjΠLS(j)Vji + VfjΠLS(j)VjkΠLS(k)Vki + · · · , (4.12)

where ΠLS(k) = 1
E−Ek . Again, E = Ei = Ej is the energy of the initial and final state

we are interested in. This expansion is old-fashioned perturbation theory.
Equation (4.12) describes how a transition rate can be calculated in perturbation theory

as a sum of terms. In each term the potential creates an intermediate state |φj〉 which
propagates with the propagator ΠLS(j) until it hits another potential, where it creates a
new field |φk〉 which then propagates and so on, until they hit the final potential factor,
which transitions it to the final state. There is a nice diagrammatic way of drawing this
series, called Feynman graphs, which we will see through an example in a moment and in
more detail in upcoming chapters. The first term Vij gives the Born approximation (or
first Born approximation), the second term, the second Born approximation and so on. See,
for example, [Sakurai, 1993] for applications of the Lippmann–Schwinger approximation
in non-relativistic quantum mechanics.

4.1.1 Coulomb’s law revisited

The example we will compute is one we will revisit many times: an electron scattering off
another electron. The transition matrix element for this process is given by the Lippmann–
Schwinger equation as

Tfi = Vfi +
∑
n

Vfn
1

Ei − En
Vni + · · · . (4.13)
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Here, Ei is the initial energy (which is the same as the final energy), and En is the energy
of the intermediate state. The initial and final states each have two electrons |i〉 =

∣∣ψ1
eψ

2
e

〉
and 〈f | =

〈
ψ3
eψ

4
e

∣∣, where the superscripts label the momenta, i.e. ψ1
e has �p1, etc. The

intermediate state can be anything in the whole Fock space, but only certain intermediate
states will have non-vanishing matrix elements with V .

In relativistic field theory, the instantaneous action-at-a-distance of Coulomb’s law is
replaced by a process where two electrons exchange a photon that travels only at the speed
of light. Thus, there should be a photon in the intermediate state. Ignoring the spin of
the electrons and the photon, the interaction of the electrons with the photon field can be
written as

V =
1
2
e

∫
d3xψe(x)φ(x)ψe(x). (4.14)

This interaction is local, since the fields ψe(x) and φ(x), corresponding to the electrons
and photon, are all evaluated at the same point. The factor of 1

2 comes from ignoring spin
and treating all fields as representing real scalar particles.

This interaction can turn a state with an electron of momentum �p1 into a state with an
electron of momentum �p3 and a photon of momentum �pγ . Since initial and final states both
have two electrons and no photons, the leading term in Eq. (4.13) vanishes, Vfi = 0.

To get a non-zero matrix element, we need an intermediate state |n〉with a photon. There
are two intermediate states that can contribute. In the first, the photon is emitted from the
first electron and the intermediate state is before that photon hits the second electron. We
can draw a picture representing this process:

�p1

�p2 �p4

�p3

e−2

e−1

e−4

e−3
time −→

(4.15)

The vertical dashed line indicates the time at which the intermediate state is evaluated. The
second electron feels the effect of a photon that the source, the first electron, emitted at an
earlier time. We say that the electron states interact in this case through a retarded propa-
gator. For this retarded case, |n〉 =|ψ3

eφ
γψ2

e〉 where |φγ〉 is a photon state of momentum
pγ . Then,

V
(R)
ni = e〈ψ3

eφ
γψ2

e |V
∣∣ψ1
eψ

2
e 〉 = e〈ψ3

eφ
γ |V
∣∣ψ1
e 〉〈ψ2

e

∣∣ψ2
e〉 = e〈ψ3

eφ
γ |V
∣∣ψ1
e 〉. (4.16)

The other possibility is that the photon is emitted from the second electron, correspond-
ing to

�p3

�p4�p2

�p1

e−2

e−1

e−4

e−3
time −→

(4.17)
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which requires V (A)
ni = 〈ψ4

eφ
γ |V
∣∣ψ2
e 〉. In this case, from the second electron’s point of

view, the effect is felt before the source, the first electron, emitted the photon. The photon
propagator in this case is called an advanced propagator. Obviously, which diagram is
advanced or retarded depends on what we call the source, but either way there are two
intermediate states, one with a retarded and the other with an advanced propagator.

To find an expression for these matrix elements, we insert our field operators:

V
(R)
ni =

e

2
〈ψ3
eφ

γ |V |ψ1
e〉 =

e

2

∫
d3x〈ψ3

eφ
γ |ψe(x)φ(x)ψe(x)|ψ1

e〉. (4.18)

To evaluate this, recall from from Eq. (2.75) that the second-quantized fields are

φ(�x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

i�p�x + a†pe
−i�p�x) , (4.19)

with a similar form for the electron, and that

〈φγ |φ(x)|0〉 = e−i�pγ ·�x (4.20)

and similarly for other matrix elements. The interaction V(x) is a product of three fields,
and one can pair either of the electron fields in V(x) with either of the electron states in
evaluating 〈ψ3

eφ
γ |V
∣∣ψ1
e 〉, so we pick up a factor of 2 in the matrix element. We then find

V
(R)
ni = e

∫
d3x ei(�p1−�p3−�pγ)�x = e(2π)3 δ3(�p1 − �p3 − �pγ) . (4.21)

The other matrix elements, V (A)
ni , and those involving the final state are similar, which you

can verify.
Thus, we have at first non-vanishing order:

Tfi =
∫
d3�pγ (2π)3 δ3(�p1 − �p3 − �pγ) (2π)3 δ3(�p2 − �p4 + �pγ)

e2

Ei − En
. (4.22)

These δ-functions tell us that 3-momentum is conserved in the local interactions between
the photon and the electrons. Note that nothing tells us that energy is conserved; if it were,
then En = Ei and this matrix element would blow up. This should not surprise you; the
energy of intermediate states has always been different from the energy of the initial and
final states in quantum mechanics – due to the uncertainty principle, energy can be not
conserved for short times.

To find a form for En, let us first denote the intermediate photon energy as Eγ , the
incoming electron energies E1 and E2, and the outgoing electron energies E3 and E4.
The momenta of the electrons are �p1, �p2, �p3, �p4 as above. By conservation of momentum,
the photon momentum must be �pγ = �p1 − �p3. The photon energy is whatever it needs to
be to put the photon on-shell: 0 = p2

γ = E2
γ − �p 2

γ , so Eγ = |�pγ |. That is,

pμγ = (Eγ , �pγ) = (|�p1 − �p3| , �p1 − �p3) . (4.23)

For Eq. (4.22), we need the intermediate state energy, which is different for retarded and
advanced cases.

In the retarded case the first electron emits the photon and we look at the state before
the photon hits the second electron, as shown in the figure in Eq. (4.15). In this case, at the
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intermediate time the first electron is already in its final state, with energy E3. So the total
intermediate state energy is

E(R)
n = E3 + E2 + Eγ . (4.24)

Dropping the 2π factors and the overall momentum-conserving δ-functions for clarity (we
will give a detailed derivation of these factors and their connection to scattering cross
sections in the relativistic theory in Chapter 5), we then find

T
(R)
fi =

e2

Ei − E(R)
n

=
e2

(E1 + E2)− (E3 + E2 + Eγ)
=

e2

(E1 − E3)− Eγ
. (4.25)

In the advanced case, the second electron emits the photon and we look at the interme-
diate state before the photon hits the first electron, as in the diagram in Eq. (4.17). Then
the energy is

E(A)
n = E4 + E1 + Eγ (4.26)

and

T
(A)
fi =

e2

Ei − E(A)
n

=
e2

(E1 + E2)− (E4 + E1 + Eγ)
=

e2

(E2 − E4)− Eγ
. (4.27)

Finally, we have to add the advanced and retarded contributions, since they are both valid
intermediate states. Overall energy conservation says E1 +E2 = E3 +E4, so E1 −E3 =
E4 − E2 ≡ ΔE. So the sum is

T
(R)
fi +T (A)

fi =
e2

Ei − E(R)
n

+
e2

Ei − E(A)
n

=
e2

ΔE − Eγ
+

e2

−ΔE − Eγ
=

2e2Eγ
(ΔE)2 − (Eγ)2

.

(4.28)
To simplify this answer, let us define a 4-vector kμ by

kμ ≡ pμ3 − p
μ
1 = (ΔE, �pγ) . (4.29)

Note, this is not the photon momentum in Eq. (4.23) since Eγ = |�pγ | �= ΔE, or more
simply, since k2 �= 0. But kμ is a Lorentz 4-vector, since it comprises an energy and a
3-momentum. The norm of kμ is

k2 = (ΔE)2 − (Eγ)2. (4.30)

This is convenient, since it lets us write the transition matrix simply as

Tfi = T
(R)
fi + T

(A)
fi = 2Eγ

(
e2

k2

)
. (4.31)

The 2Eγ is related to normalization, which, along with the 2π and δ-function factors, will
be properly accounted for in the relativistic treatment of the transfer matrix in the next
chapter.

The remarkable feature of Tfi is that it contains a Lorentz-invariant factor of 1
k2 . This

1
k2 = − 1

� is the Green’s function for a Lorentz-invariant theory. If one of the elec-
trons were at rest, we would sum the appropriate combination of momentum eigenstates,
which would amount to Fourier transforming 1

k2 to reproduce the Coulomb potential, as in
Section 3.4.
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4.1.2 Feynman rules for OFPT

Let us summarize some ingredients that went into the scattering calculation above:

• All states are physical, that is, they are on-shell at all times.
• Matrix elements Vij will vanish unless 3-momentum is conserved at each vertex.
• Energy is not conserved at each vertex.

These are the Feynman rules for old-fashioned perturbation theory.2 As mentioned in the
introduction to this chapter, on-shell means that the state satisfies its free-field equations
of motion. For example, a scalar field satisfying (� +m2)φ = 0 would have p2 = m2. It
is called on-shell since �p 2 = E2 −m2 at fixed E and m is the equation for the surface of
a sphere. So on-shell particles live on the shell of the sphere.

Despite the fact that the intermediate states in OFPT are on-shell, we saw that it was
helpful to write the answer in terms of a Lorentz 4-vector kμ with k2 �= 0 representing
the momentum of an unphysical, off-shell photon. We were led to kμ by combining two
diagrams with different temporal orderings, which we called advanced and retarded.

It would be nice if we could get kμ with just one diagram, where 4-momentum is con-
served at vertices and so propagators can be Lorentz invariant from the start. In fact we
can! That is what we will be doing in the rest of the book. As we will see, there is just one
propagator in this approach, the Feynman propagator, which combines the advanced and
retarded propagators into one in a beautifully efficient way. So we will not have to keep
track of what happens first. This new formalism will give us a much more cleanly organized
framework to address the confusing infinities that plague quantum field theory calculations.
Before finishing OFPT, as additional motivation and for its important historical relevance,
we will heuristically review one such infinity.

4.2 Early infinities

Historically, one of the first confusions about the second-quantized photon field was that
the Hamiltonian

H =
∫

d3k

(2π)3
ωk

(
a†kak +

1
2

)
(4.32)

with ωk = |�k| seemed to imply that the vacuum has infinite energy,

E0 = 〈0|H|0〉 =
1
2

∫
d3k

(2π)3

∣∣∣�k ∣∣∣ =∞. (4.33)

Fortunately, there is an easy way out of this paradoxical infinity: How do you measure
the energy of the vacuum? You do not! Only energy differences are measurable, and in
these differences the zero-point energy, the energy of the ground state, drops out. This is
the basic idea behind renormalization – infinities can appear in intermediate calculations,

2 The easiest way to derive these rules rigorously for a general scattering process, with the conventional relativis-
tic normalization, and with proper account of the iε in Eq. 4.5, is actually to start from the Lorentz-invariant
Feynman rules we derive in Chapter 7. See [Sterman, 1993, Section 9.5] for more details.
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but they must drop out of physical observables. This zero-point energy does have con-
sequences, such as the Casimir effect (Chapter 15), which comes from the difference in
zero-point energies in different size boxes, and the cosmological constant problem, which
comes from the fact that energy gravitates. We will come to understand these two examples
in detail in Part III, but it makes more sense to start with some less exotic physics.

In 1930, Oppenheimer thought to use perturbation theory to compute the shift of the
energy of the hydrogen atom due to the photons [Oppenheimer, 1930]. He got infinity
and concluded that QED was wrong. In fact, the result is not infinite but a finite calcu-
lable quantity known as the Lamb shift, which agrees perfectly with data. However, it is
instructive to understand Oppenheimer’s argument.

4.2.1 Oppenheimer and the Lamb shift

Using OFPT we would calculate the energy shift using

ΔEn = 〈ψn|Hint|ψn〉+
∑
m �=n

| 〈ψn|Hint|ψm〉 |2
En − Em

. (4.34)

This is the standard formula from time-independent perturbation theory. The basic problem
is that we have to sum over all possible intermediate states |ψm〉, including ones that have
nothing much to do with the system of interest (for example, free plane waves). It is still
true in field theory that there are only a finite number of states below any given energy
level E, so that as E → ∞, 1

E−En → 0. The catch is that there are an infinite number of

states, and their phase space density goes as
∫
d3k ∼ E3, so that you get E3

E−En →∞ and
perturbation theory breaks down. This is exactly what Oppenheimer found.

First, take something where the calculation makes sense, such as a fixed non-dynamical
background field. Say there is an electric field in the ẑ direction. Then the potential energy
is proportional to the electric field:

Hint = e �E · �x = e|E|z. (4.35)

This interaction produces the linear Stark effect, which is a straightforward application of
time-independent perturbation theory in quantum mechanics. Our discussion of the Stark
effect here will be limited to a quick demonstration that it is finite, and a representation of
the result in terms of diagrams.

Since an atom has no electric dipole moment, the first-order correction is zero:

〈ψn|Hint|ψn〉 = 0. (4.36)

At second order:

ΔE0 =
∑
m>0

| 〈ψ0|Hint|ψm〉 |2
E0 − Em

= . (4.37)

The picture on the right side of this equation is the corresponding Feynman diagram: the
symbols represent the electric field which sources photons that interact with the elec-

tron (more general background-field calculations will be discussed in Chapters 33 and 34);
the electron is represented as the solid line on the bottom; the points where the photon
meets the electron correspond to matrix elements of Hint; finally, the line between the
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two photon insertions is the electron propagator, the 1
E0−Em factor in the second-order

expression for ΔE0.
To show that ΔE0 is finite, we assume that E0 < 0 without loss of generality and that

Em > E1 > E0 so that E0 is the ground state. Since ΔE0 < 0, by Eq. (4.37), we need to
show that ΔE0 is bounded from below. Using the completeness relation

1 =
∑
m≥0

|ψm〉〈ψm| = |ψ0〉〈ψ0|+
∑
m>0

|ψm〉〈ψm|, (4.38)

we have

−ΔE0 ≤
1

E1 − E0

∑
m>0

〈ψ0|Hint|ψm〉 〈ψm|Hint|ψ0〉

=
1

E1 − E0

[〈
ψ0|H2

int|ψ0

〉
− 〈ψ0|Hint|ψ0〉2

]
. (4.39)

The right-hand side of this equation is a positive number, thus ΔE0 is bounded from below
and above (by 0) and hence the energy correction to the ground state is finite. While it is
not hard to calculate ΔE0 exactly for a given system, such as the hydrogen atom, the only
thing we want to observe here is that ΔE0 is finite.

Now, instead of an external electric field, what would happen if this field were produced
by the electron itself? Then we need to allow for the creation of photons by the electron and
their annihilation back into the electron, which can be described with our second-quantized
photon field. The starting Hamiltonian, for which we know the exact eigenstates, now has
two parts:

H0 = Hatom
0 +Hphoton

0 , (4.40)

with energy eigenstates given by electron wavefunctions associated with a set of pho-
tons, so

H0|ψn; {nk}〉 =

(
En +
∑
k

nkωk

)
|ψn; {nk}〉, (4.41)

where we allow for any number of excitations nk of the photons of any momenta �k.
At second order in perturbation theory, only one photon can be created and destroyed,

but we have to integrate over this photon’s momentum. We are interested in the integration
region where the photon has a very large momentum. By momentum conservation in OFPT,
since the ground state only has support for small momentum, the excited state of the atom
must have large momentum roughly backwards to that of the photon, �p ∼ −�k. Thus, the
excited state wavefunction will approach that of a free plane wave. The excited state energy
is E ≈ |�p|+ |�k| and so at large k the integral will be

ΔE0 ∼
∫

d3p

(2π)3

∫
d3k

(2π)3

∫
d3x

ei(
�k−�p)·�x

E0 − (|�p|+ |�k|)
. (4.42)

After evaluating the x integral to get δ3(�p− �k) and then the �p integral, we find

ΔE0 ∼
∫

d3k

(2π)3
1

|�k|
=

1
2π2

∫
k dk = ∞. (4.43)
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This means that there should be an infinite shift in the energy levels of the hydrogen atom.
Oppenheimer also showed that if you take the difference between two levels, relevant for
the shift in spectral lines, the result is also divergent. He concluded, “It appears improbable
that the difficulties discussed in this work will be soluble without an adequate theory of the
masses of the electron and proton; nor is it certain that such a theory will be possible on
the basis of the special theory of relativity” [Oppenheimer, 1930, p. 477].

What went wrong? In the Stark effect calculation we only had to sum over excited elec-
tron states, through

∑
m>0 |ψm〉〈ψm| in Eq. (4.39), which was finite. For the Lamb shift

calculation, the sum was also over photon states, which was divergent. It diverged because
the phase space for photons, d3k, is larger than the suppression, 1

|�k| , due to the energies

of the intermediate excited states. In terms of Feynman diagrams, the difference is that in
the latter case we do not consider interactions with a fixed external field, but integrate over
dynamical fields, corresponding to intermediate state photons. Since the photons relevant
to the 〈ψ0|Hint|ψm; 1k〉matrix element are the same as the photons relevant to the second,
〈ψm; 1k|Hint|ψ0〉 matrix element, the photon lines represent the same state and should be
represented by a single line. Thus the diagram contracts,

ΔE0 = → , (4.44)

and the Stark effect diagram becomes a loop diagram for the Lamb shift. These pictures
are just shorthand for the perturbation expansion. The loop means that there is an unknown
momentum, �k, over which we have to integrate. Momentum must be conserved, but it can
split between the atom and the photon in an infinite number of ways.

There was actually nothing wrong with Oppenheimer’s calculation. He did get the
answer that OFPT predicts. What he missed was that there are other infinities that even-
tually cancel this infinity (for example, the electron mass is infinite too, so in fact his
conclusion was on the right track). This discussion was really just meant as a preview to
demonstrate the complexities we will be up against. To sort out all these infinities, it will
be really helpful, but not strictly necessary, to have a formalism that keeps the symme-
tries, in particular Lorentz invariance, manifest along the way. Although Schwinger was
able to tame the infinities using OFPT, his techniques were not for everyone. In his own
words, “Like the silicon chips of more recent years, the Feynman diagram was bringing
computation to the masses” [Brown and Hoddesdon, 1984, p. 329].

Problems

4.1 Calculate the transition matrix element Tij for the process e+e− → γ → μ+μ−.
(a) Write down the 1

Ei−E0
terms for the two possible intermediate states, from the

two possible time slicings.
(b) Show that they add up to 2Eγ

k2 , where kμ is now the 4-momentum of the virtual
off-shell photon.



5 Cross sections and decay rates

The twentieth century witnessed the invention and development of collider physics as an
efficient way to determine which particles exist in nature, their properties, and how they
interact. In early experiments, such as Rutherford’s discovery of the nucleus in 1911 using
α-particles or Anderson’s discovery of the positron in 1932 from cosmic rays, the colliding
particles came from nature. Around 1931, E. O. Lawrence showed that particles could be
accelerated to relativistic velocities in the lab, first through a 4-inch cyclotron, which gave
protons 80 000 electronvolts of kinetic energy, soon to go up to around 1 million electron-
volts. The Large Hadron Collider can collide beams of protons with 7 trillion electronvolts
of energy. Colliders provide a great way to study fundamental interactions because they
begin with initial states of essentially fixed momenta, i.e. plane waves, and end up with
final states, which also have fixed momenta. By carefully measuring the mapping from
initial state momenta to final state momenta, one can then compare to theoretical models,
such as those of quantum field theory.

Quantum mechanics consists of an elaborate collection of rules for manipulating states
in a Hilbert space. The experimentally measurable quantities that are predicted in quan-
tum mechanics are differential probabilities. These probabilities are given by the modulus
squared of inner products of states. We can write such inner products as 〈f ; tf |i; ti〉, where
|i; ti〉 is the initial state we start with at time ti and 〈f ; tf | is the final state we are inter-
ested in at some later time tf . Since quantum field theory is just quantum mechanics with
lots of fields, the experimental quantities we will be able to predict are also of the form
|〈f ; tf |i; ti〉|2.

The notation 〈f ; tf |i; ti〉 refers to the Schrödinger picture representation, where the
states evolve in time. In the Heisenberg picture, which will be the default picture for quan-
tum field theory, we leave the states alone and put all the time evolution into an operator. In
the special case where we evolve momentum eigenstates from t = −∞ to t = +∞, rele-
vant for collider physics applications, we give the time-evolution operator a special name:
the scattering or S-matrix. The S-matrix is defined as

〈f |S|i〉Heisenberg = 〈f ;∞| i;−∞〉Schrödinger . (5.1)

The S-matrix has all the information about how the initial and final states evolve in time.
Quantum field theory will tell us how to calculate S-matrix elements. As we will explain
in this chapter and the next, the S-matrix is defined assuming that all of the things that
change the state (the interactions) happen in a finite time interval, so that at asymptotic
times, t = ±∞, the states are free of interactions. Free states at t = ±∞ are known as
asymptotic states.

56
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The number of particles scattered classically is proportional to the cross-sectional area of
the scattering object.

�Fig. 5.1

S-matrix elements are the primary objects of interest for high-energy physics. In this
chapter, we will relate S-matrix elements to scattering cross sections, which are directly
measured in collider experiments. We will also derive an expression for decay rates, which
are also straightforward to measure experimentally. Quantum field theory is capable of cal-
culating other quantities besides S-matrix elements, such as thermodynamic properties of
condensed matter systems. However, since the tools we develop for S-matrix calculations,
such as Feynman rules, are also relevant for these applications, it is logical to focus on
S-matrix elements for concreteness.

5.1 Cross sections

A cross section is a natural quantity to measure experimentally. For example, Rutherford
was interested in the size r of an atomic nucleus. By colliding α-particles with gold foil and
measuring how many α-particles were scattered, he could determine the cross-sectional
area, σ = πr2, of the nucleus. Imagine there is just a single nucleus. Then the cross-
sectional area is given by

σ =
number of particles scattered

time× number density in beam× velocity of beam
=

1
T

1
Φ
N, (5.2)

where T is the time for the experiment and Φ is the incoming flux (Φ = number density ×
velocity of beam) and N is the number of particles scattered. This is shown in Figure 5.1.

In a real gold foil experiment, we would also have to include additional factors for
the number density of protons in the foil and the cross-sectional area of the beam if it
is smaller than the size of the foil. These factors, like the flux and time factors in Eq. (5.2),
depend on the details of how the experiment is actually performed. In contrast, the number
of scatterings, N , is determined completely by the short-distance interactions among the
particles.

It is also natural to measure the differential cross section, dσ/dΩ, which gives the num-
ber of scattered particles in a certain solid angle dΩ. Classically, this gives us information
about the shape of the object or form of the potential off of which the α-particles are
scattered.
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�Fig. 5.2 ATLAS four lepton invariant mass measurement showing evidence for the Higgs boson
[Atlas Collaboration, 2013]. Solid curves are the predictions from the Standard Model.
ATLAS Experiment c©2013 CERN.

In quantum mechanics, we generalize the notion of cross-sectional area to a cross sec-
tion, which still has units of area, but has a more abstract meaning as a measure of the
interaction strength. While classically an α-particle either scatters off the nucleus or it
does not scatter, quantum mechanically it has a probability for scattering. The classical
differential probability is P = N

Ninc
, where N is the number of particles scattering into a

given area and Ninc is the number of incident particles. So the quantum mechanical cross
section is then naturally

dσ =
1
T

1
Φ
dP, (5.3)

where Φ is the flux, now normalized as if the beam has just one particle, and P is now
the quantum mechanical probability of scattering. The differential quantities dσ and dP
are differential in kinematical variables, such as the angles and energies of the final state
particles. The differential number of scattering events measured in a collider experiment is

dN = L× dσ, (5.4)

where L is the luminosity, which is defined by this equation.
In practice, experimental data are presented as the differential number of events seen

for a given integrated luminosity. For example, Figure 5.2 shows the cross section for
final states with four leptons (more precisely, four muons, four electrons, or two muons
and two electrons) from colliding proton initial states, as measured by the ATLAS col-
laboration at the Large Hadron Collider. The cross section shown is differential in the
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invariant mass of the four leptons (m4l =
√

(p1 + p2 + p3 + p4)2). Each point on the plot
shows the number of events where the measured mass fell inside the given 2.5 GeV inter-
val. As indicated on the figure, the data plotted correspond to an integrated luminosity of
Lint =

∫
Ldt = 25.3 fb−1 combined from a 7 TeV and an 8 TeV run. To compare to these

data, one would calculate dσ
dm4l

using quantum field theory at the two energies, multiply by
the appropriate luminosities, and add the resulting distributions. This final state can come
from Z-boson pair production, top-quark pair production, Z-boson plus jet production or
Higgs-boson production, as the solid histograms show. The sum of the contributions agrees
very well with the data if the Higgs boson is included.

Now let us relate the formula for the differential cross section to S-matrix elements.
From a practical point of view it is impossible to collide more than two particles at a time,
thus we can focus on the special case of S-matrix elements where |i〉 is a two-particle state.
So, we are interested in the differential cross section for the 2 → n process:

p1 + p2 → {pj} . (5.5)

In the rest frame of one of the colliding particles, the flux is just the magnitude of the
velocity of the incoming particle divided by the total volume: Φ = |�v|/V . In a different
frame, such as the center-of-mass frame, beams of particles come in from both sides, and
the flux is then determined by the difference between the particles’ velocities. So, Φ =
|�v1 − �v2|/V . This should be familiar from classical scattering. Thus,

dσ =
V

T

1
|�v1 − �v2|

dP. (5.6)

From quantum mechanics we know that probabilities are given by the square of ampli-
tudes. Since quantum field theory is just quantum mechanics with a lot of fields, the
normalized differential probability is

dP =
| 〈f |S|i〉 |2
〈f |f〉 〈i|i〉 dΠ. (5.7)

Here, dΠ is the region of final state momenta at which we are looking. It is proportional
to the product of the differential momentum, d3pj , of each final state and must integrate
to 1. So

dΠ =
∏
j

V

(2π)3
d3pj . (5.8)

This has
∫
dΠ = 1, since

∫
dp
2π = 1

L (by dimensional analysis and our 2π convention).1

The 〈f |f〉 and 〈i|i〉 in the denominator of Eq. (5.7) come from the fact that the one-
particle states, defined at fixed time, may not be normalized to 〈f |f〉 = 〈i|i〉 = 1. In fact,
such a convention would not be Lorentz invariant. Instead, in Chapter 2 we defined

a†k|0〉 =
1√
2ωk

|k〉 (5.9)

1 This normalization is the natural continuum limit of having discrete points xi = i
N
L and wavenumbers

pi = 2π
L

i
N

with i = 1, . . . , N .
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and [ap, a†q] = (2π)3δ3(p− q), so that

〈p|p〉 = (2π)3(2ωp)δ3(0). (5.10)

This δ3(0) is formally infinite, but is regulated by the finite volume. It can be understood
by using the relation

(2π)3 δ3(p) =
∫
d3x ei�p�x. (5.11)

So,

δ3(0) =
1

(2π)3

∫
d3x =

V

(2π)3
. (5.12)

Similarly

δ4(0) =
TV

(2π)4
, (5.13)

where T is the total time for the process, which we will eventually take to∞. Thus,

〈p|p〉 = 2ωpV = 2EpV (5.14)

and, using |i〉 = |p1〉 |p2〉 and |f〉 =
∏
j

|pj〉,

〈i|i〉 = (2E1V )(2E2V ), 〈f |f〉 =
∏
j

(2EjV ). (5.15)

We will see that all these V factors conveniently drop out of the final answer.
Now let us turn to the S-matrix element 〈f |S|i〉 in the numerator of Eq. (5.7). We usually

calculate S-matrix elements perturbatively. In a free theory, where there are no interactions,
the S-matrix is simply the identity matrix 1. We can therefore write

S = 1 + iT , (5.16)

where T is called the transfer matrix and describes deviations from the free theory.2

Since the S-matrix should vanish unless the initial and final states have the same total
4-momentum, it is helpful to factor an overall momentum-conserving δ-function:

T = (2π)4δ4(Σp)M. (5.17)

Here, δ4(Σp) is shorthand for δ4
(
Σpμi − Σpμf

)
, where pμi are the initial particles’ momenta

and pμf are the final particles’ momenta. In this way, we can focus on computing the non-
trivial part of the S-matrix, M. In quantum field theory, “matrix elements” usually means
〈f |M|i〉. Thus we have

〈f |S − 1|i〉 = i(2π)4δ4(Σp) 〈f |M|i〉. (5.18)

Now, it might seem worrisome at first that we need to take the square of a quantity with
a δ-function. However, this is actually simple to deal with. When integrated over, one of

2 The i in this definition is just a convention, motivated by S ≈ eiT̂ , which makes T̂ Hermitian if S is unitary.
Note that T defined by Eq. (5.16) is not exactly T̂ and does not have to be Hermitian. Hermiticity of T̂ will
play an important role in implications of unitarity, discussed in Chapter 24.
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the δ-functions in the square is sufficient to enforce the desired condition; the remaining
δ-function will always be non-zero and formally infinite, but with our finite time and vol-
ume will give δ4(0) = TV

(2π)4 . For |f〉 �= |i〉 (the case |f〉 = |i〉, for which nothing happens,
is special),

|〈f |S|i〉|2 = δ4(0)δ4(Σp)(2π)8|〈f |M|i〉|2

= δ4(Σp)TV (2π)4|M|2, (5.19)

where Eq. (5.13) was used and |M|2 ≡ |〈f |M|i〉|2.
So,

dP =
δ4(Σp)TV (2π)4

(2E1V )(2E2V )
1∏

j(2EjV )
|M|2
∏
j

V

(2π)3
d3pj

=
T

V

1
(2E1)(2E2)

|M|2dΠLIPS, (5.20)

where

dΠLIPS ≡
∏

final states j

d3pj
(2π)3

1
2Epj

(2π)4δ4(Σp) (5.21)

is called the Lorentz-invariant phase space (LIPS). You are encouraged to verify that
dΠLIPS is Lorentz invariant in Problem 5.2.

Putting everything together, we have

dσ =
1

(2E1)(2E2)|�v1 − �v2|
|M|2dΠLIPS. (5.22)

All the factors of V and T have dropped out, so now it is trivial to take V → ∞ and
T →∞. Recall also that velocity is related to momentum by �v = �p/p0.

5.1.1 Decay rates

A differential decay rate is the probability that a one-particle state with momentum p1 turns
into a multi-particle state with momenta {pj} over a time T :

dΓ =
1
T
dP. (5.23)

Of course, it is impossible for the incoming particle to be an asymptotic state at−∞ if it is
to decay, and so we should not be able to use the S-matrix to describe decays. The reason
this is not a problem is that we calculate the decay rate in perturbation theory assuming
the interactions happen only over a finite time T . Thus, a decay is really just like a 1 → n

scattering process.
Following the same steps as for the differential cross section, the decay rate can be

written as
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dΓ =
1

2E1
|M|2dΠLIPS. (5.24)

Note that this is the decay rate in the rest frame of the particle. If the particle is moving
at relativistic velocities, it will decay much slower due to time dilation. The rate in the
boosted frame can be calculated from the rest-frame decay rate using special relativity.

5.1.2 Special cases

For 2 → 2 scattering in the center-of-mass frame

p1 + p2 −→ p3 + p4, (5.25)

with �p1 = −�p2 and �p3 = −�p4 and E1 + E2 = E3 + E4 = ECM, where ECM is the total
energy in the center-of-mass frame. Then

dΠLIPS = (2π)4δ4(Σp)
d3p3

(2π)3
1

2E3

d3p4

(2π)3
1

2E4
. (5.26)

We can now integrate over �p4 using the δ-function to give

dΠLIPS =
1

16π2
dΩ
∫
dpf

p2
f

E3

1
E4

δ(E3 + E4 − ECM), (5.27)

where pf = |�p3| = |�p4| and E3 =
√
m2

3 + p2
f and E4 =

√
m2

4 + p2
f . We now change

variables from pf to x(pf ) = E3(pf ) + E4(pf )− ECM. The Jacobian is

dx

dpf
=

d

dpf
(E3 + E4 − ECM) =

pf
E3

+
pf
E4

=
E3 + E4

E3E4
pf (5.28)

and therefore, using E3 + E4 = ECM because of the δ-function, we get

dΠLIPS =
1

16π2
dΩ
∫ ∞

m3+m4−ECM

dx
pf
ECM

δ(x)

=
1

16π2
dΩ

pf
ECM

θ (ECM −m3 −m4), (5.29)

where θ is the unit-step function or Heaviside function: θ(x) = 1 if x > 0 and 0
otherwise.

Plugging this into Eq. (5.22), we find

dσ =
1

(2E1)(2E2)|v̄1 − �v2|
1

16π2
dΩ

pf
ECM

|M|2θ(ECM −m3 −m4). (5.30)

After using

|�v1 − �v2| =
∣∣∣∣ |�p1|
E1

+
|�p2|
E2

∣∣∣∣ = |�pi|
ECM

E1E2
(5.31)

we end up with the fairly simple formula
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(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|�pf |
|�pi|

|M|2θ(ECM −m3 −m4), (5.32)

with the CM subscript reminding us that this formula holds only in the center-of-mass
frame.

If all the masses are equal then |�pf | = |�pi| and this formula simplifies further:(
dσ

dΩ

)
CM

=
1

64π2E2
CM

|M|2 (masses equal). (5.33)

5.2 Non-relativistic limit

In the non-relativistic limit, our formula for the cross section should reduce to the usual
formula from non-relativistic quantum mechanics. To see this, consider the case where an
electron φe of massme scatters off a proton φp of massmp. From non-relativistic quantum
mechanics, the cross section should be given by the Born approximation:(

dσ

dΩ

)
Born

=
m2
e

4π2
|Ṽ (�k)]2, (5.34)

where the Fourier transform of the potential is given by

Ṽ (�k) =
∫
d3x e−i�k�xV (�x) (5.35)

and �k is the difference in the electron momentum before and after scattering, sometimes
called the momentum transfer. For example, if this is a Coulomb potential, V (x) = e2

4π|�x| ,

then Ṽ (�k) = e2

�k2 so

(
dσ

dΩ

)
Born

=
m2
e

4π2

(
e2

�k2

)2

. (5.36)

Let us check the mass dimensions in these formulas (see Appendix A). [V (x)] = 1,
so [Ṽ (k)] = −2 and then

[
( dσdΩ )Born

]
= −2, which is the correct dimension for a cross

section.
For the field theory version, the center-of-mass frame is the proton rest frame to a good

approximation and ECM = mp. Also, the scattering is elastic, so |�pi| = |�pf |. Then, the
prediction is (

dσ

dΩ

)
CM

=
1

64π2m2
p

|M|2. (5.37)
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What dimension should M have? Since
[
dσ
dΩ

]
= −2 and

[
m−2
p

]
= −2, it follows that M

should be dimensionless.
If we ignore spin, we will see in Chapter 9 (Eqn. (9.11)) that the Lagrangian describing

the interaction between the electron, proton and photon has the form

L = −1
4
F 2
μν − φ�e(� +m2

e)φe − φ�p(� +m2
p)φp

− ieAμ(φ�e∂μφe − φ�e∂μφe) + ieAμ
(
φ�p∂μφp − φ�p∂μφp

)
+O
(
e2
)
, (5.38)

with φe and φp representing the electron and proton respectively. (This is the Lagrangian
for scalar QED.)

In the non-relativistic limit, the momentum pμ = (E, �p) is close to being at rest (m, 0).
So, E ∼ m, that is, ∂tφ ∼ imφ and |�p| 
 m. Let us use this to factorize out the leading-
order time dependence, φe → φee

imet and φp → φpe
impt. Then the Lagrangian becomes

L = −1
4
Fμν + φ�e

�∇2φe + 2emeA0φ
�
eφe + φ�p

�∇2φp − 2empA0φ
�
pφp + · · · , (5.39)

with · · · higher order in
�∇2

m2 . We have removed all the time dependence, which is
appropriate because we are trying to calculate a static potential.

Although we do not know exactly how to calculate the matrix element, by now we are
capable of guessing the kinds of ingredients that go into the calculation. The matrix element
must have a piece proportional to −2emp from the interaction between the proton and the
photon, a factor of the propagator 1

�k2 from the photon kinetic term, and a piece proportional
to 2eme from the photon interacting with the electron. Thus,

M∼ (−2emp)
1
�k2

(2eme). (5.40)

Then, from Eq. (5.37), (
dσ

dΩ

)
CM

=
1

64π2m2
p

|M|2 ∼ e4m2
e

4π2

1
�k4
, (5.41)

which agrees with Eq. (5.36) and so the non-relativistic limit works. We will perform this
calculation again carefully and completely, without asking you to accept anything without
proof, once we derive the perturbation expansion and Feynman rules. The answer will be
the same.

The factors of m in the interaction terms are unconventional. It is more standard to
rescale φ→ 1√

2m
φ so that

L = −1
4
Fμν +

1
2me

φ�e �∇2φe +
1

2mp
φ�p�∇2φp + eA0φ

�
eφe − eA0φ

�
pφp, (5.42)

which has the usual p2

2m for the kinetic term and an interaction with just a charge e and no
mass m in the coupling. Of course, the final result is independent of the normalization, but
it is still helpful to see how relativistic and non-relativistic normalization conventions are
related. Note that, since in the non-relativistic limit 1√

2m
= 1√

2E
, this rescaling is closely

related to the normalization factors 1√
2ωp

we added by convention to the definition of the

quantum field.
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5.3 e+e− → μ+μ− with spin

So far, we have approximated everything, electrons and protons, as being spinless. This
is a good first approximation, as the basic 1

r form of Coulomb’s law does not involve
spin – it follows from flux conservation (Gauss’s law) or, more simply, from dimensional
analysis. In Chapter 10, we will understand the spin of the electron and proton using the
Dirac equation and spinors. While spinors are an extremely efficient way to encode spin
information in a relativistic setting, it is also important to realize that relativistic spin can
be understood the same way as for non-relativistic scattering.

In this section we will do a simple example of calculating a matrix element with spin.
Consider the process of electron–positron annihilation into muon–antimuon pairs (this pro-
cess will be considered in more detail in Section 13.3 and Chapter 20). The electron does
not interact with the muon directly, only through the electromagnetic force (and the weak
force). The leading-order contribution should then come from a process represented by

Ae−

e+

μ−

μ+

(5.43)

This diagram has a precise meaning, as we will see in Chapter 7, but for now just think of
it as a pictorial drawing of the process: the e+e− annihilate into a virtual photon, which
propagates along, then decays into a μ+μ− pair.

Let us get the dimensional part out of the way first. The propagator we saw in Chapters 3
and 4 (see Eqs. (3.79) and (4.31)) gives 1

k2 , where kμ = pμ1 + pμ2 = pμ3 + pμ4 is the off-
shell photon momentum. For a scattering process, such as e−p+ → e−p+, this propagator
1
k2 gives the scattering potential. For this annihilation process, it is much simpler; in the
center-of-mass frame 1

k2 = 1
E2

CM
, which is constant (if ECM is constant). By dimensional

analysis, M should be dimensionless. The 1
E2

CM
is in fact canceled by factors of

√
2E1 =

√
2E2 =

√
2E3 =

√
2E4 =

√
ECM, which come from the (natural, non-relativistic)

normalization of the electron and muon states. Thus, all these ECM factors cancel and M
is just a dimensionless number, given by the appropriate spin projections.

So, the only remaining part of M is given by projections of initial spins onto the
intermediate photon polarizations, and then onto final spins. We can write

M(s1s2 → s3s4) =
∑
ε

〈s1s2|ε〉〈ε|s3s4〉, (5.44)

where s1 and s2 are the spins of the incoming states, s3 and s4 the spins of the outgoing
states, and ε is the polarization of the intermediate photon.

Let us now try to guess the form of these spin projections by using angular momentum.
This is easiest to do in the center-of-mass frame. At ultra-relativistic energies, we can
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neglect the electron and muon masses. Then, with some choice of direction ẑ, the incoming
e− and e+ momenta are

pμ1 = (E, 0, 0, E), pμ2 = (E, 0, 0,−E). (5.45)

Next, we will use that the electron is spin 1
2 . In the non-relativistic limit, we usually think

of the spin states as being up and down. In the relativistic limit, it is better to think of the
electron as being polarized, just like a photon. Polarizations for spin- 1

2 particles are usually
called helicities (helicity will be defined precisely in Section 11.1). We can use either a
basis of circular polarization (called left and right helicity) or a basis of linear polarizations.
Linearly polarized electrons are like linearly polarized light, and the polarizations must be
transverse to the direction of motion. So the electron moving in the z direction can either
be polarized in the y direction or in the x direction. So there are four possible initial states:

|s1s2〉 = |↔↔〉 , |s1s2〉 = |��〉 , |s1s2〉 = |�↔〉 , |s1s2〉 = |↔�〉 , (5.46)

Next, we use that the photon has spin 1 and two polarizations (this will be derived
in Chapter 8). To get spin 1 from spin 1

2 and spin 1
2 , the electron and positron have to

be polarized in the same direction. Thus, only the first two initial states could possibly
annihilate into a photon. Since the electron polarization is perpendicular to its momentum,
the photon polarization will be in either the x or y direction as well. The two possible
resulting photon polarizations are

ε1 = (0, 1, 0, 0), ε2 = (0, 0, 1, 0). (5.47)

Both of these polarizations are produced by the e+e− annihilation: |↔↔〉 produces ε1

and |��〉 produces ε2.
Next, the muon and antimuon are also spin 1

2 so the final state has four possible spin
states too. Similarly, only two of them can have non-zero overlap with the spin-1 photon.
However, the μ+ and μ− are not going in the z direction. Their momenta can be written as

pμ3 = E(1, 0, sin θ, cos θ), pμ4 = E(1, 0,− sin θ,− cos θ), (5.48)

where θ is the angle to the e+e− axis. There is also an azimuthal angle φ about the z axis,
which we have set to 0 since the problem has cylindrical symmetry. So in this case the two
possible directions for the photon polarization are

ε̄1 = (0, 1, 0, 0), ε̄2 = (0, 0, cos θ,− sin θ). (5.49)

You can check that these are orthogonal to pμ3 and pμ4 .
Now say we do not measure the final muon spins. Then the matrix element is given by

summing over all possible intermediate polarizations ε and final state spins s3 and s4 for a
particular initial state. Then there are only two non-vanishing possibilities:

M1 = M(|↔↔〉 → |f〉) = ε1ε̄1 + ε1ε̄2 = −1, (5.50)

M2 = M(|��〉 → |f〉) = ε2ε̄1 + ε2ε̄2 = − cos θ. (5.51)

If our initial beams are unpolarized, we should average over initial spins too. This gives

|M|2 = |M1|2 + |M2|2 = 1 + cos2θ, (5.52)
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and so
dσ

dΩ
=

e4

64π2E2
CM

(
1 + cos2θ

)
. (5.53)

This is the correct cross section for e+e− → μ+μ−. We will re-derive this using the full
machinery of quantum field theory: spinors, Feynman rules, etc., in Section 13.3.

Problems

5.1 Show that the differential cross section for 2 → 2 scattering with pμi + pμA →
pμf + pμB in the rest frame of particle A can be written as

dσ

dΩ
=

1
64π2mA

[
EB + Ef

(
1− |�pi|

|�pf |
cos θ
)]−1 |�pf |

|�pi|
|M|2 , (5.54)

where θ is the angle between �pi and �pf , EB =
√

(�pf − �pi)
2 +m2

B and Ef =√
�p 2
f +m2

f .

5.2 Show that dΠLIPS is Lorentz invariant and verify Eq. (5.21).
5.3 A muon decays to an electron, an electron neutrino and a muon neutrino, μ− →

e−νμνe. The matrix element for this process, ingoring the electron and neutrino
masses, is given by |M|2 = 32G2

F (m2 − 2mE)mE, where m is the mass of the
muon and E is the energy of the outgoing νe. GF = 1.166 × 10−5 GeV−2 is the
Fermi constant.
(a) Perform the integral over dΠLIPS to show that the decay rate is

Γ =
G2
Fm

5

192π3
. (5.55)

(b) Compare your result to the observed values m = 106 MeV and τ = Γ−1 =
2.20μs. How big is the discrepancy as a percentage? What might account for
the discrepancy?

5.4 Repeat the e+e− → μ+μ− calculation in Section 5.3 using circular polarizations.
5.5 One of the most important scattering experiments ever was Rutherford’s gold foil

experiment. Rutherford scattering is αN → αN , where N is some atomic nucleus
and α is an α-particle (helium nucleus). It is an almost identical process to Coulomb
scattering (e−p+ → e−p+).
(a) Look up or calculate the classical Rutherford scattering cross section. What

assumptions go into its derivation?
(b) We showed that the quantum mechanical cross section for Coulomb scattering

in Eq. (5.41) follows either from the Born approximation or from quantum field
theory. Start from the formula for Coulomb scattering and make the appropriate
replacements for αN scattering.

(c) Draw the Feynman diagram for Rutherford scattering. What is the momentum
of the virtual photon, kμ, in terms of the scattering angle and the energy of the
incoming α-particle?
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(d) Substitute in for k4 and rewrite the cross section in terms of the kinetic energy
of the α-particle. Show that Rutherford’s classical formula is reproduced.

(e) Why are the classical and quantum answers the same? Could you have known
this ahead of time?

(f) Would the cross section for e−e− → e−e− also be given by the Coulomb
scattering cross section?

5.6 In Section 5.3 we found that the e+e− → μ+μ− cross section had the form dσ
dΩ =

e4

64π2E2
CM

(1 + cos2θ) in the center-of-mass frame.

(a) Work out the Lorentz-invariant quantities s= (pe+ + pe−)2, t= (pμ− − pe−)2

and u= (pμ+ − pe−)2 in terms of ECM and cos θ (still assuming
mμ =me = 0).

(b) Derive a relationship between s, t and u.
(c) Rewrite dσ

dΩ in terms of s, t and u.
(d) Now assume mμ and me are non-zero. Derive a relationship between s, t and

u and the masses.



The S-matrix and time-ordered
products 6

As discussed in Chapter 5, scattering experiments have been a fruitful and efficient way
to determine the particles that exist in nature and how they interact. In a typical collider
experiment, two particles, generally in approximate momentum eigenstates at t = −∞,
are collided with each other and we measure the probability of finding particular outgoing
momentum eigenstates at t = +∞. All of the interesting interacting physics is encoded in
how often given initial states produce given final states, that is, in the S-matrix.

The working assumption in scattering calculations is that all of the interactions happen in
some finite time−T < t < T . This is certainly true in real collider scattering experiments.
But more importantly, it lets us make the problem well defined; if there were always inter-
actions, it would not be possible to set up our initial states at t = −∞ or find the desired
final states at t = +∞. Without interactions at asymptotic times, the states we scatter can
be defined as on-shell one-particle states of given momenta, known as asymptotic states.
In this chapter, we derive an expression for the S-matrix using only that the system is free
at asymptotic times. In Chapter 7 we will work out the Feynman rules, which make it easy
to perform a perturbation expansion for the interacting theory.

The main result of this chapter is a derivation of the LSZ (Lehmann–Symanzik–
Zimmermann) reduction formula, which relates S-matrix elements 〈f |S|i〉 for n

asymptotic momentum eigenstates to an expression involving the quantum fields φ(x):

〈f |S|i〉 =
[
i

∫
d4x1 e

−ip1x1(� +m2)
]
· · ·
[
i

∫
d4xn e

ipnxn(� +m2)
]

× 〈Ω|T{φ(x1)φ(x2)φ(x3) · · ·φ(xn)}|Ω〉 , (6.1)

with the −i in the exponent applying for initial states and the +i for final states. In this
formula, T {· · · } refers to a time-ordered product, to be defined below, and |Ω〉 is the
ground state or vacuum of the interacting theory, which in general may be different from
the vacuum in a free theory.

The time-ordered correlation function in this formula can be very complicated and
encodes a tremendous amount of information besides S-matrix elements. The factors of
� + m2 project onto the S-matrix: � + m2 becomes −p2 + m2 in Fourier space, which
vanishes for the asymptotic states. These factors will therefore remove all terms in the
time-ordered product except those with poles of the form 1

p2−m2 , corresponding to prop-
agators of on-shell particles. Only the terms with poles for each factor of p2 − m2 will
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survive, and the S-matrix is given by the residue of these poles. Thus, the physical content
of the LSZ formula is that the S-matrix projects out one-particle asymptotic states from
the time-ordered product of fields.

6.1 The LSZ reduction formula

In Chapter 5, we derived a formula for the differential cross section for 2 → n scattering
of asymptotic states, Eq. (5.22):

dσ =
1

(2E1)(2E2)|�v1 − �v2|
|M|2dΠLIPS, (6.2)

where dΠLIPS is the Lorentz-invariant phase space, and M, which is shorthand for
〈f |M|i〉, is the S-matrix element with an overall momentum-conserving δ-function
factored out:

〈f |S − 1|i〉 = i(2π)4δ4(Σp)M. (6.3)

The state |i〉 is the initial state at t = −∞, and 〈f | is the final state at t = +∞. More
precisely, using the operators a†p(t), which create particles with momentum p at time t,
these states are

|i〉 =
√

2ω1

√
2ω2 a†p1(−∞) a†p2(−∞)|Ω〉, (6.4)

where |Ω〉 is the ground state, with no particles, and

|f〉 =
√

2ω3 · · ·
√

2ωn a†p3(∞) · · · a†pn(∞)|Ω〉. (6.5)

We are generally interested in the case where some scattering actually happens, so let us
assume |f〉 �= |i〉, in which case the 1 does not contribute. Then the S-matrix is

〈f |S|i〉 = 2n/2
√
ω1ω2ω3 · · ·ωn〈Ω|ap3(∞) · · · apn(∞) a†p1(−∞) a†p2(−∞)|Ω〉. (6.6)

This expression is not terribly useful as is. We would like to relate it to something we can
compute with our Lorentz-invariant quantum fields φ(x).

Recall that we defined the fields as a sum over creation and annihilation operators:

φ(x) = φ(�x, t) =
∫

d3p

(2π)3
1√
2ωp

[
ap(t)e−ipx + a†p(t)e

ipx
]
, (6.7)

where ωp =
√
�p 2 +m2. We also start to use the notation φ(x) = φ(�x, t) as well,

for simplicity. These are Heisenberg picture operators which create states at some par-
ticular time. However, the creation and annihilation operators at time t are in general
different from those at some other time t′. An interacting Hamiltonian will rotate the
basis of creation and annihilation operators, which encodes all the interesting dynam-
ics. For example, if H is time independent, ap(t) = eiH(t−t0)ap(t0) e−iH(t−t0), just as
φ(x) = eiH(t−t0)φ(�x, t0) e−iH(t−t0), where t0 is some arbitrary reference time where we
have matched the interacting fields onto the free fields. We will not need to use anything at
all in this section about ap(t) and φ(�x, t) except that these operators have some ability to
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annihilate fields at asymptotic times: 〈Ω|φ(�x, t = ±∞)|p〉 = Cei�x�p for some constant C,
as was shown for free fields in Eq. (2.76).

The key to proving LSZ is the algebraic relation

i

∫
d4x eipx(� +m2)φ(x) =

√
2ωp [ap(∞)− ap(−∞)] , (6.8)

where pμ = (ωp, �p). To derive this, we only need to assume that all the interesting dynam-
ics happens in some finite time interval,−T < t < T , so that the theory is free at t = ±∞;
no assumption about the form of the interactions during that time is necessary.

To prove Eq. (6.8), we will obviously have to be careful about boundary conditions at
t = ±∞. However, we can safely assume that the fields die off at �x = ±∞, allowing us to
integrate by parts in �x. Then,

i

∫
d4x eipx(� +m2)φ(x) = i

∫
d4x eipx(∂2

t − �∂ 2
x +m2)φ(x)

= i

∫
d4x eipx(∂2

t + �p2 +m2)φ(x)

= i

∫
d4x eipx(∂2

t + ω2
p)φ(x). (6.9)

Note this is true for any kind of φ(x), whether classical field or operator. Also,

∂t
[
eipx(i∂t + ωp)φ(x)

]
=
[
iωpe

ipx(i∂t + ωp) + eipx(i∂2
t + ωp∂t)

]
φ(x)

= ieipx(∂2
t + ω2

p)φ(x), (6.10)

which holds independently of boundary conditions. So,

i

∫
d4x eipx(� +m2)φ(x) =

∫
d4x ∂t
[
eipx(i∂t + ωp)φ(x)

]
=
∫
dt ∂t

[
eiωpt
∫
d3x e−i�p�x(i∂t + ωp)φ(x)

]
. (6.11)

Again, this is true for whatever kind of crazy interaction field φ(x) might be.
This integrand is a total derivative in time, so it only depends on the fields at the boundary

t = ±∞. By construction, our ap(t) and a†p(t) operators are time independent at late and
early times. For the particular case of φ(x) being a quantum field, Eq. (6.7), we can do the
�x integral:∫

d3x e−i�p�x(i∂t + ωp)φ(x)

=
∫
d3x e−i�p�x(i∂t + ωp)

∫
d3k

(2π)3
1√
2ωk

(
ak(t)e−ikx + a†k(t)e

ikx
)

=
∫

d3k

(2π)3

∫
d3x

[(
ωk + ωp√

2ωk

)
ak(t)e−ikxe−i�p�x +

(
−ωk + ωp√

2ωk

)
a†k(t)e

ikxe−i�p�x
]
.

(6.12)

Here we used ∂tak(t) = 0, which is not true in general, but true at t = ±∞where the fields
are free, which is the only region relevant to Eq. (6.11). The �x integral gives a δ3(�p − �k)



72 The S-matrix and time-ordered products

in the first term and a δ3(�p + �k) in the second term. Either way, it forces ωk = ωp and so
we get ∫

d3x e−i�p�x(i∂t + ωp)φ(x) =
√

2ωpap(t)e−iωpt. (6.13)

Thus,

i

∫
d4x eipx(� +m2)φ(x) =

∫
dt ∂t[
(
eiωpt
) (√

2ωpap(t)e−iωpt
)
]

=
√

2ωp [ap(∞)− ap(−∞)] , (6.14)

which is what we wanted. Similarly (by taking the Hermitian conjugate),√
2ωp
[
a†p(∞)− a†p(−∞)

]
= −i
∫
d4x e−ipx(� +m2)φ(x). (6.15)

Now we are almost done. We wanted to compute

〈f |S|i〉 =
√

2nω1 · · ·ωn
〈
Ω|ap3(∞) · · · apn(∞)a†p1(−∞) a†p2(−∞)|Ω

〉
(6.16)

and we have an expression for ap(∞) − ap(−∞). Note that all the initial states have a†p
operators and −∞, and the final states have ap operators and +∞, so the operators are
already in time order:

〈f |S|i〉 =
√

2nω1 · · ·ωn
〈
Ω|T{ap3(∞) · · · apn(∞)a†p1(−∞) a†p2(−∞)}|Ω

〉
, (6.17)

where the time-ordering operation T{· · · } indicates that all the operators should be
ordered so that those at later times are always to the left of those at earlier times. That is,
T{· · · } just manhandles the operators within the brackets, placing them in order regardless
of whether they commute or not.

Time ordering lets us write the S-matrix element as

〈f |S|i〉 =
√

2nω1 · · ·ωn〈Ω|T{[ap3(∞)− ap3(−∞)] · · · [apn(∞)− apn(−∞)]

× [a†p1(−∞)− a†p1(∞)][a†p2(−∞)− a†p2(∞)]}|Ω〉. (6.18)

The time ordering migrates all the unwanted a†(∞) operators associated with the initial
states to the left, where they annihilate on 〈f |, and all the unwanted a(−∞) operators to
the right, where they annihilate |i〉. Then there is no ambiguity in commuting the a†pi(∞)
past the apj (∞) and everything we do not want drops out of this expression.1

The result is then

〈p3 · · · pn |S| p1p2〉 =
[
i

∫
d4x1e

−ip1x1(�1 +m2)
]
· · ·
[
i

∫
d4xne

ipnxn(�n +m2)
]

× 〈Ω|T{φ(x1)φ(x2)φ(x3) · · ·φ(xn)}|Ω〉 , (6.19)

where �i = ( ∂
∂xμi

)2, which agrees with Eq. (6.1).2 This is the LSZ reduction formula.

1 The only subtlety is when some momenta are identical, which would correspond to forward scattering. This
ambiguity can be resolved by a careful consideration of the T → ∞ limit; the result is the same as the analytic
continuation of the case when all momenta are different.

2 Pulling the � factors through the time-ordering operator is technically not allowed. However, as we will see in
the next chapter, the effect of doing this is to introduce contact terms that do not contribute to the S-matrix.
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6.1.1 Discussion

The LSZ reduction says that to calculate an S-matrix element, multiply the time-ordered
product of fields by some � + m2 factors and Fourier transform. If the fields φ(x) were
free fields, they would satisfy (� + m2)φ(x, t) = 0 and so the (�i + m2) terms would
give zero. However, as we will see, when calculating amplitudes, there will be factors of
propagators 1

�+m2 for the one-particle states. These blow up as (� +m2) → 0. The LSZ
formula guarantees that the zeros and infinities in these terms cancel, leaving a non-zero
result. Moreover, the � +m2 terms will kill anything that does not have a divergence, that
will be anything but the exact initial and final state we want.3 That is the whole point of
the LSZ formula: it isolates the asymptotic states by adding a carefully constructed zero to
cancel everything that does not correspond to the state we want.

It is easy to think that LSZ is totally trivial, but it is not. The projections are the only
thing that tells us what the initial states are (the things created from the vacuum at t = −∞)
and what the final states are (the things that annihilate into the vacuum at t = +∞).
Initial and final states are distinguished by the ±i in the phase factors. The time ordering
is totally physical: all the creation of the initial states happens before the annihilation of
the final states. In fact, because this is true not just for free fields, all the crazy stuff that
happens at intermediate times in an interacting theory must be time-ordered too. But the
great thing is that we do not need to know which are the initial states and which are the
final states anymore when we do the hard part of the computation. We just have to calculate
time-ordered products, and the LSZ formula sorts out what is being scattered for us.

6.1.2 LSZ for operators

For perturbation theory in the Standard Model, which is mostly what we will study in this
book, the LSZ formula in the above form is all that is needed. However, the LSZ formula
is more powerful than it seems and applies even if we do not know what the particles are.

If you go back through the derivation, you will see that we never needed an explicit form
for the full field φ(x) and its creation operators a†p (t), which did not necessarily evolve like
creation operators in the free theory. In fact, all we used was that the field φ(x) creates free
particle states at asymptotic times. So the LSZ reduction actually implies

〈p3 · · · pn |S| p1p2〉 =
[
i

∫
d4x1e

−ip1x1(�1 +m2)
]
· · ·
[
i

∫
d4xne

ipnxn(�n +m2)
]

× 〈Ω|T{O1(x1)O2(x2)O3(x3) · · · On(xn)}|Ω〉 , (6.20)

where theOi(x) are any operators that can create one-particle states. By this we mean that

〈p|O(x)|Ω〉 = Zeipx (6.21)

3 It should not be obvious at this point that there cannot be higher-order poles, such as 1

(p2−m2)2
, coming out

of time-ordered products. Such terms would signal the appearance of unphysical states known as ghosts, which
violate unitarity. The fastest a correlation function can decay at large p2 in a unitary theory is as p−2, a result
we will prove in Section 24.2.
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for some number Z. LSZ does not distinguish elementary particles, which we define to
mean particles that have corresponding fields appearing in the Lagrangian, from any other
type of particle. Anything that overlaps with one-particle states will produce an appropriate
pole to be canceled by the � +m2 factors giving a non-zero S-matrix element. Therefore,
particles in the Hilbert space can be produced whether or not we have elementary fields for
them.

It is probably worth saying a little more about what these operators On(x) are. The
operators can be defined as they would be in quantum mechanics, by their matrix elements
in a basis of states ψn of the theory Cnm = 〈ψn|O|ψm〉. Any such operator can be written
as a sum over creation and annihilation operators:

O =
∑
n,m

∫
dq1 · · · dqndp1 · · · dpma†q1 · · · q

†
qnapm · · · ap1Cnm(q1, . . . , pm) . (6.22)

It is not hard to prove that the Cnm are in one-to-one correspondence with the matrix
elements of O in n and m particle states (see Problem 6.3). One can turn the operator into
a functional of fields, using Eq. (6.13) and its conjugate. The most important operators
in relativistic quantum field theory are Lorentz-covariant composite operators constructed
out of elementary fields, e.g.O(x) = φ(x)∂μφ(x)∂μφ(x). However, some operators, such
as the Hamiltonian, are not Lorentz invariant. Other operators, such as Wilson lines (see
Section 25.2), are non-local. Also, non-Lorentz-invariant operators are essential for many
condensed-matter applications.

As an example of this generalized form of LSZ, suppose there were a bound state in our
theory, such as positronium. We will derive the Lagrangian for quantum electrodynamics in
Chapter 13. We will find, as you might imagine, that it is a functional of only the electron,
positron and photon fields. Positronium is a composite state, composed of an electron, a
positron and lots of photons binding them together. It has the same quantum numbers as the
operator OP (x) = ψ̄e(x)ψe(x), where ψ̄(x) and ψ(x) are the fields for the positron and
electron. Thus, OP (x) should have some non-zero overlap with positronium, and we can
insert it into the time-ordered product to calculate the S-matrix for positronium scattering
or production. This is an important conceptual fact: there do not have to be fundamental
fields associated with every asymptotic state in the theory to calculate the S-matrix.

Conversely, even if we do not know what the elementary particles actually are in the
theory, we can introduce fields corresponding to them in the Lagrangian to calculate
S-matrix elements in perturbation theory. For example, in studying the proton or other
nucleons, we can treat them as elementary particles. As long as we are interested in ques-
tions that do not probe the substructure of the proton, such as non-relativistic scattering,
nothing will go wrong. This is a general and very useful technique, known generally as
effective field theory, which will play an important role in this book. Thus, quantum field
theory is very flexible: it works if you use fields that do not correspond to elementary par-
ticles (effective field theories) or if you scatter particles that do not have corresponding
fields (such as bound states). It even can provide a predictive description of unstable com-
posite particles, such as the neutron, which neither have elementary fields nor are proper
asymptotic states.
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6.2 The Feynman propagator

To recap, our immediate goal, as motived in Chapter 5, is to calculate cross sections, which
are determined by S-matrix elements. We now have an expression, the LSZ reduction
formula, for S-matrix elements in terms of time-ordered products of fields. Next, we need
to figure out how to compute those time-ordered products. As an example, we will now
calculate a time-ordered product in the free theory. In Chapter 7, we will derive a method
for computing time-ordered products in interacting theories using perturbation theory.

We start with the free-field operator:

φ0(x, t) =
∫

d3k

(2π)3
1√
2ωk

(
ake

−ikx + a†ke
ikx
)
, (6.23)

where k0 = ωk =
√
m2 + �k2 and ak and a†k are time independent (all time dependence is

in the phase). Then, using |0〉 instead of |Ω〉 to denote the vacuum in the free theory,

〈0|φ0(x1)φ0(x2)|0〉 =
∫

d3k1

(2π)3

∫
d3k2

(2π)3
1√
2ωk1

1√
2ωk2

〈0|ak1a
†
k2
|0〉ei(k2x2−k1x1).

(6.24)
The 〈0|ak1a

†
k2
|0〉 gives (2π)3δ3(�k1 − �k2) so that

〈0|φ0(x1)φ0(x2)|0〉 =
∫

d3k

(2π)3
1

2ωk
eik(x2−x1). (6.25)

Now, we are interested in 〈0|T{φ(x1)φ(x2)}|0〉. Recalling that time ordering puts the later
field on the left, we get

〈0|T{φ0(x1)φ0(x2)}|0〉 = 〈0|φ0(x1)φ0(x2)|0〉 θ(t1 − t2) + 〈0|φ0(x2)φ0(x1)|0〉 θ(t2 − t1)

=
∫

d3k

(2π)3
1

2ωk

[
eik(x2−x1)θ(t1 − t2) + eik(x1−x2)θ(t2 − t1)

]
=
∫

d3k

(2π)3
1

2ωk

[
ei
�k(�x1−�x2)e−iωkτθ(τ) + e−i�k(�x1−�x2)eiωkτθ (−τ)

]
,

(6.26)

where τ = t1 − t2. Taking k → −k in the first term leaves the volume integral
∫
d3k

invariant and gives

〈0|T{φ0(x1)φ0(x2)}|0〉 =
∫

d3k

(2π)3
1

2ωk
e−i�k(�x1−�x2)

[
eiωkτθ(−τ) + e−iωkτθ(τ)

]
.

(6.27)
The two terms in this sum are the advanced and retarded propagators that we saw were
relevant in relativistic calculations using old-fashioned perturbation theory.

The next step is to simplify the right-hand side using the mathematical identity

e−iωkτθ(τ) + eiωkτθ(−τ) = lim
ε→0

−2ωk
2πi

∫ ∞

−∞

dω

ω2 − ω2
k + iε

eiωτ . (6.28)
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Re(ω)

Im(ω)
ω

ωk − iε

−ωk + iε

τ < 0 contour

τ > 0 contour

�Fig. 6.1 Contour integral for the Feynman propagator. Poles are at ω = ±ωk ∓ iε. For τ > 0 we
close the contour upward, picking up the left pole, for τ < 0 we close the contour
downward, picking up the right pole.

To derive this identity, first separate out the poles with partial fractions:

1
ω2 − ω2

k + iε
=

1
[ω − (ωk − iε)] [ω−(− ωk + iε)]

=
1

2ωk

[
1

ω − (ωk − iε)
− 1
ω − (−ωk + iε)

]
. (6.29)

Here, we dropped terms of order ε2 and wrote 2εωk = ε, which is fine since we will take
ε→ 0 in the end. The location of the two poles in the complex plane is shown in Figure 6.1.

Including an eiωτ factor, as on the right-hand side of Eq. (6.28), we can integrate from
−∞ < ω <∞ by closing the contour upwards when τ > 0 and downwards when τ < 0.
The first fraction in Eq. (6.29) then picks up the pole only if τ < 0, giving 0 otherwise.
That is, ∫ ∞

−∞

dω

ω − (ωk − iε)
eiωτ = −2πieiωkτθ(−τ) +O(ε), (6.30)

with the extra minus sign coming from doing the contour integration clockwise. For the
second fraction, ∫ ∞

−∞

dω

ω − (−ωk + iε)
eiωτ = 2πie−iωkτθ(τ) +O(ε). (6.31)

Thus,

lim
ε→0

∫ ∞

−∞

dω

ω2 − ω2
k + iε

eiωτ = − 2πi
2ωk

[
eiωkτθ
(
− τ) + e−iωkτθ(τ)

]
(6.32)

as desired.
Putting it together, we find

〈0|T {φ0(x1)φ0(x2)} |0〉 = lim
ε→0

∫
d3k

(2π)3
1

2ωk
e−i�k(�x1−�x2)

∫
dω
−2ωk
2πi

1
ω2 − ω2

k + iε
eiωτ .

(6.33)
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Letting the limit be implicit, this is

DF (x1, x2) = 〈0|T {φ0(x1)φ0(x2)} |0〉 =
∫

d4k

(2π)4
i

k2 −m2 + iε
eik(x1−x2). (6.34)

This beautiful Lorentz-invariant object is called the Feynman propagator. It has a pole
at k2 = m2, exactly to be canceled by prefactors in the LSZ reduction formula in the
projection onto one-particle states.

Points to keep in mind:

• k0 �=
√
�k2 +m2 anymore. It is a separate integration variable. The propagating field

can be off-shell!
• The i comes from a contour integral. We will always get factors of i in 2-point functions

of real fields.
• The ε is just a trick for representing the time ordering in a simple way. We will always

take ε → 0 at the end, and often leave it implicit. You always need a +iε for time-
ordered products, but it is really just shorthand for a pole prescription in the contour
integral, which is exactly equivalent to adding various θ(t) factors.

• For ε = 0 the Feynman propagator looks just like a classical Green’s function for the
Klein–Gordon equation

(
� +m2

)
DF (x, y) = −iδ4(x) with certain boundary con-

ditions. That is because it is. We are just computing classical propagation in a really
complicated way.

As we saw in Chapter 4 using old-fashioned perturbation theory, when using physical
intermediate states there are contributions from advanced and retarded propagators, both
of which are also Green’s functions for the Klein–Gordon equation. The Lorentz-invariant
Feynman propagator encodes both of these contributions, with its boundary condition rep-
resented by the iε in the denominator. The advanced and retarded propagators have more
complicated integral representations, as you can explore in Problem 6.2.

Problems

6.1 Calculate the Feynman propagator in position space. To get the pole structure cor-
rect, you may find it helpful to use Schwinger parameters (see Appendix B). Take
the m→ 0 limit of your result to find

〈0|T {φ0(x1)φ0(x2)} |0〉 = − 1
4π2

1
(x1 − x2)

2 − iε
. (6.35)

6.2 Find expressions for the advanced and retarded propagators as d4k integrals.
6.3 Prove that any operator can be put in the form of Eq. (6.22).
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In the previous chapter, we saw that scattering cross sections are naturally expressed in
terms of time-ordered products of fields. The S-matrix has the form

〈f |S|i〉 ∼ 〈Ω|T {φ(x1) · · ·φ(xn)} |Ω〉, (7.1)

where |Ω〉 is the ground state/vacuum in the interacting theory. In this expression the fields
φ(x) are not free but are the full interacting quantum fields. We also saw that in the free
theory, the time-ordered product of two fields is given by the Feynman propagator:

DF (x, y) ≡ 〈0|T {φ0(x)φ0(y)} |0〉 = lim
ε→0

∫
d4k

(2π)4
i

k2 −m2 + iε
eik(x−y), (7.2)

where |0〉 is the ground state in the free theory.
In this chapter, we will develop a method of calculating time-ordered products in pertur-

bation theory in terms of integrals over various Feynman propagators. There is a beautiful
pictorial representation of the perturbation expansion using Feynman diagrams and an
associated set of Feynman rules. There are position-space Feynman rules, for calculating
time-ordered products, and also momentum-space Feynman rules, for calculating S-matrix
elements. The momentum-space Feynman rules are by far the more important – they pro-
vide an extremely efficient way to set up calculations of physical results in quantum field
theory. The momentum-space Feynman rules are the main result of Part I.

We will first derive the Feynman rules using a Lagrangian formulation of time evolu-
tion and quantization. This is the quickest way to connect Feynman diagrams to classical
field theory. We will then derive the Feynman rules again using time-dependent pertur-
bation theory, based on an expansion of the full interacting Hamiltonian around the free
Hamiltonian. This calculation much more closely parallels the way we do perturbation the-
ory in quantum mechanics. While the Hamiltonian-based calculation is significantly more
involved, it has the distinct advantage of connecting time evolution directly to a Hermitian
Hamiltonian, so time evolution is guaranteed to be unitary. The Feynman rules resulting
from both approaches agree, confirming that the approaches are equivalent (at least in the
case of the theory of a real scalar field, which is all we have so seen so far). As we progress
in our understanding of field theory and encounter particles of different spin and more com-
plicated interactions, unitarity and the requirement of a Hermitian Hamiltonian will play a
more important role (see in particular Chapter 24). A third independent way to derive the
Feynman rules is through the path integral (Chapter 14).

78
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7.1 Lagrangian derivation

In Section 2.3 we showed that free quantum fields satisfy

[φ(�x, t) , φ(�x′, t)] = 0, (7.3)

[φ(�x, t) , ∂tφ(�x′, t)] = i�δ3(�x− �x′) (7.4)

(we have temporarily reinstated � to clarify the classical limit). We also showed that free
quantum fields satisfy the free scalar field Euler–Lagrange equation (� + m2)φ = 0.
In an arbitrary interacting theory, we must generalize these equations to specify how the
dynamics is determined. In quantum mechanics, this is done with the Hamiltonian. So,
one natural approach is to assume that i∂tφ(x) = [φ,H] for an interacting quantum field
theory, which leads to the Hamiltonian derivation of the Feynman rules in Section 7.2. In
this section we discuss the simpler Lagrangian approach based on the Schwinger–Dyson
equations, which has the advantage of being manifestly Lorentz invariant from start to
finish.

In the Lagrangian approach, Hamilton’s equations are replaced by the Euler–Lagrange
equations. We therefore assume that our interacting fields satisfy the Euler–Lagrange equa-
tions derived from a Lagrangian L (the generalization of

(
� +m2

)
φ = 0), just like

classical fields. We will also assume Eqs. (7.3) and (7.4) are still satisfied. This is a natural
assumption, since at any given time the Hilbert space for the interacting theory is the same
as that of a free theory. Equation (7.3) is a necessary condition for causality: at the same
time but at different points in space, all operators, in particular fields, should be simultane-
ously observable and commute (otherwise there could be faster-than-light communication).
This causality requirement will be discussed more in the context of the spin-statistics theo-
rem in Section 12.6. Equation (7.4) is the equivalent of the canonical commutation relation
from quantum mechanics: [x̂, p̂] = i�. It indicates that a quantity and its time derivative
are not simultaneously observable – the hallmark of the uncertainty principle.

At this point we only know how to calculate 〈0 |T {φ(x)φ(x′)}| 0〉 in the free theory.
To calculate this commutator in an interacting theory, it is helpful to have the intermediate
result

(� +m2)〈Ω|T{φ(x)φ(x′)}|Ω〉 = 〈Ω|T{(� +m2)φ(x)φ(x′)}|Ω〉 − i�δ4(x− x′), (7.5)

where |Ω〉 is the vacuum in the interacting theory. The δ4(x − x′) on the right side of
this equation is critically important. It signifies the difference between the classical and
quantum theories in a way that will be clear shortly.

To derive Eq. (7.5) we calculate

∂t〈Ω|T{φ(x)φ(x′)}|Ω〉 = ∂t[〈Ω|φ(x)φ (x′)|Ω〉θ(t− t′) + 〈Ω|φ(x′)φ(x)|Ω〉θ(t′ − t)]
= 〈Ω|T {∂tφ(x)φ(x′)}|Ω〉+ 〈Ω|φ(x)φ(x′)|Ω〉∂tθ(t− t′) + 〈Ω|φ(x′)φ(x)|Ω〉∂tθ(t′ − t)

= 〈Ω|T {∂tφ(x)φ(x′)}|Ω〉+ δ(t− t′)〈Ω|[φ(x), φ(x′)]|Ω〉, (7.6)
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where we have used ∂xθ(x) = δ(x) in the last line. The second term on the last line
vanishes, since δ(t− t′) forces t = t′ and [φ(x), φ(x′)] = 0 at equal times. Taking a
second time derivative then gives

∂2
t 〈Ω|T{φ(x)φ(y)}|Ω〉 = 〈Ω|T{∂2

t φ(x)φ(x′)}|Ω〉+ δ(t− t′)〈Ω|[∂tφ(x), φ(x′)]|Ω〉.
(7.7)

Here again δ(t− t′) forces the time to be equal, in which case [∂tφ(x), φ(x′)] =
−i�δ3(�x− �x′) as in Eq. (7.4). Thus,

∂2
t 〈Ω|T{φ(x)φ(y)}|Ω〉 = 〈Ω|T{∂2

t φ(x)φ(x′)}|Ω〉 − i�δ4(x− x′) (7.8)

and Eq. (7.5) follows.
For example, in the free theory,

(
� +m2

)
φ0(x) = 0. Then Eq. (7.5) implies(

�x +m2
)
DF (x, y) = −i�δ4(x− y) , (7.9)

which is easy to verify from Eq. (7.2).
Introducing the notation 〈· · · 〉 = 〈Ω|T{· · · }|Ω〉 for time-ordered correlation functions

in the interacting theory, Eq. (7.5) can be written as

(� +m2)〈φ(x)φ(x′)〉 = 〈(� +m2)φ(x)φ(x′)〉 − i�δ4(x− x′). (7.10)

It is not hard to see that similar equations hold for commutators involving more fields.
We will get [∂tφ(x), φ(xj)] terms from the time derivatives acting on the time-ordering
operator giving δ-functions. The result is that

�x〈φ(x)φ(x1) · · ·φ(xn)〉 = 〈�xφ(x)φ(x1) · · ·φ(xn)〉

− i�
∑
j

δ4(x− xj)〈φ(x1) · · ·φ(xj−1)φ(xj+1) · · ·φ(xn)〉. (7.11)

You should check this generalization by calculating �x〈φ(x)φ(x1)φ(x2)〉 on your own.
Now we use the fact that the quantum field satisfies the same equations of motion

as the classical field, by assumption. In particular, if the Lagrangian has the form L =
− 1

2φ
(
� +m2

)
φ + Lint[φ] then the (quantum) field satisfies

(
� +m2

)
φ − L′

int[φ] = 0,
where L′

int[φ] = d
dφLint[φ], giving

(
�x +m2

)
〈φxφ1 · · ·φn〉 = 〈L′

int [φx]φ1 · · ·φn〉

− i�
∑
j

δ4(x− xj) 〈φ1 · · ·φj−1φj+1 · · ·φn〉, (7.12)

where φx≡φ(x) and φj ≡φ (xj). These are known as the Schwinger–Dyson
equations.

The Schwinger–Dyson equations encode the difference between the classical and quan-
tum theories. Note that their derivation did not require any specification of the dynamics
of the theory, only that the canonical commutation relations in Eq. (7.4) are satisfied.
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In particular, in a classical theory, [φ(�x′, t) , ∂tφ(�x, t)] = 0 and therefore classical time-
ordered correlation functions would satisfy a similar equation but without the δ4(x − xj)
terms (i.e. � = 0). That is, in a classical theory, correlation functions satisfy the same
differential equations as the fields within the correlation functions. In a quantum theory,
that is true only up to δ-functions, which in this context are also called contact interac-
tions. These contact interactions allow virtual particles to be created and destroyed, which
permits closed loops to form in the Feynman diagrammatic expansion, as we will now see.

7.1.1 Position-space Feynman rules

The Schwinger–Dyson equations specify a completely non-perturbative relationship
among correlation functions in the fully interacting theory. Some non-perturbative impli-
cations will be discussed in later chapters (in particular Sections 14.8 and 19.5). In this
section, we will solve the Schwinger–Dyson equations in perturbation theory.

For efficiency, we write δxi = δ4(x− xi) and Dij = Dji = DF (xi, xj). We will also
set m = 0 for simplicity (the m �= 0 case is a trivial generalization), and � = 1. With
this notation, the Green’s function equation for the Feynman propagator can be written
concisely as

�xDx1 = −iδx1. (7.13)

This relation can be used to rewrite correlation functions in a suggestive form. For example,
the 2-point function can be written as

〈φ1φ2〉 =
∫
d4x δx1〈φxφ2〉 = i

∫
d4x (�xDx1) 〈φxφ2〉 = i

∫
d4xDx1�x〈φxφ2〉,

(7.14)
where we have integrated by parts in the last step. This is suggestive because �x acting on
a correlator can be simplified with the Schwinger–Dyson equations.

Now first suppose we are in the free theory where Lint = 0. Then the 2-point function
can be evaluated using the Schwinger–Dyson equation, �x〈φxφy〉 = −iδxy , to give

〈φ1φ2〉 =
∫
d4xDx1δx2 = D12, (7.15)

as expected. For a 4-point function, the expansion is similar:

〈φ1φ2φ3φ4〉 = i

∫
d4xDx1�x〈φxφ2φ3φ4〉

=
∫
d4xDx1{δx2〈φ3φ4〉+ δx3〈φ2φ4〉+ δx4〈φ2φ3〉} . (7.16)

Collapsing the δ-functions and using Eq. (7.15), this becomes

〈φ1φ2φ3φ4〉 = D12D34 + D13D24 + D14D23

=
x2

x1

x4

x3

+
x2

x1

x4

x3

+
x2

x1

x4

x3

.
(7.17)
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Each of these terms is drawn as a diagram. In the diagrams, the points x1 . . . x4 corre-
spond to points where the correlation function is evaluated and the lines connecting these
points correspond to propagators.

Next, we will add interactions. Consider for example the 2-point function again with
Lagrangian L = − 1

2φ�φ+ g
3!φ

3 (the 3! is a convention that will be justified shortly). Up
to Eq. (7.14) things are the same as before. But now an application of the Schwinger–Dyson
equations involves L′

int [φ] = g
2φ

2, so we get

〈φ1φ2〉 = i

∫
d4xD1x

(g
2
〈φ2
xφ2〉 − iδx2

)
. (7.18)

To simplify this, we introduce another integral, use δ2y = i�yDy2, and integrate by parts
again to give

〈φ1φ2〉 = D12 −
g

2

∫
d4x d4y Dx1Dy2�y〈φ2

xφy〉

= D12 −
g2

4

∫
d4x d4y Dx1D2y〈φ2

xφ
2
y〉+ ig

∫
d4xD1xD2x〈φx〉. (7.19)

If we are only interested in order g2, the 〈φ2
xφ

2
y〉 term can then be simplified using the free

field Schwinger–Dyson result, Eq. (7.17),

〈φ2
xφ

2
y〉 = 2D2

xy +DxxDyy +O(g). (7.20)

The 〈φx〉 term in Eq. (7.19) can be expanded using the Schwinger–Dyson equations again:

〈φx〉 = i

∫
d4y Dxy�y〈φy〉 = i

g

2

∫
d4y Dxy〈φ2

y〉 = i
g

2

∫
d4y DxyDyy +O

(
g2
)
.

(7.21)
Thus the final result is

〈φ1φ2〉 = D12 − g2

∫
d4x d4y

(
1
2
D1xD

2
xyDy2 +

1
4
D1xDxxDyyDy2

+
1
2
D1xD2xDxyDyy

)
. (7.22)

The three new terms correspond to the diagrams

x1 x2x y +
x1 x2

x y +
x1 x2x

y

(7.23)
These diagrams now have new points, labeled x and y, which are integrated over.

From these examples, and looking at the pictures, it is easy to infer the way the
perturbative expansion will work for higher-order terms or more general interactions.

1. Start with (external) points xi for each position at which fields in the correlation
function are evaluated. Draw a line from each point.

2. A line can then either contract to an existing line, giving a Feynman propagator con-
necting the endpoints of the two lines, or it can split, due to an interaction. A split gives
a new (internal) vertex proportional to the coefficient of L′

int[φ] times i and new lines
corresponding to the fields in L′

int [φ].
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3. At a given order in the perturbative couplings, the result is the sum of all diagrams with
all the lines contracted, integrated over the positions of internal vertices.

These are known as the position-space Feynman rules. The result is a set of diagrams.
The original time-ordered product is given by a sum over integrals represented by the
diagrams with an appropriate numerical factor. To determine the numerical factor, it is
conventional to write interactions normalized by the number of permutations of identical
fields, for example

Lint =
λ

4!
φ4,

g

3!
φ3,

κ

5!3!2!
φ5

1φ
3
2φ

2
3, . . . (7.24)

Thus, when the derivative is taken to turn the interaction into a vertex, the prefactor
becomes 1

(n−1)! . This (n− 1)! is then canceled by the number of permutations of the lines
coming out of the vertex, not including the line coming in, which we already fixed. In this
way, the n! factors all cancel. The diagram is therefore associated with just the prefactor
λ, g, κ, etc. from the interaction.

In some cases, such as theories with real scalar fields, some of the permutations give the
same amplitude. For example, if a line connects back to itself, then permuting the two legs
gives the same integral. In this case, a factor of 1

2 in the normalization is not canceled, so
we must divide by 2 to get the prefactor for a diagram. That is why the third diagram in
Eq. (7.23) has a 1

2 and the second diagram has a 1
4 . For the first diagram, the factor of 1

2

comes from exchanging the two lines connecting x and y. So there is one more rule:

4. Drop all the n! factors in the coefficient of the interaction, but then divide by the
geometrical symmetry factor for each diagram.

Symmetries are ways that a graph can be deformed so that it looks the same with the
external points, labeled xi, held fixed. Thus, while there are symmetry factors for the
graphs in Eq. (7.23), a graph such as

x1

x2

x3

(7.25)

has no symmetry factor, since the graph cannot be brought back to itself without tangling
up the external lines. The safest way to determine the symmetry factor is simply to write
down all the diagrams using the Feynman rules and see which give the same integrals. In
practice, diagrams almost never have geometric symmetry factors; occasionally in theories
with scalars there are factors of 2.

As mentioned in the introduction, an advantage of this approach is that it provides an
intuitive way to connect and contrast the classical and quantum theories. In a classical
theory, as noted above, the contact interactions are absent. It was these contact interactions
that allowed us to contract two fields within a correlation function to produce a term in
the expansion with fewer fields. For example, �〈φ1φ2φ3φ4〉 = iδ12〈φ3φ4〉 + · · · . In the
classical theory, all that can happen is that the fields will proliferate. Thus, we can have
diagrams such as
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or but not

(7.26)
The first process may represent general relativistic corrections to Mercury’s orbit (see
Eq. (3.85)), which can be calculated entirely with classical field theory. The external points
in this case are all given by external sources, such as Mercury or the Sun, which are
illustrated with the blobs. The second process represents an electron in an external elec-
tromagnetic field (see Eq. (4.37)). This is a semi-classical process in which a single field
is quantized (the electron) and does not get classical-source blobs on the end of its lines.
But since quantum mechanics is first-quantized, particles cannot be created or destroyed
and no closed loops can form. Thus, neither of these first two diagrams involve virtual
pair creation. The third describes a process that can only be described with quantum field
theory (or, with difficulty, with old-fashioned perturbation theory as in Eq. (4.44)). It is
a Feynman diagram for the electron self-energy, which will be calculated properly using
quantum field theory in Chapter 18.

7.2 Hamiltonian derivation

In this section, we reproduce the position-space Feynman rules using time-dependent
perturbation theory. Instead of assuming that the quantum field satisfies the Euler–
Lagrange equations, we instead assume its dynamics is determined by a Hamiltonian H
by the Heisenberg equations of motion i∂tφ(x) = [φ,H]. The formal solution of this
equation is

φ(�x, t) = S(t, t0)†φ(�x)S(t, t0), (7.27)

where S(t, t0) is the time-evolution operator (the S-matrix) that satisfies

i∂tS(t, t0) = H(t)S(t, t0). (7.28)

These are the dynamical equations in the Heisenberg picture where all the time depen-
dence is in operators. States including the vacuum state |Ω〉 in the Heisenberg picture are,
by definition, time independent. As mentioned in Chapter 2, the Hamiltonian can either be
defined at any given time as a functional of the fields φ (�x) and π (�x) or equivalently as a
functional of the creation and annihilation operators a†p and ap. We will not need an explicit
form of the Hamiltonian for this derivation so we just assume it is some time-dependent
operator H(t).

The first step in time-dependent perturbation theory is to write the Hamiltonian as

H(t) = H0 + V(t), (7.29)

where the time evolution induced by H0 can be solved exactly and V is small in some
sense. For example, H0 could be the free Hamiltonian, which is time independent, and V
might be a φ3 interaction:
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V (t) =
∫
d3x

g

3!
φ(�x, t)3 . (7.30)

The operators φ(�x, t), H , H0 and V are all in the Heisenberg picture.
Next, we need to change to the interaction picture. In the interaction picture the fields

evolve only with H0. The interaction picture fields are just what we had been calling (and
will continue to call) the free fields:

φ0(�x, t) = eiH0(t−t0)φ(�x)e−iH0(t−t0) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + a†pe
ipx
)
. (7.31)

To be precise, φ(�x) is the Schrödinger picture field, which does not change with time. The
free fields are equal to the Schrödinger picture fields and also to the Heisenberg picture
fields, by definition, at a single reference time, which we call t0.

Using Eq. (7.27), we see that the Heisenberg picture fields are related to the free fields
by

φ(�x, t) = S†(t, t0) e−iH0(t−t0)φ0(�x, t) eiH0(t−t0)S(t, t0)

= U†(t, t0)φ0(�x, t)U(t, t0) . (7.32)

The operator U(t, t0) ≡ eiH0(t−t0)S(t, t0) therefore relates the full Heisenberg picture
fields to the free fields at the same time t. The evolution begins from the time t0 where the
fields in the two pictures (and the Schrödinger picture) are equal.

We can find a differential equation for U(t, t0) using Eq. (7.28):

i∂tU(t, t0) = i
(
∂te

iH0(t−t0)
)
S(t, t0) + eiH0(t−t0)i∂tS(t, t0)

= −eiH0(t−t0)H0S(t, t0) + eiH0(t−t0)H(t)S(t, t0)

= eiH0(t−t0) [−H0 +H(t)] e−iH0(t−t0)eiH0(t−t0)S(t, t0)

= VI(t)U(t, t0) , (7.33)

where VI(t) ≡ eiH0(t−t0)V (t)e−iH0(t−t0) is the original Heisenberg picture potential V (t)
from Eq. (7.29), now expressed in the interaction picture.

If everything commuted, the solution to Eq. (7.33) would be U(t, t0) =
exp(−i

∫ t
t0
VI(t′)dt′). But VI(t1) does not necessarily commute with VI(t2), so this is

not the right answer. It turns out that the right answer is very similar:

U(t, t0) = T

{
exp
[
−i
∫ t
t0

dt′VI(t′)
]}

, (7.34)

where T {} is the time-ordering operator, introduced in Chapter 6. This solution works
because time ordering effectively makes everything inside commute:

T{A · · ·B · · · } = T{B · · ·A · · · }. (7.35)

Taking the derivative, you can see immediately that Eq. (7.34) satisfies Eq. (7.33). Since it
has the right boundary conditions, namely U(t, t) = 1, this solution is unique.

Time ordering of an exponential is defined in the obvious way through its expansion:

U(t, t0) = 1− i
∫ t
t0

dt′VI(t′)−
1
2

∫ t
t0

dt′
∫ t
t0

dt′′T {VI(t′)VI(t′′)}+ · · · . (7.36)
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This is known as a Dyson series. Dyson defined the time-ordered product and this series
in his classic paper [Dyson, 1949]. In that paper he showed the equivalence of old-
fashioned perturbation theory or, more exactly, the interaction picture method developed
by Schwinger and Tomonaga based on time-dependent perturbation theory, and Feynman’s
method, involving space-time diagrams, which we are about to get to.

7.2.1 Perturbative solution for the Dyson series

We guessed and checked the solution to Eq. (7.33), which is often the easiest way to solve
a differential equation.We can also solve it using perturbation theory.

Removing the subscript on V for simplicity, the differential equation we want to solve is

i∂tU(t, t0) = V(t)U(t, t0). (7.37)

Integrating this equation lets us write it in an equivalent form:

U(t, t0) = 1− i
∫ t
t0

dt′V(t′)U(t′, t0), (7.38)

where 1 is the appropriate integration constant so that U(t0, t0) = 1.
Now we will solve the integral equation order-by-order in V . At zeroth order in V ,

U(t, t0) = 1. (7.39)

To first order in V we find

U(t, t0) = 1− i
∫ t
t0

dt′V(t′) + · · · . (7.40)

To second order,

U(t, t0) = 1− i
∫ t
t0

dt′V(t′)

[
1− i
∫ t′
t0

dt′′V(t′′) + · · ·
]

= 1− i
∫ t
t0

dt′V(t′) + (−i)2
∫ t
t0

dt′
∫ t′
t0

dt′′V(t′)V(t′′) + · · · . (7.41)

The second integral has t0 < t′′ < t′ < t, which is the same as t0 < t′′ < t and
t′′ < t′ < t. So it can also be written as∫ t

t0

dt′
∫ t′
t0

dt′′V(t′)V(t′′) =
∫ t
t0

dt′′
∫ t
t′′
dt′V(t′)V(t′′) =

∫ t
t′
dt′′
∫ t
t0

dt′V(t′′)V(t′),

(7.42)
where we have relabeled t′′ ↔ t′ and swapped the order of the integrals to get the third
form. Averaging the first and third form gives∫ t

t0

dt′
∫ t′
t0

dt′′V(t′)V(t′′) =
1
2

∫ t
t0

dt′
[∫ t′

t0

dt′′V(t′)V(t′′) +
∫ t
t′
dt′′V(t′′)V(t′)

]

=
1
2

∫ t
t0

dt′
∫ t
t0

dt′′T {V(t′)V(t′′)} . (7.43)
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Thus,

U(t, t0) = 1− i
∫ t
t0

dt′V(t′) +
(−i)2

2

∫ t
t0

dt′
∫ t
t0

dt′′T {V(t′)V(t′′)}+ · · · . (7.44)

Continuing this way, we find, restoring the subscript on V , that

U(t, t0) = T

{
exp
[
−i
∫ t
t0

dt′VI(t′)
]}

. (7.45)

7.2.2 U relations

It is convenient to abbreviate U with

U21 ≡ U(t2, t1) = T

{
exp
[
−i
∫ t2
t1

dt′VI(t′)
]}

. (7.46)

Remember that in field theory we always have later times on the left. It follows that

U21U12 = 1 , (7.47)

U−1
21 = U†

21 = U12 (7.48)

and for t1 < t2 < t3

U32U21 = U31. (7.49)

Multiplying this by U12 on the right, we find

U31U12 = U32, (7.50)

which is the same identity with 2 ↔ 1. Multiplying Eq. (7.49) by U23 on the left gives the
same identity with 3 ↔ 1. Therefore, this identity holds for any time ordering.

Finally, our defining relation, Eq. (7.32),

φ(�x, t) = U†(t, t0)φ0(�x, t)U(t, t0) (7.51)

lets us write

φ(x1) = φ(�x1, t1) = U†
10φ0(�x1, t1)U10 = U01φ0(x1)U10. (7.52)

7.2.3 Vacuum matrix elements

In deriving LSZ we used that the vacuum state |Ω〉 was annihilated by the operators ap(t)
in the interacting theory at a time t = −∞. To relate this to a state for which we know how
the free-field creation and annihilation operators act, we need to evolve it to the reference
time t0 where the free and interacting pictures are taken equal. This is straightforward:
states evolve (in the Schrödinger picture) with S(t, t0), and thus S(t, t0) |Ω〉 is annihilated
by ap(t0) at t = −∞. Equivalently (in the Heisenberg picture) the operator ap(t) =
S(t, t0)

†
ap(t0)S(t, t0) annihilates |Ω〉 at t = −∞.
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In the free theory, there is a state |0〉, which is annihilated by the ap. Since the ap
evolve with a simple phase rotation, the same state |0〉 is annihilated by the (free the-
ory) ap at any time. More precisely, even if we do not assume |0〉 has zero energy, then
ap(t0) eiH0(t−t0) |0〉 = 0 at t = −∞. Since at the time t0 the free and interacting
theory creation and annihilation operators are equal, the ap in both theories annihilate
eiH0(t−t0)|0〉 and S(t, t0) |Ω〉. Thus, the two states must be proportional. Therefore

|Ω〉 = Ni lim
t→−∞S†(t, t0) eiH0(t−t0)|0〉 = NiU0−∞|0〉 (7.53)

for some number Ni. Similarly, 〈Ω| = Nf 〈0|U∞0 for some number Nf .
Now let us see what happens when we rewrite correlation functions in the interaction

picture. We are interested in time-ordered products 〈Ω|T {φ(x1) · · ·φ(xn)} |Ω〉. Since all
the φ(xi) are within a time-ordered product, we can write them in any order we want. So
let us put them in time order, or equivalently we assume t1 > · · · > tn without loss of
generality. Then,

〈Ω|T{φ(x1) · · ·φ(xn)} |Ω〉 = 〈Ω|φ(x1) · · ·φ(xn)|Ω〉
= NiNf 〈0|U∞0U01φ0(x1)U10U02φ0(x2)U20 · · ·U0nφ0(xn)Un0U0−∞|0〉
= NiNf

〈
0|U∞1φ0(x1)U12φ0(x2)U23 · · ·U(n−1)nφ0(xn)Un−∞|0〉 . (7.54)

Now, since the ti are in time order and the Uij are themselves time-ordered products
involving times between ti and tj , everything in this expression is in time order. Thus

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉
= NiNf 〈0|T{U∞1φ0(x1)U12φ0(x2)U23 · · ·φ0(xn)Un−∞}|0〉
= NiNf 〈0|T{φ0(x1) · · ·φ0(xn)U∞,−∞}|0〉. (7.55)

The normalization should set so that 〈Ω|Ω〉 = 1, just as 〈0|0〉 = 1 in the free theory. This
implies NiNf = 〈0|U∞−∞|0〉−1 and therefore

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
〈0|T{φ0(x1) · · ·φ0(xn)U∞,−∞}|0〉

〈0|U∞,−∞|0〉
. (7.56)

Substituting in Eq. (7.46) we then get

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
〈0|T
{
φ0(x1) · · ·φ0(xn) exp[−i

∫∞
−∞ dtVI(t)]

}
|0〉

〈0|T
{

exp[−i
∫∞
−∞ dtVI(t)]

}
|0〉

.

(7.57)

7.2.4 Interaction potential

The only thing left to understand is what VI(t) is. We have defined the time t0 as when the
interacting fields are the same as the free fields. For example, a cubic interaction would be

V (t0) =
∫
d3x

g

3!
φ(�x, t0)

3 =
∫
d3x

g

3!
φ0(�x, t0)

3 =
∫
d3x

g

3!
φ(�x)3 , (7.58)
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Recall that the time dependence of the free fields is determined by the free Hamiltonian,

φ0(�x, t) = eiH0(t−t0)φ0(�x)e−iH0(t−t0), (7.59)

and therefore

VI = eiH0(t−t0)
[∫

d3x
g

3!
φ0(�x)

3

]
e−iH0(t−t0) =

∫
d3x

g

3!
φ0(�x, t)

3
. (7.60)

So the interaction picture potential is expressed in terms of the free fields at all times.
Now we will make our final transition away from non-Lorentz-invariant Hamiltonians to

Lorentz-invariant Lagrangians, leaving old-fashioned perturbation theory for good. Recall
that the potential is related to the Lagrangian by VI = −

∫
d3xLint[φ0], where Lint is the

interacting part of the Lagrangian density. Then,

U∞,−∞ = exp
[
−i
∫ ∞

−∞
dt VI(t)

]
= exp
[
i

∫ ∞

−∞
d4xLint[φ0]

]
. (7.61)

The
∫∞
−∞ dt combines with the

∫
d3x to give a Lorentz-invariant integral.

In summary, matrix elements of interacting fields in the interacting vacuum are given by

〈Ω|φ(x1) · · ·φ(xn)|Ω〉 =
〈0|U∞1φ0(x1)U12φ0(x2)U23 · · ·φ0(xn)Un,−∞|0〉

〈0|U∞,−∞|0〉
, (7.62)

where |Ω〉 is the ground state in the interacting theory and

Uij = T

{
exp

[
i

∫ ti
tj

d4xLint [φ0]

]}
, (7.63)

with Lint[φ] = L[φ] − L0[φ], where L0[φ] is the free Lagrangian. The free Lagrangian is
defined as whatever goes into the free-field evolution, usually taken to be just kinetic terms.

For the special case of time-ordered products, such as what we need for S-matrix
elements, this simplifies to

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
〈0|T
{
φ0(x1) · · ·φ0(xn)ei

∫
d4xLint[φ0]

}
|0〉

〈0|T
{
ei
∫
d4xLint[φ0]

}
|0〉

, (7.64)

which is a remarkably simple and manifestly Lorentz-invariant result.

7.2.5 Time-ordered products and contractions

We will now see that the expansion of Eq. (7.64) produces the same position-space Feyn-
man rules as those coming from the Lagrangian approach described in Section 7.1. To see
that, let us take as an example our favorite φ3 theory with interaction Lagrangian

Lint[φ] =
g

3!
φ3, (7.65)

and consider 〈Ω|T{φ(x1)φ(x2)}|Ω〉.
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The numerator of Eq. (7.64) can be expanded perturbatively in g as

〈0|T
{
φ0(x1)φ0(x2)ei

∫
d4xLint[φ0]

}
|0〉 = 〈0|T{φ0(x1)φ0(x2)}|0〉

+
ig

3!

∫
d4x〈0|T

{
φ0(x1)φ0(x2)φ0(x)3

}
|0〉

+
(
ig

3!

)2 1
2

∫
d4x

∫
d4y〈0|T

{
φ0(x1)φ0(x2)φ0(x)3φ0(y)3

}
|0〉+ · · · . (7.66)

A similar expansion would result from any time-ordered product of interacting fields. Thus,
we now only need to evaluate correlation functions of products of free fields.

To do so, is it helpful to write φ0(x) = φ+(x) + φ−(x), where

φ+(x) =
∫

d3p

(2π)3
1√
2ωp

a†pe
ipx, φ−(x) =

∫
d3p

(2π)3
1√
2ωp

ape
−ipx, (7.67)

with φ+ containing only creation operators and φ− only annihilation operators. Then prod-
ucts of φ0 fields at different points become sums of products of φ+ and φ− fields at
different points. For example,

〈0|T
{
φ0(x1)φ0(x2)φ0(x)3φ0(y)3

}
|0〉

= 〈0|T
{

[φ+(x1)+φ−(x1)] [φ+(x2)+φ−(x2)] [φ+(x) + φ−(x)]3[φ+(y)+φ−(y)]3
}
|0〉

= 〈0|T
{
φ+(x1)φ+(x2)φ+(x)3φ+(y)3

}
|0〉

+ 2〈0|T
{
φ+(x2)φ+(x1)φ+(x)3φ+(y)2φ−(y)

}
|0〉+ · · · . (7.68)

The last line indicates that the result is the sum of a set of products of φ+ and φ− operators
evaluated at different points. In each element of this sum, a φ+ would create a particle that,
to give a non-zero result, must then be annihilated by some φ− operator. The matrix ele-
ment can only be non-zero if every particle that is created is destroyed, so every term must
have four φ+ operators and four φ− operators. Each pairing of φ+ with φ− to get a Feyn-
man propagator is called a contraction (not to be confused with a Lorentz contraction).
The result is then the sum of all possible contractions.

Each contraction represents the creation and then annihilation of a particle, with the
creation happening earlier than the annihilation. Each contraction gives a factor of the
Feynman propagator:

〈0|T{φ0(x)φ0(y)}|0〉 =
∫

d4k

(2π)4
i

k2 −m2 + iε
eik(x−y) ≡ DF (x, y). (7.69)

A time-ordered correlation function of free fields is given by a sum over all possible ways
in which all of the fields in the product can be contracted with each other. This is a result
known as Wick’s theorem. Wick’s theorem is given in Box 7.3 and proven in the appendix
to this chapter.

To see how Wick’s theorem works, let us return to our example and use the nota-
tion Dij ≡ DF (xi, xj). The first term in the expansion of 〈Ω|T{φ(x1)φ(x2)}|Ω〉 is
〈0|T{φ0(x1)φ0(x2)}|0〉, from Eq. (7.66). There is only one contraction here, which gives
the propagator DF (x1, x2) = D12. The second term in Eq. (7.66) has an odd number of
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φ fields, and therefore cannot be completely contracted and must vanish. The third term in
Eq. (7.66) involves six fields, and there are multiple possible contractions:

〈0|T{φ0(x1)φ0(x2)φ0(x)φ0(x)φ0(x)φ0(y)φ0(y)φ0(y)}|0〉
= 9D12DxxDxyDyy + 6D12D

3
xy

+ 18D1xD2xDxyDyy + 9D1xD2yDxxDyy + 18D1xD2yD
2
xy

+ 18D1yD2yDxyDxx + 9D1yD2xDxxDyy + 18D1yD2xD
2
xy. (7.70)

As in Eq. (7.66), we have to integrate over x and y. Thus, many of these terms (those on
the last line) give the same contributions as other terms. We find, to order g2,

〈Ω|T{φ(x1)φ(x2)}|Ω〉 =
1

〈0|T
{
ei
∫ Lint
}
|0〉

{
D12

− g2

∫
d4x

∫
d4y
[1
8
D12DxxDxyDyy +

1
12
D12D

3
xy +

1
2
D1xD2xDxyDyy

+
1
4
D1xDxxDyyDy2 +

1
2
D1xD

2
xyDy2

]}
(7.71)

The position-space Feynman rules that connect this expansion to diagrams are the same
as those coming from the Lagrangian approach in Section 7.1. Comparing to Eq. (7.22)
we see that the sum of terms is exactly the same, including combinatoric factors, with two
exceptions: the 〈0|T{ei

∫ Lint} |0〉 factor and the first two terms on the second line. The two
new terms correspond to diagrams

x1 x2
x y

and
x1 x2

x y

(7.72)

These two differences precisely cancel.
To see the cancellation, note that the extra diagrams both include bubbles. That is,

they have connected subgraphs not involving any external point. The bubbles are exactly
what are in 〈0|T{ei

∫ Lint} |0〉. To see this, note that Wick’s theorem also applies to the
denominator of Eq. (7.64). Up to order g2, Wick’s theorem implies

〈0|T
{
ei
∫
d4xLint[φ0]

}
|0〉 = 〈0|0〉+

(
ig

3!

)2 1
2

∫
d4x

∫
d4y〈0|T

{
φ0(x)3φ0(y)3

}
|0〉+· · · .

(7.73)
We have dropped the O(g) term since it involves an odd number of fields and therefore
vanishes by Wick’s theorem. Performing a similar expansion as above, we find

〈0|T
{
ei
∫
d4xLint[φ0]

}
|0〉 = 1 +

(
ig

3!

)2 1
2

∫
d4x

∫
d4y
[
9DxxDxyDyy + 6D3

xy

]
+O(g3).

(7.74)
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These diagrams are the bubbles and . Expanding Eq. (7.71) including terms up

to O
(
g2
)

in the numerator and denominator, we find

〈0|T
{
φ0(x1)φ0(x2)ei

∫ Lint

}
|0〉

〈0|T
{
ei
∫ Lint
}
|0〉

=
D12−g2

∫ [
1
8D12DxxDxyDyy+ 1

12D12D
3
xy + · · ·

]
1− g2
∫ [

1
8DxxDxyDyy + 1

12D
3
xy

] .

(7.75)
Since 1

1+g2x = 1− g2x+O(g4), we can invert the denominator in perturbation theory to
see that the bubbles exactly cancel.

More generally, the bubbles will always cancel. Since the integrals in the expansion
of the numerator corresponding to the bubbles never involve any external point, they just
factor out. The sum over all graphs, in the numerator, is then the sum over all graphs with
no bubbles multiplying the sum over the bubbles. In pictures,

+ + + + · · ·

=
(

+ + · · ·
)
×
(

1 + + + · · ·
)
.

(7.76)

The sum over bubbles is exactly 〈0|T
{
ei
∫ Lint

}
|0〉. So,

〈Ω|T{φ(x1) · · ·φ(x2)} |Ω〉 = 〈0|T
{
φ0(x1)φ0(x2)ei

∫ Lint

}
|0〉no bubbles, (7.77)

where “no bubbles” means that every connected subgraph involves an external point.

7.2.6 Position-space Feynman rules

We have shown that the same sets of diagrams appear in the Hamiltonian and the
Lagrangian approaches: each point xi in the original n-point function 〈Ω|T {φ(x1) · · ·
φ(xn)} |Ω〉 gets an external point and each interaction gives a new vertex whose position
is integrated over and whose coefficient is given by the coefficient in the Lagrangian.

As long as the vertices are normalized with appropriate permutation factors, as in
Eq. (7.24), the combinatoric factors will work out the same, as we saw in the example.
In the Lagrangian approach, we saw that the coefficient of the diagram will be given by the
coefficient of the interaction multiplied by the geometrical symmetry factor of the diagram.
To see that this is also true for the Hamiltonian, we have to count the various combinatoric
factors:

• There is a factor of 1
m! from the expansion of exp(iLint) =

∑
1
m! (iLint)m. If we expand

to order m there will be m identical vertices in the same diagram. We can also swap
these vertices around, leaving the diagram looking the same. If we only include the
diagram once in our final sum, the m! from permuting the diagrams will cancel the 1

m!

from the exponential. Neither of these factors were present in the Lagrangian approach,
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since internal vertices came out of the splitting of lines associated with external vertices,
which was unambiguous, and there was no exponential to begin with.

• If interactions are normalized as in Eq. (7.24), then there will be a 1
j! for each interaction

with j identical particles. This factor is canceled by the j! ways of permuting the j
identical lines coming out of the same internal vertex. In the Lagrangian approach, one
of the lines was already chosen so the factor was (j − 1)!, with the missing j coming
from using L′

int[φ] instead of Lint[φ].

The result is the same Feynman rules as were derived in the Lagrangian approach. In both
cases, symmetry factors must be added if there is some geometric symmetry (there rarely
is in theories with complex fields, such as QED). In neither case do any of the diagrams
include bubbles (subdiagrams that do not connect with any external vertex).

7.3 Momentum-space Feynman rules

The position-space Feynman rules derived in either of the previous two sections give a
recipe for computing time-ordered products in perturbation theory. Now we will see how
those time-ordered products simplify when all the phase-space integrals over the prop-
agators are performed to turn them into S-matrix elements. This will produce the
momentum-space Feynman rules.

Consider the diagram

T1 = x1 x2x y = −g
2

2

∫
d4x

∫
d4yD1xD

2
xyDy2. (7.78)

To evaluate this diagram, first write every propagator in momentum space (taking m = 0
for simplicity):

Dxy =
∫

d4p

(2π)4
i

p2 + iε
eip(x−y). (7.79)

Then there will be four d4p integrals from the four propagators and all the positions will
appear only in exponentials. So,

T1 = −g
2

2

∫
d4x

∫
d4y

∫
d4p1

(2π)4

∫
d4p2

(2π)4

∫
d4p3

(2π)4

∫
d4p4

(2π)4

× eip1(x1−x)eip2(y−x2)eip3(x−y)eip4(x−y)
i

p2
1 + iε

i

p2
2 + iε

i

p2
3 + iε

i

p2
4 + iε

. (7.80)

Now we can do the x and y integrals, which produce δ4(−p1+p3+p4) and δ4(p2−p3−p4)
respectively, corresponding to momentum being conserved at the vertices labeled x and y
in the Feynman diagram. If we integrate over p3 using the first δ-function then we can
replace p3 = p1 − p4 and the second δ-function becomes δ4(p1 − p2). Then we have,
relabeling p4 = k,
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T1 = −λ
2

2

∫
d4k

(2π)4

∫
d4p1

(2π)4

∫
d4p2

(2π)4
eip1x1e−ip2x2

× i

p2
1 + iε

i

p2
2 + iε

i

(p1 − k)2 + iε

i

k2 + iε
(2π)4 δ4(p1 − p2). (7.81)

Next, we use the LSZ formula to convert this to a contribution to the S-matrix:

〈f |S|i〉 =
[
−i
∫
d4x1e

−ipix1(p2
i )
] [
−i
∫
d4x2e

ipfx2(p2
f )
]
〈Ω|T {φ(x1)φ(x2)} |Ω〉 ,

(7.82)
where pμi and pμf are the initial state and final state momenta. So the contribution of this
diagram gives

〈f |S|i〉 = −
∫
d4x1e

−ipix1(pi)2
∫
d4x2e

ipfx2(p2
f )T1 + · · · . (7.83)

Now we note that the x1 integral gives (2π)4 δ4(p1 − pi) and the x2 integral gives a
(2π)4 δ4(p2 − pf ). So we can now do the p1 and p2 integrals, giving

〈f |S|i〉 = −λ
2

2

∫
d4k

(2π)4
i

(pi − k)2 + iε

i

k2 + iε
(2π)4 δ4(pi − pf ) + · · · . (7.84)

Note how the two propagator factors in the beginning get canceled. This always happens
for external legs – remember the point of LSZ was to force the external lines to be on-shell
one-particle states. By the way, this integral is infinite; Part III of this book is devoted to
making sense out of these infinities.

Finally, the δ4(pi − pf ) term in the answer forces overall momentum conservation, and
will always be present in any calculation. But we will always factor it out, as we did when
we related differential scattering amplitudes to S-matrix elements. Recalling that

S = 1 + (2π)4δ4(Σpi)iM, (7.85)

we have

iM = −λ
2

2

∫
d4k

(2π)4
i

(pi − k)2 + iε

i

k2 + iε
+ · · · . (7.86)

We can summarize this procedure with the momentum-space Feynman rules. These
Feynman rules, given in Box 7.1, tell us how to directly calculate iM from pictures. With
these rules, you can forget about practically anything else we have covered so far.

A couple of notes about the rules. The combinatoric factor for the diagram, as con-
tributing to the momentum-space Feynman rules, is given only by the geometric symmetry
factor of the diagram. Identical particles are already taken care of in Wick’s theorem; mov-
ing around the ap’s and a†p’s has the algebra of identical particles in them. The only time
identical particles need extra consideration is when we cannot distinguish the particles we
are scattering. This only happens for final states, since we distinguish our initial states by
the setup of the experiment. Thus, when n of the same particles are produced, we have to
divide the cross section by n!.
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Momentum-space Feynman rules Box 7.1

• Internal lines (those not connected to external points) get propagators
i

p2−m2+iε
.

• Vertices come from interactions in the Lagrangian. They get factors of the
coupling constant times i.

• Lines connected to external points do not get propagators (their propaga-
tors are canceled by terms from the LSZ reduction formula).

• Momentum is conserved at each vertex.
• Integrate over undetermined 4-momenta.
• Sum over all possible diagrams.

7.3.1 Signs of momenta

There is unfortunately no standard convention about how to choose the direction in which
the momenta are going. For external momenta it makes sense to assign them their physical
values, which should have positive energy. Then momentum conservation becomes∑

pi =
∑

pf , (7.87)

which appears in δ-functions as δ4(
∑
pi −
∑
pf ).

For internal lines, we integrate over the momenta, so it does not matter if we use kμ or
−kμ. Still, it is important to keep track of which way the momentum is going so that all
the δ-functions at the vertices are also

∑
(pin − pout). We draw arrows next to the lines to

indicate the flow of momentum:

p1 + p2
p2

p1

p4

p3

(7.88)

We also sometimes draw arrows superimposed on lines, as . These arrows point
in the direction of momentum for particles and opposite to the direction of momentum
for antiparticles. We will discuss these particle-flow arrows more when we introduce
antiparticles in Chapter 9.

You should be warned that sometimes Feynman diagrams are drawn with time going
upwards, particularly in describing hadronic collisions.

7.3.2 Disconnected graphs

A lot of the contractions will result in diagrams where some subset of the external vertices
connect to each other without interacting with the other subsets. What do we do with graphs
where subsets are independently connected, such as the contribution to the 8-point function
shown on the left in Figure 7.1? Diagrams like this have physical effects. For example, at
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Disconnected diagram Connected diagram

�Fig. 7.1 Disconnected graphs like the one on the left have important physical effects. However, they
have a different singularity structure and therefore zero interference with connected
graphs, like the one on the right.

a muon collider, there would be a contribution to the S-matrix from situations where the
muons just decay independently, somewhat close to the interaction region, which look like
the left graph, in addition to the contribution where the muons scatter off each other, which
might look like the right graph in Figure 7.1.

Clearly, both processes need to be incorporated for an accurate description of the col-
lision. However, the disconnected decay process can be computed from the S-matrix for
1 → 3 scattering (as in either half of the left diagram). The probability for the 2 → 6 pro-
cess from the disconnected diagram is then just the product of the two 1 → 3 probabilities.
More generally, the S-matrix (with bubbles removed) factorizes into a product of sums of
connected diagrams, just as the bubbles factorized out of the full S-matrix (see Eq. (7.76)).

The only possible complication is if there could be interference between the discon-
nected diagrams and the connected ones. However, this cannot happen: there is zero
interference. To see why, recall that the definition of the matrix element that these
time-ordered calculations produce has only a single δ-function:

S = 1 + iδ4(Σp)M. (7.89)

Disconnected matrix elements will have extra δ-functionsMdisconnected = δ4(Σsubsetp)(· · · ).
Connected matrix elements are just integrals over propagators, as given by the Feynman
rules. Such integrals can only have poles or possibly branch cuts, but are analytic functions
of the external momenta away from these. They can never produce singularities as strong
as δ-functions. (The same decoherence is also relevant for meta-stable particles produced
in collisions, where it leads to the narrow-width approximation, to be discussed in Sec-
tion 24.1.4.) Therefore, the disconnected amplitudes are always infinitely larger than the
connected ones, and the intereference vanishes. You can check this in Problem 7.2.

More profoundly, the fact that there can never be more than a single δ-function coming
out of connected amplitudes is related to a general principle called cluster decomposition,
which is sometimes considered an axiom of quantum field theory [Weinberg, 1995]. The
cluster decomposition principle says that experiments well-separated in space cannot influ-
ence each other. More precisely, as positions in one subset become well-separated from
positions in the other subsets, the connected S-matrix should vanish. If there were an extra
δ-function, one could asymptotically separate some of the points in such a way that the
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S-matrix went to a constant, violating cluster decomposition. Constructing local theories
out of fields made from creation and annihilation operators guarantees cluster decompo-
sition, as we have seen. However, it is not known whether the logic is invertible, that is,
if the only possible theories that satisfy cluster decomposition are local field theories con-
structed out of creation and annihilation operators. It is also not clear how well cluster
decomposition has been tested experimentally.

Technicalities of cluster decomposition aside, the practical result of this section is that
the only thing we ever need to compute for scattering processes is

〈0|T{φ(x1) · · ·φ0(xn)}|0〉connected , (7.90)

where “connected” means every external vertex connects to every other external vertex
through the graph somehow. Everything else is factored out or normalized away. Bubbles
come up occasionally in discussions of vacuum energy; disconnected diagrams are never
important.

7.4 Examples

The Feynman rules will all make a lot more sense after we do some examples. Let us start
with the Lagrangian,

L = −1
2
φ�φ− 1

2
m2φ2 +

g

3!
φ3, (7.91)

and consider the differential cross section for φφ → φφ scattering. In the center-of-mass
frame, the cross section is related to the matrix element by Eq. (5.32),

dσ

dΩ
(φφ→ φφ) =

1
64π2E2

CM

|M|2. (7.92)

Let the incoming momenta be pμ1 and pμ2 and the outgoing momenta be pμ3 and pμ4 .
There are three diagrams. The first gives

iMs =
p2

p1

p1 + p2 p4

p3

= (ig)
i

(p1 + p2)2 −m2 + iε
(ig) =

−ig2

s−m2 + iε
, (7.93)

where s ≡ (p1 + p2)2. The second gives

iMt =
p2

p1

p4

p1−p3

p3

= (ig)
i

(p1 − p3)2 −m2 + iε
(ig) =

−ig2

t−m2 + iε
, (7.94)
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where t ≡ (p1 − p3)2. The final diagram evaluates to

iM3 =

p2

p1

p1 − p4

p4

p3

= (ig)
i

(p1 − p4)2 −m2 + iε
(ig) =

−ig2

u−m2 + iε
, (7.95)

where u ≡ (p1 − p4)2. The sum is

dσ

dΩ
(φφ→ φφ) =

g4

64π2E2
CM

[
1

s−m2
+

1
t−m2

+
1

u−m2

]2
, (7.96)

We have dropped the iε, which is fine as long as s, t and u are not equal to m2. (For that
to happen, the intermediate scalar would have to go on-shell in one of the diagrams, which
is a degenerate situation, usually contributing only to 1 in the S-matrix. The iε’s will be
necessary for loops, but in tree-level diagrams you can pretty much ignore them.)

7.4.1 Mandelstam variables

The variables s, t and u are called Mandelstam variables. They are a great shorthand,
used almost exclusively in 2 → 2 scattering and in 1 → 3 decays, although there are
generalizations for more momenta. For 2 → 2 scattering, with initial momenta p1 and p2

and final momenta p3 and p4, they are defined by

s ≡ (p1 + p2)2 = (p3 + p4)2, (7.97)

t ≡ (p1 − p3)2 = (p2 − p4)2, (7.98)

u ≡ (p1 − p4)2 = (p2 − p3)2. (7.99)

These satisfy

s+ t+ u =
∑

m2
j , (7.100)

where mj are the invariant masses of the particles.
As we saw in the previous example, s, t and u correspond to particular diagrams

where momentum in the propagator has invariant p2
μ = s, t or u. This correspondence

is summarized in Box 7.2. The s-channel is an annihilation process. In the s-channel, the

Box 7.2 2→ 2 scattering channels.

s-channel t-channel u-channel
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intermediate state has p2
μ = s > 0. The t- and u-channels are scattering diagrams and have

t < 0 and u < 0. s, t and u are great because they are Lorentz invariant. So we compute
M(s, t, u) in the center-of-mass frame, and then we can easily find out what it is in any
other frame, for example the frame of the lab in which we are doing the experiment. We
will use s, t and u a lot.

7.4.2 Derivative couplings

Suppose we have an interaction with derivatives in it, such as

Lint = λφ1(∂μφ2)(∂μφ3), (7.101)

where three different scalar fields are included for clarity. In momentum space, these ∂μ’s
give factors of momenta. But now remember that

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + a†pe
ipx
)
. (7.102)

So, if the particle is being created (emerging from a vertex) it gets a factor of ipμ, and if
it is being destroyed (entering a vertex) it gets a factor of −ipμ. So, we get a minus for
incoming momentum and a plus for outgoing momentum. In this case, it is quite important
to keep track of whether momentum is flowing into or out of the vertex.

For example, take the diagram

φ2

φ1 φ2

φ3 φ3
(7.103)

Label the initial momenta pμ1 and pμ2 and the final momenta p′μ1 and p′μ2 . The exchanged
momentum is kμ = pμ1 + pμ2 = p′μ1 + p′μ2 . Then this diagram gives

iM = (iλ)2 (−ipμ2 )(ikμ)
i

k2
(ip′ν2 )(−ikν) = −iλ2 [p2 · p1 + (p2)2][p′2 · p′1 + (p′2)

2]
(p1 + p2)2

.

(7.104)
As a cross check, we should get the same answer if we use a different Lagrangian related

to the one we used by integration by parts:

Lint = −λφ3[(∂μφ1)(∂μφ2) + φ1�φ2]. (7.105)

Now our one diagram becomes four diagrams, from the two types of vertices on the two
sides, all of which look like Eq. (7.103). It is easiest to add up the contributions to the
vertices before multiplying, which gives

M = (iλ)2
[
(−ipμ2 )(−ipμ1 ) + (−ip2)

2
] i
k2

[
(ip′ν2 )(ip′ν1 ) + (ip′2)

2
]

= −iλ2 [p2 · p1 + (p2)2][p′2 · p′1 + (p′2)
2]

(p1 + p2)2
, (7.106)

which is exactly what we had above. So, integrating by parts does not affect the matrix
elements, as expected. Thus the Feynman rules passed our cross check.
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To see more generally that integrating by parts does not affect matrix elements, it is
enough to show that total derivatives do not contribute to matrix elements. Suppose we
have a term

Lint = ∂μ(φ1 · · ·φn), (7.107)

where there are any number of fields in this term. This would give a contribution from the
derivative acting on each field, with a factor of that field’s momenta. So if the vertex would
have given V without the derivative, adding the derivative makes it( ∑

incoming

piμ −
∑

outgoing

pjμ
)
V. (7.108)

Since the sum of incoming momenta is equal to the sum of outgoing momenta, because
momentum is conserved at each vertex, we conclude that total derivatives do not contribute
to matrix elements

To be precise, total derivatives do not contribute to matrix elements in perturbation
theory. The term

εμναβFμνFαβ = 4∂μ(εμναβAα∂βAν) (7.109)

is a total derivative. If we add a term θ εμναβFμνFαβ to the Lagrangian, indeed noth-
ing happens in perturbation theory. It turns out that there are effects of this term that
will never show up in Feynman diagrams, but are perfectly real. They have physical con-
sequences. For example, if this term appeared in the Lagrangian with anything but an
exponentially small coefficient, it would lead to an observable electric dipole moment for
the neutron. That no such moment has been seen is known as the strong CP problem (see
Section 29.5.3). A closely related effect from such a total derivative is the mass of the η′

meson, which is larger than it could possibly be without total-derivative terms (see Sec-
tion 30.5.2). In both cases the physical effect comes from the strong interactions which are
non-perturbative.

7.A Normal ordering and Wick’s theorem

In this appendix we prove that the vacuum matrix element of a time-ordered product of free
fields is given by the sum of all possible full contractions, a result known as Wick’s theo-
rem. This theorem is necessary for the derivation of the Feynman rules in the Hamiltonian
approach.

7.A.1 Normal ordering

To prove Wick’s theorem, we will manipulate expressions with creation and annihilation
operators into the form of a c-number expression plus terms that vanish when acting on the
vacuum. This is always possible since we can commute the annihilation operators past the
creation operators until they are all on the right, at which point they give zero when acting
on the vacuum.
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For example, we can write

(a†p + ap)(a
†
k + ak) = [ap, a

†
k] + a†kap + a†pak + apak + a†pa

†
k

= (2π)3δ3(p− k) + a†kap + a†pak + apak + a†pa
†
k. (7.A.110)

Then, since the terms with annihilation operators on the right vanish, as do the terms with
creation operators on the left, we get

〈0|(a†p + ap)(a
†
k + ak)|0〉 = (2π)3δ3(p− k). (7.A.111)

We call terms with all annihilation operators on the right normal ordered.

Normal ordered: all the a†p operators are on the left of all the ap operators.

We represent normal ordering with colons. So,

:(a†p + ap)(a
†
k + ak): = a†kap + a†pak + apak + a†pa

†
k. (7.A.112)

When you normal order something, you just pick up the operators and move them. Just
manhandle them over, without any commuting, just as you manhandled the operators
within a time-ordered product. Thus the δ(p − k) from Eq. (7.A.110) does not appear
in Eq. (7.A.112).

The point of normal ordering is that vacuum matrix elements of normal-ordered products
of fields vanish:

〈0| :φ(x1) · · ·φ(xn): |0〉 = 0. (7.A.113)

The only normal-ordered expressions that do not vanish in the vacuum are c-number
functions. Such a function f satisfies

〈0| :f : |0〉 = f. (7.A.114)

The nice thing about normal ordering is that we can use it to specify operator relations. For
example,

T {φ0(x)φ0(y)} = :φ0(x)φ0(y) +DF (x, y):. (7.A.115)

This is obviously true in vacuum matrix elements, sinceDF (x, y) = 〈0|T {φ0(x)φ0(y)} |0〉
and vacuum matrix elements of normal-ordered products vanish. But it is also true at the
level of the operators, as we show below. The point is that by normal ordering expressions
we can read off immediately what will happen when we take vacuum matrix elements, but
no information is thrown out.

7.A.2 Wick’s theorem

Wick’s theorem relates time-ordered products of fields to normal-ordered products of fields
and contractions. It is given in Box 7.3. A contraction means taking two fields φ0(xi) and
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Box 7.3 Wick’s theorem

T {φ0(x1) · · ·φ0(xn)} = : φ0(x1) · · ·φ0(xn) +
all possible

contractions
:

φ0(xj) from anywhere in the series and replacing them with a factor of DF (xi, xj) for
each pair of fields. “All possible contractions” includes one contraction, two contractions,
etc., involving any of the fields. But each field can only be contracted once. Since normal-
ordered products vanish unless all the fields are contracted, this implies that the time-
ordered product is the sum of all the full contractions, which is what we will actually use
to generate Feynman rules.

Wick’s theorem is easiest to prove first by breaking the field up into creation and
annihilation parts, φ0(x) = φ+(x) + φ−(x), where

φ+(x) =
∫

d3p

(2π)3
1√
2ωp

a†pe
ipx, φ−(x) =

∫
d3p

(2π)3
1√
2ωp

ape
−ipx. (7.A.116)

Since [ak, a†p] = (2π)3δ3(�p − �k), commutators of these operators are just functions. In
fact, the Feynman propagator can be written as

DF (x1, x2) = 〈0|T{φ0(x1)φ0(x2)}| 0〉
= [φ−(x1) , φ+(x2)] θ(t1 − t2) + [φ−(x2) , φ+(x1)] θ(t2 − t1) . (7.A.117)

This particular combination represents a contraction.
Let us verify Wick’s theorem for two fields. For t1 > t2

T{φ0(x1)φ0(x2)} = φ+(x1)φ+(x2)+φ+(x1)φ−(x2)+φ−(x1)φ+(x2)+φ−(x1)φ−(x2) .
(7.A.118)

All terms in this expression are normal ordered except for φ−(x1)φ+(x2). So,

T{φ0(x1)φ0(x2)} = :φ0(x1)φ0(x2): + [φ−(x1) , φ+(x2)] , t1 > t2. (7.A.119)

For t2 > t1, the expression is the same with x1 ↔ x2. Thus,

T{φ0(x1)φ0(x2)} = :φ0(x1)φ0(x2): +DF (x1, x2) , (7.A.120)

exactly as Wick’s theorem requires.
The full proof is straightforward to do by mathematical induction. We have shown that

it works for two fields. Assume it holds for n − 1 fields. Without loss of generality, let t1
be the latest time for all n fields. Then,

T{φ0(x1)φ0(x2) · · ·φ(xn)} = [φ+(x1) + φ−(x1)] :φ0(x2) · · ·φ0(xn) +
all possible
contractions

:.

(7.A.121)
Since φ+(x1) is on the left and contains a†p operators, we can just move it into the normal-
ordering. The φ−(x1) must be moved through to the right. Each time it passes a φ+(xi)
field in the normal-ordered product, a contraction results. The result is the sum over the
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normal-ordered product of n fields and all possible contractions of φ−(x1) with any of the
φ+(xi) in any of the terms in the normal-ordered product in Eq. (7.A.121). That is exactly
what all possible contractions of the fields φ0(x2) to φ0(xn) means. Thus, Wick’s theorem
is proven.

The result of Wick’s theorem is that time-ordered products are given by a bunch of
contractions plus normal-ordered products. Since the normal-ordered products vanish in
vacuum matrix elements, all that remains for vacuum matrix elements of time-ordered
products are the Feynman propagators.

Problems

7.1 Consider the Lagrangian for φ3 theory,

L = −1
2
φ(� +m2)φ+

g

3!
φ3. (7.122)

(a) Draw a tree-level Feynman diagram for the decay φ → φφ. Write down the
corresponding amplitude using the Feynman rules.

(b) Now consider the one-loop correction, given by

φ

φ

φ

(7.123)

Write down the corresponding amplitude using the Feynman rules.
(c) Now start over and write down the diagram from part (b) in position space,

in terms of integrals over the intermediate points and Wick contractions,
represented with factors of DF .

(d) Show that after you apply LSZ, what you got in (c) reduces to what you got
in (b), by integrating the phases into δ-functions, and integrating over those
δ-functions.

7.2 Calculate the contribution to 2 → 4 scattering from the Lagrangian L = − 1
2φ�φ+

g
3!φ

3 + 1
6!λφ

6 from both the connected diagram, with the 6-point vertex, and the
disconnected diagram with the 3-point vertex. Show that there is no interference
between the two diagrams. (There are of course many connected diagrams with the
3-point vertex that you can ignore.)

7.3 Non-relativistic Møller scattering: e−e− → e−e−. If the electron and photon were
spinless, we could write the Lagrangian as

L = −1
2
φe(� +m2

e)φe −
1
2
A0�A0 + emeA0φeφe, (7.124)

whereA0 is the scalar potential and the factor ofme comes from the non-relativistic
limit as in Section 5.2 (or by dimensional analysis!).
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(a) Draw the three tree-level e−e− → e−e− diagrams following from this
Lagrangian.

(b) Which one of the diagrams would be forbidden in real QED?
(c) Evaluate the other two diagrams, and express the answers in terms of s, t and u.

Give the diagrams an extra relative minus sign, because electrons are fermions.
(d) Now let us put back the spin. In the non-relativistic limit, the electron spin is

conserved. This should be true at each vertex, since the photon is too soft to
carry off any spin angular momentum. Thus, a vertex can only allow for |↑〉 →
|↑; γ〉 or |↓〉 → |↓; γ〉. This forbids, for example, |↑↓〉 → |↑↑〉 from occurring.
For each of the 16 possible sets of spins for the four electrons (for example
|↑↓〉 → |↑↑〉), which processes are forbidden, and which get contributions from
the s-, t- or u-channels?

(e) It is difficult to measure electron spins. Thus, assume the beams are unpo-
larized, meaning that they have an equal fraction of spin-up and spin-down
electrons, and that you do not measure the final electron spins, only the scat-
tering angle θ. What is the total rate dσ

d cos θ you would measure? Express the
answer in terms of ECM and θ. Sketch the angular distribution.

7.4 We made a distinction between kinetic terms, which are bilinear in fields, and inter-
actions, which have three or more fields. Time evolution with the kinetic terms is
solved exactly as part of the free Hamiltonian. Suppose, instead, we only put the
derivative terms in the free Hamiltonian and treated the mass as an interaction. So,

H0 =
1
2
φ�φ, Hint =

1
2
m2φ2. (7.125)

(a) Draw the (somewhat degenerate looking) Feynman graphs that contribute to
the 2-point function 〈0|T{φ(x)φ(y)}|0〉 using only this interaction, up to
order m6.

(b) Evaluate the graphs.
(c) Sum the series to all orders in m2 and show you reproduce the propagator that

would have come from taking H0 = 1
2φ�φ+ 1

2m
2φ2.

(d) Repeat the exercise classically: Solve for the massless propagator using an
external current, perturb with the mass, sum the series, and show that you get
the same answer as if you included the mass to begin with.

7.5 Show in general that integrating by parts does not affect matrix elements.
7.6 Use the Lagrangian

L = −1
2
φ1�φ1 −

1
2
φ2�φ2 +

λ

2
φ1(∂μφ2)(∂μφ2) +

g

2
φ2

1φ2 (7.126)

to calculate the differential cross section

dσ

dΩ
(φ1φ2 → φ1φ2) (7.127)

at tree level.
7.7 Consider a Feynman diagram that looks like a regular tetrahedron, with the external

lines coming out of the four corners. This can contribute to 2 → 2 scattering in a
scalar field theory with interaction λ

4!φ
4. You can take φ to be massless.
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(a) Write down the corresponding amplitude including the appropriate symmetry
factor.

(b) What would the symmetry factor be for the same diagram in φ3 theory without
the external lines?

7.8 Radioactive decay. The muon decays to an electron and two neutrinos through an
intermediate massive particle called the W− boson. The muon, electron and W−

all have charge −1.
(a) Write down a Lagrangian that would allow for μ− → e−ν̄eνμ. Assume the W

and other particles are all scalars, and the e−, νe and νμ are massless. Call the
coupling g.

(b) Calculate |M|2 for this decay in the limit that the W mass, mW , is large.
(c) The decay rate Γ (= 1

lifetime ) is proportional to |M|2. The coupling g should
be dimensionless (like the coupling e for the photon), but appears dimension-
ful because we ignore spin. If the W spin were included, you would get extra
factors of pμ, which would turn into a factor of

√
s = mμ in |M|2. Use dimen-

sional analysis to figure out what power of mμ should be there. Also, throw in
a 1

192π3 for the three-body phase space, as in Eq. (5.55) from Problem 5.3.
(d) Pick some reasonable perturbative value for g and use the muon mass

(mμ = 105 MeV) and lifetime (2.2× 10−6 s) to estimate the W mass.
(e) The tauon, τ , also decays to e−νeνμ. Use the τ lifetime Γ−1

tot = 2.9× 10−13 s
and previous parts to estimate the τ mass. Which of mW , g,mμ, the muon
lifetime, or the 192π3 we threw in does your prediction depend on?

(f) In reality, the tauon only decays as τ → e−νeνμ 17.8% of the time. Use this
fact to refine your τ mass estimate.

(g) How could you measure g and MW separately using very precise measure-
ments of the μ and τ decay distributions? What precision would you need
(in %)?

7.9 Unstable particles. Unstable particles pick up imaginary parts that generate a width
Γ in their resonance line shape. This problem will develop an understanding of
what is meant by the terms width and pick up.
(a) What would the cross section be for s-channel scattering if the intermediate

propagator were i
p2−m2+imΓ , where Γ > 0? This is called the Breit–Wigner

distribution.
(b) Sketch the cross section as a function of x = s

m2 for Γ
m small and for Γ

m large.
(c) Show that a propagator only has an imaginary part if it goes on-shell. Explicitly,

show that Im(M) = −πδ(p2 −m2), when iM = i
p2−m2+iε .

(d) Loops of particles can produce effective interactions that have imaginary parts.
Suppose we have another particle ψ and an interaction φψψ in the Lagrangian.
Loops of ψ will have imaginary parts if and only if ψ is lighter than half of φ,
that is, if φ → ψψ is allowed kinematically. Draw a series of loop corrections
to the φ propagator. Show that, if these give an imaginary number, you can sum
the graphs to reproduce the propagator in part (a).

(e) What is the connection between parts (c) and (d)? Can you see why the width
is related to the decay rate?
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Spin 1 and gauge invariance 8

Up until now, we have dealt with general features of quantum field theories. For example,
we have seen how to calculate scattering amplitudes starting from a general Lagrangian.
Now we will begin to explore what the Lagrangian of the real world could possibly be. In
Part IV we will discuss what it actually is, or at least what is known about it so far.

A good way to start understanding the consistency requirements of the physical uni-
verse is with a discussion of spin. There is a deep connection between spin and Lorentz
invariance that is obscure in non-relativistic quantum mechanics. For example, well before
quantum field theory, it was known from atomic spectroscopy that the electron had two
spin states. It was also known that light had two polarizations. The polarizations of light
are easy to understand at the classical level since light is a field, but how can an individual
photon be polarized? For the electron, we can at least think of it as a spinning top, so there
is a classical analogy, but photons are massless and structureless, so what exactly is spin-
ning? The answers to these questions follow from an understanding of Lorentz invariance
and the requirements of a consistent quantum field theory.

Our discussion of spin and the Lorentz group is divided into a discussion of integer
spin particles (tensor representations) in this chapter and half-integer spin particles (spinor
representations) in Chapter 10.

8.1 Unitary representations of the Poincaré group

Our universe has a number of apparent symmetries that we would like our quantum field
theory to respect. One symmetry is that no place in space-time seems any different from any
other place. Thus, our theory should be translation invariant: if we take all our fields ψ(x)
and replace them by ψ(x + a) for any constant 4-vector aν , the observables should look
the same. Another symmetry is Lorentz invariance: physics should look the same whether
we point our measurement apparatus to the left or to the right, or put it on a train. The
group of translations and Lorentz transformations is called the Poincaré group, ISO(1,3)
(the isometry group of Minkowski space).

Our universe also has a bunch of different types of particles in it. Particles have mass and
spin and all kinds of other quantum numbers. They also have momentum and the value of
spin projected on some axis. If we rotate or boost to change frame, only the momenta and
the spin projection change, as determined by the Poincaré group, but the other quantum

109
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numbers do not. So a particle can be defined as a set of states that mix only among
themselves under Poincaré transformations.

Generically, we can write that our states transform as

|ψ〉 → P|ψ〉 (8.1)

under a Poincaré transformation P . A set of objects ψ that mix under a transformation
group is called a representation of the group. For example, scalar fields φ(x) at all points
x form a representation of translations, since φ(x)→ φ(x+a). Quite generally, in a given
representation there should be a basis for the states |ψ〉, call it {|ψi〉}, where i is a discrete
or continuous index, so that

|ψi〉 → Pij |ψj〉, (8.2)

where the transformed states are expressible in the original basis. If no subset of states
transform only among themselves, the representation is irreducible.

In addition, we want unitary representations. The reason for this is that the things we
compute in field theory are matrix elements,

M = 〈ψ1|ψ2〉, (8.3)

which should be Poincaré invariant. If M is Poincaré invariant, and |ψ1〉 and |ψ2〉
transform covariantly under a Poincaré transformation P , we find

M = 〈ψ1|P†P|ψ2〉. (8.4)

So we need P†P = 1, which is the definition of unitarity. The unitary representations of
the Poincaré group are only a small subset of all the representations of the Poincaré group.
For example, as we will discuss, the 4-vector representation, Aμ, is not unitary. But the
unitary ones are the only ones from which we will be able to compute Poincaré-invariant
matrix elements, so we have to understand how to find them. Thus,

Particles transform under irreducible unitary representations of the Poincaré group.

This statement can even be interpreted as the definition of what a particle is. Of course,
many particles can transform under the same representation of the Poincaré group. What
makes two particles identical is discussed in Section 12.1.

By the way, there is an even stronger requirement on physical theories: the S-matrix
must be unitary. Requiring a unitary S-matrix constrains the dynamics of the theory, while
demanding unitary representations of the Poincaré group is just a statement about free-
particle states. Implications of unitarity of the S-matrix is the subject of Chapter 24.

One way to think of the allocation into irreducible representations is that our universe
is clearly filled with different kinds of particles in different states. By doing things such
as putting an electron in a magnetic field, or sending a photon through a polarizer, we
manipulate the momenta and spins. Some states will mix with each other under these
manipulations and some will not. We look at the irreducible representations because those
are the building blocks with which we can construct the most general description of nature.
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We already know some representations of the Poincaré group: the constant tensors, φ,
Vμ, Tμν , . . .. These are finite-dimensional representations, with 1, 4, 16, . . . elements. They
transform under rotations and boosts as discussed in Section 2.1, and are invariant under
translations. Unfortunately, these are not unitary representations, as we will see below. In
fact, there are no finite-dimensional unitary representations of the Poincaré group.

The unitary irreducible representations of the Poincaré group were classified by Eugene
Wigner in 1939 [Wigner, 1939]. They are all infinite dimensional and naturally described
by fields. As you might imagine, before Wigner people did not really know what the rules
were for constructing physical theories, and by trial and error they were coming across
all kinds of problems. Wigner showed that irreducible unitary representations are uniquely
classified by mass m and spin J , where m is a non-negative real number and spin is a
non-negative half integer, J = 0, 1

2 , 1,
3
2 , . . . Moreover, Wigner showed that, if J > 0,

for each value of the momentum with p2 = m2 there are 2J + 1 independent states in
the representation if m > 0 and exactly 2 states for m = 0.1 These states correspond
to linearly independent polarizations of particles with spin J . If J = 0 there is only one
state for any m. You can find the proof of Wigner’s theorem in [Weinberg, 1995]. We are
not going to reproduce the proof. Instead, we will do some examples that will make the
ingredients that go into the proof clear.

Knowing what the representations of the Poincaré group are is a great start, but we still
have to figure out how to construct a unitary interacting theory of particles in these repre-
sentations. To do that, we would like to embed the irreducible representations into objects
with space-time indices. That is, we want to squeeze states of spin 0, 1

2 , 1,
3
2 , 2 etc. into

scalar fields φ(x), vector fields Vμ(x), tensor fields Tμν(x), spinor fields ψ(x) etc. That
way we can write down simple-looking Lagrangians and develop general methods for
doing calculations. We see an immediate complication: tensors have 1, 4, 16, 64, . . . , 4n

elements, but spin states have 1, 3, 5, 7, . . . , 2j + 1 physical degrees of freedom. The
embedding of the 2j + 1 states for a unitary representation in the 4n-dimensional tensors
is tricky, and leads to things such as gauge invariance, as we will see in this chapter.2

8.1.1 Unitarity versus Lorentz invariance

We do not need fancy mathematics to see the conflict between unitarity and Lorentz invari-
ance. In non-relativistic quantum mechanics, you have an electron with spin up |↑〉 or spin
down | ↓〉. This is your basis, and you can have a state which is any linear combination of
these two:

|ψ〉 = c1|↑〉+ c2|↓〉. (8.5)

1 To be accurate, there are also tachyon representations with m2 < 0, and continuous spin representations for
m = 0. These exotic representations seem not to be realized in nature and we will not discuss them further.

2 If we did not care to write down local Lagrangians, we could avoid introducing gauge invariance altogether.
Alternate approaches based on using on-shell physical states only are discussed in Chapters 24 and 27. How-
ever, quantum field theory with gauge invariance remains the most complete method for studying massless
spin-1 particles.
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The norm of such a state is

〈ψ|ψ〉 = |c1|2 + |c2|2 > 0. (8.6)

This norm is invariant under rotations, which send

|↑〉 → cos θ|↑〉+ sin θ|↓〉, |↓〉 → − sin θ|↑〉+ cos θ|↓〉. (8.7)

(In fact, the norm is invariant under the larger group SU(2), which you can see using the
Pauli matrices, but that is not important right now.)

Say we wanted to do the same thing with a basis of four states |Vμ〉 which transform as
a 4-vector. Then an arbitrary linear combination would be

|ψ〉 = c0|V0〉+ c1|V1〉+ c2|V2〉+ c3|V3〉. (8.8)

The norm of this state would be

〈ψ|ψ〉 = |c0|2 + |c1|2 + |c2|2 + |c3|2 > 0. (8.9)

This is the norm for any basis and it is always positive, which is one of the postulates of
quantum mechanics. However, the norm is not Lorentz invariant. For example, suppose we
start with |ψ〉 = |V0〉, which has norm 〈ψ|ψ〉 = 1. Then we boost in the 1 direction, so we
get |ψ′〉 = coshβ|V0〉+ sinhβ|V1〉. Now the norm is

〈ψ′|ψ′〉 = cosh2β + sinh2β �= 1 = 〈ψ|ψ〉. (8.10)

Thus, the probability of finding that a state is itself depends on what frame we are in! We
see that the norm is not invariant under the boost. In terms of matrices, the boost matrix

Λ =
(

coshβ sinhβ
sinhβ coshβ

)
(8.11)

is not unitary: Λ† �= Λ−1.
One way out, you might suppose, could be to modify the norm to be

〈ψ|ψ〉 = |c0|2 − |c1|2 − |c2|2 − |c3|2. (8.12)

This is Lorentz invariant, but not positive definite. That is not automatically a problem,
since inner products in quantum mechanics are in general complex numbers. In fact, even
with this norm the probability P = |〈ψ|ψ〉|2 ≥ 0 for any state. However, the probabilities
will no longer be ≤1. For example, suppose |ψ〉 = |V0〉 so that 〈ψ|ψ〉 = 1 as before. Any
state related to this one by a boost such as |ψ′〉 = coshβ|V0〉+ sinhβ|V1〉must also be in
the Hilbert space, by Lorentz invariance. And 〈ψ′|ψ′〉 = 1, by construction. However, the
probability of finding |ψ′〉 in the state |ψ〉 = |V0〉 is |〈V0|ψ′〉|2 = cosh2β. Since for β �=
0, coshβ > 1, there is no way to interpret this projection as a probability. Thus, because
Lorentz transformations can mix positive norm and negative norm states, the probabilities
are not bounded. In Problem 8.1, you can show that having a probability interpretation,
with 0 ≤ P ≤ 1, requires us to have only positive (or only negative) norm states. So
unitarity, with a positive definite norm, is critical to have any physical interpretation of
quantum mechanics.
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In summary, there is a conflict between having a Hilbert space with a positive norm,
which is a physical requirement leading to the δμν inner product preserved under unitary
transformations, and the requirement of Lorentz invariance, which needs the gμν inner
product preserved under Lorentz transformations. When we study general representations
of the Lorentz group in Chapter 10, we will be able to trace this conflict to the Lorentz
group being non-compact and the boosts having anti-Hermitian generators.

What do we do about the conflict? Well, there are two things we need to fix. First of all,
note that V 2

μ = V 2
0 − V 2

1 − V 2
2 − V 2

3 has one positive term and three negative terms. In
fact, the vector representation of the Lorentz group Vμ that is four-dimensional is the direct
sum of two irreducible representations: a spin-0 representation, which is one-dimensional,
and a spin-1 representation, which is three-dimensional. If we could somehow project the
spin-1 (or spin-0) representation out of the reducible tensor representations (Vμ or hμν),
then we might be able write down Lorentz-invariant Lagrangians for a theory with positive
norm.

The second thing is that, while there are in fact no non-trivial finite-dimensional irre-
ducible unitary representations of the Poincaré group, there are some infinite-dimensional
ones. We will see that instead of constant basis vectors, such as (1, 0, 0, 0), (0, 1, 0, 0) etc.,
we will need a basis εμ(p) that depends on the momentum of the field. So the plan is to
first see how to embed the right number of degrees of freedom for a particular mass and
spin (irreducible representation of the Poincaré group) into tensors such as Aμ. Then we
will see how the infinite dimensionality of the representation comes about.

8.2 Embedding particles into fields

In this section we explore how to construct Lagrangians for fields that contain only particles
of single spins. We will start with the classical theory, where we cannot ask for unitarity
(there is no classical norm) but we can ask for the energy to be positive definite, or more
generally, bounded from below. Having both positive and negative energy states classically
heralds disaster after quantization. For example, if photons could have positive and negative
energy, the vacuum could decay into pairs of photons with pμ1 + pμ2 = 0. This process does
not violate energy or momentum conservation; it is normally only forbidden by photons
having positive energies. An alternative criterion for determining whether a classical theory
would be non-unitary when quantized is discussed in Section 8.7.

The classical energy density E is given by the 00 component of the energy-momentum
tensor, which was calculated in Section 3.3.1, Eq. (3.36), to be

E = T00 =
∑
n

∂L
∂φ̇n

φ̇n − L. (8.13)

The energy is E =
∫
d3x E .
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8.2.1 Spin 0

For spin 0, the embedding is easy, we just put the one degree of freedom into a J = 0
scalar field φ(x). The Lagrangian is

L(x) =
1
2
∂μφ(x)∂μφ(x)− 1

2
m2φ(x)2, (8.14)

which is Lorentz invariant and transforms covariantly under translations. The equation of
motion is

(� +m2)φ = 0, (8.15)

which has solutions φ = e±ipx with p2 = m2. So this field has mass m. The Lagrangian
is unique up to an overall constant for which the conventional normalization is given.

The energy density corresponding to this Lagrangian is given by

E =
∂L
∂φ̇

φ̇− L =
1
2

[
(∂tφ)2 + (�∇φ)2 +m2φ2

]
. (8.16)

This is a positive definite quantity and bounded from below by 0. Thus the overall sign in
the scalar Lagrangian is consistent with positive energy.

8.2.2 Massive spin 1

For spin 1, there are three degrees of freedom if m > 0. This is a mathematical result,
which we will not derive formally, but we will see how it works in practice. The smallest
tensor field we could possibly embed these three degrees of freedom in is a vector field
Aμ which has four components. Sometimes we write 4 = 3 ⊕ 1 to indicate that the four-
dimensional representation of the Lorentz group is the direct sum of three-dimensional
(spin-1) and one-dimensional (spin-0) representations of the rotation group SO(3). A com-
plete mathematical classification of the representations of the Lorentz group will be given
in Chapter 10. In this chapter we will take the more physical approach of trying to engineer
a Lagrangian that engenders a positive definite energy density, which we will see requires
removing the spin-0 degree of freedom.

A natural guess for the Lagrangian for a massive spin-1 field is

L = −1
2
∂νAμ∂νAμ +

1
2
m2A2

μ, (8.17)

where A2
μ = AμA

μ. Then the equations of motion are

(� +m2)Aμ = 0, (8.18)

which has four propagating modes. In fact, this Lagrangian is not the Lagrangian for a
massive spin-1 field, but the Lagrangian for four massive scalar fields, A0, A1, A2 and A3.
That is, we have reduced 4 = 1 ⊕ 1 ⊕ 1 ⊕ 1, which is not what we wanted. The energy
density in this case is
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E =
∂L

∂(∂tAμ)
∂tAμ − L

= −1
2

[
(∂tA0)2 + (�∇A0)2 +m2A2

0

]
+

1
2

[
(∂t �A)2 + (∇iAj)2 +m2 �A 2

]
, (8.19)

which has a negative sign for theA0 field and a positive sign for the �A fields. If we switched
the overall sign, we would still have some fields with negative energy. So this Lagrangian
will not produce a physical theory.

By the way, you may wonder how we know if Aμ transforms as a vector or as four
scalars, since the Lagrangian is invariant under both transformations. That is, why did we
get four scalars when we wanted a vector? As a very general statement, we do not get to
impose symmetries on a theory. We just pick the Lagrangian, then we let the theory go.
If there are symmetries, and the Lagrangian is constructed correctly to preserve them, the
symmetries will hold up in matrix elements in the full interacting theory. This is true even
if we never figured out that the symmetries were there. For example, Maxwell’s equations
are Lorentz invariant. They work the same way if you have �E and �B instead of Aμ. The
Lorentz invariance is then obscure, but it still works. In fact, a very important tool in making
progress in physics has been to observe symmetries in a physical result, such as a matrix
element, then to go back and figure out why they are there at a deeper level, which leads
to generalizations. That happened with Maxwell for electromagnetism, with Einstein for
special and general relativity, with Fermi, Feynman, Glashow, Weinberg and Salam for the
V −A theory of weak interactions, with Gell-Mann for the quark model, and in many other
cases.

Back to massive spin 1. There is one more Lorentz-invariant two-derivative kinetic term
we can write down with the same dimension,3 Aμ∂μ∂νAν . Allowing arbitrary coefficients
for the different possible terms, the most general free Lagrangian is

L =
a

2
Aμ�Aμ +

b

2
Aμ∂μ∂νAν +

1
2
m2A2

μ, (8.20)

where a and b are numbers. As long as b is non-zero, the ∂μAμ contraction forces Aμ to
transform as a 4-vector; if Aμ transformed as four scalars, ∂μAμ would not be Lorentz
invariant. Thus, we should now have 4 = 3 ⊕ 1 instead of 4 = 1 ⊕ 1 ⊕ 1 ⊕ 1 and have a
chance to get rid of the one degree of freedom corresponding to spin 0, isolating the three
degrees of freedom for a spin-1 particle.

The equations of motion are

a�Aμ + b∂μ∂νAν +m2Aμ = 0. (8.21)

Taking ∂μ of this equation gives[
(a+ b)� +m2

]
(∂μAμ) = 0. (8.22)

3 Terms with more derivatives such as Aμ�2Aμ can also be considered, but they will always lead to negative
energy. A simple explanation of this fact is given in Section 8.7 and a complete proof is given in Section 24.2.
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If a = −b and m �= 0, this reduces to ∂μAμ = 0, which removes one degree of freedom.
Since ∂μAμ = 0 is a Lorentz-invariant condition, it has to remove a complete representa-
tion, which with one degree of freedom can only be the spin-0 component. Taking a = 1
and b = −1, we find

L =
1
2
Aμ�Aμ −

1
2
Aμ∂μ∂νAν +

1
2
m2A2

μ

= −1
4
F 2
μν +

1
2
m2A2

μ, (8.23)

where the Maxwell tensor is Fμν = ∂μAν − ∂νAμ. This is sometimes called the Proca
Lagrangian. Note that we did not say anything here about gauge invariance or electromag-
netism, we just derived that Fμν appears based on constructing a Lagrangian that generates
a constraint to propagate only the spin-1 field by removing the spin-0 field. The equations
of motion now imply

(
� +m2

)
Aμ = 0 and ∂μAμ = 0.

The energy-momentum tensor for the Proca Lagrangian is

Tμν =
∂L

∂(∂μAα)
∂νAα − gμνL = −Fμα∂νAα + gμν

(
1
4
F 2
αβ −

1
2
m2A2

α

)
. (8.24)

To simplify this, we will use the classical result (which you are encouraged to check) that
the Maxwell action can be written as

− 1
4
F 2
μν =

1
2

(
�E2 − �B2

)
, (8.25)

where �E = ∂t �A− �∇A0 and �B = �∇× �A. Then,

E = T00 = −(∂tAα − ∂αA0) ∂tAα +
1
2
�B2 − 1

2
�E2 − 1

2
m2AαAα

=
1
2

(
�B2 + �E2

)
+ ∂iA0(∂tAi − ∂iA0)−

1
2
m2A2

0 +
1
2
m2 �A2. (8.26)

This looks like it has negative energy components. However, we can rewrite this energy
density in the suggestive form

E =
1
2

(
�E2 + �B2

)
+

1
2
m2
(
A2

0 + �A2
)

+A0∂t(∂μAμ)−A0

(
� +m2

)
A0 + ∂i(A0F0i). (8.27)

The second line is the sum of three terms. The first two vanish on the equations of motion
∂μAμ = 0 and

(
� +m2

)
A0 = 0. Since the equations of motion were already used in the

derivation of the energy-momentum tensor in Noether’s theorem, we can use them again
here. The final term is a total spatial derivative. Thus, while it contributes to the energy
density, it makes no contribution to the total energy. Therefore, the total energy of the
fields in the Proca Lagrangian is positive definite, as desired.

Let us now find explicit solutions to the equations of motion. We start by Fourier
transforming our (classical) fields. Since

(
� +m2

)
Aμ = 0, we can write any solution as

Aμ(x) =
∑
i

∫
d3�p

(2π)3
ãi(�p )εiμ(p)e

ipx, p0 = ωp =
√
�p 2 +m2, (8.28)
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for some basis vectors εiμ(p). For example, we could trivially take i = 1 . . . 4 and use
four vectors εiμ (p) = δiμ in this decomposition. Instead, we want a basis that forces
Aμ(x) to automatically satisfy also its equation of motion ∂μAμ = 0. This will happen
if pμεiμ (p) = 0. For any fixed 4-momentum pμ with p2 = m2, there are three independent
solutions to this equation given by three 4-vectors εiμ (p), necessarily pμ-dependent, which
we call polarization vectors. Thus, we only have to sum over i = 1 . . . 3 in Eq. (8.28). We
conventionally normalize the polarizations by ε�μεμ = −1.

To be explicit, let us choose a canonical basis. Take pμ to point in the z direction,

pμ = (E, 0, 0, pz), E2 − p2
z = m2, (8.29)

then two obvious vectors satisfying pμεμ = 0 and ε2μ = −1 are

ε1μ = (0, 1, 0, 0), ε2μ = (0, 0, 1, 0). (8.30)

These are the transverse polarizations. The other one is

εLμ =
(
pz
m
, 0, 0,

E

m

)
. (8.31)

This is the longitudinal polarization. It is easy to check that (εLμ)2 = −1 and pμεLμ = 0.
These three polarization vectors εiμ(p) generate the irreducible representation. The basis
vectors depend on pμ, and since there are an infinite number of possible momenta, it is an
infinite-dimensional representation. The vector space generated by integrating these basis
vectors against arbitrary Fourier components ãi(p) in Eq. (8.28) is the space of fields sat-
isfying the equations of motion, which form an infinite-dimensional unitary representation
of the Poincaré group.

By the way, massive spin-1 fields are not a purely theoretical concept: they exist! There
is one called the ρ meson, which is lighter than the proton, but unstable, so we do not
often see it. More importantly, there are really heavy ones, the W and Z bosons, which
mediate the weak force and radioactivity. We will study them in great detail, particularly
in Chapter 29. But there is an important feature of these heavy bosons that is easy to see
already. At high energy, E � m, the longitudinal polarization becomes

εLμ ∼
E

m
(1, 0, 0, 1). (8.32)

If we scatter these modes, we might have a cross section whose high-energy behavior scales
as dσ ∼ g2

(
εL
)2 ∼ g2 E2

m2 , where g is the coupling constant (an explicit example where
this really happens is the theory of weak interactions described in Chapter 29). Then, no
matter how small g is, if we go to high enough energies, this cross section blows up. How-
ever, cross sections cannot be arbitrarily big. After all, they are probabilities, which are
bounded by 1. So, at some scale, what we are calculating becomes not a very good rep-
resentation of what is really going on. In other words, our perturbation theory is breaking
down. We can see already that this happens at E ∼ m

g . If m ∼ 100 GeV and g ∼ 0.1, cor-
responding to the mass and coupling strength of the W and Z bosons (which are massive
spin-1 particles) we find E ∼ 1 TeV. That is why the TeV scale has been the focus of the
Tevatron and Large Hadron Colliders. A longer discussion of perturbative unitary violation
is given in Sections 24.1.5 and 29.2.
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Also, the fact that there is a spin-1 particle in this Lagrangian follows completely from
the Lagrangian itself – we never have to impose any additional constraints. In fact, we did
not have to talk about spin, or Lorentz invariance at all – all the properties associated with
that spin would just have fallen out when we tried to calculate physical quantities. That
is the beauty of symmetries: they work even if you do not know about them! It would be
fine to think of Aμ as four scalar fields that happen to conspire so that when you compute
something in one frame, certain ones contribute, and when you compute in a different
frame, other ones contribute, but the final answer is frame independent. Obviously it is a
lot easier to do the calculation if we know this ahead of time, so we can choose a nice
frame, but in no way is it required.

8.2.3 Massless spin 1

The easiest way to come up with a theory of massless spin-1 is to simply take the m → 0
limit of the massive spin-1 theory. Then the Lagrangian becomes

L = −1
4
F 2
μν , (8.33)

which is the Lagrangian for electrodynamics, confirming that we are on the right track.
Unfortunately, the massless limit is not quite as smooth as we would like. First of all,
the constraint equation m2(∂μAμ) = 0 is automatically satisfied for m = 0, so we no
longer automatically have ∂μAμ = 0. Thus, it seems the spin-0 mode we removed should
now be back. Another problem with the massless limit is that as m → 0 the longitudinal
polarization blows up:

εLμ =
(
pz
m
, 0, 0,

E

m

)
→∞. (8.34)

Partly, this is due to normalization. In the massless limit, pz → E and the momentum
becomes lightlike, that is,

pμ → (E, 0, 0, E), (8.35)

so a more invariant statement is that εLμ → pμ up to normalization. Finally, we expect from
representation theory that there should only be two polarizations for a massless spin-1 par-
ticle, so the spin-0 and the longitudinal mode should somehow decouple from the physical
system.

Instead of trying to analyze what happens to the massive modes, let us just postulate the
Lagrangian and start over with analyzing the degrees of freedom. So we start with

L = −1
4
F 2
μν , Fμν = ∂μAν − ∂νAμ. (8.36)

This Lagrangian has an important property that the massive Lagrangian did not have:
gauge invariance. It is invariant under the transformation

Aμ(x) → Aμ(x) + ∂μα(x) (8.37)

for any function α(x). Thus, two fields Aμ that differ by the derivative of a scalar are
physically equivalent.
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The equations of motion following from the Lagrangian are

�Aμ − ∂μ(∂νAν) = 0. (8.38)

This is really four equations and it is helpful to separate out the 0 and i components:

−∂2
jA0 + ∂t∂jAj = 0, (8.39)

�Ai − ∂i(∂tA0 − ∂jAj) = 0. (8.40)

To count the physical degrees of freedom, let us use the freedom of transforming the fields
in Eq. (8.37) to impose constraints on Aμ, a procedure known as gauge-fixing. Since
∂jAj → ∂jAj + ∂2

i α, unless ∂jAj is singular we can choose α so that ∂jAj = 0, known
as Coulomb gauge. Then the A0 equation of motion becomes

∂2
jA0 = 0, (8.41)

which has no time derivative. Now, under gauge transformations ∂iAi → ∂iAi + ∂2
i α, so

Coulomb gauge is preserved under Aμ → Aμ + ∂μα for any α satisfying ∂2
i α = 0. Since

A0 → A0 +∂tα andA0 also satisfies ∂2
iA0 = 0 we have exactly the residual symmetry we

need to set A0 = 0. Thus, we have eliminated one degree of freedom from Aμ completely,
and we are down to three. One more to go!

In Coulomb gauge, the other equations reduce to

�Ai = 0, (8.42)

which seem to propagate three modes. But do not forget thatAi is constrained by ∂iAi = 0.
In Fourier space

Aμ(x) =
∫

d4p

(2π)4
εμ(p)eipx (8.43)

and the equations become p2 = 0 (equations of motion), piεi = 0 (gauge choice), and ε0 =
0 (gauge choice). Choosing a frame, we can write the momentum as pμ = (E, 0, 0, E).
Then these equations have two solutions,

ε1μ = (0, 1, 0, 0), ε2μ = (0, 0, 1, 0), (8.44)

which represent linearly polarized light. Thus, we have constructed a theory propagating
only two degrees of freedom, as is appropriate for irreducible unitary representations of a
massless spin-1 particle.

Another common basis for the transverse polarizations of light is

εRμ =
1√
2
(0, 1, i, 0), εLμ =

1√
2
(0, 1,−i, 0). (8.45)

These polarizations correspond to circularly polarized light and are called helicity eigen-
states.

We could also have used Lorenz gauge (∂μAμ = 0), in which case we would have found
that three vectors satisfy pμεμ = 0:

ε1μ = (0, 1, 0, 0), ε2μ = (0, 0, 1, 0), εfμ = (1, 0, 0, 1). (8.46)
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The first two modes are the physical transverse polarizations. The third apparent solution
denoted εfμ is called the forward polarization. It does not correspond to a physical state.
One way to see this is to note that εfμ is not normalizable ((εfμ)

�εfμ = 0). Another way is to
note that εμ ∝ pμ,which corresponds to Aμ = ∂μφ for some φ. This field configuration is
gauge-equivalent toAμ = 0 (choose α = −φ in Eq. (8.37)). Thus, the forward polarization
corresponds to a field configuration that is pure gauge. Similarly, if we had not imposed
the second Coulomb gauge condition, ε0 = 0, we would have found another polarization
satisfying piεi = 0 is ε0 = (1, 0, 0, 0). This timelike polarization cannot be normalized
so that
(
εiμ
)�
εjμ = −δij , since ε0 is timelike, and is therefore unphysical.

8.2.4 Summary

To summarize, for massive spin 1, we chose the kinetic term be− 1
4F

2
μν + 1

2m
2A2

μ in order
to enforce ∂μAμ = 0, which eliminated one degree of freedom from Aμ, leaving the three
for massive spin-1. We found that the energy density is positive definite if and only if the
Lagrangian has this form, up to an overall normalization. The Lagrangian for a massive
spin-1 particle does not have gauge invariance, but we still need F 2

μν .
For the massless case, having F 2

μν gives us gauge invariance. This allows us to remove
an additional polarization, leaving two, which is the correct number for a massless spin-1
representation of the Poincaré group.

For both massive and massless spin 1, we found a basis of polarization vectors εiμ(p),
with i = 1, 2, 3 form > 0 and i = 1, 2 form = 0. The fact that the polarizations depend on
pμ make these infinite-dimensional representations. The representation of the full Poincaré
group is induced by a representation of the subgroup of the Poincaré group that holds pμ

fixed, called the little group. The little group has finite-dimensional representations. For
the massive case, the little group, holding for example pμ = (m, 0, 0, 0) fixed (or any other
4-vector of mass m), is just the group of three-dimensional rotations, SO(3). SO(3) has
finite-dimensional irreducible representations of spin J with 2J + 1 degrees of freedom.
For the massless case, the group that holds a massless 4-vector such as (E, 0, 0, E) fixed
is the group ISO(2) (the isometry group of the two-dimensional Euclidean plane), which
has representations of spin J with two degrees of freedom for each J . Studying represen-
tations of the little group is the easiest way to prove Wigner’s classification. Rather than
work through the mathematics, we will understand the little group and induced represen-
tations through example, particularly in Section 8.4 below. The little group is revisited in
Chapters 10 and 27.

8.3 Covariant derivatives

In order not to affect our counting of degrees of freedom, the interactions in the Lagrangian
must respect gauge invariance. For example, you might try to add an interaction

L = · · ·+Aμφ∂μφ, (8.47)

but this is not invariant. Under the gauge transformation
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Aμφ∂μφ→ Aμφ∂μφ+ (∂μα)φ∂μφ. (8.48)

In fact, it is impossible to couple Aμ to any field with only one degree of freedom, such
as the scalar field φ. We must be able to make φ transform to compensate for the gauge
transformation of Aμ, in order to cancel the ∂μα term. But if there is only one field φ, it
has nothing to mix with so it cannot transform.

Thus, we need at least two fields φ1 and φ2. It is easiest to deal with such a doublet by
putting them together into a complex field φ = φ1 + iφ2, and then to work with φ and φ�.
Under a gauge transformation, φ can transform as

φ→ e−iα(x)φ, (8.49)

which makes m2φ�φ gauge invariant. But what about the derivatives? |∂μφ|2 is not
invariant.

We can in fact make the kinetic term gauge invariant using something we call a covariant
derivative. Adding a conventional constant e to the transformation of Aμ, so Aμ → Aμ +
1
e∂μα, we find

(∂μ + ieAμ)φ→ (∂μ + ieAμ + i∂μα)e−iα(x)φ = e−iα(x)(∂μ + ieAμ)φ. (8.50)

This leads us to define the covariant derivative as

Dμφ ≡ (∂μ + ieAμ)φ→ e−iα(x)Dμφ, (8.51)

which transforms just like the field does. Thus

L = −1
4
F 2
μν + (Dμφ)�(Dμφ)−m2φ�φ (8.52)

is gauge invariant. This is the Lagrangian for scalar QED.
More generally, different fields φn can have different charges Qn and transform as

φn → eQniα(x)φn. (8.53)

Then the covariant derivative is Dμφn = (∂μ − ieQnAμ)φn, where in Eq. (8.51) we have
taken Q = −1 for φ, thinking of it as an electron with charge −1. Thus, we write Q for
the charges of the fields, and e is the strength of the electric charge, normalized so that
Q = −1 for the electron, whence e2

4π ≈
1

137 is the normal fine-structure constant.4 Until
we deal with quarks (for which Q = 2

3 or Q = − 1
3 ), we will not write Q explicitly, and

we will just take Dμ = ∂μ + ieAμ.
By the way, there is also a beautiful geometric way to understand covariant derivatives,

similar to how they are understood in general relativity. Since the phase of φ is unobserv-
able, one can pick different phase conventions in different regions without consequence.
Thus φ(x) − φ(y) or even |φ(x)− φ(y)| is not well defined. The gauge field records the
change in our phase convention from point to point, with a gauge transformation repre-
senting a change in this convention. Turning these words into mathematics leads to the
notion of Wilson lines, which will play an important role in non-Abelian gauge theories.

4 It is interesting to note that the electric charge itself is e ≈ 0.3 ≈ 1
3

, which is not actually that small. Doing an

expansion in 1
3

is also popular in QCD, where 3 = Nc is the number of colors.
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Thus, we postpone the detailed discussion of this interpretation of covariant derivatives
until Chapter 25.

8.3.1 Gauge symmetries and conserved currents

Symmetries parametrized by a function such as α(x) are called gauge or local symme-
tries, while if they are only symmetries for constant α they are called global symmetries.
For gauge symmetries, we can pick a separate transformation at each point in space-time.
A gauge symmetry automatically implies a global symmetry. Global symmetries imply
conserved currents by Noether’s theorem. For example, the Lagrangian L = −φ��φ of a
free complex scalar field is not gauge invariant, but it does have a symmetry under which
φ→ e−iαφ for a constant α and it does have an associated Noether current.

Let us see how the Noether current changes when the gauge field is included. Expanding
out the scalar QED Lagrangian, Eq. (8.52), gives

L = −1
4
F 2
μν + ∂μφ

�∂μφ+ ieAμ(φ∂μφ� − φ�∂μφ) + e2A2
μφ

�φ−m2φ�φ. (8.54)

The equations of motion are(
� +m2

)
φ = −2ieAμ∂μφ+ e2A2

μφ, (8.55)(
� +m2

)
φ� = 2ieAμ∂μφ� + e2A2

μφ
�. (8.56)

The Noether current associated with the global symmetry for which δφ
δα = −iφ and δφ�

δα =
iφ� is (using Eq. (3.23))

Jμ =
∑
n

∂L
∂(∂μφn)

δφn
δα

= −i(φ∂μφ� − φ�∂μφ)− 2eAμφ�φ. (8.57)

The first term on the right-hand side is the Noether current in the free theory (e = 0). You
should check this full current is also conserved on the equations of motion.

By the way, you might have noticed that the term in the scalar QED Lagrangian linear
in Aμ is just −eAμJμ. There is a quick way to see why this will happen in general. Define
L0 as the limit of a gauge-invariant Lagrangian when Aμ = 0 (or equivalently e = 0). L0

will still be invariant under the global symmetry for which Aμ is the gauge field, since Aμ
does not transform when α is constant. If we then let α be a function of x, the transformed
L0 can only depend on ∂μα. Thus, for infinitesimal α(x),

δL0 = (∂μα)Jμ +O
(
α2
)

(8.58)

for some Jμ. For example, in scalar QED with Aμ = 0, L0 = (∂μφ)�(∂μφ)−m2φ�φ and

δL0 = (∂μα)Jμ + (∂μα)2 φ�φ, (8.59)

with Jμ given by Eq. (8.57). Returning to the general theory, after integration by parts the
term linear in α is δL0 = α∂μJμ. Since the variation of the Lagrangian vanishes on the
equations of motion for any transformation, including this one parametrized by α, we must
have ∂μJμ = 0 implying that Jμ is conserved. In fact, Jμ is the Noether current, since we
have just rederived Noether’s theorem a different way. To make the Lagrangian invariant
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without using the equations of motion, we can add a field Aμ with δAμ = ∂μα and define
L = L0 −AμJμ so that

δL = L0 − δAμJμ = (∂μα) Jμ − (∂μα) Jμ = 0. (8.60)

Hence, the coupling AμJμ between a gauge field and a Noether current is generic and
universal. In scalar field theory there is also a term quadratic in Aμ required to cancel the
(∂μα)2 term in Eq. (8.59). In spinor QED, as we will see, there is just the linear term.

8.4 Quantization and the Ward identity

To quantize fields with multiple degrees of freedom, we simply need creation and annihi-
lation operators for each degree separately. For example, if we have two spin-0 fields, we
can write

φ1(x) =
∫

d3p

(2π)3
1√
2ωp

(ap,1e−ipx + a†p,1e
ipx), (8.61)

φ2(x) =
∫

d3p

(2π)3
1√
2ωp

(ap,2e−ipx + a†p,2e
ipx). (8.62)

Then the complex field φ = φ1 + iφ2 can be written in the suggestive form as a real
doublet:

�φ(x) =
(
φ1

φ2

)
=
∫

d3p

(2π)3
1√
2ωp

[(
ap,1
ap,2

)
e−ipx +

(
a†p,1
a†p,2

)
eipx

]

=
∫

d3p

(2π)3
1√
2ωp

2∑
j=1

(
�εjap,je

−ipx + �εja
†
p,je

ipx
)
, (8.63)

with �ε1 =
(

1
0

)
and �ε2 =

(
0
1

)
. In this notation you can think of �εj as the polarization

vectors of the complex scalar field. To quantize spin-1 fields, we will just allow for the
polarizations to be in a basis that has four components instead of two and can depend on
momentum �εj → εμj (p).

8.4.1 Massive spin 1

The quantum field operator for massive spin 1 is

Aμ(x) =
∫

d3p

(2π)3
1√
2ωp

3∑
j=1

(εjμ(p)ap,je
−ipx + εj�μ (p)a†p,je

ipx). (8.64)

There are separate creation and annihilation operators for each of the polarizations, and we
sum over them. εjμ(p) represents a canonical set of basis vectors.
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The creation and annihilation operators have polarization indices. To specify our
asymptotic states we will now need to give both the momentum and the polarization. So

a†p,j |0〉 =
1√
2ωp

|p, εj〉 (8.65)

up to normalization. Thus

〈0|Aμ(x)|p, εj〉 = εjμe
−ipx, (8.66)

so our field creates a particle at position x whose polarization can be projected out with the
appropriate contraction.

Recall that the basis has to depend on pμ because there are no finite-dimensional unitary
representations of the Lorentz group. To see it again, let us suppose instead that we tried
to pick constants for our basis vectors. Say, ε1μ = (0, 1, 0, 0), ε2μ = (0, 0, 1, 0) and ε3μ =
(0, 0, 0, 1). The immediate problem is that this basis is not complete, because under Lorentz
transformations

εiμ → Λμνεiν , (8.67)

so that for boosts these will mix with the timelike polarization (1, 0, 0, 0).
We saw from solving the classical equations of motion that we can choose a momentum-

dependent basis ε1μ(p), ε
2
μ(p) and ε3μ(p). For example, for the massive case, for pμ pointing

in the z direction,

pμ = (E, 0, 0, pz), (8.68)

we can use the basis

εμ1 (p) = (0, 1, 0, 0), εμ1 (p) = (0, 0, 1, 0), εμL(p) =
(
pz
m
, 0, 0,

E

m

)
, (8.69)

which all satisfy εiμε
i�
μ = −1 and εiμpμ = 0.

What happened to the fourth degree of freedom in the vector representation? The vec-
tor orthogonal to these is εμS(p) = 1

mp
μ =
(
E
m , 0, 0,

p
m

)
. In position space, this is

εSμ = 1
m∂μα(x) for some scalar function α(x). So we do not want to include this spin-0

polarization εSμ(p) in the sum in Eq. (8.64). To see that the polarization based on the scalar
α(x) does not mix with the other three is easy: if something is the divergence of a function
α(x), under a Lorentz transformation it will still be the divergence of the same function,
just in a different frame. So the polarizations in the spin-1 representation (the εiμ’s) do not
mix with the polarization in the spin-0 representation, εSμ .

Now, you may wonder, if we are redefining our basis with every boost, so that ε1μ(p) →
ε1μ(p

′), ε2μ(p) → ε2μ(p
′), and εLμ(p) → εLμ(p′), when do the polarization vectors ever mix?

Have we gone too far and just made four separate one-dimensional representations? The
answer is that there are Lorentz transformations that leave pμ alone, and therefore leave
our basis alone. These are, by definition, the elements of the little group. For little-group
transformations, we need to check that our basis vectors rotate into each other and form a
complete representation. For example, suppose we go to the frame

qμ = (m, 0, 0, 0). (8.70)
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Then we can choose our polarization basis vectors as

εμ1 (q) = (0, 1, 0, 0), εμ2 (q) = (0, 0, 1, 0), εμ3 (q) = (0, 0, 0, 1) (8.71)

and εμS = (1, 0, 0, 0). The little group which preserves qμ in this case is simply the 3D rota-
tion group SO(3). It is then easy to see that, under 3D rotations, the three εiμ polarizations
will mix among each other, and εμS = (1, 0, 0, 0) stays fixed. If we boost, it looks like the
εiμ will mix with εSμ . However, we have to be careful, because the basis vectors will also
change, for example to ε1μ, ε

2
μ and εLμ , above. The group that fixes pμ = (E, 0, 0, pz) is also

SO(3), although it is harder to see. And these SO(3) rotations will also only mix ε1μ, ε
2
μ

and εLμ , leaving εSμ fixed. So everything works. The non-trivial effect of Lorentz transfor-
mations is to mix up the polarization vectors at fixed pμ. So the spin-1 representation is
characterized by this smaller group, the little group, which is the subgroup of the Lorentz
group that leaves pμ unchanged. This method of studying representations of the Lorentz
group is called the method of induced representations.

The little group also helps resolve the conflict between Lorentz invariance and unitarity
discussed in Section 8.1.1. In quantum mechanics, we can expand any polarization in this
basis. Let us fix the momentum qμ. Then, any physical polarization vector εμ can be written
as

εμ = cjε
j
μ(q), (8.72)

corresponding to the state |ε〉 = cj |j〉. Since the basis states all have 〈j|j〉 = 1, we find

〈ε|ε〉 = |c1|2 + |c2|2 + |c3|2. (8.73)

This inner product is rotation invariant, by the defining property of rotations, and boost
invariant in a trivial way: under boosts the cj’s do not change because the basis vectors εjμ
do. Thus, 〈ε|ε〉 is positive definite and Lorentz invariant.

In quantum field theory, we will be calculating matrix elements with the field Aμ. These
matrix elements will depend on the polarization vector and must have the form

M = εμMμ, (8.74)

whereMμ transforms as a 4-vector. Here, εμ is the polarization vector, which can be any of
the εjμ or any linear combination of them. For example, say we start with ε1μ. Now change
frames, so Mμ →M ′

μ = ΛμνMν . Then the matrix element is invariant:

M = ε′μ(p
′)M ′

μ, (8.75)

where ε′μ(p
′) = Λμνεν(Λαβpβ). This new polarization ε′μ(p

′) is still a physical state in our
Hilbert space, since the basis is closed under the Lorentz group. More simply, we can say
that εμMμ is Lorentz invariant on the restricted space of 4-vectors εμ(p) = cjε

j
μ(p). This

sounds pretty obvious, but having understood the massive case in this language will greatly
facilitate understanding the massless case, which is much more subtle.
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8.4.2 Massless spin 1

We quantize massless spin 1 exactly like massive spin 1, but summing over two polariza-
tions instead of three:

Aμ(x) =
∫

d3p

(2π)3
1√
2ωp

2∑
i=1

(εiμ(p)ap,ie
−ipx + εi�μ (p)a†p,ie

ipx). (8.76)

A sample basis is, for pμ in the z direction,

pμ = (E, 0, 0, E), (8.77)

εμ1 (p) = (0, 1, 0, 0), εμ1 (p) = (0, 0, 1, 0). (8.78)

These satisfy
(
εiμ
)2 = −1 and εiμpμ = 0. The two orthogonal polarizations are

εμf (p) = (1, 0, 0, 1), εμb (p) = (1, 0, 0,−1), (8.79)

where f and b stand for forward and backward.
But now we have a problem. Even though there is an irreducible unitary representation

of massless spin-1 particles involving two polarizations, it is impossible to embed these
polarizations in vector fields like εμ. To see the problem, recall that in the massive case
ε1μ and ε2μ mixed not only with each other under the little group SO(3), that is, Lorentz
transformations preserving pμ = (E, 0, 0, pz), but they also mixed with the longitudinal
mode εμL(p) = (pzm , 0, 0,

E
m ). We saw this because |c1|2 + |c2|2 + |cL|2 is invariant under

this SO(3), but |c1|2+|c2|2 itself would not be. There is nothing particularly discontinuous
about the m → 0 limit. The momentum goes to pμ = (E, 0, 0, E) and the longitudinal
mode becomes the same as our forward-polarized photon, up to normalization

lim
m→0

εLμ(p) = εfμ(p) ∝ pμ. (8.80)

The little group goes to ISO(2) in the massless case. There are still little-group members
that mix ε1μ and ε2μ with the other polarization, εfμ(p) = pμ. In general

ε1μ(p) → c11(Λ)ε1μ(p) + c12(Λ)ε2μ(p) + c13(Λ)pμ, (8.81)

ε2μ(p) → c21(Λ)ε1μ(p) + c22(Λ)ε2μ(p) + c13(Λ)pμ, (8.82)

where the cij are numbers.
To be really explicit, consider the Lorentz transformation

Λμν =

⎛⎜⎜⎝
3
2 1 0 − 1

2

1 1 0 −1
0 0 1 0
1
2 1 0 1

2

⎞⎟⎟⎠. (8.83)

This satisfies ΛT gΛ = g, so it is a Lorentz transformation. It also has Λμνp
ν = pμ so it

preserves the momentum pμ = (E, 0, 0, E). Thus, this Λ is an honest member of the little
group. However,

Λμν ε
ν
1 = (1, 1, 0, 1) = εμ1 +

1
E
pμ, (8.84)
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so it mixes the physical polarization with the momentum. This is in contrast to the case for
massive spin 1, where the basis vectors εiμ only mix with themselves.

Now, consider the kind of matrix element we would get from scattering a photon using
the field Aμ. It would, just like the massive case, be

M = εμMμ, (8.85)

where now εμ is some linear combination of the two physical polarizations ε1μ and ε2μ.
Then, under a Lorentz transformation,

M→ ε′μM
′
μ + c(Λ)pμM ′

μ (8.86)

for some c(Λ), where M ′
μ = ΛμνMν and ε′μ is a linear combination of ε1μ and ε2μ, but pμ

is not. For example, under the explicit Lorentz transformation above,

M = ε1μMμ →
(
ε1μ +

1
E
pμ

)
M ′
μ. (8.87)

So we have a problem. The state with polarization ε1μ + 1
E pμ is not in our Hilbert space!

Thus, there is no physical polarization for which the matrix element is the same in the new
frame as it was in the old frame. There is only one way out – if pμMμ = 0. Then there is a
physical polarization that gives the same matrix element andM is invariant. Thus, to have
a Lorentz-invariant theory with a massless spin-1 particle, we must have pμMμ = 0.

This is extremely important and worth repeating. We have found that under Lorentz
transformations the massless polarizations transform as

εμ → c1ε
1
μ + c2ε

2
μ + c3pμ. (8.88)

Generally, this transformed polarization is not physical and not in our Hilbert space because
of the pμ term. The best we can do is transform it into ε′μ = c1ε

1
μ+c2ε2μ. When we calculate

something in QED we will get matrix elements

M = εμMμ (8.89)

for some Mμ transforming like a Lorentz vector. If we Lorentz transform this expression
we will get

M→ (a1ε
1
μ + a2ε

2
μ + a3pμ)M ′

μ. (8.90)

It is therefore only possible for M to be Lorentz invariant if M = ε′μM
′
μ, which happens

only if

pμM
μ = 0. (8.91)

This is known as the Ward identity. The Ward identity must hold by Lorentz invariance
and the fact that unitary representations for massless spin-1 particles have two polariza-
tions. We did not show that it holds, only that it must hold in a reasonable physical theory.
That it holds in QED is complicated to show in perturbation theory, but we will sketch the
ingredients in the next chapter. We will eventually prove it non-perturbatively using path
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integrals in Chapter 14. The Ward identity is closely related to gauge invariance. Since the
Lagrangian is invariant under Aμ → Aμ + ∂μα, in momentum space this should directly
imply that εμ → εμ + pμ is a symmetry of the theory, which is the Ward identity.

8.5 The photon propagator

In order to calculate anything with a photon, we are going to need to know its propagator
Πμν , defined by

〈0|T{Aμ(x)Aν(y)}|0〉 = i

∫
d4p

(2π)4
eip(x−y)Πμν(p), (8.92)

evaluated in the free theory. The easiest way to calculate the propagator is to solve for the
classical Green’s function and then add the time ordering with the iε prescription, as for a
scalar.

Let us first try to calculate the classical Green’s function by using the equations of
motion, without choosing a gauge. In the presence of a current, the equations of motion
following from L = − 1

4F
2
μν −AμJμ are

∂μFμν = Jν , (8.93)

so

∂μ∂μAν − ∂μ∂νAμ = Jν , (8.94)

or in momentum space,

(−p2gμν + pμpν)Aμ = Jν . (8.95)

We would like to write Aμ = ΠμνJν , so that (−p2gμν + pμpν)Πνα = gμα. That is, we
want to invert the kinetic term. The problem is that

det(−p2gμν + pμpν) = 0, (8.96)

which follows since−p2gμν +pνpμ has a zero eigenvalue, with eigenvector pμ. Because it
has a zero eigenvalue, the kinetic term cannot be invertible, just as for a finite-dimensional
linear operator. The non-invertibility is a manifestation of gauge invariance: Aμ is not
uniquely determined by Jμ; different gauges will give different values for Aμ from the
same Jμ.

So what do we do? We could try to just choose a gauge, for example ∂μAμ = 0. This
would reduce the Lagrangian to

− 1
4
Fμν →

1
2
Aμ�Aμ. (8.97)

However, now it seems there are four propagating degrees of freedom inAμ instead of two.
In fact, you can do this, but you have to keep track of the gauge constraint ∂μAμ = 0 all
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along. A cleaner solution, which more easily generalizes to non-Abelian theories, is to add
a new auxiliary (non-propagating) field that acts like a Lagrange multiplier to enforce the
constraint through the equations of motion:

L = −1
4
F 2
μν −

1
2ξ

(∂μAμ)2 − JμAμ. (8.98)

(Writing 1
2ξ instead of ξ is just a convention.) The equations of motion for ξ are just

∂μAμ = 0, which was the Lorenz gauge constraint. In different words, for very small
ξ there is a tremendous pressure on the Lagrangian to have ∂μAμ = 0 to stay near the
minimum.

With the ξ term, the equations of motion for Aμ are[
−p2gμν +

(
1− 1

ξ

)
pμpν

]
Aν = Jμ. (8.99)

Although not obvious, but easy to check, the inverse of the operator in brackets is

Πμν = −
gμν − (1− ξ)pμpνp2

p2
. (8.100)

To check, we calculate[
−p2gμα +

(
1− 1

ξ

)
pμpα

]
Παν =

[
p2gμα−

(
1− 1

ξ

)
pμpα

] [
p2gαν − (1− ξ)pαpν

]
1
p4

=gμν+
[
−
(

1− 1
ξ

)
−(1− ξ)+

(
1− 1

ξ

)
(1−ξ)
]
pμpν
p2

=gμν . (8.101)

The time-ordered Feynman propagator for a photon can be derived just as for a scalar
field (Problem 8.4) with the result

iΠμν(p) =
−i

p2 + iε

[
gμν − (1− ξ)p

μpν

p2

]
. (8.102)

This is the photon propagator in covariant or Rξ-gauge.
As with the scalar propagator, the iε is a quick way to combine the advanced and

retarded propagators into the time-ordered propagator. The sign for the numerator can be
remembered using

− igμν =

⎛⎜⎜⎝
−i

i

i

i

⎞⎟⎟⎠. (8.103)

Since it is the spatial components Ai of the vector field that propagate, they should have
the same form as the scalar propagator, iΠS = i

p2+iε , confirming the −igμν .
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8.5.1 Covariant gauges

In the covariant gauges, each choice of ξ gives a different Lorentz-invariant gauge. Some
useful gauges are:

• Feynman–’t Hooft gauge ξ = 1:

iΠμν(p) =
−igμν
p2 + iε

. (8.104)

This is the gauge we will use for most calculations.
• Lorenz gauge ξ = 0:

iΠμν(p) = −i
gμν − pμpν

p2

p2 + iε
. (8.105)

We saw that ξ → 0 forces ∂μAμ = 0. Note that we could not set ξ = 0 and then invert
the kinetic term, but we can invert and then set ξ = 0.

• Unitary gauge ξ → ∞. This gauge is useless for QED, since the propagator blows up.
But it is extremely useful for the gauge theory of the weak interactions.

Other non-covariant gauges are occasionally useful. Lightcone gauge, with nμAμ = 0
for some fixed lightlike 4-vector nμ is occasionally handy if there is a preferred direction.
For example, in situations with multiple collinear fields, such as the quarks inside a fast-
moving proton, lightcone gauge is useful (see Section 32.5 and Chapter 36). Coulomb
gauge,∇·A = 0, and radial or Fock–Schwinger gauge, xμAμ(x) = 0, also facilitate some
calculations. For QED we will stick to covariant gauges.

The final answer for any Lorentz-invariant quantity had better be gauge invariant. In
covariant gauges,

iΠμν(p) =
−i

p2 + iε

[
gμν − (1− ξ)p

μpν

p2

]
. (8.106)

This means the final answer should be independent of ξ. Thus, whatever we contract Πμν

with should give 0 if Πμν ∝ pμpν . This is very similar to the requirement of the Ward
identities, which say that the matrix elements vanish if the physical external polarization
is replaced by εμ → pμ. We will sketch a diagrammatic proof of gauge invariance in the
next chapter, and give a full non-perturbative proof of both gauge invariance and the Ward
identity in Chapter 14 on path integrals.

8.6 Is gauge invariance real?

Gauge invariance is not physical. It is not observable and is not a symmetry of nature.
Global symmetries are physical, since they have physical consequences, namely conserva-
tion of charge. That is, we measure the total charge in a region, and if nothing leaves that
region, whenever we measure it again the total charge will be exactly the same. There is no
such thing that you can actually measure associated with gauge invariance. We introduce
gauge invariance to have a local description of massless spin-1 particles. The existence of
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these particles, with only two polarizations, is physical, but the gauge invariance is merely
a redundancy of description we introduce to be able to describe the theory with a local
Lagrangian.

A few examples may help drive this point home. First of all, an easy way to see that
gauge invariance is not physical is that we can choose any gauge, and the physics is going to
be exactly the same. In fact, we have to choose a gauge to do any computations. Therefore,
there cannot be any physics associated with this artificial symmetry. But note that even
though we gauge-fix by modifying the kinetic terms, this is a very particular breaking of
gauge symmetry. The interactions of the gauge field with matter are still gauge invariant, as
would be the interactions of the gauge field with itself in gravity or in Yang–Mills theories
(Chapters 25 and 26). The controlled way that gauge invariance is broken, particularly
by the introduction of covariant gauges, is critical to proving renormalizability of gauge
theories, as we will see in Chapter 21.

A useful toy model that may help distinguish gauge invariance (artificial) from the
physical spectrum (real) is

L = −1
4
F 2
μν +

1
2
m2(Aμ + ∂μπ)2. (8.107)

This has a gauge invariance under which Aμ(x) → Aμ(x) + ∂μα(x) and π(x) → π(x)−
α(x). However, we can use that symmetry to set π = 0 everywhere. Then the Lagrangian
reduces to that of a massive gauge boson. So the physics is that of three polarizations of
a massive spin-1 particle. When π is included there are still three degrees of freedom, but
now these are two polarizations in Aμ and one in π, with the third polarization of Aμ
unphysical because of the exact gauge invariance.

We could do something even more crazy with this Lagrangian: integrate out π. By setting
π equal to its equations of motion and substituting back into the Lagrangian, it becomes

L = −1
4
Fμν

(
1 +

m2

�

)
Fμν . (8.108)

This Lagrangian is also manifestly gauge invariant, but it is very strange. In reasonable
field theories, the effects of a field are local, meaning that they decrease with distance. For
example, a massive scalar field generates a Yukawa potential V (r) = 1

4πr e
−mr so that its

effects are confined to within the correlation length ξ ∼ 1
m . In contrast, at distances r � ξ,

the m2

� ∼ r2m2 term in Eq. (8.108) becomes increasingly important. Thus Eq. (8.108)
appears to describe a non-local theory.

In quantum field theory, non-local theories have S-matrices that can have poles not asso-
ciated with particles in the Hilbert space. If there are poles without particles, the theory is
not unitary (as we will show explicitly in Section 24.3). So non-locality and unitarity are
intimately tied together. In this case, the Lagrangian looks like a Lagrangian for a massless
spin-1 field with two degrees of freedom. However, the missing particle, which would cor-
respond to the extra pole in the S-matrix, is precisely the longitudinal mode of Aμ, which
we can call either π or the third polarization of a massive spin-1 particle.

In practice, local symmetries make it much easier to do computations. You might won-
der why we even bother introducing this field Aμ, which has this huge redundancy to it.
Instead, why not just quantize the electric and magnetic fields, that is Fμν itself? Well, you
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could do that, but it turns out to be more complicated than using Aμ. To see why, first note
that Fμν as a field does not propagate with the Lagrangian L = − 1

4F
2
μν . All the dynamics

will be moved to the interactions. Moreover, if we include interactions, either with a simple
current AμJμ or with a scalar field φ�Aμ∂μφ or with a fermion ψ̄γμAμψ, we see that they
naturally involve Aμ. If we want to write these in terms of Fμν we have to solve for Aμ
in terms of Fμν and we will get some non-local thing such as Aμ = 1

�∂νFμν . Then we
would have to spend all our time showing that the theory is actually local and causal. It
turns out to be much easier to deal with a little redundancy so that we do not have to check
locality all the time.

Another reason is that all of the physics of the electromagnetic field is, in fact, not
entirely contained in Fμν . There are global topological properties of Aμ that are not
contained in Fμν but have physical consequences. An example is the Aharonov–Bohm
effect, which you might remember from quantum mechanics. Other examples that come
up in field theory are instantons and sphalerons, which are relevant for the U(1) problem
and baryogenesis respectively, to be discussed in Section 30.5. There are more general
gauge-invariant objects than Fμν that can encode these effects. In particular, Wilson loops
(see Section 25.2) are gauge invariant, but they are non-local. An approach to reformulat-
ing gauge theories entirely in terms of Wilson lines achieved some limited success in the
1980s, but remains a longshot approach to reformulating quantum field theory completely.

In summary, although gauge invariance is merely a redundancy of description, it makes
it a lot easier to study field theory. The physical content is what we saw in the previous
section with the Lorentz transformation properties of spin-1 fields: massless spin-1 fields
have two polarizations. If there were a way to compute S-matrix elements without a local
Lagrangian (and to some extent there is, for example, using recursion relations, as we will
see in Chapter 27), we might be able to do without this redundancy altogether.

By the way, the word gauge means size; the original symmetry of this type was con-
ceived by Hermann Weyl as an invariance under scale transformations, now known as
Weyl or scale invariance. The Lagrangian L = − 1

4Fμν+ |Dμφ|2 is classically scale invari-
ant. However, at the quantum level, scale invariance is broken (see Chapters 16 and 23).
Effectively, the coupling constant becomes dependent on the characteristic energy of the
process. A classical symmetry broken by quantum effects is said to be anomalous. The
gauge symmetry associated with the photon, or other gauge fields, cannot be anomalous or
else the Ward identity would be violated and the theory would be non-unitary. Anomalies
are the subject of Chapter 30.

8.7 Higher-spin fields

This section, which can be skipped without losing continuity with the rest of the book, gen-
eralizes the discussion of spin 1 to particles of higher integer spin. In particular, we will
construct the Lagrangian for spin 2 from the bottom up. A spin-2 particle has five polariza-
tions if it is massive or two polarizations if it is massless. The smallest tensor in which five
polarizations would fit is a 2-index tensor hμν . To determine the Lagrangian, rather than



8.7 Higher-spin fields 133

looking for positive energy as a sign of unitarity, we will look for the absence of ghosts. A
ghost is a state with negative norm, or wrong-sign kinetic term, such as the A0 component
of a vector field if the Lagrangian is L = 1

2Aμ
(
� +m2

)
Aμ. To decide if there are ghosts

we will separate out the longitudinal and transverse modes. This method was developed by
Ernst Stueckelberg for the Abelian case [Stueckelberg, 1938], Sidney Coleman et al. [Cole-
man et al., 1969; Callan et al., 1969] for the non-Abelian case, and Arkani-Hamed et
al. [Arkani-Hamed et al., 2003] for gravity. The bottom-up construction of the Lagrangian
for general relativity was discussed by Feynman et al. [Feynman et al., 1996].

8.7.1 Longitudinal fields and spin 1

Before turning to spin 2, let us re-analyze spin 1 in a way that makes it easier to see the
ghosts. Any vector field can be written as

Aμ(x) = ATμ (x) + ∂μπ(x) (8.109)

with

∂μA
T
μ = 0. (8.110)

To see this, observe that this decomposition is invariant under shifts ATμ → ATμ + ∂μα and
π → π − α. Thus, there are an infinite number of ways to split a generic Aμ up this way.
But from the point of view of ATμ , this is just a gauge transformation, and we already know
that we can pick α so that the field is in Lorenz gauge where ∂μATμ = 0.

The beauty of this decomposition is that it lets us see whether the non-transverse polar-
izations are physical simply by looking at the Lagrangian. Start with the most general
Lorentz-invariant Lagrangian for a vector field Aμ:

L = aAμ�Aμ + bAμ∂μ∂νAν +m2A2
μ. (8.111)

Performing our substitution and using Eq. (8.110) gives

L = aATμ�ATμ +m2(ATμ )2 − (a+ b)π�2π −m2π�π. (8.112)

We will now show that for a+ b �= 0, there are ghosts and the theory cannot be unitary.
An easy way to see this is from π’s propagator. In momentum space it is

Ππ =
−1

2(a+ b)k4 − 2m2k2
=

1
2m2

[
1
k2
− (a+ b)

(a+ b)k2 −m2

]
. (8.113)

Thus, π really represents two fields, one of which has negative norm for generic a and b and
therefore represents a ghost. If we choose a = −b however, the propagator is just 1

m2k2 ,
which can represent unitary propagation. More generally, a kinetic term with more than
two derivatives always indicates that a theory is not unitary. We will show in Section 24.2
using the spectral decomposition that, in a unitary theory, the fastest that propagators can
die off at large p2 is Π ∼ 1

p2 . With a �2 kinetic term, the propagator would die off as 1
p4 .
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We can only remove the dangerous 4-derivative kinetic terms by choosing a = −b,
leading to the unique physical Lagrangian for a massive spin-1 field we derived before.
Taking a = −b = 1

2 and rescaling m2 → 1
2m

2 we get

L =
1
2
Aμ�Aμ −

1
2
Aμ∂μ∂νAν +

1
2
m2A2

μ = −1
4
F 2
μν +

1
2
m2A2

μ. (8.114)

In this case, we see that the longitudinal modes get a kinetic term from the mass term, as
expected.

In the massless limit, there is no kinetic term at all for the longitudinal mode. If a mode
has interactions but no kinetic terms, the theory is also sick. One way to see that is to take
the limit that the kinetic term goes to zero. Suppose we had

L = Zπ�π + λπ3. (8.115)

If we rescale the fields to their canonical normalization, πc =
√
Zπ, we get

L = πc�πc +
λ

Z3/2
π3
c . (8.116)

So Z → 0 indicates infinitely strong interactions. Thus, we have to make sure that π never
appears when we substitute Aμ → Aμ + ∂μπ, which is just the statement that the theory
must be gauge invariant. For interactions, this will be true if

L = · · ·+AμJμ (8.117)

with ∂μJμ = 0.
We can use the same method to determine the interactions. Start with a real field φ. The

simplest Lorentz-invariant interaction we can write down involving Aμ and φ is

Lint = Aμφ∂μφ. (8.118)

This is not gauge invariant. Nor is there any way to transform φ so that it is gauge invariant.
For a complex field, the unique real interaction term we can write is

− iAμ(φ�∂μφ− φ∂μφ�) → −iAμ(φ�∂μφ− φ∂μφ�) + iπ(φ��φ− φ�φ�), (8.119)

where the substituted part has been integrated by parts. This is not zero. However, if we
allow φ to transform as

φ→ φ− iπφ, (8.120)

then φ’s kinetic term (∂μφ�)(∂μφ) will transform as

(∂μφ�)(∂μφ) → (∂μφ�)(∂μφ)− i [(∂μφ�)(∂μπ)φ− (∂μφ)(∂μπ)φ�]− (πφ�) � (πφ)

= (∂μφ�)(∂μφ)− iπ(φ��φ− φ�φ�)− (πφ�) � (πφ), (8.121)

which exactly cancels the unwanted piece. However, now there are terms quadratic in π
that do not cancel. These can be compensated by adding terms second order in the field,

φ→ φ− iπφ− 1
2
π2φ (8.122)
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and adding another term to the Lagrangian:

L = −1
4
F 2
μν + (∂μφ�)(∂μφ)− iAμ(φ�∂μφ− φ∂μφ�) +A2

μφ
�φ. (8.123)

This is invariant up to terms of order π3, but it is exactly invariant under Aμ → Aμ + ∂μπ

and φ → e−iπφ. In fact, it is just the scalar QED Lagrangian that we have derived from
the bottom up.

8.7.2 Spin 2

For spin-1 fields, the procedure in the previous section is a bit tedious, since we already
know about gauge invariance. The power of this technique becomes clear when we gener-
alize to spin 2. Let us start with a symmetric tensor hμν (we can force it to be symmetric
by introducing only 10 independent elements in its Lagrangian). Then we can replace

hμν = hTμν + ∂μπν + ∂νπμ (8.124)

with ∂μhTμν = 0. A massive spin-2 field should have five polarizations, two in the trans-
verse components and three in the longitudinal components, πν . To make sure that πν has
three physical components, we can further transform by

πμ = πTμ + ∂μπ
L (8.125)

with ∂μπTμ = 0.
The most general kinetic terms of dimension 4 we can write down are

L = ahμν�hμν + bhμν∂μ∂αhνα + ch�h+ dh∂μ∂νhμν +m2(xh2
μν + yh2), (8.126)

where h = hαα is the trace of the tensor. Let us start by looking at the mass term. After
inserting the replacements in Eqs. (8.124) and (8.125), we find

m2
(
xh2

μν + yh2
)

= 4m2(x+ y)πL�2πL + · · · , (8.127)

which says that a component of the field has a dangerous 4-derivative kinetic term. We can
eliminate the 4-derivative kinetic term uniquely by taking x = −y. A similar analysis for
the rest of the Lagrangian leads to

L =
1
2
hμν�hμν − hμν∂μ∂αhνα + h∂μ∂νhμν −

1
2
h�h+

1
2
m2(h2

μν − h2). (8.128)

This is the unique Lagrangian for a massive spin-2 field. It was first derived by Markus
Fierz and Wolfgang Pauli in 1939 [Fierz and Pauli, 1939].

In the massless limit,

Lkin =
1
4
hμν�hμν −

1
2
hμν∂μ∂αhνα +

1
2
h∂μ∂νhμν −

1
4
h�h. (8.129)

This happens to be the leading terms in the expansion of the Einstein–Hilbert Lagrangian
(see Eq. (8.146) below).

For a massless spin-2 field, as with a massless spin-1 field, the πμ should never appear
in the interactions or the theory will be sick. A generic interaction would be

L = · · ·+ hμνTμν . (8.130)
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Then, having πν decouple when hμν → hμν + ∂μπν + ∂νπμ forces ∂μTμν = 0. Thus, a
massless spin-2 field must couple to a conserved tensor current. The simplest interaction
would be

L1 =
1
2
hφ. (8.131)

Under

hμν → hμν + ∂μπν + ∂νπμ (8.132)

this gives

L1 → L1 + ∂νπνφ, (8.133)

which does not vanish.
The way out is, as in the spin-1 case, that we are allowed to perform replacements on

φ at the same time. However, with only this one interaction, any change in φ → φ′[φ, π]
would automatically have a term with a π in it. We can make progress, however, if we
modify our interaction Lagrangian to

L2 = φ+
1
2
hφ (8.134)

and allow for φ to transform as

φ→ φ+ πν∂νφ. (8.135)

That works to cancel the term in Eq. (8.133). The Lagrangian L2 is now invariant up to
terms with three or more fields:

L2 → L2 +
1
2
hπν(∂νφ) + (∂νπν) (πα∂αφ) . (8.136)

Let us focus on the term linear in π, since small π represents an infinitesimal trans-
formation. The 1

2hπν(∂νφ) can be canceled if we generalize the transformation of
h to

hμν → hμν + ∂μπν + ∂νπμ + πα∂αhμν (8.137)

and add another term to our Lagrangian

L3 = φ+
1
2
hφ+

1
8
h2φ, (8.138)

so that

L3 → L3 +
1
2
hπν(∂νφ) + (∂νπν)(πα∂αφ) +

1
2
πα(∂αh)φ+

1
2
(∂απα)hφ

+
1
2
(∂απα)(∂vπν)φ+ · · · , (8.139)

where the · · · contain terms with four or more fields. Integrating by parts, all the terms
with one factor of π cancel. This process can continue as a perturbation expansion in the
number of fields for terms with one factor of π.

Continuing in this way, we are led to transformations

hμν → hμν + ∂μπν + ∂νπμ + πα∂αhμν + (∂μπα)hαν + (∂νπα)hμα (8.140)
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and

φ→ φ+ πα∂αφ, (8.141)

with a Lagrangian

L =
(

1 +
1
2
h+

1
8
h2 + · · ·

)
φ. (8.142)

This Lagrangian will be independent of π to linear order in π.
To make something invariant to all orders in π, the complete transformation can be

written as

φ→ φ(xα + πα), (8.143)

hμν → (ηαμ + ∂απμ)(ηβν + ∂βπν) [ηαβ + hαβ(xγ + πγ)]− ηαβ , (8.144)

where φ(xa+πα) and hαβ(xγ+πγ) are to be understood as Taylor expansions in π. Here,
ημν is the Minkowski metric, which we usually call gμν . A reader familiar with general
relativity will recognize this as a general coordinate transformation, and the Lagrangian as

L =
√
−det(ημν +

1
MPl

hμν)φ, (8.145)

where MPl = G
−1/2
N ≈ 1019 GeV is the Planck scale, which has been introduced to make

hμν have mass dimension 1.
In the same way, the kinetic terms for hμν become

L = M2
Pl

√
−det
(
ημν +

1
MPl

hμν

)
R

[
ημν +

1
MPl

hμν

]
, (8.146)

where R is the Ricci scalar. We have rescaled hμν by a factor of 1
MPl

by dimensional
analysis to give hμν canonical dimension, since R has dimension 2 (every term in R has
two derivatives). Thus, the Lagrangian for general relativity is given uniquely as the only
Lagrangian that can couple a massless spin-2 particle to matter.

This is obviously a very inefficient way to deduce the Lagrangian for a massless spin-2
field. It is much nicer to use symmetry arguments, general coordinate invariance, the equiv-
alence principle, etc. The one thing those arguments do not tell you is why that theory is
unique. For example, in general relativity, at some point you have to assume the connection
is torsion free and compatible with the metric. What happened to the torsion tensor? If all
you know about is general coordinate invariance, you have not yet constructed a physical
theory. Constructing it this way you see that you generate the curvature tensor, not the
torsion tensor. More precisely, it might be the torsion tensor for a different geometric con-
struction, but the expansion in terms of hμν will be identical. The simple fact that there is a
unique theory of a massless spin-2 particle coupled to matter is an important consequence
of this approach.

Of course, there are huge advantages to general relativity. In particular, this approach
is based on Lorentz invariance and is entirely perturbative. In contrast, general relativity
is background independent and non-perturbative. The Schwarzschild solution, from this
language, is a coherent background of gravitons. That is not a productive language for
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doing calculations in general, although it is useful for certain calculations. For example,
the perihelion shift of Mercury can be computed perturbatively this way (Problem 3.7).

8.7.3 Spin greater than 2

One can continue this procedure for integer spin greater than 2. There exist spin-3 particles
in nature, for example the ω3 with mass of 1670 MeV, as well as spin 4, spin 5, etc. These
particles are all massive. One can construct free Lagrangians for them using the same trick.
An interesting and profound result is that it is impossible to have an interacting theory of
massless particles with spin greater than 2. The required gauge invariance would be so
restrictive that nothing could satisfy it. We will prove this in the next chapter. Constructing
the kinetic term for a spin-3 particle is done in Problem 8.8.

Problems

8.1 Show that having a probability interpretation, with 0 ≤ P ≤ 1, requires us to have
only positive (or only negative) norm states.

8.2 Calculate the energy-momentum tensor corresponding to the Lagrangian L =
− 1

4F
2
μν . Show that the energy density is positive definite, up to a total spatial

derivative E − ∂iX > 0.
8.3 Calculate the classical propagator for a massive spin-1 particle by inverting the

equations of motion to the form Aμ = ΠμνJν .
8.4 Calculate the Feynman propagator for a photon. Show that Eq. (8.102) is correct.
8.5 Vector polarization sums. In this problem you can build some intuition for the way

in which the numerator of a spin-1 particle propagator represents an outer product
of physical polarizations |ε〉〈ε|. Calculate the 4 × 4 matrix outer product |ε〉〈ε| ≡∑
j ε
j
με
j
ν by the following:

(a) Sum over the physical polarizations for a massive spin-1 particle in some
frame. Re-express your answer in a Lorentz covariant way, in terms ofm, kμkν
and gμν .

(b) Show that the numerator of the massive vector propagator (Problem 8.3) is the
same as the polarization sum. Why should this be true?

(c) Sum over the orthonormal basis of four 4-vectors ∂μx
α = δαμ with the

Minkowski metric |ε〉〈ε |= ε0με
0
ν −
∑3
j=1 ε

j
με
j
ν . Express your answer in a

Lorentz-covariant way.
(d) Sum over the physical polarizations for massless vectors. Express your answer

in a Lorentz-covariant way. You may also need the vectors kμ = (E,�k) and
k̄ν = (E,−�k).

(e) Compare these sums to the numerator of the photon propagator, commenting
on the gauge dependence. Do either of these sums correspond to the numerator
of one of the Rζ gauges we derived?



Problems 139

8.6 Tensor polarization sums. A spin-2 particle can be embedded in a 2-index tensor
hμν . Therefore, its polarizations are tensors too, εiμν . These should be orthonormal,
εiμνε

�j
μν = δij , where the sum is over μ and ν contracted with the Minkowski metric.

(a) The polarizations should be transverse, kμεiμν = 0, and symmetric, εiμν = εiνμ.
How many degrees of freedom do these conditions remove?

(b) For a massive spin-2 particle, choose a frame in which the momentum kμ
is simple. How many orthonormal εiμν can you find? Write your basis out
explicitly, as 4× 4 matrices.

(c) Guess which of these correspond to spin 0, spin 1 or spin 2. What kind of
Lorentz-invariant condition can you impose so that you just get the spin-2
polarizations?

(d) If you use the same conditions but take kμ to be the momentum of a massless
tensor, what are the polarizations? Do you get the right number?

(e) What would you embed a massive spin-3 field in? What conditions could you
impose to get the right number of degrees of freedom?

8.7 Using the method of Section 8.7.2 construct the set of cubic interactions of a mass-
less spin-2 field embedded in hμν . There are many terms, all with two derivatives,
but their coefficients are precisely fixed. You can also check that this is the same

thing you get from expanding M2
Pl

√
ημν + 1

MPl
hμνR
[
ημν + 1

MPl
hμν

]
to cubic

order in hμν .
It should be clear that the same method will produce the terms fourth order in

hμν , however, these are suppressed by 1
M2

Pl
. Most tests of general relativity probe

only that it is described by a minimally coupled spin-2 field (e.g. bending of light,
gravitational waves, frame dragging). Some precision tests assay the cubic interac-
tions (e.g. the perihelion shift of Mercury). No experiment has yet tested the quartic
interactions.

8.8 Construct the free kinetic Lagrangian for a massive spin-3 particle by embedding it
in a tensor Zμνα.
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Now that we have Feynman rules and we know how to quantize the photon, we are very
close to QED. All we need is the electron, which is a spinor. Before we get into spinors,
however, it is useful to explore a theory that is an approximation to QED in which the spin
of the electron can be neglected. This is called scalar QED. The Lagrangian is

L = −1
4
F 2
μν + |Dμφ|2 −m2|φ|2, (9.1)

with

Dμφ = ∂μφ+ ieAμφ, (9.2)

Dμφ
� = ∂μφ

� − ieAμφ�. (9.3)

Although there actually do exist charged scalar fields in nature which this Lagrangian
describes, for example the charged pions, that is not the reason we are introducing scalar
QED before spinor QED. Spinors are somewhat complicated, so starting with this simpli-
fied Lagrangian will let us understand some elements of QED without having to deal with
spinor algebra.

9.1 Quantizing complex scalar fields

We saw that for a scalar field to couple to Aμ it has to be complex. This is because the
charge is associated with a continuous global symmetry under which

φ→ e−iαφ. (9.4)

Such phase rotations only make sense for complex fields. The first thing to notice is that
the classical equations of motion for φ and φ� are1(

� +m2
)
φ = i(−eAμ) ∂μφ+ i∂μ(−eAμφ) + (−eAμ)2φ, (9.5)(

� +m2
)
φ� = i(eAμ) ∂μφ� + i∂μ(eAμφ�) + (eAμ)

2
φ�. (9.6)

So we see that φ and φ� couple to the electromagnetic field with opposite charge, but have
the same mass. Of course, something having an equation does not mean we can produce

1 We are treating φ and φ� as separate real degrees of freedom. If you find this confusing you can always write
φ = φ1 + iφ2 and study the physics of the two independent fields φ1 and φ2, but the φ and φ� notation is
much more efficient.

140
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it. However, in a second-quantized relativistic theory, the radiation process, φ→ φγ, auto-
matically implies that γ → φφ� is also possible (as we will see). Thus, we must be able to
produce these φ� particles. In other words, in a relativistic theory with a massless spin-1
field, antiparticles must exist and we know how to produce them!

To see antiparticles in the quantum theory, first recall that a quantized real scalar field is

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + a†pe
ipx
)
. (9.7)

Since a complex scalar field must be different from its conjugate by definition, we have
to allow for a more general form. We can do this by introducing two sets of creation and
annihilation operators and writing

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + b†pe
ipx
)
. (9.8)

Then, by complex conjugation

φ�(x) =
∫

d3p

(2π)3
1√
2ωp

(
a†pe

ipx + bpe
−ipx) . (9.9)

Thus, we can conclude that bp annihilates particles of opposite charge and the same mass
to what ap annihilates. That is, bp annihilates the antiparticles. Note that in both cases
ωp =
√
�p 2 +m2 > 0.

All we used was the fact that the field was complex. Clearly a†p �= b†p as these operators
create particles of opposite charge. So a global symmetry under phase rotations implies
charge, which implies complex fields, which implies antiparticles. That is,

Matter coupled to massless spin-1 particles automatically implies the existence of
antiparticles, which are particles of identical mass and opposite charge.

This profound conclusion is an inevitable consequence of relativity and quantum
mechanics.

To recap, we saw that to have a consistent theory with a massless spin-1 particle
we needed gauge invariance. This required a conserved current, which in turn required
that charge be conserved. To couple the photon to matter, we needed more than one
degree of freedom so we were led to φ and φ�. Upon quantization, complex scalar fields
imply antiparticles. Thus, there are many profound consequences of consistent theories of
massless spin-1 particles.

9.1.1 Historical note: holes

Historically, it was the Dirac equation that led to antiparticles. In fact, in 1931 Dirac pre-
dicted there should be a particle exactly like the electron except with opposite charge. In
1932 the positron was discovered by Anderson, beautifully confirming Dirac’s prediction
and inspiring generations of physicists.
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Actually, Dirac had an interpretation of antiparticles that sounds funny in retrospect, but
was much more logical to him for historical reasons. Suppose we had written

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
a†pe

ipx + c†pe
−ipx) , (9.10)

where both a†p and c†p are creation operators. Then c†p seems to be creating states of negative
frequency, or equivalently negative energy. This made sense to Dirac at the time, since there
are classical solutions to the Klein–Gordon equation,E2−p2 = m2, with negative energy,
so something should create these solutions. Dirac interpreted these negative energy creation
operators as removing something of positive energy, and creating an energy hole. But an
energy hole in what? His answer was that the universe is a sea full of positive energy states.
Then c†p creates a hole in this sea, which moves around like an independent excitation.

Then why does the sea stay full, and not collapse to the lower-energy configuration?
Dirac’s explanation for this was to invoke the Fermi exclusion principle. The sea is like the
orbitals of an atom. When an atom loses an electron it becomes ionized, but it looks like it
gained a positive charge. So positive charges can be interpreted as the absence of negative
charges, as long as all the orbitals are filled. Dirac argued that the universe might be almost
full of particles, so that the negative energy states are the absences of those particles [Dirac,
1930].

It is not hard to see that this is total nonsense. For example, it should work only for
fermions, not our scalar field, which is a boson. As we have seen, it is much easier to write
the creation operator c†p as an annihilation operator to begin with, c†p = bp, which cleans
everything up immediately. Then the negative energy solutions correspond to the absence
of antiparticles, which does not require a sea.

9.2 Feynman rules for scalar QED

Expanding out the scalar QED Lagrangian we find

L = −1
4
F 2
μν − φ�(� +m2)φ− ieAμ[φ�(∂μφ)− (∂μφ�)φ] + e2A2

μ|φ|2. (9.11)

We can read off the Feynman rules from the Lagrangian. The complex scalar propagator is

=
i

p2 −m2 + iε
. (9.12)

This propagator is the Fourier transform of 〈0|φ�(x)φ(0)|0〉 in the free theory. It propagates
both φ and φ�, that is both particles and antiparticles at the same time – they cannot be
disentangled.

The photon propagator was calculated in Section 8.5:

=
−i

p2 + iε

[
gμν − (1− ξ)pμpν

p2

]
, (9.13)

where ξ parametrizes a set of covariant gauges.
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Some of the interactions that connect Aμ to φ and φ� have derivatives in them, which
will give momentum factors in the Feynman rules. To see which momentum factors we
get, look back at the quantized fields:

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + b†pe
ipx
)
, (9.14)

φ�(x) =
∫

d3p

(2π)3
1√
2ωp

(
a†pe

ipx + bpe
−ipx) . (9.15)

A φ in the interaction implies the creation of an antiparticle or the annihilation of a particle
at position x. A φ� implies the creation of a particle or the annihilation of an antiparticle.
When a derivative acts on these fields, we will pull down a factor of ±ipμ which enters the
vertex Feynman rule.

Since the interaction has the form

− ieAμ[φ�(∂μφ)− (∂μφ�)φ], (9.16)

it always has one φ and one φ�. Each pμ comes with an i, and there is another i from the
expansion of exp(iLint), so we always get an overall (−ie) i2 = ie multiplying whichever
±pμ comes from the derivative. There are four possibilities, each one getting a contribu-
tion from Aμφ

�(∂μφ) and −Aμφ(∂μφ�). Calling what ap annihilates an e− and what bp
annihilates an e+ the possibilities are:

• Annihilate e− and create e− – particle scattering

p1

p2
e−

e−

= ie(−p1
μ − p2

μ). (9.17)

Here, the term φ�(∂μφ) gives a −p1
μ because the e− is annihilated by φ and the

−φ(∂μφ�) gives a −(+p2
μ) because an e− is being created by φ�. We will come back to

the arrows in a moment.
• Annihilate e+ and create e+ – antiparticle scattering

p1

p2
e+

e+

= ie(p1
μ + p2

μ). (9.18)

Here, φ�(∂μφ) creates the e+ giving p2
μ and −(∂μφ�)φ annihilates an e+ giving

−(−p1
μ). The next two you can do yourself.

• Annihilate e− and annihilate e+ – pair annihilation

p2

p1e−

e+

= ie(−p1
μ + p2

μ). (9.19)
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• Create e− and create e+ – pair creation

p2

p1 e−

e+

= ie(−p1
μ + p2

μ). (9.20)

First of all, we see that there are only four types of vertices. It is impossible for a vertex to
create two particles of the same charge. That is, the Feynman rules guarantee that charge
is conserved.

Now let us explain the arrows. In the above vertices, the arrows outside the scalar lines
are momentum-flow arrows, indicating the direction that momentum is flowing. We conven-
tionally draw momentum flowing from left to right. The arrows superimposed on the lines
in the diagram are particle-flow arrows. These arrows point in the direction of momentum
for particles (e−) but opposite to the direction of momentum for antiparticles (e+). If you
look at all the vertices, you will see that if the particle-flow arrow points to the right, the
vertex gives −iepμ, if the particle-flow arrow points to the left, the vertex gives +iepμ. So
the particle-flow arrows make the scalar QED Feynman rule easy to remember:

A scalar QED vertex gives −ie times the sum of the momentum of the particles whose
particle-flow arrows point to the right minus the momentum of the particles whose
arrows point to the left.

The four cases in Eqs. (9.17) to (9.20) are reproduced by this single rule.
Particle-flow arrows should always make a connected path through the Feynman dia-

gram. For internal lines and loops, whether your lines point left or right is arbitrary; as
long as the direction of the arrows is consistent with particle flow the answer will be the
same. If your diagram represents a physical process, external line particle-flow arrows
should always point right for particles and to the left for antiparticles.

For loops it is impossible to always have the momentum going to the right. It is con-
ventional in loops to have the momentum flow in the same direction as the charge-flow
arrows. For uncharged particles, such as photons or real scalars, you can pick any direc-
tions for the loop momenta you want, as long as momentum is conserved at each vertex.
Some examples are

−→
p

p+ k

−→
p

k

,

p1 ↘
p1 + k

k ↑ p1 − p3 + k

↗ p3

k − p2 ↘ p4p2 ↗

(9.21)
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For antiparticles, momentum is flowing backwards to the direction of the arrow. Thus,
if particles go forwards in time, antiparticles must be going backwards in time. This
idea was proposed by Stueckelberg in 1941 and independently by Feynman at the
famous Poconos conference in 1948 as an interpretation of his Feynman diagrams. The
Feynman–Stuckelberg interpretation gives a funny picture of the universe with electrons
flying around, bouncing off photons and going back in time, etc. You can have fun thinking
about this, but the picture does not seem to have much practical application.

Finally, we cannot forget that there is another 4-point vertex in scalar QED:

Lint = e2A2
μ|φ|2. (9.22)

This vertex comes from |Dμφ|2, so it is forced by gauge invariance. Its Feynman rule is

e−

μ

e−

ν

= 2ie2gμν . (9.23)

This is sometimes called a seagull vertex, perhaps due to its vague resemblence to the
head-on view of a bird. The 2 comes from the symmetry factor for the two A fields. There
would not have been a 2 if we had written 1

2e
2A2

μ|φ|2, but this is not what the Lagrangian
gives us. The i comes from the expansion of exp(iLint) which we always have for Feynman
rules.

9.2.1 External states

Now we know the vertex factors and propagators for the photon and the complex scalar
field. The only thing left in the Feynman rules is how to handle external states. For a scalar
field, this is easy – we just get a factor 1. That is because a complex scalar field is just two
real scalar fields, so we just take the real scalar field result. The only thing left is external
photons.

For external photons, recall that the photon field is

Aμ(x) =
∫

d3k

(2π)3
1√
2ωk

2∑
i=1

(
εiμ(k)ak,ie

−ikx + εi�μ (k)a†k,ie
ikx
)
. (9.24)

As far as free states are concerned, which is all we need for S-matrix elements, the pho-
ton is just a bunch of scalar fields integrated against some polarization vectors εiμ(k).
Recall that external states with photons have momenta and polarizations, |k, ε〉, so that
〈0|Aμ(x)|k, εi〉 = εiμ(k)e

−ikx. This leads to LSZ being modified only by adding a fac-
tor of the photon polarization for each external state: εμ if it is incoming and ε�μ if it is
outgoing.
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For example, consider the following diagram:

iM =
p2

p1

p4

p3

= (−ie)ε1μ(pμ2 + kμ)
i

k2 −m2 + iε
(−ie)(pν3 + kν)ε�4ν ,

(9.25)

where kμ = pμ1 +pμ2 . The first polarization ε1μ is the polarization of the photon labeled with
p1
μ. It gets contracted with the momenta pμ2 + kμ which come from the −ieAμ[φ�(∂μφ)
−(∂μφ�)φ] vertex. The other polarization, ε4μ, is the polarization of the photon labeled with
p4
μ and contracts with the second vertex.

9.3 Scattering in scalar QED

As a first application, let us calculate the cross section for Møller scattering, e−e− →
e−e−, in scalar QED. There are two diagrams. The t-channel diagram (recall the
Mandelstam variables s, t and u from Section 7.4.1) gives

iMt=

p2

p1

p4

p3

= (−ie)(pμ1 + pμ3 )
−i
[
gμν − (1− ξ)kμkνk2

]
k2

(−ie)(pν2 + pν4),

(9.26)

with kμ = pμ3 − p
μ
1 . But note that

kμ(pμ1 + pμ3 ) = (pμ3 − p
μ
1 )(pμ3 + pμ1 ) = p2

3 − p2
1 = m2 −m2 = 0. (9.27)

So this simplifies to

Mt = e2
(pμ1 + pμ3 )(pμ2 + pμ4 )

t
(9.28)

and the ξ dependence has vanished. We expected this to happen, by gauge invariance, and
now we have seen that it does indeed happen.

The u-channel gives

iMu =
p2

p1

p3

p4

= (−ie)(pμ1 + pμ4 )
−i
[
gμν − (1− ξ)kμkνk2

]
k2

(−ie)(pν2 + pν3),

(9.29)
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where kμ = pμ4 − p
μ
1 . In this case,

kμ(pμ1 + pμ4 ) = p2
4 − p2

1 = 0 (9.30)

so that

Mu = e2
(pμ1 + pμ4 )(pμ2 + pμ3 )

u
. (9.31)

Thus, the cross section for scalar Møller scattering is

dσ(e−e− → e−e−)
dΩ

=
e4

64π2E2
CM

[
(pμ1 + pμ3 )(pμ2 + pμ4 )

t
+

(pμ1 + pμ4 )(pμ2 + pμ3 )
u

]2
=
α2

4s

[
s− u
t

+
s− t
u

]2
, (9.32)

where α = e2

4π is the fine-structure constant.

9.4 Ward identity and gauge invariance

We saw in the previous example that the matrix elements for a particular amplitude in
scalar QED were independent of the gauge parameter ξ. The photon propagator is

iΠμν =
−i
[
gμν − (1− ξ) pμpνp2

]
p2 + iε

. (9.33)

A general matrix element involving an internal photon will be MμνΠμν for some Mμν . So
gauge invariance, which in this context means ξ independence, requires Mμνpμpν = 0.
Gauge invariance in this sense is closely related to the Ward identity, which required
pμMμ = 0 if the matrix element involving an on-shell photon is εμMμ. Both gauge
invariance and the Ward identity hold for any amplitude in scalar QED. However, it is
somewhat tedious to prove this in perturbation theory. In this section, we will give a couple
of examples illustrating what goes into the proof, with the complete non-perturbative proof
postponed until Section 14.8 after path integrals are introduced.

As an non-trivial example where the Ward identity can be checked, consider the process
e+e− → γγ. A diagram contributing to this is

iMt =
p2

p1

e+

e−

εν4

εμ3

p1 − p3

= p4 − p2

p3

p4

= (−ie)2 i (2p
μ
1 − p

μ
3 ) (pν4 − 2pν2)

(p1 − p3)
2 −m2

ε�μ3 ε�ν4 . (9.34)
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Using only that the electron is on shell (not assuming p2
3 = p2

4 = p3 · ε3 = p4 · ε4), this
simplifies slightly to

Mt = e2
(p3 · ε�3 − 2p1 · ε�3) (p4 · ε�4 − 2p2 · ε�4)

p2
3 − 2p3 · p1

. (9.35)

The crossed diagram gives the same thing with 1 ↔ 2 (or equivalently 3 ↔ 4)

iMu =

e+

e−

εν4

εμ3

p1 − p4

p3

p4

p1

p2

= ie2
(p3 · ε�3 − 2p2 · ε�3) (p4 · ε�4 − 2p1 · ε�4)

p2
3 − 2p3 · p2

. (9.36)

To check whether the Ward identity is satisfied with just these two diagrams, we replace
ε�ν3 with pμ3 giving

Mt+Mu = e2[p4 · ε�4 − 2p2 · ε�4 + p4 · ε�4 − 2p1 · ε�4] = 2e2ε�μ4 (pμ4 − p
μ
2 − p

μ
1 ) , (9.37)

which is in general non-zero. The resolution is the missing diagram involving the 4-point
vertex:

iM4 =
p1 ↘

p2 ↗

↗ p3

↘ p4

e+

e−

εν4

εμ3

= 2ie2gμνε
�μ
3 ε�ν4 . (9.38)

Thus, replacing ε�μ3 with pμ3 and summing all the diagrams, we have

Mt +Mu +M4 = 2e2ε�μ4 (pμ4 − p
μ
2 − p

μ
1 + pμ3 ) = 0, (9.39)

and the Ward identity is satisfied.
The above derivation did not require us to use that the photons are on-shell or massless.

That is, we did not apply any of p2
3 = p2

4 = ε�3 · p3 = ε�4 · p4 = 0. Thus, the Ward identity
would be satisfied even if the external photon states were not physical; for example, if they
were in a loop. In fact, that is exactly what we need for gauge invariance, so the same
calculation can be used to prove ξ independence.

To prove gauge invariance, we need to consider internal photon propagators, for example
in a diagram such as
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.

q

k

. (9.40)

Let us focus on showing ξ independence for the propagators labeled q and k. For this
purpose, the entire right side of the diagram (or the left side) can be replaced by a generic
tensor Xαβ depending only on the virtual momenta of the photons entering it. The index
α will contract with the q photon propagator, Πμα(q), and β with the k photon propagator,
Πνβ(k). Diagrammatically, this means

iMt =

p1

p2

p1−q

q

k

, (9.41)

which is very closely related to the t-channel diagram above, Eq. (9.34). The integral can
be written in the form

Mt =
∫

d4q

(2π)4
d4k

(2π)4
δ4(p1 + p2 − k − q) e2

× (qμ − 2pμ1 )(kν − 2pν2)
q2 − 2q · p1

Πμα(q)Πνβ(k)Xαβ(q, k) , (9.42)

where we have inserted an extra integral over momentum and an extra δ-function to keep
the amplitude symmetric in q and k. Comparing with Eq. (9.33), the polarization vectors
εμ3 and εν4 have been replaced by contractions with the photon propagators and p3 → q and
p4 → k. Replacing Πμα(q) by ξqμqα we see that the result does not vanish, implying that
this diagram alone is not gauge invariant.

To see gauge invariance, we need to include all the diagrams that contribute at the same
order. This includes the u-channel diagrams and the one involving the 4-point vertex:

+ . (9.43)

Adding these graphs, we get same sum as before:
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Mt +Mu +M4 = e2
∫

d4q

(2π)4
d4k

(2π)4
δ4(p1 + p2 − k − q)

×
[
(qμ− 2pμ1 )(kν− 2pν2)

q2 − 2q · p1
+

(qμ− 2pμ2 )(kν− 2pν1)
q2 − 2q · p2

+ 2gμν
]
Πμα(q)Πνβ(k)Xαβ(q, k) .

(9.44)

Now if we replace Πμα(q) → ξqμqα we find

Mt +Mu +M4 → 2ξe2
∫

d4q

(2π)4
d4k

(2π)4
δ4(p1 + p2 − k − q)

× (kν − pν2 − pν1 + qν) qαΠνβ(k)Xαβ(q, k) , (9.45)

which exactly vanishes. Thus, gauge invariance holds in this case. The case of a photon
attaching to a closed scalar loop is similar and you can explore it in Problem 9.2.

A general diagrammatic proof involves arguments like this, generalized to an arbitrary
number of photons and possible loops. The only challenging part is keeping track of the
combinatorics associated with the different diagrams. Some examples can be found in [Zee,
2003] and in [Peskin and Schroeder, 1995]. The complete diagrammatic proof is actually
easier in real QED (with scalars) than in scalar QED, since there is no 4-point vertex in
QED. As mentioned above, we will give a complete non-perturbative proof of both gauge
invariance and the Ward identity in Section 14.8.

9.5 Lorentz invariance and charge conservation

There is a beautiful and direct connection between Lorentz invariance and charge con-
servation that bypasses gauge invariance completely. What we will now show is that a
theory with a massless spin-1 particle automatically has an associated conserved charge.
This profound result, due to Steven Weinberg, does not require a Lagrangian description:
it only uses little-group invariance and the fact that for a massless field one can take the
soft limit [Weinberg, 1964].

Imagine we have some diagram with lots of external legs and loops and things. Say
the matrix element for this process is M0. Now tack on an outgoing photon of momen-
tum qμ and polarization εμ onto an external leg. For simplicity, we take εμ real to avoid
writing ε�μ everywhere. Let us first tack the photon onto leg i, which we take to be an
incoming e−:

iM0(pi) =
pi

−→ pi

q

pi − q
= Mi(pi, q) . (9.46)
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This modifies the amplitude to

Mi(pi, q) = (−ie) i [p
μ
i + (pμi − qμ)]

(pi − q)2 −m2
εμM0(pi − q) . (9.47)

We can simplify this using p2
i = m2 and q2 = 0 in the denominator, since the electron

and photon are on-shell, and qμεμ = 0 in the numerator, since the polarizations of physical
photons are transverse to their own momenta. Then we get

Mi(pi, q) = −e pi · ε
pi · q

M0(pi − q) . (9.48)

Now take the soft limit. By soft we mean that |q · pi| 
 |pj · pk| for all the external
momenta pi, not just the one we modified. Then M0(pi − q) ≈ M0(pi), where ≈ indi-
cates the soft limit. Note that photons attached to loop momenta in the blob in M0 are
subdominant to photons attached to external legs, since the loop momenta are off-shell and
hence the associated propagators are not singular as q → 0. That is, photons coming off
loops cannot give 1

pi·q factors. Thus, in the soft limit, the dominant effect comes only from
diagrams where photons are attached to external legs. We must sum over all such diagrams.

If the leg is an incoming e+, we would get

Mi (pi, q) ≈ e
pi · ε
pi · q

M0 (pi) , (9.49)

where the sign flip comes from the charge of the e+. If the leg is an outgoing electron, it is
a little different. The photon is still outgoing, so we have

pi −→
pi + q

q

pi

(9.50)

and the amplitude is modified to

Mi(pi, q) = (−ie) i [p
μ
i + (pμi + qμ)]

(pi + q)2 −m2
εμM0(pi + q) ≈ e

pi · ε
pi · q

M0(pi) . (9.51)

Similarly for an outgoing positron, we would get another sign flip and

Mi(pi, q) ≈ −e
pi · ε
pi · q

M0(pi) . (9.52)

If we had many different particles with different charges, these formulas would be the same
but the charge Qi would appear instead of ±1.

Summing over all the particles we get

M≈ eM0

⎡⎣ ∑
incoming

Qi
pi · ε
pi · q

−
∑

outgoing

Qi
pi · ε
pi · q

⎤⎦ , (9.53)

where Qi is the charge of particle i.
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Here comes the punchline. Under a Lorentz transformation, M(pi, ε) → M(p′i, ε
′),

where p′i and ε′ are the momenta and polarization in the new frame. Since M must be
Lorentz invariant, the transformedM must be the same. However, polarization vectors do
not transform exactly like 4-vectors. As we showed explicitly in Section 8.2.3, there are
certain Lorentz transformations for which qμ is invariant and

εμ → εμ + qμ. (9.54)

These transformations are members of the little group, so the basis of polarization vectors
does not change. Since there is no polarization proportional to qμ, there does not exist a
physical polarization ε′μ in the new frame that is equal to the transformed εμ. Therefore,
M has to change, violating Lorentz invariance. The only way out is if the qμ term does not
contribute. In terms ofM, the little-group transformation effects

M→M+ eM0

⎡⎣ ∑
incoming

Qi −
∑

outgoing

Qi

⎤⎦ , (9.55)

and therefore the only way forM to be Lorentz invariant is∑
incoming

Qi =
∑

outgoing

Qi, (9.56)

which says that charge is conserved. This is a sum over all of the particles in the original
M0 diagram, without the soft photon. Since this process was arbitrary, we conclude that
charge must always be conserved.

Although we used the form of the interaction in scalar QED to derive the above result, it
turns out this result is completely general. For example, suppose the photon had an arbitrary
interaction with φ. Then the Feynman rule for the vertex could have arbitrary dependence
on momenta:

p

q ↓

p+ q

= −ieΓμ (p, q) . (9.57)

The vertex must have a μ index to contract with the polarization, by Lorentz invariance.
Furthermore, also by Lorentz invariance, since the only 4-vectors available are pμ and qμ,
we must be able to write Γμ = 2pμF

(
p2, q2, p · q

)
+ qμG
(
p2, q2, p · q

)
. Functions such as

F and G are sometimes called form factors. In scalar QED, F = G = 1. Since qμεμ = 0
we can discard G. Moreover, since p2 = m2 and q2 = 0, the remaining form factor can
only be a function of p·qm2 by dimensional analysis, so we write Γμ = 2pμF

(
p·q
m2

)
. Now we

put this general form into the above argument, so that

pi
q

pi − q

−→ pi
q

pi − q
≈ −eFi(0)

pi · ε
pi · q

M0(pi) . (9.58)
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Fi(0) is the only relevant value of Fi(x) in the soft limit. We have added a subscript i on
F since Fi can be different for different particles i. Although Fi(x) does not have to be an
analytic function, its limit as x→ 0 should be finite or else the matrix element for emitting
a soft photon would diverge. Then Eq. (9.54) becomes

M→M− eM0

⎡⎣ ∑
incoming

Fi(0)−
∑

outgoing

Fi(0)

⎤⎦ . (9.59)

Thus, we get the same result as before, and moreover produce a general definition of the
charge Qi = −Fi(0). (This definition will re-emerge in the context of renormalization,
in Section 19.3.)

Thus, the connection between a massless spin-1 particle and conservation of charge
is completely general. In fact, the same result holds for charged particles of any spin.
The p·ε

p·q form of the interaction between light and matter in the soft limit is universal and
spin independent. (It is called an eikonal interaction. The soft limit of gauge theories is
discussed in more detail in Section 36.3.) The conclusion is:

Massless spin-1 particles imply conservation of charge.

Note that masslessness of the photon was important in two places: that there are only two
physical polarizations, and that we can take the soft limit with the photon on-shell.

“What’s the big deal?” you say, “we knew that already.” But in the derivation from the
previous chapter, we had to use gauge invariance, gauge-fix, isolate the conserved current,
etc. Those steps were all artifacts of trying to write down a nice simple Lagrangian. The
result we just derived does not require Lagrangians or gauge invariance at all. It just uses
that a massless particle of spin-1 has two polarizations and the soft limit. Little-group
scaling was important, but only to the extent that the final answer had to be a Lorentz-
invariant function of the polarizations and momenta 4-vectors. The final conclusion, that
charge is conserved, does not care that we embedded the two polarizations in a 4-vector
εμ. It would be true even if we only used on-shell helicity amplitudes (an alternative proof
without polarization vectors is given in Chapter 27).

To repeat, this is a non-perturbative statement about the physical universe, not a state-
ment about our way of doing computations, like gauge invariance and the Ward identities
are. Proofs like this are rare and very powerful. In Problem 9.3 you can show in a similar
way that, when multiple massless spin-1 particles are involved, the soft limit forces them
to transform in the adjoint representation of a Lie group. We now turn to the implications
of the soft limit for massless particles of integer spin greater than 1.

9.5.1 Lorentz invariance for spin 2 and higher

A massless spin-2 field has two polarizations εiμν , which rotate into each other under
Lorentz transformations, and also into qμqν . There are little-group transformations that
send

εμν → εμν + Λμqν + Λνqμ + Λqμqν , (9.60)
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where these Λμ vectors have to do with the explicit way the Lorentz group acts, which
we do not care about so much. Thus, any theory involving a massless spin-2 field should
satisfy a Ward identity: if we replace even one index of the polarization tensor by qμ the
matrix elements must vanish. The spin-2 polarizations can be projected out of εμν as the
transverse-traceless modes: qμεμν = εμμ = 0.

What do the interactions look like? As in the scalar case, they do not actually matter,
and we can write a general interaction as

p

q ↓

p+ q
= −iΓμν(p, q) = −2ipμpν F̃

(p · q
m2

)
, (9.61)

where F̃ (x) is some function, different in general from the spin-1 form factor F (x). The
μ and ν indices on Γμν will contract with the indices of the spin-2 polarization vector εμν .

Taking the soft limit and adding up diagrams for incoming and outgoing spin-2 particles,
we find

M =M0

⎡⎣ ∑
incoming

F̃i(0)
pμi
pi · q

εμνp
ν
i −
∑

outgoing

F̃i(0)
pμi
pi · q

εμνp
ν
i

⎤⎦ , (9.62)

which is similar to what we had for spin 1, but with an extra factor of piν in each sum.
By Lorentz invariance, little-group transformations such as those in Eq. (9.60) imply

that this should vanish if εμν = qμΛν for any Λν . So, writing κi ≡ F̃i(0), which is just a
number for each particle, we find

M0Λν

⎡⎣ ∑
incoming

κip
ν
i −
∑

outgoing

κip
ν
i

⎤⎦ = 0, (9.63)

which implies ∑
incoming

κip
ν
i =
∑

outgoing

κip
ν
i . (9.64)

In other words, the sum of κipνi is conserved. But we already know, by momentum conser-
vation, that the sum of pμi is conserved. So, for example, we can solve for pμ1 in terms of the
others. If we add another constraint on the pμi then there would be a different solution for
pμ1 , which is impossible unless all the pμi are zero. The only way we can have non-trivial
scattering is for all the charges to be the same:

κi = κ for all i. (9.65)

But that is exactly what gravity does! All particles gravitate with the same strength, κi ≡
1

MPl
=
√
Gn. In other words, gravity is universal. So,

Massless spin-2 particles imply gravity is universal.
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We can keep going. For massless spin 3 we would need∑
incoming

βip
i
νp
i
μ =
∑

outgoing

βip
i
νp
i
μ, (9.66)

where βi = F̂i(0) for some generic spin-3 form factor F̂i
(
p·q
m2

)
. For example, the μ = ν =

0 component of this says ∑
incoming

βiE
2
i =
∑

outgoing

βiE
2
i , (9.67)

that is, the sum of the squares of the energies times some charges are conserved. That
is way too constraining. The only way out is if all the charges are 0, which is a boring,
non-interacting theory of free massless spin-3 field. So,

There are no interacting theories of massless particles of spin greater than 2.

And in fact, no massless particles with spin > 2 have ever been seen. (Massive particles of
spin > 2 are plentiful [Particle Data Group (Beringer et al.), 2012].)

Problems

9.1 Compton scattering in scalar QED.
(a) Calcuate the tree-level matrix elements for (γφ → γφ). Show that the Ward

identity is satisfied.
(b) Calculate the cross section dσ

d cos θ for this process as a function of the incoming
and outgoing polarizations, εin

μ and εout
μ , in the center-of-mass frame.

(c) Evaluate dσ
d cos θ for εin

μ polarized in the plane of the scattering, for each εout
μ .

(d) Evaluate dσ
d cos θ for εin

μ polarized transverse to the plane of the scattering, for each
εout
μ .

(e) Show that when you sum (c) and (d) you get the same thing as having replaced
(εin
μ)�εin

ν with −gμν and (εout
μ )�εout

ν with −gμν .
(f) Should this replacement work for any scattering calculation?

9.2 Consider the following 3-loop diagram for light-by-light scattering:

(9.68)

(a) Approximately how many other diagrams contribute at the same order in pertur-
bation theory? [Hint: you do not need to draw the diagrams.]
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(b) This diagram is not gauge invariant (independent of ξ) by itself. What is the mini-
mal set of diagrams you need to add to this one for the sum to be gauge invariant?
Why should the other diagrams cancel on their own?

9.3 In this problem you will prove the uniqueness of non-Abelian gauge theories by con-
sidering the soft limit when there are multiple scalar fields φi. Suppose these fields
have a mass matrix M (i.e. the mass term in the Lagrangian is L = Mijφ

�
iφj) and

there are N massless spin-1 particles Aaμ, a = 1 . . . N we will call gluons. Then the
generic interaction betweenAaμ, φi and φj can be written as Γaμij (p, q) as in Eq. (9.57).
(a) Show that in the soft limit, q 
 p, the charges are now described by a matrix

T a = T aij .

(b) For N = 1, show that only if [M,T ] = 0 can the theory be consistent. Conclude
that gluons (or the photon) can only couple between particles of the same mass.

(c) Consider Compton scattering, φi(p)Aaμ(q
a) → φj(p′)Abν(q

b), in the soft limit
qa, qb 
 p, p′. Evaluate the two diagrams for this process and then show that,
by setting εaμ = qaμ and εbν = qbν , the interactions are consistent with Lorentz
invariance only if

[
T a, T b
]

= 0, assuming nothing else is added.
(d) Show that one can modify this theory with a contact interaction involving

φiφjA
a
μA

b
ν of the generic form Γabμνij

(
p, qa, qb

)
so that Lorentz invariance is pre-

served in the soft limit. How must Γabμνij relate to T aij? Show also that Γabμνij must
have a pole, for example as (qa + qb)2 → 0.

(e) Such a pole indicates a massless particle being exchanged, naturally identified
as a gluon. In this case, the Γabμνij interaction in part (d) can be resolved into a
3-point interaction among gluons, of the form Γabcμνα

(
qa, qb, qc

)
and the Γaμij (p, q)

vertex. Show that if Γabcμνα itself has no poles, then in the soft limit it can be written
uniquely as Γabcμνα

(
qa, qb, qc

)
= fabc(gμνqαc + · · · ) for some constants fabc and

work out the · · · . Show that if and only [T a, T b] = ifabcT c can the Compton
scattering amplitude be Lorentz invariant in the soft limit. This implies that the
gluons transform in the adjoint representation of a Lie group, as will be discussed
in Chapter 25.

9.4 The soft limit also implies that massless spin-2 particles (gravitons) must have self-
interactions.
(a) To warm up, consider the soft limit of massless spin-1 particles coupled to

scalars (as in scalar QED). Just assuming generic interactions (not the scalar
QED Lagrangian), show that there must be an AAφ�φ interaction for Compton
scattering to be Lorentz invariant.

(b) Now consider Compton scattering of gravitons h off scalars. Show that there must
be an hhφφ interaction. Then show that unlike the massless spin-1 case the new
interaction must have a pole at (q1 + q2)

2 = 0. This pole should be resolved into
a graviton exchange graph. Derive a relationship between the form of the graviton
self-coupling and the hφφ coupling.
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The structure of the periodic table is due largely to the electron having spin 1
2 . In non-

relativistic quantum mechanics you learned that the spin + 1
2 and spin − 1

2 states of the
electron projected along a particular direction are efficiently described by a complex
doublet:

|ψ〉 =
∣∣∣∣ ↑↓
〉
. (10.1)

You probably also learned that the dynamics of this doublet, in the non-relativistic limit, is
governed by the Schrödinger–Pauli equation:

i∂t|ψ〉 =
{

1
2me

(i�∇− e �A)2
(

1 0
0 1

)
− eA0

(
1 0
0 1

)
+ μB

(
Bz Bx − iBy

Bx + iBy −Bz

)}
|ψ〉,

(10.2)

where �A and A0 are the vector and scalar potentials, �B = �∇ × �A and μB = e
2me

is
the Bohr magneton, which characterizes the strength of the electron’s magnetic dipole
moment. The last term in this equation is responsible for the Stern–Gerlach effect.

You may also have learned of a shorthand notation for this involving the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (10.3)

which let us write the Schrödinger–Pauli equation more concisely:

i∂tψ =
[(

1
2m

(
i�∇− e �A

)2
− eA0

)
12×2 + μB �B · �σ

]
ψ, (10.4)

where ψ(x) = 〈x |ψ〉 as usual. This equation is written with the Pauli matrices combined
into a vector �σ = (σ1, σ2, σ3) so that rotationally invariant quantities such as (�σ · �B)ψ are
easy to write. That (�σ · �B)ψ is rotationally invariant is non-trivial, and only works because

[σi, σj ] = 2iεijkσk, (10.5)

which are the same algebraic relations satisfied by infinitesimal rotations (we will review
this shortly). Keep in mind that σi do not change under rotations – they are always given
by Eq. (10.3) in any frame. ψ is changing and Bi is changing, and these changes cancel in
(�σ · �B)ψ.

We could also have written down a rotationally invariant equation of motion for ψ:

1∂tψ − ∂iσiψ = 0. (10.6)
157
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Since ∂i transforms as a 3-vector and so does σiψ, this equation is rotationally invariant. It
turns out it is Lorentz invariant too. In fact, this is just the Dirac equation! If we write

σμ = (12×2, σ1, σ2, σ3), (10.7)

then Eq. (10.6) becomes

σμ∂μψ = 0, (10.8)

which is nice and simple looking. (Actually, this is the Dirac equation for a Weyl spinor,
which is not exactly the same as the equation commonly called the Dirac equation.)

Unfortunately, it does not follow that this equation is Lorentz invariant just because we
have written it as σμ∂μ. For example,

(σμ∂μ +m)ψ = 0 (10.9)

is not Lorentz invariant. To understand these enigmatic transformation properties, we have
to know how to relate the Lorentz group to the Pauli matrices. It turns out that the Pauli
matrices naturally come out of the mathematical analysis of the representations of the
Lorentz group. By studying these representations, we will find spin-1

2 particles, which
transform in spinor representations. The Dirac equation and its non-relativistic limit, the
Schrödinger–Pauli equation, will immediately follow.

10.1 Representations of the Lorentz group

In Chapter 8, we identified particles with unitary representations of the Poincaré group.
Due to Wigner’s theorem, these representations are characterized by two quantum num-
bers: massm and spin j. Recall where these quantum numbers come from. Mass is Lorentz
invariant, so it is an obvious quantum number. Momentum is also conserved, but it is
Lorentz covariant; that is, momentum is not a good quantum number for characterizing
particles since it is frame dependent. If we choose a frame in which the momentum has
some canonical form, for example pμ = (m, 0, 0, 0) for m > 0, then the particles are
characterized by the group that holds this momentum fixed, known as the little group. For
example, the little group for pμ = (m, 0, 0, 0) is the group of 3D rotations, SO(3). The
little group representations provide the second quantum number, j. The way the states
transform under the full Poincaré group is then induced by the transformations under the
little group and the way the momentum transforms under boosts.

There are no finite-dimensional non-trivial unitary representations of the Poincaré group,
but there are infinite-dimensional ones. We have seen how these can be embedded into
fields, such as Vμ(x), φ(x) or Tμν(x). As we saw for spin 1, a lot of trouble comes from
having to embed particles of fixed mass and spin into these fields. The problem is that,
except for φ(x), these fields describe reducible and non-unitary representations. For exam-
ple, Vμ(x) has four degrees of freedom, which describes spin 0 and spin 1. We found
that we could construct a unitary theory for massive spin 1 by carefully choosing the
Lagrangian so that the physical theory never excites the spin-0 component. For massless
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spin 1, we could also choose a Lagrangian that only propagated the spin-1 component, but
only by introducing gauge invariance. This led directly to charge conservation.

The next logical step to make these embeddings more systematic is to determine all
possible Lorentz-invariant fields we can write down. This will reveal the existence of the
spin- 1

2 states, and help us characterize their embeddings into fields.

10.1.1 Group theory

A group is a set of elements {gi} and a rule gi × gj = gk which tells how each pair of
elements is multiplied to get a third. The rule defines the group, independent of any partic-
ular way to write the group elements down as matrices. More precisely, the mathematical
definition requires the rule to be associative (gi × gj) × gk = gi × (gj × gk), there to
be an identity element for which 1 × gi = gi × 1 = gi, and for the group elements to
have inverses, g−1

i × gi = 1. A representation is a particular embedding of these gi into
operators that act on a vector space. For finite-dimensional representations, this means an
embedding of the gi into matrices. Often we talk about the vectors on which the matrices
act as being the representation, but technically the matrix embedding is the representation.
Any group has the trivial representation r : gi → 1. A representation in which each group
element gets its own matrix is called a faithful representation.

Recall that the Lorentz group is the set of rotations and boosts that preserve the
Minkowski metric: ΛT gΛ = g. The Λ matrices in this equation are in the 4-vector
representation under which

Xμ → ΛμνXν . (10.10)

Examples of Lorentz transformations are rotations around the x, y or z axes:⎛⎜⎝1
1

cos θx sin θx

− sin θx cos θx

⎞⎟⎠ ,
⎛⎜⎝1

cos θy − sin θy

1
sin θy cos θy

⎞⎟⎠ ,
⎛⎜⎝1

cos θz sin θz

− sin θz cos θz

1

⎞⎟⎠
and boosts in the x, y or z directions:⎛⎜⎝coshβx sinhβx

sinhβx coshβx

1
1

⎞⎟⎠ ,
⎛⎜⎝coshβy sinhβy

1
sinhβy coshβy

1

⎞⎟⎠ ,
⎛⎜⎝coshβz sinhβz

1
1

sinhβz coshβz

⎞⎟⎠ .
These matrices give an embedding of elements of the Lorentz group into a set of matri-
ces. That is, they describe one particular representation of the Lorentz group (the 4-vector
representation). We would now like to find all the representations.

The Lorentz group itself is a mathematical object independent of any particular rep-
resentation. To extract the group away from its representations, it is easiest to look
at infinitesimal transformations. In the 4-vector representation, an infinitesimal Lorentz
transformation can be written in terms of side infinitesimal angles θi and βi as

δX0 = βiXi, (10.11)

δXi = βiX0 − εijkθjXk, (10.12)
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where the Levi-Civita or totally antisymmetric tensor εijk is defined by ε123 = 1 and
the rule that the sign flips when you swap any two indices.

Alternatively, we can write the infinitesimal transformations as

δXμ = i

[
3∑
i=1

θi(Ji)μν + βi(Ki)μν

]
Xν , (10.13)

where

J1 = i

⎛⎜⎝0
0

0 −1
1 0

⎞⎟⎠, J2 = i

⎛⎜⎝0
0 1

0
−1 0

⎞⎟⎠, J3 = i

⎛⎜⎝0
0 −1
1 0

0

⎞⎟⎠ , (10.14)

K1 = i

⎛⎜⎝ 0 −1
−1 0

0
0

⎞⎟⎠, K2 = i

⎛⎜⎝ 0 −1
0

−1 0
0

⎞⎟⎠, K3 = i

⎛⎜⎝ 0 −1
0

0
−1 0

⎞⎟⎠ .
(10.15)

These matrices are known as the generators of the Lorentz group in the 4-vector basis.
They generate the group in the sense that any element of the group can be written
uniquely as

Λ = exp(iθiJi + iβiKi) (10.16)

up to some discrete transformations. The advantage of writing the group elements this way
is that it is completely general. In any finite-dimensional representation the group elements
can be written as an exponential of matrices.

For any group G, some group elements g ∈ G can be written as g = exp(icgi λi), where
cgi are numbers and λi are group generators. The generators are in an algebra, because
you can add and multiply them, while the group elements are in a group, because you
can only multiply them. For example, the real numbers form an algebra (there is a rule
for addition and a rule for multiplication) but rotations are a group (there is only one rule,
multiplication). Lie groups are a class of groups, including the Lorentz group, with an
infinite number of elements but a finite number of generators. The generators of the Lie
group form an algebra called its Lie algebra. Lie groups are critical to understanding the
Standard Model, since QED is described by the unitary group U(1), the weak force by the
special unitary group SU(2) and the strong force by the group SU(3). The Lorentz group is
sometimes called O(1, 3). This is an orthogonal (preserves a metric) group corresponding
to a metric with (1, 3) signature (i.e. gμν = diag (1,−1,−1,−1)).

Lie groups also have the structure of a differentiable manifold. For most applications of
quantum field theory, the manifold is totally irrelevant, but it is occasionally important. For
example, topological properties of the 3D rotation group SO(3) will help us understand
the spin-statistics theorem. We sometimes distinguish the proper orthochronous Lorentz
group, which is the elements of the Lorentz group continuously connected to the identity,
from the full Lorentz group, which includes time reversal (T ) and parity reversal (P ).

In a Lie algebra the multiplication rule is defined as the Lie bracket. With matrix rep-
resentations, this Lie bracket is just an ordinary commutator. Since any element of a Lie
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algebra can be written as a linear combination of the generators, a Lie algebra is fixed by
the commutation relations of its generators. For the Lorentz group, these commutation rela-
tions can be calculated using any representation, for example the 4-vector representation
with generators in Eq. (10.14). We find

[Ji, Jj ] = iεijkJk, (10.17)

[Ji,Kj ] = iεijkKk, (10.18)

[Ki,Kj ] = −iεijkJk. (10.19)

These commutation relations define the Lorentz algebra, so(1, 3). You might recognize
that [Ji, Jj ] = iεijkJk is the algebra for rotations, SO(3), and in fact the Ji generate the
3D rotation subgroup of the Lorentz group.

These commutation relations define the Lie algebra of the Lorentz group. Although
these commutation relations were derived using Eq. (10.14) they must hold for any
representation; for example in the rank-2 tensor representation Ji and Ki can be writ-
ten as 16-dimensional matrices. It is sometimes useful to use a different form for these
commutation relations. We can index the generators by V μν instead of Ji and Ki:

V μν =

⎛⎜⎜⎝
0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0

⎞⎟⎟⎠ . (10.20)

Here each V μν is itself a 4× 4 matrix, for example, V 23 = J1. A Lorentz transformation
can be written in terms of V μν as ΛV = exp(iθμνV μν) for six numbers θμν . These V μν

satisfy

[V μν , V ρσ] = i(gνρV μσ − gμρV νσ − gνσV μρ + gμσV νρ). (10.21)

By definition, the generators in any other representation must satisfy these same relations.
For example, another representation of the Lorentz group is given by

Lμν = i(xμ∂ν − xν∂μ). (10.22)

This is an infinite-dimensional representation which acts on functions rather than a
finite-dimensional vector space. These are the classical generators of angular momentum
generalized to include time. You can check that Lμν satisfy the commutation relations of
the Lorentz algebra.

By the way, not all the elements of the Lorentz group can be written as exp(icgi λi)
for some cgi . The generators of the Lorentz algebra so(1, 3) only generate the part of the
Lorentz group connected to the identity, known as the proper orthochronous Lorentz group
SO+(1, 3). It is possible for two different groups to have the same algebra. For example,
the proper orthochronous Lorentz group and the full Lorentz group have the same algebra,
but the full Lorentz group has in addition time reversal and parity. The group generated by
o(1, 3) and T is called the orthochronous Lorentz group, denoted O+(1, 3). The proper
Lorentz group is the special orthogonal group SO(1, 3), which contains only the elements
with determinant 1, so it excludes T and P . Sometimes SO(1, 3) is taken to include only
P with SO+(1, 3) excluding also T . These notations are more general than we need: in
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odd space-time dimensions, parity has determinant 1 and is therefore a special orthogonal
transformation. Rather than worry about group naming conventions, we will simply talk
about the Lorentz group with or without T and P .

10.1.2 General representations of the Lorentz group

The irreducible representations of the Lorentz group can be constructed from irreducible
representations of SU(2). To see how this works, we start with the rotation generators Ji
and the boost generators Kj . You can think of them as the matrices in Eq. (10.14), which
is a particular representation, but the algebraic properties in Eqs. (10.17) to (10.19) are
representation independent.

Now take the linear combinations

J+
i ≡

1
2
(Ji + iKi), J−

i ≡
1
2
(Ji − iKi), (10.23)

which satisfy

[J+
i , J

+
j ] = iεijkJ

+
k , (10.24)

[J−
i , J

−
j ] = iεijkJ

−
k , (10.25)

[J+
i , J

−
j ] = 0. (10.26)

These commutation relations indicate that the Lie algebra for the Lorentz group has two
commuting subalgebras. The algebra generated by J+

i (or J−
i ) is the 3D rotation algebra,

which has multiple names, so(3) = sl(2,R) = so(1, 1) = su(2), due to multiple Lie
groups having the same algebra. So we have shown that

so(1, 3) = su(2)⊕ su(2). (10.27)

Thus, representations of su(2)⊕su(2) will determine representations of the Lorentz group.
The decomposition so(1, 3) = su(2) ⊕ su(2) makes studying the irreducible represen-

tations very easy. We already know from quantum mechanics what the representations
of su(2) are, since su(2) = 3) is the algebra of Pauli matrices, which generates the 3D
rotation group SO(3). Each irreducible representation of su(2) is characterized by a half-
integer j. The representation acts on a vector space with 2j+1 basis elements (see Problem
10.2). It follows that irreducible representations of the Lorentz group are characterized by
two half-integers: A and B. The (A,B) representation has (2A + 1)(2B + 1) degrees of
freedom.

The regular rotation generators are �J = �J+ + �J−, where we use the vector superscript
to call attention to the fact that the spins must be added vectorially, as you might remem-
ber from studying Clebsch–Gordan coefficients. Since the 3D rotation group SO(3) is a
subgroup of the Lorentz group, every representation of the Lorentz group will also be a rep-
resentation of SO(3). In fact, finite-dimensional irreducible representations of the Lorentz
algebra, which are characterized by two half-integers (A,B), generate many representa-
tions of SO(3): with spins j = A+B,A+B−1, . . . , |A−B|, as shown in Table 10.1. For
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Table 10.1 Decomposition of irreducible representations of the
Lorentz algebra su(2)⊕ su(2) into irreducible representations of its

so(3) subalgebra descrbing spin.

Representation of su(2)⊕ su(2) (0, 0) ( 1
2
, 0) (0, 1

2
) ( 1

2
, 1

2
) (1, 0) (1, 1)

Representations of so(3) 0 1
2

1
2

1 ⊕ 0 1 2 ⊕ 1 ⊕ 0

example, the general tensor representations Tμ1···μn correspond to the (n2 ,
n
2 ) representa-

tions of the Lorentz algebra. These are each irreducible representations of the Lorentz
algebra, but reducible representations of the su(2) subalgebra corresponding to spin.

The relevance of the decomposition in Table 10.1 for particle physics is that Lagrangians
are constructed out of fields, Vμ(x) and ψ(x), which transform under the Lorentz group.
However, particles transform under irreducible unitary representations of the Poincaré
group, which have spins associated with the little group (as discussed in Chapter 8). So, the
decomposition of Lorentz representations as in Table 10.1 determines the spins of particles
that might be described by given fields. For example, the Lorentz representation acting on
real 4-vectors Aμ(x) is the

(
1
2 ,

1
2

)
representation (containing four degrees of freedom). It

can describe spin-1 or -0 representations of SO(3), with three and one degrees of freedom,
respectively. We saw in Section 8.2.2 how the Lagrangian for a massive vector field could
be chosen so that only the spin-1 particle propagates.

By the way, the group generated by exponentiating the Lie algebra of a given group
is known as the universal cover of the given group. For example, exponentiating su(2)
gives SU(2). Since SU(2) and SO(3) have the same Lie algebra, SU(2) is the universal
cover of SO(3). The Lie algebra su(2) ⊕ su(2) generates SL(2,C), which is there-
fore the universal cover of the Lorentz group. We will revisit the distinction between
SL(2,C) and the Lorentz group more in Section 10.5.1. For now, we will simply study
su(2) ⊕ su(2). Group theory is discussed further in the context of Yang–Mills theories in
Chapter 25.

10.2 Spinor representations

So far we have only considered the tensor representations, Tμ1···μn , that have only integer
spins. We will now discuss representations with half-integer spins.

There exist two complex J = 1
2 representations, ( 1

2 , 0) and (0, 1
2 ). What do these rep-

resentations actually look like? The vector spaces they act on have 2J + 1 = 2 degrees of
freedom. Thus we need to find 2× 2 matrices that satisfy

[J+
i , J

+
j ] = iεijkJ

+
k , (10.28)

[J−
i , J

−
j ] = iεijkJ

−
k , (10.29)

[J+
i , J

−
j ] = 0. (10.30)
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But we already know such matrices: the Pauli matrices. They satisfy Eq. (10.5): [σi, σj ] =
2iεijkσk. Rescaling, we find [σi

2
,
σj
2

]
= iεijk

σk
2
, (10.31)

which is the SO(3) algebra. Another useful fact is that

{σi, σj} = σiσj + σjσi = 2δij , (10.32)

where the anticommutator is defined by{
A,B
}
≡ AB +BA. (10.33)

Thus, we can set J−
i = 1

2σi, which generates the “1
2” in ( 1

2 , 0). What about J+
i ? This

should be the “0” in (1
2 , 0). The obvious thing to do is just take the trivial representation

J+
i = 0. So the ( 1

2 , 0) representation is(
1
2
, 0
)

: �J− =
1
2
�σ, �J+ = 0. (10.34)

Similarly, the (0, 1
2 ) representation is(

0,
1
2

)
: �J− = 0, �J+ =

1
2
�σ. (10.35)

What does this mean for actual Lorentz transformations? Well, the rotations are �J = �J− +
�J+ and the boosts are �K = i( �J− − �J+) so(

1
2
, 0
)

: �J =
1
2
�σ, �K =

i

2
�σ, (10.36)

(
0,

1
2

)
: �J =

1
2
�σ, �K = − i

2
�σ. (10.37)

Since the Pauli matrices are Hermitian, �σ† = �σ, the rotations are Hermitian and the boosts
are anti-Hermitian ( �K† = − �K). Also notice that the group generators in the (1

2 , 0) and
(0, 1

2 ) representations are adjoints of each other. So we sometimes say these are complex-
conjugate representations.

Elements of the vector space on which the spin- 1
2 representations act are known as

spinors. The (0, 1
2 ) spinors are called right-handed Weyl spinors and often denoted ψR.

Under rotation angles θj and boost angles βj

ψR → e
1
2 (iθjσj+βjσj)ψR =

(
1 +

i

2
θjσj +

1
2
βjσj + · · ·

)
ψR, (10.38)

where · · · are higher order in the expansion of the exponential. Similarly, the
(

1
2 , 0
)

representation acts on left-handed Weyl spinors, ψL,

ψL → e
1
2 (iθjσj−βjσj)ψL =

(
1 +

i

2
θjσj −

1
2
βjσj + · · ·

)
ψL. (10.39)
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Infinitesimally,

δψR =
1
2
(iθj + βj)σjψR, (10.40)

δψL =
1
2
(iθj − βj)σjψL. (10.41)

Note again that the angles θj and βj are real numbers. Although we mapped �J− or �J+

to 0, we still have non-trivial action of all the Lorentz generators. So these are faithful
irreducible representations of the Lorentz group. Similarly,

δψ†
R =

1
2
(−iθj + βj)ψ

†
Rσj , (10.42)

δψ†
L =

1
2
(−iθj − βj)ψ†

Lσj . (10.43)

10.2.1 Unitary representations

We have just constructed two 2D representations of the Lorentz group. But these rep-
resentations are not unitary. Unitarity means Λ†Λ = 1, which is necessary to have
Lorentz-invariant matrix elements:

〈ψ|ψ〉 →
〈
ψ|Λ†Λ|ψ

〉
. (10.44)

Since a group element is the exponential of a generator Λ = eiλ, unitarity requires that
λ† = λ, that is, that λ be Hermitian. We saw that the boost generators in the spinor
representations are instead anti-Hermitian.

It is not hard to see that any representation constructed using SU(2) × SU(2) as above
(which are all the finite-dimensional representations) will not be unitary. Since SU(2) is
the special unitary algebra, all of its representations are unitary. So, the generators for the

SU(2) × SU(2) decomposition �J± = 1
2

(
�J ± i �K

)
are Hermitian. Thus exp(iθj+J

j
+ +

iθj−J
j
−) is unitary, for real θj+ and θj−. But this does not mean that the corresponding

representations of the Lorentz group are unitary. A Lorentz group element is

Λ = exp(iθjJj + iβjKj), (10.45)

where the θj are the rotation angles and βj the boost “angles.” These are real numbers.
They are related to the angles for the �J± generators of SU(2) × SU(2) by θj+ = θj − iβj
and θj− = θj + iβj . So for a boost, the �J+ and �J− generators get multiplied by imaginary
angles, which makes the transformation anti-unitary. Thus, none of the representations of
the Lorentz group generated this way will be unitary and therefore there are no finite-
dimensional unitary representations of the Lorentz group.

To construct a unitary field theory, we need unitary representations of the Poincaré
group, which are infinite dimensional; the corresponding representations of the Lorentz
subgroup of the Poincaré group are also infinite dimensional. To construct these represen-
tations, we will use the same trick we used for spin 1 in Chapter 8. We will construct an
infinite-dimensional representation by having the basis depend on the momentum pμ. For
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fixed momentum, say pμ = (m, 0, 0, 0) in the massive case, or pμ = (E, 0, 0, E) in the
massless case, the group reduces to the appropriate little group, SO(3) or ISO(2) respec-
tively. These little groups do have unitary representations. Implementing this procedure for
spin 1, we were led uniquely to Lagrangians with kinetic terms of the form − 1

4F
2
μν , and

gauge invariance and charge conservation if m = 0. We will now see how to construct
Lorentz-invariant Lagrangians that describe unitary theories with spinors.

10.2.2 Lorentz-invariant Lagrangians

Having seen that we need infinite-dimensional representations, we are now ready to talk
about fields. These fields are spinor-valued functions of space-time, which we write as

ψR(x) =
(
ψ1(x)
ψ2(x)

)
for the (0, 1

2 ) representation, or ψL(x) =
(
ψ1(x)
ψ2(x)

)
for the ( 1

2 , 0)

representation.
As in the spin-1 case, we would like first to write down a Lorentz-invariant Lagrangian

for these fields with the right number of degrees of freedom (two). The simplest thing to
do would be to write down a Lagrangian with terms such as

(ψR)†�ψR +m2(ψR)†ψR. (10.46)

However, using the infinitesimal transformations Eqs. (10.39) and (10.40), it is easy to see
that these terms are not Lorentz invariant:

δ
(
ψ†
RψR

)
=

1
2
ψ†
R[(iθi + βi)σiψR] +

1
2
[ψ†
R(−iθi + βi)σi]ψR

= βiψ
†
RσiψR �= 0. (10.47)

This is just the manifestation of the fact that the representation is not unitary because the
boost generators are anti-Hermitian.

If we allow ourselves two fields, ψR and ψL, we can write down terms such as ψ†
LψR.

Under infinitesimal Lorentz transformations,

δ(ψ†
LψR) =

[
ψ†
L

1
2
(−iθi − βi)σ†

i

]
ψR + ψ†

L

[
1
2
(iθi + βi)σiψR

]
= 0, (10.48)

which is great. We need to add the Hermitian conjugate to get a term in a real Lagrangian.
Thus, we find that

LDirac mass = m
(
ψ†
LψR + ψ†

RψL

)
(10.49)

is real and Lorentz invariant for any m. This combination is bilinear in the fields, but lacks
derivatives, so it is a type of mass term known as a Dirac mass. A theory with only this
term in its Lagrangian would have no dynamics.

What about kinetic terms? We could try

L = ψ†
L�ψR + ψ†

R�ψL, (10.50)

which is both Lorentz invariant and real. But this is actually not a very interesting

Lagrangian. We can always split up our field into components ψR =
(
ψ1

ψ2

)
, where ψ1
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and ψ2 are just regular fields. Then we see that this is just the Lagrangian for a couple of
scalars. So it is not enough to declare the Lorentz transformation properties of something,
the Lagrangian has to force those transformation properties. In the same way, a vector field
Aμ is just four scalars until we contract it with ∂μ in the Lagrangian, as in the (∂μAμ)

2

part of F 2
μν .

To proceed, let us look at ψ†
RσiψR. This transforms as

δ(ψ†
RσiψR) =

1
2
ψ†
Rσi[(iθj + βj)σjψR] +

1
2
[ψ†
R(−iθj + βj)σj ]σiψR

=
βj
2
ψ†
R(σiσj + σjσi)ψR +

iθj
2
ψ†
R(σiσj − σjσi)ψR

= βiψ
†
RψR − θjεijkψ

†
RσkψR. (10.51)

Thus, we have found that

δ
(
ψ†
RψR, ψ

†
RσiψR

)
=
(
βiψ

†
RσiψR, βiψ

†
RψR − εijkθjψ

†
RσkψR

)
, (10.52)

which is exactly how a vector transforms:

δ(V0, Vi) = (βiVi, βiV0 − εijkθjVk) (10.53)

as in Eq. (10.12). So V μR = (ψ†
RψR, ψ

†
R�σψR) is an honest-to-goodness Lorentz 4-vector.

Therefore,

ψ†
R∂tψR + ψ†

R∂jσjψR (10.54)

is Lorentz invariant. Note that ∂t[ψ
†
RψR] + ∂j [ψ

†
RσjψR] is also Lorentz invariant, but not

a viable candidate for the spinor Lagrangian since it is a total derivative. Similarly,

δ
(
ψ†
LψL,−ψ

†
LσiψL

)
=
(
−βiψ†

LσiψL, βiψ
†
LψL + εijkθjψ

†
LσkψL

)
(10.55)

so (ψ†
LψL,−ψ

†
LσiψL) also transforms like a vector and the combination ψ†

L∂tψL −
ψ†
L∂jσjψL is Lorentz invariant.
Defining

σμ ≡ (1, �σ), σ̄μ ≡ (1,−�σ), (10.56)

we can write all the Lorentz-invariant terms we have found as

L = iψ†
Rσμ∂μψR + iψ†

Lσ̄μ∂μψL −m(ψ†
RψL + ψ†

LψR). (10.57)

We added a factor of i in the kinetic term to make the Lagrangian Hermitian:

(iψ†
Rσμ∂μψR)† = −i(∂μψ†

R)σμψR = iψ†
Rσμ∂μψR, (10.58)

where we have used σ†
μ = σμ and integrated by parts.

There is an even shorter-hand way to write this. Let us combine the two spinors into a
four-component object known as a Dirac spinor:

ψ =
(
ψL
ψR

)
. (10.59)
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If we also define

ψ̄ =
(
ψ†
R ψ†

L

)
, (10.60)

and use the 4× 4 matrices

γμ =
(

σμ

σ̄μ

)
, (10.61)

known as Dirac matrices or γ-matrices, our Lagrangian becomes

L = ψ̄(iγμ∂μ −m)ψ. (10.62)

which is the conventional form of the Dirac Lagrangian. The equations of motion that
follow are

(iγμ∂μ −m)ψ = 0 , (10.63)

which is the Dirac equation.

10.3 Dirac matrices

Expanding them out, the Dirac matrices from Eq. (10.61) are

γ0 =
(

1

1

)
, γi =

(
0 σi
−σi 0

)
. (10.64)

Or, even more explicitly,

γ0 =

⎛⎜⎜⎝
1 0
0 1

1 0
0 1

⎞⎟⎟⎠ , γ1 =

⎛⎜⎜⎝
0 1
1 0

0 −1
−1 0

⎞⎟⎟⎠ ,

γ2 =

⎛⎜⎜⎝
0 −i
i 0

0 i

−i 0

⎞⎟⎟⎠ , γ3 =

⎛⎜⎜⎝
1 0
0 −1

−1 0
0 1

⎞⎟⎟⎠ . (10.65)

They satisfy

{
γμ, γν
}

= 2gμν . (10.66)
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In the same way that the algebra of the Lorentz group is more fundamental than any partic-
ular representation, the algebra of the γ-matrices is more fundamental than any particular
representation of them. We say the γ-matrices generate the Dirac algebra, which is a spe-
cial case of a Clifford algebra. This particular form of the Dirac matrices is known as the
Weyl representation.

Next we define a useful shorthand:

σμν ≡ i

2
[γμ, γν ] . (10.67)

The Lorentz generators when acting on Dirac spinors can be written as

Sμν =
i

4
[γμ, γν ] =

1
2
σμν , (10.68)

which you can check by expanding in terms of σ-matrices. More generally, Sμν will satisfy
the Lorentz algebra when constructed from any γ-matrices satisfying the Clifford algebra.
That is, you can derive from {γμ, γν} = 2gμν that

[Sμν , Sρσ] = i(gνρSμσ − gμρSνσ − gνσSμρ + gμσSνρ). (10.69)

It is important to appreciate that the matrices Sμν are different from the matrices Vμν
corresponding to the Lorentz generators in the 4-vector representation. In particular, Sμν
are complex. So we have found two inequivalent four-dimensional representations. In each
case, the group element is determined by six real angles θμν (three rotations and three
boosts). The vector or (1

2 ,
1
2 ) representation is irreducible, and has Lorentz group element

ΛV = exp(iθμνV μν), (10.70)

while the Dirac or (1
2 , 0) ⊕ (0, 1

2 ) representation is reducible and has Lorentz group
elements

Λs = exp(iθμνSμν). (10.71)

There are actually a number of Dirac representations, depending on the form of the γ-
matrices. We will consider two: the Weyl and Majorana representations.

In the Weyl representation, the Lorentz generators are

Sij =
1
2
εijk

(
σk

σk

)
, Ki = S0i = − i

2

(
σi

−σi

)
, (10.72)

or, very explicitly,

S12 =
1
2

⎛⎜⎝1
−1

1
−1

⎞⎟⎠, S13 =
i

2

⎛⎜⎝ 0 1
−1 0

0 1
−1 0

⎞⎟⎠, S23 =
1
2

⎛⎜⎝0 1
1 0

0 1
1 0

⎞⎟⎠ ,

S01 =
i

2

⎛⎜⎝ 0 −1
−1 0

0 1
1 0

⎞⎟⎠, S02 =
1
2

⎛⎜⎝0 −1
1 0

0 1
−1 0

⎞⎟⎠, S03 =
i

2

⎛⎜⎝−1
1

1
−1

⎞⎟⎠ .
(10.73)
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These are block diagonal. These are the same generators we used for the (1
2 , 0) and

(0, 1
2 ) representations above. This makes it clear that the Dirac representation of the

Lorentz group is reducible; it is the direct sum of a left-handed and a right-handed spinor
representation.

Another representation is the Majorana representation:

γ0 =
(

0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
, γ2 =

(
0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
.

(10.74)

In this basis the γ-matrices are purely imaginary. The Majorana is another (1
2 , 0) ⊕ (0, 1

2 )
representation of the Lorentz group that is physically equivalent to the Weyl representation.

The Weyl spinors, ψL and ψR, are in a way more fundamental than Dirac spinors such
as ψ because they correspond to irreducible representations of the Lorentz group. But the
electron is a Dirac spinor. More importantly, QED is symmetric under L ↔ R. Thus,
for QED the γ-matrices make calculations a lot easier than separating out the ψL and
ψR components. In fact, we will develop such efficient machinery for manipulating the
γ-matrices that even in theories which are not symmetric to L ↔ R, such as the theory
of weak interactions (Chapter 29), it will be convenient to embed the Weyl spinors into
Dirac spinors and add projectors to remove the unphysical components. These projections
are discussed in Section 11.1.

10.3.1 Lorentz transformation properties

When using Dirac matrices and spinors, we often suppress spinor indices but leave vector
indices explicit. So an equation such as {γμ, γν} = 2gμν really means

γμαγγ
ν
γβ + γναγγ

μ
γβ = 2gμνδαβ , (10.75)

and the equation Sμν = i
4 [γμ, γν ] means

Sμναβ =
i

4

(
γμαγγ

ν
γβ − γναγγμγβ

)
. (10.76)

For an expression such as

V 2 = Vμg
μνVν =

1
2
Vμ {γμ, γν}Vν (10.77)

to be invariant, the Lorentz transformations in the vector and Dirac representations must
be related. Indeed, since ψ̄γμψ transforms like a 4-vector we can deduce that

Λ−1
s γμΛs = (ΛV )μνγν , (10.78)

where the Λs are the Lorentz transformations acting on spinor indices and ΛV are the
Lorentz transformations in the vector representation. Writing out the matrix indices γαβμ
this means

(Λ−1
s )δαγ

μ
αβ(Λs)βγ = (ΛV )μνγνδγ , (10.79)
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where μ refers to which γ-matrix, and α and β index the elements of that matrix. You can
check this with the explicit forms for ΛV and Λs in Eqs. (10.70) and (10.71) above.

It is useful to study the properties of the Lorentz generators from the Dirac algebra itself,
without needing to choose a particular basis for the γμ. First note that

{γμ, γν} = 2gμν ⇒ (γ0)2 = 1, (γi)2 = −1. (10.80)

So the eigenvalues of γ0 are ±1 and the eigenvalues of γi are ±i. Thus, if we diagonalize
γ0, we will see that it is Hermitian, and if we diagonalize γ1, γ2 or γ3 we will see that they
are anti-Hermitian. This is true, in general, for any representation of the γ-matrices:

γ0† = γ0, γi† = −γi. (10.81)

Then,

(Sμν)† =
(
i

4
[γμ, γν ]

)†
= − i

4
[
γν†, γμ†

]
=
i

4
[
γμ†, γν†

]
, (10.82)

which implies

Sij† = Sij , S0i† = −S0i. (10.83)

Again, we see that the rotations are unitary and the boosts are not. You can see this from
the explicit representations in Eq (10.73). But because we showed it algebraically, using
only the defining equation {γμ, γν} = 2gμν , it is true in any representation of the Dirac
algebra.

Now, observe that one of the Dirac matrices is Hermitian, γ0. Moreover,

γ0γiγ0 = −γi = γi†, γ0γ0γ0 = γ0 = γ0†, (10.84)

so γμ† = γ0γμγ0. Then

γ0(Sμν)† γ0 = γ0 i

4
[
γμ†, γν†

]
γ0 =

i

4
[
γ0γμ†γ0, γ0γν†γ0

]
=
i

4
[γμ, γν ] = Sμν ,

(10.85)
and so(
γ0Λsγ0

)†
= γ0 exp(iθμνSμν)†γ0 = exp(−iθμνγ0Sμν†γ0) = exp(−iθμνSμν) = Λ−1

s .

(10.86)
Then, finally,

ψ†γ0ψ → (ψ†Λ†
s)γ

0(Λsψ) =
(
ψ†γ0Λ−1

s Λsψ
)

= ψ†γ0ψ, (10.87)

which is Lorentz invariant.
We have just been re-deriving from the Dirac algebra point of view what we found by

hand from the Weyl point of view. We have seen that the natural conjugate for ψ out of
which real Lorentz-invariant expressions are constructed is not ψ† but

ψ̄ ≡ ψ†γ0. (10.88)

The point is that ψ̄ transforms according to Λ−1
s . Thus ψ̄ψ is Lorentz invariant. In contrast,

ψ†ψ is not Lorentz invariant, since ψ†ψ → (ψ†Λ†
s)(Λsψ). For this to be invariant, we

would need Λ†
s = Λ−1

s , that is, for the representation of the Lorentz group to be unitary.
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But the finite-dimensional spinor representation of the Lorentz group, like the 4-vector
representation, is not unitary, because the boost generators are anti-Hermitian. As with
vectors, for unitary representations we will need fields ψ(x) that transform in infinite-
dimensional representations of the Poincaré group.

We can also construct objects such as

ψ̄γμψ, ψ̄γμγνψ, ψ̄∂μψ; (10.89)

all transform like tensors under the Lorentz group. Also

L = ψ̄(iγμ∂μ −m)ψ (10.90)

is Lorentz invariant. We abbreviate this with

L = ψ̄(i/∂ −m)ψ, (10.91)

which is the Dirac Lagrangian.
The Dirac equation follows from this Lagrangian by the equations of motion:

(i/∂ −m)ψ = 0. (10.92)

To be explicit, this is shorthand for

(iγμαβ∂μ −mδαβ)ψβ = 0. (10.93)

After multiplying the Dirac equation by
(
i/∂ +m

)
we find

0 = (i/∂ +m)(i/∂ −m)ψ =
(
−1

2
∂μ∂ν{γμ, γν} −

1
2
∂μ∂ν [γμ, γν ]−m2

)
ψ

= −(∂2 +m2)ψ. (10.94)

So ψ satisfies the Klein–Gordon equation:

(� +m2)ψ = 0. (10.95)

In Fourier space, this implies that on-shell spinor momenta satisfy the unique relativistic
dispersion relation p2 = m2, just like scalars. Because spinors also satisfy an equation
linear in derivatives, people sometimes say the Dirac equation is the “square root” of the
Klein–Gordon equation.

We can integrate the Lagrangian by parts to derive the equations of motion for ψ̄:

L = ψ̄i/∂ψ −mψ̄ψ = −i
(
∂μψ̄
)
γμψ −mψ̄ψ. (10.96)

So,

− i∂μψ̄γμ −mψ̄ = 0. (10.97)

This γμ on the opposite side from ∂μ is a little annoying, so we often write

ψ̄(−i
←−
/∂ −m) = 0, (10.98)

where the derivative acts to the left. This makes the conjugate equation look more like the
original Dirac equation.
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10.4 Coupling to the photon

Under a gauge transform ψ transforms just like a scalar. For a spinor with charge Q = −1,
such as the electron,

ψ → e−iαψ. (10.99)

Then we can use the same covariant derivative ∂μ + ieAμ as for a scalar. So

Dμψ = (∂μ + ieAμ)ψ. (10.100)

Then the Dirac equation becomes

(i/∂ − e /A−m)ψ = 0. (10.101)

Something very interesting happens if we try to compare the Dirac equation to the Klein–
Gordon equation for a scalar field φ coupled to Aμ:[

(i∂μ − eAμ)2 −m2
]
φ = 0. (10.102)

Following the same route as before, we multiply 0 by (i/∂ − e /A+m) giving

0 = (i/∂ − e /A+m)(i/∂ − e /A−m)ψ

=
[
(i∂μ − eAμ)(i∂ν − eAν)γμγν −m2

]
ψ

=
(

1
4
{i∂μ− eAμ, i∂ν − eAν}{γμ, γν} +

1
4
[i∂μ− eAμ, i∂ν − eAν ][γμ, γν ]−m2

)
ψ.

(10.103)

In Eq. (10.94), the antisymmetric combination dropped out, but now we find

[i∂μ − eAμ, i∂ν − eAν ] = −e[i∂μAν − i∂νAμ] = −eiFμν . (10.104)

So we get (
(i∂μ − eAμ)2 −

e

2
Fμνσ

μν −m2
)
ψ = 0, (10.105)

where σμν = i
2 [γμ, γν ] as in Eq. (10.67). This equation contains an extra term compared

to the spin-0 equation, Eq. (10.102).
The above manipulation can be condensed into the useful identity

/D
2 = D2

μ +
e

2
Fμνσ

μν , (10.106)

which concisely describes the difference between covariant derivatives on spinors and
scalars.

What is this extra term? Well, recall that the Lorentz generators acting on Dirac spinors
are Sμν = 1

2σ
μν . These have the form (in the Weyl representation)

Sij =
1
2
εijk

(
σk

σk

)
, S0i = − i

2

(
σi

−σi

)
, (10.107)
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and since

F0i = Ei, Fij = −εijkBk, (10.108)

we get{
(∂μ + ieAμ)2 +m2 − e

(
( �B + i �E) · �σ

( �B − i �E) · �σ

)}
ψ = 0. (10.109)

This corresponds to a magnetic dipole moment. With conventional normalization, the size
of the magnetic moment is μB = e

2me
. In the non-relativistic limit, as you can explore

in Problem 10.1, the Schrödinger–Pauli equation, Eq. (10.2), is reproduced with correct
magnetic moment. So the Dirac equation makes a testable prediction: charged fermions
should have magnetic dipole moments with size given by μB = e

2me
. Experimentally, the

moment is ∼1.002μB . The 0.002 will be calculated later.
To summarize, we found that while free spinors satisfy the equation of motion for a

scalar field, when spinors are coupled to the photon, an additional interaction appears
which corresponds to a magnetic dipole moment. The size of the electron’s magnetic
moment can be read off as the coefficient of this additional interaction. That the correct
magnetic moment comes out of the Dirac equation is a remarkable physical prediction
of Dirac’s equation. Note that the coupling to the electric field in Eq. (10.109) is not an
electric dipole moment – that would not have an i, but is simply the effect of a magnetic
moment in a boosted frame. Electric dipole moments will be explored in Section 29.5.3
and in Problem 11.10.

Finally, note that the Noether current associated with the global symmetry ψ → e−iαψ
is

Jμ = ψ̄γμψ. (10.110)

This, like any Noether current, is conserved on the equations of motion even if we set
Aμ = 0. The 0 component of this current gives the charge density

J0 = ψ†ψ = ψ†
LψL + ψ†

RψR. (10.111)

We originally hoped this would be Lorentz invariant, which it is not. Now we see that it
transforms as the 0 component of a conserved current. We can interpret this as the prob-
ability density for a fermion. The conserved charge Q =

∫
d3xJ0 is electron number,

which is the number of electrons minus the number of positrons. The spatial components
of Jμ denote electron number flow. The electron number current Jμ is related to the charge
current eJμ, which couples to Aμ, by a factor of the electric charge e.

10.5 What does spin 1
2 mean?

To understand spin- 1
2 particles, let us begin by looking at what happens when we rotate

them by an angle θ in the z plane. For any representation, such a rotation is given by

Λ(θz) = exp(iθzJz), (10.112)
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with Jz the generator in an appropriate representation. The easiest way to exponentiate
a matrix is to first diagonalize it with a unitary transformation, then exponentiate the
eigenvalues, then transform back. This unitary transformation is like choosing a (possi-
bly complex) direction. If we are only ever rotating around one axis, we can simply use the
diagonal basis for the exponentiation.

First, for the vector representation,

J3 = V12 = i

⎛⎜⎜⎝
0

0 −1
1 0

0

⎞⎟⎟⎠ = U−1

⎛⎜⎜⎝
0
−1

1
0

⎞⎟⎟⎠U. (10.113)

Note that the eigenvalues of J3 are −1, 0, 1 and 0, which is what one expects from the(
1
2 ,

1
2

)
representation of the Lorentz group describing spins 1 and 0, as in Table 10.1. So,

ΛV (θz) = exp(iθzV12) = U−1

⎛⎜⎜⎝
1

exp(−iθz)
exp(iθz)

1

⎞⎟⎟⎠U (10.114)

and

ΛV (2π) = 1. (10.115)

That is, we rotate 360 degrees and we are back to where we started.
For the spinor representation

Λs(θz) = exp(iθzS12) (10.116)

the 12 rotation is already diagonal:

S12 =

⎛⎜⎜⎝
1
2

− 1
2

1
2

− 1
2

⎞⎟⎟⎠ . (10.117)

Here the eigenvalues are − 1
2 ,

1
2 ,−

1
2 and 1

2 , as one expects for the
(

1
2 , 0
)
⊕
(
0, 1

2

)
representation of the Lorentz group. So,

Λs(θz) = exp(iθzS12) =

⎛⎜⎝ exp( i
2
θz)

exp(− i
2
θz)

exp( i
2
θz)

exp(− i
2
θz)

⎞⎟⎠
(10.118)

and

Λs(2π) =

⎛⎜⎜⎝
−1

−1
−1

−1

⎞⎟⎟⎠ = −1. (10.119)
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Thus, a 2π rotation does not bring us back where we started! If we rotate by 4π it would,
but with a 2π rotation we pick up a −1.

By the way, this odd factor of −1 is the origin of the connection between spin and
statistics. As a quick way to see the connection, consider a state containing two identical
fermions localized on opposite sides of the origin in the x̂ direction. Let their spins both
point in the +ẑ direction. So the state is |ψ12〉 = |ψ↑ (�x)ψ↑ (−�x)〉. Now rotate the state
around the z axis by π. Such a rotation interchanges the two particles, and does not affect
the spins. It also induces a factor of Λs(π) = i for each spinor. Thus, |ψ12〉 → −|ψ21〉
since the particles are identical, |ψ12〉 = |ψ21〉. Thus, the wavefunction picks up a −1
when the particles are interchanged. That is, the spinors are fermions. This argument is
repeated with somewhat more detail in Chapter 12, where additional implications of the
spin-statistics theorem are discussed.

10.5.1 Projective representations

How can something go back to minus itself under a 2π rotation? This is not something that
can happen in the Lorentz group. By definition, all representations of the Lorentz group
map 2π rotations to the identity element of the group: r[2π] = 1. And, by definition, the
identity group element sends objects to themselves. The problem is that by exponentiating
elements of the Lie algebra for the group we generated a different group, SL(2,C), which
is the universal cover of the Lorentz group, not the Lorentz group itself. So, technically,
spinors transform as representations of SL(2,C). Why is this OK?

Recall that the Lorentz group is defined as the group preserving the Minkowski metric
ΛT gΛ = g. Observables, in particular the S-matrix, should be invariant under this sym-
metry. In quantum mechanics, we learned that states are identified with rays, so that |ψ〉
and λ|ψ〉 for any complex number λ are the same state. In field theory, we have care-
fully normalized our fields (and we will carefully renormalize them), so we do not want
that norm to change in different frames. However, we can still have the fields change by
a phase without upsetting their norms. Thus, for physical purposes what we are looking
for is not exactly representations of the Lorentz group, but projective representations of
the Lorentz group, in which group elements can change the phase of a state. Projective
representations can have

r[g1]r[g2] = eiφ(g1,g2)r[g1g2], (10.120)

which is a generalization of the normal requirement that r[g1g2] = r[g1]r[g2] for a group
representation. The projective representations of O(1, 3) are the same as the representations
of SL(2,C), which include the spinors.

Using objects that have properties that are not directly observable is not new. For exam-
ple, in quantum mechanics we learned that wavefunctions are complex. There are plenty
of implications of the complexity, but you do not actually measure complex things. In the
same way, although we only measure Lorentz-invariant things (matrix elements), the most
general theory can have objects, spinors, that are a little bit more complicated than the
Lorentz group alone would naively suggest. Although spinors transform in representations
of SL(2,C), the Poincaré group is still the symmetry group of observables.
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The existence of objects, spinors, that transform as ψ → −ψ under θ = 2π rotations
is closely related to an interesting fact about the 3D rotation group that you might not be
aware of: it is not simply connected. In a group that is not simply connected, there are
closed paths through the group that are not contractible, that is, they cannot be smoothly
deformed to a point. For example, the group SO(2) of 2D rotations is specified by angles
θ. Let us describe our path by a number t, with 0 ≤ t < 1. Then the path θ(t) = 2πt is not
smoothly deformable to θ(t) = 0. That means there is not a smooth function θ(t, u) for 0 ≤
u ≤ 1, so that θ(t, 0) = θ(t) and θ(t, 1) = 0. In fact, none of the paths θ(t) = 2πnt for an
integer n can be deformed into each other. We say the fundamental group for SO(2) is Z.

The group SO(3) is not simply connected either. To see that, define rotations around
the z axis by an angle θz , and consider the path θz(t) = 2πt corresponding to the group
elements

R(t) =

⎛⎝ cos 2πt sin 2πt 0
− sin 2πt cos 2πt 0

0 0 1

⎞⎠ . (10.121)

This path cannot be smoothly deformed to the identity. Try it! Try to find R(t, u) so that
R(t, 0) = R(t) and R(t, 1) = 1.

To prove that SO(3) is not simply connected, consider the geometric pictures shown
in Figure 10.1. Any rotation in SO(3) can be specified by an axis �v and an angle
−π ≤ θv < π. If we think of the axis as a point on the surface of a ball of radius r = π,
then the rotation can be specified by a point in the ball, with the distance from the origin
being the angle θv . Thus, a path through the group is a path through the ball. The identity
group element is the center of the ball. There is one catch, however: rotations about an axis
by an angle θv are the same as rotations about an axis pointing in the opposite direction by
the angle −θv. Thus, we have to identify antipodal points on the sphere as the same group
element in SO(3). In this sense, SO(3) is a real projective space B3/Z2 = RP3. The full
ball is SU(2), which is the universal cover of SO(3), and Z2 is the fundamental group of
SO(3) (for the full Lorentz group, the cover is SL(2,C)) and the fundamental group is
still Z2.

The group SO(3) can be thought of as a ball of radius π with antipodal points identified. On
the left is a contractible path through SO(3) and on the right is a non-contractible path.

�Fig. 10.1
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Paths from 1 to 1 in SO(3) go from the center of the ball back to the center. Figure 10.1
shows examples of contractible and non-contractible paths. Remember that the antipodal
points on the sphere are π and −π rotations around the same axis, so they are the same
group element, which is why the second path cannot be deformed to the identity without
breaking the line.

You can actually see these non-contractible paths without too much difficulty by just
holding something (like a glass of water) in your hand with your arm outstretched and
rotating your arm 360 degrees in a plane parallel to your body. Then your arm (the path)
will be twisted, but the object in your hand will have mapped back to itself. You can
untangle your arm (the path) with another 360 degree rotation, in this case in a plane
parallel to the ground, which gives another Z2 undoing the twist. If you are careful, you will
not even spill the water. Spinors maintain an imprint of how they have been rotated, which
shows up as a minus sign after a 2π rotation, much like your arm would if it were an internal
degree of freedom of the glass of water. This demonstration is sometimes called Dirac’s
belt trick, Feynman’s plate trick, the Balinese cup trick or the quaternionic handshake.

10.6 Majorana and Weyl fermions

For QED, one only needs the electron, which is efficiently described in the reducible Dirac
representation

(
1
2 , 0
)
⊕
(
0, 1

2

)
of the Lorentz group. In other theories, such as the Standard

Model or supersymmetric theories, spinors that are not Dirac spinors are prevalent. In this
section we discuss other Lorentz-invariant quantities that can be constructed using spinors
that are not in the Dirac representation and introduce some efficient notation.

10.6.1 Majorana masses

There is one more way to get a Lorentz-invariant quantity out of ψL and ψR. Recall that
we could not write down a mass term ψ†

RψR for just a right-handed spinor. The Lorentz
transformations, in Eq. (10.41),

δψR =
1
2
(iθj + βj)σjψR, δψ†

R =
1
2
(−iθj + βj)ψ

†
Rσj , (10.122)

imply that the natural candidate mass term mψ†
RψR is not boost invariant:

δ
(
ψ†
RψR

)
= βjψ

†
RσjψR �= 0. (10.123)

It turns out that there is different bilinear quantity that is Lorentz invariant:

LMaj = ψTRσ2ψR. (10.124)

This is known as a Majorana mass.
To see the Lorentz invariance, recall that for the Pauli matrices σ1 and σ3 are real, and

σ2 is imaginary:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (10.125)
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So,

σ�1 = σ1, σ�2 = −σ2, σ�3 = σ3, (10.126)

σT1 = σ1, σT2 = −σ2, σT3 = σ3. (10.127)

This implies σT1 σ2 = σ1σ2 = −σ2σ1, σT3 σ2 = σ3σ2 = −σ2σ3 and σT2 σ2 = −σ2σ2.
That is,

σTj σ2 = −σ2σj (10.128)

and so

δ(ψTRσ2) =
1
2
(iθj + βj)ψTRσ

T
j σ2 =

1
2
(−iθj − βj)

(
ψTRσ2

)
σj . (10.129)

Combining this with the transformation of ψR in Eq. (10.122) we see that LMaj in Eq.
(10.124) is Lorentz invariant.

Since σ2 =
(

−i
i

)
the Majorana mass can be expanded out to

ψTRσ2ψR =
(
ψ1 ψ2

)( −i
i

)(
ψ1

ψ2

)
= −i(ψ1ψ2 − ψ2ψ1). (10.130)

Thus, we have shown that ψ1ψ2 − ψ2ψ1 is Lorentz invariant. We often write this as

ψ1ψ2 − ψ2ψ1 = ψαψβεαβ , εαβ =
(

0 1
−1 0

)
, (10.131)

which avoids picking a σ2.
There is only one problem: if the fermion components commute, ψ1ψ2−ψ2ψ1 = 0! For

Majorana masses to be non-trivial, fermion components cannot be regular numbers, they
must be anticommuting numbers. Such things are called Grassmann numbers and satisfy
a Grassmann algebra. Further explanation of why spinors must anticommute is given in
Chapter 12, on the spin-statistics theorem. The mathematics of Grassmann numbers is
discussed more in Section 14.6 on the path integral.

10.6.2 Notation for Weyl spinors

In QED, we will be mostly interested in Dirac spinors, such as the electron. But since
Weyl spinors correspond to irreducible representations of the Lorentz group, it is some-
times helpful to have concise notation for constructing products and contractions of Weyl
spinors only. This notation is useful in many contexts besides gauge theories, such as super-
symmetry. It is also related to the spinor-helicity formalism we will discuss in Chapter 27.
If you are just interested in QED, you can skip this part.

Let us write ψ for left-handed spinors and ψ̃ for right-handed spinors. Sometimes the
notation ψ̄ is used, especially in the contexts of supersymmetry, but this can be confused
with the bar notation for a Dirac spinor, ψ̄ ≡ ψ†γ0, so we will stick with ψ̃. We index the
two components of left-handed Weyl spinors with Greek indices from the beginning of the
alphabet, i.e. ψα. For right-handed spinors, we use dotted Greek indices, i.e. ψ̃α̇. A Dirac
spinor is
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ψ =

(
ψα

ψ̃β̇

)
. (10.132)

Conventionally, left-handed spinors (and right-handed antispinors) have upper undotted
indices and right-handed spinors (and left-handed antispinors) have lower dotted indices.

Recall that we showed that a Majorana mass is Lorentz invariant. This mass has the form

Lmaj = ψTσ2ψ = −i (ψ1ψ2 − ψ2ψ1) = iψαε
aβψβ , (10.133)

where εαβ = −iσαβ2 is the totally antisymmetric 2× 2 tensor

εαβ = −εαβ =
(

0 1
−1 0

)
. (10.134)

That is, ε12 = ε21 = 1, which leads to εαβε
βγ = δγα. The ε tensor serves the func-

tion for Weyl spinors that gμν does for tensors – we can always contract spinors into
Lorentz-invariant combinations with the ε tensor. However, we have to be careful raising
and lowering indices, since

ψαχα = εαβεαγψβχ
γ = −εβαεαγψβχγ = −δβγψβχγ = −ψβχβ . (10.135)

While it seems that the index position makes things messy, it actually makes things eas-
ier, since spinors anticommute. We can define the inner product between two left-handed
spinors as

ψχ ≡ ψαχ
α = ψαε

αβχβ = −χβεαβψα = χβε
βαψα = χαψ

α = χψ, (10.136)

so that the product is symmetric. Note that ψψ �= 0 even though ψαψα = 0. For right-
handed spinors, we define

ψ̃χ̃ = ψ̃α̇χ̃α̇ = −χ̃α̇ψ̃α̇ = χ̃α̇ψ̃α̇ = χ̃ψ̃, (10.137)

which is also symmetric.1

For Weyl spinors, the σ-matrices σμ = (1, �σ) and σ̄μ = (1,−�σ) replace the Dirac
γ-matrices. Recall that the kinetic term for a Dirac spinor ψ = (ψ, χ̃) is

Lkin = iψ̄ /∂ψ = iψ†σ̄μ∂μψ + iχ̃†σμ∂μχ̃. (10.138)

Each of these two terms is separately Lorentz invariant. With spinor indices, σμ = σμαα̇,
the contractions are

χ̃†σμχ̃ = (χ̃†)ασμαα̇χ̃
α̇ = χασμαα̇χ̃

α̇, (10.139)

where we have defined a left-handed spinor χ ≡ χ̃† so that we can drop the †. You can
think of χ as the particle and χ̃ as the antiparticle for the same Weyl spinor. Similarly,

ψ†σ̄μψ = (ψ†)α̇σ̄μα̇αψ
α = ψ̃α̇σ̄μα̇αψ

α (10.140)

with ψ̃ ≡ ψ†.

1 These are opposite conventions to [Wess and Bagger, 1992], but consistent with what is used in spinor-helicity
calculations (Chapter 27).
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Two very useful relations are

gμνσ
μ
αα̇σ

ν
ββ̇

= 2εαβεα̇β̇ (10.141)

and

εαβεα̇β̇σ
μββ̇ = σ̄μα̇α. (10.142)

You can prove these relations in Problem 10.3.

Problems

10.1 We saw that the Dirac equation predicted that there is interaction between the elec-
tron spin and the magnetic field, �S �B, with strength μB = �c

2me
. When the electron

has angular momentum �L, such as in an atomic orbital, there is also a �B�L interaction
and a spin-orbit coupling �S�L. The Dirac equation (along with symmetry arguments)
predicts the strength of all three interactions, as well as other corrections. To see the
effect of these terms on the hydrogen atom, we have to take the non-relativistic limit.
(a) For the Schrödinger equation, we need the Hamiltonian, not the Lagrangian.

Find the Dirac Hamiltonian by writing the Dirac equation as i∂tψ = HDψ.
Write the Hamiltonian in terms of momenta pi rather than derivatives ∂i.

(b) Calculate (HD + eA0)2 in the Weyl representation for ψ = (ψLψR). Leave in
terms of σi, pi and Ai. Put back in the factors of c and �, keeping the charge e
dimensionless.

(c) Now take the square root of this result and expand in 1
c , subtracting off the zero-

point energy mc2, i.e. compute H = HD −mc2 to order c0. Looking at the σi
term, how big are the electron’s electric and magnetic dipole moments?

(d) The size of the terms in this Hamiltonian are only meaningful because the spin
and angular momentum operators have the same normalization. Check the nor-
malization of the angular momentum operators Li = εijkxjpk and the spin
operators Si = 1

2σi by showing that they both satisfy the rotation algebra:
[Ji, Jj ] = iεijkJk.

(e) The gyromagnetic ratio, ge (sometimes called the g-factor), is the relative size
of the �S �B and �L�B interactions. Choose a constant magnetic field in the z direc-
tion, then isolate the BzLz coupling in H . Extract the electron gyromagnetic
ratio ge by writing the entire coupling to the magnetic field in the Hamilto-
nian as μBBz(Lz + geSz) = Bzμz , with �μ ≡ μB(�L + ge�S). How could you
experimentally measure ge (e.g. with spectroscopy of the hydrogen atom)?

(f) In spherical coordinates, the Schrödinger equation has a �L2 term. With spin,
you might expect that this becomes �L�μ = μB(�L2 +ge�L�S), making the �L�S term
proportional to the g-factor. This is wrong. It misses an important relativistic
effect, Thomas precession. It is very hard to calculate directly, but easy to calcu-
late using symmetries. With no magnetic field, the atom, with spin included, is
still rotationally invariant. Which of �J = �L + �S or �μ = �L + ge�S is conserved
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(i.e. commutes with �H)? Using this result, how does the spin-orbit coupling
depend on ge?

(g) There are additional relativistic effects coming from the Dirac equation. Expand
the Dirac equation to next order in 1

c2 , producing a term that scales as �p4.
(h) Now let us do some dimensional analysis – there is only one scaleme. Show that

the electron’s Compton wavelength, the classical electron radius, re, the Bohr
radius, a0, and the inverse-Rydberg constant, Ry−1, are all me times powers of
αe. Are the splittings due to the p4 term fine structure (ΔE ∼ α2

eE), hyperfine
structure (ΔE ∼ α4

eE) or something else? [Hint: write out a formula for the
energy shift using time-dependent perturbation theory, then see which of the
above length scales appears.]

10.2 In this problem you will construct the finite-dimensional irreducible representations
of SU(2). By definition, such a representation is a set of three n× n matrices τ1, τ2
and τ3 satisfying the algebra of the Pauli matrices [τi, τj ] = iεijkτk. It is also helpful
to define the linear combinations τ± = τ1 ± iτ2.
(a) In any such representation we can diagonalize τ3. Its eigenvectors are n complex

vectors Vj with τ3Vj = λjVj . Show that τ+Vj and τ−Vj either vanish or are
eigenstates of τ3 with eigenvalues λj + 1 and λj − 1 respectively.

(b) Prove that exactly one of the eigenstates Vmax of τ3 must satisfy τ+Vmax = 0.
The eigenvalue λmax = j of Vmax is known as the spin. Similarly, there will be
an eigenvector Vmin of τ3 with τ−Vmin = 0.

(c) Since there are a finite number of eigenvectors, Vmin = (τ−)N Vmax for some
integer N . Prove that N = 2J so that n = 2J + 1.

(d) Construct explicitly the five-dimensional representation of SU(2).
10.3 Derive Eqs. (10.141) and (10.142):

(a) gμνσαα̇μ σββ̇ν = 2εαβεα̇β̇ ,

(b) εαβεα̇β̇σ
μββ̇ = σ̄μα̇α.

10.4 Majorana representation.
(a) Write out the form of the Lorentz generators in the Majorana representation.
(b) Compute �J2 in the Majorana representation, the left-handed Weyl representation

and 4-vector representation. How do you interpret the eigenvalues of �J2?
(c) Calculate γ5 = iγ0γ1γ2γ3 in the Majorana representation.

10.5 Supersymmetry.
(a) Show that the Lagrangian

L = ∂μφ
�∂μφ+ χ†iσ̄∂χ+ F �F +mφF +

i

2
mχTσ2χ+ h.c. (10.143)

is invariant under

δφ = −iεTσ2χ, (10.144)

δχ = εF + σμ∂μφσ
2ε�, (10.145)

δF = −iε†σ̄μ∂μχ, (10.146)

where ε is an infinitesimal spinor, χ is a spinor, and F and φ are scalars. All
spinors anticommute. σ2 is the second Pauli spin matrix.
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(b) The field F is an auxiliary field, since it has no kinetic term. A useful trick for
dealing with auxiliary fields is to solve their equations of motion exactly and
plug the result back into the Lagrangian. This is called integrating out a field.
Integrate out F to show that φ and χ have the same mass.

(c) Auxiliary fields such as F act like Lagrange multipliers. One reason to keep the
auxiliary fields in the Lagrangian is because they make symmetry transforma-
tions exact at the level of the Lagrangian. After the field has been integrated
out, the symmetries are only guaranteed to hold if you use the equations of
motion. Still using δφ = iεTσ2χ, what is the transformation of χ that makes the
Lagrangian in (b) invariant, if you are allowed to use the equations of motion?



11 Spinor solutions and CPT

In the previous chapter, we cataloged the irreducible representations of the Lorentz group
O(1, 3). We found that in addition to the obvious tensor representations, φ,Aμ, hμν etc.,
there are a whole set of spinor representations, such as Weyl spinors ψL, ψR. A Dirac
spinor ψ transforms in the reducible

(
1
2 , 0
)
⊕
(
0, 1

2

)
representation. We also found Lorentz-

invariant Lagrangians for spinor fields, ψ(x). The next step towards quantizing a theory
with spinors is to use these Lorentz group representations to generate irreducible unitary
representations of the Poincaré group.

We discussed how unitary representations of the Poincaré group are induced from rep-
resentations of its little group. The little group is the group that leaves a given momentum
4-vector pμ invariant. When pμ is massive, the little group is SO(3); when pμ is mass-
less, the little group is ISO(2). As a consequence, massive particles of spin j should have
2j + 1 degrees of freedom and massless particles of any spin > 0 have two degrees
of freedom. In the spin-1 case, we found that there were ambiguities in what the free
Lagrangian was (it could have been aAμ�Aμ + bAμ∂μ∂νAν for any a and b), but we
found that there was a unique Lagrangian that propagated the correct degrees of free-
dom. We then solved the free equations of motion for a fixed momentum pμ generating
two or three polarizations εiμ(p). These solutions, which were representations of the lit-
tle group, if known for every value of pμ, induce representations of the full Poincaré
group.

For the spin- 1
2 case, there is a unique free Lagrangian (up to Majorana masses) that

automatically propagates the right degrees of freedom. In this sense, spin 1
2 is easier

than spin 1, since there are no unphysical degrees of freedom. The mass term couples
left- and right-handed spinors, so it is natural to use the Dirac representation. As in the
spin-1 case, we will solve the free equations of motion to find basis spinors, us(p) and
vs(p) (analogs of εiμ), which we will use to define our quantum fields. As with complex
scalars, we will naturally find both particles and antiparticles in the spectrum with the
same mass and opposite charge: these properties fall out of the unique Lagrangian we can
write down.

A spinor can also be its own antiparticle, in which case we call it a Majorana spinor.
As we saw, since particles and antiparticles have opposite charges, Majorana spinors must
be neutral. We will define the operation of charge conjugation C as taking particles to
antiparticles, so Majorana spinors are invariant under C. After introducing C, it is natural
to continue to discuss how the discrete symmetries parity, P , and time reversal, T , act on
spinors.

184
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11.1 Chirality, helicity and spin

In a relativistic theory, spin can be a confusing subject. There are actually three concepts
associated with spin: spin, helicity and chirality. In this section we define and distinguish
these different quantities.

Recall from Eq. (10.105) that the Dirac equation (i /D −m)ψ = 0 implies(
(i∂μ − eAμ)2 −

e

2
Fμνσ

μν −m2
)
ψ = 0, (11.1)

and for the conjugate field ψ̄ = ψ†γ0,

ψ̄
(
(i
←−
∂ μ + eAμ)2 +

e

2
Fμνσ

μν −m2
)

= 0. (11.2)

Thus, ψ̄ is a particle with mass m and charge opposite to ψ; that is, ψ̄ is the antiparticle
of ψ. We will often call ψ an electron and ψ̄ a positron, although there are many other
particle–antiparticle pairs described by the Dirac equation besides these.

When we constructed the Dirac representation, we saw that it was the direct sum of
two irreducible representations of the Lorentz group:

(
1
2 , 0
)
⊕
(
0, 1

2

)
. Now we see that it

describes two physically distinguishable particles: the electron and the positron. Irreducible
unitary spin- 1

2 representations of the Poincaré group, Weyl spinors, have two degrees of
freedom. Dirac spinors have four. These are two spin states for the electron and two spin
states for the positron. For charged spinors, there is no other way. Uncharged spinors can
be their own antiparticles if they are Majorana spinors, as discussed in Section 11.3 below.

To understand the degrees of freedom within a four-component Dirac spinor, first recall
that in the Weyl basis the γ-matrices have the form

γμ =
(

0 σμ
σ̄μ 0

)
, (11.3)

and the Lorentz generators Sμν = i
4 [γμ, γν ] are block diagonal. Under an infinitesimal

Lorentz transformation,

ψ → ψ +
1
2

(
(iθi − βi)σi

(iθi + βi)σi

)
ψ. (11.4)

In this basis, a Dirac spinor is a doublet of a left- and a right-handed Weyl spinor:

ψ =
(
ψL
ψR

)
. (11.5)

Here left-handed and right-handed refer to the
(

1
2 , 0
)

or
(
0, 1

2

)
representations of the

Lorentz group. The handedness of a spinor is also known as its chirality.
It is helpful to be able to project out the left- or right-handed Weyl spinors from a Dirac

spinor. We can do that with the γ5-matrix:

γ5 ≡ iγ0γ1γ2γ3. (11.6)
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In the Weyl representation

γ5 =
(
−1

1

)
, (11.7)

so left- and right-handed spinors are eigenstates of γ5 with eigenvalues ∓1. We can also
define projection operators,

PR =
1 + γ5

2
=
(

0
1

)
, PL =

1− γ5

2
=
(
1

0

)
, (11.8)

which satisfy P 2
R = PR and P 2

L = PL and

PR

(
ψL
ψR

)
=
(

0
ψR

)
, PL

(
ψL
ψR

)
=
(
ψL
0

)
. (11.9)

Writing projectors as 1±γ5

2 is basis independent.

It is easy to check that
(
γ5
)2 = 1 and

{
γ5, γμ
}

= 0. Thus γ5 is like another γ-
matrix, which is why we call it γ5. This lets us formally extend the Clifford algebra to
five generators, γM = γ0, γ1, γ2, γ3, iγ5 so that

{
γM , γN

}
= 2gMN with gMN =

diag(1,−1,−1,−1,−1). If we were looking at representations of the five-dimensional
Lorentz group, we would use this extended Clifford algebra. See [Polchinski, 1998] for a
discussion of spinors in various dimensions.

To understand the degrees of freedom in the spinor, let us focus on the free theory. In the
Weyl basis, the Dirac equation is(

−m iσμ∂μ
iσ̄μ∂μ −m

)(
ψL
ψR

)
= 0. (11.10)

In Fourier space, this implies

σμpμψR = (E − �σ · �p)ψR = mψL, (11.11)

σ̄μpμψL = (E + �σ · �p)ψL = mψR. (11.12)

So the mass mixes the left- and right-handed states.
In the absence of a mass, left- and right-handed states are eigenstates of the operator

ĥ = �σ·�p
|�p| with opposite eigenvalue, since E = |�p| for massless particles. This operator

projects the spin on the momentum direction. Spin projected on the direction of motion is
called the helicity, so the left- and right-handed states have opposite helicity in the massless
theory.

When there is a mass, the left- and right-handed fields mix due to the equations of
motion. However, since momentum and spin are good quantum numbers in the free theory,
even with a mass, helicity is conserved as well. Therefore, helicity can still be a useful con-
cept for the massive theory. The distinction is that, when there is a mass, helicity eigenstates
are no longer the same as the chirality eigenstates ψL and ψR.

By the way, the independent solutions to the free equations of motion for massless
particles of any spin are the helicity eigenstates. For any spin, we will always find
�S · �pΨs = ±s |�p|Ψs, where �S = �J are the rotation generators in the Lorentz group for
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spin s. For spin 1
2 , �S = 1

2�σ. For spin 1, the rotation generators are given in Eqs. (10.14).
For example, J3 has eigenvalues ±1 with eigenstates (0, i, 1, 0) and (0,−i, 1, 0). These
are the states of circularly polarized light in the z direction, which are helicity eigenstates.
In general, the polarizations of massless particles with spin > 0 can always be taken to
be helicity eigenstates. This is true for spin 1

2 and spin 1, as we have seen; it is also true
for gravitons (spin 2), Rarita–Schwinger fields (spin 3

2 ) and spins s > 2 (although, as we
proved in Section 9.5.1, it is impossible to have interacting theories with massless fields of
spin s > 2).

We have seen that the left- and right-handed chirality states ψL and ψR

• do not mix under Lorentz transformations – they transform in separate irreducible
representations.

• each have two components on which the �σ-matrices act. These are the two spin states of
the electron; both left- and right-handed spinors have two spin states.

• are eigenstates of helicity in the massless limit.

We have now seen three different spin-related quantities:
Spin is a vector quantity. We say spin up, or spin down, spin left, etc. It is the eigenvalue

of �S = �σ
2 for a fermion. If there is no angular momentum, for example for a single particle,

the spin and the rotation operators are identical �S = �J . We also talk about spin s as
a scalar, which is the eigenvalue s(s + 1) of the operator �S2. When we say spin 1

2 we
mean s = 1

2 .
Helicity refers to the projection of spin on the direction of motion. Helicity eigenstates

satisfy
�S·�p
|�p| Ψ = ±Ψ. Helicity eigenstates exist for any spin. The helicity eigenstates of the

photon correspond to what we normally call circularly polarized light.
Chirality is a concept that only exists for spinors, or more precisely for (A,B) rep-

resentations of the Lorentz group with A �= B. You may remember the word chiral
from chemistry: DNA is chiral, so is glucose and many organic molecules. These are not
symmetric under reflection in a mirror. In field theory, a chiral theory is one that is not
symmetric on interchange of the (A,B) representations with the (B,A) representations.
Almost always, chirality means that a theory is not symmetric between left-handed Weyl
spinors ψL and right-handed spinors ψR. These chiral spinors can also be written as Dirac
spinors that are eigenstates of γ5. By abuse of notation we also write ψL and ψR for Dirac
spinors, with γ5ψL = −ψL and γ5ψR = ψR. Whether a Weyl or Dirac spinor is meant by
ψL and ψR will be clear from context. Chirality works for higher half-integer spins too. For
example, a spin- 3

2 field can be put in a Dirac spinor with a μ index, ψμ. Then γ5ψμ = ±ψμ
are the chirality eigenstates.

Whether spin, helicity or chirality is important depends on the physical question you are
interested in. For free massless spinors, the spin eigenstates are also helicity eigenstates
and chirality eigenstates. In other words, the Hamiltonian for the massless Dirac equation

commutes with the operators for chirality, γ5, helicity,
�S·�p
E , and the spin operators, �S. The

QED interaction ψ̄ /Aψ = ψ̄L /AψL + ψ̄R /AψR is non-chiral, that is, it preserves chirality.
Helicity, on the other hand, is not necessarily preserved by QED: if a left-handed spinor
has its direction reversed by an electric field, its helicity flips. When particles are massless
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(or ultra-relativistic) they do not change direction so easily, but the helicity can flip due to
an interaction.

In the massive case, it is also possible to take the non-relativistic limit. Then it is often
better to talk about spin, the vector. Projecting on the direction of motion does not make so
much sense when the particle is nearly at rest, or in a gas, say, when its direction of motion
is constantly changing. The QED interactions do not preserve spin, however; only a strong
magnetic field can flip an electron’s spin. So, as long as magnetic fields are weak, spin is a
good quantum number. That is why spin is used in quantum mechanics.

In QED, we hardly ever talk about chirality. The word is basically reserved for chiral
theories, which are theories that are not symmetric under L ↔ R, such as the theory of
the weak interactions. We talk very often about helicity. In the high-energy limit, helicity
is often used interchangeably with chirality. As a slight abuse of terminology, we say ψL
and ψR are helicity eigenstates. In the non-relativistic limit, we use helicity for photons
and spin (the vector) for spinors. Helicity eigenstates for photons are circularly polarized
light.

11.2 Solving the Dirac equation

Now let us solve the free Dirac equation. Since spinors satisfy the Klein–Gordon equation,
(� +m2)ψ = 0 (in addition to the Dirac equation) they have plane-wave solutions:

ψs(x) =
∫

d3p

(2π)3
us(p)eipx, (11.13)

with p0 =
√
�p 2 +m2 > 0. These are like the solutions Aμ(x) =

∫
d4p

(2π)4 εμ(p)e
ipx for

spin-1 plane waves. There are of course also solutions to (�+m2)ψ = 0 with p0 < 0. We
will give these antiparticle interpretations, as in the complex scalar case (Chapter 9), and
write

χs(x) =
∫

d3p

(2π)3
vs(p)eipx, (11.14)

also with p0 =
√
�p2 +m2 > 0. These are classical solutions, but the quantum ver-

sions will annihilate particles and create the appropriate positive-energy antiparticles. The
spinors us(p) and v̄s(p) are the polarizations for particles and antiparticles, respectively.
They transform under the Poincaré group through the transformation of pμ and the little
group that stabilizes pμ. Thus, we only need to find explicit solutions for fixed pμ, as we
did for the spin-1 polarizations.

To find the spinor solutions, we use the Dirac equation in the Weyl basis:(
−m p · σ
p · σ̄μ −m

)
us(p) =

(
−m −p · σ
−p · σ̄ −m

)
vs(p) = 0. (11.15)
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In the rest frame, pμ = (m, 0, 0, 0) and the equations of motion reduce to(
−1 1
1 −1

)
us =
(
−1 −1
−1 −1

)
vs = 0. (11.16)

So, solutions are constants:

us =
(
ξs
ξs

)
, vs =

(
ηs
−ηs

)
, (11.17)

for any two-component spinors ξs and ηs. For example, four linearly independent solutions
are

u↑ =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , u↓ =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ , v↑ =

⎛⎜⎜⎝
−1
0
1
0

⎞⎟⎟⎠ , v↓ =

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠ . (11.18)

The Dirac spinor is a complex four-component object, with eight real degrees of freedom.
The equations of motion reduce it to four degrees of freedom, which, as we will see, can
be interpreted as spin up and spin down for particle and antiparticle.

To derive a more general expression, we can solve the equations again in the boosted
frame and match the normalization. If pμ = (E, 0, 0, pz) then

p · σ =
(
E − pz 0

0 E + pz

)
, p · σ̄ =

(
E + pz 0

0 E − pz

)
. (11.19)

Let a =
√
E − pz and b =

√
E + pz , then m2 = (E − pz)(E + pz) = a2b2 and Eq.

(11.15) becomes ⎛⎜⎜⎝
−ab 0 a2 0
0 −ab 0 b2

b2 0 −ab 0
0 a2 0 −ab

⎞⎟⎟⎠us(p) = 0. (11.20)

The solutions are

us =

⎛⎜⎜⎝
(
a 0
0 b

)
ξs(

b 0
0 a

)
ξs

⎞⎟⎟⎠ (11.21)

for any two-component spinor ξs. Note that in the rest frame pz = 0, a2 = b2 = m, and
these solutions reduce to Eq. (11.17) above. The solutions in the pz frame are

us(p) =

⎛⎜⎜⎝
(√

E − pz 0
0

√
E + pz

)
ξs(√

E + pz 0
0

√
E − pz

)
ξs

⎞⎟⎟⎠ . (11.22)
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Similarly,

vs(p) =

⎛⎜⎜⎝
(√

E − pz 0
0

√
E + pz

)
ηs(

−
√
E + pz 0
0 −

√
E − pz

)
ηs

⎞⎟⎟⎠ . (11.23)

Using

√
p · σ =

(√
E − pz 0

0
√
E + pz

)
,
√
p · σ̄ =

(√
E + pz 0

0
√
E − pz

)
(11.24)

we can write more generally

us(p) =
(√

p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σηs

−√p · σ̄ηs

)
, (11.25)

where the square root of a matrix can be defined by changing to the diagonal basis, taking
the square root of the eigenvalues, then changing back to the original basis. In practice, we
will usually pick pμ along the z axis, so we do not need to know how to make sense of√
p · σ. Then the four solutions are

u1
p =

⎛⎜⎝
√
E − pz

0√
E + pz

0

⎞⎟⎠, u2
p =

⎛⎜⎝ 0√
E − pz

0√
E + pz

⎞⎟⎠, v1
p =

⎛⎜⎝
√
E − pz

0
−√

E + pz

0

⎞⎟⎠, v2
p =

⎛⎜⎝ 0√
E − pz

0
−√

E + pz

⎞⎟⎠ .
(11.26)

In any frame us are the positive frequency electrons, and the vs are negative frequency
electrons, or equivalently, positive frequency positrons.

For massless spinors, pz = ±E and the explicit solutions in Eq. (11.26) are 4-vectors
with one non-zero component describing spinors with fixed helicity. The spinor solutions
for massless electrons are sometimes called polarizations, and are useful for computing
polarized electron scattering amplitudes.

For Weyl spinors, there are only four real degrees of freedom off-shell and two real
degrees of freedom on-shell. Recalling that the Dirac equation splits up into separate equa-
tions for ψL and ψR, the Dirac spinors with zeros in the bottom two rows will be ψL and
those with zeros in the top two rows will be ψR. Since ψL and ψR have two degrees of
freedom each, these must be particle and antiparticle for the same helicity. The embed-
ding of Weyl spinors into fields this way induces irreducible unitary representations of the
Poincaré group for m = 0.

11.2.1 Normalization and spin sums

To figure out what the normalization is that we have implicitly chosen, let us compute the
inner product:
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ūs(p)us′(p) = u†s(p)γ0us′(p) =
(√

p · σξs√
p · σ̄ξs

)†(
0 1

1 0

)(√
p · σξs′√
p · σ̄ξs′

)

=
(
ξs
ξs

)†(√
(p · σ) (p · σ̄) √

(p · σ) (p · σ̄)

)(
ξs′

ξs′

)
= 2mδss′ . (11.27)

Similarly, v̄s(p)vs′(p) = −2mδss′ . This is the (conventional) normalization for the spinor
inner product for massive Dirac spinors. It is also easy to check that v̄s(p)us′(p) =
ūs(p)vs′(p) = 0.

We can also calculate

u†s(p)us′(p) =
(√

p · σξs√
p · σ̄ξs

)†(√
p · σξs′√
p · σ̄ξs′

)
= 2Eξ†sξs′ = 2Eδss′ , (11.28)

and similarly, v†s(p)vs′(p) = 2Eδss′ . This is the conventional normalization for massless
Dirac spinors. Another useful relation is that, if we define p̄μ = (Ep,−�p) as a momentum
backwards to pμ, then v†s(p)us′(p̄) = u†s(p)vs′(p̄) = 0.

We can also compute the spinor outer product:

2∑
s=1

us(p)ūs(p) = /p+m, (11.29)

where the sum is over the spins. Both sides of this equation are matrices. It may help to
think of this equation as

∑
s |s〉 〈s|. For the antiparticles,

2∑
s=1

vs(p)v̄s(p) = /p−m. (11.30)

You should verify these relations on your own (see Problem 11.2).
To keep straight the inner and outer products, it may be helpful to compare to spin-1

particles. We have found

〈s|s′〉 : εi�μ pε
j
μ(p) = −δij ↔ ūs(p)us′(p) = 2mδss′ , (11.31)∑

s

|s〉〈s| :
3∑
i=1

εμi (p)
�ε�νi (p) = −gμν +

pμpν

m2
↔

2∑
s=1

us(p)ūs(p) = /p+m.

(11.32)

So, when we sum over internal spin indices, we use an inner product and get a number.
When we sum over polarizations/spins, we get a matrix.
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11.3 Majorana spinors

Recall from Section 10.6 that if we allow fermions to be anticommuting Grassmann num-
bers (these “numbers” will be discussed more formally in Section 14.6) then we can write
down a Lagrangian for a single Weyl spinor with a mass term:

L = iψ†
Lσμ∂μψL + i

m

2
(ψ†
Lσ2ψ

�
L − ψTLσ2ψL). (11.33)

The mass terms in this Lagrangian are called Majorana masses, and the Lagrangian is
said to describe Majorana fermions. Majorana fermions transform under the same repre-
sentations of the Lorentz group as Weyl fermions. The distinction comes in the quantum
theory in which Majorana fermions are their own antiparticles. We will make this more
precise through the notion of charge conjugation defined below.

It is sometimes useful to use the Dirac algebra to represent Majorana fermions, like
we use it to describe Weyl fermions with the PR/L = 1

2 (1± γ5) projection operators.
Majorana fermions can be put in four-component Dirac spinors as

ψ =
(

ψL
iσ2ψ

�
L

)
. (11.34)

This transforms like a Dirac spinor because σ2ψ
�
L transforms like ψR. Then the Majorana

mass can be written as

m

2
ψ̄ψ = i

m

2
(ψ†
Lσ2ψ

�
L − ψTLσ2ψL), (11.35)

which agrees with Eq. (11.33).
Note that (in the Weyl basis), using σ2

2 = 1,

−iγ2ψ
� = −i

(
0 σ2

−σ2 0

)(
ψL

iσ2ψ
�
L

)�
=
(

(−i)(−i)σ2σ
�
2ψL

(−i)(−1)σ2ψ
�
L

)
=
(

ψL
iσ2ψ

�
L

)
= ψ. (11.36)

Let us then define the operation of charge conjugation C by

C : ψ → −iγ2ψ
� ≡ ψc, (11.37)

where ψc ≡ −iγ2ψ
� means the charge conjugate of the fermion ψ. Thus, a Majorana

fermion is its own charge conjugate.
To understand why C is called charge conjugation, take the complex conjugate of the

Dirac equation (i/∂ − e /A−m)ψ = 0 to get

(−iγ�μ∂μ − eγ�μAμ −m)ψ� = 0, (11.38)

which implies

γ2(−iγ�μ∂μ − eγ�μAμ −m)γ2ψc = 0. (11.39)

Now recall that in the Weyl basis γ2 is imaginary and γ0, γ1 and γ3 are real. (Of course,
we could just as well have taken γ3 or γ1 imaginary and γ2 real, but it is conventional to
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Types of spinors Box 11.1

Dirac spinors have both left- and right-handed components. They can be
massive or massless.
Weyl spinors are always massless and can be left- or right-handed. When
embedded in Dirac spinors they satisfy the constraint γ5ψ = ±ψ.
Majorana spinors are left- or right-handed. When embedded in Dirac spinors
they satisfy the constraint ψ = ψc = −iγ2ψ

�.

pick out γ2.) So we can define a new representation of the γ-matrices by γ̂μ = γ2γ
�
μγ2.

This satisfies the Dirac algebra because γ2
2 = −1. So we get

(iγ̂μ∂μ + eγ̂μAμ −m)ψc = 0, (11.40)

which shows that ψc satisfies the Dirac equation, albeit in a different γ-basis. Since the
physics is basis independent, we can read off that ψc has the opposite charge from ψ,
justifying why we call this charge conjugation.

Because ψ = ψc = −iγ2ψ
� for Majorana fermions, they cannot be charged under any

U(1) gauged or global symmetry of a theory. Under such a symmetry ψ → eiαψ and
ψc → e−iαψc, so ψ = ψc cannot hold. We can also see this through the mass term, which
is not invariant under the U(1) transformation:

ψTLσ2ψL → ψTLe
iασ2e

iαψL = e2iαψTLσ2ψL. (11.41)

This is true for gauge charges, that is those with a corresponding gauge boson, such as
the photon, and also for global charges such as lepton number (which counts the num-
ber of electrons and neutrinos minus the number of positrons and antineutrinos), which
have no associated gauge boson. If there are multiple Majorana fermions, they can trans-
form together under a real representations of an internal non-Abelian symmetry group.
For example, gluinos in supersymmetry can be Majorana, transforming under the adjoint
representation of SU(3). Non-Abelian gauge groups are introduced in Chapter 25.

There are particles in nature called neutrinos, which apparently carry no charges. Thus,
they may be Majorana or Dirac fermions. In fact, a number of experiments are trying hard
to find out if neutrinos are Majorana (see Problem 11.9). Neutrino masses are discussed in
Section 29.3.4. Weyl spinors do exist in nature, in an obvious way, since Dirac spinors are
just two Weyl spinors put together. But Weyl spinors are also integral to the theory of weak
interactions, which is chiral. A summary of the distinctions among spinor types is given in
Box 11.1.

11.4 Charge conjugation

The notion of charge conjugation, under which Majorana fermions are invariant, can be
applied to any four-dimensional spinor. For example, we can see how it affects the different
spins of a Dirac spinor. Recall from Eq. (11.18) that a basis for a free Dirac spinor in its
rest frame is given by
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u↑ =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ , u↓ =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ , v↑ =

⎛⎜⎜⎝
−1
0
1
0

⎞⎟⎟⎠ , v↓ =

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠ . (11.42)

Then

(u↑)
c = −iγ2

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠
�

= −i

⎛⎜⎜⎝
0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

1
0
1
0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
1
0
−1

⎞⎟⎟⎠ = v↓ (11.43)

and so on, giving

(u↑)
c = v↓, (u↓)

c = v↑, (v↑)
c = u↓, (v↓)

c = u↑. (11.44)

Thus, charge conjugation takes particles to antiparticles and flips the spin. In particular,
invariance under C of a theory constrains how different spin states interact.

Charge conjugation may or may not be a symmetry of a particular Lagrangian. The
operation of charge conjugation acts on spinors and their conjugates by

C : ψ → −iγ2ψ
�. (11.45)

In the Weyl basis, γ�2 = −γ2 and γT2 = γ2, so

C : ψ� → −iγ2ψ, (11.46)

and in particular C2 = 1, which is why C is called a conjugation operator. Then

C : ψ̄ψ → (−iγ2ψ)T γ0(−iγ2ψ
�) = −ψT γT2 γ0γ2ψ

� = −ψT γ0ψ
�. (11.47)

The transpose on a spinor is not really necessary. This last expression just means

− ψT γ0ψ
� = −(γ0)αβψαψ�β . (11.48)

Now, anticommuting the spinors, relabeling α↔ β and combining shows that

− (γ0)αβψαψ�β = (γ0)αβψ�βψα = (γ0)βαψ�αψβ = ψ†γT0 ψ = ψ̄ψ. (11.49)

Thus,

C : ψ̄ψ → ψ̄ψ. (11.50)

Similarly,

C : ψ̄ /∂ψ → ψ̄ /∂ψ. (11.51)

So the free Dirac Lagrangian is C invariant.
We can also check that

C : ψ̄γμψ → −ψ̄γμψ. (11.52)

This implies that the interaction eAμψ̄γμψ will only be C invariant if

C : Aμ → −Aμ. (11.53)
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Since the kinetic term F 2
μν is invariant under Aμ → ±Aμ, the whole QED Lagrangian is

therefore C invariant.
The transformation Aμ → −Aμ under C may seem strange, since a vector field is real,

so it should not transform under an operation that switches particles with antiparticles.
Since particles and antiparticles have opposite charge and Aμ couples proportionally to
charge, this transformation is needed to compensate for the transformation of the charged
fields.

There is an important lesson here: you could takeC : Aμ → Aμ, but then the Lagrangian
would not be invariant. Thus, rather than trying to figure out how C acts, the right question
is: How can we enlarge the action of the transformation C, which we know for Dirac
spinors, to a full interacting theory so that the symmetry is preserved? Whether we interpret
C with the words “takes particles to antiparticles,” has no physical implications. In contrast,
a symmetry of a theory does have physical implications: preservation of the symmetry
gives a superselection rule – certain transitions cannot happen. An important example is
that C invariance forces matrix elements involving an odd number of photons to vanish,
a result known as Furry’s theorem (see Problem 14.2). Thus, cataloging the symmetries
of a theory is important, whether or not we have interesting names or simple physical
interpretations of those symmetries.

For future reference, it is also true that

C : iψ̄γ5ψ → iψ̄γ5ψ, (11.54)

C : iψ̄γ5γμψ → iψ̄γ5γμψ, (11.55)

C : ψ̄σμνψ → −ψ̄σμνψ, (11.56)

which you can prove in Problem 11.5.

11.5 Parity

Recall that the full Lorentz group, O(1, 3), is the group of 4×4 matrices Λ with ΛT gΛ = g.
In addition to the transformations smoothly connected to 1, this group also contains the
transformations of parity and time reversal:

P : (t, �x) → (t,−�x), (11.57)

T : (t, �x) → (−t, �x). (11.58)

Just as with charge conjugation, we would like to know how to define these transformations
acting on spinors, and other fields, so that they are symmetries of QED or whatever theory
we are studying.

You might expect that the action of P and T should be determined from representation
theory. However, recall that technically spinors do not actually transform under the Lorentz
group, O(1, 3), only its universal cover, SL(2,C), so we are not guaranteed that T and P
will act in any nice way on irreducible spinor representations. In fact they do not. Although
we can define an action of T and P on spinors (and other fields), these definitions are only
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useful to the extent that they are symmetries of the theory we are interested in. For example,
we will define P so that it is a good symmetry of QED, but there is no way to define it
so that it is preserved under the weak interactions. In any representation, we should have
P 2 = T 2 = 1.

11.5.1 Scalars and vectors

Before discussing vectors and spinors, let us begin with real scalar fields. For real scalars,
parity should be a symmetry of the kinetic terms L = − 1

2φ�φ − 1
2m

2φ2 or we are dead
in the water. Thus, P 2 = 1 (we do not need to use P 2 = 1 in the Lorentz group for this
argument) and there are two choices:

P : φ(t, �x)→ ±φ(t,−�x). (11.59)

The sign is known as the intrinsic parity of a particle. In nature, there are particles with
even parity (scalars, such as the Higgs boson) and particles with odd parity (pseudoscalars,
such as the π0). Since the action integrates over all �x, we can change �x → −�x and the
action will be invariant.

For complex scalars, the free theory has Lagrangian L = −φ��φ−m2φ�φ, so the most
general possibility is

P : φ(t, �x) → ηφ(t,−�x), (11.60)

where η is a pure phase. Recall that charged scalars always have a global symmetry under
φ → eiαφ for a constant α, which is why they can couple to the photon. So η is not even
well defined, since we can always combine this transformation with a phase rotation and
still have a symmetry. However, all charged particles must rotate the same way under the
global symmetry of QED, so if we pick a convention for the phase of one charged particle,
the phase of the others then becomes physical.

We can go further, and redefine P so that all the parity phases for all particles are ±1.
To see that, suppose η = eiαQ, where Q is the charge of φ and α ∈ R. Then the operator
P ′ = Pe−i

α
2Q is also a legitimate discrete symmetry, which satisfies (P ′)2 : ψ → ψ, so

(P ′)2 = 1. Thus, we might as well call this parity, P , and P : ψ → ±ψ. We actually
have three global continuous symmetries in the Standard Model: lepton number (leptons
only), baryon number (quarks only) and charge. Thus, we can pick three phases, which
conventionally are taken so that the proton, neutron and electron all have parity +1. Then,
every other particle has parity ±1.

From nuclear physics measurements, it was deduced that the pion, π0, and its charged
siblings, π+ and π−, all have parity −1. Then it was very strange to find that a particle
called the kaon,K+, decayed to both two pions and three pions. People thought for a while
that the kaon was two particles, the θ+ (with parity +1, which decayed to two pions) and
the τ+ (with parity−1, which decayed to three pions). Lee and Yang finally figured out, in
1956, that these were the same particle, and that parity was not conserved in kaon decays.

For vector fields, P acts as it does on 4-vectors. However, for the free vector theory to
be invariant, we only require that

P : V0(t, �x) → ±V0(t,−�x), Vi(t, �x) → ∓Vi(t,−�x). (11.61)
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The notation is that if P : Vi → −Vi, like �x, we say Vμ has parity −1 and call it a vector.
If P : Vi → Vi, we call it a pseudovector, with parity +1. For example, the ρ meson is a
vector and the a1 meson is a pseudovector. You have already seen pseudovectors in three
dimensions: the electric field is a vector that flips sign under parity, while the magnetic
field is a pseudovector that remains invariant under parity.

Massless vectors such as the photon have to have parity −1. To see this, just look at the
coupling to a charged scalar. Under parity we would like

P : Aμ(φ�∂μφ− φ∂μφ�) → Aμ(φ�∂μφ− φ∂μφ�) , (11.62)

which is only possible if Aμ transforms like ∂μ. That is, Aμ is a vector:

P : A0(t, �x) → A0(t,−�x), Ai(t, �x) → −Ai(t,−�x). (11.63)

11.5.2 Spinors

Now let us turn to spinors. In the Lorentz group, P commutes with the rotations. Thus,
P does not change the spin of a state embedded in a vector field. This should be true for
spinors too. For massless spinors, recall that left- and right-handed spinors are eigenstates
of the helicity operator, which projects spin onto the momentum axis:

�σ · �p
|�p| ψR = ψR,

�σ · �p
|�p| ψL = −ψL. (11.64)

Since parity commutes with spin, �σ, and energy but flips the momentum, it will take left-
handed spinors to right-handed spinors. That is, it will map

(
1
2 , 0
)

representations to
(
0, 1

2

)
.

Therefore, P cannot be appended to either of the spin- 1
2 irreducible representations alone.

For Dirac spinors, which comprise left- and right-handed spinors, we can see that parity
just swaps left and right, keeping the spin invariant. In the Weyl basis, this transformation
can be written in the simple form

P : ψ → γ0ψ. (11.65)

There is in principle a phase ambiguity here, as for charged scalars. But, as in that case, we
can use invariance under global phase rotations, associated with charge conservation, to
simply choose this phase to be 1, as we have done here. Despite this phase, a chiral theory
(one with no symmetry under L↔ R), such as the theory of weak interactions, cannot be
invariant under parity.

Note that

P : ψ̄ψ(t, �x) → ψ†γ0γ0γ0ψ(t,−�x) = ψ̄ψ(t,−�x), (11.66)

P : ψ̄γμψ (t, �x) → ψ†γ0γ0γμγ0ψ(t,−�x) = ψ̄γ†μψ(t,−�x). (11.67)

Recalling that γ†0 = γ0 and γ†i = −γi, we see that

P : ψ̄γ0ψ(t, �x) → ψ̄γ0ψ(t,−�x), ψ̄γiψ(t, �x) → −ψ̄γiψ(t,−�x), (11.68)
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so that ψ̄γμψ transforms exactly as a 4-vector and hence the Dirac Lagrangian is parity
invariant. The parity transformations are opposite for bilinears with γ5:

P : ψ̄γ0γ
5ψ → −ψ̄γ0γ

5ψ(t,−�x), ψ̄γiγ
5ψ → ψ̄γiγ

5ψ(t,−�x), (11.69)

so that

P : ψ̄ /Aψ → ψ̄ /Aψ(t,−�x), (11.70)

P : ψ̄ /Aγ5ψ → −ψ̄ /Aγ5ψ(t,−�x). (11.71)

The currents contracted with Aμ in these terms are known as the vector current, JμV =
ψ̄γμψ, and the axial vector current, JμA = ψ̄γμγ5ψ. These currents play a crucial role in
the theory of weak interactions, which involves JμV − J

μ
A, or the V −A current.

11.6 Time reversal

Finally, let us turn to the most confusing of the discrete symmetries, time reversal. As a
Lorentz transformation,

T : (t, �x) → (−t, �x). (11.72)

We are going to need a transformation of our spinor fields, ψ, such that (at least) the kinetic
Lagrangian is invariant. To do this, we need ψ̄γμψ to transform as a 4-vector under T , so
that iψ̄ /∂ψ(t, �x) → iψ̄ /∂ψ(−t, x) and the action will be invariant. In particular, we need the
0-component, ψ̄γ0ψ → −ψ̄γ0ψ, which implies ψ†ψ → −ψ†ψ. But this last form of the
requirement is very odd – it says we need to turn a positive definite quantity into a negative
definite quantity. This is impossible for any linear transformation ψ → Γψ. Thus, we need
to think harder.

We will discuss two possibilities. One we will call “simple T̂ ,” and denote T̂ . It is the
obvious parallel to parity. The other is the T symmetry, which is normally what is meant
by T in the literature. This second T was invented by Wigner in 1932 and requires T to
take i → −i in the whole Lagrangian in addition to acting on fields. While the simple T̂
is the more natural generalization of the action of T on 4-vectors, it is also kind of trivial.
Wigner’s T has important physical implications.

11.6.1 The simple T̂

Before doing anything drastic, the simplest thing besides T : ψ → Γψ would be T : ψ →
Γψ�, as with charge conjugation. We will call this transformation T̂ to distinguish it from
what is conventionally called T in the literature. So,

T̂ : ψ → Γψ�, ψ† → (Γψ�)† = ψTΓ†. (11.73)

That T̂ should take particles to antiparticles is also understandable from the picture of
antiparticles as particles moving backwards in time.
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Then,

ψ†ψ → ψTΓ†Γψ� = Γ†
αβΓβγψαψ

�
γ = −ψ�γ(Γ†

αβΓβγ)
Tψα = −ψ†(Γ†Γ)Tψ, (11.74)

so we need Γ†Γ = 1, which says that Γ is a unitary matrix. That is fine. But we also need
ψ̄γiψ and the mass term ψ̄ψ to be preserved. For the mass term,

ψ̄ψ → ψTΓ†γ0Γψ� = −ψ̄(Γ†γ0Γγ0)Tψ (11.75)

This equals ψ̄ψ only if {Γ, γ0} = 0. Next,

ψ̄γiψ → ψTΓ†γ0γiΓψ� = −ψ̄(Γ†γ0γiΓγ0)Tψ = −ψ̄(Γ†γiΓ)Tψ, (11.76)

which should be equal to ψ̄γiψ for i = 1, 2, 3. So γiΓ+ΓγTi = 0, which implies [Γ, γ1] =
0, [Γ, γ3] = 0 and {Γ, γ2} = 0. The unique (up to a constant) matrix that commutes with
γ1 and γ3 and anticommutes with γ2 and γ0 is Γ = γ0γ2. Thus,

ψ(t, �x) → γ0γ2ψ
�(−t, �x), ψ†(t, �x) → −ψT γ2γ0(−t, �x). (11.77)

Note that this is very similar to P · C. On vectors, we should have

T̂ : A0(t, �x) → −A0(−t, �x), Ai(t, �x) → Ai(−t, �x), (11.78)

so that the interaction ψ̄ /Aψ in the action is invariant.
Now consider the action of C · P · T̂ . This sends

CPT̂ : ψ(t, �x) → −iγ2(γ0[γ0γ2ψ
�])�(−t,−�x) = −iψ(−t,−�x) (11.79)

and so

CPT̂ : ψ̄(t, �x)γμψ(t, �x) → ψ̄(−t,−�x)γμψ(−t,−�x), (11.80)

CPT̂ : Aμ(t, �x) → Aμ(−t,−�x). (11.81)

CPT̂ also sends ∂μ → −∂μ. Thus, ψ̄ψ, iψ̄γμ∂μψ and ψ̄Aμγμψ are all invariant in the
action.

This time reversal is essentially defined to be T̂ ∼ (CP )−1, which makes CPT̂ invari-
ance trivial. The actual CPT theorem concerns a different T symmetry, which we will now
discuss.

11.6.2 Wigner’s T (i.e. what is normally called T )

What is normally called time reversal is a symmetry T that was described in a 1932
paper by Wigner, and shown to be an explanation of Kramer’s degeneracy. To understand
Kramer’s degeneracy, consider the Schrödinger equation,

i∂tψ(t, �x) = Hψ(t, �x), (11.82)
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where, for simplicity, let us say H = p2

2m + V (x), which is real and time independent. If
we take the complex conjugate of this equation and also t→ −t, we find

i∂tψ
�(−t, x̄) = Hψ�(−t, �x). (11.83)

Thus, ψ′(t, x) = ψ�(−t, x) is another solution to the Schrödinger equation. If ψ is an
energy eigenstate, then as long as ψ �= ξψ� for any complex number ξ, ψ′ will be another
state with the same energy. This doubling of states at each energy is known as Kramer’s
degeneracy. In particular, for the hydrogen atom, ψnlm(�x) = Rn(r)Ylm(θ, φ) are the
energy eigenstates, so Kramer’s degeneracy says that the states with m and −m will
be degenerate (which they are). The importance of this theorem is that it also holds for
more complicated systems, and for systems in external electric fields, for which the exact
eigenstates may not be known.

As we will soon see, this mapping, ψ(t, �x) → ψ�(−t, �x), sends particles to particles (not
antiparticles), unlike the simple T̂ operator above. It has a nice interpretation: Suppose you
made a movie of some physics process, then watched the movie backwards; time reversal
implies you should not be able to tell which was “play” and which was “reverse.”

The trick to Wigner’s T is that we had to complex conjugate and then take ψ′ = ψ�.
This means in particular that the i in the Schrödinger equation goes to −i as well as the
field transforming. This is the key to finding a way out of the problem that ψ†ψ needed to
flip sign under T , which we discussed at the beginning of the section. The kinetic term for
ψ is iψ̄γ0∂0ψ; so if i→ −i then, since ∂0 → −∂0, ψ†ψ can be invariant. Thus we need

T : i→ −i. (11.84)

This makes T an anti-linear operator. What that means is that if we write any object on
which T acts as a real plus an imaginary part ψ = ψ1 + iψ2, with ψ1 and ψ2 real, then
T (ψ1 + iψ2) = Tψ1 − iTψ2.

Since T changes all the factors of i in the Lagrangian to−i, it also affects the γ-matrices.
In the Weyl basis, only γ2 is imaginary, so

T : γ0,1,3 → γ0,1,3, γ2 → −γ2. (11.85)

For a real spinor, T is simply linear, so we can write its action as

T : ψ(t, �x) → Γ̃ψ(−t, �x), (11.86)

with Γ̃ a Dirac matrix. Then, for iψ̄γμ∂μψ to be invariant, we need ψ̄γ0ψ to be invariant
and ψ̄γiψ → −ψ̄γiψ. Thus,

[Γ̃, γ0] =
{

Γ̃, γ1

}
= [Γ̃, γ2] =

{
Γ̃, γ3

}
= 0. (11.87)

The only element of the Dirac algebra that satisfies these constraints is Γ̃ = γ1γ3, up to a
constant. Thus, we take

T : ψ(t, �x) → γ1γ3ψ(−t, �x) =

⎛⎜⎜⎝
0 1
−1 0

0 1
−1 0

⎞⎟⎟⎠ψ(−t, �x). (11.88)



Problems 201

Thus, T flips the spins of particles, but does not turn particles into antiparticles, as expected.
T does not have a well-defined action on Weyl spinors, which have one spin state. T also
reverses the momenta, �p = i�∇, because of the i. Thus, T makes it look like things are
going forwards in time, but with their momenta and spins flipped.

Similarly, for ψ̄ /Dψ to be invariant, we need Aμ to transform as i∂μ, which is

T : A0(t, �x) → A0(−t, �x), Ai(t, �x) → −Ai(−t, �x). (11.89)

It is straightforward to check now that the Dirac Lagrangian is invariant under T .
Next, consider the combined operation of CPT . This sends particles into antiparticles

moving as if you watched them in reverse in a mirror. On Dirac spinors, it acts as

C · P · T : ψ(x)→ −iγ2γ0γ1γ3ψ
�(−x) = −γ5ψ

�(−x). (11.90)

It also sends Aμ(x) → Aμ(−x), φ→ φ�(−x) and of course i→ −i.
You can check (Problem 11.7) that any terms you could possibly write down, for

example,

L = ψ̄ψ, iψ̄ /∂ψ, iψ̄ /Aψ, ψ̄γμγ5ψWμ, iψ̄σμνψFμν (11.91)

and so on, are all CPT invariant. The CPT theorem says that this is a consequence of
Lorentz invariance and unitarity. A rigorous mathematical proof of the CPT theorem can
be found in [Streater and Wightman, 1989]. It is not hard to check that any term you
could write down in a local Lagrangian is CPT invariant; however, the rigorous proof does
require a Lagrangian description. Some examples of how unitarity can be used without a
Lagrangian are given in Chapter 24.

Problems

11.1 In practice, we only rarely use explicit representations of the Dirac matrices. Most
calculations can be done using algebraic identities that depend only on {γμ, γν} =
2gμν . Derive algebraically (without using an explicit representation):
(a) (γ5)2 = 1

(b) γμ/pγμ = −2/p
(c) γμ/p/q/pγμ = −2/p/q/p
(d)
{
γ5, γμ
}

= 0
(e) Tr[γαγμγβγν ] = 4(gαμgβν − gαβgμν + gανgμβ)

11.2 Spinor identities.
(a) Show that

∑
sus(p)ūs(p) = /p+m and

∑
svs(p)v̄s(p) = /p−m.

(b) Show that ūσ(p)γμuσ′(p) = 2δσσ′pμ.
11.3 Prove that massless spin-1 particles coupled to spin-0 or spin- 1

2 particles imply a
conserved charge. You may use results from Section 9.5.

11.4 Show that for on-shell spinors

ū(q)γμu(p) = ū(q)
[
qμ + pμ

2m
+ i

σμν(qν − pν)
2m

]
u(p), (11.92)
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where σμν = i
2 [γμ, γν ]. This is known as the Gordon identity. We will use this

when we calculate the 1-loop correction to the electron’s magnetic dipole moment.
Show that ūσ(p)γμuσ′ (p) = −iδσσ′ p

μ

p0 .
11.5 Derive the charge-conjugation properties of the spinor bilinears in Eqs. (11.54) to

(11.56).
11.6 The physics of spin and helicity.

(a) Use the left and right helicity projection operators to show that the QED vertex
ψ̄hγ

μψh′ vanishes unless h = h′.
(b) For the non-relativistic limit, choose explicit spinors for a spinor at rest. Show

that ψ̄sγμψs′ vanishes unless s = s′.
(c) Use the Schrödinger equation to show that in the non-relativistic limit the

electric field cannot flip an electron’s spin, only the magnetic field can.
(d) Suppose we take a spin-up electron going in the +z direction, and turn it around

carefully with electric fields so that now it goes in the −z direction but is still
spin up. Then its helicity flipped. Since all interactions between electrons and
photons preserve helicity, how can this have happened?

(e) How can you measure the spin of a slow electron?
(f) Suppose you have a radioactive source, such as cobalt-60, which undergoes β-

decay 60
27Co → 60

28 Ni + e− + ν̄. How could you (in principle) find out if those
electrons coming out are polarized; that is, if they all have the same helicity?
Do you think they would be polarized? If so, which polarization do you expect
more of?

11.7 Show that the most general Lagrangian term you can write down in terms of Dirac
spinors, γ-matrices, and the photon fieldAμ is automatically invariant under CPT .
To warm up, consider first the terms in Eq. (11.91).

11.8 Fierz rearrangement formulas (Fierz identities). It is often useful to rewrite spinor
contractions in other forms to simplify formulas. Show that
(a)
(
ψ̄1γ

μPLψ2

) (
ψ̄3γ

μPLψ4

)
= −
(
ψ̄1γ

μPLψ4

) (
ψ̄3γ

μPLψ2

)
(b)
(
ψ̄1γ

μγαγβPLψ2

) (
ψ̄3γ

μγαγβPLψ4

)
= −16

(
ψ̄1γ

μPLψ4

) (
ψ̄3γ

μPLψ2

)
(c) Tr
[
ΓMΓN

]
= 4δMN , with ΓM ∈ {1, γμ, σμν , γ5γ

μ, γ5}
(d)
(
ψ̄1ΓMψ2

) (
ψ̄3ΓNψ4

)
=
∑
PQ

1
16Tr
[
ΓPΓMΓQΓN

] (
ψ̄1ΓPψ4

) (
ψ̄3ΓQψ2

)
where PL = 1−γ5

2 projects out the left-handed spinor from a Dirac fermion. The
identities with PL play an important role in the theory of weak interactions, which
only involves left-handed spinors (see Chapter 29).

11.9 The electron neutrino is a nearly massless neutral particle. Its interactions violate
parity: only the left-handed neutrino couples to the W and Z bosons.
(a) TheZ is a vector boson, like the photon but heavier, and has an associated U(1)

gauge invariance (it is actually broken in nature, but that is not relevant for this
problem). If there is only a left-handed neutrino νL, the only possible mass
term of dimension four is a Majorana mass, of the form iMνTLσ2νL. Show that
this mass is forbidden by the U(1) symmetry.

This motivates the introduction of a right-handed neutrino νR. The most
general kinetic Lagrangian involving νL and νR is
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Lkin = ν†Lσ̄
μ∂μνL + ν†Rσ

μ∂μνR +m(ν†LνR + ν†RνL)

+ iM
(
νTRσ2νR − ν†Rσ2ν

�
R

)
, (11.93)

where νL is a left-handed ( 1
2 , 0) two-component Weyl spinor and νR is a right-

handed (0, 1
2 ) Weyl spinor. Note that there are two mass terms: a Dirac mass

m, as for the electron, and a Majorana mass, M .
(b) We want to figure out what the mass eigenstates are, but as written the

Lagrangian is mixing everything up. First, show that χL ≡ iσ2ν
�
R transforms

as a left-handed spinor under the Lorentz group, so that it can mix with νL.
Then rewrite the mass terms in terms of νL and χL.

(c) Next, rewrite the Lagrangian in terms of a doublet �Θ ≡ (νL, χL). This is not a
Dirac spinor, but a doublet of left-handed Weyl spinors. Using Lkin, show that
this doublet satisfies the Klein–Gordon equation. What are the mass eigenstates
for the neutrinos? How many particles are there?

(d) Suppose M � m. For example, M = 1010 GeV and m = 100 GeV. What are
the masses of the physical particles? The fact that as M goes up, the physical
masses go down, inspired the name see-saw mechanism for this neutrino mass
arrangement. What other choice of M and m would give the same spectrum of
observed particles (i.e. particles less than ∼1 TeV)?

(e) The left-handed neutrino couples to the Z boson and also to the electron
through the W boson. The W boson also couples the neutron and proton. The
relevant part for the weak-force Lagrangian is

Lweak = gW(ν†L /WeL+e†L /WνL)+gZ(ν†L /ZνL)+gW (n /Wp̄+n̄ /Wp). (11.94)

Using these interactions, draw a Feynman diagram for neutrinoless double β-
decay, in which two neutrons decay to two protons and two electrons.

(f) Which of the terms in Lkin and Lweak respect a global symmetry (lepton num-
ber) under which νL → eiθνL, νR → eiθνR and eL → eiθeL? Define
arrows on the e and ν lines to respect lepton number flow. Show that you
cannot connect the arrows on your diagram without violating lepton number.
Does this imply that neutrinoless double β-decay can tell if the neutrino has a
Majorana mass?

11.10 In Section 10.4, we showed that the electron has a magnetic dipole moment,
of order μB = e

2me
, by squaring the Dirac equation. An additional magnetic

moment could come from an interaction of the form B = iFμνψ̄[γμ, γν ]ψ in the
Lagrangian. An electric dipole moment (EDM) corresponds to a term of the form
E = Fμνψ̄γ5[γμ, γν ]ψ.
(a) Expand the contribution of the electric dipole term to the Dirac equation

in terms of electric and magnetic fields to show that it does in fact give
an EDM.

(b) Which of the symmetries C,P or T are respected by the magnetic dipole
moment operator, B, and the EDM operator, E?
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(c) It turns out that C, P and T are all separately violated in the Standard Model,
even though they are preserved in QED (and QCD). P is violated by the weak
interactions, but T (and CP ) is only very weakly violated. Thus we expect,
unless there is a new source of CP violation beyond the Standard Model, the
electron, the neutron, the proton, the deuteron etc., all should have unmeasur-
ably small (but non-zero) EDMs. Why is it OK for a molecule (such as H2O)
or a battery to have an EDM but not the neutron (which is made up of quarks
with different charges)?
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One of the most profound consequences of merging special relativity with quantum
mechanics is the spin-statistics theorem: states with identical particles of integer spin are
symmetric under the interchange of the particles, while states with identical particles of
half-integer spin are antisymmetric under the interchange of the particles. This is equiva-
lent to the statement that the creation and annihilation operators for integer spin particles
satisfy canonical commutation relations, while creation and annihilation operators for half-
integer spin particles satisfy canonical anticommutation relations. Particles quantized with
canonical commutation relations are called bosons, and satisfy Bose–Einstein statistics,
and particles quantized with canonical anticommutation relations are called fermions, and
satisfy Fermi–Dirac statistics.

The simplest way to see the connection between spin and statistics, mentioned in Chap-
ter 10, is as follows. One way to interchange two particles is to rotate them around their
midpoint by π. For a particle of spin s, this rotation will introduce a phase factor of eiπs.
Thus, a two-particle state with identical particles both of spin s will pick up a factor of
e2πis. For s a half-integer, this will give a factor of−1; for s an integer, it will give a factor
of +1. This argument is made more precise in Section 12.2.

Traditionally, the spin-statistics theorem is derived by pointing out that things go
terribly awry if the wrong statistics are applied. For example, the spin-statistics the-
orem follows from Lorentz invariance of the S-matrix. Since the S-matrix is con-
structed from Lorentz-covariant fields, Lorentz invariance is almost obvious. The catch
is that the S-matrix is defined in terms of a time-ordered product of fields S ∼ T

{φ1(x1) · · ·φn(xn)}. If you choose commutation relations for particles of half-integer
spin, this time-ordered product will not be Lorentz invariant. If you choose anticommuta-
tion relations, it will be. The relevant calculations are given in Section 12.4. An important
result of this section is the propagator for a Dirac spinor.

Another criterion that can be used to prove the spin-statistics theorem is that the total
energy of a system should be bounded from below. When applied to free particles, we
call this the stability requirement (instabilities due to interactions are a different story;
see, for example, Chapter 28). For free particles, if the wrong statistics are used, antipar-
ticles will have arbitrarily negative energy. This would allow kinematical processes, such
as an electron decaying into a muon, e− → μ−νeν̄μ, which is normally forbidden by
energy conservation (not momentum conservation). We take it for granted that light par-
ticles cannot decay to heavier particles, but this is actually a non-trivial consequence of
the spin-statistics theorem. In studying the stability requirement, in Section 12.5, we will
investigate the Hamiltonian and energy-momentum tensor, which provide more generally
useful results.

205



206 Spin and statistics

One does not have to postulate stability for free particles, since it follows from
spin-statistics, which follows from Lorentz invariance. However, requiring stability is a
necessary and sufficient condition for the spin-statistics theorem. This is important in con-
texts such as condensed matter systems in which Lorentz invariance is irrelevant. There,
you could study representations of whatever the appropriate group is, say the Galilean
group, and you would still find spinors, but you would not be interested in the S-matrix
or causality. In this case, spinors would still have to be fermions to ensure stability of the
system you are studying.

There are other ways to see the connection between spin and statistics. A very impor-
tant requirement historically was that operators corresponding to observables that are
constructed out of fields should commute at spacelike separation:

[O1(x),O2(y)] = 0, (x− y)2 < 0. (12.1)

We call this the causality criterion. Note that it is pretty crazy to imagine that a theory
which involves generally smooth functions could produce objects that vanish in a com-
pact region but do not vanish everywhere. This would be mathematically impossible if
[O1(x),O2(y)] were an analytic function of x and y. Quantum field theory can get away
with this because operator products give distributions, not functions. In fact, as we will
show in Section 12.6, they give distributions with precisely the property of Eq. (12.1).

The causality criterion was first proposed by Pauli in his seminal paper on spin-
statistics from 1940 [Pauli, 1940]. The idea behind this requirement comes from quantum
mechanics: When two operators commute, they are simultaneously observable; they can-
not influence each other. If they could influence each other at spacelike separations, one
could use them to communicate faster than the speed of light. This is a weaker requirement
than Lorentz invariance of the S-matrix. Unfortunately, causality can only be used to prove
that integer spin particles commute, but not that half-integer spin particles anticommute.
The reason is that observables are bilinear in spinors, and hence have integer spin (can you
think of an observable linear in a spinor?).

Causality actually follows directly from Lorentz invariance of the S-matrix: time order-
ing is only Lorentz invariant for timelike separations. That is, the inequality ti < tj is
Lorentz invariant as long as xμi −x

μ
j is timelike. If two points are spacelike separated, then

one can boost to a frame where tj < ti. Thus, for spacelike separation, time ordering of
a pair of fields is an ambiguous operation unless the fields commute. So causality follows
from Lorentz invariance of the S-matrix. The converse is not true: Eq. (12.1) is a necessary
condition, but not sufficient, for Lorentz invariance of the S-matrix.

12.1 Identical particles

To talk about spin-statistics, we first need to talk about identical particles. The universe is
full of many types of particles: photons, electrons, muons, quarks, etc. Each particle has
a momentum, �pi, a spin, si, and a bunch of additional quantum numbers, ni, which say
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what type of particle it is. For each type of particle we have a set of creation and annihi-
lation operators, a†�pisini and a�pisini . Particles transforming in the same representation of
the Poincaré group and having the same additional quantum numbers, ni, are said to be
identical particles.

If we act with creation operators for identical particles on the vacuum, we get a multi-
particle state:

| · · · s1�p1n · · · s2�p2n · · · 〉 = · · ·
√

2ω1a
†
�p1s1n

· · ·
√

2ω2a
†
�p2s2n

· · · |0〉. (12.2)

Recall that the multi-particle states are normalized so that

〈s1�p1n1 · · · |s′1�p
′
1n

′
1 · · ·〉 =

∏
i

δnin′
i
δsis′i2ωi(2π)3δ3(�pi − �p

′
i ). (12.3)

We could have also acted with the creation operators in a different order, giving

|s2�p2n · · · s1�p1n · · · 〉 = · · ·
√

2ω2a
†
�p2s2n

· · ·
√

2ω1a
†
�p1s1n

· · · |0〉. (12.4)

Since the particles are identical, this must be the same physical state, so it can only differ
by normalization. Since we have fixed the normalization, it can only differ by a phase:

| · · · s1�p1n · · · s2�p2n · · · 〉 = α| · · · s2�p2n · · · s1�p2n · · · 〉, (12.5)

where α = eiφ for some real φ.
What can α depend on? Since it is just a number, it cannot depend on the momenta �pi

or the spins si, as there are no non-trivial one-dimensional representations of the (proper)
Lorentz group. It could possibly depend on a Lorentz-invariant characterization of the path
by which the particles are interchanged. However, in 3 + 1 dimensions, there are no such
invariants (we derive this in the next section). Thus, α can only depend on n, the species
of particle. So let us write α = αn.

Now we can swap the particles back, giving

| · · · s1�p1n · · · s2�p2n · · · 〉 = α2
n| · · · s1�p1n · · · s2�p2n · · · 〉. (12.6)

Thus αn = ±1. We call αn = 1 bosons, which we say satisfy Bose–Einstein statistics,
and we call αn = −1 fermions, which we say satisfy Fermi–Dirac statistics. So every
particle is either a fermion or a boson. The boson case implies that

a†�p1s1na
†
�p2s2n

|ψ〉 = a†�p2s2na
†
�p1s1n

|ψ〉 (12.7)

for all |ψ〉 and therefore

[a†�p1s1n, a
†
�p2s2n

] = [a�p1s1n, a�p2s2n] = 0 (bosons). (12.8)

Also, since 〈�p1|�p2〉 = 2ω1(2π)3δ3(�p1 − �p2), we can use the same argument to show that

[a�p1s1n, a
†
�p2s2n

] = (2π)3δ3(�p1 − �p2)δs1,s2 . (12.9)
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For the fermion case, the same logic implies

{a†�p1s1n, a
†
�p2s2n

} = {a�p1s1n, a�p2s2n} = 0 (fermions) , (12.10)

{a†�p1s1n, a�p2s2n} = (2π)3δ3(�p1 − �p2). (12.11)

The physics of fermions is very different from the physics of bosons. With bosons, such
as the photon, we can have multiple particles of the same momentum in the same state.
In fact, thinking about multi-particle excitations in Chapter 1 led to the connection with
the simple harmonic oscillator and second quantization in Chapter 2. Now consider what
happens if we try to construct a state with two identical fermionic particles with the same
momenta (a two-particle state). We find

a†�pa
†
�p|0〉 = −a†�pa

†
�p|0〉 = 0. (12.12)

This is the Fermi exclusion principle, and it follows directly from the anticommutation
relations.

By the way, that identical particles must exist is an automatic consequence of using cre-
ation and annihilation operators in quantum field theory. You might wonder why we have to
consider states produced with creation operators at all. If we demand that all operators are
constructed out of creation and annihilation operators we are guaranteed that the cluster
decomposition principle holds. The cluster decomposition principle requires that when
you separate two measurements asymptotically far apart, they cannot influence each other.
Technically, it says that the S-matrix should factorize into clusters of interactions. Many
other methods for calculating S-matrix elements have been considered over the years, but
the quantum field theory approach, based on creation and annihilation operators, remains
the most efficient way to guarantee cluster decomposition.

12.2 Spin-statistics from path dependence

Rather than simply relating two states a†1a
†
2|0〉 and a†2a

†
1|0〉, we can consider actually inter-

changing the particles physically. This will let us connect statistics directly to spin and
representations of the Lorentz group. Suppose we have two particles at positions x1 and
x2 at time t = 0. Then, at some later time, we find them also at x1 and x2. Since they are
identical, we could have had the particle at x1 move back to x1 and the particle at x2 move
back to x2, or the particles could have switched places. We could also have had the par-
ticles spin around each other many times. There is a well-defined way to characterize the
transformation, by the angle φ by which one particle rotated around the other. This angle
is frame independent and a topological property associated with the path. In Figure 12.1,
pictures of these exchanges are shown.

In general, it is possible for the two-particle state to pick up a phase proportional to this
angle φ, as in Eq. (12.5). So we can define an operator S that switches the particles. Then
the most general possibility for what would happen when we switch the particles is that

S|φ1(x1)φ2(x2)〉 = eiφκ|φ2(x1)φ1(x2)
〉

(12.13)
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Exchange: φ = π

x2

x1

No exchange: φ = 2π

x2

x1

No exchange: φ = 0

x1

x2

The angle that one particle travels around another before coming back to its own or the
other’s position is a Lorentz-invariant characterization of the path.

�Fig. 12.1

for some number κ characteristic of the particle type.
Now, with three spatial dimensions, the angle φ can only be defined up to 2π. For exam-

ple, the diagram in the third figure can be unwrapped by pulling the x2 loop out of the
page so that the particles do not go around each other. Thus, the action of S on the states is
not Lorentz invariant unless it gives the same answer for φ and φ+ 2π. Thus κ ∈ Z. This
implies that, for an interchange with φ = π, we can only have

S|φ1(x1)φ2(x2)〉 = ± |φ2(x1)φ1(x2)〉 . (12.14)

So only fermionic and bosonic statistics are possible. In other words, in three dimensions,
there is no way to characterize the path other than that the particles were swapped (φ = π)
or not (φ = 0).

Thus, there are only two possibilities, given by the first two paths in Figure 12.1. Con-
sider the second path. In a free-field theory, we can actually perform the exchange by
acting with Poincaré generators on the fields. One way would be to translate by the dis-
tance between x1 and x2, then to rotate the whole system by π so that particle 2 is back at
x1, as shown in Figure 12.2.

Under the translation, nothing interesting happens. Under the rotation, what happens
depends on the spin. For scalars, there is no spin, so our transformation takes

S|φ1(x1)φ2(x2)〉 = |φ2(x1)φ1(x2)〉 . (12.15)

On the other hand, for spinors there is a non-trivial transformation. In fact, we worked it
out explicitly in Section 10.5: for Dirac spinors, a rotation by an angle θz is represented by

x1

x2

x1

x2

Particles’ positions can be interchanged by first translating the pair by x2 − x1, then
rotating the pair around x2. Alternatively, we could have just rotated the two particles
around their midpoint.

�Fig. 12.2
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Eq. (10.118):

Λs(θz) =

⎛⎜⎜⎝
exp( i2θz)

exp(− i
2θz)

exp( i2θz)
exp(− i

2θz)

⎞⎟⎟⎠ , (12.16)

which for θz = π is the matrix with i and −i in the diagonal. So, suppose the particles
were both spin out-of-the page (spin into-the-page is the same, but for spins in the x or y
direction, this manipulation will not take the particles back to themselves and one needs to
consider a different route). Then,

ψ1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠→
⎛⎜⎜⎝

i

0
i

0

⎞⎟⎟⎠ = iψ1. (12.17)

So the two-particle state with identical spins has

S|ψ1(x1)ψ2(x2)〉 = − |ψ2(x1)ψ1(x2)〉 , (12.18)

which is to say that the spinors pick up a minus sign under the interchange.
This derivation works for particles of any half-integer or integer spin. The only thing

we need is that under a 2π rotation half-integer spin particles go to minus themselves,
while integer spin particles go to themselves. This is practically the definition of spin. This
derivation is appealing because it is directly related to spinors transforming in represen-
tations of the universal cover of the Lorentz group, SL(2,C), which is simply connected,
while the Lorentz group itself is doubly connected. If you like this argument, then you can
skip the rest of this chapter (except for the calculation of the Feynman propagator for Dirac
spinors, which we will use later).

In 2 + 1 dimensions, the situation is more interesting. There, paths with φ and φ+ 2πn
are distinguishable – we cannot unwrap the third path in Figure 12.1 into the first path
anymore by pulling it out of the page. So in this case,

S|φ1(x1)φ2(x2)〉 = eiφκ|φ2(x1)φ1(x2)
〉
, (12.19)

and κ can be an arbitrary number. Particles with κ �∈ Z are called anyons.
We can understand anyons also from the representations of the 3D Lorentz group,

SO(2, 1). Recall that for four dimensions the little group of the Poincaré group, which
determined its irreducible representations, was SO(3) (for the massive case). For SO(3),
we found that there were paths through the group, from 1 to 1, that were not smoothly
deformable to the trivial path. For example, rotations by 2π around any axis have this
property. However, any 4π rotation can be deformed to the trivial path. In other words, the
fundamental group of SO(3) is Z2. With two spatial dimensions, the little group is SO(2).



12.3 Quantizing spinors 211

Here a 2π rotation, as a path through the group, also cannot be deformed to the trivial path.
Moreover, rotations einκ with 0 ≤ κ < 2π for any n ∈ Z make up separate paths. Thus,
the fundamental group of SO(2) is Z. Then, in the same way that spinors picked up a factor
of −1 under 2π rotations in 3 + 1 dimensions, there are representations that can pick up
factors of ein in 2 + 1 dimensions. These are the anyons.

12.3 Quantizing spinors

The remaining connections between spin and statistics we want to explore involve quantum
fields. So the first thing we must do is quantize our spinors. This is straightforward, up to
the statistics issue.

Recall that for a complex scalar the field we had

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + b†pe
ipx
)
, (12.20)

φ�(x) =
∫

d3p

(2π)3
1√
2ωp

(
a†pe

ipx + bpe
−ipx) . (12.21)

Remember, a†p creates particles and b†p creates antiparticles, which are particles of the
opposite charge and same mass.

For the Dirac equation the Lagrangian is

L = ψ̄(i /D −m)ψ (12.22)

and the equations of motion are

(i/∂ − e /A−m)ψ = 0, (12.23)

ψ̄(−i
←−
/∂ − e /A−m) = 0. (12.24)

In Section 11.2, we saw that the free-field solutions can written in terms of constant two-
component spinors ξs and ηs, with s = 1, 2 in the concise notation:

us(p) =
( √

p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σηs

−√p · σ̄ηs

)
. (12.25)

To be clear, ξ1 = η1 = (1, 0)T and ξ2 = η2 = (0, 1)T are constants, while us(p) and vs(p)
are the solutions to the Dirac equation with arbitrary momentum describing electrons and
positrons respectively.

Thus, we take

ψ(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe
ipx
)
, (12.26)

ψ̄(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
as†p ū

s
pe
ipx + bspv̄

s
pe

−ipx) , (12.27)
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where, as always, the energy is positive and determined by the 3-momentum ωp =√
�p 2 +m2. So ψ(x) annihilates incoming electrons and ψ̄(x) annihilates incoming

positrons. The full Feynman rules for QED will be derived in the next chapter.
The next three sections will be devoted to deriving the spin-statistics theorem in three

different ways.

12.4 Lorentz invariance of the S -matrix

As mentioned in the introduction to this chapter, Lorentz invariance of the S-matrix is a
sufficient condition for the spin-statistics theorem. The S-matrix is constructed from time-
ordered products, with the simplest non-trivial time-ordered product being the Feynman
propagator.

Time ordering must be defined for bosons and fermions. Fermionic creation and
annihilation operators anticommute at generic momenta and times. Therefore,

T{ap(t)aq(t′)} = −T{aq(t′)ap(t)}. (12.28)

Thus we cannot just define time ordering as “take all the operators and put them in time
order,” or else this equation would imply the time-ordered product must vanish. So we
have to define time ordering for fermions by anticommuting the operators past each other,
keeping track of minus signs. Thus, for generic functions ψ(x) of fermionic creation and
annihilation operators, the only consistent definition of time ordering is

T {ψ(x)χ(y)} = ψ(x)χ(y)θ(x0 − y0)− χ(y)ψ(x)θ(y0 − x0). (12.29)

Now we can consider time-ordered products of fermionic fields.

12.4.1 Spin 0

Let us first review what happens with a complex scalar. The vacuum matrix element of a
field and its conjugate is

〈0|φ�(x)φ(0)|0〉 =
∫

d3p

(2π)3

∫
d3q

(2π)3
1√
2ωp

1√
2ωq

〈0|(a†peipx + bpe
−ipx)(aq + b†q)|0〉

=
∫

d3p

(2π)3
1

2ωp
e−iωpt+i�p�x, (12.30)

and similarly,

〈0|φ(0)φ�(x)|0〉 =
∫

d3p

(2π)3
1

2ωp
eiωpt−i�p�x. (12.31)

Combining these equations we get

〈0|T{φ�(x)φ(0)}|0〉 =
∫

d3p

(2π)3
1

2ωp

[
ei�p�x−iωptθ(t) + e−i�p�x+iωptθ(−t)

]
. (12.32)
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Now we take �p→ −�p in the first term, giving

〈0|T{φ�(x)φ(0)}|0〉 =
∫

d3p

(2π)3
1

2ωp
e−i�p�x
[
e−iωptθ(t) + eiωptθ

(
− t)
]
. (12.33)

Then recalling the identities from Eqs. (6.30) and (6.31):

eiωptθ(−t) =
i

2π

∫ ∞

−∞

dω

ω − (ωp − iε)
eiωt,

e−iωptθ(t) = − i

2π

∫ ∞

−∞

dω

ω − (−ωp + iε)
eiωt, (12.34)

we arrive at

〈0|T{φ�(x)φ(0)}|0〉 =
∫

d4p

(2π)4
i

2ωp
eipx
(

1
ω − (ωp − iε)

− 1
ω − (−ωp + iε)

)
=
∫

d4p

(2π)4
i

p2 −m2 + iε
eipx, (12.35)

where p0 ≡ ω is an integration variable. This is a beautiful manifestly Lorentz-invariant
expression.

If we instead take anticommutation relations, we would need to use anti-time ordering.
Then,

〈0|T{φ�(x)φ(0)}|0〉 =
∫

d3p

(2π)3
1

2ωp
e−i�p�x
[
−eiωptθ(−t) + e−iωptθ(t)

]
= −
∫

d4p

(2π)4
i

2ωp
eipx
(

1
ω − (ωp − iε)

+
1

ω − (−ωp + iε)

)
=
∫

d4p

(2π)4
ω√

�p2 +m2

−i
p2 −m2 + iε

eipx. (12.36)

This is not Lorentz invariant. Therefore the S-matrix for spin-0 particles is Lorentz
invariant if and only if they are bosons.

12.4.2 Spinors

Now let us repeat the calculation with spinors. We start the same way:

〈0|ψ(0)ψ̄(x)|0〉 =
∫

d3p

(2π)3

∫
d3q

(2π)3
1√
2ωp

1√
2ωq

×
∑
s,s′
〈0|(aspusp + bs†p v

s
p)(a

s′†
q ūs

′
q e

iqx + bs
′
q v̄

s′
q e

−iqx)|0〉

=
∫

d3p

(2π)3

∫
d3q

(2π)3
1√
2ωp

1√
2ωq

∑
s,s′

uspū
s′
q 〈0|aspas

′†
q |0〉eiqx

=
∫

d3p

(2π)3
1

2ωp

∑
s

uspū
s
pe
ipx. (12.37)
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Note that ψ(0)ψ̄(x) refers to a matrix in spinor space: 〈0|ψ(0)αψ̄β(x)|0〉 ∼ (usp)α(ūsp)β .
Now we sum over polarizations using the outer products from Eqs. (11.29) and (11.30):

2∑
s=1

us(p)ūs(p) = /p+m,

2∑
s=1

vs(p)v̄s(p) = /p−m, (12.38)

giving

〈0|ψ(0)ψ̄(x)|0〉 =
∫

d3p

(2π)3
1

2ωp
eipx(/p+m)(−i/∂ +m)

∫
d3p

(2π)3
1

2ωp
eipx. (12.39)

Similarly,

〈0|ψ̄(x)ψ(0)|0〉 =
∑
ss′

∫
d3p

(2π)3

∫
d3q

(2π)3
1√
2ωp

1√
2ωq

×

〈0|(bs′q v̄s
′
q e

−iqx + as
′†
q ūs

′
q e

iqx)(aspu
s
p + bs†p v

s
p)|0〉

=
∫

d3p

(2π)3
1

2ωp
e−ipx(/p−m) = (i/∂ −m)

∫
d3p

(2π)3
1

2ωp
e−ipx.

(12.40)

This is also a matrix in spinor space: ψ̄(x)ψ(0) in this expression means ψ̄α(x)ψβ(0).
Note that this convention contrasts with when we write Lagrangian terms such as
ψ̄ψ = ψ̄α(x)ψα(x) = Tr

(
ψ̄α(x)ψβ(x)

)
, which have no free indices. Whether there is

a contraction of spinor indices will be clear from context or explicitly indicated.
In summary, we have found

〈0|ψ(0)ψ̄(x)|0〉 = (−i/∂ +m)
∫

d3p

(2π)3
1

2ωp
eipx, (12.41)

〈0|ψ̄(x)ψ(0)|0〉 = −(−i/∂ +m)
∫

d3p

(2π)3
1

2ωp
e−ipx. (12.42)

These equations are independent of whether commutation or anticommutation relations are
assumed.

Now let us first assume commutation relations. Then the time-ordered product is
defined in the usual way: T

{
ψ(0)ψ̄(x)

}
=ψ(0)ψ̄(x)θ(−t) + ψ̄(x)ψ(0)θ(t). Then we get,

recycling results from Section 12.4.1,

〈0|T{ψ(0)ψ̄(x)|0〉 = (i/∂ −m)
∫

d3p

(2π)3
1

2ωp

[
ei�p�x−iωptθ(t)− e−i�p�x+iωptθ(−t)

]
= (−i/∂ +m)

∫
d4p

(2π)4
ω√

�p2 +m2

i

p2 −m2 + iε
eipx, (12.43)

which is not Lorentz invariant. If instead we assume anticommutation relations, and the
fermionic time-ordered product, T

{
ψ(0)ψ̄(x)

}
= ψ(0)ψ̄(x)θ(−t) − ψ̄(x)ψ(0)θ(t), we

find 〈
0|T{ψ(0)ψ̄(x)}|0

〉
= (−i/∂ +m)

∫
d4p

(2π)4
i

ω2 − ω2
p + iε

eipx, (12.44)

which is beautifully Lorentz invariant.
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The Feynman propagator for Dirac spinors is more conventionally written as

〈
0|T{ψ(0)ψ̄(x)}|0

〉
=
∫

d4p

(2π)4
i(/p+m)

p2 −m2 + iε
eipx. (12.45)

This is an extremely important result, used in practically every calculation in QED.
Let us trace back to what happened. We found for a scalar:

〈0|φ�(x)φ(0)|0〉 =
∫

d3p

(2π)3
1

2ωp
e−ipx, (12.46)

〈0|φ(0)φ�(x)|0〉 =
∫

d3p

(2π)3
1

2ωp
eipx, (12.47)

as compared to (for m = 0):

〈0|ψ̄(x)ψ(0)|0〉 =
∫

d3p

(2π)3
/p

2ωp
e−ipx, (12.48)

〈0|ψ(0)ψ̄(x)|0〉 =
∫

d3p

(2π)3
/p

2ωp
eipx. (12.49)

Now we can see that the problem is that /p is odd under the rotation that takes p→ −p, so
that an extra−1 is generated when we try to combine the time-ordered sum for the fermion.
Rotating p→ −p is a rotation by π. We saw that this gives a factor of i in the fermion case.
So here we have two fermions, and we get a −1. So it is directly related to the spin 1

2 . This
will happen for any half-integer spin, which gets an extra −1 in the rotation.

Another way to look at it is that the /p factor comes from the polarization sum, which
in turn comes from the requirement that the free solutions satisfy the equations of motion,

/pus(p) = /pvs(p) = 0. In fact, we can now see directly that the same problem will hap-
pen for any particle of half-integer spin. A particle of spin n + 1

2 for integer n will have
a field with n vector indices and a spinor index, ψμ1···μn . So the corresponding polar-
ization sum must have a factor of γμ and the only thing around to contract γμ with is
its momentum pμ. Thus, we always get a /p, plus possibly additional factors of p2

μ, and
the time-ordered product can never be Lorentz invariant unless the fields anticommute.
These are fermions. They obey Fermi–Dirac statistics. In contrast, for integer spin there
can only be an even number of p2

μ in the polarization sum. So these fields must commute to
have Lorentz-invariant time-ordered products. These are bosons. They obey Bose–Einstein
statistics.

12.5 Stability

One does not have to deal with time-ordered products to see the consequences of wrongly
chosen statistics. In fact, a universe in which spinors commute would have disastrous con-
sequences – particles with finite momentum could have negative energy. The particles
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would still be on-shell, E2 = �p2 + m2, so this is not a problem with Lorentz invariance,
but it would mean that all kinds of things such as p+ → p+e+e− would not be forbidden.

Recall from Eq. (8.13) that the energy density is given by the 00-component of the
energy-momentum tensor:

E = T00 =
∑
n

∂L
∂φ̇n

φ̇n − L. (12.50)

We derived this equation by identifying the energy-momentum tensor as the Noether cur-
rent associated with space-time translations. We have already used this general definition
of the energy density to constrain theories with integer spin particles in Chapter 8. Here, we
will see how spin-statistics follows from having a positive-definite energy density. More
precisely, we need the total energy given by

E =
∫
d3xE (12.51)

to be bounded from below, since a constant shift has no physical consequences.

12.5.1 Free scalar fields

For a free complex scalar field,

L = |∂μφ|2 −m2|φ|2, (12.52)

the energy-momentum tensor is, starting from Eq. (3.35),

Tμν =
∑
n

∂L
∂(∂μφn)

∂νφn − gμνL

= ∂μφ
�∂νφ+ ∂μφ∂νφ

� − gμν
[
|∂μφ|2 −m2|φ|2

]
. (12.53)

The energy density is

E = T00 = (∂tφ�)(∂tφ) + (�∇φ�) · (�∇φ) +m2φ�φ. (12.54)

Classically, this would obviously be positive definite. It is not quite that simple in the
quantum theory.

Using the free scalar fields, Eq. (12.20), the total energy is

E =
∫
d3x E =

∫
d3x

∫
d3q

(2π)3
1√
2ωq

∫
d3p

(2π)3
1√
2ωp

×
[
− (ωqωp + �q · �p)

(
a†qe

iqx − bqe−iqx
)(
−ape−ipx + b†pe

ipx
)

+ m2
(
a†qe

iqx + bqe
−iqx)(ape−ipx + b†pe

ipx
)]
. (12.55)

Doing the x integral first turns the phases into δ-functions. Using ω2
p = �p2 + m2 then

reduces the whole thing to
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E =
∫

d3p

(2π)3
ωp
(
a†pap + bpb

†
p

)
=
∫

d3p

(2π)3
ωp
[
a†pap + b†pbp + (2π)3δ3(0)

]
. (12.56)

Using δ3(0) = V
(2π)3 , as in Eq. (5.12) and defining E0 =

∫
d3p

(2π)3ωp, this gives

E =
∫

d3p

(2π)3
ωp
[
a†pap + b†pbp

]
+ V E0 (with commutators). (12.57)

This V E0 term is an infinite contribution to the energy, which is independent of what state
the system is in. It is just the zero-point energy for the sum of the particles and antipar-
ticles in the Hilbert space (each of which gives ωp

2 ). Just as in classical mechanics, only
differences in energy can have measurable effects (see Chapter 15). The important point
for stability is that the energy difference between two states is

ΔE =
∫

d3p

(2π)3
ωp (Δ# particles + Δ# antiparticles) . (12.58)

States with more particles (or antiparticles) have more energy.
Now, suppose we had used anticommutation relations instead, then we would have had

E =
∫

d3p

(2π)3
ωp
(
a†pap − b†pbp

)
+ V E0 (with anticommutators), (12.59)

which would mean

ΔE =
∫

d3p

(2π)3
ωp(Δ# particles−Δ# antiparticles) . (12.60)

In particular, the energy can be lowered by producing antiparticles! Thus, the vacuum could
spontaneously decay into particle–antiparticle pairs. Particles could spontaneously decay
into particles and antiparticles. Nothing would be stable – this would be a huge disaster.

12.5.2 Free fermions

Now we will do the same computation for fermions. Here the Lagrangian is

L = ψ̄(i/∂ −m)ψ (12.61)

and the energy-momentum tensor is

Tμν = iψ̄γμ∂νψ − gμν
[
ψ̄(i/∂ −m)ψ

]
. (12.62)

So the energy density is

E = T00 = ψ̄(iγi∂i +m)ψ. (12.63)

Using the equations of motion, this simplifies to

E = iψ̄γ0∂tψ. (12.64)
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In the quantum theory

E =
∫
d3x E = i

∫
d3x

∫
d3q

(2π)3
1√
2ωq

∫
d3p

(2π)3
1√
2ωp

×
∑
s,s′

(eipxas
′†
p ūs

′
p + e−ipxbs

′
p v̄

s′
p )γ0∂t

(
e−iqxasqu

s
q + eiqxbs†q v

s
q

)
. (12.65)

The x integral forces �q = �p for the ūu and v̄v terms, which then simplify using
ūs(p)γ0us′(p) = u†s(p)us′(p) = 2ωpδss′ . It also forces �q = −�p for the ūv and v̄u terms,
which simplify with u†s(�p)vs′(−�p) = v†s(�p)us′(−�p) = 0. The result is

E =
∑
s

∫
d3q

(2π)3
ωp
(
as†p a

s
p − bspbs†p

)
. (12.66)

Now if we have anticommutators, this is just

E =
∑
s

[∫
d3q

(2π)3
ωp
(
as†p a

s
p + bs†p b

s
p

)
− V E0
]

(with anticommutators), (12.67)

which again counts the number of particles and antiparticles, weighted by the energy. Note
that for fermions the zero-point energy is negative.

If we had commutators instead, we would have

E =
∑
s

[∫
d3q

(2π)3
ωp
(
as†p a

s
p − bs†p bsp

)
− V E0
]

(with commutators), (12.68)

which would have an energy unbounded from below.
So the stability requirement, that is, that the energy must grow when we add more

particles or antiparticles, holds if and only if the spin-statistics theorem holds. Again,
just postulating Lorentz invariance of the S-matrix implies spin-statistics, which implies
stability.

12.5.3 General spins

The spinor calculation in this case was much easier than the scalar case. Nevertheless, we
can track through and find that the terms that survived the scalar calculation came from

E =
∫
d3x

d3q

(2π)3
d3p

(2π)3
1

√
ωpωq

[
(∂teiqx)(∂te−ipx)a†qap + bqb

†
p(∂te

−iqx)(∂teipx)
]

=
∫

d3p

(2π)3
ωp
(
a†pap + bpb

†
p

)
. (12.69)

In contrast, the relevant terms for spin 1
2 were (using commutation relations)

E =
∫
d3x

d3q

(2π)3
d3p

(2π)3
[
eiqx(i∂te−ipx)a†qap + bqb

†
pe

−iqx(i∂teipx)
]

=
∫

d3p

(2π)3
ωp
(
a†pap − bpb†p

)
. (12.70)
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The difference is that the spinor expression is linear in the time derivative, while the scalar
is quadratic. This in turn comes from the fact that the Lagrangian for the scalar has two
derivative kinetic terms, while the spinor has single derivatives.

More generally, every integer spin particle will be embedded in a tensor
(Aμ, hμν , Zμνα, . . .). The terms quadratic in these fields will have an even number of
indices to contract, forcing an even number of derivatives in the kinetic terms. In con-
trast, every half-integer spin particle will be embedded in a spinor field, with tensor indices
(ψ, χμ, ημν , . . .). They must be contracted with barred spinors (ψ̄, χμ, η̄μν , . . .), which
transform in complex conjugate representations of the Lorentz group. To contract these,
we must insert a γμ matrix, which must be contracted with a single ∂μ. Thus, all kinetic
terms for integer spin fields will have an even number of derivatives and kinetic terms
for half-integer spin fields will have an odd number of derivatives. This will lead to the
same minus signs in the derivation of the Hamiltonian. Thus, all integer (half-integer) spin
particles must be bosons (fermions).

12.6 Causality

The other connection between spin and statistics that is often discussed comes from consid-
erations of causality. Causality is a reasonable physical requirement. The precise condition
is that the commutator of observables should vanish outside the lightcone, that is, at
spacelike separation. For spin 0, the field itself is observable, so we require

[φ(x), φ(y)] = 0, (x− y)2 < 0. (12.71)

What does this commutator have to do with physics? Remember, we are just doing quan-
tum mechanics here. So when two operators commute they are simultaneously observable.
Another way to say this is that if the operators commute they are uncorrelated and cannot
influence each other. So, if we measure the field (remember φ measures the field) at x = 0
it should not influence the measurement at a distant point y at the same time. On the other
hand, if we measure the field at t = 0 it might affect the field at a later time t at the same
position x. This is a precise statement of causality.

What we are going to show below is that [ψ̄α(x), ψβ(y)] does not vanish outside the
lightcone. This would imply that if we could measure ψ(x), then we would have a violation
of causality. Unfortunately, spinors appear not to be observables. The only things we ever
measure are numbers, which are constructed out of bilinears in spinors. Thus, the physical
requirement is only that

[ψ̄(x)ψ(x), ψ̄(y)ψ(y)] = 0, (x− y)2 < 0. (12.72)

This condition will be guaranteed if either [ψ̄α(x), ψβ(y)] = 0 or
{
ψ̄α(x), ψβ(y)

}
= 0

outside the lightcone. Thus, having the spinors anticommute (or commute) at spacelike
separation would be a sufficient condition for causality, but it may not be necessary. In
fact, one expects that perhaps the commutator of spinor bilinears will vanish outside the
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lightcone because two spinor fields at the same point transform like a combination of fields
with integer spin.

Now let us compute this commutator, first for a scalar field, then for a spin- 1
2 field:

φ(x) =
∫

d3q

(2π)3
1√
2ωq

(
a†qe

iqx + aqe
−iqx) , (12.73)

so, using [ap, a†q] = (2π)3δ3(p− q) and [ap, aq] =
[
a†p, a

†
q

]
= 0,

[φ(x), φ(y)] =
∫

d3q

(2π)3
1√
2ωq

∫
d3p

(2π)3
1√
2ωp

(
eiqxe−ipy[a†q, ap] + e−iqxeipy[aq, a†p]

)
=
∫

d3q

(2π)3
1

2ωq

(
e−iq(x−y) − eiq(x−y)

)
. (12.74)

Letting t = x0 − y0 and �r = �x− �y we have

[φ(x), φ(y)] =
1

(2π)2

∫
q2dq

2ωq

∫ 1

−1

d cos θ
(
e−iωqteiqr cos θ − eiωqte−iqr cos θ

)
=
−i
2π2

∫ ∞

0

q2dq
sin(
√
q2 +m2t)√
q2 +m2

sin(qr)
qr

≡ iD(t, r). (12.75)

This integral is tricky. We have to be careful since we expect it to be something non-
analytic – that is the only way it can vanish everywhere outside the lightcone, but not
vanish inside the lightcone.

The result is a function we call D(t, r). For m = 0 it is

D(t, r) =
1

4πr
[δ(r + t)− δ(r − t)] , (12.76)

which has support only on the lightcone. For m �= 0, we can find an exact expression for
D(t, r) in terms of the Bessel function J0(x):

D(t, r) =
1

4πr
∂

∂r

⎧⎨⎩
J0(m

√
t2 − r2), t > r,

0, r > t > −r,
−J0(m

√
t2 − r2), t < −r.

(12.77)

We see that D(t, r) has support only in the future and past lightcones.
More generally, D(t, �r) is a Green’s function for the Klein–Gordon equation with

boundary conditions:

(� +m2)D(t, �r) = 0, D(0, �r) = 0,
∂

∂t
D(t, �r)

∣∣∣∣
t=0

= −δ(�r). (12.78)

D(t, �r) satisfies

D(t, �r) = −D(−t, �r) and D(t, �r) = D(t,−�r). (12.79)
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That is, it is odd under time reversal and even under parity. This can be seen from the
explicit form, or from the boundary condition on the Green’s function. So, with x − y ≡
(t, �r),

[φ(x), φ(y)] = iD(t, �r), (12.80)

which has support only within the future and past lightcones, as desired.
If we had chosen anticommutation relations for the scalar, then

{φ(x), φ(y)} =
∫

d3q

(2π)3
1

2ωq

(
e−iq(x−y) + eiq(x−y)

)
=

1
2π2

∫ ∞

0

q2dq
cos(
√
q2 +m2t)√
q2 +m2

sin(qr)
qr

≡ iD1(t, r). (12.81)

For m = 0, the explicit form is

D1(t, r) =
1

2π2

1
r2 − t2 . (12.82)

For m �= 0,

D1(t, r) = − 1
4πr

∂

∂r

⎧⎨⎩
iY0(m

√
t2 − r2), t > r,

H0(im
√
r2 − t2), r > t > −r,

iY0(m
√
t2 − r2), t < −r,

(12.83)

where Y0(x) is a Bessel function of the second kind and H0(x) = J0(x) + iY0(x) is a
Hankel function. This does not vanish outside the lightcone and therefore spin-0 particles
must be bosons.

12.6.1 Spinor case

Now let us do the same calculation with quantized spinors. We start by assuming

[asp, a
s′†
q ] = [bsp, b

s′†
q ] = (2π)3δ3(p− q)δss′ (12.84)

to see what goes wrong. Then,

[ψ(x), ψ̄(y)] =
∫

d3q

(2π)3
1√
2ωq

∫
d3p

(2π)3
1√
2ωp

×
∑
s,s′

[(
e−iqxasqu

s
q + eiqxbs†q v

s
q

)
, (eipyas

′†
p ūs

′
p + e−ipybs

′
p v̄

s′
p )
]

=
∑
s

∫
d3q

(2π)3
1

2ωq

[
usqū

s
qe

−iq(x−y) − vsq v̄sqeiq(x−y)
]
. (12.85)

Now we sum over polarizations using the outer product to get

[ψ(x), ψ̄(y)] =
∫

d3q

(2π)3
1

2ωq

[
(/q +m)e−iq(x−y) − (/q −m)eiq(x−y)

]
(12.86)
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and

[ψ(x), ψ̄(y)] =
∫

d3q

(2π)3
1

2ωq

[
(i/∂x +m)e−iq(x−y) − (−i/∂x −m)eiq(x−y)

]
= (i/∂x +m)

∫
d3q

(2π)3
1

2ωq

[
e−iq(x−y) + eiq(x−y)

]
= (i/∂x +m)D1(t, r). (12.87)

Thus, we get the function that does not vanish outside the lightcone.
If, instead, we take anticommutation relations{

arp, a
s†
q

}
=
{
brp, b

s†
q

}
= (2π)3δ(3)(p− q)δrs, (12.88)

then {
ψ(x), ψ̄(y)

}
=
∫

d3q

(2π)3
1

2ωq

[
(/q +m)e−iq(x−y) + (/q −m)eiq(x−y)

]
= (i/∂x +m)

∫
d3q

(2π)3
1

2ωq

[
e−iq(x−y) − eiq(x−y)

]
= (i/∂x +m)D(t, r), (12.89)

which vanishes outside the lightcone as desired.
The vanishing of anticommutators of spinors outside the lightcone is a sufficient but not

necessary condition for causality; see Problem 12.1.

12.6.2 Higher spins

For spin 0 and spin 1
2 we found

[φ(x), φ(y)] = D(t, r), {φ(x), φ(y)} = D1(r, t), (12.90)[
ψ(x), ψ̄(y)

]
= (i/∂x +m)D1(t, r),

{
ψ(x), ψ̄(y)

}
= (i/∂x +m)D(t, r), (12.91)

Since D(t, r) vanishes outside of the lightcone, but D1(t, r) does not, we concluded that
we needed commutators for spin 0 and anticommutators for spin 1

2 . The prefactors are just
spin sums – recall that

∑
spins ūu = (/p+m) for Dirac spinors and

∑
spins = 1 for a scalar.

For higher spin fields, the canonical quantization will result in the same integrals, but with
a different prefactor operator.

For higher spin fields, we will get the appropriate polarization sum. For massive spin 1,
we would get

[Aμ(x), Aν(y)] =
(
gμν +

1
m2

∂μ∂ν

)
D(t, r),

{Aμ(x), Aν(y)} =
(
gμν +

1
m2

∂μ∂ν

)
D1(t, r), (12.92)

and again we have to pick commutators.
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For higher spin fields there will be more derivatives acting on either the function D or
D1. We can see whether D or D1 appears by a simple symmetry argument (due to Pauli).
Observe that under the combined time reversal and parity transformation, PT ,

D(t, �r) = −D(−t,−�r) and D1(t, �r) = D1(−t,−�r). (12.93)

This can be seen at once from Eqs. (12.75) and (12.81). Also, the commutator [φ(x), φ(y)]
is odd under x↔ y and the anticommutator is even. Derivatives are odd. Therefore,

[Aμ1···μn(x), Aν1···νn(y)] = f(�, gμν , ∂μ∂ν)D(t, r), (12.94)

{Aμ1···μn(x), Aν1···νn(y)} = f(�, gμν , ∂μ∂ν)D1(t, r), (12.95)

since there must be an even number of derivatives in the function f by Lorentz invariance.
For half-integer spin, we will get an odd number of derivatives. In general, the quan-

tity [ψ̄μ1···μn(x), ψν1···νn(y)] does not have definite quantum number under PT , since
the fields are complex. But if we combine with the interchange of ap ↔ bp, charge
conjugation, the CPT transformation properties determine that

[ψ̄μ1···μn(x), ψν1···νn(y)] = f(�, gμν , ∂μ∂ν)/∂D1(t, r), (12.96){
ψ̄μ1···μn(x), ψν1···νn(y)

}
= f(�, gμν , ∂μ∂ν)/∂D(t, r), (12.97)

showing that all integer spin fields must have commutation relations and all half-integer
fields must have anticommutation relations.

In summary, for integer spins, which can be observables, causality is consistent only with
commutation relations. For half-integer spins, anticommutation relations are a sufficient
condition for causality. This method does not show that anticommutation relations for half-
integer spins are a necessary condition for causality.

Problems

12.1 In a causal theory, commutators of observables should vanish outside the light-
cone, [φ(x), φ(y)] = 0 for (x − y)2 < 0. For spinors, we found that with
anticommutation relations

{
ψ̄(x), ψ(y)

}
= 0 outside the lightcone. This implies

that integer spin quantities constructed out of spinors are automatically causal,
e.g.
[
ψ̄ψ(x), ψ̄ψ(y)

]
= 0. However, this is not a proof that spinors must anti-

commute. What would happen to
[
ψ̄ψ(x), ψ̄ψ(y)

]
outside the lightcone if we

used commutation relations for spinors? For simplicity, you can just look at〈
0|
[
ψ̄ψ(x), ψ̄ψ(y)

]
|0
〉
.
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Now we are ready to do calculations in QED. We have found that the Lagrangian for
QED is

L = −1
4
F 2
μν + iψ̄ /Dψ −mψ̄ψ, (13.1)

with Dμψ = ∂μψ + ieAμψ. We have also introduced quantized Dirac fields:

ψ(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe
ipx
)
, (13.2)

ψ̄(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
bspv̄

s
pe

−ipx + as†p ū
s
pe
ipx
)
. (13.3)

The creation and annihilation operators for spinors must anticommute by the spin-statistics
theorem: {

as†p , a
s′†
q

}
=
{
asp, a

s′
q

}
=
{
bs†p , b

s′†
q

}
=
{
bsp, b

s′
q

}
= 0 (13.4)

and {
asp, a

s′†
q

}
=
{
bsp, b

s′†
q

}
= δss′(2π)3δ3(p− q). (13.5)

A basis of spinors for each momentum pμ can be written as

us(p) =
(√

p · σξs√
p · σ̄ξs

)
, vs(p) =

(√
p · σηs

−√p · σ̄ηs

)
, (13.6)

with ξ1 = η1 =
(

1
0

)
and ξ2 = η2 =

(
0
1

)
. These spinors satisfy

2∑
s=1

us(p)ūs(p) = /p+m, (13.7)

2∑
s=1

vs(p)v̄s(p) = /p−m. (13.8)

We have also calculated the Feynman propagator for a Dirac spinor:〈
0|T{ψ(0)ψ̄(x)}|0

〉
=
∫

d4p

(2π)4
i(/p+m)

p2 −m2 + iε
eipx. (13.9)

In this chapter we will derive the Feynman rules for QED and then perform some important
calculations.
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13.1 QED Feynman rules

The Feynman rules for QED can be read directly from the Lagrangian just as in scalar QED.
The only subtlety is possible extra minus signs coming from anticommuting spinors within
the time ordering. First, we write down the Feynman rules, then derive the supplementary
minus sign rules.

A photon propagator is represented with a squiggly line:

=
−i

p2 + iε

[
gμν − (1− ξ)pμpν

p2

]
. (13.10)

Unless we are explicitly checking gauge invariance, we will usually work in Feynman
gauge, ξ = 1, where the propagator is

=
−igμν
p2 + iε

(Feynman gauge) . (13.11)

A spinor propagator is a solid line with an arrow:

=
i(/p+m)

p2 −m2 + iε
. (13.12)

The arrow points to the right for particles and to the left for antiparticles. For internal lines,
the arrow points with momentum flow.

External photon lines get polarization vectors:

= εμ(p) (incoming), (13.13)

= ε�μ(p) (outgoing). (13.14)

Here the blob means the rest of the diagram.
External fermion lines get spinors, with u spinors for electrons and v spinors for

positrons.

= us(p), (13.15)

= ūs(p), (13.16)

= v̄s(p), (13.17)

= vs(p). (13.18)

External spinors are on-shell (they are forced to be on-shell by LSZ). So, for external
spinors we can use the equations of motion:

(/p−m)us(p) = ūs(p)(/p−m) = 0, (13.19)

(/p+m)vs(p) = v̄s(p)(/p+m) = 0, (13.20)

which will simplify a number of calculations.
Expanding the Lagrangian,

L = −1
4
F 2
μν + ψ̄(iγμ∂μ −m)ψ − eψ̄γμψAμ, (13.21)
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we see that the interaction is Lint = −eψ̄γμψAμ. Since there is no factor of momentum,
the Feynman rule is the same for any combination of incoming or outgoing fields (unlike
in scalar QED):

p1

p2
e−

e−

=
p1

p2
e+

e+

=
p2

p1e−

e+

=
p2

p1 e−

e+

= −ieγμ.

(13.22)
The μ on the γμ will get contracted with the μ of the photon, which will either be in the
gμν of the photon propagator (if the photon is internal) or the εμ of a polarization vector (if
the photon is external).

The γμ = γμαβ as a matrix will always get sandwiched between spinors, as in

ūγμu = ūαγ
μ
αβuβ (13.23)

for e−e− scattering, or v̄γμu for e+e− annihilation, etc. The barred spinor always goes on
the left, since the interaction is ψ̄Aμγμψ. If there is an internal fermion line between the
ends, the fermion propagator goes between the end spinors:

p1 p2 p3

εν1 εμ2

γν γμ

= (−ie)2ū(p3)γμ
i(/p2

+m)
p2
2 −m2 + iε

γνu(p1)ε2μ(q2) ε
1
ν(q1) ,

(13.24)

where the photon momenta are qμ1 = pμ2 − p
μ
1 and qμ2 = pμ3 − p

μ
2 . In this example, the three

γ-matrices get multiplied and then sandwiched between the spinors. To see explicitly what
is a matrix and what is a vector, we can add in the spinor indices:

ū(p3) γμ
i(/p2

+m)
p2
2 −m2 + iε

γνu(p1) = ūα(p3) γ
μ
αβ

i(/p2
+m)βγ

p2
2 −m2 + iε

γνγδuδ(p1). (13.25)

If we tie the ends of the diagram above together we get a loop:

−→
p

p1

−→
p

p2

εν1 εμ2
γν γμ

. (13.26)

For fermion loops we use the same convention as for scalar loops that the loop momentum
goes in the direction of the particle-flow arrow. In the loop, since any possible interme-
diate states are allowed, we must integrate over the momenta of the virtual spinors as
well as sum over their possible spins. The uδūα in Eq. (13.25) then gets replaced by a
propagator that sums over all possible spins. This is done automatically since the numera-
tor of the propagator is (/p2

+m)δα =
∑
s u

s
δū
s
α. We also must integrate over all possible

momenta constrained by momentum conservation at each vertex. So the loop in Eq. (13.26)
evaluates to
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iM = − (−ie)2
∫

d4p1

(2π)4
d4p2

(2π)4
(2π)4 δ4 (p+ p2 − p1) ε2�μ (p)ε1ν(p)

×
[
γμαβ

i(/p1
+m)βγ

p2
1 −m2 + iε

γνγδ
i(/p2

+m)δα
p2
2 −m2 + iε

]
. (13.27)

The extra minus sign is due to spin-statistics, as will be explained shortly. Contracting all
the spinor indices and replacing pμ1 by pμ + kμ and pμ2 by kμ:

iM = p

p+ k

p
k

εν1 εμ2

= e2ε2�μ ε
1
ν

∫
d4k

(2π)4
Tr

[
γμ

i(/p+ /k +m)

(p+ k)2 −m2 + iε
γν

i(/k +m)
k2 −m2 + iε

]
, (13.28)

where the trace is a trace of spinor indices. Computing Feynman diagrams in QED will
often involve taking the trace of products of γ-matrices.

A useful general rule is that the spinor matrices are always multiplied together in the
direction opposite to the particle-flow arrow, which allows us to read off Eqs. (13.24) and
(13.28) easily from the corresponding diagrams.

13.1.1 Signs

Recall from Eq. (12.29) that spinors anticommute within a time-ordered product:

T {· · ·ψ(x)ψ(y) · · · } = −T {· · ·ψ(y)ψ(x) · · · } . (13.29)

Minus signs coming from such anticommutations appear in the Feynman rules. It is easiest
to see when they should appear by example.

Consider Møller scattering (e−e− → e−e−) at tree-level. There are two Feynman
diagrams, for the t-channel (in Feynman gauge):

iMt =
p2

p1

p4

p3

= ±(−ie)ū(p3)γμu(p1)
−igμν

(p1 − p3)
2 (−ie)ū(p4)γνu (p2) ,

(13.30)
and the u-channel:

iMu =
p2

p1

p3

p4

= ±(−ie)ū(p3)γμu(p2)
−igμν

(p1 − p4)
2 (−ie)ū(p4)γνu (p1) .

(13.31)
The question is: What sign should each diagram have?



228 Quantum electrodynamics

To find out, recall that these Feynman diagrams represent S-matrix elements. By the
LSZ reduction theorem, they represent contributions to the Fourier transform of the Green’s
function:

G4(x1, x2, x3, x4) = 〈Ω|T
{
ψ(x1) ψ̄(x3)ψ(x2) ψ̄(x4)

}
|Ω〉 , (13.32)

with external propagators removed and external spinors added. The first non-zero contri-
bution to this Green’s function in perturbation theory comes at order e2 in an expansion of
free fields:

G4 = (−ie)2
∫
d4x

∫
d4y

× 〈0|T
{
ψ(x1)ψ̄(x3)ψ(x2)ψ̄(x4)

(
ψ̄(x) /A(x)ψ(x)

)(
ψ̄(y) /A(y)ψ(y)

)}
|0〉, (13.33)

where the big (· · · ) indicate that the spinors inside are contracted. More explicitly, we can
write

G4(x1, x2, x3, x4) = (−ie)2γμβ1β2
γνβ3β4

∫
d4x

∫
d4y

× 〈0|T
{
ψα1(x1)ψ̄α3(x3)ψα2(x2)ψ̄α4(x4)

× ψ̄β1(x)A
μ(x)ψβ2(x)ψ̄β3(y)A

ν(y)ψβ4(y)
}
|0〉. (13.34)

In this form, we can anticommute the spinors within the time ordering before performing
any contractions.

To get Feynman diagrams out of this Green’s function, we have to perform contractions,
which means creating fields from the vacuum and then annihilating them. To be absolutely
certain about the sign coming from the contraction, it is easiest to anticommute the fields
so that the fields that annihilate spinors are right next to the fields that create them. For the
t-channel diagram, the top electron line is created by ψ̄(x3) annihilated by ψ(x), created
by ψ̄(x) and annihilated by ψ(x1), and similarly for the bottom line. So we need

G4(x1, x2, x3, x4) = (−ie)2γμβ1β2
γνβ3β4

∫
d4x

∫
d4y

× 〈0|T{Aμ(x)Aν(y)ψα1(x1)ψ̄β1(x)ψβ2(x)ψ̄α3(x3)

× ψα2(x2)ψ̄β3(y)ψβ4(y)ψ̄α4(x4)}|0〉. (13.35)

Contractions of these spinors in this order gives the t-channel diagram in Eq. (13.30).
For the u-channel, ordering the fields so that the contractions are in order gives

G4(x1, x2, x3, x4) = (−ie)2γμβ1β2
γνβ3β4

∫
d4x

∫
d4y

× 〈0|T{Aμ(x)Aν(y)ψα1(x1)ψ̄β1(x)ψβ2(x)ψ̄α4(x4)

× ψα2(x2)ψ̄β3(y)ψβ4(y)ψ̄α3(x3)}|0〉, (13.36)

so that the u-channel diagram in Eq. (13.31) has a minus sign out front. The result is that
the matrix element for Møller scattering has the form
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M = Mt +Mu = e2
{ [ū(p3)γμu(p1)] [ū(p4)γμu(p2)]

(p1 − p3)2

− [ū(p4)γμu(p1)] [ū(p3)γμu(p2)]
(p1 − p4)2

}
. (13.37)

A shortcut to remembering the relative minus sign is simply to note thatG4(x1, x2, x3, x4)
= −G4(x1, x2, x4, x3). A minus sign from interchanging the identical fermions at x3 and
x4 is exactly what you would expect from Fermi–Dirac statistics. The overall sign of the
sum of the matrix elements is an unphysical phase, but the relative sign of the t- and u-
channels is important for the cross term in the |M|2 = |Mu +Mt|2 and has observable
effects.

One can do the same exercise for loops. For example, a loop such as

x1 x2x y
(13.38)

comes from a term in the perturbative expansion of the time-ordered product for two photon
fields of the form (leaving all spinor indices implicit)

G2 = (−ie)2(γαβ · · · )〈0|T
{
Aμ(x1)Aν(x2)ψ̄(x)Aα(x)ψ(x)ψ̄(y)Aβ(y)ψ(y)

}
|0〉.

(13.39)
To get the spinors into the order where they are created and then immediately destroyed,
we need to anticommute ψ(y) from the right to the left. That is, we use

ψ̄α(x)ψβ(x)ψ̄γ(y)ψδ(y) = −ψδ(y)ψ̄α(x)ψβ(x)ψ̄γ(y). (13.40)

Thus, the Feynman rule for this fermion loop should be supplemented with an additional
minus sign. As an exercise, you should check that adding more photons to a fermionic loop
does not change this overall minus sign.

In summary, the Feynman rules for fermions must be supplemented by a factor of

• −1 for interchange of external identical fermions. Diagrams such as s- and t-channel
exchanges, which would be present even for non-identical particles, do not get an extra
minus sign. The −1 is a relative minus sign between two diagrams that are related by
interchanging two external identical particles.

• −1 for each fermion loop.

13.2 γ-matrix identities

Before beginning the QED calculations, let us derive some useful identities about γ-
matrices. We will often need to take traces of products of γ-matrices. These can often
be simplified using the cyclic property of the trace:

Tr[AB · · ·C] = Tr[B · · ·CA]. (13.41)



230 Quantum electrodynamics

We will often also use γ5 ≡ iγ0γ1γ2γ3, which satisfies

γ2
5 = 1, γ5γμ = −γμγ5. (13.42)

To keep the spinor indices straight, we sometimes write 1 for the identity on spinor
indices. So,

{γμ, γν} = 2gμν1 (13.43)

and

Tr[gμν1] = gμνTr[1] = 4gμν . (13.44)

The gμν are just numbers for each μ and ν and pull out of the trace.
Then

Tr[γμ] = Tr[γ5γ5γ
μ] = Tr[γ5γ

μγ5] = −Tr[γ5γ5γ
μ] = −Tr[γμ], (13.45)

where we have cycled the γ5-matrix in the second step. Thus

Tr[γμ] = 0. (13.46)

Similarly,

Tr[γμγν ] = Tr[−γνγμ + 2gμν1] = −Tr[γμγν ] + 8gμν , (13.47)

which leads to

Tr[γμγν ] = 4gμν . (13.48)

In a similar way, you can show

Tr[γαγβγμ] = 0 (13.49)

and more generally that the trace of an odd number of γ-matrices is zero. For four γ-
matrices, the result is (Problem 11.1)

Tr[γαγμγβγν ] = 4(gαμgβν − gαβgμν + gανgμβ). (13.50)

You will use this last one a lot! You can remember the signs because adjacent indices give
plus and the other one gives minus.

A summary of important γ-matrix identities is given in Appendix A.

13.3 e+e− → μ+μ−

The muon, μ−, is a particle that is identical to the electron as far as QED is concerned,
except heavier. Studying processes with muons therefore provides simple tests of QED.
Indeed, the simplest tree-level scattering process in QED is e+e− → μ+μ−, which we
calculate at tree-level here and at 1-loop in Chapter 20. The leading-order contribution is

iM =
p1

p4p2

p3



13.3 e+e− → μ+μ− 231

= (−ie)v̄α(p2)γ
μ
αβuβ(p1)

−i
[
gμν − (1− ξ)kμkνk2

]
k2

(−ie)ūδ(p3)γνδιvι(p4), (13.51)

where kμ = pμ1 + pμ2 = pμ3 + pμ4 . Each of these spinors has a spin, thus we should prop-
erly write us1α (p1) and so on. It is conventional to leave these spin labels implicit. Since
the spinors are on-shell, we can use the equations of motion /p1u(p1) = mu(p1) and
v̄(p2) /p2 = −mv̄(p2). Thus,

v̄α(p2)γ
μ
αβuβ(p1)kμ = v̄(p2) /p1u(p1) + v̄(p2) /p2u(p1)

= mv̄(p2)u(p1)−mv̄(p2)u(p1) = 0, (13.52)

implying that the kμkν term does not contribute, as expected by gauge invariance. So,

M =
e2

s
v̄(p2)γμu(p1)ū(p3)γμv(p4), (13.53)

where s = (p1 + p2)2 as usual.
To calculate |M|2 we need the conjugate amplitude. To get this, we first recall that

γ†μγ0 = γ0γμ and γ†0 = γ0. (13.54)

So,

(ψ̄1γ
μψ2)† = (ψ†

1γ0γ
μψ2)† = ψ†

2γ
μ†γ†0ψ1 = ψ†

2γ0γ
μψ1 = ψ̄2γ

μψ1. (13.55)

This nice transformation property is another reason why using ψ̄ instead of ψ† is useful.
Then,

M† =
e2

s
v̄(p4)γμu(p3)ū(p1)γμv(p2) (13.56)

and therefore

|M|2 =
e4

s2
[v̄(p2)γμu(p1)] [ū(p3)γμv(p4)] [v̄(p4)γνu(p3)] [ū(p1)γνv(p2)] . (13.57)

The grouping is meant to emphasize that each term in brackets is just a number for each
μ and each set of spins. Thus |M|2 is a product of these numbers. For example, we could
also have written

|M|2 =
e4

s2
[v̄(p2)γμu(p1)] [ū(p1)γνv(p2)] [ū(p3)γμv(p4)] [v̄(p4)γνu(p3)] , (13.58)

which shows that |M|2 is the contraction of two tensors, one depending only on the initial
state, and the other depending only on the final state.

13.3.1 Unpolarized scattering

The easiest thing to calculate from this is the cross section for scattering assuming spin is
not measured. The spin sum can be performed with a Dirac trace. To see this, we will sum
over the μ+ spins using
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∑
s

vsα(p4) v̄sβ(p4) =
∑
s

v̄sβ(p4) vsα(p4) =
(
/p4 −mμ1

)
αβ
, (13.59)

and over the μ− spins using∑
s

usα(p3) ūsβ(p3) =
∑
s

ūsβ(p3)usα(p3) =
(
/p3 +mμ1

)
αβ
. (13.60)

We have written each sum two ways to emphasize that these are sums over vectors of com-
plex numbers corresponding to external spinors, not over fermion fields. Thus, no minus
sign is induced from reversing the order of the sum: usαū

s
β = ūsβu

s
α.

Using these relations∑
s′

∑
s

[ūs
′
(p3)γμvs(p4)][v̄s(p4)γνus

′
(p3)] =

∑
s′

[ūs
′
β(p3)γ

μ
βδ( /p4 −mμ1)διγνιαu

s′
α(p3)]

=
(
/p3 +mμ1

)
αβ
γμβδ( /p4 −mμ1)διγνια

= Tr[( /p3 +mμ)γμ( /p4 −mμ)γν ], (13.61)

which is a simple expression we can evaluate using γ-matrix identities.
Let us also assume that we do not know the polarization of the initial states. Then, if we

do the measurement many times, we will get the average over each polarization. This leads
to contractions and traces of the initial state, with a factor of 1

4 ( 1
2 each for the incoming

e+ and incoming e−) to average over our ignorance. Thus we need

1
4

∑
spins

|M|2 =
e4

4s2
Tr[( /p1 +me)γν( /p2−me)γμ]Tr[( /p3 +mμ)γμ( /p4−mμ)γν ]. (13.62)

These traces simplify using trace identities:

Tr[( /p3 +mμ)γα( /p4 −mμ)γβ ] = pρ3p
σ
4Tr[γργαγσγβ ]−m2

μTr[γαγβ ]

= 4(pα3 p
β
4 + pα4 p

β
3 − p

ρ
3p
ρ
4g
αβ)− 4m2

μg
αβ . (13.63)

So,

1
4

∑
spins

|M|2 =
4e4

s2

(
pα1 p

β
2 + pα2 p

β
1 − (pρ1p

ρ
2 +m2

e)g
αβ
)

×
(
pα3 p

β
4 + pα4 p

β
3 − (pσ3p

σ
4 +m2

μ)g
αβ
)

=
8e4

s2
(
p13p24 + p14p23 +m2

μp12 +m2
ep34 + 2m2

em
2
μ

)
, (13.64)

with pij ≡ pi · pj . We can simplify this further with Mandelstam variables:

s = (p1 + p2)2 = (p3 + p4)2 = 2m2
e + 2p12 = 2m2

μ + 2p34, (13.65)

t = (p1 − p3)2 = (p2 − p4)2 = m2
e +m2

μ − 2p13 = m2
e +m2

μ − 2p24, (13.66)

u = (p1 − p4)2 = (p2 − p3)2 = m2
e +m2

μ − 2p14 = m2
e +m2

μ − 2p23. (13.67)
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p = (E, k)1 p = (E,−k)2

p
=

(E
, p

)

3

p
=

(E
,−

p)

4

e− e+

μ−

μ+

Kinematics of e−e+ → μ−μ+ in the center-of-mass frame. Since the particles are all
on-shell, |�k| =

√
E2 −m2

e and |�p| =
√
E2 −m2

μ.

�Fig. 13.1

After some algebra, the result is

1
4

∑
spins

|M|2 =
2e4

s2

[
t2 + u2 + 4s(m2

e +m2
μ)− 2
(
m2
e +m2

μ

)2 ]
. (13.68)

13.3.2 Differential cross section

For 2 → 2 scattering of particles of different mass, the cross section in the center-of-mass
frame can be computed from the matrix element with Eq. (5.32):(

dσ

dΩ

)
CM

=
1

64π2E2
CM

|�pf |
|�pi|

|M|2. (13.69)

There are only two variables on which the cross section depends: ECM and the scattering
angle between the incoming electron and the outgoing muon. In the center-of-mass frame,
the kinematics are as shown in Figure 13.1.

With this choice of momenta, we find

s = (p1 + p2)
2 = 4E2 = E2

CM, (13.70)

t = (p1 − p3)2 = m2
e +m2

μ − 2E2 + 2�k·�p, (13.71)

u = −(�k + �p)2 = m2
e +m2

μ − 2E2 − 2�k·�p, (13.72)

and so

dσ

dΩ
=

e4

32π2E2
CMs

2

|�p|
|�k|

[
t2 + u2 + 4s(m2

e +m2
μ)− 2(m4

e + 2m2
em

2
μ +m4

μ)
]

=
α2

16E6

|�p|
|�k|

(
E4 + (�k · �p)2 + E2(m2

e +m2
μ)
)
. (13.73)
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The only angular dependence comes from the �k · �p term:

�k · �p = |�k‖�p| cos θ. (13.74)

So,

dσ

dΩ
=

α2

16E6

|�p|
|�k|

(
E4 + |�k|2|�p|2 cos2θ + E2(m2

e +m2
μ)
)
, (13.75)

where α = e2

4π and

|�k| =
√
E2 −m2

e, |�p| =
√
E2 −m2

μ, (13.76)

which is the general result for the e+e− → μ+μ− rate in the center-of-mass frame.
Taking me = 0 for simplicity gives |�k| = E and this reduces to

dσ

dΩ
=

α2

4E2
CM

√
1−

m2
μ

E2

(
1 +

m2
μ

E2
+

(
1−

m2
μ

E2

)
cos2θ

)
. (13.77)

If, in addition, we take mμ = 0, which is the ultra-high-energy limit, we find

dσ

dΩ
=

α2

4E2
CM

(1 + cos2θ), (13.78)

which is the same thing we had from the naive sum over spin states back in Eq. (5.53).
Recall that scattering with spins transverse to the plane gave M ∝ 1 and scattering with
spins in the plane gave M ∝ cos2θ, so this agrees with our previous analysis. You can
check explicitly by choosing explicit spinors that our intuition with spin scattering agrees
with QED even for the polarized cross section. Integrating the differential cross section
over θ gives σ0 = 4πα2

3E2
CM

for the total cross section at tree-level. The 1-loop correction to
the total cross section will be calculated in Chapter 20.

13.4 Rutherford scattering e−p+ → e−p+

Now let us go back to the problem we considered long ago, scattering of an electron by a
Coulomb potential. Recall the classical Rutherford scattering formula,

dσ

dΩ
=

m2
ee

4

4p4 sin4 θ
2

, (13.79)

where p = |�pi| = |�pf | is the magnitude of the incoming electron momentum, which
is the same as the magnitude of the outgoing electron momentum for elastic scatter-
ing. Rutherford calculated this using classical mechanics to describe how an electron
would get deflected in a central potential, as from an atomic nucleus. We recalled in Sec-
tion 5.2 that Rutherford’s formula is reproduced in quantum mechanics through the Born
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approximation, which relates the cross section to the Fourier transform of the Coulomb
potential V (r) = e2

4πr :

(
dσ

dΩ

)
Born

=
m2
e

4π2
Ṽ (k)2 =

m2
e

4π2

(∫
d3x e−i�k·�x

e2

4π |�x|

)2
=
m2
e

4π2

(
e2

|�k|2

)2
=

m2
ee

4

64π4 sin4 θ
2

,

(13.80)

where �k = �pi − �pf is the momentum transfer satisfying |�k| = 2p sin θ
2 .

We also reproduced these results from field theory, taking the non-relativistic limit
before doing the calculation. We found that the amplitude is given by a t-channel diagram:(

dσ

dΩ

)
QFT

=
e4

64π2E2
CM

(2me)2(2mp)2

t2
, (13.81)

where the 2m2
e and 2m2

p factors come from the non-relativistic normalization of the elec-

tron and proton states. Since t = (p3 − p1)
2 = −2p2 (1− cos θ) = −4p2 sin θ

2 and
ECM = mp in the center-of-mass frame, we reproduce the Rutherford formula.

We will now do the calculation in QED. This will allow us to reproduce the above equa-
tion, but it will also give us the relativistic corrections. In this whole section, we neglect
any internal structure of the proton, treating it, like the muon, as a pointlike particle. A
discussion of what actually happens at extremely high energy, ECM � mp, is given in
Chapter 32.

13.4.1 QED amplitude

As far as QED is concerned, a proton and a muon are the same thing, up to the sign of the
charge, which gets squared anyway, and the mass. So let us start with e−μ− → e−μ−. The
amplitude is given by a t-channel diagram:

iM =

p2

p1

p4

k

p3

= (−ie)ū(p3)γμu(p1)
−i
[
gμν − (1− ξ)kμkνk2

]
(p1 − p3)

2 (−ie)ū(p4)γνu(p2),

(13.82)

with kμ = pμ1 − pμ3 . As in e+e− → μ+μ−, the kμkν term drops out for on-shell spinors,
as expected by gauge invariance. So this matrix element simplifies to

M =
e2

t
ū(p3)γμu(p1)ū(p4)γμu(p2), (13.83)

with t = (p1 − p3)
2. Summing over final states and averaging over initial states,

1
4

∑
spins

|M|2 =
e4

4t2
Tr[( /p1 +me)γν( /p3 +me)γμ]Tr[( /p4 +mμ)γμ( /p2 +mμ)γν ]. (13.84)
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This is remarkably similar to what we had for e+e− → μ+μ−:

1
4

∑
spins

|M|2 =
e4

4s2
Tr[( /p1 +me)γν( /p2−me)γμ]Tr[( /p3 +mμ)γμ( /p4−mμ)γν ]. (13.85)

In fact, the two are identical if we take the e+e− → μ+μ− formula and replace

(p1, p2, p3, p4) → (p1,−p3, p4,−p2) . (13.86)

These changes send s→ t, or more generally,

s = (p1 + p2)2 → (p1 − p3)2 = t, (13.87)

t = (p1 − p3)2 → (p1 − p4)2 = u, (13.88)

u = (p1 − p4)2 → (p1 + p2)2 = s. (13.89)

These replacements are not physical, since p2 → −p3 produces a momentum with negative
energy, which cannot be an external particle. It is just a trick, called a crossing relation,
that lets us recycle tedious algebraic manipulations. You can prove crossing symmetries
in general, even for polarized cross sections with particular spins, and there exist general
crossing rules. However, rather than derive and apply these rules, it is often easier simply
to write down the amplitude that you want and inspect it to find the right transformation.

With the crossing symmetry we can just skip to the final answer. For e+e− → μ+μ−

we had

1
4

∑
spins

|M|2 =
2e4

s2

[
t2 + u2 + 4s(m2

e +m2
μ)− 2
(
m2
e +m2

μ

)2]
. (13.90)

Therefore, for e−p+ → e−p+we get

1
4

∑
spins

|M|2 =
2e4

t2

[
u2 + s2 + 4t(m2

e +m2
p)− 2
(
m2
e +m2

p

)2]
. (13.91)

13.4.2 Corrections to Rutherford’s formula

Now let us take the limit mp � me to get the relativistic corrections to Rutherford’s
formula. In this limit we can treat the proton mass as effectively infinite, but we have to
treat the electron mass as finite to go from the non-relativistic to the relativistic limit. As
the proton mass goes to infinity, the momenta are

pμ1 = (E, �pi), pμ2 = (mp, 0), pμ3 = (E, �pf ), pμ4 = (mp, 0) . (13.92)

The scattering angle is defined by

�pi · �pf = p2 cos θ = v2E2 cos θ, (13.93)

where p = |�pi| = |�pf | and

v =
p

E
=

√
1− m2

e

E2
(13.94)
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is the electron’s relativistic velocity. Then, to leading order in me/mp,

p13 = E2(1− v2 cos θ), (13.95)

p12 = p23 = p34 = p14 = Emp, (13.96)

p24 = m2
p, (13.97)

where pij ≡ pμi p
μ
j and

t = (p1 − p3)2 = −(�pi − �pf )2 = −2p2(1− cos θ), (13.98)

so that

1
4

∑
spins

|M|2 =
8e4

t2
[
p14p23 + p12p34 −m2

pp13 −m2
ep24 + 2m2

em
2
p

]
=

8e4

4v4E4(1− cos θ)2
[
E2m2

p + E2m2
pv

2 cos θ +m2
em

2
p

]
=

2e4m2
p

v4E2(1− cos θ)2
[
2− v2(1− cos θ)

]
=

e4m2
p

v4E2 sin4 θ
2

[
1− v2 sin2 θ

2

]
. (13.99)

Note that each term in the top line of this equation scales as m2
p, as does the final answer,

so dropping subleading terms in Eq. (13.92) is justified. Since the center-of-mass frame is
essentially the lab frame, the differential cross section is given by dσ

dΩ = 1
64π2E2

CM
|M|2:

dσ

dΩ
=

e4

64π2v2p2 sin4 θ
2

(
1− v2 sin2 θ

2

)
, E 
 mp. (13.100)

This is known as the Mott formula. Note that the limit mp → ∞ exists: there is no
dependence on the proton mass. For slow velocities we can use v 
 1 and p 
 E ∼ me

so v ∼ p
me

. Thus,

dσ

dΩ
=

e4m2
e

64π2p4 sin4 θ
2

, v 
 1 and E 
 mp (13.101)

which is the Rutherford formula. In particular, note that the normalization factors, m2
e,

worked out correctly.
In the very high energy limit, E � me, one can no longer assume that the final state

proton is also at rest. However, one can now neglect the electron mass, so that v = 1. Then
the momenta are

pμ1 = (E, �pi), pμ2 = (mp, 0), pμ3 = (E′, �pf ), pμ4 = pμ1 + pμ2 − p
μ
3 , (13.102)

with |�pi| = E and |�pf | = E′. For me = 0 in the proton rest frame, following the same
steps as above, we find the cross section:
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dσ

dΩ
=

e4

64π2E2 sin4 θ
2

E′

E

(
cos2

θ

2
+
E − E′

mp
sin2 θ

2

)
, me 
 E, (13.103)

where E′ is the final state electron’s energy. As mp →∞, E → E′ and this reduces to the
v → 1 limit of the Mott formula, Eq. (13.100).

These formulas characterize the scattering of pointlike particles from other pointlike
particles. Note that the final forms in which we have written these cross sections depend
only on properties of the initial and final electrons. Thus, they are suited to experimen-
tal situations in which electrons are scattered by hydrogen gas and the final state proton
momenta are not measured. Such experiments were carried out in the 1950s, notably at
Stanford, and deviations of the measured cross section from the form of Eq. (13.103) led
to the conclusion that the proton must have substructure. More shockingly, at very high
energy, this pointlike scattering form was once again observed, indicating the presence
of pointlike constituents within the proton, now known as quarks. We will discuss these
important e−p+ scattering experiments and their theoretical interpretation in great detail
in Chapter 32.

13.5 Compton scattering

The next process worth studying is the QED prediction for Compton scattering, γe− →
γe−. By simple relativistic kinematics, Compton was able to predict the shift in wavelength
of the scattered light as a function of angle,

Δλ =
1
m

(1− cos θ), (13.104)

but he could not predict the intensity of radiation at each angle.
In the classical limit, for scattering of soft radiation against electrons, J. J. Thomson had

derived the formula
dσ

d cos θ
= πr2e
(
1 + cos2θ

)
=
πα2

m2
(1 + cos2θ), (13.105)

where re is the classical electron radius, re = α
m , defined so that if the electron were a

disk of radius r, the cross section would be πr2. The 1 comes from radiation polarized in
the plane of scattering and the cos2θ from polarization out of the plane, just as we saw for
e+e− → μ+μ− in Section 5.3. From QED we should be able to reproduce this formula,
plus the relativistic corrections.

There are two diagrams:

iMs =
p2

p1

p4

p3

= (−ie)2εμ1 ε�ν4 ū(p3)γν
i( /p1 + /p2 +m)
(p1 + p2)2 −m2

γμu(p2),

(13.106)
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iMt =

p2

p1

p4

p3

= (−ie)2εμ1 ε�ν4 ū(p3)γμ
i( /p2 − /p4 +m)
(p2 − p4)2 −m2

γνu(p2), (13.107)

so the sum is

M = −e2εμ1 ε�ν4 ū(p3)

[
γν
(
/p1 + /p2 +m

)
γμ

s−m2
+
γμ
(
/p2 − /p4 +m

)
γν

t−m2

]
u(p2). (13.108)

We would next like to calculate the unpolarized cross section.

13.5.1 Photon polarization sums

To square this and sum over on-shell physical polarizations, it is helpful to employ a trick
for the photon polarization sum. There is no way to write the sum over transverse modes in
a Lorentz-invariant way, since the only available dimensionless tensors are gμν and pμpν

p2 ,

but on-shell p2 = 0 so pμpν

p2 is undefined.
Physical polarizations can be defined as orthogonal to pμ and orthogonal to any other

lightlike reference vector rμ as long as rμ is not proportional to pμ. For example, if pμ =
(E, 0, 0, E), then the canonical polarizations εμ1 = (0, 1, 0, 0) and εμ2 = (0, 0, 1, 0) are
orthogonal to p̄μ = (E, 0, 0,−E). More generally, if pμ = (E, �p), then choosing the
reference vector as rμ = p̄μ, where

p̄μ = (E,−�p), (13.109)

will uniquely determine the two transverse polarizations. Other choices of reference vector
rμ lead to transverse polarizations that are related to the canonical transverse polarizations
by little-group transformations (Lorentz transformations that hold pμ fixed). For example,
with pμ = (E, 0, 0, E) choosing rμ = (1, 0, 1, 0) leads to ε̂μ1 = (0, 1, 0, 0) and ε̂μ2 =
(1, 0, 1, 1). Since ε̂μ2 = εμ2 + 1

E p
μ, there will be no difference in matrix elements calculated

using these different polarization sets by the Ward identity. In fact, invariance under change
of reference vector provides an important constraint on the form that matrix elements can
have. This constraint will be efficiently exploited in the calculation of amplitudes using
helicity spinors in Chapter 27.

With the choice rμ = p̄μ, you should verify that (see Problem 8.5)

2∑
i=1

εi�μ ε
i
ν = −gμν +

1
2E2

(pμp̄ν + p̄μpν) . (13.110)

Now, suppose we have an amplitude involving a photon. WritingM = εμMμ, we find∑
pols. i

|M|2 = ε�iμM
�
μMνε

i
ν = −M�

μMμ+
1

2E2

(
pμM

�
μMν p̄ν + p̄μM

�
μMνpν

)
. (13.111)
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By the Ward identity, pμMμ = 0, and therefore we can simply replace∑
pols. i

εi�μ ε
i
ν → −gμν (13.112)

in any physical matrix element. Note that this replacement only works for the sum of all
relevant diagrams – individual diagrams are not gauge invariant, as you can explore in
Problem 13.7.

13.5.2 Matrix element

Returning to the Compton scattering process, we are now ready to evaluate |M|2 summed
over spins and polarizations. |M|2 includes terms from the t-channel and s-channel dia-
grams squared as well as their cross terms (M�

tMs +M�
sMt). To see what is involved,

let us just evaluate one piece in the high-energy limit where we can set m = 0. In this limit

Mt = −e
2

t
ε1με

4�
ν ū(p3)γμ( /p2 − /p4)γνu(p2), (13.113)

and so, using Eqs. (13.8) and (13.112),∑
spins/pols.

|Mt|2 =
e4

t2
Tr[ /p3γ

μ( /p2 − /p4)γν /p2γν( /p2 − /p4)γμ]. (13.114)

Now use γν/pγν = −2/p and qμ = pμ2 − p
μ
4 = pμ3 − p

μ
1 to get∑

spins/pols.

|Mt|2 = 4
e4

t2
Tr[ /p3/q /p2/q] = 16

e4

t2
(
2(p3 · q)(p2 · q)− p23q

2
)
. (13.115)

Using p2
3 = p2

2 = 0, we can simplify this to∑
spins/pols.

|Mt|2 = 16
e4

t2
(2p13p24 + 2p23p13) = 8

e4

t2
(
t2 + ut

)
= −8e4

s

t
= 8e4

p12

p24
.

(13.116)

Note that one of the factors of t canceled, so the divergence at t = 0 is not 1
t2 but simply 1

t .
Including all the terms gives

M = e2εin
με

out�
ν ū(p3)

[
γν
(
/p1 + /p2 +m

)
γμ

s−m2
+
γμ
(
/p2 − /p4 +m

)
γν

t−m2

]
u(p2). (13.117)

Then, summing/averaging over spins and polarizations we find

1
4

∑
pols.

|M|2 = e4Tr

{
( /p3 +m)

[
γν
(
/p1 + /p2 +m

)
γμ

s−m2
+
γμ
(
/p2 − /p4 +m

)
γν

t−m2

]

×( /p2 +m)

[
γμ
(
/p1 + /p2 +m

)
γν

s−m2
+
γν
(
/p2 − /p4 +m

)
γμ

t−m2

]}
. (13.118)
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This is a bit of a mess, but after some algebra the result is rather simple:

1
4

∑
pols.

∣∣∣M∣∣∣2 = 2e4
[
p24

p12
+
p12

p24
+ 2m2

(
1
p12

− 1
p24

)
+m4

(
1
p12

− 1
p24

)2
]
.

(13.119)

13.5.3 Klein–Nishina formula

Let us start with the low-energy limit, ω 
 m, where it makes sense to work in the lab
frame. Then

p1 = (ω, 0, 0, ω), p2 = (m, 0, 0, 0),

p4 = (ω′, ω′ sin θ, 0, ω′ cos θ), p3 = p1 + p2 − p4 = (E′, p′). (13.120)

Note that the on-shell condition p2
3 = m2 implies

0 = p12 − p14 − p24 = ωm− ωω′(1− cos θ)−mω′, (13.121)

so

ω′ =
ω

1 + ω
m (1− cos θ)

, (13.122)

which is the formula for the shifted frequency as a function of angle. There is no QED in
this relation – it is just momentum conservation and is the same as Compton’s formula for
the wavelength shift:

Δλ =
1
ω′ −

1
ω

=
1
m

(1− cos θ), (13.123)

but it is still a very important relation!
Then, since p12 = ωm and p24 = ω′m, we get a simple formula for |M|2:

1
4

∑
pols.

|M|2 = 2e4
[
ω′

ω
+
ω

ω′ − 2 (1− cos θ) + (1− cos θ)2
]

= 2e4
[
ω′

ω
+
ω

ω′ − sin2 θ

]
. (13.124)

Now we need to deal with the phase space. In the lab frame, we have to go back to our
general formula, Eq. (5.22),

dσ =
1

(2E1)(2E2)|�v1 − �v2|
|M|2dΠLIPS =

1
4ωm

|M|2dΠLIPS (13.125)

and∫
dΠLIPS =

∫
d3p3

(2π)3
1

2E′

∫
d3p4

(2π)3
1

2ω′
[
(2π)4δ4(pμ1 + pμ2 − p

μ
3 − p

μ
4 )
]
. (13.126)
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The δ-function fixes the 3-momenta when we integrate over d3p4, leaving the energy
constraint ∫

dΠLIPS =
1

4(2π)2

∫
ω′2dΩ dω′ 1

ω′E′ δ
(∑

E
)

=
1
8π

∫
d cos θ dω′ ω

′

E′ δ
(∑

E
)
. (13.127)

Now we want to integrate over ω′ to enforce the energy constraint E′ + ω′ = m+ ω. But
we have to be a little careful because E′ and ω′ are already constrained by the electron’s
on-shell condition:

E′2 = m2 + p′2 = m2 + (ω′ sin θ)2 + (ω′ cos θ − ω)2

= m2 + ω′2 + ω2 − 2ωω′ cos θ. (13.128)

So,

E′ dE
′

dω′ = ω′ − ω cos θ (13.129)

and thus ∫
dΠLIPS =

1
8π

∫
d cos θ dω′ ω

′

E′ δ(ω
′ + E′(ω′)−m− ω)

=
1
8π

∫
d cos θ

ω′

E′

(
1 +

dE′

dω′

)−1

=
1
8π

∫
d cos θ

ω′

E′

(
1 +

ω′ − ω cos θ
E′

)−1

=
1
8π

∫
d cos θ

(ω′)2

ωm
, (13.130)

where ω′ now refers to Eq. (13.122), not the integration variable. This leads to

dσ

d cos θ
=

1
4ωm

1
8π

(ω′)2

ωm
2e4
[
ω′

ω
+
ω

ω′ − sin2 θ

]
, (13.131)

or more simply,

dσ

d cos θ
=
πα2

m2

(
ω′

ω

)2[
ω′

ω
+
ω

ω′ − sin2θ

]
. (13.132)

This is the Klein–Nishina formula. It was first calculated by Klein and Nishina in 1929
and was one of the first tests of QED.

Substituting in for ω′ using Eq. (13.122),

dσ

d cos θ
=
πα2

m2

[
1 + cos2θ − 2ω

m
(1 + cos2θ)(1− cos θ) +O

(
ω2

m2

)]
. (13.133)

Note that, in the limit m→∞,

dσ

d cos θ
=
πα2

m2

[
1 + cos2θ

]
. (13.134)
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This is the Thomson scattering cross section for classical electromagnetic radiation by a
free electron. We have calculated the full relativistic corrections.

13.5.4 High-energy behavior

Next, consider the opposite limit, ω � m. In this limit, we will be able to understand some
of the physics of Compton scattering, in particular, the spin and polarization dependence
and the origin of an apparent singularity for exactly backwards scattering, θ = π.

At high energy, the center-of-mass frame makes the most sense. Then

p1 = (ω, 0, 0, ω), p2 = (E, 0, 0,−ω),

p3 = (E,−ω sin θ, 0,−ω cos θ), p4 = (ω, ω sin θ, 0, ω cos θ), (13.135)

so that

p12 = ω(E + ω), (13.136)

p24 = ω(E + ω cos θ), (13.137)

and

1
4

∑
pols.

|M|2 ≈ 2e4
[
p24

p12
+
p12

p24

]
= 2e4
[
E + ω cos θ
E + ω

+
E + ω

E + ω cos θ

]
. (13.138)

For ω � m, E =
√
m2 + ω2 ≈ ω

(
1 + m2

2ω2

)
and

1
4

∑
pols.

|M|2 ≈ 4e4
[

1 + cos θ
4

+
1

m2

2ω2 + 1 + cos θ

]
. (13.139)

We have only kept the factors of m required to cut off the singularity at cos θ = −1. The
cross section for ω � m is

dσ

d cos θ
≈ 2π

64π2(2ω)2

⎛⎝1
4

∑
pols.

|M|2
⎞⎠ ≈ πα2

2ω2

[
1 + cos θ

4
+

1
m2

2ω2 + 1 + cos θ

]
.

(13.140)

Near θ = π, as ω � m, we see that the cross section becomes very large (but still finite).
In this region of phase space, the photon and electron bounce off each other and go back
the way they came. Or, in more Lorentz-invariant language, the direction of the outgoing
photon momentum is the same as the direction of incoming electron momentum. Let us
now try to understand the origin of the θ = π singularity.

Since the matrix element can be written in the massless limit as

1
4

∑
pols.

|M|2 = 2e4
[
p24

p12
+
p12

p24

]
≈ −2e4

[
t

s
+
s

t

]
(13.141)

for ω � m and

t ≈ −2p24 = −2ω2(1 + cos θ), (13.142)
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we see that the origin of the pole at θ = π is due to the t-channel exchange. Looking back,
the t-channel matrix element is

Mt = −e
2

t
ε1με

4�
ν ū(p3)γμ( /p2 − /p4)γνu(p2). (13.143)

Since this scales as 1
t we might expect the cross section to diverge as 1

t2 ∼
1

(1+cos θ)2
. In

fact this would happen in a scalar field theory, such as one with interaction gφ3 for which

M∼ g2

t
, |M|2 ∼ g4

t2
, (13.144)

which has a strong t2 pole. In QED, we calculated the t-channel diagram in the massless
limit and found

1
4

∑
|Mt|2 = −2e4

s

t
= 4e4

1
1 + cos θ

. (13.145)

This gives the entire 1
t pole, so we do not have to worry about interference for the purpose

of understanding the singularity. Where did the other factor of t come from to cancel the
pole?

For θ = π − φ with φ ∼ 0, the momenta become

p1 = (ω, 0, 0, ω), p2 = (ω, 0, 0,−ω),

p3 = (ω,−ωφ, 0, ω), p4 = (ω, ωφ, 0,−ω), (13.146)

and then

t = −ω2φ2. (13.147)

So a 1
t pole goes as 1

φ2 , but 1
t2 goes as 1

φ4 . But notice that the momentum factor in the
matrix element also vanishes as p2 → p4:

/p2 − /p4 = −ωφ/k, kμ = (0, 1, 0, 0). (13.148)

So,

Mt =
e2

ω2φ2
ū(p3) /ε1( /p2 − /p4) /ε4�u(p2) = − e2

ωφ
ū(p3) /ε1/k /ε4�u(p2). (13.149)

Thus, one factor of φ is canceling. This factor came from the spinors, and is an effect of
angular momentum conservation.

If we include the electron mass, as in Eq. (13.140), we would have found ωφ
ω2φ2+m2

e

instead of 1
ωφ , which is finite even for exactly backwards scattering. So there is not really

a divergence. Still, the cross section becomes very large for nearly backwards scattering.
More discussion of these types of infrared divergences is given in Chapter 20.

Let us further explore the singular t → 0 region by looking at the helicity structure.
Recall that the left- and right-handed spinors, ψL and ψR, satisfy

1− γ5

2
ψL = ψL,

1 + γ5

2
ψL = 0, ψ̄L

1 + γ5

2
= ψ̄L, ψ̄L

1− γ5

2
= 0, (13.150)

1 + γ5

2
ψR = ψR,

1− γ5

2
ψR = 0, ψ̄R

1− γ5

2
= ψ̄R, ψ̄R

1 + γ5

2
= 0. (13.151)
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Since

1 =
1 + γ5

2
+

1− γ5

2
, (13.152)

we can write ψ = ψL + ψR. Then we use γμ(1 + γ5) = (1 − γ5)γμ to see that each
γ-matrix flips L to R. This lets us derive that

ψ̄ψ = ψ̄LψR + ψ̄RψL, (13.153)

ψ̄γμψ = ψ̄Lγ
μψL + ψ̄Rγ

μψR, (13.154)

ψ̄γμγνψ = ψ̄Lγ
μγνψR + ψ̄Rγ

μγνψL, (13.155)

ψ̄γμγαγβψ = ψ̄Lγ
μγαγβψL + ψ̄Rγ

μγαγβψR, (13.156)

and so on. The general rule is that an odd number of γ-matrices couples RR and LL while
an even number couples LR and RL.

In particular, our interactionMt has three γ-matrices, so it couples RR and LL. Thus,

Mt = − e2

ωφ

[
ūL(p3) /ε1/k /ε4�uL(p2) + ūR(p3) /ε1/k /ε4�uR(p2)

]
, (13.157)

which is helicity conserving. So, u(p2) and ū(p3) should be either both right-handed or
both left-handed. This is consistent with a general property of QED, that in the limit of a
massless electron, the left- and right-handed states completely decouple.

Now recall our explicit electron polarizations in the massless limit:

uR =
√

2E

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , uL =
√

2E

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ . (13.158)

For the photons, we need to use the helicity eigenstates:1

εμR =
1√
2
(0, 1, i, 0), εμL =

1√
2
(0, 1,−i, 0). (13.159)

Note that

√
2 /εR = −γ1 − iγ2 =

⎛⎜⎜⎝
0 −2
0 0

0 2
0 0

⎞⎟⎟⎠ , √2 /εL = −γ1 + iγ2 =

⎛⎜⎜⎝
0 0
−2 0

0 0
2 0

⎞⎟⎟⎠ ,
(13.160)

1 To see that the convention for “left” and “right” is being used consistently, it is easy to check that
�S·�p
E
εL =

−εL and
�S·�p
E
uL = − 1

2
uL using pμ = (E, 0, 0, pz) and Sz = S12 or Sz = V12 in Eqs. (10.117) and

(10.113) respectively.
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so

/εL
�uR = /εR

�uL = ūR /εL = ūL /εR = 0. (13.161)

Thus, everything is right-handed or everything is left-handed.
This has an important physical implication. Consider shooting a laser beam at a high-

energy beam of electrons. Lasers are polarized. Suppose the laser produces left circularly
polarized light. Such a beam will dominantly back-scatter only left-handed electrons. This
is a useful way to polarize your electron beam. It also directly connects helicity for spinors
to helicity for spin-1 particles.

13.6 Historical note

Considering only 2 → 2 scattering involving electrons, positrons, muons, antimuons
and photons, there are quite a number of historically important processes in QED. Some
examples are

• γe− → γe−: Compton scattering. Observed in 1923 by American physicist Arthur
Holly Compton [Compton, 1923]. The differential scattering formula was calculated by
Oskar Klein and Yoshio Nishina in 1929 [Klein and Nishina, 1929]. This was one of the
first results obtained from QED, and was crucial in convincing us of the correctness of
Dirac’s equation. Before this, all that was known was the classical Thomson scattering
formula, which was already in disagreement with experiment by the early 1920s. The
Klein–Nishina formula agreed perfectly with available experiments in the late 1920s.
However, at higher energies, above 2MeV or so, it looked wrong. It was not until many
years later that the discrepancy was shown to be due to the production of e−e+ pairs,
with the positron annihilating into some other electron, and to Bremsstrahlung.

• e−e− → e−e−: Møller scattering. First calculated in the ultra-relativistic regime by
Danish physicist Christian Møller [Møller, 1932]. In the non-relativistic regime it is
called Coulomb scattering or Rutherford scattering. Møller calculated the cross section
based on some guesses and consistency requirements, not using QED. The cross sec-
tion was calculated in QED soon after by Bethe and Fermi [Bethe and Fermi, 1932].
Møller scattering was not measured until 1950 by Canadian physicist Lorne Albert
Page [Page, 1950]. This was partly because researchers did not consider it interesting
until renormalization was understood and radiative corrections could be measured.

• e+e− → e+e−: Bhabha scattering. First calculated by Indian physicist Homi Jehengir
Bhabha in 1936 [Bhabha, 1936]. The positron was not discovered until 1932, so it was
a while before the differential cross section that Bhabha predicted could be measured in
the lab. However, the total cross section for e+e− → e+e− was important for cosmic-ray
physics from the 1930s onward.

• γγ → γγ: Light-by-light scattering. In 1933, German physicist Otto Halpern real-
ized that QED predicted that light could scatter off light [Halpern, 1933]. There is no
tree-level contribution to this process in QED. The first contribution comes from a box



13.6 Historical note 247

diagram at 1-loop. Heisenberg and his students Hans Euler and Bernhard Kockel [Euler
and Kockel, 1935; Euler and Heisenberg, 1936] were able to show that this box diagram
was finite. They expressed the result in terms of an effective Lagrangian now known
as the Euler–Heisenberg Lagrangian (see Chapter 33). Light-by-light scattering was not
observed until 1997 [Akhmadaliev et al., 1998]. In going beyond the box diagram, Euler
and Heisenberg encountered divergences in the loop graphs, concluding that “QED must
be considered provisional” [Schweber, 1994, p. 119].

Although QED had great successes at tree-level, that is at leading-order in the fine-
structure constant α, it appeared in the 1930s incapable of making quantitative predictions
at higher orders. For example, the infinite contribution of the Coulomb potential to the
electron mass in the classically theory was still infinite in QED; and QED could not be
used to compute corrections to the energy levels of the hydrogen atom. By the late 1930s,
the experts generally believed that QED was incomplete, if not wrong.

One should keep in mind that QED was being developed not long after quantum mechan-
ics itself was discovered. Physicists were still coming to terms with the violations of
classical causality inherent in the quantum theory, and some, including Bohr and Dirac,
suspected that the difficulties of QED might be related to an incomplete understanding
of causality. Bohr, with Kramers and Slater, had proposed in 1924 a version of quantum
mechanics in which energy was not conserved microscopically, only statistically [Bohr
et al., 1924]. Although experiments in the late 1920s confirmed that energy was indeed
conserved microscopically, an experiment by Shankland in 1936 implied that perhaps it
was not [Shankland, 1936]. Dirac immediately jumped at this opportunity to disown QED,
claiming, “because of its extreme complexity, most physicists will be glad to see the end
of it” [Dirac, 1936, p. 299]. Bohr, as late as 1938, ruminated that perhaps the violations
of causality in quantum mehanics were just the beginning and a more “radical departure”
from classical theory would be necessary [Bohr, 1938, p. 29]. He nevertheless was suf-
ficiently impressed with QED and its “still more complex abstractions” that he argued it
“entails the greatest encouragement to proceed on such lines.” [Bohr, 1938, p. 17]. It turns
out that the resolution of the difficulties of QED are not related to causality (although they
do involve more complex abstractions). As we will see in Part III, the key to performing
calculations in QED beyond leading order in α is to carefully relate observable quantities
to other observable quantities.

It was not until 1947, at the famous Shelter Island conference, that experiments finally
showed that there were finite effects subleading in α, which gave theorists something pre-
cise to calculate. The next year, Schwinger came out with his celebrated calculation of the
leading radiative correction to the electron magnetic moment: g − 2 = α

π (Chapter 17).
That, and the agreement between Willis Lamb’s measurement of the splitting between the
2S1/2 and 2P1/2 levels of the hydrogen atom (the hyperfine structure) and Hans Bethe’s
calculation of that splitting firmly established QED as predictive and essentially correct.

For additional information about the history of QED, there are a number of excellent
accounts. Abraham Pais’ Inward Bound [Pais, 1986] is classic; Mehra and Milton’s scien-
tific biography of Schwinger [Mehra et al., 2000] and Schweber’s book [Schweber, 1994]
are also highly recommended.
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Problems

13.1 Of the tree-level processes in QED, Møller scattering (e−e− → e−e−) is especially
interesting because it involves identical particles.
(a) Calculate the spin-averaged differential cross section for Møller scattering,

e−e− → e−e−. Express your answer in terms of s, t, u and me.
(b) Show that in the non-relativistic limit you get what we guessed by spin-

conservation arguments in Problem 7.3:

dσ

dΩ
=

m4
eα

2

E2
CMp

4

(
1 + 3 cos2θ

sin4θ

)
, p2 =

(
ECM

2

)2

−m2
e. (13.162)

(c) Simplify the Møller scattering formula in the ultra-relativistic limit (me → 0).
[Hint: you should get something proportional to (3 + cos2θ)2.]

13.2 Derive Eq. (13.103). It may be helpful to use the formula for scattering in the target
rest frame derived in Problem 5.1.

13.3 Particle decays. Recall that the decay rate is given by the general formula

dΓ =
1

2E1
|M|2 d

3p2

(2π)3
1

2E2
· · · d

3pn
(2π)3

1
2En

(2π)4δ4(p1 − p2 − · · · − pn). (13.163)

(a) Evaluate the phase-space integrals for 1 → 2 decays. Show that the total rate is

Γ(φ→ e+ + e−) =
√

1− 4x2

8πmφ
|M|2, x =

me

mφ
. (13.164)

(b) Evaluate Γ for a particle φ of mass mφ decaying to e+e− of mass me if
1. φ is a scalar, with interaction gSφψ̄ψ;
2. φ is a pseudoscalar, with interaction igPφψ̄γ5ψ;
3. φ is a vector, with interaction gV φμψ̄γμψ;
4. φ is an axial vector, with interaction igAφμψ̄γμγ5ψ.

(c) Breaking news! A collider experiment reports evidence of a new particle that
decays only to leptons (τ, μ and e) whose mass is around 4 GeV. About 25% of
the time it decays to τ+τ−. What spin and parity might this particle have?

13.4 Show that you always get a factor of −1 in the Feynman rules for each fermionic
loop.

13.5 Consider the following diagram for e+e− → μ+μ− in QED:

(a) How many diagrams contribute at the same order in perturbation theory?
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e+ e− → μ+ μ− e+ e− → νμνμ
−

Angular distributions in e+e− annihilation produced with a Monte-Carlo simulation. �Fig. 13.2

(b) What is the minimal set of diagrams you need to add to this one for the sum to
be gauge invariant (independent of ξ)?

(c) Show explicitly that the sum of diagrams in part (b) is gauge invariant.
13.6 Parity violation. We calculated that e+e− → μ+μ− has a 1 + cos2θ angular depen-

dence (see Eq. (13.78)), where θ is the angle between the e− and μ− directions.
This agrees with experiment, as the simulated data on the left side of Figure 13.2
show. The angular distribution for scattering into muon neutrinos, e+e− → νμν̄μ, is
very different, as shown on the right side of Figure 13.2, where now θ is the angle
between the e− and νμ directions.

(a) At low energy, the total cross section, σtot, for e+e− → νμν̄μ scattering grows
with energy, in contrast to the total e+e− → μ+μ− cross section. Show that this
is consistent with neutrino scattering being mediated by a massive vector boson,
the Z. Deduce how σtot should depend on ECM for the two processes.

(b) Place the neutrino in a Dirac spinor ψν . There are two possible cou-
plings we could write down for the ν to the new massive gauge boson:
gV ψ̄ν /Zψν + gAψ̄ν /Zγ5ψν . These are called vector and axial-vector couplings,
respectively. Assume the Z couples to the electron in the same way as it cou-
ples to neutrinos. Calculate the full angular dependence for e+e− → νμν̄μ as a
function of gV and gA (you can drop masses).

(c) What values of gV and gA reproduce Figure 13.2? Show that this choice is equiv-
alent to the Z boson having chiral couplings: it only interacts with left-handed
fields. Argue that this is evidence of parity violation, where the parity operator
P is reflection in a mirror: �x→ −�x.

(d) An easier way to see parity violation is in β-decay. This is mediated by charged
gauge bosons, the W±, that are “unified” with the Z. Assuming they have the
same chiral couplings as the Z, draw a diagram to show that the electron coming
out of C60 → Ni59 +e− + ν̄ will always be left-handed, independent of the spin
of the cobalt nucleus. What handedness would the positron be in anti-cobalt

decay: C
60 → Ni

59
+ e+ + ν?

(e) If you are talking to aliens on the telephone (i.e. with light only), tell them how
to use nuclear β-decay to tell clockwise from counterclockwise. For this, you
will need to figure out how to relate the L in ψL to “left” in the real world.
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You are allowed to assume that all the materials on Earth are available to them,
including things such as cobalt, and lasers.

(f) If you meet those aliens, and put out your right hand to greet them, but they put
out their left hand, why should you not shake? (This scenario is due to Feynman.)

(g) Now forget about neutrinos. Could you have the aliens distinguish right from left
by actually sending them circularly polarized light, for example using polarized
radio waves for your intergalactic telephone?

13.7 One should be very careful with polarization sums and in giving physical inter-
pretations to individual Feynman diagrams. This problem illustrates some of the
dangers.
(a) We saw that the t-channel diagram for Compton scattering scales as Mt ∼

1
t . Calculate |Mt|2 summed over spins and polarizations. Be sure to sum over
physical transverse polarizations only.

(b) Calculate |Mt|2 summed over spins and polarizations, but do the sum by replac-
ing εμε�ν by −gμν . Show that you get a different answer from part (a). Why is
the answer different?

(c) Show that when you sum over all the diagrams you get the same answer whether
you sum over physical polarizations or use the εμε�ν → −gμν replacement. Why
is the answer the same?

(d) Repeat this exercise for scalar QED.
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So far, we have studied quantum field theory using the canonical quantization approach,
which is based on creation and annihilation operators. There is a completely different way
to do quantum field theory called the path integral formulation. It says

〈Ω|T {φ(x1) · · ·φ(xn)} |Ω〉 =
∫
Dφφ(x1) · · ·φ(xn)eiS[φ]∫

DφeiS[φ]
. (14.1)

The left-hand side is exactly the kind of time-ordered product we use to calculate S-
matrix elements. The Dφ on the right-hand side means integrate over all possible classical
field configurations φ(�x, t) with a phase given by the classical action evaluated in that field
configuration.

14.1 Introduction

The intuition for the path integral comes from a simple thought experiment you can do in
quantum mechanics. Recall the double-slit experiment: the amplitude for a field to propa-
gate from a source through a screen with two slits to a detector is the sum of the amplitudes
to propagate through each slit separately. We add up the two amplitudes and then square
to get the probability. If instead we had three slits and three screens, the amplitude would
come from the sum of all possible paths through the slits and screens. And so on, for four
slits, five slits, etc. Taking the continuum limit, we can keep slitting until the screen is gone.
The result is that the final amplitude is the sum of all possible different paths. That is all
the path integral is calculating. This is illustrated in Figure 14.1.

There is something very similar in classical physics called Huygens’ principle. Huy-
gens proposed in 1678 that to calculate the propagation of waves you can treat each point
in the wavefront as the center of a fresh disturbance and a new source for the waves. A very
intuitive example is surface waves in a region with obstructions, as shown in Figure 14.2.
As the wave goes through a gap between barriers, a new wave starts from the gap and keeps
going. This is useful, for example, in thinking about diffraction, where you can propagate
the plane wave along to the slits, and then start waves propagating anew from each slit.
Actually, it was not until 1816 that Fresnel realized that you could add amplitudes for the
waves weighted by a phase given by the distance divided by the wavelength to explain
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�Fig. 14.1 The classic double slit allows for two paths between the initial and final points. Adding
more screens and more slits allows for more diverse paths. An infinite number of screens
and slits makes the amplitude the sum over all possible paths, as encapsulated in the path
integral.

interference and diffraction. Thus, the principle is sometimes called the Huygens–Fresnel
principle. The path integral is an implementation of this principle for quantum mechani-
cal waves, with the phase determined by 1

�
times the action. Huygens’ principle follows

from the path integral since, as you take � → 0, this phase is dominated by the minimum
of the action which is the classical action evaluated along the classical path. For � �= 0,
there is a contribution from non-minimal action configurations that provide the quantum
corrections.

There are a number of amazing things about path integrals. For example, they imply
that by dealing with only classical field configurations you can get the quantum amplitude.
This is really crazy if you think about it – these classical fields all commute, so you are also
getting the non-commutativity for free somehow. Time ordering also just seems to pop out.
And where are the particles? What happened to second quantization?

One way to think about path integrals is that they take the wave nature of matter to
be primary, in contrast to the canonical method which is all about particles. Path integral
quantization is in many ways simpler than canonical quantization, but it obscures some of
the physics. Nowadays, people often just start with the path integral, using it to define the
quantum theory. Path integrals are particularly useful to quantify non-perturbative effects.
Examples include lattice QCD, instantons, black holes, etc. On the other hand, for cal-
culations of discrete quantities such as energy eigenstates, and for many non-relativistic
problems, the canonical formalism is much more practical.

Another important contrast between path integrals and the canonical approach is which
symmetries they take to be primary. In the canonical approach, with the Hilbert space
defined on spatial slices, matrix elements came out Lorentz invariant almost magically.
With path integrals, Lorentz invariance is manifest the whole way through and Feynman
diagrams appear very natural, as we will see. On the other hand, the Hamiltonian and
Hilbert space are obscure in the path integral. That the Hamiltonian should be Hermitian
and have positive definite eigenvalues on the Hilbert space (implying unitarity) is very
hard to see with path integrals. So manifest unitarity is traded for manifest Lorentz invari-
ance. Implications of unitarity for a general quantum field theory are discussed more in
Chapter 24.

In this chapter, we will first derive the path integral from the canonical approach in
the traditional way. Then we will perform two alternate derivations: we will show that we
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Ocean waves near Rimini, Italy (440 05 15.02 N , 120 32 26.07 E) illustrate Huygens’
principle [Logiurato, 2012]. Image c©2013 Google Earth and c©2013 DigitalGlobe.

�Fig. 14.2

reproduce the same perturbation series for time-ordered products (Feynman rules), and also
show that the Schwinger–Dyson equations are satisfied. As applications, we will demon-
strate the power of the path integral by proving gauge invariance and the Ward identity
non-perturbatively in QED.

14.1.1 Historical note

Before around 1950, most QED calculations were done simply with old-fashioned per-
turbation theory. Schwinger (and Tomonaga around the same time) figured out how to
do the calculations systematically using the interaction picture and applied the theory to
radiative corrections. In particular, this method was used in the seminal calculations of
the Lamb shift and magnetic moment of the electron in 1947/8. There were no diagrams.
The diagrams, with loops, and Feynman propagators came from Feynman’s vision of par-
ticles going forwards and backwards in time, and from his path integral. For example,
Feynman knew that you could sum the retarded and advanced propagators together into
one object (the Feynman propagator), while Schwinger and Tomonaga would add them
separately.

Actually, Feynman did not know at the time how to prove that what he was cal-
culating was what he wanted; he only had his intuition and some checks that he was
correct. One of the ways Feynman could validate his approach was by showing that
his tree-level calculations matched all the known results of QED. He then just drew
the next picture and calculated the radiative correction. He could check his answers,
eventually, by comparing to Schwinger and Tomonaga and, of course, to data, which
were not available before 1947. He also knew his method was Lorentz covariant, which
made the answers simple – another check. But what he was doing was not under-
stood mathematically until Freeman Dyson cleaned things up in two papers in 1949
[Dyson, 1949]. Dyson’s papers went a long way to convincing skeptics that QED was
consistent.
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There is a great story that Feynman recounted about the famous Poconos conference
of 1948, where he and Schwinger both presented their calculations of the Lamb shift.
Schwinger’s presentation was polished and beautiful (but unintelligible, even to the experts
such as Dirac and Pauli in the audience). Feynman got up and started drawing his pictures,
but not knowing exactly how it worked, was unable to convince the bewildered audience.
Feynman recounted [Mehra et al., 2000, p. 233]:

Already in the beginning I had said that I’ll deal with single electrons, and I was going
to describe this idea about a positron being an electron going backward in time, and
Dirac asked, “Is it unitary?” I said, “Let me try to explain how it works, and you can
tell me whether it is unitary or not!” I didn’t even know then what “unitary” meant. So
I proceeded further a bit, and Dirac repeated his question: “Is it unitary?” So I finally
said: “Is what unitary?” Dirac said: “The matrix which carries you from the present to
the future position.” I said, “I haven’t got any matrix which carries me from the present
to the future position. I go forwards and backwards in time, so I do not know what the
answer to your question is.”

Teller was asking about the exclusion principle for virtual electrons; Bohr was asking about
the uncertainty principle. Feynman did not have answers for any of these questions, he just
knew his method worked. He concluded, “I’ll just have to write it all down and publish it,
so that they can read it and study it, because I know it is right! That’s all there is to it.” And
so he did.

14.2 The path integral

The easiest way to derive the path integral is to start with non-relativistic quantum mechan-
ics. Before deriving it, we will work out a simple mathematical formula for Gaussian
integrals that is used in practically every path integral calculation. We then reproduce
the derivation of the path integral in non-relativistic quantum mechanics, which you
have probably already seen. The quantum field theory derivation is then a more-or-less
straightforward generalization to the continuum.

14.2.1 Gaussian integrals

A general one-dimensional Gaussian integral is defined as

I =
∫ ∞

−∞
dp e−

1
2ap

2+Jp. (14.2)

To compute this integral, we first complete the square

I =
∫ ∞

−∞
dp e−

1
2a(p− J

a )
2
+ J2

2a , (14.3)
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then shift p→ p+ J
a . The measure does not change under this shift, implying

I = e
J2
2a

∫ ∞

−∞
dp e−

1
2ap

2
=

1√
a
e
J2
2a

∫
dp e−

1
2p

2
. (14.4)

Now we use a trick to compute this:[∫
dp e−

1
2p

2
]2

=
∫
dx

∫
dy e−

1
2x

2
e−

1
2y

2

= 2π
∫ ∞

0

r dr e−
1
2 r

2
= π

∫ ∞

0

dr2e−
1
2 r

2
= 2π, (14.5)

so, ∫ ∞

−∞
dp e−

1
2ap

2+Jp =

√
2π
a
e
J2
2a . (14.6)

For multi-dimensional integrals, we need only generalize to many pi, which may be
complex. Then ap2 → p�i aijpj = �p †A�p, with A a matrix. After diagonalizing A the
integral becomes just a product of integrals over the pi, and the result is the product of
one-dimensional Gaussian integrals, with a being replaced by an eigenvalue of A. That is,

∫ ∞

−∞
d�p e−

1
2 �p

†A�p+ �J†�p =

√
(2π)n

detA
e

1
2
�J†A−1 �J , (14.7)

where A comes from the product of the eigenvalues in the diagonal basis and n is the
dimension of �p.

14.2.2 Path integral in quantum mechanics

Consider one-dimensional non-relativistic quantum mechanics with the Hamiltonian
given by

Ĥ(t) =
p̂2

2m
+ V (x̂, t). (14.8)

Here Ĥ , p̂ and x̂ are operators acting on the Hilbert space, and t is just a number.
Suppose our initial state |i〉 = |xi〉 is localized at xi at time ti and we want to project it

onto the final state 〈f | = 〈xf | localized at xf at time tf . If Ĥ did not depend on t, then we
could just solve for the matrix element as

〈f |i〉 = 〈xf |e−i(tf−ti)Ĥ |xi〉. (14.9)

If instead we only assume Ĥ(t) is a smooth function of t, then we can only solve for the
matrix element this way for infinitesimal time intervals. So, let us break this down into n
small time intervals δt and define tj = ti + jδt and tn = tf . Then,

〈f |i〉 =
∫
dxn · · · dx1〈xf |e−iH(tf )δt|xn〉〈xn|· · ·|x2〉〈x2|e−iH(t2)δt|x1〉〈x1|e−iH(t1)δt|xi〉.

(14.10)
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Each matrix element can be evaluated by inserting a complete set of momentum eigenstates
and using 〈p|x〉 = e−ipx:

〈xj+1|e−iHδt|xj〉 =
∫

dp

2π
〈xj+1|p〉〈p|e−i

[
p̂2

2m+V (x̂j ,tj)
]
δt|xj〉

= e−iV (xj ,tj)δt

∫
dp

2π
e−i

p2

2m δteip(xj+1−xj). (14.11)

Now we can use the Gaussian integral in Eq. (14.6),
∫
dp exp
(
− 1

2ap
2 + Jp
)

=√
2π
a exp
(
J2

2a

)
, with a = i δtm and J = i(xj+1 − xj) to get

〈xj+1|e−iHδt|xj〉 = Ne−iV (xj ,tj)δte
im2 δt

(xj+1−xj)2
(δt)2 = NeiL(x,ẋ)δt, (14.12)

whereN is an x- and t-independent normalization constant, which we will justify ignoring
later, and

L(x, ẋ) =
1
2
mẋ2 − V (x, t) (14.13)

is the Lagrangian. We see that the Gaussian integral effected a Legendre transform to go
from H(x, p) to L(x, ẋ).

Using Eq. (14.12), each term in Eq. (14.10) becomes just a number and the product
reduces to

〈f |i〉 = Nn

∫
dxn · · · dx1e

iL(xn,ẋn)δt · · · eiL(x1,ẋ1)δt. (14.14)

Finally, taking the limit δt → 0, the exponentials combine into an integral over dt and
we get

〈f |i〉 = N

∫ x(tf )=xf
x(ti)=xi

Dx(t)eiS[x], (14.15)

where Dx means sum over all paths x(t) with the correct boundary conditions and the
action is S[x] =

∫
dtL[x(t), ẋ(t)]. Note that N has been redefined and is now formally

infinite, but it will drop out of any physical quantities, as we will see in the path integral
case.

14.2.3 Path integral in quantum field theory

The field theory derivation is very similar, but the set of intermediate states is more com-
plicated. We will start by calculating the vacuum matrix element 〈0; tf |0; ti〉. In quantum
mechanics we broke the amplitude down into integrals over |x〉〈x| for intermediate times
where the states |x〉 are eigenstates of the x̂ operator. In field theory, the equivalents of x̂
are the Schrödinger picture fields φ̂(�x), which at any time t can be written as

φ̂(�x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

i�p�x + a†pe
−i�p�x) . (14.16)

Each field comprises an infinite number of operators, one at each point �x. We put the hat
on φ to remind you that it is an operator.
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Up to this point, we have been treating the Hamiltonian and Lagrangian as functionals of
fields and their derivatives. Technically, the Hamiltonian should not have time derivatives
in it, since it is supposed to be generating time translation. Instead of ∂tφ the Hamiltonian
should depend on canonical conjugate operators, which we introduced in Section 2.3.3 as

π̂(�x) ≡ −i
∫

d3p

(2π)3

√
ωp
2
(
ape

i�p�x − a†pe−i�p�x
)
, (14.17)

and satisfy [
φ̂(�x), π̂(�y)

]
= iδ3(�x− �y) . (14.18)

These canonical commutation relations and the Hamiltonian that generates time translation
define the quantum theory.

The equivalent of |x〉 is a complete set of eigenstates of φ̂:

φ̂(�x)|Φ〉 = Φ(�x)|Φ〉. (14.19)

The eigenvalues are functions of space Φ(�x).1 The equivalents of |p〉 are the eigenstates of
π̂(�x) that satisfy

π̂(�x)|Π〉 = Π(�x)|Π〉 . (14.20)

The |Π〉 states are conjugate to the |Φ〉 states, and satisfy

〈Π|Φ〉 = exp
(
−i
∫
d3xΠ(�x)Φ(�x)

)
, (14.21)

which is the equivalent of 〈�p |�x〉 = e−i�p�x. The inner product of two |Φ〉 states is

〈Φ′|Φ〉 =
∫
DΠ〈Φ′|Π〉〈Π|Φ〉 =

∫
DΠexp

(
−i
∫
d3xΠ(�x) [Φ(�x)− Φ′(�x)]

)
,

(14.22)

which is the generalization of 〈�x′|�x〉 = δ(�x− �x′) =
∫
dp
2π exp(−i�p (�x− �x′)). You can

construct these states explicitly and check these inner products in Problem 14.4.
Using φ̂ and π̂ one can rewrite the Hamiltonian so as not to include any time derivatives.

We found in Eq. (8.16) that the energy density for a real scalar field was given by

E =
1
2
(∂tφ)2 +

1
2
(�∇φ)2 +

1
2
m2φ2. (14.23)

This is the same as the Hamiltonian density

Ĥ =
1
2
π̂2 +

1
2
(∇φ̂)2 +

1
2
m2φ̂2 (14.24)

1 In some field theory texts the path integral is constructed using eigenstates not of φ̂ but of the part of
φ̂ that involves only annihilation operators, φ̂−. Writing φ̂ = φ̂− + φ̂+, these eigenstates are |Φ〉 =

exp
(∫

d3y φ̂+ (�y)Φ(�y)
)
|0〉. These satisfy φ−(�x) |Φ〉 = Φ(�x) |Φ〉 and are the field theory version of coher-

ent states for a single harmonic oscillator. See, for example [Altland and Simons, 2010; Brown, 1992; Itzykson
and Zuber, 1980].
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after the replacement of ∂L
∂(∂tφ̂)

= ∂tφ by π̂ (as in a Legendre transform). More generally,

let us write

Ĥ =
1
2
π̂2 + V(φ̂), (14.25)

where V(φ̂) can include interactions. One can consider more general Hamiltonians, as long
as they are Hermitian and positive definite, but we stick to ones of this form for simplicity.
We will also write Ĥ(t) =

∫
d3x Ĥ with the t dependence of Ĥ(t) coming from how the

field operators change with time in the full interacting theory.2

Now we calculate the vacuum matrix element by inserting complete sets of intermediate
states, as in quantum mechanics:

〈0; tf |0; ti〉 =
∫
DΦ1(x) · · · DΦn(x)〈0|e−iδtĤ(tn)|Φn〉〈Φn |· · · |Φ1〉〈Φ1|e−iδtĤ(t0)|0〉.

(14.26)
Each of these pieces becomes

〈Φj+1|e−iδtĤ(tj)|Φj〉 =
∫
DΠj〈Φj+1|Πj〉〈Πj |exp

[
−iδt
∫
d3x

(
1
2
π̂2 + V(φ̂)

)]
|Φj〉

=
∫
dΠj exp

(
i

∫
d3xΠj(�x) [Φj+1(�x)− Φj(�x)]

)
× exp
(
−iδt
∫
d3x

(
1
2
Π2
j (�x) + V(Φj)

))
. (14.27)

Now we perform the Gaussian integral over Πj to give

〈Φj+1|e−iδtĤ(tj)|Φj〉 = N exp

(
−iδt
∫
d3x

[
V [Φj ]−

1
2

(
Φj+1(�x)− Φj(�x)

δt

)2
])

= N exp
(
iδt

∫
d3xL [Φj , ∂tΦj ]

)
, (14.28)

where

L [Φj , ∂tΦj ] =
1
2

(∂tΦj)
2 − V [Φj ] . (14.29)

Collapsing up the pieces of Eq. (14.26) gives

〈0; tf |0; ti〉 = N

∫
DΦ(�x, t)eiS[Φ], (14.30)

where S[Φ] =
∫
d4xL[Φ] with the time integral going from ti to tf . For S-matrix ele-

ments, we take ti = −∞ and tf = +∞, in which case the integral in S[Φ] =
∫
d4x L[Φ]

is over all space-time.
So the path integral tells us to integrate over all classical field configurations Φ. Note

that Φ does not just consist of the one-particle states, it can have two-particle states, etc. We
can remember this by drawing pictures for the paths – including disconnected bubbles – as

2 If V depended on π̂ and φ̂, there might be an ordering ambiguity; this is no different than in the non-relativistic
case and it is conventional to define the Hamiltonian to be Weyl ordered with the π̂ operators all to the left of
the φ̂ operators.
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we would using Feynman rules. Actually, we really sum over all kinds of discontinuous,
disconnected random fluctuations. In perturbation theory, only paths corresponding to sums
of states of fixed particle number contribute. Non-perturbatively, for example with bound
states or situations where multiple soft photons are relevant, particle number may not be
a useful concept. The path integral allows us to perform calculations in non-perturbative
regimes.

14.2.4 Classical limit

As a first check on the path integral, we can take the classical limit. To do that, we need to
put back �, which can be done by dimensional analysis. Since � has dimensions of action,
it appears as

〈0; tf |0; ti〉 = N

∫
DΦ(�x, t)e

i
�
S[Φ]. (14.31)

Using the method of stationary phase we see that, in the limit � → 0, this integral is
dominated by the value of Φ for which S[Φ] has an extremum. But δS = 0 is precisely
the condition that determines the Euler–Lagrange equations which a classical field satis-
fies. Therefore, the only configuration that contributes in the classical limit is the classical
solution to the equations of motion.

In case you are not familiar with the method of stationary phase (also known as the
method of steepest descent), it is easy to understand. The quickest way is to start with the
same integral without the i: ∫

DΦ(�x, t)e−
1
�
S[Φ]. (14.32)

In this case, the integral would clearly be dominated by the Φ0 where S[Φ] has a minimum;
everything else would give a bigger S[Φ] and be infinitely more suppressed as � → 0. Now,
when we put the i back in, the same thing happens, not because the non-minimal terms are
zero, but because away from the minimum you have to sum over phases swirling around
infinitely fast. When you sum infinitely swirling phases, you also get something that goes
to zero when compared to something with a constant phase. Another way to see it is to
use the more intuitive case with e−

1
�
S[Φ]. Since we expect the answer to be well defined,

it should be an analytic function of Φ0. So we can take � → 0 in the imaginary direction,
showing that the integral is still dominated by S[Φ0].

14.2.5 Time-ordered products

Suppose we insert a field at fixed position and time into the path integral:

I =
∫
DΦeiS[Φ]Φ(�xj , tj). (14.33)

What does this represent?
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Going back through our derivation, this integral can be written as

I =
∫
DΦ1(�x) · · · DΦn(�x)

× 〈0|e−iH(tn)δt|Φn〉 · · · 〈Φ2|e−iH(t2)δt|Φ1〉〈Φ1|e−iH(t1)δt|0〉Φj(�xj), (14.34)

with Φ(�xj , tj) getting replaced by Φj(�xj) since the j subscript on Φj(�x) refers to the time.
Now we want to replace Φj(�xj) by an operator. Since the subscript on Φ is just its point in
time, we have∫

DΦj(�x)
{
e−iH(tn)δt|Φj〉Φj(�xj)〈Φj |

}
= φ̂(xj)

∫
DΦj(�x)e−iH(tn)δt|Φj〉〈Φj |.

(14.35)

So we get to replace Φ(xj) by the operator φ̂(xj) put in at the time tj . Then we can collapse
up all the integrals to give

N

∫
DΦ(�x, t)eiS[Φ]Φ(�xj , tj) = 〈0|φ̂(�xj , tj)|0〉. (14.36)

If you find the collapsing-up-the-integrals confusing, just think about the derivation back-
wards. An insertion of φ̂(�xj , tj) will end up by |Φj〉〈Φj |, producing the eigenvalue
Φ(�xj , tj).

Now say we insert two fields:∫
DΦ(�x, t)eiS[Φ]Φ(�x1, t1)Φ(�x2, t2). (14.37)

The fields will be inserted in the appropriate matrix element. In particular, the earlier field
will always come out on the right of the later field. So we get

N

∫
DΦ(x)eiS[Φ]Φ(x1)Φ(x2) = 〈0|T{φ̂(x1)φ̂(x2)}|0〉. (14.38)

In general,

N

∫
DΦ(x)eiS[Φ]Φ(x1) · · ·Φ(xn) = 〈0|T{φ̂(x1) · · · φ̂(xn)}|0〉. (14.39)

Thus, we get time ordering for free in the path integral!
Why does this work? As a quick cross check, suppose the answer were

N

∫
DΦ(x)eiS[Φ]Φ(x1)Φ(x2) = 〈0|φ̂(x1)φ̂(x2)|0〉 (14.40)

without the time ordering. The left-hand side does not care whether we write Φ(x1)Φ(x2)
or Φ(x2)Φ(x1), since these are classical fields, but the right-hand side does distinguish
φ̂(x1)φ̂(x2) from φ̂(x2)φ̂(x1), since the fields do not commute (at timelike separation).
Thus, Eq. (14.40) cannot be correct. The only possible equivalent of the left-hand side
would be something in which the operators effectively commute, such as the time-ordering
operation.

We are also generally interested in interacting theories. For an interacting theory, one has
to be able to go between the Hamiltonian and the Lagrangian to derive the path integral.
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This is rarely done explicitly, and for theories such as non-Abelian gauge theories, it may
not even be possible. Fortunately, we can simply define the quantum theory through the
path integral expressed in terms of an action. In the interacting case, we must normalize so
that the interacting vacuum remains the vacuum, 〈Ω|Ω〉 = 1. This fixes the normalization
and leads to

〈Ω|φ̂(x1)φ̂(x2)|Ω〉 =
∫
DΦ(x)eiS[Φ]Φ(x1)Φ(x2)∫

DΦ(x)eiS[Φ]
, (14.41)

from which the constant N drops out. The generalization to arbitrary Green’s functions is
given in Eq. (14.1).

Unless there is any ambiguity, from now on we will use the standard notation φ(x)
instead of Φ(x) for the classical fields being integrated over in the path integral.

14.3 Generating functionals

There is a great way to calculate path integrals using currents. Consider the action in the
presence of an external classical source J(x). The vacuum amplitude in the presence of
this source is then a functional called the generating functional and is denoted by Z[J ]:

Z[J ] =
∫
Dφ exp

{
iS[φ] + i

∫
d4xJ(x)φ(x)

}
. (14.42)

At J = 0, this reduces to the vacuum amplitude without the source:

Z[0] =
∫
Dφei

∫
d4xL[φ]. (14.43)

We next introduce the variational partial derivative. Since J(y) =
∫
d4x δ(x − y)J(x) it

is natural to define
∂J(x)
∂J(y)

= δ4(x− y) . (14.44)

This partial derivative can be thought of as varying to the value of J at y, holding all other
values of J fixed. This equation implies that

∂

∂J(x1)

∫
d4xJ(x)φ(x) = φ(x1). (14.45)

Then,

− i ∂Z

∂J(x1)
=
∫
Dφ exp

{
iS[φ] + i

∫
d4xJ(x)φ(x)

}
φ(x1), (14.46)

and thus,

− i 1
Z[0]

∂Z

∂J(x1)

∣∣∣∣
J=0

=
∫
Dφ exp {iS[φ]}φ(x1)∫

Dφei
∫
d4xL[φ]

= 〈Ω|φ̂(x1)|Ω〉. (14.47)
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Similarly,

(−i)n 1
Z [0]

∂nZ

∂J(x1) · · · ∂J(xn)

∣∣∣∣
J=0

= 〈Ω|T{φ̂(x1) · · · φ̂(xn)}|Ω〉. (14.48)

So this is a nice way of calculating time-ordered products – we can calculate Z[J ] once
and for all, and then to get time-ordered products all we have to do is take derivatives.

The generating functional is the quantum field theory analog of the partition function
in statistical mechanics – it tells us everything we could possibly want to know about a
system. The generating functional is the holy grail of any particular field theory: if you
have an exact closed-form expression for Z[J ] for a particular theory, you have solved it
completely.

14.3.1 Solving the free theory

In the free theory, we can calculate the generating functional exactly. For a real scalar field,
the Lagrangian is

L = −1
2
φ(� +m2)φ. (14.49)

Then, using the notation Z0[J ] for the generating functional in the free theory,

Z0[J ] =
∫
Dφ exp

{
i

∫
d4x

(
−1

2
φ(� +m2)φ+ J(x)φ(x)

)}
. (14.50)

We can solve this exactly since it is quadratic in the fields. We just need to use our relation∫ ∞

−∞
d�p e−

1
2 �pA�p+

�J�p =

√
(2π)n

detA
e

1
2
�JA−1 �J (14.51)

with A = i(� + m2). To compute A−1 we need to take the inverse of −(� + m2) and
multiply by i. This inverse is a function Π(x− y) satisfying

(�x +m2)Π(x− y) = −δ(x− y). (14.52)

As we know, this equation is solved by the propagator

Π(x− y) =
∫

d4p

(2π)4
1

p2 −m2
eip(x−y) (14.53)

up to boundary conditions. Thus,

Z0[J ] = N exp
{
i

∫
d4x

∫
d4y

1
2
J(x)Π(x− y)J(y)

}
(14.54)

and so,

〈0|T{φ̂0(x)φ̂0(y)}|0〉 = (−i)2 1
Z0[0]

∂2Z0[J ]
∂J(x)∂J(y)

∣∣∣∣
J=0

= iΠ(x− y)

=
∫

d4p

(2π)4
i

p2 −m2
eip(x−y), (14.55)
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where |0〉 is used instead of |Ω〉 for the free vacuum and φ̂0(x) are the free quantum fields.
This agrees with the Feynman propagator that we calculated using creation and annihilation
operators, up to the factor of iε, which will be discussed in Section 14.4.

14.3.2 Four-point function

We can also compute higher-order products:

〈0|T
{
φ̂0(x1) φ̂0(x2) φ̂0(x3) φ̂0(x4)

}
|0〉 = (−i)4 1

Z0[0]
∂4Z0

∂J(x1) · · · ∂J(x4)

∣∣∣∣
J=0

=
1

Z0[0]
∂4

∂J(x1) · · · ∂J(x4)
e−

1
2

∫
d4x
∫
d4yJ(x)DF (x−y)J(y)

∣∣∣∣
J=0

=
1

Z0[0]
∂3

∂J(x1) ∂J(x2) ∂J(x3)

×
(
−
∫
d4zDF (x4 − z)J(z)

)
e−

1
2

∫
d4x
∫
d4yJ(x)DF (x−y)J(y)

∣∣∣∣
J=0

.

(14.56)

Before we continue, let us simplify the notation by replacing arguments by subscripts.
Then

∂4

∂J1∂J2∂J3∂J4
e−

1
2JxDxyJy

∣∣∣∣
J=0

=
∂3

∂J1∂J2∂J3
(−JzDz4)e−

1
2JxDxyJy

∣∣∣∣
J=0

=
∂2

∂J1∂J2
(−D34 + JzDz3JwDw4)e−

1
2JxDxyJy

∣∣∣∣
J=0

=
∂

∂J1
(D34JzDz2 +D23JwDw4 + JzDz3D24 − JzDz3JwDw4JrDr2)e−

1
2JxDxyJy

∣∣∣∣
J=0

= D34D12 +D23D14 +D13D24. (14.57)

Thus,

〈0|T
{
φ̂0(x1) φ̂0(x2) φ̂0(x3) φ̂0(x4)

}
|0〉 =

x2

x1

x4

x3

+
x2

x1

x4

x3

+
x2

x1

x4

x3

.

(14.58)

These are the same three contractions we found in the canonical approach in Chapter 7
(cf. Eq. (7.17)). More generally, each derivative can either kill a J factor or pull a J factor
down from the exponential. At the end, we set J = 0 so the kills must be paired up with the
pull-downs. The Z0[0] factor gives the vacuum bubbles that drop out of the connected part
of the S-matrix, as they did in the Hamiltonian derivation of the Feynman rules presented
in Section 7.2.
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14.3.3 Interactions

Now suppose we have interactions

L = −1
2
φ(� +m2)φ+

g

3!
φ3. (14.59)

Then, we can write

Z[J ] =
∫
Dφe i

∫
d4x[ 1

2φ(−�−m2)φ+J(x)φ(x)+ g
3!φ

3]

=
∫
Dφei

∫
d4x[ 1

2φ(−�−m2)φ+J(x)φ(x)]ei
∫
d4x g3!φ

3

=
∫
Dφei

∫
d4x[ 1

2φ(−�−m2)φ+J(x)φ(x)]

×
[
1 +

ig

3!

∫
d4z φ3(z) +

(
ig

3!

)2 1
2

∫
d4z

∫
d4wφ3(z)φ3(w) + · · ·

]
.

(14.60)

Each term in this expansion is a path integral in the free theory. Thus we can write

Z[J ] = Z0[J ] +
ig

3!

∫
d4z(−i)3 ∂

3Z0[J ]
(∂J(z))3

+
(
ig

3!

)2 1
2

∫
d4z

∫
d4w(−i)6 ∂6Z0[J ]

(∂J(z))3 (∂J(w))3
+ · · · , (14.61)

where Z0[J ] is the generating functional in the free theory.
This expansion reproduces the Feynman rules we calculated in the canonical picture.

For example, taking two derivatives to form the 2-point function and normalizing by Z[0]
we find

〈Ω|T{φ̂(x1) φ̂(x2)}|Ω〉 =
1

Z[0]
〈0|T{φ̂0(x1) φ̂0(x2)}|0〉

+
ig

3!
1

Z[0]

∫
d4z〈0|T{φ̂0(x1) φ̂0(x2) φ̂0(z)3}|0〉+ · · ·

=
〈0|T{φ̂0(x1) φ̂0(x2) ei

∫
d4z g3! φ̂0(z)

3}|0〉
〈0|T{ei

∫
d4z g3! φ̂0(z)3}|0〉

, (14.62)

which agrees with Eq. (7.64) from Chapter 7. So we have reproduced the Feynman rules
from the path integral.

14.4 Where is the iε?

In the derivation of the path integral, propagators seemed to come out as 1
p2−m2 without the

iε. What happened to the iε, which was supposed to tell us about time ordering? Without
the iε the path integral is actually undefined, both physically (for example, not specifying
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whether the propagator is advanced, retarded, Feynman or something else) and mathemat-
ically (it is not convergent). From the physical point of view, we have so far only been
talking about correlation functions, not S-matrix elements. As in the canonical approach,
the emergence of time ordering as the relevant boundary condition is connected to the
importance of causal processes, such as scattering, where the initial state is before the final
state. In the path integral, the iε can be derived by including the appropriate boundary
conditions on the path integral for S-matrix calculations, as we will now show.

14.4.1 S-matrix

In using the path integral to calculate S-matrix elements, the fields being integrated over
must match onto the free fields at t = ±∞. We can write the S-matrix in terms of the path
integral as

〈f |S|i〉 =
∫
φ(t=±∞) constrained

DφeiS[φ]. (14.63)

This notation matches how boundary conditions are imposed in the non-relativistic path
integral, where one integrates over x(t) constrained so that the path satisfies x(ti) = xi
and x(tf ) = xf . In the path integral, the requirement is that the functions φ(x) that are
being integrated over match onto the free fields at t = ±∞. To make this more precise, we
can write the constraints as projections on the states for which φ(�x) are eigenvalues:

〈f |S|i〉 =
∫
DφeiS[φ]〈f |φ (t = +∞)〉〈φ (t = −∞) |i〉. (14.64)

Here, we have reinstated the notation from Section 14.2.3 that |φ〉 is the eigenstate of the
field operator φ̂(�x), as in Eq. (14.19): φ̂(�x) |φ〉 = φ(�x) |φ〉. Equation (14.64) says that the
path integral is restricted to an integral over field configurations with the right boundary
conditions for a scattering problem.

Let us consider the free theory, and restrict to the case where |f〉 = |i〉 = |0〉 , which
is enough to derive the iε. For the vacuum amplitude, we need to evaluate 〈Φ|0〉 with |0〉
defined by ap |0〉 = 0. For a single harmonic oscillator, the vacuum is replaced by the
ground state and, as you may recall, the ground state’s wavefunction is φ(x) = 〈x|0〉 =
e−

1
2x

2
, up to some constants. The free-field theory version is also a Gaussian:

〈0|Φ〉 = N exp
(
−1

2

∫
d3�x d3�y E(�x, �y)φ(�x)φ(�y)

)
, (14.65)

where N is some constant and

E(�x, �y) =
∫

d3p

(2π)3
ei�p(�x−�y)ωp. (14.66)

In Problem 14.3 you can derive this, and also find an explicit expression for E(�x, �y) in terms
of Hankel functions. We give neither the derivation nor the explicit form since neither is
relevant for the final answer.
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At this point, we have

〈0|Φ(t = +∞)〉〈Φ(t = −∞)|0〉

= |N |2 exp
(
−1

2

∫
d3�x d3�y [φ(�x,∞)φ(�y,∞) + φ(�x,−∞)φ(�y,−∞)] E(�x, �y)

)
.

(14.67)

To massage this into a form that looks more like a local interaction in the path integral, we
need to insert a dt integral. We can do that with the identity (see Problem 14.4)

f(∞) + f(−∞) = lim
ε→0+

ε

∫ ∞

−∞
dt f(t)e−ε|t|, (14.68)

which holds for any smooth function f(τ) (here, ε → 0+ means ε is taken to zero from
above). Then

〈Φ(−∞)|0〉〈0|Φ(+∞)〉

= lim
ε→0+

|N |2 exp

(
−1

2
ε

∫
dt

d3p

(2π)3

∫
d3�x d3�y φ(�x, t)φ(�y, t) ei�p(�x−�y)ωp

)
, (14.69)

where we set e−ε|t| = 1 since we only care about the leading term as ε→ 0.
The vacuum amplitude is then

〈0|0〉 = lim
ε→0+

|N |2
∫
Dφ

× exp

(
−i
2

∫
d4x

∫
d3y

∫
d3p

(2π)3
ei�p(�x−�y)φ(�y, t)

(
� +m2 − iεωp

)
φ(�x, t)

)
.

(14.70)

For ε→ 0 the iεωp can be replaced with iε giving

〈0|0〉 = lim
ε→0+

|N |2
∫
Dφ exp

(
−i
2

∫
d4xφ(x)

(
� +m2 − iε

)
φ(x)
)
. (14.71)

The derivation with fields inserted into the correlation function is identical. So we derive
that the free propagator is

〈0|T{φ̂0(x) φ̂0(y)}|0〉 = lim
ε→0+

∫
d4p

(2π)4
i

p2 −m2 + iε
eip(x−y), (14.72)

which is the normal Feynman propagator. For more details, see [Weinberg, 1995, Sec-
tion 9.1].

14.4.2 Reflection positivity

Mathematical physicists will tell you that the iε is required by the condition of reflection
positivity. This is the requirement that under time-reversal, fields should have positive
energy. More precisely, the restricted Hilbert space of physical fields, φ(�x, t) with pos-
itive energy, generates another Hilbert space of positive-energy fields when reflected in
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time φ(�x,−t) (this restriction avoids fields such as φ(�x, t) − φ(�x,−t), which will have
eigenvalue −1 under the reflection). Reflection positivity is a succinct encapsulation of the
requirement for a positive definite Hamiltonian and a unitary theory. The derivation of the
iε starts by defining reflection positivity in Euclidean space, then analytically continuing
to Minkowski space, where the iε comes from the contour close to the real t axis.

A quick way to see how consistency affects the path integral is that without the iε the
path integral is not convergent. To make it convergent, we can make a slight deformation
of order ε, defining

Z0[J ] =
∫
Dφ exp

{
i

∫
d4x

[
−1

2
φ(� +m2)φ+ J(x)φ(x)

]}
exp
{
−ε

2

∫
d4xφ2)

}
=
∫
Dφ exp

{
i

∫
d4x

[
1
2
φ
(
−�−m2 + iε

)
φ+ J(x)φ(x)

]}
. (14.73)

Although this is the quickest way to justify the iε factor, it does not explain why iε

appears and not−iε, which would be anti-time ordering. In fact, both±iε are equally valid
path integrals, although only +iε leads to causal scattering (−iε gives anti-time-ordered
products).

One problem with the mathematical physics arguments is that even with reflection posi-
tivity and with the iε factor, the path integral still is not completely well defined. In fact, the
path integral has only been shown to exist for a few cases. As of the time of this writing, the
path integral (and field theories more generally) is only known to exist (i.e. have a precise
mathematical definition) for free theories, and for φ4 theory in two or three dimensions. φ4

theory in five dimensions is known not to exist. In four dimensions, we do not know much,
exactly. We do not know if QED exists, or if scalar φ4 exists, or even if asymptotically free
or conformal field theories exist. In fact, we do not know if any field theory exists, in a
mathematically precise way, in four dimensions.

14.5 Gauge invariance

One of the key things that makes path integrals useful is that we can do field redefini-
tions. Here we will use field redefinitions to prove gauge invariance, by which we mean
independence of the covariant-gauge parameter ξ. To do so, we will explicitly separate out
the gauge degrees of freedom by rewriting Aμ = Aμ + ∂μπ and then factor out the path
integral over π. The following is a simplified version of a general method introduced by
Faddeev and Popov, which is covered in Sections 25.4 and 28.4.

Recall that the Lagrangian for a massless spin-1 particle is L = − 1
4F

2
μν + JμAμ, which

leads to the momentum space equations of motion:

(k2gμν − kμkν)Aν = Jμ. (14.74)

These equations are not invertible because the operator k2gμν − kμkν has zero deter-
minant (it has an eigenvector kμ with eigenvalue 0). The physical reason it is not
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invertible is because we cannot uniquely solve for Aμ in terms of Jμ because of gauge
invariance:

Aμ → Aμ + ∂μα(x). (14.75)

In other words, many vector fields correspond to the same current. Our previous solution
was to gauge-fix by adding the term 1

2ξ (∂μAμ)
2 to the Lagrangian. Now we will justify that

prescription, and prove gauge-invariance: any matrix element of gauge-invariant operators
will be independent of ξ. More precisely, with a general set of fields φi and interactions we
will show that correlation functions

〈Ω |T{O(x1 · · ·xn)}|Ω〉 =
1

Z [0]

∫
DAμDφiDφ�i ei

∫
d4xL[A,φi]O(x1 · · ·xn) (14.76)

are ξ independent, where O(x1 · · ·xn) refers to any gauge-invariant collection of fields.
Recall that we can always go to a gauge where ∂μAμ = 0. Since under a gauge trans-

formation ∂μAμ → ∂μAμ + �α, we can always find a function α such that �α = ∂μAμ.
We will write this function as α = 1

�∂μAμ. Now consider the following function:

f(ξ) =
∫
Dπe−i

∫
d4x 1

2ξ (�π)2 , (14.77)

which is just some function of ξ, probably infinite. As we will show, this represents the
path integral over gauge orbits which will factor out of the full path integral. To see that,
shift the field by

π(x) → π(x)− α(x) = π(x)− 1
�∂μAμ. (14.78)

This is just a shift, so the integration measure does not change. Then,

f(ξ) =
∫
Dπe−i

∫
d4x 1

2ξ (�π−∂μAμ)2 . (14.79)

This is still just the same function of ξ, which despite appearances is independent of Aμ.
We can multiply and divide Eq. (14.76) by f(ξ) in the two different forms, giving

〈Ω|T{O(x1 · · ·xn)}|Ω〉 =
1

Z[0]
1

f(ξ)

∫
DπDAμDφiDφ�i

× ei
∫
d4x[L[A,φi]− 1

2ξ (�π−∂μAμ)2]O(x1 · · ·xn). (14.80)

Now let us do the “Stueckelberg trick” and perform a gauge transformation shift, with π(x)
as our gauge parameter:

Aμ = A′
μ + ∂μπ, φi = eiπφ′i. (14.81)

Again, the measure DπDAμDφi, the action L[A,φi], and the operator O, which is gauge-
invariant by assumption, do not change. We conclude that the path integral is the same as
the gauge-fixed version up to normalization:
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〈Ω|T {O(x1 · · ·xn)}|Ω〉 =
1

Z[0]

[
1

f(ξ)

∫
Dπ
] ∫

DAμDφiDφ�i

× ei
∫
d4xL[A,φi]− 1

2ξ (∂μAμ)2O(x1 · · ·xn). (14.82)

Conveniently, the same normalization appears when we perform the same manipulations
to Z[0]:

Z[0] =
[

1
f(ξ)

∫
Dπ
] ∫

DAμDφiDφ�i ei
∫
d4xL[A,φi]− 1

2ξ (∂μAμ)2 . (14.83)

Thus, the normalization drops out and we find that

〈Ω|T {O(x1 · · ·xn)} |Ω〉 =
∫
DAμDφiDφ�i ei

∫
d4xL[A,φi]O(xi)∫

DAμDφiDφ�i ei
∫
d4xL[A,φi]

=
∫
DAμDφiDφ�i ei

∫
d4xL[A,φi]− 1

2ξ (∂μAμ)2O(xi)∫
DAμDφiDφ�i ei

∫
d4xL[A,φi]− 1

2ξ (∂μAμ)2
. (14.84)

That is, correlation functions calculated with the gauge-fixed Lagrangian will give the same
results as correlation functions calculated with the gauge-invariant Lagrangian. In other
words, 〈Ω|T{O(x1 · · ·xn)} |Ω〉 calculated with the gauge-fixed Lagrangian is completely
independent of ξ.

Unfortunately, the above argument does not apply to correlation functions of fields that
are gauge covariant. For example, 〈Ω|ψ̄(x1)ψ(x2)|Ω〉 in general will depend on ξ. A simple
example is 〈Ω|Aμ(x)Aν(y)|Ω〉, which (at leading order) is just the ξ-dependent photon
propagator. That the S-matrix is gauge invariant, a fact that was understood in perturbation
theory in Section 9.4, requires additional insight. A proof valid to all orders in perturbation
theory using a different approach is discussed in Section 14.8.4.

14.6 Fermionic path integral

A path integral over fermions is basically the same as for bosons, but we have to allow for
the fact that the fermions anticommute. At the end of the day, all you really need to use
is that classical fermion fields satisfy {ψ(x), χ(y)} = 0. This section gives some of the
mathematics behind anticommuting classical numbers.

A Grassmann algebra is a set of objects G that are generated by a basis {θi}. These
θi are Grassmann numbers, which anticommute with each other, θiθj = −θjθi, add
commutatively, θi + θj = θj + θi, and can be multiplied by complex numbers, aθ ∈ G for
θ ∈ G and a ∈ C. The algebra must also have an element 0 so that θi + 0 = θi.

For one θ, the most general element of the algebra is

g = a+ bθ, a, b ∈ C, (14.85)

since θ2 = 0. For two θ’s, the most general element is

g = A+Bθ1 + Cθ2 + Fθ1θ2, (14.86)
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and so on. Elements of the algebra that have an even number of θi commute with all ele-
ments of the algebra, so they compose the even-graded or bosonic subalgebra. Similarly,
the odd-graded or fermionic subalgebra has an odd number of θi and anticommutes within
itself (but commutes with the bosonic subalgebra). The fermionic subalgebra is not closed,
since θ1θ2 is bosonic.

Sometimes it is helpful to compare what we will do with fermions to an example of a
Grassmann algebra that you might already be familiar with: the exterior algebra of dif-
ferential forms. Two forms A and B form a Grassmann algebra with the product usually
denoted with a wedge, so that A ∧ B = −B ∧ A. So, for example, dx and dy would
generate a two-dimensional Grassmann algebra.

In physics our Grassmann numbers will be θ1 = ψ(x1), θ2 = ψ(x2), . . ., so we will
have an infinite number of them. Then quantities such as the Lagrangian are (bosonic)
elements of G. To get regular numbers out, we need to integrate over Dψ. So we need to
figure out a consistent way to define such integrals.

To begin, we want integration to be linear, so that∫
dθ1 · · · dθn(sX+tY ) = s

∫
dθ1 · · · dθnX+ t

∫
dθ1 · · · dθnY, s, t ∈ C, X, Y ∈ G.

(14.87)
We do not put limits of integration on the integrals since there is only one Grassmann
number in each direction. These are the analogs of the definite integrals,

∫∞
−∞ dx f(x), in

the bosonic case.
Next, we want the integrals to be like sums so that dθ, like θ, is an anticommuting object,

and so is
∫
dθ. First consider one θ. The most general integral is∫

dθ(a+ bθ) = a

∫
dθ + b

∫
dθ θ. (14.88)

Since the integral is supposed to be a map from G to C, the first term must vanish. We
conventionally define

∫
dθ θ = 1 and so∫

dθ(a+ bθ) = b. (14.89)

Note that the obvious definition for derivatives is

d

dθ
(a+ bθ) = b, (14.90)

so integration and differentiation do the same thing on Grassmann numbers.
For more θi we define ∫

dθ1 · · · dθnX =
∂

∂θ1
· · · ∂

∂θn
X, (14.91)

so that ∫
dθ1 · · · dθnθn · · · θ1 = 1. (14.92)

Note that we evaluate these nested integrals from the inside out. That is,∫
dθ1dθ2θ2θ1 = −

∫
dθ1dθ2θ1θ2 = 1. (14.93)



14.6 Fermionic path integral 271

This is consistent with the order in which derivatives usually act. That is all there is to it.
This is a consistent definition of integration and differentiation.

One important feature of these integrals is that they have the same kind of shift symmetry
as the bosonic case. In the bosonic case

∫∞
−∞dxf(x) =

∫∞
−∞dx f(x + a), where a is

independent of x. That is, ∂xa = 0. The analog here would be∫
dθ(A+Bθ) =

∫
dθ(A+B(θ +X)), (14.94)

where X is any element of G that is constant with respect to θ: ∂
∂θX = 0. This equality

then holds by definition of integration.
For the path integral, we need Gaussian integrals. For two θi, we have∫

dθ1dθ2e
−θ1A12θ2 =

∫
dθ1dθ2(1−A12θ1θ2) = A12, (14.95)

where we have Taylor expanded the exponential. One does not need to think of θ as small
in any way to do this. Rather, the exponential is defined by its Taylor expansion, as it is for
other anticommuting things, such as Lie group generators.3

Now say we have n θi and n other independent θi that we will call θ̄i. Then consider an
integral that is an exponential of something quadratic in them:∫

dθ̄1 · · · dθ̄ndθ1 · · · dθne−θ̄iAijθj =
∫
dθ̄1 · · · dθ̄ndθ1 · · · dθn

×
(

1− θ̄iAijθj +
1
2
(θ̄iAijθj)(θ̄kAklθl) + · · ·

)
. (14.96)

The only term in this expansion that will survive is the one with all n θi and all n θ̄i. This
will give∫

dθ̄1 · · · dθ̄ndθ1 · · · dθne−θ̄iAijθj =
1
n!

∑
permutations{in}

±Ai1i2 · · ·Ain−1in . (14.97)

If we think of Aij as a matrix, this is a sum over all elements {i, j} where we choose each
row and column once, with the sign from the ordering. This is exactly how you compute a
determinant. The n! for the number of permutations cancels the 1

n! in front. So∫
dθ̄1 · · · dθ̄ndθ1 · · · dθne−θ̄iAijθj = det(A). (14.98)

Note that this is different from what we found for ordinary numbers:∫
dx1 · · · dxne−

1
2xiAijxj =

√
(2π)n

det(A)
. (14.99)

3 In the literature, authors often talk about general functions f(θ1, θ2, . . .), which are defined from their Taylor
series. This notation does not mean f is a function in the usual sense, but rather that f is an element of the
algebra generated by the θi. This general notation is not particularly useful, and in the same way trying to
decipher general functions f(dx,dy) is usually unnecessary.
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Whether the determinant is in the numerator or denominator is occasionally important (but
not for QED). With external currents ηi and η̄i,∫

dθ̄1 · · · dθ̄ndθ1 · · · dθne−θ̄iAijθj+η̄iθi+θ̄iηi = e�̄ηA
−1�η

∫
d�̄θd�θe−(�̄θ−�̄ηA−1)A(�θ−A−1�η)

= det(A)e�̄ηA
−1�η, (14.100)

which is all we need for the path integral.
Now let us take the continuum limit, replacing the index i by a continuous variable x,

and θi by ψ(x) and θ̄i by ψ̄(x). Then functions of θi and θ̄i become functionals of ψ(x)
and ψ̄ (x). The fermionic path integral is over all such fields:

Z[η̄, η] =
∫
D[ψ̄(x)]D[ψ(x)]ei

∫
d4x[ψ̄(i/∂−m)ψ+η̄ψ+ψ̄η+iεψ̄ψ]. (14.101)

As in the bosonic case, the iε comes from the boundary condition at t = ±∞. Then we
have A = −i(i/∂ −m+ iε) and so

Z[η̄, η] = N ei
∫
d4x
∫
d4yη̄(y)(i/∂−m+iε)−1η(x), (14.102)

where N = det(i/∂ −m) is some infinite constant.
The 2-point function in the free theory is〈

0|T{ψ(x)ψ̄(y)}|0
〉

=
1

Z[0]
∂2

∂η̄(x) ∂η(y)
Z[η̄, η]
∣∣∣∣
η=0

=
i

i/∂ −m+ iε
δ4(x− y)

=
∫

d4p

(2π)4
i

/p−m+ iε
e−ip(x−y). (14.103)

This simplifies using (/p−m)(/p+m) = p2 −m2, which implies

1
/p−m+ iε

=
/p+m

p2 −m2 + iε
. (14.104)

So, 〈
0|T{ψ(x)ψ̄(y)}|0

〉
=
∫

d4p

(2π)4
i(/p+m)

p2 −m2 + iε
e−ip(x−y), (14.105)

which is the Dirac propagator.
Fermionic path integrals may seem really hard and confusing, but in the end they

are quite simple, and you can usually forget about the fact that there is a lot of weird
mathematics going into them.

14.7 Schwinger–Dyson equations

One odd thing about the path integral is that it only involves classical fields. Where is
the quantum mechanics? Where is the non-commutativity? We saw in Section 7.1 that an
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efficient way to see the difference between the classical and quantum theories was through
the Schwinger–Dyson equations:

(
�x +m2

)
〈φ̂(x)φ̂(x1) · · · φ̂(xn)〉 = 〈L′

int

[
φ̂(x)
]
φ̂(x1) · · · φ̂(xn)〉

− i
∑
i

δ4(x− xi)〈φ̂(x1) · · · φ̂(xi−1) φ̂(xi+1) · · · φ̂(xn)〉. (14.106)

Here L′
int[φ] = ∂

∂φLint[φ] is the variational derivative of the interaction Lagrangian, and
we are using 〈· · · 〉 as an abbreviation for 〈Ω|T {· · · } |Ω〉 for time-ordered matrix elements
in the interacting vacuum to avoid clutter. Recall also from Section 7.1 that the deriva-
tion of these equations in the canonical quantization approach required that the interacting
quantum fields satisfy the Euler–Lagrange equations

(
� +m2

)
φ = L′

int[φ] and that the

canonical commutation relations [φ̂(x), ∂tφ̂(y)] = iδ3(x− y) be satisfied.
The Schwinger–Dyson equations assert that vacuum matrix elements of time-ordered

products satisfy the classical equations of motion up to contact terms. They specify non-
perturbative relations among correlation functions. In fact, as we will see in this section,
they are enough to completely specify the quantum theory. We will also show that these
equations follow from the path integral and therefore they can be used to prove that the
canonical and path integral approaches agree. Keep in mind that the classical fields in
the path integral are not classical in the sense that they satisfy the classical equations of
motion. In the path integral, one just integrates over all field configurations, whether or not
they satisfy the equations of motion.

14.7.1 Contact terms

Since the contact terms in the Schwinger–Dyson equations indicate how the quantum field
theory deviates from the corresponding classical field theory, it is natural to suspect that
they are related to how the principle of least action is modified. In classical field theory,
the Euler–Lagrange equations are derived by requiring that the action be stationary under
variations φ(x) → φ(x)+ε(x), where ε(x) is an arbitrary function. Let us now investigate
how the derivation is modified in the quantum theory. In this section, we take m = 0 for
simplicity.

Consider first the 1-point function:

〈φ̂(x)〉 = −i 1
Z[0]

∂Z[J ]
∂J(x)

∣∣∣∣
J=0

=
1

Z[0]

∫
Dφei

∫
d4y(− 1

2φ�yφ)φ(x). (14.107)

Now replace φ(x) → φ(x) + ε(x) in the path integral. This is just a field redefinition,
and since the path integral integrates over all configurations, the same answer must result.
Since this is a linear shift, the measure is invariant, so

〈φ̂(x)〉 =
1

Z[0]

∫
Dφei

∫
d4y(− 1

2 (φ+ε)�(φ+ε)) [φ(x) + ε(x)] . (14.108)
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Expanding to first order in ε,

〈φ̂(x)〉 =
1

Z [0]

∫
Dφei

∫
d4y(− 1

2φ�yφ)
{
φ(x) + ε(x)− iφ(x)

∫
d4z ε(z)�zφ(z)

}
,

(14.109)

where we have integrated by parts to combine the ε�φ and φ�ε terms. Comparing with
Eq. (14.107), the φ(x) term already saturates the equality, so the remaining terms must add
to zero. Thus,∫

d4z
[
ε(z)
] ∫

Dφei
∫
d4y(− 1

2φ�yφ)
[
φ(x)�zφ(z) + iδ4(z − x)

]
= 0. (14.110)

Since the path integral does not depend on z except through the field insertion, the �z can
be pulled outside of the integral. For the equality to hold for any ε(z), we must have

(−i)2
(

�z
∂2Z[J ]

∂J(z)∂J(x)

)∣∣∣∣
J=0

= −iδ4(z − x)Z[0]. (14.111)

In terms of correlation functions, this is

�z〈φ̂(z)φ̂(x)〉 = −iδ4(z − x) , (14.112)

which is of course nothing but the Green’s function equation for the Feynman propagator. It
is also the Schwinger–Dyson equation for the 2-point function in a free scalar field theory.

For an interacting theory, let us add a potential so that L = − 1
2φ�φ + Lint[φ]. Then

the classical equations of motion are �φ = L′
int[φ]. In the path integral, the addition of the

potential contributes a term i
∫
d4z ε(z)L′

int [φ(z)] to the {} in Eq. (14.109) and Eq.(14.110)
is modified to∫

d4z ε(z)
{

�z

∫
Dφ
[
eiSφ(z)φ(x)

]
−
∫
DφeiSφ(x)L′

int[φ(z)] + iδ4(z − x)
∫
DφeiS
}

= 0, (14.113)

This can be written as a statement about correlation functions in the canonical picture:

�z〈φ̂ (z) φ̂(x)〉 = 〈L′
int

[
φ̂(z)
]
φ̂(x)〉 − iδ4(z − x) , (14.114)

which is the Schwinger–Dyson equation for the 2-point function in the presence of
interactions.

If we have more field insertions, the Schwinger–Dyson equations add contact inter-
actions, contracting the field on which the operator acts with all the other fields in the
correlator. For example, with three fields:

�x〈φ̂(x) φ̂(y) φ̂(z)〉 = 〈L′
int

[
φ̂(x)
]
φ̂(y)φ̂ (z)〉 − iδ4(x− z)〈φ̂(y)〉 − iδ4(x− y) 〈φ̂(z)〉

(14.115)

and so on. In this way, the complete set of Schwinger–Dyson equations can be derived.
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Similar equations hold for theories with spinors or gauge bosons. For example, write the
QED Lagrangian as

L =
1
2
Aμ�μνAν + ψ̄

(
i/∂ −m

)
ψ − eAμψ̄γμψ, (14.116)

with �μν = �gμν − (1− 1
ξ )∂

μ∂ν in covariant gauges. The classical equations of motion

forAν are �μνA
ν = ejμ = eψ̄γμψ. By varyingAμ(x) → Aμ(x)+εμ(x) and considering

the correlation function 〈Aαψ̄ψ〉 we would find

�x
μν〈Aν(x)Aα(y)ψ̄(z1)ψ(z2)〉
= e〈jμ(x)Aα(y)ψ̄(z1)ψ(z2)〉 − iδ4(x− y) δαμ 〈ψ̄(z1)ψ(z2)〉. (14.117)

Another Schwinger–Dyson equation, for QED, is(
iγμκρ∂μ +mδκρ

)
〈ψ̄κ(x)ψα(y)ψ̄β(z)ψγ(w)〉 = −e〈ψ̄κ(x) /Aκρψα(y) ψ̄β(z)ψγ(w)〉

− iδγρδ4(x− w)〈ψα(y) ψ̄β(z)〉 − iδαρδ4(x− y) 〈ψγ(w)ψ̄β(z)〉, (14.118)

with the minus sign coming from anticommuting ψ̄β(z) past ψγ(w) in the last term.

14.7.2 Schwinger–Dyson differential equation

One has to be very careful going back and forth between the time-ordered products and path
integrals. For example, the Schwinger–Dyson equation in Eq. (14.114) does not imply

�z

∫
Dφ
[
eiSφ(z)φ(x)

]
−
∫
Dφ
[
eiS�zφ(z)φ(x)

]
= −iδ4(z − x)

∫
DφeiS . (14.119)

In fact, the left-hand side of this equation is zero, since �z only acts on φ(z). The cor-
rect relationship is Eq. (14.113). To avoid confusion, it is safest not to go back and forth
between the pictures, but rather to express the Schwinger–Dyson equations as expres-
sions relating observables, which can then be compared. The natural way to codify the
observables is through the generating functional, which can be defined in both pictures.

Let us then repeat the path integral derivation of the Schwinger–Dyson equation above
for the generating functional based on the scalar Lagrangian L[φ] = − 1

2φ�φ + Lint[φ].
Shifting φ(y)→ φ(y) + ε(y) we find

Z[J ] =
∫
Dφei

∫
d4y(− 1

2 (φ+ε)�(φ+ε)+Lint[φ+ε]+Jφ+Jε)

=
∫
Dφei

∫
d4yL[φ]+Jφ

[
1 + i

∫
d4x ε(x)

(
−�xφ(x) +

∂Lint[φ]
∂φ[x]

+ J(x)
)

+O
(
ε2
)]
.

(14.120)

As before, this should equal Z[J ] for any ε(z). Thus,

�x

∫
Dφei

∫
d4yL[φ]+Jφφ(x) =

∫
Dφei

∫
d4yL[φ]+Jφ ∂Lint[φ]

∂φ[x]
+
∫
Dφei

∫
d4yL[φ]+JφJ(x).

(14.121)
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Or equivalently,

− i�x
∂Z[J ]
∂J(x)

=
{
L′

int

[
−i ∂

∂J(x)

]
+ J(x)

}
Z[J ], (14.122)

which is the Schwinger–Dyson differential equation. The slick notation L′
int

[
−i∂
∂J(x)

]
,

which means the functional L′[X] taking X = −i∂
∂J(x) as an argument, will be clarified

below.
An amazing thing about the Schwinger–Dyson differential equation is that, since it

encodes the difference between the classical and quantum theories, it can be used to define
the quantum theory. Therefore, it can be used to prove that the path integral and canonical
approaches are equivalent. In particular, it can be used to define the generating functional:
Z[J ] is the unique solution to this differential equation (with appropriate boundary con-
ditions). Since Z[J ] defines all of the correlation functions, which define the theory, the
Schwinger–Dyson differential equation also defines the theory.

To show that the Schwinger–Dyson equation holds in the canonical theory, we first
define a generating function Ẑ[J ] by

Ẑ[J ] = 〈ei
∫
φ̂J〉. (14.123)

Here, J(x) is an arbitrary classical current, but now φ̂(x) is the quantum operator. This
generates the correlation functions as well:

〈φ̂(x1) · · · φ̂(xn)〉 =
1

Ẑ[J ]
(−i)n ∂nẐ

∂J(x1) · · · ∂J(xn)

∣∣∣∣∣
J=0

, (14.124)

exactly as Z[J ]. Thus, if we show that Eq. (14.122) holds for Z[J ] and for Ẑ[J ], we have
shown that Z[J ] = Ẑ[J ], which shows that the path integral and canonical definitions
agree.

To demonstrate that Eq. (14.122) holds in the canonical theory, start with the Schwinger–
Dyson equations in Eq. (14.106) and insert factors of J at the same points as the field
insertions. This gives

�〈φ̂(x)φ̂(y1) · · · φ̂(yn)J(y1) · · · J(yn)〉 = 〈L′
int

[
φ̂(x)
]
φ̂(y1) · · · φ̂(yn)J(y1) · · · J(yn)〉

−i
∑
j

δ4(x− yj)〈φ̂(y1) · · · φ̂(yj−1)φ̂(yj+1) · · · φ̂(yn)J(y1) · · · J(yn)〉. (14.125)

What we will show is that each term in this expression is in one-to-one correspondence
with the Taylor expansion of Eq. (14.122). To show this, we need the expansion of the
generating functional:

Ẑ[J ] = 〈1 + i

∫
y

φ̂(y)J(y) +
i2

2

∫
y

∫
z

φ̂(y)J(y)φ̂(z)J(z) + · · · 〉, (14.126)

where
∫
y

means
∫
d4y. This expansion can be used for either the path integral or the

canonical definition of the generating functional.
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The Taylor expansion of the left-hand side of Eq. (14.122) gives

− i�∂Ẑ[J ]
∂J(x)

= �〈φ̂(x) + iφ̂(x)
∫
y

φ̂(y)J(y) + · · · 〉. (14.127)

This is the sum of all possible terms on the left-hand side of Eq. (14.125).

For the L′
int term in Eq. (14.122), Schwinger’s slick notation L′

int

[
−i∂
∂J(x)

]
can be best

understood with an example. Suppose Lint[φ] = g
3!φ

3, then L′
int[φ] = g

2φ
2 and so

L′
int

[
−i∂
∂J(x)

]
Ẑ[J ]

=
g

2!

(
−i∂
∂J(x)

)2

〈· · ·+ i3

3!

∫
y

∫
z

∫
w

φ̂(y)J(y)φ̂(z)J(z)φ̂(w)J(w) + · · · 〉, (14.128)

where only one term is shown. Applying the ∂
∂J this becomes

Lint
′
[
−i∂
∂J(x)

]
Ẑ[J ] = 〈· · ·+ i

g

2!
φ̂2(x)
∫
w

φ̂(w)J(w) + · · · 〉. (14.129)

Then, since the full interacting quantum operator satisfies �φ̂ = Lint
′[φ̂], the expression

simplifies to

Lint
′
[
−i∂
∂J(x)

]
Ẑ[J ] = 〈· · ·+ i�φ̂(x)

∫
w

φ(w)J(w) + · · · 〉, (14.130)

which is a sum of terms given by the first term on the right-hand side of Eq. (14.125).
Finally,

J(x)Ẑ[J ] = 〈J(x) + iJ(x)
∫
y

φ(y)J(y)〉

= 〈
∫
w

δ(w − x)J(w) + i

∫
w

∫
y

δ(w − x)J(w)φ(y)J(y) + · · · 〉, (14.131)

which has all the terms on the second line of Eq. (14.125). So each term in the expansion
of Eq. (14.122) is verified and therefore Eq. (14.122) holds.

Since the Schwinger–Dyson differential equation holds for both the path integral Z[J ]
and the canonically defined Ẑ[J ], Eq. (14.123), the two generating functionals must be
identical. Thus, the path integral and canonical quantization are equivalent.

By the way, you often hear that the canonical approach is purely perturbative. That is
not true, since Ẑ[J ] is identical to Z[J ]. Although non-perturbative statements can be made
with the canonical approach, they are generally easier to make with path integrals, which
is a practical distinction, not one of principle.

14.8 Ward–Takahashi identity

Recall that in the derivation of Noether’s theorem, in Section 3.3, we performed a variation
of the field that was also a global symmetry of the Lagrangian. This led to the existence
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of a classically conserved current. Performing a similar variation on the path integral and
following the steps that led to the Schwinger–Dyson equations will produce a general and
powerful relation among correlation functions known as the Ward–Takahashi identity. The
Ward–Takahashi identity not only implies the usual Ward identity and gauge invariance,
but since it is non-perturbative it will also play an important role in the renormalization
of QED.

14.8.1 Schwinger–Dyson equations for a global symmetry

Consider the correlation function of ψ(x1)ψ̄(x2) in a theory with a global symmetry under
ψ → eiαψ:

I12 = 〈ψ(x1) ψ̄(x2)〉 =
∫
DψDψ̄ exp

(
i

∫
d4x
[
ψ̄(i/∂ +m)ψ + · · ·

])
ψ(x1)ψ̄(x2),

(14.132)

where the · · · represent any globally symmetric additional terms. We do not need the
photon, but you can add it if you like. Under a field redefinition which is a local
transformation,

ψ(x) → e−iα(x)ψ(x), ψ̄(x) → eiα(x)ψ̄(x), (14.133)

the measure is invariant. The Lagrangian is not invariant, since we have not transformed
Aμ (or even included it). Instead,

iψ̄(x)/∂ψ(x) → iψ̄(x)/∂ψ(x) + ψ̄(x)γμψ(x)∂μα(x) (14.134)

and

ψ(x1) ψ̄(x2) → e−iα(x1)eiα(x2)ψ(x1) ψ̄(x2) . (14.135)

Since the path integral is an integral over all field configurations ψ and ψ̄, it is invariant
under any redefinition, including Eq. (14.133) (up to a Jacobian factor, which in this case
is just 1). Thus, expanding to first order in α, as in the derivation of the Schwinger–Dyson
equations for a scalar field,

0 =
∫
DψDψ̄ eiS

[
i

∫
d4x ψ̄(x)γμ ψ(x) ∂μα(x)

]
ψ(x1)ψ̄ (x2)

+
∫
DψDψ̄ eiS

[
−iα(x1)ψ(x1) ψ̄(x2) + iα(x2)ψ(x1) ψ̄(x2)

]
, (14.136)

which implies∫
d4xα(x)i∂μ

∫
DψDψ̄ eiSψ̄(x) γμ ψ(x)ψ(x1) ψ̄(x2)

=
∫
d4xα(x) [−iδ(x− x1) + iδ(x− x2)]

∫
DψDψ̄ eiSψ(x1) ψ̄(x2) . (14.137)

That this equality must hold for arbitrary α(x) implies

∂μ
〈
jμ(x)ψ(x1) ψ̄(x2)

〉
= −δ(x− x1)

〈
ψ(x1) ψ̄(x2)

〉
+ δ(x− x2)

〈
ψ(x1) ψ̄(x2)

〉
,

(14.138)
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where jμ(x) = ψ̄(x) γμ ψ(x) is the QED current. This is the Schwinger–Dyson equation
associated with charge conservation. It is a non-perturbative relation between correlation
functions. It has the same qualitative content as the other Schwinger–Dyson equations; the
classical equations of motion, in this case ∂μjμ = 0, hold within time-ordered correlation
functions up to contact interactions.

The generalization of this to higher-order correlation functions has one δ-function for
each field ψi of charge Qi in the correlation function that jμ(x) could contract with:

∂μ〈jμ(x)ψ1(x1) ψ̄2(x2)Aν(x3)ψ̄4(x4) · · · 〉
= (Q1δ(x−x1)−Q2δ(x−x2)−Q4δ(x−x4)+ · · · )〈ψ1(x1) ψ̄2(x2)Aν(x3) ψ̄4(x4) · · · 〉.

(14.139)

Photon fields Aν have no effect since they are not charged and the interaction Aμψ̄γμψ is
invariant under Eq. (14.133). More importantly, the kinetic term for the photon also has no
effect, thus these equations are independent of gauge-fixing.

14.8.2 Ward–Takahashi identity

To better understand the implications of Eq. (14.138), it is helpful to Fourier transform. We
first define a function Mμ(p, q1, q2) by the Fourier transform of the matrix element of the
current with fields:

Mμ(p, q1, q2) =
∫
d4x d4x1 d

4x2 e
ipxeiq1x1e−iq2x2

〈
jμ(x)ψ(x1) ψ̄(x2)

〉
. (14.140)

We have chosen signs so that the momenta represent j(p) + e−(q1) → e−(q2). We also
define

M0(q1, q2) =
∫
d4x1 d

4x2 e
iq1x1e−iq2x2

〈
ψ(x1) ψ̄(x2)

〉
, (14.141)

with signs to represent e−(q1) → e−(q2) so that

M0(q1 + p, q2) =
∫
d4x d4x1 d

4x2 e
ipxeiq1x1e−iq2x2δ4(x− x1)

〈
ψ(x1)ψ̄(x2)

〉
,

(14.142)

which is the Fourier transform of the first term on the right of Eq. (14.138). The second
term is similar, and therefore Eq. (14.138) implies

ipμM
μ(p, q1, q2) = M0(q1 + p, q2)−M0(q1, q2 − p). (14.143)

This is known as a Ward–Takahashi identity. It has important implications. In Sec-
tion 19.5, we will show that it implies that charge conservation survives renormalization,
which is highly non-trivial. The reason it is so powerful is that it applies not just to S-matrix
elements, but to general correlation functions. It also implies the regular Ward identity, as
we will show below.
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One can give a diagrammatic interpretation of Ward–Takahashi identity:

pμ

⎛⎝ q1

p ↓
q2

⎞⎠ =
q1 + p q2

−
.

q1 q2 − p
. (14.144)

Here, the represents the insertion of momentum through the current. Note that these
are not Feynman diagrams for S-matrix elements since the momenta are not on-shell.
Instead, they are Feynman diagrams for correlation functions, also sometimes called
off-shell S-matrix elements. The associated Feynman rules are the Fourier transforms of
the position-space Feynman rules. Equivalently, the rules are the usual momentum space
Feynman rules with the addition of propagators for external lines and without the external
polarizations (that is, without removing the stuff that the LSZ formula removes). Momen-
tum is not necessarily conserved, which is why we can have q1+p coming in with q2 going
out for general q1, p and q2.

For correlations function with f fermions and b currents, the matrix element can be
defined as

Mμν1...νb(p, p1 · · · pb, q1 · · · qf )

=
∫
d4x eipx eip1x1e−iq1y1 · · ·

〈
jμ(x) jν1(x1) · · · ψ̄(y1) · · ·

〉
(14.145)

and the contractions as

Mν1...νb(p, p1 · · · pb, q1 · · · qf ) =
∫
d4x eip1x1e−iq1y1 · · ·

〈
jν1(x1) · · · ψ̄(y1) · · ·

〉
.

(14.146)
Then, the generalized Ward–Takahashi identity is

ipμM
μν1...νb(p, p1 · · · pb, q1 · · · qf ) =

∑
outgoing

QiM
ν1···νn(p1, . . . , qi − p, . . . , qf )

−
∑

incoming

QiM
ν1···νn(p1, . . . , qi + p, . . . , qf ).

(14.147)

This sum is over all places where the momentum of the current can be inserted into one of
the fermion lines. There are no terms where the momentum of the current goes out through
another current, since currents jμ = ψ̄(x)γμψ(x) are gauge invariant and do not contribute
to the Schwinger–Dyson equation.

14.8.3 Ward identity

Now let us connect the Ward–Takahashi identity to the normal Ward identity. Recall that
the Ward identity is the requirement that if we replace εμ by pμ in an S-matrix element
with an external photon, we get 0. The basic idea behind the proof is that the S-matrix
involves objects such as εμ�〈Aμ · · · 〉. By the Schwinger–Dyson equations, we can use
�Aμ = Jμ up to contact terms to write εμ�〈Aμ〉 = εμ〈Jμ · · · 〉; then replacing εμ → pμ
gives zero since ∂μ〈Jμ · · · 〉 = 0 on-shell, by the Ward–Takahashi idenity. The tricky part
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of the proof is showing that all the contact terms in the Schwinger–Dyson equations and
Ward–Takahashi identity do not contribute.

From the LSZ reduction formula the S-matrix element with two polarizations ε and εk
explicit is

s〈ε · · · εk · · · |S| · · · 〉

= εμε
k
α

[
in
∫
d4xeipx�μν

∫
d4x1e

ipkxk�k
αβ

∫
· · ·
]
〈Aν(x) · · ·Aβ (xk) · · · 〉,

(14.148)

where the · · · are for the other particles involved in the scattering; �μν here is shorthand
for the photon kinetic terms. For example, in covariant gauges

�μν = �gμν − (1− 1
ξ
)∂μ∂ν . (14.149)

Whether the photon is gauge-fixed or not will not affect the following argument.
To simplify Eq. (14.148) we next use the Schwinger–Dyson equation for the photon:

�k
αβ�μν〈Aν(x) · · ·Aβ(xk) · · · 〉 = �k

αβ

[
〈jμ(x) · · ·Aβ(xk) · · · 〉 − iδ4(x− xk)gμβ〈· · · 〉

]
= 〈jμ(x) · · · jα(xk) · · · 〉+ �k

μα�DF (x, xk)〈· · · 〉,
(14.150)

where we have replaced−iδ4(x− xk) = �DF (x, xk) on the second line to connect to the
perturbation expansion, as in Section 7.1. The first term represents the replacement of the
photon fields by currents. The second term represents a contraction of two external photons
with each other. In diagrams:

= +

(14.151)
where the⊗ indicate current insertions. Since the contraction of two external photons gives
a disconnected Feynman diagram, it does not contribute to the S-matrix. Thus,

�k
αβ�μν〈Aν(x) · · ·Aβ(xk) · · · 〉 = 〈jμ(x) · · · jα(xk) · · · 〉. (14.152)

This result is a very general and useful property of diagrams involving photons:

S-matrix elements involving photons in QED with the external polarizations removed
are equal to time-ordered products involving currents.
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This is also true for S-matrix elements in which the external momenta pi are not assumed
to be on-shell.

If we then replace the polarization εμ in Eq. (14.148) by the associated photon’s
momentum pμ, we find

〈p · · · εk · · · |S| · · · 〉 =
[
in
∫
d4x eipx

∫
d4x1 e

ipkxk

∫
d4yi e

iq1y
(
i/∂y +m1

)
· · ·
]

× ∂μ〈jμ(x) · · · jα(xk) · · ·ψ(y) · · · 〉
= [
(
/q1 −m1

)
. . .]pμMμα···αb(p, p1 · · · pb, q1 . . . qf ), (14.153)

where mi are the masses of the fermions q2i = m2
i and Mμα···αb is given by Eq. (14.145).

Using the Ward–Takahashi identity, Eq. (14.147), this becomes

〈p · · · εk · · · |S| · · · 〉 = ±e[( /q1 −m1) · · · ]
∑
j

QiM
α···αb(p1, . . . , qj ± p, . . . , qf )

(14.154)
In terms of diagrams, we have found

pk

pq1

q3

q4

q6

q2

q5

εμ

εμ → pμ

=

q1 − p

q3

q4

q6

q2

q5

−

q1

q3

q4

q6

q2 + p

q5

+ · · ·+

q1

q3

q4

q6 + p

q2

q5

(14.155)

To get these diagrams, we first replace the external photons by currents, as in Eq. (14.151),
and then remove the current associated with the photon with polarization εμ and feed its
momentum pμ into each of the possible external fermions, as dictated by Eq. (14.147).

Now, each term in the sum in Eq. (14.154) has a pole at (qi ± p)2 = m2
i , not at q2i −m2

i ,

and will vanish when multiplied by the prefactor /qi − mi = q2i−m2
i

/qi+mi
since qi is on-shell.

Therefore, the sum vanishes and the Ward identity is proven. Note that this proof is non-
perturbative, and holds whether or not the external photons are assumed to have p2 = 0
or not.

By the way, the above derivation used that the photon interacted with the Noether current
linearly. That is, that the interaction is Lint = ejμAμ. This is not true for scalar QED,
where the interaction is Lint = ieAμ[φ�(∂μφ)− (∂μφ�)φ] + e2A2

μ|φ|2 (cf. Eq. (9.11)). In
scalar QED one can therefore have contractions of photons with other photons that do not
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only contribute to the disconnected part of the S-matrix. The Schwinger–Dyson equations
in this case get additional pieces known as Schwinger terms. You can explore these terms
in Problem 14.5.

14.8.4 Gauge invariance

Another consequence of the proof of the Ward identity in the previous section is that it
lets us also prove gauge invariance in the sense of independence of the covariant gauge
parameter ξ. Consider an arbitrary S-matrix element involving b external photons and f
external fermions at order en in perturbation theory. All the diagrams contributing at this
order will involve the same number of internal photons, namely m = b−n

2 , since each
external photon gives one factor of e and each internal photon gives two factors of e. Thus,
the amplitude can be written as a sum over m propagators:

M = enεαb1 · · · εαbb
∫
d4k1 · · · d4kmΠμ1ν1(k1) · · ·Πμmνm(km)

×Mμ1ν1···μmνmα1···αn(· · · ki · · · qi) , (14.156)

where qi are all the external momenta and εαii the external photon polarizations. Here
Mμ1···on the right-hand side can be written as an integral over matrix elements of time-
ordered products of currents and evaluated at e = 0, that is, in the free theory.

By the Ward identity, which we saw does not require the photons to have p2 = 0,
pμ1Mμ1··· = 0. Thus, if we replace any of the photon propagators by

Πμν(k) → Πμν(k) + ξkμkν , (14.157)

the correction will vanish. Therefore, the matrix element is independent of ξ. This proof
requires the external fermions to be on-shell, since otherwise there are contact interactions
that give additional matrix elements on the right-hand side. It does not require the external
photons to be on-shell.

Problems

14.1 Show that for complex scalar fields∫
Dφ�Dφ exp

[
i

∫
d4x(φ�Mφ+ JM)

]
= N 1

detM
exp(iJM−1J) (14.158)

for some (infinite) constant N .
14.2 Furry’s theorem states that 〈Ω |T{Aμ1(q1) · · ·Aμn(qn)}|Ω〉 = 0 if n is odd. It is a

consequence of charge-conjugation C invariance.
(a) In scalar QED, charge conjugation swaps φ and φ�. How must Aμ transform so

that the Lagrangian is invariant?
(b) Prove Furry’s theorem in scalar QED non-perturbatively using the path integral.
(c) Does Furry’s theorem hold if the photons are off-shell or just on-shell?
(d) Prove Furry’s theorem in QED.
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(e) In the Standard Model, charge conjugation is violated by the weak interactions.
Does your proof, for correlation functions of photons, still work in the Standard
Model, or do you expect small violations of Furry’s theorem?

14.3 In this problem, you will calculate 〈Φ|0〉 to verify Eqs. (14.65) and (14.66).
(a) Invert the expansion of free fields in creation and annihilation operators

(Eq. (2.78)) to solve for ap in terms of φ̂(x) and π̂(x) = ∂tφ̂(x).
(b) Show that π̂ acts on eigenstates of φ̂ as the variational derivative −i δδφ .
(c) Write a differential equation for 〈Φ|0〉 using ap|0〉 = 0.
(d) Show that the solution is given by 〈Φ|0〉 in Eqs. (14.65) and (14.66).
(e) Find a closed form for E(�x, �y) in the massive and massless cases.

14.4 In this problem, you will construct all the states that satisfy Eq. (14.19), φ̂(�x)|Φ〉 =
Φ(�x)|Φ〉, explicity. This is one way to define the measure on the path integral.
(a) Write the eigenstates of x̂ = c

(
a+ a†
)

for a single harmonic oscillator in terms
of creation operators acting on the vacuum. That is, find fz

(
a†
)

such that x̂|ψ〉 =
z|ψ〉, where |ψ〉 = fz

(
a†
)
|0〉.

(b) Generalize the above construction to field theory, to find the eigenstates |Φ〉 of
φ̂(�x) that satisfy φ̂(�x)|Φ〉 = Φ(�x)|Φ〉.

(c) Prove that these eigenstates satisfy the orthogonality relation Eq. (14.22).
14.5 Schwinger terms.

(a) What are the Schwinger–Dyson equations for photons and charged scalar fields
in scalar QED? That is, give an equation for �μν〈AνAαφ�φ〉 = ?

(b) How is the current-conservation Schwinger–Dyson equation different in QED
and scalar QED?

14.6 Anticommutation.
(a) Since Grassmann numbers anticommute, θ1θ2θ1θ2 = 0, why does a term in the

Lagrangian such as ψ̄(x)ψ(x)ψ̄(x)ψ(x) not automatically vanish? What about
(ψ̄ψ)5? Would you get the same answer for e+e− → 4e+e− pairs from a (ψ̄ψ)5

term in the Lagrangian in the canonical formalism and with the path integral?
(b) We showed that correlation functions of gauge-invariant operators come out the

same if we add a term − 1
2ξ (∂μAμ)

2 to the Lagrangian. Would they come out

the same if we added a term of the form− 1
2ξ (∂μAμ)

4? What about a term of the
form ξA2

μ?
14.7 To derive the Schwinger–Dyson equations for scalars in the canonical picture,

we needed to use the equations
(
� +m2

)
φ̂ = L′

int[φ̂] and [φ̂(�x, t), ∂tφ̂(�y, t)] =
iδ3(�x− �y):
(a) What is the equivalent of these equations for Dirac spinors?
(b) Verify the Schwinger–Dyson equation in Eq. (14.127) using the canonical

approach.
(c) Verify the Schwinger–Dyson equation in Eq. (14.127) using the path integral.
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Now we come to the real heart of quantum field theory: loops. Loops generically are
infinite. For example, the vacuum polarization diagram in scalar QED is

iM = p

k

k − p

p = e2
∫

d4k

(2π)4
2kμ − pμ

(k − p)2 −m2 + iε

2kν − pν
k2 −m2 + iε

.

(15.1)
In the region of the integral at large, kμ � pμ,m, this is1

iM∼ 4e2
∫

d4k

(2π)4
k2

k4
∼
∫
k dk =∞. (15.2)

This kind of divergent integral appears in almost every attempt to calculate matrix elements
beyond leading order in perturbation theory: corrections to the electron mass, corrections
to the hydrogen atom energy levels, etc. Even by the late 1930s, Dirac, Bohr, Oppenheimer
and others were ready to give up on QED because of these divergent integrals.

So what are we supposed to do about these divergences? The basic answer is very sim-
ple: this loop is not by itself measurable. As long as we are always computing measurable
quantities, the answer will come out finite. In practice, the way it works is a bit more
complicated – instead of computing a physical observable all along, we deform the theory
in such a way that the integrals come out finite, depending on some regulating parame-
ter. When all the integrals are put together, the answer for the observable turns out to be
independent of the regulator and the regulator can be removed. This is the program of
renormalization. Why it is called “renormalization” will become clear in Chapter 18.

15.1 Casimir effect

Let us start with the simplest divergence, the one in the free Hamiltonian. Recall that for
a free scalar field, which is just the sum of an infinite number of harmonic oscillators, the
Hamiltonian is

H =
∫

d3k

(2π)3
ωk

(
a†kak +

1
2

)
, (15.3)

1 kμ � pμ can be made precise by analytically continuing to Euclidean space, where it implies
∣∣kμ

E

∣∣ � ∣∣pμ
E

∣∣.
For scaling arguments, we will more simply treat all the components of kμ as larger than all the components
of pμ when considering such limits.

287
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a

L

�Fig. 15.1 A box of size a in a box of size L.

where ωk = |�k|. So the contribution to the vacuum energy of the photon zero modes is

E = 〈0 |H| 0〉 =
∫

d3k

(2π)3
ωk
2

=
1

4π2

∫
k3dk = ∞, (15.4)

known as the zero-point energy.
While the zero-point energy is infinite, it is also not observable. As with potential energy

in classical mechanics, only energy differences matter and the absolute energy is unphysi-
cal (with the exception of the cosmological constant, to be discussed in Section 22.7.1). To
get physics out of the zero-point energy we must consider the free theory in some context
other than just sitting there in the vacuum.

Consider the zero-point energy in a box of size a. If the energy changes with a, then we
can calculate F = −dE

da , which will be a force on the walls of the box. In this case, we

have a natural low-energy or infrared (IR) cutoff: |�k| > 1
a . Of course, this does not cut off

the high-energy or ultraviolet (UV) divergence at large k, but if we are careful there will
be a finite residual dependence on a that will give an observable force, called the Casimir
force.

Being careful, we realize immediately that if we change a then the energy inside and
outside the box will change, which means we have to deal with all space again, compli-
cating the problem. So let us put in a third wall on our box far away, at L � a. Then the
zero-point energy completely outside the box is independent of a, so we can immediately
drop it. The setup is shown in Figure 15.1.

We will work with a one-dimensional box for simplicity, and use a scalar field instead
of the photon. In a one-dimensional box of size r the (classically) quantized frequencies
are ωn = π

r n. Then the integral in the quantum Hamiltonian becomes a discrete (but still
infinite) sum:2

E(r) = 〈0 |H| 0〉 =
∑
n

ωn
2
, ωn =

π

r
n, (15.5)

which represents the energy in a box of size r.

2 Continuous modes are normalized as [ak, a
†
p] = (2π)3δ3(p − k). For the Casimir force, the modes will be

discrete, so [ak, a
†
p] = δpk is appropriate. Then the Hamiltonian, H =

∫ d3p
(2π)3

ωp
2

(a†pap + apa
†
p), reduces

to Eq. (15.3).
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The total energy is the sum of the energy on the right side, r = (L− a), plus the energy
on the left side, r = a:

Etot(a) = E(a) + E(L− a) =
(

1
a

+
1

L− a

)
π

2

∞∑
n=1

n. (15.6)

We do not expect the total energy to be finite, but we do hope to find a finite value for the
force:

F (a) = −dEtot

da
=
(

1
a2
− 1

(L− a)2
)
π

2

∞∑
n=1

n. (15.7)

For L→∞ this becomes

F (a) =
π

2
1
a2

(1 + 2 + 3 + · · · ) =∞. (15.8)

So the plates are infinitely repulsive. Needless to say, our prediction at this point does not
agree with experiment.

What are we missing? Physics! These boundaries at 0, a and L are forcing the
electromagnetic waves to be quantized due to the interactions between the photons and
the boundary plates. These plates are made of atoms. Now think about the super-high-
energy radiation modes, with super-small wavelengths. They are going to just plow through
the walls of the box. Since we are only interested in the modes that are affected by the
walls, these ultra-high-frequency modes should be irrelevant. The free theory is a little too
idealized: without interactions, nothing can ever be measured.

15.2 Hard cutoff

Instead of putting in the detailed physics of the plates, it is easier to employ effec-
tive approximations. As we will see, all approximations that take into account certain
gross properties of the interactions will be equivalent, providing a valuable lesson about
renormalization.

Say we put in a high-frequency cutoff Λ so that ω < πΛ. We can think of Λ as 1
atomic size ,

or some other natural scale that limits the high-frequency light. Then

nmax(r) = Λr. (15.9)

So,

E(r) =
1
r

π

2

nmax∑
n=1

n =
π

2r
nmax(nmax + 1)

2
=

π

4r
(Λr)(Λr+ 1) =

π

4
(Λ2r+ Λ). (15.10)

Then

Etot = E(L− a) + E(a) =
π

4
(
Λ2L+ 2Λ

)
. (15.11)

So, we get some infinite constant, but one that is independent of a. Thus F (a) = −dEtot
da

= 0. Now the force is no longer infinite, but vanishes. Is that the right answer?
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2 3 4 5 6
a

Etot (a)

�Fig. 15.2 The total energy with a floor-function cutoff does depend on a. The smooth line is the
average of the oscillations, with − 1

2
x(1 − x) → − 1

12
, as explained in the text. The dashed

line on top is the large L limit of the hard cutoff energy, π
4
Λ2L. The values Λ = 4 and

L = 1000 have been used.

Yes, to leading order. But we were a little too quick with this calculation. The hard cutoff
means a mode is either included or not. Thus, even though we change r continuously,
nmax can only change by discrete amounts. We can write this mathematically with a floor
function

nmax(r) = !Λr " , (15.12)

where !x " means the greatest integer less than x. Then the sum is

E(r) =
π

4r
!Λr"(!Λr "+1) . (15.13)

Now the total energy, Etot(a) = E(L − a) + E(a), oscillates with a, as shown in
Figure 15.2, and we see that total energy is not a smooth function of a.

To deal with this oscillation, define a number x as

x = Λa− !Λa" ∈ [0, 1), (15.14)

which gives

E(a) =
π

4

[
Λ2a+ Λ− 2Λx− x(1− x)

a

]
. (15.15)

We will also take ΛL to be an integer, which is allowed because Lwas some arbitrary fixed
size that does not change when we move the wall at a. Then !ΛL − Λa" = ΛL − #Λa$.
For simplicity, let us also assume Λa is not an integer, which lets us use #Λa$ = !Λa"+1.
Then,

E(L− a) =
π

4

[
(ΛL− #Λa$)(ΛL− #Λa$+ 1)

L− a

]
=
π

4

[
Λ2(L− a)− Λ + 2Λx− x(1− x)

L− a

]
(15.16)
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and

Etot(a) = E(L− a) + E(a) =
π

4

[
Λ2L− x(1− x)

a
− x(1− x)

L− a

]
. (15.17)

The Λ2L piece is the extrinsic energy of the whole system, which does not contribute to
the force, and a part that oscillates as x goes between 0 and 1. Keeping only terms up to
order L0, the total energy is

Etot(a) =
π

4
LΛ2 − π

4a
x(1− x). (15.18)

The π
4LΛ2 term is the extrinsic energy, which does not contribute to the force, and a part

that oscillates as 0 ≤ x < 1.
Since x = Λa − !Λa", as Λ → ∞ at fixed a, there are more and more oscillations. In

the continuum limit (Λ → ∞), the plate will only experience the average force. Thus, we
can average x between 0 and 1, using

∫
x(1− x) = 1

6 . So,

Etot(a) ≈
π

4
LΛ2 − π

24a
. (15.19)

This average is shown as the smooth line in Figure 15.2.
The result is a non-zero and finite result for the force:

F (a) = −dEtot

da
= − π

24a2
. (15.20)

Putting back in the � and c, we find that the Casimir force in one dimension is

F (a) = − π�c

24a2
. (15.21)

This is an attractive force. We can see that the force is purely quantum mechanical because
it is proportional to �.

In three dimensions, remembering to account for the two photon polarizations, the
answer is

F (a) = − π2�c

240a4
A, (15.22)

where A is the area of the walls of the box. Although predicted by Casimir in
1948 [Casimir, 1948], the force was not conclusively observed until 1997 [Lamoreaux,
1997].

15.3 Regulator independence

You should find the calculation of the Casimir effect incredibly disconcerting. We found
the force to be independent of Λ, but we needed to use a crazy model of the walls where the
discreteness of the hard cutoff played an important role. What if we took a different model
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besides the hard cutoff for regulating the UV modes? It seems obvious that we should get
a different answer with each model.

However, it turns out we will not. We get the same answer no matter what, as long as the
cutoff satisfies some basic requirements. That is a pretty amazing fact. We will first try a
few more regulators, then we will present the precise requirements and a proof of regulator
independence.

15.3.1 Heat-kernel regularization

Another reasonable physical assumption besides a hard cutoff would be that there is some
penetration depth of the modes into the walls, with high-frequency modes getting further.
This means that the contribution of high-frequency modes to the relevant energy sum is
exponentially suppressed. Thus we can try

E(r) =
1
2

∑
n

ωne
−ωn/(πΛ). (15.23)

This is called heat-kernel regularization.
Expanding with ωn = π

r n:

E(r) =
1
r

π

2

∞∑
n=1

ne−n/(Λr) =
1
r

π

2

∞∑
n=1

ne−εn, ε =
1

Λr

 1. (15.24)

Now we can calculate

∞∑
n=1

ne−εn = −∂ε
∞∑
n=1

e−εn = −∂ε
1

1− e−ε =
e−ε

(1− e−ε)2 =
1
ε2
− 1

12
+

ε2

240
+ · · · .

(15.25)
Already, we see the factor − 1

12 appearing.
So,

E(r) =
1
r

π

2

[
Λ2r2 − 1

12
+

1
240r2Λ2

· · ·
]

=
π

2
rΛ2 − π

24r
+ · · · , (15.26)

and then

F (a) = − d

da
[E(L− a) + E(a)] = − d

da

[
π

2
LΛ2 − π

24

(
1

L− a +
1
a

)
+ · · ·
]

=
π

24

(
1

(L− a)2 −
1
a2

)
+ · · · . (15.27)

Now take L→∞ and we get

F (a) = − π�c

24a2
, (15.28)

which is the same thing we found with the floor-function cutoff. Note, however, that the
extrinsic energy term was π

4LΛ2 in the previous case and is π
2LΛ2 in this case.
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15.3.2 Other regulators

What else can we try? We can use a Gaussian regulator:

E(r) =
1
2

∑
n

ωne
−(ωnπΛ )2 , (15.29)

or a ζ-function regulator:

E(r) =
1
2

∑
n

ωn

(
ωn
μ

)−s
, (15.30)

where we take s → 0 instead of ωmax → ∞ and have added an arbitrary scale μ to keep
the dimensions correct. μ does not have to be large – it should drop out for any μ.

Let us work out the ζ-function case. Substituting in for ωn we get

E(r) =
1
2

(π
r

)1−s
μs
∑
n

n1−s. (15.31)

This sum is the definition of the Riemann ζ-function:∑
n1−s = ζ(s− 1) = − 1

12
− 0.165s+ · · · . (15.32)

So we get

E(r) =
1
r

π

2
ζ(s− 1) =

1
r

π

2

[
− 1

12
+O(s) · · ·

]
, (15.33)

and the energy comes out as

E(r) = − π

24r
+ · · · . (15.34)

This is the same as what the heat-kernel and floor-function regularization gave, although
now note that the extrinsic energy term is absent.

All four of these regulators agree:

E(r) =
1
2

∑
n

ωnθ(πΛ− ωn) (hard cutoff), (15.35)

E(r) =
1
2

∑
n

ωne
−ωn
πΛ (heat kernel), (15.36)

E(r) =
1
2

∑
n

ωne
−(ωnπΛ )2 (Gaussian), (15.37)

E(r) =
1
2

∑
n

ωn

(
ωn
μ

)−s
(ζ-function). (15.38)

That these regulators all agree is reassuring, but still somewhat mysterious.
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15.3.3 Regulator-independent derivation

Casimir showed in his original paper [Casimir, 1948] a way to calculate the force in a
regulator-independent way. Define the energy as

E(a) =
π

2

∑
n

n

a
f
( n
aΛ

)
, (15.39)

where f(x) is some function whose properties we will determine shortly.
With this definition, the energy of the L− a side of the box is

E(L− a) =
π

2
(L− a)Λ2

∑
n

n

(L− a)2Λ2
f

(
n

(L− a)Λ

)
. (15.40)

We can take the continuum limit of this (L→∞) with x = n
(L−a)Λ . Then,

E(L− a) =
π

2
LΛ2

∫
x dx f(x)− π

2
aΛ2

∫
x dx f(x). (15.41)

The first integral is just the extrinsic vacuum energy, with energy density

ρ =
π

2
Λ2

∫
x dx f(x). (15.42)

The second integral simplifies with the change of variables x = n
aΛ . Adding the discrete

sum, for the a side, with the continuum limit of the L− a side, gives

Etot = E(a) + E(L− a) = ρL+
π

2a

[∑
n

nf
( n
aΛ

)
−
∫
ndn f
( n
aΛ

)]
. (15.43)

This contains the difference between an infinite sum and an infinite integral. Such a
difference is given by the Euler–Maclaurin series:

N∑
n=1

F (n)−
∫ N

0

F (n)dn

=
F (0) + F (N)

2
+
F ′(N)− F ′(0)

12
+ · · ·+Bj

F (j−1)(N)− F (j−1)(0)
j!

+ · · · ,

(15.44)

where F (j)(N) = djF (N)
dNj and Bj are the Bernoulli numbers. In particular, B2 = 1

6 and
Bj for odd j > 1 happen to vanish.

In our case, F (n) = nf( n
aΛ ). So, assuming that f(x) dies sufficiently fast,

lim
x→∞xf (j)(x) = 0, (15.45)

then

Etot = ρL− πf(0)
24a

− B4

4!
3π

2a3Λ2
f ′′(0) + · · · . (15.46)

For example, if f(x) = e−x, then

Etot =
π

2
Λ2L− π

24a
+O
(

1
a2Λ

)
, (15.47)

which gives the correct Casimir force.
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In fact, it is now clear that any regulator will give this force as long as

lim
x→∞xf (j)(x) = 0 and f(0) = 1. (15.48)

You can see that all four of the regulators in Eq. (15.38) satisfy these requirements. The
first requirement, that f(x) die fast enough at high energy, means that UV modes go right
through the box. It is this requirement that makes the force finite. The second requirement,
that f(0) = 1, means that the regulator does not affect the spectrum in the IR. On physical
grounds, only modes of size 1

a can reach both walls of the box to transmit the force, thus
our deformation should not affect those modes.

We have two conclusions from this analysis:

The Casimir force is independent of any regulator.
The Casimir force is an infrared effect.

15.3.4 Counterterms

In the above analysis, we not only took ωmax → ∞ but also L → ∞. Why did we need
this third boundary at r = L at all? Let us suppose we did not have it, and just calculated
the energy inside the box of size r. Then we would get (with the heat-kernel regulator)

E(r) =
π

2
rΛ2 − π

24r
+ · · · . (15.49)

This first term is the extrinsic energy, which is linear in the volume and is regulator depen-
dent. It can be interpreted as saying there is some finite energy density ρ = E0

r = π
2 Λ2.

Now suppose that instead of just the free-field Lagrangian L we used to calculate the
ground-state energy, we took

L = L′ + ρc, (15.50)

where ρc is constant. This new term gives an infinite contribution of
∫
dx ρc in the action.

Now if we choose ρc = −π
2 Λ2, the new term exactly cancels the π

2 rΛ
2 term we found

using the heat-kernel regulator. In the ζ-function regulator, where no divergent terms come
out of the calculation, we could take ρc = 0.

The point is that since ρc is unmeasurable we can choose it to be whatever is convenient.
ρc is called a counterterm. Counterterms give purely infinite contributions to intermediate
steps in calculations, but when we compute physical quantities they drop out. Counterterms
are an important tool in renormalization in quantum field theory.

15.3.5 String theory aside

A terse way to summarize the Casimir force calculation is that it amounts to the
replacement

π

2r

∞∑
n=1

n → − π

24r
, (15.51)
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or equivalently

1 + 2 + 3 + · · · = − 1
12
. (15.52)

This bizarre identity has an important use in string theory. In string theory, the mass of
particles is determined by the string tension α′:

m2 =
1
α′ j + E0, (15.53)

where j is the excitation number (the string harmonic) and E0 is the Casimir energy of
the string, which is independent of j. So there is a whole tower of particles with different
masses. In d dimensions, the Casimir energy is

E0 =
1
α′

(
d− 2

2

)(
− 1

12

)
, (15.54)

where the − 1
12 comes from the same series we have just summed. Now, you can show in

string theory that the j = 1 excitations comprise spin-1 particles with two polarizations.
So they must be massless. Then, solving for m = 0 you find d = 26. That is why string
theory takes place in 26 dimensions. If you do the same calculation for the superstring, you
find d = 10.

15.4 Scalar field theory example

Before we do any physical calculations, let us get an overview of the way things are going
to work out in quantum field theory. Consider the theory of a massless real scalar field with
Lagrangian

L = −1
2
φ�φ− λ

4!
φ4, (15.55)

where λ is a dimensionless coupling constant. At tree-level, φφ → φφ scattering is given
by the simple cross diagram:

iM1 = = −iλ. (15.56)

The leading correction comes from loops, such as this s-channel one:

iM2 = = (−iλ)2
∫

d4k

(2π)4
(· · · ) (15.57)

There are also t- and u-channel diagrams, but let us forget about them (for example, if
we had three fields with a λ

4 (φ2
1φ

2
2 + φ2

2φ
2
3) interaction, there would only be an s-channel

contribution to φ1φ1 → φ3φ3).
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Let p = p1 + p2 = p3 + p4, then k1 + k2 = p so we can set k1 = k and k2 = p− k and
integrate over k. The diagram is then

iM2 =
(−iλ)2

2

∫
d4k

(2π)4
i

k2

i

(p− k)2 , (15.58)

where the 1
2 is a symmetry factor. This is a Lorentz-invariant quantity, so it can only depend

on s = p2. It is also dimensionless and diverges as
∫
dk
k . So we expectM2 ∼ log s

Λ2 , where
Λ is some cutoff parameter with dimensions of mass.

As a quick and dirty way to get the answer, take the derivative with respect to s:

∂

∂s
M2(s) =

pμ

2s
∂

∂pμ
M2(s) =

iλ2

2s

∫
d4k

(2π)4
1
k2

(p2 − p · k)
(p− k)4 . (15.59)

Now the integral is convergent. It is not too hard to work out this integral, and we will do
some examples like this soon. But for now, we will just quote the answer:

∂

∂s
M2(s) = − λ2

32π2

1
s
. (15.60)

This means that

M2 = − λ2

16π2
ln s+ c, (15.61)

where c is an integration constant. Since the integral in Eq. (15.58) is divergent, c will have
to be infinite. Also, since s has dimensions of mass squared, it is nice to write the constant
as c = λ2

16π2 ln Λ2, where Λ has dimensions of mass. Then we have

M2 = − λ2

32π2
ln

s

Λ2
. (15.62)

So the total matrix element is

M(s) = −λ− λ2

32π2
ln

s

Λ2
. (15.63)

This is an analog of the Casimir energy, Etot(a) = cΛ2L− π
24a , which has Λ dependence

and dependence on the physical scale (
√
s or a). We now need the analog of the observable,

the force on the plates in the Casimir calculation.

15.4.1 Renormalization of λ

First of all, notice that, while M(s) is infinite, the difference between M(s1) and M(s2)
at two different scales is finite:

M(s1)−M(s2) =
λ2

32π2
ln
s2
s1
. (15.64)

Should we also expect thatM(s) itself be finite? After all,M2 is supposed to be a physical
cross section.

To answer this, let us think more about λ. It should be characterizing the strength of the
φ4 interaction. So to measure λ we would simply measure the cross section for φφ → φφ

scattering, or equivalently,M. But this matrix element is not just proportional to λ but also
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has the λ2 correction above. Thus, it is impossible to simply extract λ from this scattering
process. Instead, let us just define a renormalized coupling λR as the value of the matrix
element at a particular s = s0.

So,

λR ≡ −M(s0) = λ+
λ2

32π2
ln
s0
Λ2

+ · · · . (15.65)

This equation relates the parameter λ of the Lagrangian to the value of the observed scat-
tering amplitude λR at a particular center-of-mass energy s0. We can also conclude that
since λR is observable and hence finite, λmust be infinite, to cancel the infinity from ln Λ2.

Next, we will solve for λ in terms of λR in perturbation theory by writing

λ = λR + aλ2
R + · · · (15.66)

and solving for a. Substituting into Eq. (15.65) we find

λR =
(
λR + aλ2

R + · · ·
)

+

(
λR + aλ2

R + · · ·
)2

32π2
ln
s0
Λ2

+ · · ·

= λR + aλ2
R +

λ2
R

32π2
ln
s0
Λ2

+ · · · . (15.67)

So, a = − 1
32π2 ln s0

Λ2 and

λ = λR −
λ2
R

32π2
ln
s0
Λ2

+ · · · . (15.68)

Although the second term may be larger than the first as Λ → ∞, this should be thought
of as a formal solution as a power series in λR.

Now, suppose we measure the cross section at a different center-of-mass energy s. Then

M(s) = −λ− λ2

32π2
ln

s

Λ2

= −
[
λR +

λ2
R

32π2
ln
s0
Λ2

]
− λ2

R

32π2
ln
s

Λ2
+ · · ·

= −λR −
λ2
R

32π2
ln
s

s0
+ · · ·. (15.69)

This equation gives us an expression forM(s) for any s that is finite order-by-order in per-
turbation theory. More importantly it gives us a physical prediction. The φ4 cross section
with s = s1 differs from the cross section with s = s0 by logarithmic terms. Remember,
by definition λR is observable: it is the exact cross section at the scale s0. So we are pre-
dicting one observable (cross section at s) in terms of another (cross section at s0). By the
way, the logarithmic behavior is a characteristic of loop effects – tree-level graphs only
give you rational polynomials in momenta and couplings, never logarithms. This will play
an important role in proofs of renormalizability (Chapter 21) and in making predictions in
non-renormalizable theories (Chapter 22).
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15.4.2 Interpretation of counterterms

Another way of getting the same result is to add a counterterm to the Lagrangian. That
means adding another interaction that is just like the first, but infinite. So we take as our
Lagrangian

L = −1
2
φ�φ− λR

4!
φ4 − δλ

4!
φ4, (15.70)

where the counterterm δλ is infinite, but formally of order λ2
R. Then, working to order λ2

R,
the amplitude is

M(s) = −λR − δλ −
λ2
R

32π2
ln
s

Λ2
+O(λ4

R). (15.71)

Now we can choose δλ to be whatever we want. If we take it to be

δλ = − λ2
R

32π2
ln
s0
Λ2
, (15.72)

then

M(s) = −λR +
λ2
R

32π2
ln
s

s0
, (15.73)

which is finite. In particular, this choice of δλ makes M(s0) = −λR, which was our
definition of λR above.

Doing things this way, with counterterms but as a perturbative expansion in the physical
coupling λR, is known as renormalized perturbation theory. The previous way, where we
compute physical quantities such asM(s1)−M(s2) directly, is sometimes called physical
or on-shell perturbation theory. The two are equivalent, but for complicated calculations,
renormalized perturbation theory is often much easier.

Problems

15.1 Evaluate the Casimir force using the Gaussian regulator in Eq. (15.29).
15.2 Show that the Casimir force from the vacuum energy of fermions has the opposite

sign than from bosons.
15.3 It has been proposed that geckos use the Casimir force to climb walls. It is known

that geckos do not use suction (like salamanders) or capillary adhesion (like some
frogs). A gecko’s foot is covered in a million tiny hairs called setae, which terminate
in spatula-shaped structures around 0.5µm wide. Use dimensional analysis and the
form of the Casimir force to decide whether you think this could be possible.

15.4 The vacuum energy of massive particles also contributes to the Casimir force. Before
doing the calculation, how do you expect the Casimir force to depend on mass? Now
do the calculation and see if you are correct (use any approximations you want – this
problem is challenging).
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In the previous chapter, we found that although the energy of a system involving two plates
is infinite, the force between the plates (the Casimir force), which is what is actually
observable, is finite. At an intermediate step in the calculation, we needed to model the
inability of the plates to restrict ultra-high-frequency radiation. We found that the force
was independent of the model and only determined by radiation with wavelengths of the
plate separation, exactly as physical intuition would suggest. More precisely, we proved the
force was independent of how we modeled the interactions of the fields with the plates as
long as the very short wavelength modes were effectively removed and the longest wave-
length modes were not affected. Some of our models were inspired by physical arguments,
as in a step-function cutoff representing an atomic spacing; others, such as the ζ-function
regulator, were not. That the calculated force is independent of the model is very satisfy-
ing: macroscopic physics (the force) is independent of microscopic physics (the atoms).
Indeed, for the Casimir calculation, it does not matter if the plates are made of atoms,
aether, phlogiston or little green aliens.

The program of systematically making testable predictions about long-distance physics
in spite of formally infinite short-distance fluctuations is known as renormalization.
Because physics at short and long distance decouples, we can deform the theory at short
distance any way we like to get finite answers – we are unconstrained by physically jus-
tifiable models. In fact, our most calculationally efficient deformation will be analytic
continuation to d = 4 − ε dimensions with ε → 0. The beauty of renormalization is
that the existence of a physical cutoff is totally irrelevant: quantitative predictions about
long-distance physics do not care what the short-distance cutoff really is, or even whether
or not it exists.

The core idea behind renormalization in quantum field theory is:

Observables are finite and in-principle calculable functions of other observables.

One can think of general correlation functions 〈Ω|T {φ(x1) · · ·φ(xn)} |Ω〉 as a useful
proxy for observables. Most of the conceptual confusion, both historically and among
students learning the subject, stems from trying to express observables in terms of
non-observable quantities, such as coupling constants in a Lagrangian. In practice:

• Infinite results associated with high-energy divergences may appear in intermediate steps
of calculations, such as in loop graphs.

• Infinities are tamed by a deformation procedure called regularization. The regulator
dependence must drop out of physical predictions.
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• Coefficients of terms in the Lagrangian, such as coupling constants, are not observable.
They can be solved for in terms of the regulator and will drop out of physical predictions.

We will find that loops can produce behavior different from anything possible at tree-level.
In particular,

• Non-analytic behavior, such as ln s
s0

, is characteristic of loop effects.

Tree-level amplitudes are always rational polynomials in external momenta and never
involve logarithms. In many cases, the non-analytic behavior will comprise the entire
physical prediction associated with the loop.

In Section 15.4, we gave an example of renormalization in φ4 theory. We found that
the expression for a correlation function in terms of the coupling constant λ was infinite:〈
φ4
〉
s

= λ − λ2

16π2 ln s
Λ2 + · · · = ∞. However, expressing the correlation function at the

scale s in terms of the correlation function at a different scale s0 gave a finite prediction:〈
φ4
〉
s

=
〈
φ4
〉
s0
− 1

16π2

〈
φ4
〉2
s0

ln s
s0

+ · · · . Although φ4 theory was just a toy example,
renormalization in QED, which we begin in this chapter, is conceptually identical.

Recall that the Coulomb potential V (r) = e2

4πr is given by the exchange of a single
photon:

=
e2

p2
. (16.1)

Indeed, 1
4πr is just the Fourier transform of the propagator (cf. Section 3.4). A 1-loop

correction to Coulomb’s law comes from an e+e− loop inside the photon line:

. (16.2)

This will give us a correction to V (r) proportional to e4. We will show that while the charge
e is infinite it can be replaced by a finite renormalized charge order-by-order in perturbation
theory. The physical effect will be a measurable correction to Coulomb’s law predicted by
quantum field theory with logarithmic scale dependence, as in the φ4 toy model.

The process represented by the Feynman diagram in Eq. (16.2) is known as vacuum
polarization. The diagram shows the creation of virtual e+e− pairs, which act like a virtual
dipole. In the same way that a dielectric material such as water would become polarized
if we put it in a electric field, this vacuum polarization tells us how the vacuum itself is
polarized when it interacts with electromagnetic radiation.

Since the renormalization of the graph is no different than it was in φ4 theory, the only
difficult part of calculating vacuum polarization is in the evaluation of the loop. Indeed, the
loop in Eq. (16.2) is complicated, involving photons and spinors, but we can evauate it by
exploiting some tricks developed through the hard work of our predecessors. Our approach
will be to build up the QED vacuum polarization graph in pieces, starting with φ3 theory,
then scalar QED, and finally real QED. For convenience, some of the more mathematical
aspects of regularization are combined into one place in Appendix B, which is meant to
provide a general reference. In the following, we assume familiarity with the results from
that appendix.
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16.1 Scalar φ3 theory

As a warm-up for the vacuum polarization calculation in QED, we will start with scalar φ3

theory with Lagrangian

L = −1
2
φ(� +m2)φ+

g

3!
φ3. (16.3)

Now we want to compute

iMloop(p) =
p

k

k − p

p

=
1
2
(ig)2
∫

d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε
, (16.4)

which will tell us the 1-loop correction to the Yukawa potential. We will allow the initial
and final line to be off-shell: p2 �= m2, since we are calculating the correction to the initial
φ propagator, i

p2−m2 , which also must have p2 �= m2 to make any sense, and since we will
be embedding this graph into a correction to Coulomb’s law (see Eq. (16.14) below).

First, we can use the Feynman parameter trick from Appendix B:

1
AB

=
∫ 1

0

dx
1

[A+ (B −A)x]2
, (16.5)

with A = (p− k)2 −m2 + iε and B = k2 −m2 + iε. Then we complete the square

A+ [B −A]x = (p− k)2 −m2 + iε+
[
k2 − (p− k)2

]
x

= [k − p(1− x)]2 + p2x(1− x)−m2 + iε, (16.6)

which gives

iMloop(p) =
g2

2

∫
d4k

(2π)4

∫ 1

0

dx
1

[(k − p(1− x))2 + p2x(1− x)−m2 + iε]2
. (16.7)

Now shift kμ → kμ + pμ(1− x) in the integral. The measure is unchanged, and we get

iMloop(p) =
g2

2

∫
d4k

(2π)4

∫ 1

0

dx
1

[k2 − (m2 − p2x(1− x)) + iε]2
. (16.8)

At this point, we need to introduce a regulator. We will use Pauli–Villars regulariza-
tion (see Appendix B), which adds a fictitious scalar of mass Λ with fermionic statistics.
This particle is an unphysical ghost particle. We can use the Pauli–Villars formula from
Appendix B: ∫

d4k

(2π)4
1

(k2 −Δ + iε)2
= − i

16π2
ln

Δ
Λ2
. (16.9)

Comparing to Eq. (16.8), we have Δ = m2 − p2x(1− x) so that

iMloop(p) = − ig2

32π2

∫ 1

0

dx ln
(
m2 − p2x(1− x)

Λ2

)
. (16.10)
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This integral can be done – the integrand is perfectly well behaved between x = 0 and
x = 1. For m = 0 it has the simple form

Mloop(p) =
g2

32π2

[
2− ln

−p2

Λ2

]
. (16.11)

Note that the 2 cannot be physical, because we can remove it by redefining Λ2 → Λ2e−2.
Also note that when this diagram contributes to the Coulomb potential (as in Eq. (16.14)
below), the virtual momentum pμ is spacelike (p2 < 0), so ln−p2

Λ2 is real. Then,

Mloop(p) = − g2

32π2
ln
Q2

Λ2
. (16.12)

An important point is that the regulator scale Λ has to be just a number, independent of
any external momenta. With the Pauli–Villars regulator we are using here, Λ is the mass
of some heavy fictitious particle. It corresponds to a deformation of the theory at very high
energies/short distances, like the modeling of the wall in the Casimir force. On the other
hand, Q is a physical scale, like the plate separation in the Casimir force. Thus, Λ cannot
depend on Q. In particular, the lnQ2 dependence cannot be removed by a redefinition of
Λ like the 2 in Eq. (16.11) was. This point is so important it is worth repeating: the short-
distance deformation (Λ) cannot depend on long-distance physical quantities (Q). This
separation of scales is critical to being able to take Λ →∞ to make predictions by relating
observables at different long-distance scales such as Q and Q0. The coefficient of lnQ2 is
in fact regulator independent and will generate the physical prediction from the loop.

16.1.1 Renormalization

The diagram we computed is a correction to the tree-level φ propagator. To see this, observe
that the propagator is essentially the same as the t-channel scattering diagram:

iM0(p) = p ↓ = (ig)2
i

p2
. (16.13)

If we insert our scalar bubble in the middle, we get

M1(p) =
↓ p

↓ p

= (ig)2
i

p2
iMloop(p)

i

p2
= ig2 1

p2

[
− g2

32π2
ln
−p2

Λ2

]
1
p2
.

(16.14)
Since p2 < 0, let us write Q2 = −p2 with Q > 0. Then,

M(Q) =M0(Q) +M1(Q) =
g2

Q2

(
1− 1

32π2

g2

Q2
ln
Q2

Λ2
+O
(
g4
))

. (16.15)
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Note that g is not a number in φ3 theory but has dimensions of mass. This actually makes
φ3 a little more confusing than QED, but not insurmountably so. Let us substitute for g a
new Q-dependent variable g̃2 ≡ g2

Q2 , which is dimensionless. Then,

M(Q) = g̃2 − 1
32π2

g̃4 ln
Q2

Λ2
+O
(
g̃6
)
. (16.16)

Then we can define a renormalized coupling g̃R at some fixed scale Q0 by

g̃2
R ≡M(Q0) . (16.17)

This is called a renormalization condition. It is a definition and, by definition, it holds
to all orders in perturbation theory. The renormalization condition defines the coupling
in terms of an observable. Therefore, you can only have one renormalization condition
for each parameter in the theory. This is critical to the predictive power of quantum field
theory.

It follows that g̃2
R is a formal power series in g̃:

g̃2
R =M(Q0) = g̃2 − 1

32π2
g̃4 ln

Q2
0

Λ2
+O
(
g̃6
)
, (16.18)

which can be inverted to give g̃ as a power series in g̃R:

g̃2 = g̃2
R +

1
32π2

g̃4
R ln

Q2
0

Λ2
+O
(
g̃6
R

)
. (16.19)

Substituting into Eq. (16.16) produces a prediction for the matrix element at the scale Q in
terms of the matrix element at the scale Q0:

M(Q) = g̃2 − 1
32π2

g̃4 ln
Q2

Λ2
+O
(
g̃6
)

= g̃2
R +

1
32π2

g̃4
R ln

Q2
0

Q2
+O
(
g̃6
R

)
. (16.20)

Thus, we can measureM at one Q and then make a non-trivial prediction at another value
of Q.

16.2 Vacuum polarization in QED

In φ3 theory, we found

p p
= − ig2

32π2

∫ 1

0

dx ln
m2 − p2x(1− x)

Λ2
. (16.21)

The integral in QED is quite similar. We will first evaluate the vacuum polarization graph
in scalar QED, and then in spinor QED.
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16.2.1 Scalar QED

In scalar QED the vacuum polarization diagram is

p

k

k − p

p
= (−ie)2

∫
d4k

(2π)4
i(2kμ − pμ)

(k − p)2 −m2 + iε

i(2kν − pν)
k2 −m2 + iε

.

(16.22)
For external photons, we could contract the μ and ν indices with polarization vectors, but
instead we keep them free so that this diagram can be embedded in a Coulomb exchange
diagram as in Eq. (16.14). This integral is the same as in φ3 theory, except for the numerator
factors. In scalar QED there is another diagram:

p

k

p

= 2ie2gμν
∫

d4k

(2π)4
i

k2 −m2 + iε
. (16.23)

Adding the diagrams gives

iΠμν
2 = −e2

∫
d4k

(2π)4
−4kμkν + 2pμkν + 2pνkμ − pμpν + 2gμν

[
(p− k)2 −m2

]
[(p− k)2 −m2 + iε][k2 −m2 + iε]

.

(16.24)
Fortunately, we do not need to evaluate the entire integral. By looking at what possible
form it could have, we can isolate the part that will contribute to a correction to Coulomb’s
law and just calculate that part. By Lorentz invariance, the most general form that Πμν

2

could have is

Πμν
2 = Δ1(p2,m2)p2gμν + Δ2(p2,m2)pμpν (16.25)

for some form factors Δ1 and Δ2. Note that Πμν
2 cannot depend on kμ, since kμ is

integrated over.
As a correction to Coulomb’s law, this vacuum polarization graph will contribute to

the same process that the photon propagator does. Let us define the photon propagator in
momentum space by

〈Ω|T {Aμ(x)Aν(y)}|Ω〉 =
∫

d4p

(2π)4
eip(x−y)iGμν(p). (16.26)

Note that this expression only depends on x − y by translation invariance. This is the all-
orders non-perturbative definition of the propagatorGμν(p), which is sometimes called the
dressed propagator. At leading order, in Feynman gauge, the dressed propagator reduces
to the free propagator:

iGμν(p) =
−igμν
p2 + iε

+O
(
e2
)
. (16.27)
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Including the 1-loop correction, with the parametrization in Eq. (16.25), the propagator is
(suppressing the iε pieces)

iGμν(p) =
−igμν
p2

+
−igμα
p2

iΠ2
αβ

−igβν
p2

+O
(
e4
)

=
−igμν
p2

+
−i
p2

(
Δ1g

μν + Δ2
pμpν

p2

)
+O
(
e4
)

= −i
(1 + Δ1)gμν + Δ2

pμpν

p2

p2 + iε
. (16.28)

Note that we are calculating loop corrections to a Green’s function, not an S-matrix ele-
ment, so we do not truncate the external propagators and add polarization vectors. One
point of using a dressed propagator is that once we calculate Δ1 and Δ2 we can just use
Gμν(p) instead of the tree-level propagator in QED calculations to include the loop effect.

Next note that the Δ2 term is just a change of gauge – it gives a correction to the unphys-
ical gauge parameter ξ in covariant gauges. Since ξ drops out of any physical process, by
gauge invariance, so will Δ2. Thus we only need to compute Δ1. This means extracting
the term proportional to gμν in Πμν .

Most of the terms in the amplitude in Eq. (16.24) cannot give gμν . For example, the
pμpν term must be proportional to pμpν and can therefore only contribute to Δ2, so we can
ignore it. For the pμkν term, we can pull pμ out of the integral, so whatever the remaining
integral gives, it must provide a pν by Lorentz invariance. So these terms can be ignored
too. The kμkν term is important – it may give a pμpν piece, but may also give a gμν piece,
which is what we are looking for. So we only need to consider

Πμν
2 = ie2

∫
d4k

(2π)4
−4kμkν + 2gμν

[
(p− k)2 −m2

]
[(p− k)2 −m2 + iε][k2 −m2 + iε]

. (16.29)

Now we need to compute the integral.
The denominator can be manipulated using Feynman parameters, just as with the φ3

theory:

Πμν
2 = ie2

∫
d4k

(2π)4

∫ 1

0

dx
−4kμkν + 2gμν

[
(p− k)2 −m2

]
[(k − p(1− x))2 + p2x(1− x)−m2 + iε]2

. (16.30)

However, now when we shift kμ → kμ + pμ(1− x) we get a correction to the numerator.
We get

Πμν
2 = ie2

∫
d4k

(2π)4

×
∫ 1

0

dx
−4 [kμ + pμ(1− x)] [kν + pν(1− x)] + 2gμν

[
(xp− k)2 −m2

]
[k2 + p2x(1− x)−m2 + iε]2

. (16.31)

As we have said, we do not care about pμpν pieces, or pieces linear in pν . Also, pieces
such as p · k are odd under k → −k while the rest of the integrand, including the measure,
is even. So these terms must give zero by symmetry. All that is left is

Πμν
2 = 2ie2

∫
d4k

(2π)4

∫ 1

0

dx
−2kμkν + gμν(k2 + x2p2 −m2)
[k2 + p2x(1− x)−m2 + iε]2

. (16.32)
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It seems this integral is much more badly divergent than the φ3 theory – it is now quadrat-
ically instead of logarithmically divergent. That is, if we cut off at k = Λ we will get
something proportional to Λ2 due to the kμkν and k2 terms. Quadratic divergences are
not technically a problem for renormalization. However, in Chapter 21 we will see, on
very general grounds, that in gauge theories such as scalar QED, all divergences should be
logarithmic. In this case, the quadratic divergence from the kμkν term and the k2 term pre-
cisely cancel due to gauge invariance. This cancellation can only be seen using a regulator
that respects gauge invariance, such as dimensional regularization. In d dimensions (using
kμkν → 1

dk
2gμν from Appendix B), the integral becomes

Πμν
2 = 2ie2μ4−dgμν

∫ 1

0

dx

∫
ddk

(2π)d
(1− 2

d )k
2 + x2p2 −m2

[k2 + p2x(1− x)−m2 + iε]2
. (16.33)

Using the formulas from Appendix B,∫
ddk

(2π)d
k2

(k2 −Δ + iε)2
= −d

2
i

(4π)d/2
1

Δ1− d
2
Γ
(

2− d
2

)
(16.34)

and ∫
ddk

(2π)d
1

(k2 −Δ + iε)2
=

i

(4π)d/2
1

Δ2− d
2
Γ
(

4− d
2

)
, (16.35)

with Δ = m2 − p2x(1− x), we find

Πμν
2 = −2

e2

(4π)d/2
gμνμ4−d

∫ 1

0

dx

[(
1− d

2

)
Γ
(

1− d

2

)(
1
Δ

)1− d
2

+(x2p2 −m2)Γ
(

2− d

2

)(
1
Δ

)2− d
2
]
. (16.36)

Using Γ(2− d
2 ) =
(
1− d

2

)
Γ(1− d

2 ) this simplifies to

Πμν
2 = −2

e2

(4π)d/2
p2gμνΓ

(
2− d

2

)
μ4−d
∫ 1

0

dxx(2x− 1)
(

1
Δ

)2− d
2

. (16.37)

For completeness, we also give the result including the pμpν terms:

Πμν
2 =

−2e2

(4π)d/2
(
p2gμν − pμpν

)
Γ
(

2− d

2

)
μ4−d

×
∫ 1

0

dxx(2x− 1)
(

1
m2 − p2x(1− x)

)2− d
2

. (16.38)

You should verify this through direct calculation (see Problem 16.1), but it is the unique
result consistent with Eq. (16.37) that satisfies the Ward identity, pμΠ

μν
2 = 0.

Expanding d = 4− ε we get, in the ε→ 0 limit,

Πμν
2 = − e2

8π2

(
p2gμν − pμpν

) ∫ 1

0

dxx(2x− 1)
[
2
ε

+ ln
(

4πe−γEμ2

m2 − p2x(1− x)

)
+O(ε)

]
.

(16.39)
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The 1
ε gives the infinite, regulator-dependent constant. It is also standard to define μ̃2 =

4πe−γEμ2, which removes the ln(4π) and e−γE factors. For Q2 = −p2 > 0 and m
 Q,
the integral over x is easy to do and we find

Πμν
2 = − e2

48π2

(
p2gμν − pμpν

)(2
ε

+ ln
μ̃2

Q2
+

8
3

)
, m
 Q. (16.40)

At this point, rather than continue with the scalar QED calculation, let us calculate the loop
in QED, as it is almost exactly the same.

16.2.2 Spinor QED

In spinor QED, the loop is

p

k

k − p

p
= −(−ie)2

∫
d4k

(2π)4
i

(p− k)2 −m2

i

k2 −m2

× Tr[γμ(/k − /p+m)γν(/k +m)], (16.41)

where the −1 in front comes from the fermion loop. Note that there is only one diagram in
this case.

Using our trace formulas (see Sections 13.2 or A.4), we find

Tr[γμ(/k−/p+m)γν(/k+m)] = 4[−pμkν−kμpν+2kμkν+gμν(−k2+p·k+m2)]. (16.42)

We can drop the pμ and pν terms as before giving

iΠμν
2 = −4e2

∫
d4k

(2π)4
2kμkν + gμν(−k2 + p · k +m2)

[(p− k)2 −m2 + iε][k2 −m2 + iε]
. (16.43)

Introducing Feynman parameters and changing kμ → kμ + pμ(1− x) and again dropping
the pμ and pν terms we get

Πμν
2 = 4ie2

∫
d4k

(2π)4

∫ 1

0

dx
2kμkν − gμν

[
k2 − x(1− x)p2 −m2

]
[k2 + p2x(1− x)−m2]2

. (16.44)

This integral is quite similar to the one for scalar QED, Eq. (16.32). The result is

Πμν
2 = −8p2gμν

e2

(4π)d/2
Γ
(

2− d

2

)
μ4−d
∫ 1

0

dxx(1− x)
(

1
m2 − p2x(1− x)

)2− d
2

= − e2

2π2
p2gμν
∫ 1

0

dxx(1− x)
[
2
ε

+ ln
(

μ̃2

m2 − p2x(1− x)

)
+O(ε)

]
. (16.45)

So, we find (for large Q2 = −p2 � m2)

Πμν
2 = − e2

12π2
p2gμν
(

2
ε

+ ln
μ̃2

Q2
+

5
3

+O(ε)
)
, m
 Q. (16.46)

We see that the electron loop gives the same pole and ln μ̃2

Q2 terms as a scalar loop,
multiplied by a factor of 4.
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It is not hard to compute the pμpν pieces as well (see Problem 16.1). The full result is

Πμν
2 =

−8e2

(4π)d/2
(
p2gμν − pμpν

)
Γ
(

2− d

2

)
μ4−d

×
∫ 1

0

dxx(1− x)
(

1
m2 − p2x(1− x)

)2− d
2

, (16.47)

which, as in the scalar QED case, automatically satisfies the Ward identity.

16.3 Physics of vacuum polarization

We have found that the vacuum polarization loop in QED gives

iΠμν
2 = i
(
−p2gμν + pμpν

)
e2Π2(p2), (16.48)

where

Π2(p2) =
1

2π2

∫ 1

0

dxx(1− x)
[
2
ε

+ ln
(

μ̃2

m2 − p2x(1− x)

)]
. (16.49)

Thus, the dressed photon propagator at 1-loop in Feynman gauge is

iGμν =
p

+
p p

= −ig
μν

p2
+
−i
p2
iΠμν

2

−i
p2

+ pμpν terms

= −i
[
1− e2Π2(p2)

]
gμν

p2
+ pμpν terms. (16.50)

This directly gives the Fourier transform of the corrected Coulomb potential:

Ṽ (p) = e2
1− e2Π2(p2)

p2
. (16.51)

Now we need to renormalize.
A natural renormalization condition is that the potential between two particles at some

reference scale r0 should be V (r0) ≡ − e2R
4πr0

, which would define a renormalized eR. It is
easier to continue working in momentum space and to define the renormalized charge as
Ṽ
(
p2
0

)
≡ e2Rp

−2
0 exactly. So

e2R ≡ p2
0Ṽ
(
p2
0

)
= e2 − e4Π2(p2

0) + · · · . (16.52)

Solving for the bare coupling e as a function of eR to order e4R gives

e2 = e2R + e4RΠ2(p2
0) + · · · . (16.53)

Since Π2(p2
0) is infinite, e is infinite as well, but that is OK since e is not observable.
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The potential at another scale p, which is measurable, is

p2Ṽ (p) = e2 − e4Π2(p2) + · · · = e2R − e4R
[
Π2(p2)−Π2(p2

0)
]
+ · · · . (16.54)

For concreteness, let us take p0 = 0, corresponding to r = ∞, so that the renormalized
electric charge agrees with the macroscopically measured electric charge. Then

Π2(p2)−Π2(0) = − 1
2π2

∫ 1

0

dxx(1− x) ln
[
1− p2

m2
x(1− x)

]
. (16.55)

Thus, we have

Ṽ (p2) =
e2R
p2

{
1 +

e2R
2π2

∫ 1

0

dxx(1− x) ln
[
1− p2

m2
x(1− x)

]
+O
(
e4R
)}

, (16.56)

which is a totally finite correction to the Coulomb potential. It is also a well-defined pertur-
bation expansion in terms of a small parameter eR, which is also finite. We will now study
some of the physical implications of this potential.

16.3.1 Small momentum: Lamb shift

First, let us look at the small-momentum, large-distance limit. For |p2| 
 m,∫ 1

0

dxx(1− x) ln
[
1− p2

m2
x(1− x)

]
≈
∫ 1

0

dxx(1− x)
[
− p2

m2
x(1− x)

]
= − p2

30m2
,

(16.57)

implying

Ṽ (p) =
e2R
p2
− e4R

60π2m2
+ · · · . (16.58)

The Fourier transform of a 1 is δ(r), so we find

V (r) = − e2R
4πr

− e4R
60π2m2

δ(r). (16.59)

This agrees with the Coulomb potential up to a correction known as the Uehling term.
What is the physical effect of this extra term? One way to find out is to plug this potential

into the Schrödinger equation and see how the states of the hydrogen atom change. Equiv-
alently, we can evaluate the effect in time-independent perturbation theory by evaluating
the leading-order energy shift ΔE = 〈ψi|ΔV |ψi〉 using ΔV = − e4

60π4m2 δ(r). Since only
the L = 0 atomic orbitals have support at r = 0, this extra term will only affect the S
states of the hydrogen atom. The energy is negative, so their energies will be lowered. You
might recall that, at leading order, the energy spectrum of the hydrogen atom is determined
only by the principal atomic number n, so the 2P1/2 and 2S1/2 levels (for example) are
degenerate. Thus, the Uehling term contributes to the splitting of these levels, known as the
Lamb shift. It changes the 2S1/2 state by −27 MHz, which is a measurable contribution to
the −1028 MHz Lamb shift.
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More carefully, you can show in Problem 16.2 that the 1-loop potential is

V (r) = − e2

4πr

(
1 +

e2

6π2

∫ ∞

1

dx e−2mrx 2x2 + 1
2x4

√
x2 − 1
)
. (16.60)

This is known as the Uehling potential [Uehling, 1935]. For r � 1
m ,

V (r) = −α
r

[
1 +

α

4
√
π

1
(mr)3/2

e−2mr

]
, r � 1

m
. (16.61)

This shows that the finite correction has extent 1/m = re, the Compton wavelength of the
electron. Since re is much smaller than the characteristic size of the L modes, the Bohr
radius a0 ∼ m

α , our δ-function approximation is valid.
By the way, the measurement of the Lamb shift in 1947 by Wallis Lamb [Lamb and

Retherford, 1947] was one of the key experiments that convinced people to take quan-
tum field theory seriously. Measurements of the hyperfine splitting between the 2S1/2 and
2P1/2 states of the hydrogen atom had been attempted for many years, but it was only
by using microwave technology developed during the Second World War that Lamb was
able to provide an accurate measurement. He found ΔE % 1000 MHz. Shortly after his
measurement, Hans Bethe calculated the dominant theoretical contribution. His calcula-
tion was of a vertex correction that was IR divergent. Now we know that the IR divergence
is canceled when all the relevant contributions are included, but Bethe simply cut off the
divergence by hand at what he argued was a natural physical scale, the electron mass. His
result was that ΔE = −Z4α5me

12π ln(α4Z4) ≈ −1000 MHz, in excellent agreement with
Lamb’s value. The next year, Feynman, Schwinger and Tomonaga all independently pro-
vided the complete calculation, including the Uehling term and the spin-orbit coupling.
Due to a subtlety regarding gauge invariance, only Tomonaga got it right the first time. The
full 1-loop result givesE(2S1/2)−E(2P1/2) = 1051 MHz. The current best measurement
of this shift is 1054 MHz.

16.3.2 Large momentum: logarithms of p

In the small distance limit, r 
 1
m , it is easier to consider the potential in momentum

space. Then we have from Eq. (16.56)

Ṽ (p2) =
e2R
p2

+
e4R
p2

1
2π2

∫ 1

0

dxx(1− x) ln
[
1− p2

m2
x(1− x)

]
+O
(
e6R
)

≈ e2R
p2

+
e4R
p2

1
2π2

ln
−p2

m2

∫ 1

0

dxx(1− x) +O
(
e6R
)

=
e2R
p2

(
1 +

e2R
12π2

ln
−p2

m2

)
+O
(
e6R
)
. (16.62)

Recall that for t-channel exchange, Q2 = −p2 > 0, so this logarithm is real.
If we compare the potential at two high-energy scales, Q� m and Q0 � m, we find

Q2Ṽ (Q2)−Q2
0V (Q2

0) =
e4R

12π2
ln
Q2

0

Q2
, (16.63)
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which is independent of m. Note, however, that setting m = 0 directly in Eq. (16.62)
results in a divergence. This kind of divergence is known as a mass singularity, which is
a type of IR divergence. In this case, the divergence is naturally regulated by m �= 0. On
other occasions we will have to introduce an artificial IR regulator (such as a photon mass)
to produce finite answers. Infrared divergences are the subject of Chapter 20.

One way to write the radiative correction to the potential is

Ṽ (Q2) =
e2eff(Q)
p2

, (16.64)

where

e2eff(Q) = e2R

[
1 +

e2R
12π2

ln
Q2

m2

]
. (16.65)

In this case, for simplicity, we have defined the renormalized charge, eR ≡ eeff(m), at
Q = m rather than at Q = 0. (One could also define eR at Q = 0, as with the Uehling
potential; however, then one would need to include the full m dependence to regulate the
m = 0 singularity.)

Equation (16.65) is to be interpreted as an effective charge in QED that grows as
the distance gets smaller (momentum gets larger). Near any particular fixed value of the
momentum transfer pμ, the potential looks like a Coulomb potential with a charge eeff

(
p2
)

instead of eR. This is a useful concept because the charge depends only weakly on p2,
through a logarithm. Thus, for small variations of p around a reference scale, the same
effective charge can be used. Equation (16.65) only comes into play when one compares
the charge at very different momentum transfers.

The sign of the coefficient of the lnQm term is very important; this sign implies that the
effective charge gets larger at short distances. At large distances, the charge is increasingly
screened by the virtual electron–positron dipole pairs. At smaller distances, there is less
room for the screening and the effective charge increases. However, the effective charge

only increases at small distances very slowly. In fact, taking αR = e2R
4π = 1

137 so that
eR = 0.303, we get an effective fine-structure constant of the form

αeff
(
−p2
)

=
1

137

[
1 + 0.00077 ln

−p2

m2

]
. (16.66)

Because the coefficient of the logarithm is numerically small, one has to measure the
potential at extremely high energies to see its effect. In fact, only very few high-precision
measurements are sensitive to this logarithm.

Despite the difficulty of probing extremely high energies in QED experimentally, one
can at least ask what would happen if we attempted scattering atQ� m. From Eq. (16.66)
we can see that at some extraordinarily high energies, Q ∼ 10286 eV, the loop correction,
the logarithm, is as important as the tree-level value, the 1. Thus, perturbation theory is
breaking down. At these scales, the 2-loop value will also be as large as the 1-loop and
tree-level values, and so on. The scale where this happens is known as a Landau pole. So,

QED has a Landau pole: perturbation theory breaks down at short distances.
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This means that QED is not a complete theory in the sense that it does not tell us how to
compute scattering amplitudes at all energies.

16.3.3 Running coupling

It is not difficult to include certain higher-order corrections to the effective electric charge.
Adding more loops in series, we can sum a set of graphs to all orders in the coupling
constant:

iGμν =
p

+
p p

+
p p p

+ · · · .

(16.67)
These corrections to the propagator immediately translate into corrections to the momen-
tum space potential:

Ṽ (Q) = − e
2
R

Q2

[
1 +

e2R
12π2

ln
Q2

m2
+
(

e2R
12π2

ln
Q2

m2

)2
+ · · ·
]

= − 1
Q2

[
e2R

1− e2R
12π2 lnQ

2

m2

]
. (16.68)

So now the momentum-dependent electric charge becomes

e2eff(Q) =
e2R

1− e2R
12π2 lnQ

2

m2

, (16.69)

which is known as a running coupling. Note that we have defined this running coupling to
have the same renormalization condition as the 1-loop effective charge: eeff = eR at p2 =
−m2. Although the running coupling includes contributions from all orders in perturbation
theory, it still has a Landau pole at p ∼ 10286 eV.

Running couplings will play an increasingly important role as we study more compli-
cated problems in quantum field theory. They are best understood through the renormal-
ization group. As a preview of how the renormalization group works, note that Eq. (16.69)
can be written as

1
e2eff(Q)

=
1
e2R
− 1

12π2
ln
Q2

m2
. (16.70)

The renormalization group comes from the simple observation that there is nothing special
about the renormalization point. Here we have defined eR = eeff(m), but we could have
renormalized at any other point μ2 instead of m2, and the results would be the same. Then
we would have

1
e2eff(Q)

=
1

e2eff(μ)
− 1

12π2
ln
Q2

μ2
. (16.71)

The left-hand side is independent of μ. So, taking the μ derivative gives

0 = − 2
e3eff

d

dμ
eeff +

1
12π2

2
μ
, (16.72)
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or

μ
deeff

dμ
=

e3eff

12π2
. (16.73)

This is known as a renormalization group equation. We even have a special name for the
right-hand side of this particular equation, the β-function. In general,

μ
de

dμ
≡ β(e) (16.74)

and we have derived that β(e) = e3

12π2 at 1-loop. The renormalization group is the subject
of Chapter 23.

Problems

16.1 Calculate the pμpν pieces of the vacuum polarization graph in scalar QED and in
spinor QED. Show that your result is consistent with the Ward identity.

16.2 Calculate the Uehling potential, Eq. (16.60), by Fourier transforming the effective
potential.

16.3 The pions, π±, are charged scalar quark–antiquark bound states (mesons) with
masses of 139 MeV. The tauon is a lepton with mass 1770 MeV. Consider the con-
tribution of the vacuum polarization amplitude to π+π− → π+π− through a virtual
τ loop in QED. For simplicity, consider the s-channel contribution only.
(a) Plot |M|2 as a function of s for forward scattering (t = 0). You should find a

kink at s = s0. What is s0? What is going on physically when s > s0?
(b) Plot the real and imaginary parts of M separately. Calculate Im(M) explicitly

and show that it agrees with your plot.
(c) Find a relationship between Im(M) at t = 0 and the total rate for π+π− →

e+e−. This is a special case of a general and powerful result known as the optical
theorem, which is discussed in detail in Chapter 24.

16.4 Where is the location of the Landau pole in QED if you include contributions from
the electron, muon and tauon (all with charge Q = −1), from nine quarks (three
colors times three flavors) with charge Q = 2

3 and from nine quarks with charge
Q = − 1

3?



The anomalous magnetic moment 17

In the non-relativistic limit, the Dirac equation in the presence of an external magnetic field
produces a Hamiltonian,

H =
�p 2

2m
+ V (r) +

e

2m
�B · (�L+ g�S), (17.1)

acting on electron doublets |ψ〉, where �S = 1
2�σ. This was derived in Problem 10.1. The

coupling g is the g-factor of the electron, representing the relative strength of its intrinsic
magnetic dipole moment to the strength of the spin-orbit coupling. From the point of view
of the Schrödinger equation, g is a free parameter and could be anything. However, the
Dirac equation implies that g = 2, which was a historically important postdiction in excel-
lent agreement with data when Dirac presented his equation in 1932. A natural question
is then: is g = 2 exactly, or does g receive quantum corrections? The answer should not
be obvious. For example, the charge of the electron is exactly opposite to the charge of the
proton, receiving no radiative corrections (we will prove this in Section 19.5), so perhaps
the magnetic moment is exact as well. By the late 1940s there were experimental data that
could be partially explained by the electron having an anomalous magnetic moment, that
is, one different from 2. The calculation of this anomalous moment by Schwinger, Feyn-
man and Tomonaga in 1948, and its agreement with data, was a triumph of quantum field
theory.

17.1 Extracting the moment

We would like a way to extract the radiative corrections to g without having to take the
non-relativistic limit. To see how to do this, recall from Section 10.4 how the electron’s
magnetic dipole moment was derived from the Dirac equation. Charged spinors satisfy
(i /D − m)ψ = 0. Multiplying this by i /D + m) shows that charged spinors also satisfy
( /D2 +m2)ψ = 0. We then use the operator relation (cf. Eq. (10.106))

/D
2 = D2

μ +
e

2
Fμνσ

μν , (17.2)

where σμν = i
2 [γμ, γν ], to find

(
D2
μ +m2 + e

2Fμνσ
μν
)
ψ = 0. The e

2Fμνσ
μν in

this equation therefore encodes the difference between the way a scalar field, obeying
315
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(
D2
μ +m2

)
φ = 0, and a spinor field interact with an electromagnetic field. In particular,

in the Weyl representation,

e

2
Fμνσ

μν = −e
(

( �B + i �E)�σ
( �B − i �E)�σ

)
. (17.3)

Going to momentum space, ( /D2 +m2)ψ = 0 implies (cf. Eq. (10.109))

(H − eA0)
2

2m
ψ =

(
m

2
+

(�p− e �A)2

2m
− 2

e

2m
�B · �S ± i e

m
�E · �S
)
ψ, (17.4)

which can be compared directly to Eq. (17.1) to read off the strength of the magnetic dipole
interaction ge �B · �S.1 Since �S = �σ

2 for spin 1
2 , we find again that g = 2. If Eq. (17.2) had

g′ e4Fμνσ
μν in it, we would have found g = g′ instead. Thus, a general and relativistic way

to extract corrections to g is to look for loops that have the same effect as an additional
Fμνσ

μν term.
A generally useful way to think about corrections to the way photons interact with

spinors, such as corrections to g, is to consider off-shell S-matrix elements. The Feyn-
man rules for off-shell S-matrix elements are the same as for on-shell S-matrix elements,
except that p2

i = m2
i for the various external states is not enforced. In this case, the relevant

process is e−(q1)Aμ(p) → e−(q2), with polarization vector εμ(p) and two spinor states
ū(q2) and u(q1). At tree-level, the matrix element is just εμMμ

0 , where

iMμ
0 =

p

q1 q2

= −ieū(q2)γμu(q1), (17.5)

with the photon momentum constrained by momentum conservation to be pμ = qμ2 − qμ1 .
This result actually contains g = 2 in it, although it is hard to see in this form. We expect
something equivalent to an Fμνσ

μν term, which should look like ū(q2) pνσμνu(q1) in
momentum space. To see where Fμνσμν is hiding, we need to massage the result a little.

For the magnetic moment, we only have to allow for the photon, which corresponds to
an unconstrained external magnetic field, to be off-shell; the spinors can be on-shell, which
helps simplify things. For example, we can use the Gordon identity, which you derived in
Problem 11.4, and which holds for on-shell spinors:

ū(q2) (qμ1 + qμ2 )u(q1) = (2m) ū(q2)γμu(q1) + iū(q2)σμν(qν1 − qν2 )u(q1). (17.6)

Therefore

Mμ
0 = −e

(
qμ1 + qμ2

2m

)
ū(q2)u(q1)−

e

2m
iū(q2) pνσμνu(q1) . (17.7)

The first term is an interaction just like the scalar QED interaction: the photon couples to
the momentum of the field, as in theD2

μ term in the Klein–Gordon equation. The q1μ and q2μ
in this first term are just the momentum factors that appear in the scalar QED Feynman rule.

1 The �E · �S term is not an electric dipole moment since it has an imaginary coefficient. Instead, it is the Lorentz-
invariant completion of the magnetic moment.
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The second term in Eq. (17.7) is spin dependent and gives the magnetic moment. So we
can identify g as 4m

e times the coefficient of ipν ūσμνu. Therefore, to calculate corrections
to g we need to find how the coefficient of iūpνσμνu is modified at loop level.

The correction to the magnetic moment must come from graphs involving the photon and
the electron that contribute corrections to the process in Eq. (17.5). We can parametrize the
most general possible result, at any-loop order, as

iMμ =

p

q1 q2

= ū(q2) (f1γμ + f2p
μ + f3q

μ
1 + f4q

μ
2 )u(q1). (17.8)

Here we have included all Lorentz vectors that might possibly appear, with the fi their
unknown Lorentz scalar coefficients. The fi can depend in general on contractions of
momenta, such as p·q or p2, or on contractions with γ-matrices, such as /p. (In more general
theories, they could also depend on γ5, but QED is parity invariant so γ5 cannot appear.)
For the magnetic moment application, we can assume the external spinors are on-shell,
but the photon, representing an unconstrained external magnetic field, must still be off-
shell. (Or, if you prefer, imagine this diagram is embedded in a larger Coulomb-scattering
diagram with an off-shell intermediate photon and on-shell external spinors.)

The fi are not all independent. Using momentum conservation, pμ = qμ2 − qμ1 , we can
set f2 = 0 and substitute away all the pμ dependence. Then, if there are factors of /q1
or /q2 in the fi, they can be removed by using the Dirac equation, /q1u(q1) = mu(q1),
and ū(q2) /q2 = mū(q2). So, we can safely assume the fi are real functions that can only
depend on q1 ·q2 andm, or more conventionally on p2 = 2m2−2q1 ·q2 andm2. Moreover,
we can fix the relative dependence by dimensional analysis so the fi are functions of p2

m2 .
Next, the Ward identity (which we showed in Section 14.8 holds even if the photon is

off-shell) implies

0 = pμū(f1γμ + f3q
μ
1 + f4q

μ
2 )u

= f1ū/pu+ (p · q1)f3ūu+ (p · q2)f4ūu
= (p · q1)f3ūu+ (p · q2)f4ūu. (17.9)

We then use p · q1 = q2 · q1 − m2 = −p · q2 to get f3 = f4. Thus, there are only two
independent form factors. We can then use the Gordon identity, Eq. (17.6), to rewrite the
qμ1 and qμ2 dependence in terms of σμν , leading to

iMμ = (−ie)ū(q2)
[
F1

(
p2

m2

)
γμ +

iσμν

2m
pνF2

(
p2

m2

)]
u(q1), (17.10)

which is our final form. This parametrization holds to all orders in perturbation theory. The
functions F1 and F2 are known as form factors. The leading graph, Eq. (17.5), gives

F1 = 1, F2 = 0. (17.11)

Loops will give contributions to F1 and F2 at order α and higher.
Which of these two form factors could give an electron magnetic moment? F1 modifies

the original eAμψ̄γμψ coupling. This renormalizes the electric charge, as we saw from
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the vacuum polarization diagram. In fact, the entire effect of this form factor is to give
scale dependence to the electric charge, so no other effect, such as an anomalous magnetic
moment, can come from it. F2, on the other hand, has precisely the structure of a magnetic
moment (which is, of course, why we put it in this form with the Gordon identity). Using
that such a term without the F2 factor gives g = 2, as in Eq. (17.7), we conclude that
F2( p

2

m2 ) modifies the moment at the scale associated with p2 by g → 2 + 2F2( p
2

m2 ). Since
the actual magnetic moment is measured at non-relativistic energies with |�p| 
 m, the
moment that can be compared to data is

g = 2 + 2F2(0). (17.12)

Thus, we have reduced the problem to calculating F2(0).

17.2 Evaluating the graphs

There are four possible 1-loop graphs that could contribute toMμ. Three of them,

(17.13)

can only give terms proportional to γμ. This is easy to see because these graphs just correct
the propagators for the corresponding particles. Thus, these graphs can only contribute to
F1 and have no effect on the magnetic moment. The fourth graph is

iMμ
2 =

q1

k

k − q1

p+ k

p

q2

(17.14)

with pμ = qμ2 − q
μ
1 . This is the only graph we have to consider for g − 2.

Employing the Feynman rules, this graph is

iMμ
2 = (−ie)3

∫
d4k

(2π)4
−igνα

(k − q1)2 + iε
ū(q2)γν

×
i(/p+ /k +m)

(p+ k)2 −m2 + iε
γμ

i(/k +m)
k2 −m2 + iε

γαu(q1)

= −e3ū(q2)
∫

d4k

(2π)4
γν(/p+ /k +m)γμ(/k +m)γν

[(k − q1)2 + iε] [(p+ k)2 −m2 + iε] [k2 −m2 + iε]
u(q1).

(17.15)
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To simplify this, we start by combining denominators and completing the square. The
denominator has three terms and can be simplified with the identity

1
ABC

= 2
∫ 1

0

dx dy dz δ(x+ y + z − 1)
1

[xA+ yB + zC]3
. (17.16)

In this case

A = k2 −m2 + iε, (17.17)

B = (p+ k)2 −m2 + iε, (17.18)

C = (k − q1)2 + iε. (17.19)

The new denominator is the cube of

xA+ yB + zC = k2 + 2k(yp− zq1) + yp2 + zq21 − (x+ y)m2 + iε

= (kμ + ypμ − zqμ1 )2 −Δ + iε (17.20)

with

Δ = −xyp2 + (1− z)2m2. (17.21)

Thus, we want to shift kμ → kμ − ypμ + zqμ1 to make the denominator
(
k2 −Δ

)3
.

The numerator in Eq. (17.15) is

Nμ = ū(q2)γν(/p+ /k +m)γμ(/k +m)γνu(q1)

= −2ū(q2)
[
/kγμ/p+ /kγμ/k +m2γμ − 2m(2kμ + pμ)

]
u(q1). (17.22)

Shifting kμ → kμ − ypμ + zqμ1 then gives

−1
2
Nμ = ū(q2)

[(
/k − y/p+ z /q1

)
γμ/p+
(
/k − y/p+ z /q1

)
γμ
(
/k − y/p+ z /q1

)]
u(q1)

+ ū(q2)
[
m2γμ − 2m(2kμ − 2ypμ + 2zqμ1 + pμ)

]
u(q1). (17.23)

Using kμkν = 1
4g
μνk2, the Gordon identity, x+ y + z = 1 and a fair amount of algebra,

this simplifies to

−1
2
Nμ =
[
−1

2
k2 + (1− x)(1− y)p2 + (1− 4z + z2)m2

]
ū(q2)γμu(q1)

+ imz(1− z)pν ū(q2)σμνu(q1)
+m(z − 2)(x− y)pμū(q2)u(q1). (17.24)

We have found three independent terms instead of two since we have not used the Ward
identity. Indeed, the Ward identity should fall out of the calculation automatically. To see
that it does, note that the pμ term gives a contribution toMμ

2 of the form

iMμ
2 = 4e3

∫ 1

0

dx dy dz δ(x+y+z−1)m(z−2)(x−y)
∫

d4k

(2π)4
pμ

(k2 −Δ + iε)3
ū(q2)u(q1).

(17.25)

Next, note that both Δ in Eq. (17.21) and the integral measure are symmetric in x ↔ y,
but the integrand is antisymmetric. Thus this term is zero.
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For the magnetic moment calculation we only need the σμν term. Thus,

iMμ
2 = pν ū(q2)σμνu(q1)

[
4ie3m
∫ 1

0

dx dy dz δ(x+ y + z − 1)

×
∫

d4k

(2π)4
z(1− z)

(k2 −Δ + iε)3

]
+ · · · , (17.26)

where the · · · do not contribute to the moment. Recalling that F2(p2) was defined as the
coefficient of this operator, normalized by 2m

e , we have

F2(p2) =
2m
e

(
4ie3m
) ∫ 1

0

dx dy dz δ(x+ y + z − 1)
∫

d4k

(2π)4
z(1− z)

(k2 −Δ + iε)3
+O(e4).

(17.27)

For completeness, the other form factor is F1(p2) = 1 + f
(
p2
)

+O
(
e4
)
, where

f(p2) = −2ie2
∫ 1

0

d4k

(2π)4
dx dy dz δ(x+ y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2

[k2 − (m2(1− z)2 − xyp2)]3
. (17.28)

We will come back and evaluate f(p2) when we need to, in Section 19.3.
To evaluate F2, we use the identity from Appendix B:∫

d4k

(2π)4
1

(k2 −Δ + iε)3
=

−i
32π2Δ

, (17.29)

to get that, up to terms of order α2,

F2(p2) =
α

π
m2

∫ 1

0

dx dy dz δ(x+ y + z − 1)
z(1− z)

(1− z)2m2 − xyp2
. (17.30)

At p2 = 0 this integral is finite. Explicitly,

F2(0) =
α

π

∫ 1

0

dz

∫ 1

0

dy

∫ 1

0

dx δ(x+ y + z − 1)
z

(1− z)

=
α

π

∫ 1

0

dz

∫ 1−z

0

dy
z

(1− z)
=

α

2π
. (17.31)

Thus

g = 2 +
α

π
= 2.002 32, (17.32)

with the next correction of order α2.
As a historical note, this result was first announced at the APS meeting in January 1948,

by Schwinger. Feynman and Tomonaga had both calculated the same result independently
at the same time. Schwinger actually found different values for g−2 for an electron bound
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in an atom and a free electron, while Feynman found they were the same. Feynman’s result
was the correct one, and it was relativistically invariant, while Schwinger’s was not. The
discrepancy was quickly resolved. Tomonaga was the first to correctly present the full
1-loop formula for the Lamb shift.

Unfortunately, it is not easy to measure g directly. Schwinger was able to check his
calculation indirectly as giving part of the contribution to various hyperfine splittings in
hydrogen, such as the Lamb shift. In order to make the comparison, he needed also to
be able to get finite predictions out of the divergent integrals, such as the contributions
to F1 in addition to the finite g − 2 integral. The comparison with data really required
a full understanding of all the 1-loop corrections in QED. For this reason, the simplicity
of the finite g − 2 calculation we have just done was not immediately appreciated. Nev-
ertheless, this calculation, and the Lamb shift calculation more generally, was critically
important historically for convincing us that loops in quantum field theory had physical
consequences.

The current best measurement is g = 2.002 319 304 3617±(3×10−13). The theory cal-
culation has been performed up to 4-loop level. One cannot compare theory to experiment
directly, since the theory is expressed as a function of α, which cannot be measured more
precisely any other way. Therefore g − 2 is now used to define the renormalized value of
the fine-structure constant, which comes out to α−1 = 137.035 999 070± (9.8× 10−10).

Problems

17.1 In supersymmetry, each fermion has a scalar partner, and each gauge boson has a
fermionic partner. For example, the partner of the electron is the selectron (ẽ), the
partner of the muon is the smuon (μ̃), and the partner of the photon is the photino
(Ã). The Lagrangian gets additional terms:

LSUSY = LSM +
1
2
(∂μẽ+ igAμẽ)(∂μẽ+ igAμẽ) +m2

ẽẽ
2 + gẽeÃ

+ Ã(/∂ +mÃ)Ã+
1
2
(∂μμ̃+ igAμμ̃)(∂μ + igAμμ̃) +m2

μ̃μ̃
2 + gμ̃μÃ.

(17.33)

The smuon and selectron have the same electric charge, −1 (here g denotes the
electric charge, αe = g2

4π ∼
1

137 ). The size of the Yukawa couplings is fixed to be g
as well, by gauge invariance and supersymmetry.
(a) Calculate the contribution of loops involving the smuon to the muon’s magnetic

dipole moment.
(b) The current best experimental value for g − 2 of the muon is gμ−2

2 =
11 659 208.0 ± (6.3 × 10−10). The current theory prediction (assuming the
Standard Model only) is gμ−2

2 = 11 659 182.0± (8.0× 10−10). What bound on
mμ̃ do you get from this measurement?

(c) For other reasons, we expect mÃ ∼ mμ̃ ∼ mẽ ∼ MSUSY. What bound on
MSUSY do you get from the muon g − 2?
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In this chapter we will study the following 1-loop Feynman diagram:

which is known as the electron self-energy graph. You may recall we encountered this
diagram way back in Chapter 4 in the context of Oppenheimer’s Lamb shift calculation
using old-fashioned perturbation theory. Indeed, this graph is important for the Lamb shift.
However, rather than compute the Lamb shift (which is rather tedious and mostly of his-
torical interest for us), we will use this graph to segue to a more general understanding
of renormalization. You may also recall Oppenheimer’s frustrated comment, quoted at the
end of Chapter 4, where he suggested that the resolution of these infinities would require an
“adequate theory of the masses of the electron and proton.” In this chapter, we will provide
such an adequate theory.

The electron self-energy graph corrects the electron propagator in the same way that the
photon self-energy graph corrects the photon propagator. Recall from Chapter 16 that the
photon self-energy graph could be interpreted as a vacuum polarization effect that gen-
erated a logarithmic weakening of the Coulomb potential at large distances. Thus, by
measuring r1V(r1) − r2V(r2) with two different values of r one could measure vacuum
polarization and compare it to the theoretical prediction. In particular, we were able to
renormalize the divergent vacuum polarization graph by relating it to something (the poten-
tial) that can be directly connected to observables (e.g. the force between two currents or
the energy levels of hydrogen).

Proceeding in the same way, the electron self-energy graph would correct the effect
generated by the exchange of an electron. However, since the electron is a fermion, and
charged, this exchange cannot be interpreted as generating a potential in any useful way.
Thus, it is not clear what exactly one would measure to test whatever result we find by
evaluating the self-energy diagram.

For the self-energy graph, and many other divergent graphs we will evaluate, it is helpful
to navigate away from observables such as the Lamb shift or the Coulomb potential, which
are particular to one type of correction, to thinking of general observables. Unfortunately,
the question of what is observable and what is not is extremely subtle and has no precise
definition in quantum field theory. For example, one might imagine that S-matrix elements
are observable; in many cases they are actually infinite due to IR divergences, as we will
see in Chapter 20. Luckily, one does not need a precise definition of an observable to
understand renormalization, since even non-observable quantities can be renormalized. We
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will therefore consider the renormalization of general time-ordered correlation functions
or Green’s functions:

G(x1, . . . , xn) = 〈Ω|T{φ1(x1) · · ·φn(xn)}|Ω〉 , (18.1)

where φi can be any type of field (scalars, electrons, photons, etc.). These Green’s functions
are in general not observable. In fact, they are in general not even gauge invariant. We will
nevertheless show within a few chapters that all UV divergences can be removed from
all Green’s functions in any local quantum field theory through a systematic process of
renormalization. Once the Green’s functions are UV finite, S-matrix elements constructed
from them using the LSZ reduction formula will also be UV finite. Infrared divergences
and what can actually be observed are another matter.

One advantage of renormalizing general Green’s functions rather than S-matrix ele-
ments is that the Green’s functions can appear as internal subgraphs in many different
S-matrix calculations. In particular, we will find that in QED, while there are an infinite
number of divergent graphs contributing to the S-matrix, the divergences can be efficiently
categorized and renormalized through the one-particle irreducible subgraphs (defined as
graphs that cannot be cut in two by cutting a single propagator). As we will see, these one-
particle irreducible graphs compose the minimal basis of Green’s functions out of which
any S-matrix can be built. Organizing the discussion in terms of Green’s functions and one-
particle irreducible diagrams will vastly simplify the proof of renormalizability in QED (in
Chapter 21) and is critical to a general understanding of how renormalization works in
various quantum field theories.

In this chapter, we abbreviate 〈Ω|T{· · · }|Ω〉 with 〈· · · 〉 for simplicity.

18.1 Vacuum expectation values

We begin our consideration of the renormalization of general Green’s functions by
considering the simplest Green’s functions, the 1-point functions:

〈φ(x)〉, 〈ψ(x)〉, 〈Aμ(x)〉, . . . (18.2)

These give the expectation values of fields in the vacuum, also known as vacuum
expectation values.

At tree-level, the vacuum expectation value of a field is the lowest energy configuration
that satisfies the classical equations of motion. All Lagrangians we have considered so
far begin at quadratic order in the fields, so that ψ = A = φ = 0 are solutions to the
equations of motion. Other solutions, such as plane waves in the free theory, contribute
to the gradient terms in the energy density and thus have higher energy than the constant
solution. Thus, ψ = A = φ = 0 is the minimum energy solution and all the expectation
values in Eq. (18.2) vanish at tree-level. More directly, we can see that 〈φ〉 = 〈ψ〉 =
〈Aμ〉 = 0 at tree-level in the canonically quantized theory, since each quantum field has
creation and annihilation operators that vanish in the vacuum.
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At 1-loop, vacuum expectation values, for example for 〈Aμ〉, could come from diagrams
such as

This is called a tadpole diagram. It and all higher-loop contributions to 〈Aμ〉 vanish iden-
tically in QED. This is easy to see in perturbation theory, since all fermion loops with an
odd number of photons attached involve a trace over an odd number of γ-matrices, which
vanishes. It is also true that 〈ψ〉 = 0 to all orders in QED, simply because one cannot draw
any diagrams.

A somewhat simpler proof that 〈Aμ〉 or 〈ψ〉 must vanish is that non-zero values would
violate Lorentz invariance, and Lorentz invariance is a symmetry of the QED Lagrangian.
However, it may sometimes happen that the vacuum does not in fact satisfy every symmetry
of the Lagrangian, in which case we say spontaneous symmetry breaking has occurred.
Spontaneous symmetry breaking is covered in depth in Chapter 28. A familiar example is
the spontaneous breaking of rotational invariance by a ferromagnet when cooled below its
Curie temperature. At low temperature, the magnet has a preferred spin direction, which
could equally well have pointed anywhere, but must point somewhere. Another example
is the ground state of our universe, which has a preferred frame, the rest frame of the
cosmic microwave background. In both cases space-time symmetries are symmetries of
the Lagrangian but not of the ground state.

Spontaneous symmetry breaking can also apply to internal symmetries, such as global
or gauge symmetries of a theory. For example, in the Bardeen–Cooper–Schrieffer (BCS)
theory of superconductivity, the U(1) symmetry of QED is spontaneously broken in
type-II superconductors as they are cooled below their critical temperature. The attrac-
tive force between electrons due to phonon exchange becomes stronger than the repulsive
Coulomb force and the vacuum becomes charged. Another important example is the
Glashow–Weinberg–Salam theory of weak interactions (Chapter 29). This theory embeds
the low-energy theory of weak interactions into a larger theory which has an exact SU(2)
symmetry that acts on the left-handed quarks and leptons.

Spontaneous symmetry breaking is an immensely important topic in quantum field the-
ory, which we will systematically discuss beginning in Chapter 28, including more details
of the above examples. Now, it is merely a distraction from our current task of understand-
ing renormalization. Since 〈Aμ〉 = 〈ψ〉 = 0 in QED to all orders in perturbation theory,
there is nothing to renormalize and we can move on to 2-point functions.

18.2 Electron self-energy

There are a number of 2-point functions in QED. In Chapter 9, we discussed the renormal-
ization of the photon propagator that corresponds to 〈AμAν〉. Two-point functions such as
〈ψAμ〉 vanish identically in QED since there are simply no diagrams that could contribute
to them. That leaves the fermion 2-point function 〈ψψ̄〉.
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As with the photon, it is helpful to study 〈ψψ̄〉 in momentum space. We define the
momentum space Green’s function by〈

ψ(x) ψ̄(y)
〉

=
∫

d4p

(2π)4
e−ip(x−y)iG(/p). (18.3)

This is possible since the left-hand side can only depend on x−y by translation invariance.
At tree-level, G(/p) is just the momentum space fermion propagator:

iG0(/p) ≡
i

/p−m
. (18.4)

At 1-loop it gets a correction due to the self-energy graph:

iG2(/p) =
p k

p− k

p

= iG0(/p)
[
iΣ2(/p)
]
iG0(/p), (18.5)

where, in Feynman gauge,

iΣ2(/p) = (−ie)2
∫

d4k

(2π)4
γμ

i(/k +m)
k2 −m2 + iε

γμ
−i

(p− k)2 + iε
. (18.6)

If this graph were contributing to an S-matrix element, rather than just a Green’s function,
we would remove the propagators from the external lines (theG0 factors in Eq. (18.5)) and
contract with external on-shell spinors. This iΣ2(/p) is what we would get from the normal
Feynman rules without the external spinors.

Before evaluating this graph, we can observe an interesting feature that was not present
in the photon case (the vacuum polarization graph). Including the self-energy graph, the
effective electron propagator to 1-loop is

iG(/p) =
p p

=
p

+
p p

+ · · ·

=
i

/p−m
+

i

/p−m
iΣ2(/p)

i

/p−m
+O
(
e4
)
.

(18.7)

In an S-matrix element, this correction might appear on an external leg, such as

. In that case G(/p) is contracted with an on-shell external spinor and the result

multiplied by a factor of /p −m from the LSZ reduction formula. Now, there is no reason
to expect that Σ2(m) = 0 (and in fact it is not), so even after removing a single pole with

/p−m we see from Eq. (18.7) that there will still be a pole left over. That is, the S-matrix
will be singular. This problem did not come up for the photon propagator and vacuum
polarization, where the corrected photon propagator had only a single pole to all orders in
perturbation theory. The resolution of this apparently singular S-matrix for electron scat-
tering is that the electron mass appearing in the LSZ formula does not necessarily have to



326 Mass renormalization

match the electron mass appearing in the Lagrangian. In the photon case, they were equal,
since both were zero. Once we evaluate the self-energy graph, we will then discuss how
the electron mass is renormalized and why the S-matrix remains finite.

18.2.1 Self-energy loop graph

Evaluating the self-energy graph with Feynman parameters (see Appendix B) gives

iΣ2(/p) = (−ie)2
∫

d4k

(2π)4
γμ

i(/k +m)
k2 −m2 + iε

γμ
−i

(k − p)2 + iε

= e2
∫

d4k

(2π)4

∫ 1

0

dx
2/k − 4m

[(k2 −m2)(1− x) + (p− k)2x+ iε]2
. (18.8)

Now we complete the square in the denominator and shift k → k + px to give

iΣ2(/p) = 2e2
∫ 1

0

dx

∫
d4k

(2π)4
x/p− 2m

[k2 −Δ + iε]2
, (18.9)

where Δ = (1− x)(m2 − p2x) and we have dropped the term linear in k in the numerator
since it is odd under k → −k and its integral therefore vanishes. This integrand scales as
d4k
k4 and is therefore logarithmically divergent in the UV.

To regulate the UV divergence, we have to choose a regularization scheme. For peda-
gogical purposes we will evaluate this loop with both Pauli–Villars (PV) and dimensional
regularization (DR). Recall (from Appendix B) that Pauli–Villars introduces heavy parti-
cles, of mass Λ with negative energy, for each physical particle in the theory. Pauli–Villars
is nice because the scale Λ is clearly a UV deformation, with the Pauli–Villars ghosts hav-
ing no effect on the low-energy theory as Λ → ∞. In dimensional regularization, which
analytically continues to 4− ε dimensions, it is not clear that ε is a UV deformation in any
sense. Dimensional regularization is much easier to use for more complicated theories than
QED, so eventually we will use it exclusively. For now, it is helpful to use two regulators
to see that results are regulator independent.

With a Pauli–Villars photon, the self-energy graph becomes

Σ2(/p) = −2ie2
∫ 1

0

dx
(
x/p− 2m

) ∫ d4k

(2π)4

[
1

(k2 −Δ)2
− 1

(k2 −Δ′)2

]
, (18.10)

with Δ′ = (1 − x)
(
m2 − p2x

)
+ xΛ2. Since we take Λ → ∞, we can more simply take

Δ′ = xΛ2. The regulated integral is now convergent and can be evaluated using formulas
from Appendix B. The result is

Σ2(/p) = − α

2π

∫ 1

0

dx
(
2m− x/p

)
ln

xΛ2

(1− x)(m2 − p2x)

= −α
π

(
m ln Λ2 − 1

4/
p ln Λ2 + finite

)
(PV) . (18.11)
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In dimensional regularization, the loop is

Σ2(/p) = −2ie2μ4−d
∫ 1

0

dx
(
x/p− 2m

) ∫ ddk

(2π)d
1

(k2 −Δ + iε)2

= − α

2π

∫ 1

0

dx
(
2m− x/p

)[2
ε

+ ln
μ̃2

(1− x) (m2 − p2x)

]
(DR), (18.12)

where μ̃2 ≡ 4πe−γEμ2. Extracting the divergent parts, the loop can be written as

Σ2(/p) =
α

π

(
/p− 4m

2ε
+ finite

)
. (18.13)

Note that in both cases Σ2(m) �= 0, so there will be a double-pole in the 2-point function
at 1-loop with the possibly dangerous consequences discussed below Eq. (18.7). Also note
that both results have divergences proportional to both m and /p. This implies that we need
two quantities to renormalize, to remove both divergences.

18.2.2 Renormalization

As discussed in the introduction, we want the Green’s function G(/p) defined in Eq. (18.3)
to be finite. Thus, the infinities from the O

(
e2
)

contribution to this Green’s function must
be removed through renormalization.

As with the vacuum polarization, we need to figure out what parameters in the theory
can be renormalized to cancel the infinities in the self-energy graph. To begin, let us write
the Lagrangian as

L = −1
4
F 2
μν + iψ̄ /∂ψ −m0ψ̄ψ − e0ψ̄ /Aψ. (18.14)

In the study of vacuum polarization in Chapter 9, we concluded that the charge in the
Lagrangian, now written as e0, called the bare charge, could be used to absorb an infinity.
Recall that we defined a renormalized electric charge via

e20 = e2R + e4RΠ2(p2
0) + · · · = e2R

(
1− e2R

12π2
ln

Λ2

−p2
0

+ · · ·
)
, (18.15)

where Π2(p2
0) is formally infinite. Since e0 has already been renormalized by vacuum

polarization, we cannot renormalize it in a different way for the self-energy graph.
To make G(/p) finite the obvious Lagrangian parameter that might absorb the infinity is

the bare electron mass, m0. Indeed, from Eq. (18.7),

iG2(/p) =
i

/p−m0
+

i

/p−m0
[iΣ2(/p)]

i

/p−m0
, (18.16)

we can see that an (infinite) redefinition of m0 = m + Δm with Δm of order e2 could
compensate for an infinity at order e2 in Σ2(/p). Unfortunately, we saw in Eqs. (18.11)
and (18.13) that Σ2(/p) has two types of infinities, one independent of /p and the other
proportional to /p. The mass renormalization can only remove one of these infinities. Thus,
to progress further we need something else to renormalize. But what could it be? Our
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Lagrangian only had two parameters, m and e, and we have already defined how e is
renormalized.

In fact, there is another parameter: the normalization of the fermion wavefunction. Let
us write the fermion field in terms of creation and annihilation operators that we have been
using all along as the bare free field:

ψ0(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe
ipx
)
. (18.17)

The bare free field is canonically normalized to give all the tree-level scattering results we
have already calculated. We then define the renormalized field as

ψR(x) =
1√
Z2

∑
s

∫
d3p

(2π)3
1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe
ipx
)
≡ 1√

Z2

ψ0 (18.18)

for some (formally infinite) number Z2. This is the origin of the term renormalization. We
index bare (infinite) fields and parameters with a 0 and physical finite renormalized fields
and parameters with an R.

For the tree-level theory, Z2 = 1 is required to be consistent with the normalization used
in all our scattering formulas. So it is natural to account for radiative corrections by writing

Z2 = 1 + δ2, (18.19)

where δ2 is the counterterm, which has a formal Taylor series expansion in e starting at
order e2. We also write

m0 = ZmmR (18.20)

and expand Zm = 1 + δm, with δm the mass counterterm.1 Then

m0 = mR +mRδm. (18.21)

As we will see, particularly when we cover renormalized perturbation theory in Chapter 19,
using counterterms rather than bare and renormalized quantities directly will be extremely
efficient.

All the calculations we have done so far have been with fields with the conventional
(bare) normalization. However, it is the Green’s function of renormalized fields that should
have finite physical values. So we define〈

ψ0(x) ψ̄0(y)
〉

= i

∫
d4p

(2π)4
e−ip(x−y)Gbare(/p) (18.22)

and 〈
ψR(x) ψ̄R(y)

〉
= i

∫
d4p

(2π)4
e−ip(x−y)GR(/p) (18.23)

and expect GR(/p) to be finite. By definition,

GR(/p) =
1
Z2
Gbare(/p). (18.24)

1 Another common convention is Z2m0 ≡ mR + δm. Our convention is more commonly used in modern field
theory calculations.
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Now, since Z2 is just a number, the tree-level propagator for the renormalized fields can be
expressed in terms of the propagator of the bare fields as

iGR(/p) =
1
Z2

i

/p−m0
+ loops

=
(

1
1 + δ2

)(
i

/p−mR − δmmR

)
+ loops

=
i

/p−mR
+

i

/p−mR

[
i(δ2/p− (δ2 + δm)mR)

] i

/p−mR
+ loops +O

(
e4
)
.

(18.25)

Adding the 1-loop contribution, as in Eqs. (18.7) or (18.16), gives

iGR(/p) =
i

/p−mR
+

i

/p−mR

[
i(δ2/p− (δ2 + δm)mR + Σ2(/p))

] i

/p−mR
+O
(
e4
)
.

(18.26)
So now we can choose δ2 and δm to remove all the infinities in the electron self-energy.

To be explicit, from Eq. (18.11) we see that choosing

δ2 = − α

4π
ln Λ2, δm = −3α

4π
ln Λ2 (PV) (18.27)

for Pauli–Villars or

δ2 = − α

4π
2
ε
, δm = −3α

4π
2
ε

(DR) (18.28)

for dimensional regularization will remove the infinities. With these choices, we will get
finite answers for the 2-point function GR(/p) at any scale p.

We can choose different values for the counterterms which differ from these by finite
numbers and GR(/p) will still be finite. Any prescription for choosing the finite parts of the
counterterms is known as a subtraction scheme. Not only must observables in a renor-
malized theory be finite, but they also must be independent of the subtraction scheme, as
we will see. Nevertheless, there are some smart choices for subtraction schemes and some
not-so-smart choices.

The two subtraction schemes most often used in quantum field theory are the on-shell
subtraction scheme and the minimal subtraction (MS) scheme. Minimal subtraction is by
far the simplest scheme and the one used in almost all modern quantum field theory calcu-
lations. In minimal subtraction the counterterms are defined to have no finite parts at all, so
that δ2 and δm are given by Eqs. (18.27) and (18.28). More commonly, a slightly modified
version of this prescription known as modified minimal subtraction MS is used, in which
ln(4π) and γE finite parts in dimensionally regulated results are also subtracted off. MS
just turns μ̃ back into μ in dimensionally regularized amplitudes.

In on-shell subtraction, the renormalized mass mR appearing in Green’s functions is
identified with the observed electron mass mP which can be defined to all orders as the
position of the pole in the S-matrix.2 To see how this identification works in practice, it is
helpful to look at the possible form of the higher-order corrections.

2 Actually, there is no isolated pole in the S-matrix associated with the electron. Rather, the electron mass is the
beginning of a cut in the complex plane. This will be discussed more in Chapter 24.
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18.3 Pole mass

So far, we have only included one particular self-energy correction. The 2-point function
G(/p) in fact gets corrections from an infinite number of graphs. One particular series of
corrections, of the form

iGbare(/p) = + + + · · · , (18.29)

just produces a geometric series

iGbare(/p) =
i

/p−m0
+

i

/p−m0

(
iΣ2(/p)
) i

/p−m0

+
i

/p−m0

(
iΣ2(/p)
) i

/p−m0

(
iΣ2(/p)
) i

/p−m0
+ · · · , (18.30)

which is easy to sum. More generally, any possible graph contributing to this Green’s
function is part of some geometric series. Conversely, the entire Green’s function can be
written as the sum of a single geometric series constructed by sewing together graphs that
cannot be cut in two by slicing a single propagator. We call such graphs one-particle
irreducible (1PI). For example,

is 1PI

but

is not 1PI.

(18.31)

Thus,

iG(/p) = + 1PI + 1PI 1PI + · · · ,
(18.32)

Defining iΣ(/p) as the sum of all of the 1PI graphs, we find

iG(/p) =
i

/p−m
+

i

/p−m
(
iΣ(/p)
) i

/p−m
+

i

/p−m
(
iΣ(/p)
) i

/p−m
(
iΣ(/p)
) i

/p−m
+ · · ·

=
i

/p−m

[
1 +

−Σ(/p)

/p−m
+
(−Σ(/p)

/p−m

)2

+ · · ·
]

=
i

/p−m
1

1 + Σ(/p)

/p−m

=
i

/p−m+ Σ(/p)
. (18.33)
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This is just a general expression for a sum of Feynman diagrams, applying either m = m0

or m = mR. For the bare Green’s function, there was just a single 1PI diagram at order e2

and so Σ(/p) = Σ2(/p) +O
(
e4
)
. Then we have

iGbare(/p) =
i

/p−m0 + Σ2(/p) + · · · . (18.34)

This expression is the sum of the series in Eq. (18.29).
From the bare Green’s function we can compute the renormalized Green’s function as

iGR(/p) =
1

1 + δ2
iGbare(/p)

=
(

1
1 + δ2

)
i

/p−m0 + Σ2(/p) + · · ·

=
i

/p−m0 + δ2/p−m0δ2 + Σ2(/p) + · · · , (18.35)

where the · · · are formallyO
(
e4
)

or higher. Then, using Eq. (18.21), m0 = mR +mRδm,
this becomes

iGR(/p) =
i

/p−mR + δ2/p− (δ2 + δm)mR + Σ2(/p) + · · · . (18.36)

We will write this more conveniently as

iGR(/p) =
i

/p−mR + ΣR(/p)
, (18.37)

with ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR +O
(
e4
)
.

You may have noted that this result would follow easily from Eq. (18.26) if we could
treat the counterterms as contributions to 1P1 graphs. To justify such treatment, all we have
to do is rewrite the bare free Lagrangian in terms of renormalized fields:

L = iψ̄0 /∂ψ0 −m0ψ̄
0ψ0 = iZ2ψ̄

R /∂ψR − Z2ZmmRψ̄
RψR. (18.38)

Using Eqs. (18.19) and (18.20) this becomes

L = iψ̄R /∂ψR −mRψ̄RψR + iδ2ψ̄
R /∂ψR −mR(δ2 + δm)ψ̄RψR. (18.39)

Thus, we can treat the counterterms, which start at order e2, as interactions whose Feyn-
man rules give contributions δ2/p and −(δ2 + δm)mR to the 1PI graphs. Then Eq. (18.37)
follows from the general form Eq. (18.33) with m = mR and Σ = ΣR. Expanding
the Lagrangian in terms of renormalized quantities leads to so-called renormalized per-
turbation theory. Renormalized perturbation theory will be discussed more completely,
including interactions and the photon field, in the next chapter.

18.3.1 On-shell subtraction

Having summed all of the 1PI diagrams into the renormalized propagator, we can now
identify the physical electron mass mP as the location of its pole. More precisely, the
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renormalized propagator should have a single pole at /p = mP with residue i. The location
of the pole is a definition of mass, known as the pole mass. It is important to keep in mind
that the pole mass is physical and independent of any subtraction scheme used to set the
finite parts of the counterterms. In the on-shell subtraction scheme, the finite parts of the
counterterms are chosen so that mR = mP . In minimal subtraction, mR �= mP . In either
case the 2-point Green’s function still has a pole at mP .

From Eq. (18.37), for GR(/p) to have a pole at /p = mP the 1PI graphs must satisfy

ΣR(mP ) = mR −mP . (18.40)

Having residue i implies

i = lim
/p→mP

(
/p−mP

) i

/p−mR + ΣR(/p)
= lim
/p→mP

i

1 + d
d/p

ΣR(/p)
, (18.41)

where we have used L’Hôpital’s rule. This implies

d

d/p
ΣR(/p)
∣∣∣∣
/p=mP

= 0. (18.42)

These conditions define the pole mass, independent of the subtraction scheme.
In the on-shell subtraction scheme, the renormalized mass mR is set equal to the pole

mass mP . Then, recalling ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR + · · · , these conditions
imply to order e2

δ2 = − d

d/p
Σ2(/p)
∣∣∣∣
/p=mP

(18.43)

and

δmmP = Σ2(mP ), (18.44)

which we can now evaluate in our different regulators.
With Pauli–Villars, Eq. (18.44) implies

Σ2(mP ) = − α

2π
mP

(
3
2

ln
Λ2

m2
P

+
3
4

)
(PV), (18.45)

which is one of our conditions. Unfortunately, when we try to evaluate the derivative, we
find

d

d/p
Σ(/p)
∣∣∣∣
/p=mP

=
α

2π

(
1
2

ln
Λ2

m2
P

+
5
4
−
∫ 1

0

dx
2x(2− x)

1− x

)
(PV). (18.46)

This last integral is divergent. This divergence is an infrared divergence, due to the inte-
gration region near k2 = 0. In this case, the divergence does not come from the loop
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integral itself, but from our choice of subtraction scheme, which involved Σ′(mP ). Nev-
ertheless, IR divergences in renormalized Green’s functions and S-matrix elements are
unavoidable. We will see how they drop out of physical observables in Chapter 20.

For now, a quick way to sequester the IR divergence is to pretend that the photon has a
tiny mass, mγ . As with UV divergences, IR divergences will cancel in physical processes,
so we will eventually be able to take mγ → 0. If you are skeptical about how this could
happen, recall that in the vacuum polarization calculation at momentum transfers −p2 �
m2, the corrections to the Coulomb potential were independent of m. In fact, the vacuum
polarization graph would be IR divergent if we setm = 0 before evaluating the loop. Thus,
at very short distances, the electron mass acts only as a regulator, just as mγ does here.

The effect of a photon mass is to change Δ to Δ = (1− x)
(
m2
P − p2x

)
+ xm2

γ , so that

Σ2(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2mP

)
ln

xΛ2

(1− x)(m2
P − p2x) + xm2

γ

(PV). (18.47)

Then, keeping only the leading terms in mγ ,

δ2 = −Σ′(mP ) =
α

2π

(
−1

2
ln

Λ2

m2
P

− 9
4
− ln

m2
γ

m2
P

)
(PV), (18.48)

which is now finite. Then,

δm =
1
mP

Σ2(mP ) =
α

2π

(
−3

2
ln

Λ2

m2
P

− 3
4

)
(PV). (18.49)

In dimensional regularization, with the photon mass added, the loop gives

Σ2(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2m

)(2
ε

+ ln
μ̃2

(1− x) (m2
P − p2x) + xm2

γ

)
(DR),

(18.50)
leading to

δ2 = −Σ′
2(mP ) = − α

2π

(
1
ε

+
1
2

ln
μ̃2

m2
P

+
5
2

+ ln
m2
γ

m2
P

)
(DR) (18.51)

and

δm =
1
mP

Σ2(mP ) =
α

2π

(
−3
ε
− 3

2
ln
μ̃2

m2
P

− 5
2

)
(DR). (18.52)

18.3.2 Amputation

Recall that the LSZ theorem converts Green’s functions to S-matrix elements by adding
external polarizations and factors of /p − m0 to project onto physical one-particle states.
However, we have now seen that the location of the pole in the electron propagator is
not the value of the mass m0 appearing in the Lagrangian, but rather at some other loca-
tion mP . Moreover, we have found that only Green’s functions of renormalized fields,
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such as GR ∼ 〈ψ̄RψR〉, should be finite. Thus, it would be natural to modify the LSZ
theorem to

〈f |S|i〉 ∼ ( /pf −mP ) · · · ( /pi −mP )
〈
ψR · · ·ψR

〉
. (18.53)

This is almost correct.
The subtlety is that in the derivation of LSZ we had to assume that all the interactions

happened during some finite time interval, and that as t → ±∞ we could treat the theory
as free. In the free theory, the pole would be at m0. Thus, we really want the theory not
to be entirely free at asymptotic times, but to include all of the corrections that move the
pole from m0 to mP . Those corrections are precisely the series of 1PI insertions onto the
electron propagator. Thus, in projecting onto the pole mass, with the

(
/p−mP

)
factors,

we must assume that all of the corrections to the on-shell external electron propagator

have been included. For example, diagrams such as would only contribute to

correcting the external electron propagator, which would then be removed by LSZ.
Thus, the LSZ theorem in a renormalized theory is

〈f |S|i〉 = ( /pf −mP ) · · · ( /pi −mP )
〈
ψR · · ·ψR

〉
amputated

, (18.54)

where amputated means the external lines are chopped off until they begin interacting
with the other fields. Only amputated diagrams contribute to S-matrix elements.

Note that amputating diagrams does not mean that self-energy graphs are never impor-

tant. When a self-energy bubble occurs on an internal line, as in , which

provides a radiative correction to Compton scattering, it will have an important physi-
cal effect. All the renormalized LSZ theorem says is that you should not correct external
lines for S-matrix elements since those corrections are already accounted for in the updated
definition of asymptotic states.

18.4 Minimal subtraction

In minimal subtraction, the counterterms are fixed with no reference to the pole mass.
The prescription is simply that the counterterms should have no finite parts. Thus, with
Pauli–Villars, we get Eq. (18.27):

δ2 = − α

4π
ln Λ2, δm = −3α

4π
ln Λ2 (PV) , (18.55)

and then ΣR(/p) = Σ2(/p) + δ2/p− (δm + δ2)mR is

ΣR(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2mR

)
ln

x

(1− x)(m2
R − p2x)

, (18.56)

which is finite, but has nonsensical dimensions. Instead, we can modify the minimal
subtraction for use with Pauli–Villars so that

δ2 = − α

4π
ln

Λ2

μ2
, δm = −3α

4π
ln

Λ2

μ2
(PV) , (18.57)
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with μ some arbitrary scale with dimensions of mass. μ should be thought of as a low-
energy scale, say 1 GeV, which is not taken to infinity. Then,

ΣR(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2mR

)
ln

xμ2

(1− x)(m2
R − p2x)

. (18.58)

By introducing μ we have established a one-parameter family of subtraction schemes. Any
physical observable must be independent of μ, but μ is not taken to infinity. μ is sometimes
called the subtraction point.

The subtraction point already appeared in Chapter 16 on vacuum polarization, where it
was set equal to the long-distance scale where the renormalized electric charge, eR, was
defined. As in that case, when one compares observables, such as combinations of the
Coulomb potential r1V (r1) − r2V (r2) measured at different scales, the subtraction point
will drop out.

The subtraction point also appears as the parameter μ in dimensional regularization.
Recall that in dimensional regularization μ is introduced by the rescaling e2 → μ4−de2,
which lets the electric charge remain dimensionless in d dimensions. In dimensional
regularization, minimal subtraction gives Eq. (18.28):

δ2 = − α

4π
2
ε
, δm = −3α

4π
2
ε

(DR,MS) . (18.59)

In dimensional regularization, minimal subtraction is almost always upgraded to modified
minimal subtraction (MS), where the ln(4π) and γE factors are also removed. Expanding
μ̃2 in Eq. (18.12):

Σ2(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2mR

)[2
ε

+ ln
4πe−γEμ2

(1− x)(m2
R − p2x)

]
=

α

2π

[
1
2/
p

(
2
ε

+ ln
(
4πe−γE

))
− 2mR

(
2
ε

+ ln
(
4πe−γE

))
+ finite

]
. (18.60)

So in MS,

δ2 = − α

4π

(
2
ε

+ ln
(
4πe−γE

))
, δm = −3α

4π

(
2
ε

+ ln
(
4πe−γE

)) (
DR MS

)
,

(18.61)
and then

ΣR(/p) =
α

2π

∫ 1

0

dx
(
x/p− 2mR

)[
ln

μ2

(1− x) (m2
R − p2x)

]
, (18.62)

which is UV finite and has μ in it, not μ̃. As with Pauli–Villars, there is a one-parameter
family of renormalized 1PI corrections. In both cases, the subtraction point μ is an arbi-
trary scale which is not taken to infinity but will drop out of physical calculations. The
ln(4πe−γE ) terms in the counterterms are almost always left implicit in MS, and μ and μ̃
used interchangeably.

The value of mR is finite in MS and known as the MS mass. The renormalized electron
propagator will in general not have a pole at /p = mR. There is still a pole at /p = mP
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with residue i, but mP �= mR. Recalling the renormalized electron propagator from Eq.
(18.37),

iGR(/p) =
i

/p−mR + ΣR(/p)
, (18.63)

we can now easily relate the pole mass and the MS mass. Requiring a pole in this
propagator at /p = mP gives

mP −mR + ΣR(mP ) = 0. (18.64)

Using mP = mR at leading order, we then have

mR = mP + ΣR(mP ) = mP

[
1− α

4π

(
5 + 3 ln

μ2

m2
P

)
+O
(
α2
)]

(DR) . (18.65)

In particular, the MS mass depends on the arbitrary scale μ.
While your first instinct might be that this extra parameter μ in minimal subtraction adds

an unnecessary complication, it is actually extremely useful. The fact that physical observ-
ables are independent of μ gives a powerful constraint. Indeed, demanding d

dμO = 0,
where O is some observable, is the renormalization group equation, to be discussed in
Chapter 23.

18.5 Summary and discussion

In this chapter we saw that the electron self-energy graph contributes loop corrections to
the electron propagator. This loop was divergent, but the divergence could be removed
by renormalizing the electron’s quantum field, ψ0 =

√
Z2ψ

R, and redefining the elec-
tron mass, m0 = ZmmR. In these equations, ψ0 and m0 refer to bare quantities that are
formally infinite, while ψR and mR are finite renormalized quantities. The quantities δm
and δ2 defined by expanding the renormalization factors around the classical values, e.g.
Z2 = 1 + δ2, are known as counterterms. These counterterms can be chosen to cancel the
infinite contribution of the electron self-energy graph to the renormalized electron propa-
gator. While the cancellation fixes the infinite parts of the counterterms, the finite parts are
arbitrary. Conventions for fixing the finite parts are known as subtraction schemes.

We saw that the general geometric series of loops correcting the propagator can be
summed to all orders in α, leading to a renormalized propagator of the form

iGR(/p) =
i

/p−mR + ΣR(/p)
. (18.66)

Here, ΣR(/p) represents one-particle irreducible Feynman diagrams plus counterterm con-
tributions. Up to order e2, we found ΣR(/p) = Σ2(/p) + δ2/p − (δm + δ2)mR. This
renormalized propagator should have a pole at the physical electron mass, the pole mass,
with residue i:

iGR(/p) =
i

/p−mP
+ terms regular at /p = mP . (18.67)
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In terms of the bare propagator, Gbare(/p) = Z2G
R(/p), we can write

iGbare(/p) =
iZ2

/p−mP
+ terms regular at /p = mP . (18.68)

Sometimes this is used to interpret Z2 as the residue of the pole. However, since both Z2

and the bare propagator are formally infinite, this interpretation must be made with care.
Two subtraction schemes were discussed. The first, the on-shell scheme, was defined by

equating the location of the pole of the propagator,mP , with the renormalized mass,mR ≡
mP . This, along with a constraint on the residue of the pole, generated two equations:

ΣR(mP ) = 0,
d

d/p
ΣR(/p)
∣∣∣∣
/p=mP

= 0. (18.69)

These equations, which apply to all orders in perturbation theory, fix the counterterms δ2
and δm. They are known as the on-shell renormalization conditions.

The second scheme, known as minimal subtraction, simply sets the finite parts of δ2 and
δm to zero. Modified minimal subtraction also subtracts off ln(4π) and γE factors, which
effectively replaces μ̃ by μ in dimensionally regulated amplitudes. In minimal subtraction,
the renormalized mass (written as mR or often just m) is known as the MS mass. It is in
general different from the pole mass. At 1-loop, we found

mR = mP + ΣR(mP ) = mP

[
1− α

4π

(
5 + 3 ln

μ2

m2
P

)]
. (18.70)

This expression depends on an arbitrary scale μ known as the subtraction point, which is
not taken to ∞. While the extra parameter μ may seem superfluous, we will see in Chap-
ter 23 that physical observables being independent of μ leads to an important constraint, the
renormalization group equations. Even without using the renormalization group, μ inde-
pendence order-by-order in perturbation theory gives an important check that an observable
has been calculated correctly. We will provide a number of examples in the next two
chapters.

You might wonder why on earth anyone would use an unphysical and arbitrary MS
mass rather than the physical pole mass. The basic answer is that MS is a much simpler
subtraction scheme than the on-shell scheme. It is often easier to compute loops in MS and
then convert the masses back to the pole mass at the end rather than to do the computations
in terms of the pole mass from the beginning. Numerically, the differences between pole
masses and MS are often quite small for μ chosen of order mP . One important exception
is the top-quark mass, where mP ∼ 175 GeV but mR ∼ 163 GeV. This 5% difference
is important for precision physics, to be discussed in Chapter 31. A more sophisticated
answer is that the MS mass has an appealing property that it is free of ambiguities related to
non-perturbative effects in quantum chromodynamics (so-called renormalon ambiguities).
Indeed, for particles such as quarks, which can never be seen as asymptotic states, there is
not actually a pole in the S-matrix, so the pole mass is not always a useful mass definition.

It is important to keep in mind that the physical electron mass, mP , is the location of
the pole in the electron propagator whether or not we identified this mass with mR. In
the on-shell scheme, we cannot ask about radiative corrections to the electron mass mP
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since by definition it does not receive any. In minimal subtraction, the electron mass mR

does get radiative corrections, as Eq. (18.70) shows. A physical effect of these radiative
corrections can be seen, in principle, in logarithmic corrections to the Yukawa potential,
which is easiest to understand using renormalization group methods (see Chapter 23).

It is not always easy to determine which scheme experimental mass measurements cor-
respond to. For example, the top mass has been measured at the Tevatron and the Large
Hadron Collider by fitting a line shape to the output of a particular Monte-Carlo event gen-
erator called Pythia. Thus, one can say the top mass is measured in the Pythia scheme.
Although the Pythia scheme is close to the on-shell scheme, for a precision top mass mea-
surement it is necessary to have a systematic way to convert between the two. A better way
to measure the top mass would be by directly examining the cross section for e+e− → tt̄

for ECM ∼ 2mt ∼ 350 GeV. This would let us fit the 1S mass, which is yet another mass
scheme (and renormalon free, like the MS mass).

Finally, we discussed that for S-matrix elements the LSZ reduction theorem should be
modified to

〈f |S|i〉 = ( /pf −mP ) · · · ( /pi −mP )
〈
ψR · · ·ψR

〉
amputated, (18.71)

where amputated refers to not including diagrams with 1PI corrections to external legs.
This was necessary because those corrections are already included in what we call external
states, with poles at mP .

Despite the amputation of corrections to external legs, there are physical implications
of the electron self-energy when the graph corrects internal lines. Historically, the most
important such correction was the Lamb shift (the splitting between the 2S1/2 and 2P1/2

levels of the hydrogen atom). Radiative corrections to the electron propagator were what
Oppenheimer was missing when he calculated this shift in old-fashioned perturbation
theory in 1932. Hans Bethe’s famous estimate,

ΔE(2S1/2) = m
4Z4α5

3πn3
ln
m

E0
∼ 1000 MHz, (18.72)

for the Lamb shift from 1947 came from cutting off the IR divergence in the self-energy
graph at the energy E0 of the hydrogen atom ground state. More generally, the self-energy
graph contributes in some way to almost every precision process that has been calculated
in QED.

Problems

18.1 Scalar QED.
(a) Calculate the self-energy graphs for a scalar in QED in dimensional regulariza-

tion.
(b) What are the pole mass renormalization conditions for the scalar?
(c) What are the mass and field strength counterterms in dimensional regularization

in the on-shell scheme and in MS?
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The idea behind renormalization is that for every infinity there should be a free parameter
to absorb it. In the previous chapter we made this goal more precise by promising that
all UV divergences in all time-ordered correlation functions could be removed through
renormalization. This is a sufficient condition for all S-matrix elements to be UV finite. So
far we have renormalized the vacuum energy density (for the Casimir force), the electric
charge (for the Coulomb potential), the electron mass and the electron field (to keep the
pole in the electron propagator at the electron mass with residue i). Are we always going
to need a new renormalization condition for every calculation?

Looking at the QED Lagrangian,

L = −1
4
(
∂μA

0
ν − ∂νA0

μ

)2
+ ψ0(i/∂ − e0 /A

0 −m0)ψ0 + ρ0, (19.1)

written in terms of bare (unrenormalized) fields and couplings (as indicated by the 0 super-
scripts), it seems there are only five things we could possibly renormalize: the electron
mass m, the electric charge e, the vacuum energy density ρ, and the normalization of the
fields for the electron and the photon. An important point is that all we have are these five
parameters, and they must be sufficient to absorb every infinity. There are many more than
five correlation functions we can compute. So will QED be finite?

At the risk of spoiling your suspense, the answer is yes. We will prove it in Chapter 21. In
the current chapter, we introduce an efficient organizational framework for keeping track of
the various infinities called renormalized perturbation theory. Renormalized perturbation
theory will be used throughout the remainder of this book. After introducing the frame-
work, we discuss the remaining renormalization conditions that fix the photon field strength
renormalization and the electric charge renormalization. Although we already renormal-
ized the electric charge, when we studied vacuum polarization in Chapter 15, we will
renormalize it in a slightly different way here. Our new way will let us understand why
it is not unnatural for the proton and electron to have exactly opposite charges.

In this chapter, we use the abbreviation 〈· · · 〉 = 〈Ω |T {· · · }|Ω〉.

19.1 Counterterms

As we saw in the previous chapter, the Green’s functions we expect to be finite are those
of renormalized fields, G = 〈ψRψ̄RAR · · · 〉. For example, the renormalized fermion
propagator was

339
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〈
ψR(x)ψ̄R(y)

〉
=
∫

d4p

(2π)4
e−ip(x−y)

(
i

/p−mP
+ regular

)
, (19.2)

where the “regular” part is non-singular as /p → mP . Here mP is the pole mass, a finite,
non-perturbative definition of the electron mass.

The renormalized fields are conventionally related to the bare fields appearing in the
QED Lagrangian in Eq. (19.1) by field strength renormalizations Z2 and Z3 as

ψ0 =
√
Z2ψ

R, A0
μ =
√
Z3A

R
μ . (19.3)

The (infinite) bare mass m0 is related to a (finite) renormalized mass mR by a mass
renormalization Zm:

m0 = ZmmR. (19.4)

The (infinite) bare electric charge e0 is related to a (finite) renormalized electric charge eR
by a charge renormalization Ze:

e0 = ZeeR. (19.5)

In Chapter 16, the renormalized electric charge was defined so that the Coulomb potential

was V (r) = e2R
4πr at very large r; in Chapter 18 the renormalized electron mass was defined

as the location of the pole in the exact electron 2-point function. For now, we do not need
to know how eR and mR are defined, just that they can be taken finite.

After rescaling the fields in this, the QED Lagrangian becomes

L = −1
4
Z3

(
∂μA

R
ν − ∂νARμ

)2
+ iZ2ψ̄R /∂ψR − Z2ZmmRψRψR − eRZeZ2

√
Z3ψ̄R /ARψR + ρ0. (19.6)

We will from now on drop the subscript R on renormalized fields. Since we use ψ0 and
A0
μ for bare fields, this introduces no ambiguity. It is conventional also to define

Z1 ≡ ZeZ2

√
Z3. (19.7)

Then,

L = −1
4
Z3F

2
μν + iZ2 ψ̄ /∂ψ − Z2ZmmRψ̄ψ − eRZ1ψ̄ /Aψ + ρ0. (19.8)

We will ignore ρ0 unless otherwise stated from now on, as the vacuum energy density plays
merely a spectator role in the renormalization of QED.

Next we want to expand around some classical tree-level values for these parameters.
The field strengths are naturally expanded around Z2 = Z3 = 1; Z1 should also be
expanded around 1 so that eR represents the classical electric charge. Finally, we expand
m0 around some renormalized mass mR, which can be taken to be the pole mass or MS
mass or any other convenient choice. It is not necessary to specify exactly how eR and mR

are defined at this point. The expansions are conventionally written as

Z1 ≡ 1 + δ1, Z2 ≡ 1 + δ2, Z3 ≡ 1 + δ3, Zm = 1 + δm, (19.9)

with all the counterterms δi starting at order e2R. Sometimes we will also write

Ze = 1 + δe, (19.10)



19.1 Counterterms 341

where, following Eq. (19.7),

δe = δ1 − δ2 −
1
2
δ3 +O

(
e4R
)
. (19.11)

With these expansions the Lagrangian becomes

L = −1
4
F 2
μν + iψ̄ /∂ψ −mRψ̄ψ − eRψ̄ /Aψ

− 1
4
δ3F

2
μν + iδ2ψ̄ /∂ψ − (δm + δ2)mRψ̄ψ − eRδ1ψ̄ /Aψ. (19.12)

This is the Lagrangian for renormalized perturbation theory.
In renormalized perturbation theory, the counterterms appear as interactions in the

Lagrangian and can be used in Feynman diagrams, just like any other interactions. The
Feynman rules are as follows:

= i
(
/pδ2 − (δm + δ2)mR

)
. (19.13)

The � indicates a counterterm insertion as an interaction on an electron line. A counter-
term on a photon line gives the vertex

μ ν = −iδ3
(
p2gμν − pμpν

)
. (19.14)

In a gauge-fixed Lagrangian, there is another term, like 1
2ξ (∂μAμ)

2, which gives a new
counterterm to renormalize ξ and modifies the pμpv term in Eq. (19.14). In Feynman gauge,
the Feynman rule for the photon line counterterm simplifies to

μ ν = −iδ3p2gμν (Feynman gauge). (19.15)

Finally, there is the vertex counterterm:

= −ieRδ1γμ. (19.16)

A virtue of renormalized perturbation theory is that even though the counterterms are all
large numbers, proportional to some regulator cutoff such as 1

ε , they are defined through
their Taylor expansions in powers of eR (starting at order e2R). In particular, the perturbation
expansion can be justified since eR is small, even if ε
 1 (that is, e2R < eR). In contrast,
the way we had renormalized in previous chapters was through an expansion in the bare
coupling, e0 ∼ 1

ε , which is not small for ε 
 1 (that is e20 > e0). Thus, in renormalized
perturbation theory one has a more legitimate perturbation expansion.

It is important to keep in mind that the counterterms must be numbers (or functions of
eR and mR) – they cannot depend on derivatives or momenta. For example, what would it
mean if a field strength renormalization were δ2 = �? Then our quantum field would be
ψR =

√
1 + �ψ0, which would have completely different Feynman rules and interactions.

As long as the counterterms are numbers, and finite numbers once the theory is regulated,
the rules we have developed for quantum field theory are unchanged. Now it may happen
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(but not in QED) that there is an infinity in a Green’s function that appears as if it could
only be canceled if δ2 = 1

ε�. In that case, we would need to have a term in the Lagrangian
of the form c0ψ̄

0�ψ0. Then, by renormalizing this term by expanding c0 = 1
ε , the infin-

ity could be removed. The introduction of new terms in this way can be made systematic
and underlies the renormalization of so-called non-renormalizable field theories. Such the-
ories play an important role in modern quantum field theory. In QED, we will not need
to introduce any new terms since it is renormalizable. Renormalizability is the subject of
Chapter 21.

19.2 Two-point functions

As a warm-up, let us redo the electron self-energy calculation using renormalized
perturbation theory. Recall our notation for the 2-point Green’s function:〈

ψ(x)ψ̄(y)
〉

=
∫

d4p

(2π)4
e−ip(x−y)iG(/p). (19.17)

In renormalized perturbation theory, the tree-level Feynman diagram for the 2-point
Green’s function is

iGtree(/p) = =
i

/p−mR
. (19.18)

This is just the renormalized electron propagator. Note that we are calculating Green’s
functions in this chapter, not S-matrix elements, so the external lines are not truncated and
external polarizations/spinors are not added.

At order e2R there is the loop graph, involving the ordinary vertices, from Eq. (19.12),

=
i

/p−mR
[iΣ2(/p)]

i

/p−mR
, (19.19)

where Σ2(/p) was computed in Section 18.2; and there is also the counterterm graph,

=
i

/p−mR
i(/pδ2 − (δm + δ2)mR)

i

/p−mR
. (19.20)

Here, the counterterm is acting like a vertex, and since we are computing Green’s functions
not S-matrix elements, we do not amputate the external lines. So,

iG(/p) =
i

/p−mR
+

i

/p−mR
i(Σ2(/p)+/pδ2− (δm + δ2)mR)

i

/p−mR
+O(e4R), (19.21)

which agrees with Eq. (18.26).
Now we see that the one-particle irreducible graphs (including counterterms) are Σ(/p) =

Σ2(/p) + /pδ2 − (δm + δ2)mR +O
(
e4R
)
. Summing them results in

iG(/p) =
i

/p−mR + Σ(/p)
. (19.22)
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Then we can use the on-shell renormalization conditions

Σ(/p)
∣∣
/p=mP

= 0,
d

d/p
Σ(/p)
∣∣∣∣
/p=mP

= 0, (19.23)

with mR = mP to fix δ2 and δm as

δ2 = − d

d/p
Σ2(/p)
∣∣∣∣
/p=mP

, δm =
1
mP

Σ2(mP ), (19.24)

as in Eqs. (18.43) and (18.44).
Of particular interest to us in this chapter will be the value of the δ2 counterterm in the

on-shell scheme, which was calculated in Chapter 18 both in dimensional regularization,

δ2 =
e2R
8π2

(
−1
ε
− 1

2
ln
μ̃2

m2
R

− 5
2
− ln

m2
γ

m2
R

)
(DR), (19.25)

and with a Pauli–Villars regulator,

δ2 =
e2R
8π2

(
−1

2
ln

Λ2

m2
R

− 9
4
− ln

m2
γ

m2
R

)
(PV). (19.26)

Next we will use a similar analysis for the photon self-energy to fix δ3.

19.2.1 Photon self-energy

Proceeding as with the electron self-energy, we define the Fourier-transformed Green’s
function Gμν(p) in terms of the exact 2-point function in the full interacting theory as

〈Aμ(x)Aν(y)〉 =
∫

d4p

(2π)4
eip(x−y)iGμν(p). (19.27)

At order e2R there is a contribution to Gμν from the 1-loop graph using the ordinary Feyn-
man rules in Eq. (19.12). The result was calculated in Section 16.2 and found to have the
form

p p
= −i(p2gμν − pμpν)e2RΠ2(p2), (19.28)

where

Π2(p2) =
8

(4π)d/2
Γ
(

2− d

2

)
μ4−d
∫ 1

0

dxx(1− x)
(

1
m2
R − p2x(1− x)

)2− d
2

=
1

2π2

∫ 1

0

dxx(1− x)
[
2
ε

+ ln
(

μ̃2

m2
R − p2x(1− x)

)
+O(ε)

]
. (19.29)

The other contribution at order e2R in renormalized perturbation theory comes from the
counterterm graph,

= −iδ3
(
p2gμν − pμpν

)
. (19.30)

These are the only two one-particle irreducible graphs contributing at order e2R.
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For the Green’s function, it is somewhat simpler to use Lorenz gauge than Feynman
gauge (although the final result is of course gauge invariant). In Lorenz gauge, ξ = 0, the
free propagator is

iGμνtree = −i
gμν − pμpν

p2

p2 + iε
, (19.31)

which has the same tensor structure as the corrections. In particular, we can use(
gμα − pμpα

p2

)(
gαν − pαpν

p2

)
= gμν − pμpν

p2
, (19.32)

which means this tensor structure is a projector. Then we have

iGμν(p) = + + + · · ·

= iGμν
tree(p) + iGμα

tree(p)
[
−i(p2gαβ − pαpβ)

(
e2RΠ2(p

2) + δ3
)]
iGβν

tree(p) + O(e4R)
= −i

gμν − pμpν

p2

p2

[
1 − e2RΠ2(p

2) − δ3
]
+ O(e4R) , (19.33)

with the tensor structure conveniently factoring out front.
The loop and the counterterm graph are the only one-particle irreducible contributions

to the Green’s function at order e2R. Summing up the string of e2R 1PI graphs works just as
for the electron:

iGμν = + 1PI + 1PI 1PI + · · ·

= −i
(
gμν − pμpν

p2

)
1

p2(1 + Π(p2)) + iε
, (19.34)

where iΠ
(
p2
)

is defined as the coefficient of −i
(
p2gμν − pμpν

)
in the sum of all 1PI

contributions to the photon 2-point function. At order e2R,

Π(p2) = e2RΠ2(p2) + δ3 + · · · . (19.35)

Π
(
p2
)

is the equivalent for the photon of Σ(/p) for the electron.
Note that the dressed photon propagator Gμν(p) automatically has a pole at p2 = 0.

In the electron case, we had two on-shell renormalization conditions: one put the mass at
the location of the pole, the other set the residue equal to i. In the photon case, only one
condition is needed, to set the residue:

Π(0) = 0. (19.36)

This is fortuitous, as we only have one counterterm, δ3. At order e2R, this condition
implies, in dimensional regularization, that

δ3 = −e2RΠ2(0) = − e2R
6π2

1
ε
− e2R

12π2
ln
μ̃2

m2
R

, (19.37)
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which gives

Π(p2) =
e2R
2π2

∫ 1

0

dxx(1− x) ln
(

m2
R

m2
R − p2x(1− x)

)
+ · · · , (19.38)

This, and the corresponding dressed propagator in Eq. (19.34), are finite and μ independent.
You may have noticed that we are removing the infinity from the photon propagator now

by a field strength renormalization, while in Chapter 9 we removed it with charge renormal-
ization. This is allowed because physical results do not care how the infinities are removed.
In this case, the connection between δ3 and the charge renormalization counterterm δe is
given by Eq. (19.11): δe = δ1 − δ2 − 1

2δ3. We will shortly find that δ1 = δ2 and therefore
the field strength and charge renormalizations are actually proportional, δe = − 1

2δ3. But
first we have to define an on-shell renormalization condition for δ3, which we do through
the 3-point Green’s function in Section 19.3.

How do we know that to all orders only one counterterm will be needed for on-shell
renormalization of the photon propagator and not two, as for the electron? To answer this
question, note that it might have been possible, a priori, for the loop to give

p p
= −i(p2gμν−pμpν)e2RΠ2(p2)− iM2gμνe2RΠM (p2), (19.39)

with the additional term proportional to some dimensionful quantity M (presumably
related to the electron mass). This would have led to

iGμν(p) = −i gμν

p2(1 + e2RΠ2(p2)) +M2ΠM (p2)
+ pμpν terms. (19.40)

Then we would have needed a counterterm so that we could renormalize the photon mass
back to its physical location. However, there is no such counterterm available in the QED
Lagrangian. Would this imply that QED cannot be renormalized? No!

To get an appropriate counterterm we would just have to modify the Lagrangian by
adding a photon mass term:

L = LQED +
(
m0
γ

)2
A2
μ, (19.41)

which allows for the counterterm to appear in the redefinition of the bare photon mass m0
γ .

In QED, no M2 term appears at any order. Since the M2 term corresponds to a photon
mass in the Lagrangian, it cannot appear by gauge invariance. Indeed, it is easy to see that a
loop of the form of Eq. (19.39) violates the Ward identity, which we proved in Section 14.8
holds to all orders in perturbation theory in QED even for off-shell photons.

19.3 Three-point functions

At this point we have shown that all infinities in all 1- and 2-point functions in QED can
be canceled with three counterterms, δ2, δm and δ3. Next, we look at 3-point functions.

The first (and only non-trivial) 3-point function in QED is
〈
ψ(x1)Aμ(x)ψ̄(x2)

〉
. The

one-particle irreducible contributions to this 3-point function should not include external
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leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓμ = 1PI . (19.42)

This is normalized so that at leading order Γμ = γμ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γμ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γμ(p) = F1(p2)γμ +
iσμν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2R), the form factors get contributions from a loop graph
and from counterterms:

− ieRΓμ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γμ = δ1γ

μ, which contributes only to
F1

(
p2
)
.

We calculatedF2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2R
4π2

∫ 1

0

d3x δ(x+ y + z − 1)
z(1− z)m2

R

(1− z)2m2
R − xyp2

+O
(
e4R
)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 +O
(
e4R
)
, (19.47)

where

f(p2) = −2ie2R

∫
d4k

(2π)4

∫
dx dy dz δ(x+ y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)
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Before evaluating this integral, note that F1(0) gives the coefficient of the eRψ̄ /Aψ coupling
in the Dirac equation. In particular, F1(0) = 1 implies that eR is the electric charge as mea-
sured by Coulomb’s law at large distances. It is therefore natural to define the renormalized
electric charge so that F1(0) = 1 is true exactly. In other words:

Γμ(0) = γμ. (19.49)

This is the final renormalization condition. It implies that the renormalized electric charge
is what is measured by Coulomb’s law at asymptotically large distances, and, by definition,
does not get radiative corrections. This condition sets δ1 = −f(0) at order e2R.

Now let us evaluate f(p2). The integral is both UV and IR divergent. We will regulate
the UV divergence with dimensional regularization and the IR divergence with a photon
mass, as we did the electron self-energy graph calculation in Section 18.2. In d dimensions
and with a photon mass, you are encouraged to check that the integral is modified to

f(p2) = −2ie2Rμ
4−d
∫

ddk

(2π)d

∫
dx dy dz δ(x+ y + z − 1)

×
(
2− 4

d

)
k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2

R

(k2 −Δ + iε)3
, (19.50)

where

Δ = (1− z)2m2
R − xyp2 + zm2

γ . (19.51)

Now the only UV-divergent term is the k2 one, which can be evaluated with

μ4−d
∫

ddk

(2π)d

(
2− 4

d

)
k2

(k2 −Δ + iε)3
= μ4−d i

(4π)d/2

(
2− 4

d

)
d
4

Δ2− d
2

Γ
(

4− d
2

)
=

i

16π2

(
2
ε

+ ln
μ̃2

Δ
− 1
)
. (19.52)

The remaining terms are UV finite but IR divergent, so we can set d = 4 in them and use∫
d4k

(2π)4
−2(1− x)(1− y)p2 − 2(1− 4z + z2)m2

R

(k2 −Δ + iε)3

= i
p2(1− x)(1− y) +m2

R(1− 4z + z2)
16π2Δ

. (19.53)

Expanding in d = 4− ε, we then get

f(p2) =
e2R
8π2

(
1
ε
− 1

2
+
∫ 1

0

dx dy dz δ(x+ y + z − 1)

×
[
p2(1− x)(1− y) +m2

R(1− 4z + z2)
Δ

+ ln
μ̃2

Δ

])
. (19.54)
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At p = 0, this simplifies to

f(0) =
e2R
8π2

(
1
ε
− 1

2
+
∫ 1

0

dz(1− z)
[
m2
R(1− 4z + z2)

(1− z)2m2
R + zm2

γ

+ ln
μ̃2

(1− z)2m2
R + zm2

γ

])
=

e2R
8π2

(
1
ε

+
1
2

ln
μ̃2

m2
R

+
5
2

+ ln
m2
γ

m2
R

)
. (19.55)

Since F1(0) = 1 + f(0) + δ1 + · · · , at order e2R the renormalization condition F1(0) = 1
implies

δ1 = −f(0) =
e2R
8π2

(
−1
ε
− 1

2
ln
μ̃2

m2
R

− 5
2
− ln

m2
γ

m2
R

)
(DR). (19.56)

Comparing with Eq. (19.25), we find a surprise: δ1 = δ2 at order e2R.
An obvious test of whether this relationship could possibly be significant is to repeat the

calculation with a different regulator. Using Pauli–Villars to cut off the UV divergences,
we find

f(p2)=
e2R
8π2

∫ 1

0

dx dy dz δ(x+y+z−1)
[
ln
zΛ2

Δ
+
p2(1− x)(1− y) +m2

R(1− 4z + z2)
Δ

]
.

(19.57)
So,

f(0) =
e2R
8π2

∫ 1

0

dz(1− z)
[
ln

zΛ2

(1− z)2m2
R + zm2

γ

+
(1− 4z + z2)m2

R

(1− z)2m2
R + zm2

γ

]
=

e2R
8π2

(
1
2

ln
Λ2

m2
R

+
9
4

+ ln
m2
γ

m2
R

)
(PV), (19.58)

which gives

δ1 = − e2R
8π2

(
1
2

ln
Λ2

m2
R

+
9
4

+ ln
m2
γ

m2
R

)
(PV), (19.59)

which is exactly the same as what we found for δ2 in Eq. (19.26).
Given that δ1 and δ2 came from entirely different loop calculations (the vertex correc-

tion and the electron self-energy graph), it appears almost magical that δ1 = δ2. So their
equality, if not just a coincidence, would imply something highly non-trivial about QED.
In fact, δ1 = δ2 exactly, as we will prove in Section 19.5. This result is equivalent to the
QED charge current, Jμ = ψ̄γμψ, not getting renormalized.
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19.4 Renormalization conditions in QED

We have found a set of four renormalization conditions that fix the four counterterms δ1, δ2,
δ3 and δm in QED. In the on-shell scheme, the renormalized electron massmR is identified
with the pole mass, mR = mP , and the conditions are

Σ(mP ) = 0, (19.60)

Σ′(mP ) = 0, (19.61)

Γμ(0) = γμ, (19.62)

Π(0) = 0. (19.63)

In these equations, iΣ(/p) is the coefficient of i
/p−mR in the sum of 1PI contributions to

the electron 2-point function; Π
(
p2
)

is the coefficient of i
p2 (−gμν + pμpν

p2 ) in the sum of
all 1PI contributions to the photon 2-point function in Lorenz gauge; and−ieRΓμ(p) is the
sum of all 1PI contributions to the 3-point function 〈ψ̄Aμψ〉 with p the photon momentum.

The first two conditions fix the electron propagator to

iG(/p) =
i

/p−mP + iε
+ regular at /p = mP ; (19.64)

the third condition fixes the renormalized electric charge eR to be what is measured by
Coulomb’s law at large distances. The final condition forces the photon propagator to be

iGμν(p) =
−igμν
p2 + iε

+ pμpν pieces + regular at /p = mP . (19.65)

These four conditions give non-perturbative definitions for the four free parameters, e0,
Z2, Z3 and m0, in the QED Lagrangian.

The four renormalization conditions listed above are not the only way to define the coun-
terterms in QED. In fact, as discussed in Chapter 18, any definition for counterterms that
differs from these by only finite parts will also remove all the infinities in these Green’s
functions. Different conventions for the finite parts of counterterms are known as different
subtraction schemes. In minimal subtraction, the finite parts of the counterterms are set to
zero. In modified minimal subtraction, which is used in conjunction with dimensional regu-
larization, the only finite parts that are kept are the ln(4π) and γE factors, which effectively
convert μ̃ back to μ in unrenormalized amplitudes.

In dimensional regularization with minimal subtraction, the QED counterterms are

δ1 = δ2 =
e2R

16π2

[
−2
ε

]
, δ3 =

e2R
16π2

[
− 8

3ε

]
, δm =

e2R
16π2

[
−6
ε

]
. (19.66)
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Thus, for example, Π2

(
p2
)

becomes, in the MS scheme,

Π2

(
p2
)

=
e2R
2π2

∫ 1

0

dxx(1− x) ln
(

μ2

m2
R − p2x(1− x)

)
. (19.67)

This is a finite function, but depends on an arbitrary parameter μ.
An important point, which is often confused, is that there are two scales involved in any

renormalization: the cutoff scale Λ, which is taken to infinity, and a finite low-energy scale
μ, the subtraction point. Λ has to do with the way the theory is deformed in the UV to
make it convergent, and we can always take the limit Λ →∞ (after renormalization). μ is
related to the renormalization condition. In the on-shell scheme, μ is implicit. For example,
in the on-shell scheme in the electron self-energy, mR is set equal to the pole mass; this
is effectively the choice μ = mP . For the photon, μ = 0. Neither scale Λ nor μ can ever
affect a physical calculation, but for different reasons. Λ can never matter, because it is
entirely unphysical and we always take Λ → ∞ after renormalization. μ can never matter
because the subtraction point is arbitrary.

Let us recap the different quantities we have introduced related to renormalization:

• The renormalized mass mR and electric charge eR are parameters in the Lagrangian
of renormalized perturbation theory used in calculations. They are finite, but only well-
defined after a set of renormalization conditions or, equivalently, a subtraction scheme
is introduced.

• The counterterms δ1, δ2, δ3 and δm come from expanding the bare parameters in the
un-renormalized QED Lagrangian around their tree-level values. The divergent parts of
the counterterms depend on the regulator but not on the subtraction scheme. The finite
parts of the counterterms depend on the subtraction scheme.

• The cutoff Λ or 1
ε is an unphysical scale used to make formally divergent quantities finite

in a consistent way. The divergent part of the cutoff dependence cancels between loop
graphs and counterterm graphs. After this cancellation, the cutoff can be taken to∞.

• The subtraction point μ allows for a one-parameter family of renormalization con-
ditions. Physical predictions that relate observables to other observables must be
independent of μ.

19.5 Z1 = Z2: implications and proof

We found by explicit calculation that the two counterterms δ1 and δ2 were exactly equal
at order e2R. This was true with the counterterms defined in the on-shell scheme, where δ1
was fixed by Γμ = γμ and δ2 was fixed by Σ′(mP ) = 0, where mP is the electron pole
mass. The two loops required to determine δ1 and δ2 were the 1PI vertex correction and the
1PI electron self-energy graph. Now, we will understand why these seemingly unrelated
calculations are in fact very closely connected.
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First, note that δ1 = δ2 implies Z1 = Z2. Recalling Eq. (19.7), Z1 ≡ ZeZ2

√
Z3, where

e0 = ZeeR, it follows that

eR =
√
Z3e0. (19.68)

Thus, the renormalization of the electric charge is determined completely by the renor-
malization of the photon field strength. This explains why we were able to calculate
the renormalization of the electric charge from only the vacuum polarization graphs in
Chapter 16.

There is an important physical implication of Z1 = Z2. Suppose we have a theory with
two different kinds of particles: for example, a quark with charge Qq = 2

3 and an electron
with charge Qe = −1. The Lagrangian including both fields is

L = −1
4
Z3F

2
μν + iZ2eψ̄e /∂ψe− eRZ1eψ̄e /Aψe+ iZ2qψ̄q /∂ψq +

2
3
eRZ1qψ̄q /Aψq. (19.69)

If Z1e = Z2e and Z1q = Z2q for both the electron and quark, then this Lagrangian is

L = −1
4
Z3F

2
μν + Z2eψ̄e(i/∂ − eR /A)ψe + Z2qψ̄q(i/∂ +

2
3
eR /A)ψq. (19.70)

Thus, Z1 = Z2 implies that the relationship between the coefficient of i/∂ and of eR /A does
not receive radiative corrections. In other words, the ratio of charges of the electron and
the quark is the same in the quantum theory as they would be classically.

This is pretty remarkable. It explains why the observed charge of the proton and the
charge of the electron can be exactly opposite, even in the presence of vastly different
interactions of the two particles. A priori, we might have suspected that, because of strong
interactions and virtual mesons surrounding the proton, the types of radiative corrections
for the proton would be vastly more complicated than for the electron. But, as it turns out,
this does not happen – the renormalization of the photon field strength rescales the electric
charge, but the corrections to the relative charges of the proton and the electron cancel.

For a quick way to see that Z1 = Z2 to all orders, first rescale Aμ → 1
eR
Aμ. Then the

Lagrangian becomes

L = − 1
4e2R

Z3F
2
μν + Z2eψ̄e

(
i/∂ − Z1e

Z2e

/A

)
ψe + Z2qψ̄q

(
i/∂ +

Z1q

Z2q

2
3
/A

)
ψq. (19.71)

At tree-level, with Zi = 1, this Lagrangian is invariant under the gauge transformations

ψq → e
2
3 iαψq, ψe → e−iαψe, Aμ → Aμ + ∂μα. (19.72)

Note that the charges, Qi = −1, 2
3 , appear in the transformation law but eR does not.

Second, observe that the transformation has nothing to do with perturbation theory. Since
the Lagrangian is gauge invariant as long as the regulator preserves gauge invariance, the
loop corrections will be gauge invariant, and the counterterms should respect the symmetry
too. That is, since charge is conserved at each vertex, it will be conserved in all the loops.
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19.5.1 All-orders proof of Z1 = Z2

A more formal proof that Z1 = Z2 to all orders follows from the Ward–Takahashi identity.
In terms of renormalized fields, the Ward–Takahashi identity from Eq. (14.143) reads

ipμM
μ(p, q1, q2) = M0(q1 + p, q2)−M0(q1, q2 − p), (19.73)

where

Mμ(p, q1, q2) ≡
∫
d4x d4x1 d

4x2 e
ipxeiq1x1e−iq2x2

〈
jμ(x)ψ(x1)ψ̄(x2)

〉
, (19.74)

with jμ = ψ̄γμψ and

M0(q1, q2) ≡
∫
d4x1 d

4x2 e
iq1x1e−iq2x2

〈
ψ(x1)ψ̄(x2)

〉
. (19.75)

Comparing M0 to the definition of G(/q) in Eq. (19.17),〈
ψ(x)ψ̄(y)

〉
=
∫

d4q

(2π)4
e−iq(x−y)iG(/q), (19.76)

we see that M0(q1, q2) = (2π)4δ4(q1 − q2)iG( /q1) so that

pμM
μ(p, q1, q2) = (2π)4 δ4(p+ q1 − q2) [G(/p+ /q1)−G( /q1)]. (19.77)

Next, we can relate Mμ to the vertex correction. Recall that −ieRΓμ was defined in
Eq. (19.42) as the sum of 1PI contributions to matrix elements for the 3-point function〈
ψ(x1)Aν(x)ψ̄(x2)

〉
with the external legs amputated, but not assuming the photon is

on-shell. In this proof, we will need to take the limit where all the particles go on-shell
carefully, so let us first generalize Γμ to also allow for off-shell spinors. Γμ can be formally
defined as

−ieRΓμ(p, q1, q2) (2π)4 δ4(p+ q1 − q2) ≡ −ieR
∫
d4x d4x1 d

4x2 e
ipxeiq1x1e−iq2x2

× (iG)−1( /q1)
〈
jμ(x)ψ(x1)ψ̄(x2)

〉
(iG)−1(/p+ /q1), (19.78)

with iG
(
/q
)

the 2-point function defined in Eqs. (19.17). Since this Green’s function sums
all the 1PI corrections to off-shell propagators, multiplying by its inverse amputates these
propagators. Note that this is a more general amputation than what is done for S-matrix
elements; for S-matrix elements, the external states are on-shell, so we would just use the
on-shell renormalization conditions replacing G−1(/q) by /q −mP .

Using Eqs. (19.74) and (19.78) we then get

−G−1( /q1)Mμ(p, q1, q2)G−1(/p+ /q1) = (2π)4Γμ(p, q1, q2) δ4(p+ q1 − q2). (19.79)

Contracting with pμ lets us combine this with Eq. (19.77) to give

G(/p+ /q1)−1 −G( /q1)−1 = pμΓμ(p, q1, q2). (19.80)

Next, we use that G
(
/q
)−1 = /q −mP + Σ(/q) by Eq. (19.22) to get

/p+ Σ( /q1 + /p)− Σ(/q1) = pμΓμ(p, q1, q2). (19.81)
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To proveZ1 = Z2, we take the limit that the states go on-shell. In this limit, Γμ(p, q1, q2)
reduces to what we have been calling Γμ(p) elsewhere (with on-shell spinors). More-
over, recalling the parametrization in Eq. (19.43) as the photon goes on-shell, pμΓμ(p) →
F1(p2)/p. Thus,

F1(0) = lim
/p→0

lim
/q1→mR

{
Σ( /q1 + /p)− Σ( /q1)

/p
+ 1
}

= Σ′(mR) + 1. (19.82)

This equation relates F1(0), which was set to 1 by the on-shell renormalization that fixed
δ2, to Σ′(mR), which was set to 0 by the on-shell renormalization that fixed δ1. It thus
implies that δ1 = δ2 and thus that Z1 = Z2 to all orders in QED in the on-shell scheme. It
also implies that Z1 = Z2 exactly also in MS, since the divergent parts of the counterterms
are scheme independent. Note, however, that one can choose a more exotic subtraction
scheme in which Z1 = Z2 does not hold.

By the way, there is a somewhat simpler way to connect the renormalization factors
to the counterterms which employs the notation of an effective Lagrangian. Effective
Lagrangians will be discussed in detail in Part IV. For now, let us simply observe that
there exists a Lagrangian,

Leff = −1
4
F 2
μν + iψ̄ /∂ψ −mRψ̄ψ − eRψ̄γμψ Γμ(i∂)Aμ, (19.83)

which produces at tree-level the identical 2- and 3-point functions that renormalized QED
produces at loop level. Because Γμ(p) can have ln p2 terms and suchlike, this effec-
tive Lagrangian is non-local. The renormalization conditions let us match this effective
Lagrangian on to the original renormalized Lagrangian,

L = −1
4
Z3F

2
μν + iZ2ψ̄ /∂ψ − Z2ZmmRψ̄ψ − eRZ1ψ̄γ

μψAμ, (19.84)

at large distances. In particular, the condition Γμ(0) = γμ implies that

lim
p→0

pμΓμ(p) = Z1/p, (19.85)

and the on-shell renormalized electron propagator is

iG(/q) =
i

/q −mR
=

1
Z2

i

/q −m0
. (19.86)

Now, we can extract Z2 from this by

G( /q1)−1 −G(/p+ /q1) = Z2/p, (19.87)

where p = q1 − q2. Then Eq. (19.80) implies, near p = 0,

Z1/p = Z2/p, (19.88)

which gives Z1 = Z2 directly (in the on-shell scheme).
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Problems

19.1 Evaluate the four counterterms in scalar QED at 1-loop in the on-shell scheme.
19.2 Prove that Z1 = Z2 in scalar QED.
19.3 Prove Yang’s theorem: a massive vector boson can never decay into two photons. For

the proof, you only need to consider the most general possible form the amplitude
could have, not any particular Lagrangian or Feynman rules.
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We have shown that the 1-, 2- and 3-point functions in QED are UV finite at 1-loop. We
were able to introduce four counterterms (δm, δ1, δ2, δ3) that canceled all the infinities.
Now let us move on to 4-point functions, such as

〈Ω|T{ψ(x1)ψ̄(x2)ψ(x3)ψ̄(x4)}|Ω〉. (20.1)

This could represent, for example, Møller scattering (e−e− → e−e−) or Bhabha scattering
(e+e− → e+e−). We will take it to be e+e− → μ+μ− for simplicity, since at tree-level
this process only has an s-channel diagram. Looking at these 4-point functions at 1-loop
will help us understand how to combine previous loop calculations and counterterms into
new observables, and will also illustrate a new feature: cancellation of IR divergences.

Recall that in the on-shell subtraction scheme we found δ1 and δ2 depended on a fic-
titious photon mass, mγ . This mass was introduced to make the loops finite and is an
example of an IR regulator. As we will see, the dependence on IR regulators, such as mγ ,
drops out not in differences between the Green’s functions at different scales (as with UV
regulators) but in the sum of different types of Green’s functions contributing to the same
observable at the same scale.

The general principle by which IR divergences cancel is the same as the principle by
which UV divergences cancel: only physical, observable quantities are guaranteed to be
finite. For UV divergences, it turns out that a simple proxy for the set of observables is the
set of Green’s functions of renormalized fields 〈φ1(x1)φ2(x2) · · · 〉. These Green’s func-
tions are not observable, and often not gauge invariant, but are still UV finite. For IR
divergences, Green’s functions are not good enough. In fact, S-matrix elements or even
differences of S-matrix elements at different scales are not good enough. As we will see,
IR divergences only generally cancel after cross sections for processes involving different
initial or final states are combined.

In this chapter, we will perform one of the most important calculations in QED. We will
show that although the cross section for the 2 → 2 process e+e− → μ+μ− is IR divergent
at order e4R, as is the cross section for the related 2 → 3 process e+e− → μ+μ−γ, their
sum is IR finite. More precisely, we will find from calculating

2Re

⎛⎜⎝ ×

⎞⎟⎠+

⎛⎜⎝ +

⎞⎟⎠
2

(20.2)
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that

σ
(
e+e− → μ+μ− (+γ)

)
≡ σ
(
e+e− → μ+μ−)+ σ

(
e+e− → μ+μ−γ

)
= σ0

(
1 +

3e2R
16π2

)
, (20.3)

where σ0 = e4R
12πQ2 is the tree-level cross section for e+e− → μ+μ− at ECM = Q. While

this QED cross section is very difficult to measure, its analog in QCD, e+e− → q̄q(+g),
to be discussed in Section 26.3, is an important precision calculation which has been well
confirmed by data and provides strong constraints on beyond-the-Standard-Model physics.

We will see how having to sum over final states (and sometimes initial states) with
different particle multiplicities is related to a muon not being physically separable from its
surrounding cloud of soft photons. Trying to make this photon cloud more precise leads
naturally to the notion of jets. Similarly, trying to understand the initial state radiation
contribution leads naturally to the notion of parton distribution functions. The total cross
section calculation is so important that we will calculate it two ways, with a Pauli–Villars
UV regulator and a photon mass IR regulator, and with dimensional regularization for both
the UV and the IR, showing that the total cross section is regulator independent.

20.1 e+e− → μ+μ− (+γ)

At leading order, the cross section for e+e− → μ+μ− involves a single Feynman diagram:

iM0 =
p1

p4p2

p3

= i
e2R
Q2

v̄(p2)γμu(p1)ū(p3)γμv(p4), (20.4)

where Q2 = (p1 + p2)2 = E2
CM = s is the square of the center-of-mass energy.

We already studied this process at tree-level in Section 13.3 and found that, in the high-
energy limit, Q� me,mμ, the differential cross section is (Eq. (13.78))

dσ

dΩ
=

e4R
64π2Q2

(1 + cos2 θ). (20.5)

The total tree-level cross section is then a simple integral:

σ0

(
Q2
)

=
∫ 2π

0

dφ

∫ 1

−1

d cos θ
dσ

dΩ
=

e4R
12πQ2

. (20.6)

What we would like to calculate is the next-to-leading-order correction to σ0, which begins
at O
(
α3
)
.
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For an S-matrix calculation, only amputated graphs are necessary (see Section 18.3.2).
In this case, there are five relevant 1-loop graphs in QED:

, , , , . (20.7)

The next-to-leading order O(α3) result is the interference between these graphs (of order
α2) and the original graph (of order α).

In addition to loop corrections to the 4-point function, we will also need to calculate
real emission graphs to cancel the IR divergences. Real emission graphs correspond to
processes that are the same order in perturbation theory as the loops but involve more final
state particles. We will do the loops first, then the real emission graphs, and then show that
we can take mγ → 0 after all the contributions are combined into the full cross section
σtot = σ(e+e− → μ+μ−(+γ)).

An important simplifying observation is that since, as far as QED is concerned, the elec-
tron and muon charges, Qe and Qμ, can be anything, the IR divergence must cancel order
by order in Qe and Qμ separately. The tree-level cross section scales as σ0 ∼ Q2

eQ
2
μ.

The loops in Eq. (20.7) scale as QeQ3
μ, Q3

eQμ, Q2
eQ

2
μ, Q2

eQ
2
μ and QeQμQ2

X respectively,
where QX is the charge of the particles going around the vacuum polarization loop, which
can be anything. In particular, we will focus on the cancellation of divergences propor-
tional to σ0QeQ

3
μ. This cancellation gives the critical demonstration of IR finiteness, and

is phenomenologically relevant. Other loop contributions will be discussed afterwards.

20.1.1 Vertex correction

The vertex correction is

iMΓ =

p1

p2

p

p4

p3

+
p1

p4
p2

p p3

= i
e2R
Q2

v̄(p2)γμu(p1)ū(p3)Γ
μ
2 (p)v(p4),

(20.8)
where pμ = pμ1 + pμ2 is the photon momentum entering the vertex with p2 = Q2. In this
equation, Γμ2 (p) refers to theO(e) contribution to the 1PI vertex function, for which we do
not introduce any new subscripts for readability. Conveniently, we already computed Γμ2(p)
for a general off-shell photon in Section 19.3, so we can just copy over those results.

Recall from Section 19.3 that the general vertex function Γμ(p) can be parametrized in
terms of two form factors:

Γμ(p) = F1(p2)γμ +
iσμν

2m
pνF2(p2). (20.9)
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Here, m can represent either the electron or muon mass. We also do not write mR, since
mass renormalization will not be relevant to the calculations in this chapter. We found that
the second form factor at order e2R was

F2(p2) =
e2R
4π2

∫ 1

0

dx dy dz δ (x+ y + z − 1)
z(1− z)m2

(1− z)2m2 − xyp2
+O
(
e4R
)
. (20.10)

In the high-energy limit, p2

m2 → ∞, this form factor vanishes, F2

(
p2
)
→ 0. This makes

sense, since F2 couples right- and left-handed spinors, which are uncoupled in massless
QED.

The first form factor was both UV and IR divergent. Regulating the UV divergence in
F1

(
p2
)

with Pauli–Villars and the IR divergence with a photon mass, we found that

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 +O
(
e4R
)
, (20.11)

where from Eq. (19.57)

f(p2)=
e2R
8π2

∫ 1

0

dx dy dz δ(x+y+z−1)
[
ln
zΛ2

Δ
+
p2(1− x)(1− y)+m2(1−4z+z2)

Δ

]
(20.12)

with

Δ = (1− z)2m2 − xyp2 + zm2
γ . (20.13)

For e+e− → μ+μ− we need p2 = Q2 and we can take m = 0 for the high-energy limit
(Q� m).

The counterterm is set by F1(0) = 1, which normalizes the electric charge to what
is measured at large distances. In Section 19.3. we calculated δ1 for finite m. Now, with
m = 0, we find

δ1 = −f(0) = − e2R
8π2

(
1
2

ln
Λ2

m2
γ

)
. (20.14)

Evaluating f(Q2) is more challenging. It has the form

f(Q2) =
e2R
8π2

∫ 1

0

dx

∫ 1−x

0

dy

×
[
ln

(1− x− y)Λ2

−xyQ2 + (1− x− y)m2
γ

+
Q2(1− x)(1− y)

−xyQ2 + (1− x− y)m2
γ

]
. (20.15)

The first term is IR finite and gives∫ 1

0

dx

∫ 1−x

0

dy

[
ln

(1− x− y)Λ2

−xyQ2 + (1− x− y)m2
γ

]
=

3
4

+
1
2

ln
Λ2

−Q2
+O(mγ). (20.16)

Note that the ln Λ2 has the right coefficient to be canceled by δ1. More generally, the diver-
gences in the vertex correction and δ1 will always cancel for arbitrarily complicated pro-
cesses involving a photon–fermion vertex. This is simply because the divergent part of the
counterterm was determined by calculating the 1PI contributions to 〈Ω

∣∣T {ψAμ

ψ̄
}∣∣Ω〉.

In the divergent region of loop momentum, the external scales are irrelevant. Thus, the
divergences for the 3-point function are the same whether or not it is embedded in a larger
diagram, and therefore they will always be canceled by δ1.
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The second term in Eq. (20.15) is IR divergent but UV finite. Moreover, for real Q2

there is a pole in the integration region. Fortunately, there is a small imaginary part in the
denominator (due to the iε prescription) which makes the integral converge. Since x and y
are positive we can perform the integral by taking Q2 → Q2 + iε, which gives∫ 1

0

dx

∫ 1−x

0

dy
Q2(1− x)(1− y)

−xyQ2 + (1− x− y)m2
γ

= −1
2

ln2 m2
γ

−Q2 − iε − 2 ln
m2
γ

−Q2 − iε −
π2

3
− 5

2
+O(mγ). (20.17)

So that,

f(Q2) + δ1 =
e2R

16π2

{
− ln2 m2

γ

−Q2 − iε − 3 ln
m2
γ

−Q2 − iε −
2π2

3
− 7

2
+O(mγ)

}
.

(20.18)
Then we use

lim
ε→0

ln
(
−Q2 − iε

)
= lnQ2 − iπ (20.19)

to write

f(Q2) + δ1 =
e2R

16π2

{
− ln2 m

2
γ

Q2
− (3 + 2πi) ln

m2
γ

Q2
+
π2

3
− 7

2
− 3πi+O(mγ)

}
.

(20.20)

Note that the − 2π2

3 has combined with the π2 coming from the expansion of − ln2 m2
γ

−Q2 to

give the π2

3 term.
To evaluate the cross section at next-to-leading order, we need the first subleading term

in |MΓ +M0|2. The O
(
e6R
)

term in this comes from

M†
ΓM0 +M†

0MΓ =
e4R
Q4

Tr
[
/p2γ

μ
/p1γμ
]
Tr[ /p3Γ

μ
2 /p4γμ] + c.c. (20.21)

In the high-energy limit in which we are interested, the σμν term in Γμ gives an odd number
of γ-matrices in the second trace, forcing the contribution of the F2 form factor to vanish.
This is consistent with F2 itself vanishing for p2 � m2. So we have simply

1
4

∑
spins

M†
ΓM0 +M†

0MΓ = 2Re
[
f(Q2) + δ1

] 1
4

∑
spins

|M0|2 , (20.22)

with f(Q) just a number. Thus, the total loop (virtual) correction at order e6R is given by

σV = 2
(
f
(
Q2
)

+ δ1
)
σ0 =

e2R
8π2

σ0

{
− ln2 m

2
γ

Q2
− 3 ln

m2
γ

Q2
− 7

2
+
π2

3

}
. (20.23)

An important qualitative feature of this result is the ln2 m2
γ

Q2 term. This is known as a
Sudakov double logarithm, and is characteristic of IR divergences. Sudakov logarithms
play an important role in many areas of physics, such as the physics of jets and of parton
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distribution functions, to be discussed briefly in Sections 20.2 and 20.3.2 and in more detail
in Chapters 32 and 36.

The fact that σV
(
Q2
)

is divergent cannot be remedied by comparing the cross section at
different scales. Indeed, the difference between cross sections at different scales is

σV
(
Q2

1

)
− σV
(
Q2

2

)
=

e2R
8π2

σ0

{
− ln2 m

2
γ

Q2
1

− 3 ln
Q2

2

Q2
1

+ ln2 m
2
γ

Q2
2

}
. (20.24)

In this difference, all the subtraction-scheme-dependent constants drop out. However, IR-
divergent logarithms remain. This is because differences of logarithms are the logarithm of
a ratio but differences of double logarithms are not a double logarithm of a ratio. As we will
see, the resolution is that a cross section like this is not in fact an observable: only when
we include contributions of proceses with different final states can we find an observable
that is independent of mγ .

20.1.2 Real emission graphs

Next, we calculate the cross section for e+e− → μ+μ−γ. To fourth order in the muon
charge, the only diagrams have the photon coming off a muon:

iM =

p1

p4
p2

p

p3

pγ +

p1

p4
p2

p

p3

pγ . (20.25)

The cross section for this process starts off at order Q4
μQ

2
ee

6
R, so it is the same order at

tree-level as the interference between e+e− → μ+μ− at tree-level and at 1-loop.
The diagrams give, in the limit Q� m in Feynman gauge,

iM = i
e2R
Q2

v̄(p2)γμu(p1)ū(p3)Sμαv(p4)ε�α, (20.26)

with

Sμα = −ieR

[
γα

i

/p3 + p/γ
γμ − γμ i

/p4 + p/γ
γα

]
, (20.27)

where εα is the final state photon polarization. The unpolarized cross section is therefore
given by

σR =
1

2Q2

∫
dΠLIPS|M|2 =

e4R
2Q6

LμνXμν , (20.28)

with the initial spin-averaged electron tensor given by

Lμν =
1
4

∑
e±spins

v̄(p2)γμu(p1)ū(p1)γνv(p2) =
1
4
Tr
[
/p2γ

μ
/p1γ

ν
]

= pμ1p
ν
2+pν1p

μ
2−

1
2
Q2gμν

(20.29)
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and, using
∑

pols. εαε
�
β = −gαβ ,

Xμν =
∫
dΠLIPS

∑
μ± spins
ε pols.

[
ū(p3)Sμαv(p4)v̄(p4)Sβνu(p3)εαε�β

]

= −
∫
dΠLIPSTr

[
/p3
Sμα/p4

Sαν
]
, (20.30)

where in this case,

dΠLIPS =
∏

j=3,4,γ

d3pj
(2π)3

1
2Epj

(2π)4 δ4 (p− p3 − p4 − pγ) , (20.31)

with pμ = pμ1 + pμ2 .
Now note that pμLμν = pμXμν = 0. This would be true even if we did not sum

over spins (by the Ward identity for the intermediate photon). In particular, since Xμν is
a Lorentz-covariant function only of pμ (the other momenta are integrated over), it must
have the form

Xμν =
(
pμpν − p2gμν

)
X
(
p2
)
. (20.32)

Then, using Eq. (20.29) we find

LμνXμν = (pμ1p
ν
2 + pν1p

μ
2 −

1
2
p2gμν)

(
pμpν − p2gμν

)
X
(
p2
)

= Q4X
(
Q2
)

= −Q
2

3
gμνXμν , (20.33)

where p2 = Q2 = 2pμ1p
μ
2 and X

(
Q2
)

= − 1
3Q2 g

μνXμν have been used. Thus,

σR = − e4R
6Q4

gμνXμν = σ0(
−2π
Q2

gμνXμν), (20.34)

where σ0 = e4R
12πQ2 is the tree-level cross section for e+e− → μ+μ− from before.

We have conveniently included dΠLIPS inXμν so that its definition would be equivalent
to the cross section for γ� → μ+μ−γ, where γ� is a photon of mass Q. That is,

Γ
(
γ� → μ+μ−γ

)
= − e

2
R

2Q
gμνX

μν . (20.35)

One can interpret the −gμν in this last formula as a sum over polarizations of the off-shell
photon, which can mean either a transverse polarization sum or a sum over all polariza-
tions; since pμXμν = 0 the unphysical polarizations do not contribute. The result is that
the unpolarized cross section factors into e+e− → γ�, which gives just a normalization
since there is no phase space, and γ� → μ+μ−γ. More precisely,

σR = σ0

[
4π
e2RQ

Γ
(
γ� → μ+μ−γ

)]
. (20.36)

This is a useful general result: since we sum over spins, all spin correlations between the
initial and final state average out and the cross section can be calculated by considering two
sub-processes, the creation and subsequent decay of an intermediate state. This is actually
a special case of the narrow-width approximation, to be discussed in Section 24.1.4.
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We have reduced the problem to the calculation of σ(γ� → μ+μ−γ) in the γ� rest
frame. To calculate this cross section, it is helpful to use Mandelstam invariants:

s ≡ (p3 + p4)2 ≡ Q2(1− xγ), (20.37)

t ≡ (p3 + pγ)2 ≡ Q2(1− x1), (20.38)

u ≡ (p4 + pγ)2 ≡ Q2(1− x2), (20.39)

with 0 ≤ s ≤ Q2 and βQ2 ≤ t, u ≤ Q2 or equivalently 0 ≤ xγ ≤ 1 and 0 ≤ x1,

x2 ≤ 1 − β. As we will see, the cross section is IR divergent if the final state photon
with momentum pγμ is massless. We will therefore allow for p2

γ = m2
γ �= 0. In this case,

s+ t+ u = Q2 +m2
γ or equivalently

x1 + x2 + xγ = 2− β, (20.40)

where β ≡ m2
γ

Q2 . (In general, s + t + u =
∑
m2
i and here only γ� and the real outgoing

photon have non-zero masses.)
The xi variables are easier to use in this calculation than s, t and u. They can be thought

of as the energy of the outgoing states in the γ� rest frame. For example,

x1 = 1− (p− p4)
2

Q2
=

2p4 · p
Q2

= 2
E4

Q
, (20.41)

where pμ = (Q, 0, 0, 0) in the rest frame has been used. Similarly, x2 = 2E3
Q and xγ =

2Eγ
Q − β.
Since there are only two independent Lorentz-invariant kinematical quantities for four-

body scattering, we can take these to be x1 and x2. In terms of x1 and x2, the phase space
reduces to ∫

dΠLIPS =
Q2

128π3

∫ 1−β

0

dx1

∫ 1− β
1−x1

1−x1−β
dx2. (20.42)

You can check this in Problem 20.1 (we derive a similar formula in d dimensions with
β = 0 in Section 20.A.3 below). The limits of integration in Eq. (20.42) are the boundary
of the surface bounded by the constraints on xi listed above. After some straightforward
Dirac algebra, we find

Tr
[
/p3
Sμα/p4

Sαμ
]

=
8e2R

(1− x1)(1− x2)

×
{
x2

1 + x2
2 + β

[
2(x1 + x2)−

(1− x1)2 + (1− x2)2

(1− x1)(1− x2)

]
+ 2β2

}
,

(20.43)

with β = m2
γ

Q2 as before.
Before evaluating the cross section by integrating this expression, let us explore where

the IR divergence is coming from. If we set mγ = 0, then the cross section would be

Γ
(
γ�→μ+μ−γ

)
=
e2R
2Q

∫
dΠLIPSTr

[
/q1S

μα
/q2S

αμ
]

=
Qe4R
32π3

∫ 1

0

dx1

∫ 1

1−x1

dx2
x2

1 + x2
2

(1− x1)(1− x2)
, (20.44)
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which is divergent from the integration region near x1 = 1 or x2 = 1. Suppose x2 ∼ 1,
meaning the μ− has energy E3 ∼ Q

2 and its momentum is therefore pμ3 ∼ (Q2 , 0, 0,
Q
2 ).

Thus, by momentum conservation, the sum of the μ+ and photon momenta must be
pμ4 + pμγ = (Q2 , 0, 0,−

Q
2 ), which is lightlike. This implies 0 = p4 ·pγ = E4Eγ (1− cos θ),

where θ is the angle between �p4 and �pγ . Therefore, E4 ∼ 0 or Eγ ∼ 0, which is known
as a soft singularity, or cos θ ∼ 1 implying the photon and μ+ are in the same direction,
which is the region where there is a collinear singularity. In general, IR divergences come
from regions of phase space where massless particles are either soft or collinear to other
particles.1

Anticipating the IR divergence, we have regulated it with a photon mass. Then the cross
section is finite. The only terms that contribute as β → 0 are∫ 1−β

0

dx1

∫ 1− β
1−x1

1−x1−β
dx2

x2
1 + x2

2

(1− x1)(1− x2)
= ln2 β + 3 lnβ − π2

3
+ 6 +O(β) (20.45)

and

− β
∫ 1−β

0

dx1

∫ 1− β
1−x1

1−x1−β
dx2

(1− x1)2 + (1− x2)2

(1− x1)2(1− x2)2
= −1 +O(β). (20.46)

Therefore,

Γ
(
γ� → μ+μ−γ

)
=
Qe4R
32π3

{
ln2 m

2
γ

Q2
+ 3 ln

m2
γ

Q2
− π2

3
+ 5

}
(20.47)

and, from Eq. (20.37),

σR =
e2R
8π2

σ0

{
ln2 m

2
γ

Q2
+ 3 ln

m2
γ

Q2
− π2

3
+ 5

}
. (20.48)

Recalling

σV =
e2R
8π2

σ0

{
− ln2 m

2
γ

Q2
− 3 ln

m2
γ

Q2
− 7

2
+
π2

3

}
, (20.49)

we see that all IR-divergent terms precisely cancel, and we are left with

σR + σV =
3e2R
16π2

σ0. (20.50)

So we see that if we include the virtual contribution and the real emission, the IR
divergences cancel.

The result is

σtot = σ0

(
1 +

3e2R
16π2

)
. (20.51)

Now we need to interpret the result.

1 A more general characterization of the infrared-divergent regions of loop momenta is given by the Landau
equations [Landau, 1959].
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20.2 Jets

We have found that the sum of the e+e− → μ+μ− cross section σV , at order e6R from

the graphs + , and the e+e− → μ+μ−γ cross section σR also at order

e6R from the graphs + , was IR and UV finite. Photons emitted from

final state particles, such as the muons in this case, are known as final state radiation. The
explanation of why one has to include final state radiation to get a finite cross section is
that it is impossible to tell whether the final state in a scattering process is just a muon or
a muon plus an arbitrary number of soft or collinear photons. Trying to make this more
precise leads naturally to the notion of jets.

For simplicity, we calculated only the total cross section for e+e− annihilation into
states containing a muon and antimuon pair, inclusive over an additional photon. One could
also calculate something less inclusive. For example, experimentally, a muon might be
identified as a track in a cloud chamber or an energy deposition in a calorimeter. So one
could calculate the cross section for the production of a track or energy deposition. This
cross section gets contributions from different processes. Even with an amazing detector,
there will be some lower limit Eres on the energy of photons that can be resolved. Even for
energetic photons, if the photon is going in exactly the same direction as the muon there
would be no way to resolve it and the muon separately. That is, there will be some lower
limit θres on the angle that can be measured between either muon and the photon.

With these experimental parameters,

σtot = σ2→2 + σ2→3, (20.52)

where

σ2→2 = σ
(
e+e− → μ+μ−)+ σ

(
e+e− → μ+μ−γ

) ∣∣∣
Eγ<Eres or θγμ<θres

(20.53)

is the rate for producing for producing something that looks just like a μ+μ− pair and

σ2→3 = σ
(
e+e− → μ+μ−γ

) ∣∣∣
Eγ>Eres and θγμ>θres

(20.54)

is the rate for producing a muon pair in association with an observable photon.
The cross section for muons plus a hard photon is now IR finite due to the energy cutoff,

even for Eres 
 Q and θres 
 1. Unfortunately, the phase space integral within these
cuts, even with mγ = 0, is complicated enough to be unilluminating. The result, which we
quote from [Ellis et al., 1996], is that the rate for producing all but a fraction Eres

Q of the
total energy in a pair of cones of half-angle θres is

σ2→3 = σ0
e2R
8π2

{
ln

1
θres

[
ln
(

Q

2Eres
− 1
)
− 3

4
+ 3

Eres

Q

]
+
π2

12
− 7

16
− Eres

Q
+

3
2

(
Eres

Q

)2

+O
(
θres ln

Eres

Q

)}
. (20.55)
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To calculate σ2→2 one cannot take mγ = 0 since the two contributions are separately IR
divergent. Conveniently, since we have already calculated σtot = σ2→2 + σ2→3, we can
just read off that

σ2→2 = σtot − σ2→3 = σ0

(
1− e2R

8π2

{
ln

1
θres

[
ln
(

Q

2Eres
− 1
)
− 3

4
+ 3

Eres

Q

]
+· · ·
})

.

(20.56)

This result was first calculated by Sterman and Weinberg in 1977 [Sterman and Weinberg,
1977]. They interpreted σ2→2 as the rate for jet production, where a jet is defined as a two-
body final state by the parameters θres and Eres. More precisely, these paramaters define a
Sterman–Weinberg jet.

Sterman–Weinberg jets are not the most useful jet definition in practice. There are many
other ways to define a jet. Any definition is acceptable as long as it allows a separation
into finite cross sections for σ2→2 (the two-jet rate), σ2→3 (the three-jet rate), and σ2→n

(the n-jet rate), which starts at higher order in perturbation theory. A jet definition simpler
than Sterman–Weinberg simply puts a lower bound on the invariant mass of the photon–
muon pair,

(
pγ + pμ±

)2
> M2

J . This single parameter limits both the collinear and soft
singularities. An invariant mass cutoff is sometimes known as a JADE jet after the JADE
(Japan, Deutschland, England) experiment, which ran at DESY in Hamburg from 1979 to
1986.

Restricting (pγ + pμ±)2 > M2
J implies t > M2

J and u > M2
J in the notation of Eqs.

(20.38)–(20.40), or equivalently, x1 < 1 − βJ and x2 < 1 − βJ , where βJ = M2
J

Q2 . Then
the cross section is

σ2→3 =
e2R
8π2

σ0

∫ 1−βJ

0

dx1

∫ 1−βJ

1−x1

dx2
x2

1 + x2
2

(1− x1)(1− x2)

=
e2R
8π2

σ0

{
2 ln2 M

2
J

Q2
+ 3 ln

M2
J

Q2
− π2

3
+

5
2

+O(βJ)
}
, (20.57)

where the MJ 
 Q limit has been taken in the second line. One does not have to take this
limit; however, the limit shows, as with Eq. (20.57), a general result:

• In physical cross sections, an experimental resolution parameter acts as an IR regulator.

In other words, we did not need to introduce mγ . In practice, it is much easier to calculate
the total cross section using mγ than by using a more physical regulator associated with
the details of an experiment.

An important qualitative feature of results such as the two- or three-jet rates is that for

very small resolution parameters, MJ 
 Q, it can happen that e2R
8π2 ln2 M2

J

Q2 > 1. In this
limit, the perturbation expansion breaks down, since an order e4R correction of the form(
e2R
8π2 ln2 M2

J

Q2

)2
would be of the same order. Thus, to be able to compare to experiment,

one should not take MJ too small. As a concrete example, the experiment BABAR at
SLAC measured the decay of B mesons to kaons and photons (B → Kγ). This experi-
ment was sensitive only to photons harder than Eres = 1.8 GeV. In other words, it could
not distinguish a kaon in the final state from a kaon plus a photon softer than this energy.
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To compare to theory, a calculation was needed of the rate for B → Kγ with the γ energy
integrated up to Eres. The rate has a term of the form ln2 Eres

mB
∼ 1 in it, which has a quanti-

tatively important effect. Since the logarithm is large, higher orders in perturbation theory
are also important. The summation of these Sudakov double logarithms to all orders in per-
turbation theory was an important impetus for the development of new powerful theoretical
tools, in particular, Soft-Collinear Effective Theory (see Chapter 36) in the 2000s.

While these muon–photon packets are hard to see in QED, they are easy to see in QCD.
In QCD, the muon is replaced by a quark and the photon replaced by a gluon. The quark
itself and the additional soft gluons turn into separate observable particles, such as pions
and kaons. Thus, a quark in QCD turns into a jet of hadrons. These jets are a very real and
characteristic phenomenon of all high-energy collisions. We have explained their existence
by studying the infrared singularity structure of Feynman diagrams in quantum field theory.

In modern collider physics, it is common to look not at the rate for jet production for
a fixed resolution parameter, but instead to look at the distribution of jets themselves. To
do this, one needs to define a jet through a jet algorithm. For example, one might cluster
together any observed particles closer than some θres. The result would be a set of jets of
angular size θres. Then one can look at the distribution of properties of those jets, such as
dσ
dmJ

, where mJ is the jet mass defined as the invariant mass of the sum of the 4-momenta
of all the particles in the jet. It turns out that such distributions have a peak at some finite
value of mJ . However, at any order in perturbation theory, one would just find results such
as dσ

dmJ
= 1

mJ
ln mJ

Q , which grow arbitrarily large at small mass. Calculating the mass
distribution of jets therefore requires tools beyond perturbation theory, some of which are
discussed in Chapter 36.

20.3 Other loops

Now let us return to the other loops in Eq. (20.7). The box and crossed box diagrams

+ (20.58)

are UV finite. To see this, note that the loop integrals for either graph will be of the form∫
d4k

(2π)4
1
k2

1
k2

1
/k

1
/k
∼
∫
d4k

k6
, (20.59)

where k � pi has been taken to isolate the UV-divergent region. These graphs are therefore
UV finite, so no renormalization is necessary. The interference of these graphs with the
tree-level graph contributes at order Q3

e and Q3
μ in the electron and muon charges, which

is the same order as
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× (20.60)

and similar cross terms. Besides the UV finiteness of the loops, there is nothing qualita-
tively new in these graphs. You can explore them in Problem 20.5.

20.3.1 Vacuum polarization correction

Next, we consider the vacuum polarization graph and its counterterm:

iMβ = + . (20.61)

The interference between the tree-level amplitude for e+e− → μ+μ− and these graphs
gives a contribution to the cross section at order e6R. This contribution is proportional to
the square of the charges of whatever particle is going around the loop. For a loop involving
a generic charge, there are no corresponding real emission graphs of the same order in that
charge; thus, any IR divergences must cancel between these graphs alone.

We evaluated these graphs in Section 16.2 (and in Section 19.2.1) for an off-shell photon.
Copying over those results, the sum of the loop and its counterterms in this case gives an
interference contribution 2Re (M0Mβ), which leads to a correction to the cross section
of the form

Δσβ = −2Re[Π(Q2)]σ0, (20.62)

with

Π(Q2) =
e2R
2π2

∑
j

Q2
j

∫ 1

0

dxx(1− x) ln

(
m2
j

m2
j −Q2x(1− x)

)
. (20.63)

For this physical application we have to sum over all particles j with masses mj and
charges Qj that can go around the loop. This sum therefore includes electrons, muons,
quarks, and everything else with electric charge in the Standard Model.

A more suggestive way to write the vacuum polarization contribution is through an effec-
tive charge. Recall that it was these same vacuum polarization graphs that contributed to
the running of the Coulomb potential. In the Coulomb potential, the virtual photon is space-
like, with −p2 > 0. In Chapter 16, we found that for −p2 � m2 the effective charge at
1-loop was (Eq. (16.65))

e2eff(−p2) = e2R

[
1 +

e2R
12π2

ln
−p2

m2

]
, (20.64)

with the convention that eR ≡ eeff(−m2).
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Now look at the correction to the cross section, with just one virtual fermion for
simplicity and Q2 � m2. Then we can use

Π(Q2) =
e2R

12π2
ln

m2

−Q2
+ regular as

m

Q
→ 0. (20.65)

Now recalling σ0(Q2) = e4R
12πQ2 we find

σ(Q2) =
e4R

12πQ2

{
1 + 2Re

[
e2R

12π2
ln
−Q2

m2

]
+O(e4R)

}
=

1
12πQ2

∣∣∣∣e2R +
e4R

12π2
ln
−Q2

m2

∣∣∣∣2 +O(e8R)

=
1

12πQ2

∣∣eeff(−Q2)
∣∣4 +O(e8eff(−Q2)). (20.66)

Including the final state radiation and virtual correction from the muon vertex, we also have

σ =
e4eff(Q2)
12πQ2

(
1 +

3e2eff(Q2)
16π2

)
+O(e8eff), (20.67)

and thus

The entire effect of the vacuum polarization graph is encapsulated in the scale-dependent
effective charge.

This is true quite generally (as long as the electron mass can be neglected) and explains
why an effective charge is such a useful concept.

You may have noticed that in the limitm→ 0 the effective charge in Eq. (20.67) appears
to be IR divergent. However, since

e2eff(−Q2
1)− e2eff(−Q2

2) =
e4R

12π2
ln
−Q2

1

−Q2
2

, (20.68)

as long as the effective charge measured at some scale is finite, the charge at any other
scale will be finite. In particular, we can measure the charge before neglecting the electron
mass, then run the charge up to high energy. Or more simply, measure the electric charge
through the e+e− → μ+μ− cross section at some scale Q1 and predict the effect at Q2

(if we do this, however, the finite effect from the vertex correction and final state radiation
contribution cannot be measured).

Although we only showed the agreement for a single virtual fermion, since the same
vacuum polarization graphs correct Coulomb’s law as correct the e+e− → μ+μ− cross
section, the agreement will hold with arbitrary charged particles. If there are many par-
ticles, it is unlikely that Q will be much much larger than all their massess. Of course,
if Q 
 mj for some mass, that particle has little effect (the logarithm in Eq. (20.63)
goes to zero). But we may measure the cross section at various Q above and below
some particle thresholds. In this case, the effective charge changes, sometimes even dis-
continuously. Physical observables (such as cross sections) are not discontinuous, since
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finite corrections to the cross section exactly cancel the discontinuities of the effective
charge.2

Note that the way we have defined the effective charge, through the Coulomb potential
where pμ is spacelike, eeff(−p2) is naturally evaluated at a positive argument. Here we see
that to use the same charge for e+e− → μ+μ− it must be evaluated at a negative argument,
eeff(−Q2) withQ2 > 0. In fact, it is natural for a process with a timelike intermediate state

to have a factor such as ln−Q2

m2 with a non-zero imaginary part. This imaginary part is
actually required by unitarity, as will be discussed in Chapter 24. It also has a measurable
effect, through terms such as the π2 that contributed to the real part of the virtual amplitude
in going from Eq. (20.18) to Eq. (20.20). This π2 does contribute a non-zero amount to the
cross section. In fact, since π2 is not a small number, π2 corrections can sometimes provide
the dominant subleading contribution to a cross section. For example, they can be shown
to account for a large part of the approximate doubling of the pp→ e+e− cross section at
next-to-leading order [Magnea and Sterman, 1990].

20.3.2 Initial state radiation

Finally, we need to discuss the contributions to the e+e− → μ+μ−(γ) cross section to
third order in the electron charge and first order in the muon charge. In other words, the
following diagrams:

+ + + . (20.69)

In the same way that final state radiation was necessary to cancel the IR singularity of the
vertex correction involving the photon, the sum of these diagrams will be finite. The radi-
ation coming off the electrons in this process is known as initial state radiation. These
real emission graphs are closely related to the real emission graphs with the photon com-
ing off the muons, and their integrals over phase space have IR divergences. However, the
IR-divergent region is a little different and the physical interpretation of the divergences is
very different.

Let us suppose that the sum of the diagrams in Eq. (20.69) gives a finite total cross
section for e+e− → μ+μ−(+γ) we call σtot. Then we should be able to calculate a more
exclusive two-jet cross section, as in the previous section, for producing less than Eres

of energy outside of cones of half-angle θres around the muons. In this case, however,
there is no collinear singularity with the photons going collinearly to the muons. Instead,
the IR divergences come from the intermediate electron propagator going on-shell. This
propagator has a factor of

2 The effective charge is regulator and subtraction scheme dependent. In the on-shell scheme, the effective charge
is very difficult to calculate through particle thresholds. It is therefore more common to use dimensional regu-
larization with minimal subtraction to define the effective charge. In particular, in QCD, where the thresholds
are very important for the effective strong coupling constant αs, MS is almost exclusively used, and there the
effective charge is known to 4-loop order.
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1
(pe − pγ)2

=
−1

2pe · pγ
=

−1
2Eω (1− cos θeγ)

, (20.70)

where θeγ is the angle between the outgoing photon and the incoming electron, E is the
electron energy and ω is the outgoing photon energy. Thus, the singularity comes from the
region with θeγ → 0 or ω → 0, but not where the photon goes collinearly to the muon. So,
if we try to calculate the σ2→2 = σtot − σ2→3 where σ2→3 is the rate for producing μ+μ−

and a photon with ω > Eres, we would find an unregulated collinear singularity associated
with θeγ → 0 and both σ2→3 and σ2→2 are therefore infinite!

As you might guess, we are missing something. First of all, the collinear singularity does
not actually produce an infinite cross section since it is cut off by the electron mass (the
electron mass does not regulate the ω → 0 soft divergence, just the collinear divergence).
We actually already calculated a similar cross section with finite m for Compton scatter-
ing e−γ → e−γ. Indeed, it is easy to see that the collinear singularities associated with
an intermediate electron going on-shell are the same in the two processes. For Compton
scattering, we found in Section 13.5 that the differential cross section for ω � m was,
Eq. (13.140),

dσ

d cos θ
≈ e4R

32πω2

[
1 + cos θ

4
+

1
m2

2ω2 + 1 + cos θ

]
, (20.71)

with θ the angle between the outgoing photon and incoming electron. Integrating over θ
gives

σ =
e4R

32πω2

[
1
2

+ ln
(

1 +
4ω2

m2

)]
. (20.72)

This is finite, although extremely large as ω
m → ∞. The cross section σ2→3 for e+e− →

μ+μ−γ would have a similar factor.
What are we to make of this large ln ω

m factor? For final state radiation, as long as
Eres and θres were not very small, the cross section for σ2→3 was not too large. More
importantly, it was independent of the electron mass. In fact, it is intuitively obvious that
the electron mass should be irrelevant to the cross section at high energy. So why is it
appearing here?

The resolution of this dilemma is easiest to understand by thinking about scattering pro-
tons instead of electrons (this part may not make sense until you have made it through
Chapter 32). A proton is superficially made up of two up quarks and one down quark,
but really it is a complicated bound state of those quarks interacting through the exchange
of gluons, which are massless spin-1 particles like the photon. When one collides pro-
tons at high energy, there is an interaction between one quark in one proton and one
quark in another (or more generally, between gluons, quarks or antiquarks). But only a
small fraction of the energy of the proton is usually involved in the scattering with the
rest just passing through. One way to understand this is that the proton has a size of
order rp = m−1

p ∼ (1GeV)−1. Thus, at energies Q � GeV, only a small dot of size
Q−1 
 rp inside the big proton can be probed. In practice, it is impossible to calculate
the probability that a certain quark will be involved in a short-distance collision, but we
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can parametrize these probabilities with non-perturbative objects called parton distribution
functions (PDFs), fi(x,Q), where x is the fraction of the proton’s energy that the quark
involved in the collision has at some short distance scale Q. The PDFs will be formally
defined in Chapter 32.

Now we can understand better the collinear divergence associated with initial state radi-
ation. At ultra-high energies, when electrons and positrons collide, it is impossible for all
of the energy of the electron to go into the hard collision. Instead, only some fraction x
of the electron’s energy will participate, with the rest of the energy continuing along the
electron’s direction in the form of radiation (photons). One can define functions fi(x,Q),
where i = e− or γ (or, technically speaking, anything else), that give the probability of
finding object i inside an electron. In QED, these functions, sometimes called electron
distribution functions (EDFs), are calculable. For example, the probability of finding
a photon inside an electron with energy ω = zQ in a collision at energy Q (assuming
0 < z < 1) is

fγ(z) =
e2R
8π2

[
1 + (1− z)2

z

]
ln
Q2

m2
. (20.73)

You can derive this in Problem 20.6. We will prove that this function is universal, in the
sense that it gives the dominant behavior in the collinear limit for photon emission in any
process, in Section 36.4. Using this function instead of a full matrix element is called the
equivalent photon approximation or the Weizsäcker–Williams approximation.

If m 
 Q or if z 
 1 then fγ(z) is enormously large. In particular, when this loga-
rithm becomes bigger than 8π

e2R
, perturbation theory breaks down. The logarithms can be

resummed in QED using the analog of the Altarelli–Parisi evolution equations (see Chap-
ter 32) for QED. In fact, the resummation of the large logarithms associated with initial
state collinear singularities is quantitatively important for reproducing the line shape of the
Z boson near resonance as measured by LEP (for a review, see [Peskin, 1990]).

Another way to think about EDFs is that they include the effects of graphs such as

+ (20.74)

in which the photon is in the initial state. In these the collinear singularity is naturally
cut off by the electron mass, or the IR regulator if the electron is massless. Either way, the
incoming radiation represents the electron containing a photon, which is parametrized with
the EDFs.

How do we deal with the initial state collinear singularity in practice? It turns out that,
for real experiments, the details of the EDFs and how the initial state IR divergences can-
cel are almost never important. For example, consider the LEP collider at CERN, which
ran during the 1990s. For much of its life, this machine collided electrons and positrons
at a center-of-mass energy near the Z-boson mass: Q ≈ 91GeV. At this energy the
Z boson is produced resonantly, almost always involving all of the energy of the elec-
trons, with no phase space left for initial state radiation. Actually, since the electrons
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and positrons have variable energy in a typical beam, real or virtual soft photons were
often emitted from the initial state to bring the Z to the resonance peak, a process called
radiative return. The result was that you could just measure the decay of the Z and
ignore the initial state completely. Thus, you only need the final state loops. The decay
width is calculable, finite, and does not depend on whether it was e+e− or something
else that produced the Z. In fact, Z → μ+μ−(+γ) gets precisely the 3e2

16π2 correction
in QED we calculated for the σtot (e+e− → μ+μ− (+γ)) rate in Eq. (20.53). Because
the Z decays not just to muons but also to quarks, which have charges ± 2

3 or ± 1
3 , this

correction becomes 3e2

16π2Q
2
i and is therefore a way to test the Standard Model. In par-

ticular, the branching ratio for Z → bb̄ has proven a particularly powerful way to look
for physics beyond the Standard Model, since it happens to be sensitive not just to loops
involving electrons, but also to loops involving hypothetical particles (such as charged
Higgses). On the other hand, if you want to calculate the line shape of the Z boson in the
resonance region, then initial state radiation is important. Indeed, the importance of the
large logarithms, as in Eq. (20.72) has been experimentally validated of LEP.

By the way, there is actually an interesting difference between initial state radiation in
QED and QCD. In QED, there is an important theorem due to Bloch and Nordsieck [Bloch
and Nordsieck, 1937], which says:

Box 20.1 Bloch–Nordsieck theorem

Infrared singularities will always cancel when summing over final state radi-
ation in QED with a massive electron as long as there is a finite energy
resolution.

In QCD, this is not true. At 2-loops, IR singularities in QCD with massive quarks will
not cancel summing over 2 → n processes only; one also needs to sum over 3 → n

processes [Doria et al., 1980]. The uncanceled singularity, however, vanishes as a power
of the quark mass and therefore disappears as mq

Q → 0. Thus, in the high-energy limit of
QCD, where the mass can be neglected, one can get an IR-finite answer summing only
cross sections with two particles in the initial state. (This result has nothing to do with
QCD being asymptotically free, and would hold even if there were enough flavors so that
QCD were infrared free, like QED.)

A more general theorem, due to Kinoshita, Lee and Nauenberg (KLN) [Kinoshita, 1962;
Lee and Nauenberg, 1964] is that

Box 20.2 Kinoshita–Lee–Nauenberg (KLN) theorem

Infrared divergences will cancel in any unitary theory when all possible final
and initial states in a finite energy window are summed over.

The KLN theorem is mostly of formal interest, since we do not normally sum over initial
states when computing cross sections. Proofs of the Bloch–Nordsieck and KLN theorems
can be found in [Sterman, 1993].
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20.A Dimensional regularization

The calculation of the total cross section for e+e− → μ+μ− (+γ) at next-to-leading order
can also be done in dimensional regularization. Repeating the calculation this way helps
illustrate regulator independence of physical quantities and will give us some practice with
dimensional regularization.

20.A.1 e+e− → μ+μ−

The first step is to calculate the tree-level cross section in d = 4 − ε dimensions. It is of
course non-singular as ε → 0; however, we will need the O(ε) parts of the cross section
for the virtual correction. We work in the limit ECM = Q� me,mμ so that we can treat
the fermions as massless. We first write an expression for a general e+e− → γ� → X

process, then specialize to e+e− → μ+μ−.
To calculate the cross section for e+e− → γ� → X , we use the observation from Sec-

tion 20.1.2 that the cross section factorizes into e+e− → γ� and γ� → X . In d dimensions
we can still write

σR =
1

2Q2

∫
|M|2dΠLIPS =

e4R
2Q6

LμνXμν , (20.A.75)

with the electron tensor exactly as in Eq. (20.29):

Lμν =
1
4
Tr
[
/p2
γμ/p1

γν
]

= pμ1p
ν
2 + pν1p

μ
2 −

Q2

2
gμν . (20.A.76)

The other tensor Xμν is the matrix element squared for a generic γ� → X final state
averaged over γ� spins integrated over the associated Lorentz–invariant phase space. This
definition makes the total decay rate have the form

Γ(γ� → X) = − e
2
R

2Q
gμνXμν , (20.A.77)

with the −gμν coming from a polarization sum over the γ�, assuming the Ward iden-
tity holds. Indeed, the Ward identity does hold in d dimensions, since dimensional
regularization preserves gauge invariance, and so we can still write

Xμν =
(
pμpν − p2gμν

)
X
(
p2
)
. (20.A.78)

However, in d dimensions, X
(
Q2
)

= − 1
(d−1)Q2 g

μνXμν and

LμνXμν =
(d− 2)Q4

2
X
(
Q2
)

= −1
2

(
d− 2
d− 1

)
Q2gμνXμν , (20.A.79)

and therefore

σ
(
e+e− → X

)
= − e4R

4Q4
μ2(4−d)

(
d− 2
d− 1

)
gμνXμν . (20.A.80)
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Using σ0

(
Q2
)

= e4R
12πQ2 as before we can write this alternatively as

σ
(
e+e− → X

)
= σ0μ

2(4−d) 3π
Q2

(
d− 2
d− 1

)
(−gμνXμν)

= σ0μ
2(4−d) 6π

Qe2R

d− 2
d− 1

Γ(γ� → X) , (20.A.81)

which reduces to Eq. (20.36) in four dimensions.
For the tree-level process, we need γ� → μ+μ− for which Xμν is just like Lμν but with

the phase space tacked on. Then,

− gμνXμν = gμν
(
2Q2gμν − 4pμ3p

ν
4 − 4pν3p

μ
4

) ∫
dΠLIPS = 2(d− 2)Q2

∫
dΠLIPS.

(20.A.82)
Since there is no angular dependence in the spin-summed γ� → μ+μ−, this phase space
is straightforward to evaluate:∫

dΠLIPS = (2π)d
∫

dd−1p3

(2π)d−1

dd−1p4

(2π)d−1

1
(2E3) (2E4)

δd (p3 + p4 − p) . (20.A.83)

We first rescale the momenta by pi = Q
2 p̂i to make them dimensionless. We also use

xi = 2
QEi as the energy components of the rescaled momenta. Then, evaluating the p4

integral over the δ-function we get

∫
dΠLIPS = (2π)2−d

(
Q

2

)d−2 1
Q2

∫
dd−1p̂3

x3x4
δ (x3 + x4 − 2) , (20.A.84)

where x4 is an implicit function of p̂μ3 determined by spatial momentum conservation and
the mass-shell conditions. Explicitly x4 = |�̂p3| = x3. So,∫

dΠLIPS =
(
Q

4π

)d−2 1
Q2

∫
dd−2x3

x3
δ (2x3 − 2)

∫
dΩd−1

=
(
Q

4π

)d−2 1
2Q2

Ωd−1

=
(

4π
Q2

) 4−d
2 2−d√

πΓ
(
d−1
2

) . (20.A.85)

Combining this with Eqs. (20.A.81) and (20.A.82),

σd0
(
e+e− → μ+μ−) = σ0μ

2(4−d)
(

4π
Q2

)4−d
2 3

√
π (d− 2)2

2dΓ
(
d+1
2

) , (20.A.86)

which reduces to σ0 in d = 4.

20.A.2 Loops

Next, we will compute the loop amplitude in pure dimensional regularization. The easiest
way to do the calculation is by evaluating the form factor, which corrects the −ieRγμ
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vertex. Then we can use the result for the phase-space integral in d dimensions we have
already calculated. To make sure we get all the factors of d correct, we will compute the
loop from scratch.

The loop gives

− ieRμ
4−d
2 ū (q2) Γμ2v (q1) =

p

q1

k − q1
k

k + q2

q2

= −
(
eRμ

4−d
2

)3 ∫ ddk

(2π)d
ū(q2) γν(/k + /q2) γμ(/k − /q1)γνv(q1)

[(k + q2)2 + iε] [(k − q1)2 + iε] [k2 + iε]
. (20.A.87)

We can simplify this using /q1v(q1) = ū(q2) /q2 = q21 = q22 = 0 and q1 · q2 = Q2

2 . Using
Feynman parameters for the three denominator factors we get

ū(q2)Γ
μ
2v(q1) = −ie2Rμ4−d

∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

(2π)d

× ū(q2)Nμ(k, q1, q2)v(q1)
[(k + xq2 − yq1)2 +Q2xy + iε]3

(20.A.88)

with

Nμ = 2
[
(d− 2)k2 + 4k · q2 − 4k · q1 − 2Q2

]
γμ − 4 [(d− 2)kμ + 2qμ2 − 2q1] /k.

(20.A.89)
Shifting kμ → kμ − xqμ2 + yqμ1 and dropping terms linear in k turns the numerator into

Nμ = 2
[
(d− 2)k2 +Q2((2− d)xy + 2x+ 2y − 2)

]
γμ − 4(d− 2)kμ/k. (20.A.90)

Using kμkν → k2

d g
μν , as discussed in Appendix B, we can then replace kμ/k =

γαgανkμkν → k2

d γ
μ giving

Γμ2 = −2iγμe2Rμ
4−d
∫
dx dy

ddk

(2π)d

(d−2)2

d k2 +Q2((2− d)xy + 2x+ 2y − 2)

(k2 +Q2xy + iε)3
.

(20.A.91)
This has two terms: the k2 term is UV divergent, and the Q2 term is IR divergent.

The k2 term can be evaluated with d < 4 using∫
ddk

(2π)d
k2

(k2 −Δ + iε)3
= i

d/4
(4π)d/2

1

Δ2− d
2
Γ
(

2− d

2

)
, (20.A.92)

with Δ = −Q2xy to get∫ 1

0

dx

∫ 1−x

0

dy

∫
ddk

(2π)d

(d−2)2

d k2

(k2 − (−Q2xy) + iε)3
=

i

16π2

(
4π
−Q2

)4−d
2 Γ
(

4−d
2

)
Γ
(
d
2

)2
Γ(d− 1)

=
i

16π2

(
4π
−Q2

)4−d
2
[

1
εUV

− γE
2

+
1
2

+O(εUV)
]
. (20.A.93)
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So the UV-divergent part only has a single 1
εUV

pole, coming from the Γ
(

4−d
2

)
term. (There

is no difference between εUV and ε. We write εUV only to remind us of the origin of the
singularity and that it is finite for εUV > 0.)

In theQ2 term in Eq. (20.A.91) the integral is convergent in d = 4, but then the integrals
over Feynman parameters would be divergent. Thus, we must perform the k integral in
d > 4 dimensions. In this case, we can use∫

ddk

(2π)d
1

(k2 −Δ + iε)3
=

−i
2(4π)d/2

1

Δ3− d
2
Γ
(

3− d

2

)
(20.A.94)

and then perform the x and y integrals to get

∫ 1

0

dx

∫ 1−x

0

dy
ddk

(2π)d
Q2((2− d)xy + 2x+ 2y − 2)

(k2 +Q2xy + iε)3

=
i

16π2

(
4π
−Q2

) 4−d
2 Γ
(

4−d
2

)
Γ
(
d−4
2

)
Γ
(
d
2

)
Γ(d− 2)

(
d2 − 8d+ 24

4 (d− 2)

)
=

i

16π2

(
4π
−Q2

) 4−d
2
(
− 4
ε2IR

+
−4 + 2γE

εIR
+
−54 + 24γE − 6γ2

E + π2

12
+O(εIR)

)
.

(20.A.95)

This term has a 1
ε2R

pole, which is characteristic of IR soft-collinear divergences. Remem-

ber, εIR is the same as εUV, but we must assume εIR < 0 (d > 4) for this integral to be
finite.

Finally, we need the counterterm in the on-shell scheme (we need to use the on-shell
scheme if we are to identify eR with the charge measured at Q = 0). The graph gives

p q1

q2
= −iδ1

(
eRμ

4−d
2

)
ū(q2) γμv(q1) . (20.A.96)

We already computed this counterterm with a Pauli–Villars regulator and photon mass in

Eq. (20.14), finding δ1 = − e2R
16π2 ln Λ2

m2
γ

, which is UV and IR divergent. The calculation

in pure dimensional regularization involves evaluating the loop at Q = 0. Taking Q → 0
in Eq. (20.A.91) gives

δ1 = ie2Rμ
4−d (d− 2)2

d

∫
ddk

(2π)d
1
k4
. (20.A.97)

This integral is scaleless and formally vanishes in dimensional regularization. That is,

δ1 = 0, (20.A.98)
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which is all we need to calculate the cross section. Nevertheless, as discussed in
Appendix B, it can be revealing to formally separate the UV-divergent region (which con-
verges for d < 4) from the IR-divergent region (which converges for d > 4) in a scaleless
integral. In this case, we find

δ1 = ie2Rμ
4−d (d− 2)2

d

i

8π2

(
1
εUV

− 1
εIR

)
= −e2Rμ4−d 1

8π2

(
1
εUV

− 1
εIR

)
. (20.A.99)

The εUV part of this cancels the divergent part of the integral for Q > 0 in Eq. (20.A.93)
with the prefactor from Eq. (20.A.91), as it must. Indeed, including the counterterm then
makes all of the divergences formally IR divergences.

Combining the UV and IR divergent pieces, the result is

Γμ2 = γμf
(
Q2
)
, (20.A.100)

where

f
(
Q2
)

= e2R4(16π)
1−d
2

(
μ2

−Q2

)4−d
2 Γ
(

4−d
2

)
Γ
(
d
2

)
Γ
(
d−1
2

) d2 − 7d+ 16
d2 − 6d+ 8

= − e2R
2π2

(
4πe−γEμ2

−Q2

) 4−d
2
(

1
ε2

+
3
4ε

+ 1− π2

48
+O(ε)

)

= − e2R
2π2

(
4πe−γEμ2

Q2

) 4−d
2
(

1
ε2

+
3
4 + iπ

2

ε
− 7π2

48
+ 1 +

3πi
8

+O(ε)

)
,

(20.A.101)

where all the ε dependence is now of infrared origin, ε = εIR.
The virtual contribution to the cross section is then

σdV = 2σd0Re
[
f
(
Q2
)]

= −σd0
e2R
π2

(
4πe−γEμ2

Q2

)4−d
2
(

1
ε2

+
3
4ε
− 7π2

48
+ 1
)

= −σ0
e2R
π2

(
4πe−γEμ2

Q2

)4−d( 1
ε2

+
13
12ε

− 5π2

24
+

29
18

+O(ε)
)
, (20.A.102)

where Eq. (20.A.93) has been used.

20.A.3 Real emission contribution

Next, we compute the real emission contribution. We can use the d-dimensional factorized
form from Section 20.A.1. In this case, we need γ� → μ+μ−γ, which comes from these
diagrams:
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iMR =
p

q1

q2

pγ +
p

q1

q2

pγ . (20.A.103)

The associated tensor is

Xμν = −μ4−d
∫
dΠLIPSTr

[
/q1S

μα
/q2S

αν
]
, (20.A.104)

with Sμα the same as in Eq. (20.27). As is the case with the mγ regulator, it is easiest to
express the result of this trace in terms of the xi variables. Here, x1, x2 and xγ are defined
as they were in Eqs. (20.37) to (20.39) with β = 0, which is equivalent to

xi =
2qi · p
Q2

. (20.A.105)

In the center-of-mass frame, p = (Q, 0, . . . , 0) and so xi = 2EiQ with Ei the energy of the
particle. These satisfy x1 + x2 + xγ = 2. We then find the relevant spin-summed matrix
element squared is

−gμνXμν = μ4−d
∫
dΠLIPSTr

[
/p3S

μα
/p4S

αμ
]

= 4e2R (d− 2)μ4−d
∫
dΠLIPS

x2
1 + x2

2 + d−4
2 x2

γ

(1− x1) (1− x2)
. (20.A.106)

This correctly reduces to Eq. (20.43) with β = 0 when d = 4.
Next we need to express the phase space in terms of x1 and x2. We start with∫

dΠLIPS = (2π)3−2d

∫
dd−1q1
2E1

∫
dd−1q2
2E2

∫
dd−1pγ
2Eγ

δd (q1 + q2 + pγ − p).

(20.A.107)

Let us first rescale the momenta by qi = Q
2 q̂i and use xi = 2EiQ = |�̂qi| and xγ = 2EγQ .

This gives∫
dΠLIPS =

(
Q

4π

)2d−3

× 1
Q3

∫
xd−2

1 dx1dΩd−1

∫
xd−2

2 dx2dΩd−1
1

x1x2xγ
δ (x1 + x2 + xγ − 2) . (20.A.108)

Now we have to be careful since xγ is an implicit function of the 3-momenta �q1 and �q2:

xγ =
2Eγ
Q

=
2
Q

√
(�q1 + �q2)

2 =
2
Q

√
E2

1 + E2
2 − 2E1E2 cos θ

=
√
x2

1 + x2
2 − 2x1x2 cos θ, (20.A.109)

where �q1 · �q2 = −E1E2 cos θ. Since there is θ dependence in the integrand, we cannot
simply perform the δ-function integral. Instead, we expand using the explicit form for dΩd
from Appendix B:

dΩd−1 = dΩd−2 sind−3 θ dθ = dΩd−2

(
1− z2
) d−4

2 dz, (20.A.110)
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where z ≡ cos θ is defined for the last step. So∫
dΠLIPS =

(
Q

4π

)2d−3 Ωd−2Ωd−1

Q3

∫
dx1x

d−3
1

∫
dx2x

d−3
2

×
∫ 1

−1

dz
(
1− z2
) d−4

2 1
xγ
δ (x1 + x2 + xγ − 2) . (20.A.111)

Now note that from Eq. (20.A.109),

z =
x2

1 + x2
2 − x2

γ

2x1x2
. (20.A.112)

Also, using x1 + x2 + xγ = 2,

1− z2 = 4
(1− x1)(1− x2)(1− xγ)

x2
1x

2
2

. (20.A.113)

Thus,

∫
dΠLIPS =

Q2
(
Q2

4π

)d−4

128π3Γ(d− 2)

∫
dx1dx2dxγ

× δ(x1 + x2 + xγ − 2)
[

1
(1− x1)(1− x2)(1− xγ)

]4−d
2

=
(
Q2

4π

)d−4
Q2

128π3Γ(d− 2)

∫ 1

0

dx1

∫ 1

1−x1

dx2

[
1

(1− x1)(1− x2)(1− xγ)

]4−d
2

,

(20.A.114)

with xγ = 2− x1 − x2. This is our final result for the three-body phase space.
Now it is just a matter of integrating Eq. (20.A.106) with Eq. (20.A.114). The result is

∫ 1

0

dx1

∫ 1

1−x1

dx2

4(d− 2)(x2
1 + x2

2 + d−4
2 x2

γ)

(1− x1)3−
d
2 (1− x2)3−

d
2 (1− xγ)2−

d
2

= 4(d− 3)(d2 − 4d+ 8)
Γ
(
d−4
2

)2
Γ
(
d
2

)
Γ
(

3d−6
2

)
=

64
ε2

+
16
ε
− 8π2 + 52 +O(ε). (20.A.115)

Combining this with Eqs. (20.A.81), (20.A.106) and (20.A.114) and factoring out the tree-
level cross section gives

σdR = σ0e
2
R

(
Q2

4πμ2

)d−4 3
32π2

(d− 3)(d− 2)
(
d2 − 4d+ 8

)
d− 1

Γ
(
d−4
2

)2
Γ
(
d
2

)
Γ
(

3d−6
2

)
Γ(d− 2)

= σ0
e2R
π2

(
4πe−γEμ2

Q2

)4−d( 1
ε2

+
13
12ε

− 5π2

24
+

259
144

+O(ε)
)
. (20.A.116)
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Finally, adding in Eq. (20.A.102),

σdV = σ0
e2R
π2

(
4πe−γEμ2

Q2

)4−d(
− 1
ε2
− 13

12ε
+

5π2

24
− 29

18
+O(ε)

)
(20.A.117)

gives a total cross section of

σdR + σdV = σ0
3e2R
16π2

+O(ε), (20.A.118)

which is finite as ε → 0 and exactly the result we found with Pauli–Villars and a photon
mass, Eq. (20.50).

Problems

20.1 Derive the phase space formula in Eq. (20.42).
20.2 Calculate the Sterman–Weinberg jet rates in Eqs. (20.55) and (20.56).
20.3 Calculate the total cross section for e+e− → μ+μ− (+γ) including the initial state

radiation contribution.
20.4 Calculate the cross section for e+e− → μ+μ− directly in dimensional regulariza-

tion, without factorizing into e+e− → γ� and γ� → μ+μ−.
20.5 Calculate the box and crossed box loop graphs in Eq. (20.58). Are they IR divergent?
20.6 Calculate the splitting function for the QED function in Eq. (20.73).
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At this point, we have calculated some 2-, 3- and 4-point functions in QED where we found
three UV-divergent 1-loop graphs:

(21.1)

We saw that these UV divergences were artifacts of not computing something physical,
since the UV-divergent answer was calculated using parameters in a Lagrangian that were
not defined based on observables. More precisely, we saw that the normalizations of the
electron and photon fields were not observable, and so these fields could be rescaled by
wavefunction renormalization factors Z2 = 1 + δ2 and Z3 = 1 + δ3, with the coun-
terterms δ3 and δ2 dependent on the UV regularization and subtraction scheme. We also
saw that the bare electric charge parameter e0 appearing in the Lagrangian and the bare
Lagrangian electron mass parameter m0 could be redefined keeping physical quantities
(such as the charge measured by Coulomb’s law at large distances and the location of the
pole in the electron propagator) finite. This introduced two new counterterms, δ1 and δm.
We found that these same counterterms, and the four associated renormalization condi-
tions that define them to all orders in perturbation theory, made all the 2-, 3- and 4-point
functions we have so far considered finite.

The next question we will address is: Will this always be the case? Can these same
four counterterms remove all of the infinities in QED? If so, QED is renormalizable. The
general definition of renormalizable is

Renormalizable Box 21.1

In a renormalizable theory, all UV divergences can be canceled with a finite
number of counterterms.

It will not be hard to show that QED is renormalizable at 1-loop. The important observation
is that UV divergences are the same whether or not the external legs are on-shell; they come
from regions of loop momenta with k � pi for any external momentum pi. In particular,
the same counterterms will cancel the UV divergences of divergent graphs even when the
1-loop graphs are subgraphs in more complicated higher-order correlation functions. We
saw this explicitly in Chapter 20 for e+e− → μ+μ−: the counterterms we derived from 2-
and 3-point functions removed the UV divergences in this 4-point case.

381
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Recall that we introduced the notion of one-particle irreducibility when trying to deal
with mass renormalization in Chapter 18. By summing 1PI graphs in external lines we
justified using the exact renormalized propagator (with a pole at the physical mass) instead
of the bare propagator. Now we see that we only need to look at 1PI graphs when trying
to figure out what UV divergences are present. Our previous definition of 1PI was those
graphs that could not be cut in two by slicing a single propagator. An equivalent definition,
more useful for our present purposes, is

Box 21.2 One-particle irreducible (1PI)

A Feynman diagram is 1PI if all internal lines have some loop momentum
going through them.

Any graph involved in the computation of any Green’s function can be computed by
sewing together 1PI graphs, with off-shell momenta, without doing any additional inte-
grals. Thus, if the four QED counterterms cancel all the UV divergences in 1PI graphs, they
will cancel the UV divergences in any Green’s function. Keep in mind that for S-matrix
elements we need to compute all (amputated) graphs, but for studying general properties
of renormalizability it is enough to consider only the 1PI graphs.

It will be useful to consider a quantity D, the superficial degree of divergence, defined
as the overall power of loop momenta ki in the loop integrals, including the powers of ki
in the various d4ki. For example, we say

∫
d4kk−2 has D = 2 and

∫
d4k1

∫
d4k2k

−4
1 k−4

2

has D = 0. If we cut off all the components of all the kiμ at a single scale Λ, then a graph
with degree of divergence D scales as ΛD as we take Λ →∞ and as ln Λ for D = 0.

21.1 Renormalizability of QED

To approach renormalizability, we will continue our systematic study of removing infinities
in Green’s functions (which we began in Chapter 19), focusing on 1PI graphs. We have
already shown that the QED counterterms cancel the UV divergences in all the 2- and
3-point functions in QED. So now we continue to 4-point and higher-point functions.

21.1.1 Four-point functions

Let us first consider the Green’s function with four fermions, 〈Ω|T{ψ̄ψψ̄ψ}|Ω〉. We eval-
uated this correlation function in Chapter 20 for e+e− → μ+μ− and found it to be UV
finite. The only 1PI graph contributing to the scattering amplitude based on the 4-point
function is

〈
ψ̄ψψ̄ψ
〉
∼ ∼

∫
d4k

(2π)4
1
k2

1
k2

1
/k

1
/k
∼ 1

Λ2
(21.2)
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or one of its various crossings. The notation 〈ψ̄ψψ̄ψ〉means a (possibly) off-shell S-matrix
element involving four external fermions and ∼ means expand the integrand in the limit
that k � pi,mi and then cutoff |kμ| < Λ. Since this amplitude scales as Λ−2 (its superfi-
cial degree of divergence isD = −2), it is not UV divergent. Therefore, no renormalization
is required in the computation of this graph.

Note that, in the limit k � pi,mi, whether the lines are on-shell or off-shell is irrel-
evant. Also, because all propagators have some factor of loop momentum in them (by
definition of 1PI), a 1-loop diagram can never be more divergent than its superficial degree
of divergence. Thus, for 1-loop 1PI graphs, if D < 0 the graph is not UV divergent.

Next, the 1PI contribution to the two-fermion and two-photon Green’s function is

〈
ψ̄ψAA
〉
∼ ∼

∫
d4k

(2π)4
1
k2

1
/k

1
/k

1
/k
∼ 1

Λ
. (21.3)

This has D = −1 and is also not UV divergent.
Finally, the last non-vanishing 4-point function is the four-photon function, which

describes light-by-light scattering γγ → γγ:

M = 〈AAAA〉 ∼ ∼
∫

d4k

(2π)4
1
/k

1
/k

1
/k

1
/k
∼ Λ0. (21.4)

This one has D = 0 and appears logarithmically divergent. However, we know that
after regulating and performing the integrals, the result must be linear in the four photon
polarizations and therefore have the form

M = εμ1 ε
ν
2ε
ρ�
3 ε

σ�
4 Mμνρσ. (21.5)

By Lorentz invariance, dimensional analysis, and symmetry under the interchange of the
photons, Mμνρσ must have the form

Mμνρσ = c ln Λ2(gμνgρσ + gμρgνσ + gμσgνρ) + finite (21.6)

for some constant c. We also know by the Ward identity that this must vanish when any
one of the photons is replaced by its momentum. Say Aμ has momentum qμ. Then

0 = qμMμνρσ = c ln Λ2(qνgρσ + qρgνσ + qσgνρ) + qμ · finite. (21.7)

This must hold for all qμ, which is impossible unless c = 0, and therefore this loop must
be UV finite. (The loop is actually quite a mess to compute; the low-energy limit of the
result will be computed using effective actions in Chapter 33.)
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21.1.2 Five-, six-, ... point functions

For 1-loop contributions to amplitudes with more than four legs, we get things such as
pentagon diagrams:

〈
ψ̄ψAνAρAσ

〉
∼ ∼

∫
d4k

(2π)4
1
/k

1
/k

1
/k

1
/k

1
k2
∼ 1

Λ2
. (21.8)

These will all have at least five propagators, with five factors of k in the denominator, so
they will have D < 0 and be UV finite. It no longer matters if the propagators are for
fermions or photons; any graph with more than four legs will always have more than four
powers of k in the denominator.

In conclusion, the four counterterms, δ1, δ2, δ3 and δm, suffice to cancel all the diver-
gences in any Green’s function of QED at 1-loop. Therefore, QED is renormalizable at
1-loop.

21.1.3 Renormalizability to all orders

What about 2-loop and higher-loop 1PI graphs? One can show they are finite by induc-
tion. The full proof is rather involved, due to complications with overlapping and nested
divergences from different types of multi-loop diagrams, so we will just sketch the basic
ingredients.

So far, we have found that there are only a finite number of UV-divergent 1PI graphs at
1-loop in QED coming from a finite number of divergent amplitudes. These divergences
can be canceled by a finite number of counterterms. If higher-loop 1PI graphs contribute
divergences in the same amplitudes, these can be removed by the same counterterms (defin-
ing them to higher order in eR). Thus, we have only to show that there cannot be any new
divergent contributions to amplitudes that were UV finite at 1-loop.

First, let us show that the superficial degree of divergence does not change when more
loops are added. To go from n to n+ 1 loops, we can add either a photon propagator or a
fermion propagator. If we add an internal photon propagator,

−→ , (21.9)

it must split two fermion lines, so the new loop has two additional fermion propagators as
well. By the definition of 1PI, loop momenta go through all internal lines. So for k � pi,
where pi is any external momentum, each internal line will get 1

/k
or 1

k2 . Then, the matrix
element is modified to ∫

d4k

(2π)4
1
k4
→
∫

d8k

(2π)8
1
k4

1
k2

1
/k

1
/k
∼ Λ0, (21.10)
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where the k’s on the right-hand side can be any combination of k1 and k2. Both integrals
have the same superficial degree of divergence. If we add a fermion loop, it needs to split
a photon line, as in

−→ , (21.11)

which gives ∫
d8k

(2π)4
1
k8
→
∫

d12k

(2π)12
1
k8

1
k2

1
/k

1
/k
∼ Λ0. (21.12)

The new graph again has the same degree of divergence as the graph it was modifying.
So a fermion insertion also does not change the superficial degree of divergence. Actually,
as we show in the next section, the superficial degree of divergence depends only on the
external particles in the process (this is essentially just dimensional analysis since the only
scale available is Λ).

The proof of renormalizability works by induction. Suppose that all the 1PI graphs (with
counterterms) are finite at n-loops. We have proved this for QED for n = 1. At n+1 loops,
you might imagine a situation in which some graph would be divergent despite it having
D < 0. For example, it could happen that two loop momenta come in as k1 − k2 in the
denominator, in which case the degree of divergence would depend on precisely how we
take the momenta to infinity; if we take kμ1 and kμ2 to infinity holding pμ = kμ1 − kμ2
fixed, then there are fewer powers of kμ in the denominator. However, in this case, pμ

can be treated as an external momentum and so one fewer loop momenta are integrated
over; thus, the diagram has effectively only n loops, which we have already proved to be
finite. Unfortunately, various subtleties and special cases make the proof somewhat tedious.
The key result is the BHPZ theorem in Box 21.3. This theorem was mostly proved by
Bogoliubov and Parasiuk in 1957, completed by Hepp in 1966 and refined by Zimmermann
in 1970. See [Weinberg, 1995] for more details.

BPHZ theorem Box 21.3

All divergences can be removed by counterterms corresponding to superfi-
cially divergent 1PI amplitudes.

Since we have shown in QED that there are only a finite number of superficially
divergent scattering processes at 1-loop, that these divergences can be removed with the
four counterterms δ1, δ2, δ3 and δm, and that the superficial degree of divergence of an
amplitude does not increase from n to n+ 1 loops, the BPHZ theorem then implies

QED is renormalizable.
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Renormalizability in QED means that all the UV divergences are canceled by the same
four counterterms we introduced at 1-loop. These are fit by two numbers: the physical value
of the electric charge eR (measured in Coulomb’s law at long distance) and the physical
value of the electron mass, mP . The other two counterterms are fixed by normalizing the
electron and photon fields. This is actually a pretty amazing conclusion: QED is completely
specified once eR and mP are measured;1 after that, we can make an infinite number of
arbitrarily precise predictions. The two initial measurements are needed to define even the
classical theory. In the quantum theory, both logarithmic corrections can be calculated, such
as to the scale-dependent effective charge (Chapter 16), as well as finite corrections, such
as to the value of the anomalous magnetic moment (Chapter 17) or the e+e− → μ+μ−

total cross section (Chapter 20).
Renormalizability played a very important role in the historical development of quan-

tum field theory and gauge theories. In particular, ’t Hooft’s 1971 proof [’t Hooft, 1971]
that spontaneously broken gauge theories were renormalizable made people take Wein-
berg’s model of leptons seriously. Weinberg’s model, which has now evolved into the
Standard Model, had been proposed in 1967 and was subsequently ignored over concerns
of renormalizability.

21.2 Non-renormalizable field theories

All else being equal, renormalizability is a desirable property for a theory to have: an infi-
nite number of predictions follow from a finite number of measurements. Unfortunately, to
make these predictions we have to be able to perform computations in the renormalizable
theory. In practice, this is extremely challenging. Not only are loops difficult to evaluate,
but perturbation theory in the coupling constants of a renormalizable theory often breaks
down. For example, as we saw in Section 16.3.2, QED has a Landau pole. Thus, Coulomb
scattering above E = 10286 eV is a completely mystery in QED. In other words, we can-
not predict every observable just because we can cancel all the UV divergences. Moreover,
precisely because QED is renormalizable, low-energy measurements are totally insensitive
to whatever completion QED might have above the Landau pole. That is, we have no
way of probing the mysterious high-energy regime without building a 10286 eV collider.
Other renormalizable theories are unpredictive in much more relevant regimes. For exam-
ple, QCD does not make perturbative predictions below∼1 GeV. Or consider string theory,
which is not only renormalizable but actually finite: it has no UV divergences. Despite its
formal beauty, string theory has yet to relate any observable to any other observable at all.

A more modern view is that if one is interested in actually making physical predic-
tions, renormalizability (or finiteness in the case of string theory) is somewhat irrelevant.

1 In pure QED, only one measurement would actually be needed, since the electron mass mP is dimensionful.
This measurement would give mP

ΛQED
, where ΛQED is the location of the Landau pole, which is in one-to-one

correspondence with eR.
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Table 21.1 Superficial degree of divergence Df,b = 4− 3
2
f − b

for a process with f fermions and b bosons.

〈AA〉
∫

d4k

(2π)4
1

/k

1

/k
∼ Λ2 D0,2 = 2〈

ψ̄ψ
〉 ∫

d4k

(2π)4
1

k2

1

/k
∼ Λ1 D2,0 = 1〈

ψ̄ψA
〉 ∫

d4k

(2π)4
1

k2

1

/k

1

/k
∼ Λ0 D2,1 = 0

〈AAAA〉
∫

d4k

(2π)4
1

/k

1

/k

1

/k

1

/k
∼ Λ0 D0,4 = 0〈

ψ̄ψAA
〉 ∫

d4k

(2π)4
1

k2

1

/k

1

/k

1

/k
∼ 1

Λ
D2,2 = −1〈

ψ̄ψψ̄ψ
〉 ∫

d4k

(2π)4
1

k2

1

k2

1

/k

1

/k
∼ 1

Λ2
D4,0 = −2

In many contexts, non-renormalizable theories are in fact much more useful than renor-
malizable ones, despite the fact that renormalizable theories have fewer parameters. To
understand better the connection between renormalizability and predictability, we first have
to examine non-renormalizable theories. We will study their UV divergence structure for
the remainder of this chapter, and give a number of concrete examples in the next chap-
ter. Non-renormalizable theories will play an increasingly important role as we progress
through Parts IV and V as well.

21.2.1 Divergences in non-renormalizable theories

We saw that in QED there are a finite number of superficially divergent one-particle
irreducible contributions to off-shell scattering amplitudes. The superficial degree of diver-
gence of a scattering amplitude is well defined, because, as we showed in the previous
section, inserting additional photon or fermion propagators into a loop does not change the
degree of divergence. Call the superficial degree of divergence of a scattering amplitude
with f fermions and b photons Df,b. Some example amplitudes and values of Df,b are
shown in Table 21.1.

It is not hard to work out the general formula:

Df,b = 4− 3
2
f − b. (21.13)

With scalar external states, the generalization is

Df,b,s = 4− 3
2
f − b− s, (21.14)

where s is the number of scalars being scattered. Divergent 1PI graphs can only possibly
contribute to Green’s functions with D > 0.

Besides counting loop momentum factors in integrals, another way to derive Eq. (21.13)
is to recall that the LSZ reduction formula relates Green’s functions to matrix elements by
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δ4(Σp)M∼
b∏
i=1

∫
d4xi e

±ipixi �i · · ·
f∏
j=1

∫
d4yj e

±iqjyj /∂j · · ·

× 〈ψ1(y1) · · ·ψf (yf )A1(x1) · · ·Ab(xb)〉. (21.15)

Since fermions have dimension 3
2 and photons dimension 1, the actual Green’s function has

dimension 3
2f + b. The xi and yj integrals and prefactors have mass dimension −2b− 3f ,

and the δ-function has dimension −4. Thus, the dimension ofM is 3
2f + b− 2b− 3f + 4

= 4− 3
2f − b, as in Eq. (21.13).

QED is a special theory because it only has a single interaction vertex:

LQED = Lkin − eψ̄Aμγμψ. (21.16)

The coefficient of this interaction is the dimensionless charge e. More generally, we might
have a theory with couplings of arbitrary dimension. For example,

L = −1
2
φ(� +m2)φ+ g1φ

3 + g2φ
2�φ3 + · · · . (21.17)

These additional couplings change the power counting.
Call the mass dimension of the coefficient of the ith interaction Δi. For example, the

g1 term above has Δ1 = [gi] = 1 and g2 has Δ2 = [g2] = −3. Now consider a loop
contribution to a Green’s function with ni insertions of the vertices with dimension Δi.
For k � pi, the only scales that can appear are k’s and Δ’s. So, by dimensional analysis,
the superficial degree of divergence of the same integral changes as∫

kD →
(∏

i

gnii

)∫
kD−∑ i niΔi . (21.18)

Thus,

Df,b,ni = 4− 3
2
f − b−

∑
i

niΔi. (21.19)

So, if there are interactions with Δi < 0, then there can be an infinite number of values of
ni, and therefore an infinite number of values of f and b with Df,b,ni > 0. This means that
there are an infinite number of Green’s functions for which some 1PI graph has D > 0.
Thus, we will need an infinite number of counterterms to cancel all the infinities. Such
theories are called non-renormalizable.

We generalize this terminology also to describe individual interactions. We also some-
times describe interactions of dimension 0 as marginal, dimension >0 as relevant, and
dimension <0 as irrelevant. These terms come from the Wilsonian renormalization group
and will be discussed in Chapter 23.

Non-renormalizable interactions are those of mass dimension Δi < 0. Having any non-
renormalizable interaction term in the Lagrangian makes a theory non-renormalizable.
On the other hand, if all the interactions have mass dimension Δi > 0, then the the-
ory is called super-renormalizable (for example, L = − 1

2φ�φ + g
3!φ

3 describes a
super-renormalizable theory).
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It is worth pointing out that a theory can also be non-renormalizable due to the propa-
gators generating new divergences. For example, consider the theory of a massive vector
boson. Recall that the propagator for a massive spin-1 field is

iΠμν ∼
−i
(
gμν − pμpν

m2

)
p2 −m2 + iε

(21.20)

At high energy, p � m, this goes as 1
m2 not 1

p2 . Thus, each loop contribution with a
massive vector propagator contributes two more factors of k2 than the corresponding loop
with a photon. For example, adding a massive spin-1 particle to the light-by-light box
diagram (the indicates the massive spin-1 particle)

−→ m (21.21)

turns a superficially logarithmically divergent integral into a quadratically divergent one:∫
d4k

(2π)4
1
/k

1
/k

1
/k

1
/k
∼ Λ0 →

∫
d4k

(2π)4
1
/k

1
/k

1
/k

1
/k

∫
d4k

(2π)4
1
m2

1
/k

1
/k
∼ Λ2

m2
. (21.22)

Thus, there are an infinite number of superficially divergent Feynman diagrams for a theory
with a massive vector boson, and hence such theories are not renormalizable. That is not
to say that they cannot be renormalized (they can!), but only that all of the UV divergences
cannot be canceled with a finite number of counterterms.

21.2.2 Non-renormalizable theories are renormalizable

Although non-renormalizable theories have an infinite number of superficially divergent
integrals, that does not mean that they give nonsense (infinities) for observables. Instead,
non-renormalizable theories can be renormalized, but only by continually adding terms
to the Lagrangian to provide counterterms to cancel divergences. While such a procedure
seems like it would destroy the predictivity of a theory, in fact non-renormalizable theories
are still extremely predictive.

As usual, let us start with an example. Consider the Lagrangian

L = −1
2
φ(� +m2)φ+

g

4!
φ2�φ2, (21.23)

where g has mass dimension −2. A 1-loop amplitude involving this vertex could generate
a contribution to the 4-point amplitude:

+ ∼ gp2 + g2(c1Λ4 + c2Λ2p2 + c3p
4 ln Λ + · · · ), (21.24)



390 Renormalizability

where p refers generically to some external momentum and ci are numbers. (The exact
expression will have many terms with many different momenta involved.) If we had only
g to renormalize, only the c2Λ2p2 divergence could be removed. This follows because
the tree-level contribution gp2 has the same momentum dependence as the c2Λ2p2 diver-
gence. To remove the other divergences, we have to add more terms. So let us enlarge our
Lagrangian to

L = −1
2
φ(� +m2)φ+ λRZλφ

4 + gRZgφ
2�φ2 + κRZκφ

2�2φ2 + · · · , (21.25)

expanding Zλ = 1 + δλ, Zg = 1 + δg and Zκ = 1 + δκ, the counterterm contribution to
the 4-point function is

∼ λRδλ + gRδgp
2 + κRδκp

4. (21.26)

Thus, we can choose

λRδλ = −g2
Rc1Λ

4, δggR = −g2
Rc2Λ

2, δκκR = −g2
Rc3 ln Λ, (21.27)

and all the infinities in Eq. (21.24) will cancel.
Of course, there will now be new infinities from loops involving λR and κR, but as long

as we add every possible term consistent with the symmetries of the theory, we will always
be able to remove all of the infinities at any given order. This will be possible as long
as the divergences multiply functions that are polynomials in external momenta, such as
could come from counterterms in a local Lagrangian. Now we will show that this always
happens.

In the region of loop momentum for which k � p for all external momenta p, the
divergent integrals can always be written as sums of terms of the form

Idiv = (p1
μ · · · pmν )g1 · · · gn

∫
dk

kj
(21.28)

for some number m of the various external momenta piμ. These integrals can produce
logarithms of the regularization scale Λ, or powers of Λ:

Idiv =
∑
m,n

g1 · · · gn(p1
μ · · · pmν )[cm,n0 ln Λ + cm.n1 Λ + cm,n2 Λ2 + cm,n3 Λ3 + · · · ], (21.29)

where the sum is over all possible products of gi and external momenta. It is very important
that there can never be terms such as ln p2 coming from the divergent part of the integral;
that is, nothing like Λ2 ln p2 can appear. This is simply because integrands do not have any
ln p2 terms to begin with and we can go to the divergent region of the integral by taking
k � p before integrating over anything that might give a logarithm.

More generally:

Divergences coming from loop integrals will always multiply polynomials in the
external momenta.
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A simple proof due to Weinberg of this important result is as follows [Weinberg, 1995]. A
general divergent integral will have various momenta factors in it, such as

I(p) =
∫ ∞

0

k dk

k + p
. (21.30)

Let us assume there is at least one denominator with a factor of p (if not, the loop trivially
gives a polynomial in external momenta). If we differentiate the integral with respect to p
enough times, the integral becomes convergent. For example,

I ′′(p) =
∫ ∞

0

2 k dk
(k + p)3

=
1
p
. (21.31)

Then we can then integrate over p to produce a polynomial, up to constants of integration
we can call Λ and c1Λ:

I(p) = p ln
p

Λ
− p+ c1Λ = p ln p− p(ln Λ + 1) + c1Λ. (21.32)

The constants of integration are in one-to-one correspondence with the divergences coming
from any regulator. Moreover, multiple integrals of an integration constant over momenta
can only ever produce a polynomial in momenta. Thus, the non-analytic terms must
be independent of the integration constants or, equivalently, of the divergences (and the
regulator). This proves the theorem.

Now, polynomials in external momenta are exactly what we get at tree-level from terms
in the Lagrangian. So we can always introduce counterterms to cancel these divergences,
as in the scalar field example above. In this way, all S-matrix elements can be made UV
finite. In order to have a counterterm, we need the corresponding term to actually be in our
Lagrangian. So the easiest thing to do is just to add every possible term with any number of
derivatives acting on any fields. Symmetries often make certain terms unnecessary, but by
adding all the possible terms we guarantee that counterterms can be chosen so that every
S-matrix element will be finite.

21.2.3 Non-renormalizable theories are predictive

As we have seen, non-renormalizable theories require the addition of an infinite number of
terms in the Lagrangian to guarantee that all infinities can be removed with counterterms.
Despite the infinite number of free parameters, these theories are still very predictive. We
will give a number of examples in the next chapter. Here we sketch a simple argument of
why this is true.

The first observation is that, at tree-level, terms with more derivatives have weaker
effects at low energy (long distances). For example, consider a theory with Lagrangian

L = −1
2
φ(� +m2)φ+ λφ4 +

g1
M2

φ2�φ2 +
g2
M4

φ2�2φ2 + · · · , (21.33)

where M is some scale added to make all the coupling constants dimensionless and the
· · · represent operators with more derivatives or more fields (which have to be added to
guarantee that the infinities can be canceled). Now consider some observable, such as the
4-point function 〈φ4〉, as a function of some energy scale E. To the extent that the energy
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dependence of this 4-point function is polynomial inE, we can fit the various renormalized
couplings in the Lagrangian to the terms in its expansion around E = 0: 〈φ4〉 = λR +
g1

E2

M2 + g2
E4

M4 + · · · . As long as we are only interested in physics at low energy, only a
finite number of terms in this series will be important. Thus, we can fit those terms with a
few measurements and then predict the complete momentum dependence. In this way, the
non-renormalizable theory is predictive even at tree-level.

A remarkable and important fact is that non-renormalizable theories are predictive
not just at tree-level but also at loop-level, through calculable quantum corrections. The
key to the predictivity of non-renormalizable theories is the result we proved in Sec-
tion 21.2.2: UV divergences are always proportional to polynomials in momenta. Thus,
the infinite number of terms required to renormalize a non-renormalizable theory are all
polynomial in derivatives. Such terms lead to local, short-distance effects. In contrast, the
non-divergent part of the loops in a non-renormalizable theory may have non-analytic
momentum dependence, which can lead to long-distance interactions.

To see in what way analytic functions of momenta correspond to local effects, con-
sider the effective potential, V (r). By the Born approximation, V (r) is given by the
Fourier transform of the 2-point function (see Section 13.4). Thus, a term 1

M2φ�2φ might
contribute to this potential in perturbation theory as

M(p2) = =
1
p2

p4

M2

1
p2

=
1
M2

. (21.34)

Since the Fourier transform of a constant is δ(r), this term gives V (r) ∼ 1
M2 δ(r), which is

short-ranged. This should be reminiscent of the Uehling potential calculation in Chapter 16.
The δ(r) term in the potential is totally irrelevant at large distances. More insertions of this
φ�2φ operator, or contributions from other non-renormalizable operators, will give more
positive powers of momentum. We can Fourier transform these contributions by noting that

V(r) ∼
∫

d3�p

(2π)3
e−i�p·�x
(
�p 2

M2

)n
=
(
−�
M2

)n ∫
d3�p

(2π)3
e−i�p·�x =

(
−�
M2

)n
δ3(�x).

(21.35)

Thus, the tree-level contribution of any of the new terms we must add can have
only short-ranged effects. In this sense, the terms we introduce in the Lagrangian for
non-renormalizable theories are local.

In contrast, loops can give corrections that are non-analytic in momenta. For example, a
loop may give ln p2. The Fourier transform is then

V(r) ∼
∫

d3�p

(2π)3
e−i�p·�x ln �p 2 =

−1
2πr3

, (21.36)

which completely dominates over the terms coming from polynomials in momentum. This
dominance is beautifully exhibited in quantum gravity, discussed in the next chapter, where
quantum corrections to Newton’s potential completely dominate over corrections from
higher-curvature terms in the Lagrangian for general relativity.
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21.2.4 Summary

In summary:

• Renormalizable theories require only a finite number of counterterms.
• Non-renormalizable theories require an infinite number of counterterms.
• To renormalize non-renormalizable Lagrangians we must include every term not

forbidden by symmetries.
• Non-renormalizable theories can be renormalized. After renormalization all Green’s

functions are UV finite.
• Non-renormalizable theories are predictive at loop level, particularly through non-

analytic dependence on external momenta.

From a practical point of view, having a finite number of counterterms and renormalization
conditions is a huge advantage. Nevertheless, non-renormalizable theories are still very
predictive, often more so than renormalizable ones. We discuss these issues further in the
next chapter through a number of Standard Model examples. Non-renormalizable theories
play a central role in Part IV and especially Part V of this book.

Problems

21.1 Write down all the superficially divergent amplitudes in QED at 2-loops. Prove that
all of the UV divergences can be removed with the same four counterterms required
to remove the 1-loop divergences.

21.2 Calculate the contributions of �p 4

M4 ,
√

�p 2

M2 and ln2 �p 2

M2 to a potential V(r) by taking
their Fourier transforms. Which gives the strongest contribution to the potential at
large distances? Which gives the weakest contribution?

21.3 Write down all the renormalizable interactions for a field theory with a single scalar
field φ(x) in two, three, four, five and six dimensions.
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Renormalizable theories are simple and beautiful: with just a handful of measurements, an
infinite number of predictions can be made. These theories are surpassed in their mathemat-
ical beauty only by finite theories (which are free of UV divergences) such as string theory
or certain supersymmetric gauge theories. For example, one particular renormalizable the-
ory, quantum chromodynamics (QCD), which describes the strong interactions, has been
remarkably successful phenomenologically. Since the 1970s, dozens of next-to-leading
order calculations have been performed. A handful of observables have even been com-
puted at next-to-next-to-leading order, involving 2-loop Feynman diagrams. The effective
coupling constant in QCD is known in 4-loops.

Despite these amazing successes, it may seem somewhat surprising that, after decades
of effort, only a handful of QCD observables have been computed beyond 1-loop. There
are even fewer measurements that are sensitive to the precision of these theoretical
calculations. In some sense, the merit of renormalizability also limits its usefulness:
to predict an infinite number of observables in perturbation theory with a finite num-
ber of parameters one must actually evaluate the loops! These loops provide a devilish
mathematical challenge. Although it has been known for many years that all 1-loop
amplitudes could be reduced in terms of a set of master integrals [Passarino and Velt-
man, 1979], actually performing the reduction and evaluating the integrals remains
extremely challenging. Difficulties include the factorial growth of terms in the ampli-
tude when computed with Feynman diagrams (see Chapter 27) and IR divergences
which make the numerical evaluation of the loops infeasible. At 2-loops, a com-
plete set of master integrals for the reduction is still not known. In addition, only for
carefully chosen observables in certain theories is the perturbation series even conver-
gent. In many cases, convergence is destroyed by large logarithms (see Chapters 23
and 36), or worse, because the expansion in coupling constants leads to a non-convergent
series.

Luckily, however, not all of quantum field theory consists of computing loops in renor-
malizable theories. If one’s goal is to make predictions that can be compared to experiment,
it is often better to use a non-renormalizable theory rather than a renormalizable one. By
isolating the relevant degrees of freedom for a physical problem, one can construct an
appropriate effective theory which has a limited range of applicability, but is much more
predictive in that range than the corresponding renormalizable theory on which it is based.
These effective theories are generally non-renormalizable, but they are still predictive at
the quantum level.

In this chapter, we will look at examples from particle physics of predictive non-
renormalizable theories. We will discuss four examples corresponding to the four forces of
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nature: the Schrödinger equation (electromagnetism), the 4-Fermi theory (the weak force),
the theory of mesons (the strong force), and quantum gravity (gravity). In each case we will
see how the non-renormalizable theory is predictive despite the need for an infinite num-
ber of counterterms. We will also discuss the radiative corrections to mass terms, which
are super-renormalizable. This leads to the idea of naturalness and custodial symmetries.

In many places in this chapter, we will defer details to future chapters where additional
concepts, such as spontaneous symmetry breaking or non-Abelian gauge theories, can be
discussed in more detail. Non-renormalizable theories are efficiently studied using the
renormalization group, which is introduced in the next chapter. You may therefore find
this material either inspirational or incomprehensible. The hope is that, by applying our
current understanding of renormalization in various contexts, the need for more powerful
techniques will become apparent.

22.1 The Schrödinger equation

Consider the Schrödinger equation with some external potential V(r):

i∂tψ =
[
− 1

2m
∇2 + V (r)

]
ψ. (22.1)

This is a non-renormalizable, non-relativistic effective field theory. The parameter with
negative mass dimension is simply 1

m . Thus, we should add all terms consistent with
symmetries. Hence we should write a general Hamiltonian:

H =
�p 2

2m

[
1 + a1

�p 2

m2
+ a2

�p 4

m4
+ · · ·
]

+ V (r), (22.2)

where the ai are numbers and the factors of m are added by dimensional analysis. As you
may recall from Problem 10.1, we found a Hamiltonian of precisely this form from taking
the non-relativistic limit of the Dirac equation, with a1 = − 1

4 . More simply, we could
expand the Klein–Gordon Hamiltonian to get

H =
√
�p 2 +m2 −m =

�p 2

2m
− �p 4

8m3
+

�p 6

16m5
+ · · · (22.3)

so that a1 = − 1
4 , a2 = 1

8 , etc.
As you well know from quantum mechanics, the Schrödinger equation is useful even

if we do not know about Lorentz invariance or that a1 = − 1
4 . The reason is that in

the non-relativistic limit |�p| 
 m, the higher-order terms generally have a very small
effect. Nevertheless, through specially designed experiments, these coefficients can in fact
be measured. For example, a1 contributes to the fine structure of the hydrogen atom, and
a2 contributes to the hyperfine structure. So even if a1 and a2 were not known from the
Dirac equation, they could be measured from the hydrogen atom. Once measured, they
could then be used to make predictions: the fine structure of helium, for example, or lots
of other things.
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Thus, the Schrödinger equation, and its generalization in Eq. (22.2), describe a very pre-
dictive quantum theory. This theory is predictive despite it being non-renormalizable and
having an infinite number of terms – the Schrödinger equation made quantum predictions
many years before the Dirac equation was discovered.

It is also important to note that the Schrödinger equation is not predictive for momenta
|�p| � m, since all of the higher-order terms are then important. Thus, the Schrödinger
equation is predictive at low energy, but also indicates the scale at which perturbation
theory breaks down. If we can find a theory that reduces to the Schrödinger equation at
low energy, but for which perturbation theory still works at high energy, it is called a UV
completion of the Schrödinger equation. Thus, the Dirac equation is a UV completion of
the Schrödinger equation. The Dirac equation (and QED) are predictive to much higher
energies (but not at all energies, because of the Landau pole). The Klein–Gordon equation
is a different UV completion of the Schrödinger equation.

22.2 The 4-Fermi theory

Weak decays were first modeled by Enrico Fermi in 1933. He observed that the easiest way
to model β-decay, in which a proton decays into a neutron, positron and neutrino, is with
an interaction of the form

LFermi = GF ψ̄pψnψ̄eψν , (22.4)

with maybe some γ-matrices thrown in between the spinors. This is known as a
4-Fermi interaction, both because there are four fermions in it and because Fermi used
it as a very successful model of radioactive decay. Similar 4-Fermi operators, such as
GF ψ̄μψνμ ψ̄eψνe , also model the decay of the muon, μ− → e−νeνμ. The Fermi constant
is in fact best measured from the decay rate of the muon with the result

GF = 1.166× 10−5 GeV−2 =
(

1
292.9GeV

)2

. (22.5)

Since this was extracted from an actual experiment, it corresponds to the renormalized
value of the coupling. It is not obvious that GF in the muon 4-Fermi operator should be
the same GF in the nuclear β-decay operator; that they are the same implies a deeper
structure and a symmetry governing these decays, now understood through the theory of
weak interactions.

Since GF has mass dimension −2, LFermi is a non-renormalizable interaction. Thus,
there will be an infinite number of divergent one-particle irreducible graphs and an infinite
number of counterterms are needed to cancel them. To prepare for this, we must add to
LFermi all terms consistent with its symmetries (whatever those might be). For example, we
may have terms such as

L = GF ψ̄ψψ̄ψ + a1G
2
F ψ̄ψ�ψ̄ψ + a2G

3
F ψ̄ /∂ψ�ψ̄ /∂ψ + · · · , (22.6)
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where the ai are numbers and the factors of GF have been added by dimensional analysis.
Derivatives can act anywhere and γ-matrices can be inserted anywhere; we are just show-
ing some representative terms and dropping the fermion species labels for simplicity.
Despite these additional terms with unknown coefficients, the 4-Fermi theory is very pre-
dictive, even at tree-level. One prediction from this interaction is that the rate for β-decay,
p+ → ne+ν, will be related to the rate for n → p+e−ν̄. The higher-order terms in L will
affect the β-decay rate by factors of

(
GFE

2
)j

for j ≥ 1, where E is some energy in the
process. Since the masses of the particles and the energies involved in β-decay are much
less than G−1/2

F , these higher-order terms will do practically nothing. The 4-Fermi theory
also makes a prediction for the angular dependence and energy distribution of the decay
products. In addition, the 4-Fermi theory can also be used to study parity violation, say,
by comparing the predictions of ψ̄ψψ̄ψ to those of ψ̄γ5γ

μψψ̄γ5γ
μψ. All of these predic-

tions are for low-energy measurements and therefore almost totally independent of the ai
(assuming the ai are not enormously large).

Besides tree-level predictions, one can also calculate loops in this non-renormalizable
theory and derive physically testable predictions from those loops. For simplicity, let us
imagine that all the fermions in Eq. (22.6) are identical. Then there will be both tree-level
and loop contributions to the process ψψ → ψψ. At tree-level, the Lagrangian generates
S-matrix elements of the form

Mtree(s) ∼ GF + a1G
2
F s+ a2G

3
F s

2 + · · · , (22.7)

where s does not necessarily represent s = (p1 + p2)
2 but any kinematical Lorentz-

invariant quantity of mass dimension 2, and we are ignoring the external spinors for
simplicity. At low energies, s 
 G−1

F , this scattering is dominated by the leading term,
with subleading terms suppressed by powers of sGF 
 1. At 1-loop, there is a contribution
of the form

Mloop(s) = ∼ G2
F

∫
d4k

(2π)4
1
/k

1
/k
∼ G2

F

(
b0Λ2 + b1s+ b2s ln

Λ2

s

)
.

(22.8)

On the right, we have parametrized the possible forms the result could take with three finite
and calculable constants b0, b1, and b2 and a regulator scale Λ. Without any symmetry
arguments, there is no reason to expect that any of the constants bi should vanish. Thus,

Mtree +Mloop ∼ (GF + b0Λ2G2
F ) + sG2

F (a1 + b1 + b2 ln Λ2)

− b2G2
F s ln s+ a2G

3
F s

2 + · · · , (22.9)

where we have grouped terms by their momentum dependence. The key term in this expres-
sion is the b2s ln s term, which has no analog coming from the classical Lagrangian, Eq.
(22.6).

To make physical predictions, we have to renormalize. To do so, we introduce counter-
terms in the usual way. Equation (22.6) is treated as a bare Lagrangian and Z-factors are
introduced:

L = ZFGF ψ̄ψψ̄ψ + Z1a1G
2
F ψ̄ψ�ψ̄ψ + Z2a2G

3
F ψ̄ /∂ψ�ψ̄ /∂ψ + · · · . (22.10)
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Then, we write ZF = 1 + δF , Z1 = 1 + δ1, etc. (these are different Zi from the QED
renormalization factors with the same name). Then we find

Mloop +Mtree +Mc.t. ∼
(
GF + b0Λ2G2

F +GF δF
)

+ sG2
F

(
a1 + b1 + b2 ln Λ2 + a1δ1

)
− b2G2

F s ln s+ · · · (22.11)

and we can choose δF = −b0Λ2GF and δ1 = − 1
a1

(
b1 + b2 ln Λ2

s0

)
, with s0 an arbitrary

scale, to remove the infinities and reduce the leading two terms to the form of Eq. (22.7),
where now GF and ai are the renormalized coefficients of these terms. This renormaliza-
tion removes almost the entire result of the loop; however, one term remains. We find the
renormalized matrix element is

M(s) =Mloop +Mtree +Mc.t. ∼ GF +sG2
F

(
a1 − b2 ln

s

s0

)
+a2s

2G3
F + · · · . (22.12)

At the scale s = s0 this is identical to the tree-level prediction. If the s dependence of the
distribution at low energies is well-enough measured, GF , a1, b2, a2, etc. can be extracted
from data. Although the constants ai are not calculable, the constant b2 is. More precisely,
one could plot

M(s1)−GF
s1G2

F

− M(s2)−GF
s2G2

F

∼ b2 ln
s2
s1

+O(GF s1) , (22.13)

and see whether the logarithmic scale dependence agrees with the theoretical calculation.
Thus, b2 is a genuine testable prediction from a loop calculation in a non-renormalizable
theory.

The reason this works is because the ln s dependence can never come from a tree-level
calculation. This is because tree-level calculations come from local Lagrangians that have
only integer powers of derivatives, never terms such as ψ̄ψψ̄ ln �ψ. This is a general
result:

Non-analytic energy dependence is a testable quantum prediction of non-renormalizable
(or renormalizable) theories.

We will see phenomenologically relevant examples of these logarithmic corrections to
the real 4-Fermi theory in Chapter 23 (on the renormalization group) and in Chapter 31 (on
precision tests of the Standard Model).

22.2.1 UV completing the Fermi theory

Although the 4-Fermi theory is very predictive, its predictive power is confined to the low-
energy regime. As energies approach G−1/2

F ∼ 300 GeV, each term in Eq. (22.7) becomes
important and perturbation theory breaks down. Thus, the 4-Fermi theory calls out for a
UV completion.

A UV completion of the 4-Fermi theory is a theory with massive vector bosons, the
W± bosons (which are charged) and the Z boson (which is neutral). This UV completion
actually combines the weak interactions with QED to form the electroweak theory, which
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is a gauge theory based on the Lie group SU(2) × U(1). We will discuss this theory in
great detail in Chapter 29. Here, we skip the details of the gauge structure to concentrate
only on the UV-completion aspect.

The Lagrangian for a fermion interacting with a massive vector boson Wμ has the form

LM = −1
4
F 2
μν +

1
2
M2W 2

μ + ψ̄(i/∂ + g /W )ψ, (22.14)

where here Fμν = ∂μWν − ∂νWμ with g some gauge coupling. The actual Lagrangian
for the W boson is more complicated (see Chapter 29); here we are approximating the
electroweak gauge theory with a toy model with a single fermion and a single gauge boson.
The matrix element for ψψ → ψψ in this theory in the s-channel is given by

iM =
p1

p4p2 p

p3

∼ (ig)2 v2γ
μu1

−i(gμν − pμpν

M2 )
s−M2

ū3γ
νv4. (22.15)

In this U(1) approximation, the pμpν

M2 term in the numerator of the propagator does not
contribute due to the Ward identity. At low energy, s 
 M , this matrix element is well
approximated by

iM =
p1

p4p2

p3

= −i g
2

M2
v̄2γ

μu1ū3γ
μv4. (22.16)

Physically, the W boson propagates over such short distances (of order M−1) that at large
distances one cannot see it, just as one cannot see the W propagator in the diagram in Eq.
(22.16) since it has been contracted to a point.

Equation (22.16) is the same matrix element we would get from the 4-Fermi interaction
GF ψ̄γ

μψψ̄γμψ ifGF = g2

M2 . (The actual expression for the Fermi constant in terms of the

weak coupling constant gw and theW mass isGF =
√

2
8

g2w
m2
W

, wheremW = 80.4 GeV and
gw = 0.65, as discussed in Chapter 29.) Taylor expanding the propagator in Eq. (22.15) to
higher orders in s

M2 gives predictions for the higher-order terms in the non-renormalizable
Lagrangian in Eq. (22.6). For example, the next term would beM∼ g2 s

M4 v̄1γ
μu1ū2γ

μv2,

which would correspond to a term g2

M2 ψ̄γ
μψ �

M2 ψ̄γ
μψ. This exactly parallels how the

expansion of the Dirac equation predicted the higher-order terms in the non-renormalizable
theory it UV completed, the Schrödinger equation.

The actual electroweak theory involves four gauge bosons corresponding to the genera-
tors of a non-Abelian gauge group SU(2)×U(1). We will study these non-Abelian gauge
theories in great detail in Part IV, but for now, we only need one important fact: the pμpν

M2

terms in the numerator of the gauge boson propagator are no longer guaranteed to drop
out. Thus, as discussed in the previous chapter, propagators can scale as 1

M2 instead of 1
k2
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at large momentum and the power counting for renormalizability no longer works. Thus,
the electroweak theory based on SU(2) × U(1) with just massive vector bosons is non-
renormalizable, and itself must be UV completed. The UV completion of the theory with
massive vector bosons is the electroweak sector of the Standard Model, which also includes
a Higgs boson and spontaneous symmetry breaking. These are the subjects of Chapters 29
and 28 respectively.

The main points of this section are

• Non-renormalizable theories are predictive at low energy, despite the infinite number of
terms in their Lagrangians.

• Non-analytic momentum dependence in observables is a testable prediction of loop
calculations.

• The dimensionful coupling indicates a breakdown of perturbation theory at the scale of
the coupling.

• Dependence on powers of external momenta can be fit to data and give hints about the
UV completion.

In these two examples, corresponding to the electromagnetic and weak forces, we were
lucky enough to have UV completions from which the low-energy non-renormalizable
theory could be calculated in perturbation theory. In the next two examples, corresponding
to the strong and gravitational forces, this will not be true.

22.3 Theory of mesons

The first field-theoretic model of nuclear structure was conceived by Hideki Yukawa in
1935. He noted that nuclear interactions seem to be confined within the nucleus, and there-
fore are of very short range. Keep in mind, he was trying to explain why neutrons and
protons stick together, not anything to do with the substructure of the neutron or proton
themselves. The confusion in the 1930s was whether what was binding the neutrons and
protons had anything to do with what caused radioactive decay (the weak force). Yukawa
was the first person to speculate that they were different. Actually, the more profound
and lasting insight that he made was the connection between forces and virtual particle
exchange. In 1935 people were still using old-fashioned perturbation theory, and nobody
thought of virtual particles as actually existing.

We already know that the exchange of a massive particle in the non-relativistic limit
leads not to a Coulomb potential but to a Yukawa potential, V (r) = − 1

4πr e
−mr. Yukawa

saw that m ∼ 100MeV was the appropriate scale for nuclear interactions, and there-
fore postulated that there should be particles of mass intermediate between the nucleons
(∼1GeV) and the electrons (∼1MeV), and he called them mesons. The mesons respon-
sible for the nuclear interactions are called pions, which we now know are bosonic
quark–antiquark bound states.

Incidentally, the first meson was discovered in 1936 by Carl Anderson in cosmic rays,
four years after he discovered the positron. Anderson’s meson had a mass of 100 MeV, very
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nearly what Yukawa predicted; however, it interacted very weakly with nuclei, in contrast
to what Yukawa’s meson was supposed to do. It was later understood that Anderson had
discovered the muon, not the pion. It took another 11 years, until 1947, for the pion to be
discovered, by Cecil Powell. Pions are strongly interacting and shorter-lived than muons
so they are harder to see. In fact, confusion about the relationship between the cosmic
ray that Anderson found and Yukawa’s theoretical prediction led to the rapid advancement
of quantum field theory in the 1930s and helped people to start taking virtual particles
seriously.

Pion exchange provides a powerful effective description of strong short-range nuclear
forces. You probably already know that QCD is the actual theory of the strong nuclear
force. Unfortunately, it is very difficult to use QCD to study nuclear physics. Even the
simple explanation of why the strong force is short-ranged had to wait until asymptotic
freedom was understood in the 1970s, 40 years after Yukawa’s phenomenological explana-
tion. From the 1940s through the 1980s theorists were using a variety of methods, most
notably current algebra, to make phenomenological predictions about strong interac-
tions. Today, current algebra has been superseded by effective field theory techniques that
combine the insights of current algebra with quantum field theory. The result is a pow-
erful low-energy non-renormalizable theory of nuclear interactions known as the Chiral
Lagrangian.

The Chiral Lagrangian is based on the observation that nuclear forces are invariant under
an SU(2) symmetry called isospin, under which the proton and neutron transform as a
doublet, ψi = (p+, n). Though the electromagnetic force can distinguish these two states,
to the strong force, they are identical. Thus the pions, which mediate the strong interactions
between neutrons and protons, should respect the SU(2) symmetry. There are three pions,
the π+, π− and π0, where the superscript refers to electric charge. The Chiral Lagrangian
combines them into a single matrix using the Pauli matrices σa for SU(2) as

U(x) = exp
[
i

Fπ

(
π0(x)

√
2π−(x)√

2π+(x) −π0(x)

)]
= exp
[
i

Fπ
σaπa(x)

]
, (22.17)

where π0 = π3 and π± = 1√
2

(
π1 ± iπ2

)
. Here, Fπ is a constant with dimensions of

mass, so that U is dimensionless, and is called the pion decay constant. As we will see in
Chapter 28, Fπ can be extracted from the pion decay rate with the result Fπ = 92 MeV.

You are not expected to understand at this point why the pions should be representable
this way – the reason is that they are Goldstone bosons for a spontaneously broken chi-
ral SU(2)L × SU(2)R symmetry acting on left- and right-handed quarks in the QCD
Lagrangian, as we explain in great detail in Chapter 28 – our goal here is only to see how the
symmetry allows us to make systematic quantum predictions in the quantum theory. Using
the parametrization in Eq. (22.17), one can easily write down terms in a Lagrangian that
respect the SU(2) symmetry. In particular, the simplest term we can write down involving
U is

Lχ =
F 2
π

4
tr
[
(DμU) (DμU)†

]
+ · · · , (22.18)

which is known as the Chiral Lagrangian. Here Dμ = ∂μ − iQiAμ, with Qi the pion
electric charge, is the covariant derivative from QED.
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Expanding the Chiral Lagrangian out to quadratic order gives normal kinetic terms and
photon interactions from scalar QED:

Lkin =
1
2
(
∂μπ

0
)(
∂μπ

0
)

+ (Dμπ
+)(Dμπ

−)†. (22.19)

Expanding to higher orders produces interactions such as

Lint =
1
F 2
π

[
−1

3
π0π0∂μπ

+∂μπ
− + · · ·

]
+

1
F 4
π

[
1
18

(π−π+)2∂μπ0∂μπ
0 + · · ·

]
+ · · · .
(22.20)

Since Fπ has dimensions of mass, the Chiral Lagrangian is non-renormalizable. The impor-
tant point is that the interactions in the Chiral Lagrangian have a special form since they
are constrained by the SU(2) symmetry. In particular, each term has two derivatives, so for
example, a term such as 1

F 2
π
π6

0 is forbidden. The coefficient of each term is also completely
fixed.

Since this theory is non-renormalizable, we should also add more terms to absorb infini-
ties from loops. Since U†U = 1 we cannot write down any non-trivial term without
derivatives. There are only three terms you can write down with four derivatives:

L4 = L1tr[(DμU)(DμU)†]2 + L2tr[(DμU)(DνU)†]2

+ L3tr
[
(DμU)(DμU)†(DνU)(DνU)†

]
. (22.21)

Thus, the Chiral Lagrangian admits a derivative expansion, with the leading term, Lχ in
Eq. (22.18), dominant and L4 being suppressed at low energies. One could add additional
terms, which would have six or more derivatives, but these would be additionally sup-
pressed, and unmeasurable from a practical point of view. The coefficients L1, L2 and L3

have been fit from low-energy pion scattering experiments from which it has been found
that L1 = 0.65, L2 = 1.89 and L3 = −3.06. Additional interactions are suppressed by
powers of momentum divided by the parameter Fπ = 92 MeV.

As with the 4-Fermi theory, the quantum effects of the Chiral Lagrangian are calculable
and measurable as well. They take the form of non-analytic logarithmic corrections to pion
scattering cross sections and even have a name: chiral logs (see for example [Weinberg,
1979]).

As with any non-renormalizable theory, the Chiral Lagrangian points to its own demise –
it becomes non-perturbative at a scale

√
s ∼ 4πFπ ≈ 1200 MeV. Above this scale, all the

higher-order interactions become relevant and the theory is not predictive. A UV comple-
tion of the Chiral Lagrangian is QCD, the theory of quarks and gluons. This is a completely
different type of UV completion than the electroweak theory which UV-completed the
4-Fermi theory or the Dirac equation which UV-completed the Schrödinger equation. For
both of these theories, the fermions in the low-energy theory were present in the UV com-
pletion, but with different interactions. The theory of QCD does not have pions in it at all!
Thus, one cannot ask about pion scattering at high energy in QCD. Instead, one must try
to match the two theories indirectly, for example through correlation functions of exter-
nal currents. The correlation functions can be measured by scattering photons or electrons
off pions, but to calculate them we need a non-perturbative description of QCD, such as
the lattice (see Section 25.5). So, although QCD is a renormalizable UV completion of
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the Chiral Lagrangian in the sense that it is well defined and perturbative up to arbitrarily
high energies, it cannot answer the questions that the Chiral Lagrangian could not answer:
What does ππ scattering look like for s� F 2

π? For low-energy pion scattering, the Chiral
Lagrangian is much more useful than QCD.

22.4 Quantum gravity

The final non-renormalizable field theory we will discuss in this chapter is quantum gravity.
This is the effective description of a massless spin-2 particle. We have already shown two
important results about massless spin-2 particles. In Section 8.7, we embedded the spin-2
particles in a tensor field hμν . The only consistent way to do this had a gauge symmetry
under local space-time translations:

xα → xα + ξα(x), (22.22)

also known as general coordinate transformations. The Noether current for this sym-
metry is the energy-momentum tensor Tμα, which we derived in Section 3.3.1, whose
conserved charges are energy and momentum. In Section 9.5, we bypassed the discus-
sion of gauge invariance and showed, by considering the soft limit, that Lorentz invariance
implies that massless spin-2 particles are associated with a conserved charge. It is, nev-
ertheless, useful to describe massless spin-2 particles with a local Lagrangian, so we will
review the results of Section 8.7, and continue to discuss quantum effects in this theory.

In Section 8.7 we showed that a massless spin-2 particle can be embedded in a tensor
field hμν only if the Lagrangian for hμν is invariant under infinitesimal transformations
parametrized by four functions ξα:

hμν → hμν + ∂μξν + ∂νξμ + (∂μξα)hαν + (∂νξα)hμα + ξα∂αhμν . (22.23)

The first two terms are the gauge part; they are the analog of Aμ → Aμ + ∂μα in QED but
with four types of α, now called ξα. The last three terms are just the transformation proper-
ties of a tensor representation of the Poincaré group under infinitesimal general coordinate
transformations. We also showed that the unique kinetic term for hμν was

Lkin =
1
2
hμν�hμν − hμν∂μ∂αhνα + h∂μ∂νhμν −

1
2
h�h. (22.24)

The leading interactions have two derivatives and three factors of h and are therefore of the
form Lint ∼ 1

MPl
�h3 for some dimensional scale MPl. Thus, any interacting field theory

of massless spin-2 particles is automatically non-renormalizable. Finally, it is possible to
show [Feynman et al., 1996] that the minimal set of interactions can be combined into the
concise form

LEH = M2
Pl

√
−det
(
ημν +

1
MPl

hμν

)
R

[
ημν +

1
MPl

hμν

]
, (22.25)
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where ημν is the Minkowski metric, which we usually denote gμν , andR is the scalar Ricci
curvature. This Lagrangian, the Einstein–Hilbert Lagrangian, is more commonly written as

LEH = M2
Pl

√
−det(g)R, (22.26)

where gμν = ημν+ 1
MPl

hμν andMPl = G
−1/2
N ≈ 1019 GeV is the Planck scale (alternative

definitions with extra factors of 8π or 32π2 are sometimes used).
You can either review these results from the bottom-up approach of Section 8.7, derive

them using the top-down approach of general relativity, or just take them as given. You
do not need to know general relativity to follow the subsequent discussion of quantum
corrections. The only thing you need to know is that there is a symmetry, general coordi-
nate invariance, which vastly restricts the terms one can write down in a Lagrangian for a
massless spin-2 particle.

22.4.1 Quantum predictions

General coordinate invariance implies that the Lagrangian must be a functional of hμν and
the Riemann curvature tensor Rμναβ [hμν ]. We also write

Rμν = gαβRαμβν , R = gμνRμν (22.27)

for the Ricci tensor and scalar.
The Riemann tensor can be thought of as

Rμναβ ∼ ∂μ∂ν exp
(

1
MPl

hαβ

)
. (22.28)

This heuristic notation, which is meant to mimic U = exp( i
Fπ
σaπa) in the Chiral

Lagrangian, encapsulates that all terms in the expansion of the curvature have two deriva-
tives and an infinite number of factors hμν . With this notation, LEH ∼ R ∼ Tr [Rμν ]
becomes very similar to the form of the Chiral Lagrangian Lχ = Tr[(DμU) (DμU)†].

Just like the Chiral Lagrangian, the Lagrangian for gravity is non-renormalizable but
strongly constrained by symmetries. The higher-order terms we must add to be able to
renormalize this non-renormalizable theory are all products of the metric and the Riemann
tensor:

L =
√
−det(g)

(
M2

PlR+ L1R
2 + L2RμνR

μν + L3RμνρσR
μνρσ + · · ·

)
. (22.29)

In this case, there are three terms, just as in the Chiral Lagrangian. Actually, one linear
combination is a total derivative, called the Gauss–Bonnet term, which has no effect in
perturbation theory, so we will set L3 = 0. Since Rμναβ has two derivatives, the R2 and
R2
μν terms have four derivatives. Thus, the expansion of L becomes

L ∼
(

1
2
h�h+

1
MPl

�h3 + · · ·
)

+ Li

(
1
M2

Pl

h�2h+
1
M3

Pl

h�2h2 + · · ·
)

+ · · · ,
(22.30)

where we are only counting derivatives and factors of MPl.
The reason gravity is predictive is because MPl ≈ 1019 GeV, so E 
 MPl for any

reasonable experimentally accessible energy E. In fact, it is difficult to test even the terms
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in the Lagrangian cubic in hwith two derivatives. These are terms such as 1
MPl

�h3 coming
from M2

Pl

√
gR. To measure interactions in the Einstein–Hilbert Lagrangian at all, one

either needs energies of order MPl or very large field values, h � MPl. Such large field
values are conveniently produced in nature, for example from the gravitational field around
the Sun. There,

h(r) ∼ φNewton ∼ ∼ MSun

MPl

1
r
. (22.31)

The corrections to this from the 1
MPl

�h3 term are given by the classical field theory
diagram:

Δh(r) ∼ ∼ 1
MPl

(
MSun

MPl

1
r

)(
MSun

MPl

1
r

)
, (22.32)

with the 1
MPl

coming from the vertex, the two factors of MSun
MPl

coming from the sources

(the Sun) and the factors of r added by dimensional analysis. Using MSun
MPl

∼ 1038 and

MPlr ∼ 1045 for r, the Mercury–Sun distance, we find Δh
h ∼ 10−7. This is the precision

by which the orbit of Mercury would have to be measured to see the effect of this term.
The higher-order terms, like the ones proportional to L1 and L2, contribute corrections

to Newton’s potential as well. One can actually solve Einstein’s equations exactly with L1

and L2. For L1, the result is that at large distances the potential around the Sun has the
form [Stelle, 1978]:

h(r) =
MSun

M2
Pl

1
r

[
1− 1

3
exp
(
− rMPl√

96πL1

)
+ · · ·
]
. (22.33)

Thus, the effects of the Li terms are short-ranged, as expected from the general argument
in Section 21.2.3. Expanding around L1 = 0 and L2 = 0, the leading term in the potential
can be written as [Donoghue, 1994]

h(r) =
MSun

M2
Pl

[
1
r
− 128π2L1 + L2

M2
Pl

δ3(�r) + · · ·
]
. (22.34)

This is consistent with what we expect from the Feynman diagram

(22.35)

with the representing an insertion of the 1
M2

Pl
h�2h term from Eq. (22.30). The result

is that the higher-order terms in the gravity Lagrangian are unmeasurable.
Now let us consider loops. The simplest loop that contributes a correction to Newton’s

potential is a correction to the graviton propagator, which has the same general form as
the vacuum polarization graph. Since the calculations are tedious, we will just summarize
results. In harmonic gauge, 2∂μhμν = ∂νhμμ, the graviton propagator is

〈0 |T {hμν(x)hαβ(y)}| 0〉 =
∫

d4p

(2π)4
eipx

Pμν,αβ
p2 + iε

, (22.36)

with

Pμν,αβ =
1
2

(ημαηνβ + ημβηνα − ημνηαβ) . (22.37)
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The vacuum polarization graph gives a correction to this of the form

=
1
p2

{
p4

M2
Pl

[
21
120

(ημρηνσ + ημσηνρ) +
1

120
ημνηρσ

][
1
ε
− ln
(
−p2
)]} 1

p2
(22.38)

up to pμpν type terms, which have no physical effect due to gauge invariance. For the
correction to Newton’s law, p2 is spacelike, −p2 > 0, as with the vacuum polarization
correction to Coulomb’s law (see Chapter 16). To cancel the UV divergence in this graph,
one needs a counterterm from L1 or L2 (or perhaps both). The important point is that
counterterms and any possible additional finite contributions from the Li terms cannot
remove the ln(−p2) contribution to the potential.

Fourier transforming the logarithmic term using Eq. (21.36) gives a contribution to
the potential that scales as 1

r3 . This correction is not short-ranged, like the tree-level
contributions from the Li terms. Combining all the contributions the result is

h(r) =
MSun

MPl

1
r

[
1− MSun

M2
Plr

− 127
30π2

1
M2

Plr
2
− 128π2L1 + L2

M2
Pl

δ3(�r) + · · ·
]
, (22.39)

corresponding to the Feynman diagrams

+ + + . (22.40)

Thus, the radiative correction (the 127
30π2

1
M2

Plr
2 term) is a testable prediction that is paramet-

rically more important than the Li terms. For the perihelion shift of Mercury, the effect is
one part in (MPlr)2 ∼ 1090, which we are not going to measure any time soon. Neverthe-
less, it is a genuine prediction of quantum gravity. This prediction is entirely independent
of the UV completion of the Einstein–Hilbert Lagrangian.

This calculation should make it clear that:

There is nothing inconsistent about general relativity and quantum mechanics.

General relativity is the only consistent theory of an interacting massless spin-2 particle.
It is a quantum theory, just as solid and calculable as the 4-Fermi theory. It is non-
renormalizable, and therefore non-perturbative for energies E � MPl, but it is not
inconsistent. At distances r ∼ 1

MPl
∼ 10−33 cm (the Planck length), all of the quantum

corrections and all of the higher-order terms in the Lagrangian become important.
So, if we want to use gravity at very short distances we need a UV completion. String

theory is one such theory. It is capable of calculating the Li terms in Eq. (22.29). If we
could measure the Li, then we could test string theory. However, as noted above, these Li
terms have exponentially suppressed effects at distances greater than the Planck length. In
fact, we can now understand why it is so difficult to test string theory: long-distance physics
is determined by symmetries in an effective quantum theory that is independent of the UV
completion. The quantum prediction, the 127

30π2
1

M2
Plr

3 correction to Newton’s potential, is
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determined only by the existence of a massless spin-2 particle. Assuming only that the
long-distance description of gravity is a quantum field theory, its UV completion (which
may not be a quantum field theory) must be screened at distances beyond the Planck length.

22.5 Summary of non-renormalizable theories

We have looked at four important non-renormalizable theories:

• The Schrödinger equation is perturbative for E < me. Its UV completion is the Dirac
equation and QED, which is perturbative up to its Landau pole, E ∼ 10286 GeV.

• The Fermi theory of weak interactions is perturbative for E < G
−1/2
F ∼ 300 GeV.

Its UV completion is the electroweak theory with massive vector bosons W and Z.
The electroweak theory is also non-renormalizable. Its UV completion contains a Higgs
boson.

• The Chiral Lagrangian is the low-energy theory of pions. It is perturbative and very
predictive for E < 4πFπ ∼ 1200 MeV. Its UV completion is QCD. QCD is predictive
at high energies. The fields in QCD, quarks and gluons, are related to pions and other
hadrons (quark and gluon bound states) in a complicated, non-perturbative way. Thus,
to study hadrons in QCD, we need non-perturbative methods, such as the lattice. In
contrast, at low energy the Chiral Lagrangian is perturbative and therefore more useful
than QCD for answering certain questions.

• General relativity is the low-energy theory of gravity. It is perturbative for E < MPl ∼
1019 GeV. It is extremely predictive at low energies, including predictive quantum cor-
rections. One possible UV completion is string theory. Gravitational physics at distances
larger than the Planck length, 10−33 cm, is independent of the UV completion, which
explains why string theory (as a quantum theory of gravity) is so hard to test.

These four examples correspond to the four forces of nature: the electromagnetic force,
the weak force, the strong force, and gravity. Notice that the UV completions are all
qualitatively very different. In some cases, certainly for many physical applications, the
non-renormalizable theory is more useful than the renormalizable one. Renormalizable just
means there are a finite number of counterterms; it does not mean that you can calculate
every observable perturbatively.

22.6 Mass terms and naturalness

Having discussed non-renormalizable interactions, which correspond to terms in a
Lagrangian whose coefficients have negative mass dimension, we turn to terms whose
coefficients have positive mass dimension. We begin with a discussion of renormalization
of masses, with other possibilities discussed in Section 22.7.
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22.6.1 Scalar masses

Let us begin the discussion of scalar masses with an explicit calculation. This will lead to
a discussion of fine-tuning and naturalness. Consider the Lagrangian

L = −1
2
φ
(
� +m2

)
φ+ λφψ̄ψ + ψ̄(i/∂ −M)ψ (22.41)

which describes a scalar of mass m coupled to a Dirac fermion of mass M . We will
investigate the effect of the fermion loop on the scalar mass.

The fermion loop is

iΣ2(/p) =
p

p+ k

k

p

= (iλ)2
∫

d4k

(2π)4
Tr[(/p+ /k +M)(/k +M)]

[(p+ k)2 −M2 + iε] [k2 −M2 + iε]
. (22.42)

The trace is Tr[(/p+ /k +M)(/k +M)] = 4
(
k2 + k · p+M2

)
. Combining denominators,

shifting kμ → kμ − pμ (1− x) and dropping terms in the numerator linear in kμ gives

iΣ2(p2) = −4λ2

∫
d4k

(2π)4

∫ 1

0

dx
k2 + p·k +M2

[k2 + (2p·k + p2) (1− x)−M2 + iε]2

= −4λ2

∫
d4k

(2π)4

∫ 1

0

dx

[
1

k2 −Δ
+

2Δ
[k2 −Δ]2

]
, (22.43)

with Δ = M2 − p2x (1− x).
In dimensional regularization, the graph is

iΣ2(p2) =
4λ2(d− 1)

(4π)d/2
Γ
(

1− d

2

)
μ4−d
∫ 1

0

dx(M2 − x(1− x)p2)
d
2−1, (22.44)

where the quadratic divergence is evidenced by the pole at d = 2. Expanding as d = 4− ε,
the result is

Σ2(p2) = − λ2

4π2

{
6M2

ε
− p2

ε
+M2 − 1

6
p2

+
∫ 1

0

dx
[
3p2x(1− x)− 3M2

]
ln
M2 − p2x(1− x)

4πμ2e−γE

}
, (22.45)

which has divergences proportional to both p2 and M2. Dimensional regularization hides
the quadratic divergence when expanding around d = 4, so for illustrative purposes we
will calculate this graph with a different regulator.

Using the derivative method (see Appendix B) to evaluate the graph, we would find

Σ2(p2) =
3λ2

4π2

∫ 1

0

dx

([
M2 − p2x(1− x)

]
ln
M2 − p2x (1− x)

Λ2
+ Λ2

)
+ finite.

(22.46)
Both dimensional regularization and the derivative method indicate divergences propor-
tional to a constant and proportional to p2. These divergences will be removed by the
mass and field strength renormalization of the scalar field. The quadratic divergence does
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not change the fact that the theory can be renormalized, just the values of the required
counterterms, which in any case are regulator dependent.

The divergences proportional to p2 and M2 are canceled with counterterms from the
field strength and mass renormalizations of the scalar:

p p
= i
(
p2δφ − (δm + δφ)m2

R

)
. (22.47)

Using on-shell renormalization, we set the pole of the propagator at the renormalized mass,
with residue 1. As discussed in Section 18.3, after summing the geometric series of one-
particle irreducible contributions to the scalar propagator, the result is

iG(p2) =
i

p2 −m2 + Σ(p2)
, (22.48)

with Σ
(
p2
)

= Σ2

(
p2
)
+p2δφ−(δm + δφ)m2

R. The on-shell conditions are then Σ
(
m2
P

)
=

Σ′(m2
P

)
= 0 at the pole mass mP = mR, which imply

δm =
1
m2
P

Σ2(m2
P ) and δφ = −

dΣ2

(
p2
)

dp2

∣∣∣∣∣
p2=m2

P

. (22.49)

Using Eq. (22.46) we have (for mP 
M )

δm = − λ2

4π2

[(
6M2

m2
P

− 1
)

1
ε

+
(

1
2
− 3M2

m2
P

)
ln
M2

μ̃2
+
M2

m2
P

+
1
3
− m2

P

20M2
+O
(
m4
P

M4

)]
,

(22.50)

δφ = − λ2

4π2

[
1
ε
− 1

2
ln
M2

μ̃2
− 1

3
+

m2
P

10M2
+O
(
m4
P

M4

)]
. (22.51)

And then, expanding for p2,m2
P 
M2,

Σ(p2) = Σ2(p2)+ p2δφ− (δm + δφ)m2
P =

λ2

4π2

[(
p2 −m2

P

)2
20M2

+O
(
m6
P

M4

)]
. (22.52)

This is a perfectly finite result.
In many calculations it is more efficient to use minimal subtraction than the on-shell

scheme. In particular, indirect evidence for the mass of the Higgs boson came from pre-
cision measurements of the W and Z masses and other electroweak parameters. As will
be shown in Chapter 31, these get finite radiative corrections from loops involving quarks,
most notably the top quark, and the Higgs. The on-shell pole mass for the top quark is
mt ∼ 173.5 GeV while its MS mass is mt ∼ 165.6 [Particle Data Group (Beringer et al.),
2012]. This 5% difference comes from loops involving gluons. For these calculations one
should also use the MS mass for the Higgs bosons, which differs from the experimentally
measured pole mass due primarily to the loop we just calculated involving the top quark.
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Explicitly, the difference between the MS mass, in which the counterterms are just δφ =

− λ2

4π2ε and δm = − λ2

4π2ε

(
6M2

m2
P
− 1
)

, and the pole mass is

m2
P − m2

MS
(μ)

=
λ2

24π2

(
6M2 −m2

P

)
− 3λ2

4π2

∫ 1

0

dx
[
M2 −m2

Px(1− x )
]
ln
M2 −m2

Px(1− x)
μ2

.

(22.53)

This is an intriguing result. Although the difference is finite, as M → ∞ the difference
grows very large. Indeed, the difference is sensitive to particles much heavier than the mass
of the scalar. Although the result is finite, heavy particles are not decoupling. In this way,
the scalar mass is UV sensitive. Other, somewhat more philosophical, manifestations of
the UV sensitivity are discussed below.

To make this discussion more concrete, consider the sensitivity of the Higgs boson mass
to the mass of the top quark. In this case, M = mt = 163 GeV is the top quark MS mass,
λ = λt = 0.93 is the top-quark Yukawa coupling, and the Higgs boson pole mass is
mP = 125 GeV. Then, Eq. (22.53) gives

m2
P −m2

MS
(mMS) = (18.6GeV)2 (22.54)

so that mMS = 123.6 GeV. Thus, while there could have been a large difference, the dif-
ference turns out to be numerically less than 1%. In contrast, suppose the Higgs pole mass
were mp = 30 GeV, then the top loop would lead to mMS = 72 GeV, a correction of 140%.

22.6.2 Fine-tuning

We saw that although the scalar mass gets quadratically divergent corrections, for example
from a fermion loop, these divergences can be removed with counterterms. The resulting
physical pole mass must be determined from experiment as a renormalization condition.
It does not get corrections at any order in perturbation theory, since by definition it is the
physical value of the mass. However, we saw that there can be a large difference between
the pole mass and the MS mass for a scalar. In particular, the difference in the squares of
these masses is proportional to the square of the mass of any fermion that couples to the
scalar. Since heavy fermions do not decouple, the scalar mass is UV sensitive.

If we allow ourselves to speculate about short-distance physics for which the Lagrangian
in Eq. (22.41) is the low-energy description, the UV sensitivity of the scalar mass can lead
to uncomfortable interpretations. Suppose the theory were finite, for example if it were UV
completed into string theory, or more simply if it were the effective description of some
condensed matter system (in which case Λ might represent some parameter of the micro-
scopic description, such as an inverse atomic spacing). Then the bare mass m and cutoff Λ
would be physical. In this situation, the pole mass would be given by m2

P = m2 + Σ
(
m2
)

plus higher-order terms, and we could take the Λ2 divergence in Eq. (22.46) literally. Thus,
to have a scalar whose mass m2

P 
 Λ2 requires that the bare mass parameter m2 in the
Lagrangian must bem2 ≈ Λ2 +m2

P . For example, if the scalar were the Higgs whose pole
mass is mP ≈ 125 GeV, and Λ were of order the Planck scale, Λ ∼MPl ∼ 1019 GeV, we
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would need m2 =
(
1 + 10−34

)
Λ2. This is called fine-tuning. Fine-tuning is a sensitivity

of physical observables (the pole mass) to variation of parameters in the theory. That the
Higgs mass is so much smaller than the Planck scale (or some other scale where the UV
completion for the Standard Model might live) is called the hierarchy problem. It is a
problem with the theoretical concept of naturalness, which says that all parameters in a
fundamental theory should be of order 1. The Wilsonian renormalization group, discussed
in Chapter 23, provides another way to think about fine-tuning and UV sensitivity.

Much of our intuition for fine-tuning and naturalness comes from condensed matter
physics. Consider, for example, some system that undergoes an order–disorder phase tran-
sition. To be concrete, consider the loss of magnetization when a ferromagnet is heated
above its Curie temperature, TC . Such a transition can be parametrized with an order
parameter φ(x), representing the magnitude of the magnetization in the ferromagnet. Lan-
dau showed that one could reproduce some of the phenomenology of phase transitions with
an effective Lagrangian for φ. The Ginzburg–Landau approach models the phase transition
with a Lagrangian valid for temperatures T near the critical temperature TC as

L = aφ2(T − TC) + φ4b(T ) + · · · , (22.55)

with a a number and b(T ) some function that we are not concerned about here. The lin-
earity in temperature of the quadratic term gives φ a positive mass-squared above TC and
a negative mass-squared below TC . The negative mass-squared indicates an instability,
which we will discuss in more detail in the context of spontaneous symmetry break-
ing in Chapter 28. The point here is that the effective mass for the scalar is given by
m2 = 2a(T − TC). Physically, the mass determines the coherence length ξ ∼ m−1 of
the system (as in the Yukawa potential V(r) = 1

4πr e
−mr = − 1

4πr e
−r/ξ). At high tempera-

tures, the spins in a ferromagnet are thermally excited and uncorrelated beyond the atomic
spacing Λ−1, so m ∼ Λ. At low temperatures, the spins are aligned and disorder has cor-
relations also of order Λ−1. Near the critical temperature, it is possible that m 
 Λ and
there can be long-range correlations. In particular, to get a mass m2 = 10−34Λ2 we have
to fine-tune the temperature of the system by hand so that T is within TC to one part in
10−34. Other things besides temperature can be tuned too; for example, interesting emer-
gent behavior may be seen in materials that have their chemical composition fine-tuned by
a very specific amount of doping.

In particle physics, one has no external dial to tune or chemical composition to vary. In a
finite theory, one might imagine calculating all the UV couplings and parameters from first
principles, and seeing that some differ by a part in 1034 to give a light Higgs pole mass.
However, to actually calculate this mass from first principles, one would need not just
the 1-loop correction, but the entire non-perturbative dependence on the UV parameters.
Moreover, one can still renormalize field strengths and Lagrangian parameters in a finite
theory, so the prediction must be independent of such redefinitions.

In a renormalizable theory, one can only measure the finite number of renormalized
parameters. The scalar mass is one of them, thus its value does not depend on anything – it
is an experimentally measured quantity. In a renormalizable theory, such as the Standard
Model or the minimal supersymmetric Standard Model, the fine-tuning manifests as a sen-
sitivity to changing parameters in the model. The fine-tuning in this case takes place in the
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space of models, with unobservable consequences. Thus, from the model-building point-
of-view, naturalness is a statement about whether two different models predict the same
values for renormalized couplings.

A possible explanation of fine-tuning in particle physics is that there may be patches
of the universe probing different values of parameters in some finite theory (such as the
various vacua of string theory). In this way, model space is explored cosmologically. Thus,
if there are 1034 patches of the universe with different Higgs boson masses, it is then
natural for us to live in the only one that can support life. One can then argue that life
requires mH 
 MPl, which eliminates the fine-tuning problem. This line of reasoning,
known generally as the anthropic principle, has been increasing in popularity since the
1990s. The scientific merit of the anthropic principle is often debated. At this point, there
are no testable predictions of the anthropic principle.

22.6.3 Fermion and gauge boson masses

Other coefficients of positive mass dimension are fermion and gauge boson masses. Con-
sider first radiative corrections to fermion masses. For example, we already calculated the
self-energy graph of the electron in QED in Chapter 18. With dimensional regularization,
the result was (Eq. (18.50))

iΣ2(/p) =
p p

= −i e
2

8π2

∫ 1

0

dx
(
2me − x/q

)(2
ε

+ ln
μ̃2

(1− x) (m2
e − q2x) + xm2

γ

)
, (22.56)

which can be compared to Eq. (22.46). The difference between the pole and MS mass for
the electron in QED was also calculated in Chapter 18, in Eq. (18.65):

mP −mMS =
e2

16π2
mP

(
5 + 3 ln

μ2

m2
P

)
, (22.57)

which can be compared to Eq. (22.54).
Although not apparent in the expansion around d = 4, the full result has no pole in

d = 2 or d = 3 and is therefore not quadratically or linearly divergent. That is a non-trivial
fact. In non-relativistic quantum mechanics, you do get a linearly divergent shift. This can
be seen from a simple integral over the classical electron self-energy. In the non-relativistic
limit, the energy density of the electromagnetic field is ρ ∝ | �E|2 + | �B|2. So

Δm ∼
∫
d3r ρ(r) ∼

∫
d3r
( e
r2

)2
∼ α

∫ ∞

Λ−1

r2 dr

r4
∼ αΛ. (22.58)

In a relativistic theory, there is only a logarithmically divergent self-energy.
Next, note that in QED the self-energy correction at /q = me is proportional to the

electron mass, not any other mass scale in the problem. In this case, the other mass is a
fictitious photon mass, but the result implies that if the photon in the loop were replaced
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by a real heavy gauge boson, such as the Z, the correction would still be proportional to
me not mZ . For another example, consider the Yukawa theory in Eq. (22.41). There the
self-energy graph is

iΣ2(/p) =
p p− k

k

p

= λ2

∫
d4k

(2π)4
/p− /k +M

[(p− k)2 −m2] [k2 −M2]

= i
λ2

16π2

[
/p+ 2M

ε
−
∫ 1

0

dx
[
(1− x) /p+M

]
ln
M2x+ (1− x)

(
m2 − p2x

)
μ̃2

]
.

(22.59)

There is no correction proportional to the scalar massm, only to the fermion massM . This
graph is also not linearly divergent.

What if we throw in some more fermions or a couple more scalars, or look at 6-loops?
It turns out that the mass shift will always be proportional to the fermion mass. The reason
this happens is because the electron mass is protected by a custodial chiral symmetry.

A chiral symmetry is a global symmetry under which the left- and right-handed electron
have opposite charge: ψL → e−iαψL and ψR → eiαψR. We can write the transformation
concisely as

ψ → eiαγ5ψ. (22.60)

Under this transformation, the kinetic term and QED interaction are invariant,

ψ̄ /Dψ → ψ†e−iαγ
†
5γ0 /De

iαγ5ψ = ψ̄ /Dψ, (22.61)

since γ†5 = γ5 and [γ5, γ0γμ] = 0. However, the mass term is not:

meψ̄ψ → meψ̄e
2iαγ5ψ �= meψ̄ψ. (22.62)

Thus, the mass term breaks the chiral symmetry. This is consistent with the expansion in
terms of Weyl fermions:

ψ̄ /Dψ +meψ̄ψ = ψ̄R /DψR + ψ̄L /DψL +meψ̄LψR +meψ̄RψL, (22.63)

which shows that only the mass term couples fields with different charges under the chiral
symmetry.

The chiral symmetry is exact in the limit me → 0. That means that if me = 0 then,
because of the exact symmetry,me will stay 0 to all orders in perturbation theory. Forme �=
0, if we treat the mass as an interaction rather than a kinetic term, then every diagram that
violates the chiral symmetry, including a correction to the mass itself, must be proportional
to me. We call the symmetry custodial because it acts like a custodian and protects the
mass from large corrections, even if the symmetry is not exact. We also say sometimes that
setting me = 0 is technically natural [’t Hooft, 1979] (See Box 22.1).
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Box 22.1 Technical naturalness

It is technically natural for a parameter to be small if quantum corrections to
the parameter are proportional to the parameter itself. This happens if the
theory has an enhanced symmetry when the parameter is zero.

For another example, consider a vector boson mass. A photon mass term

L = · · ·+m2
γA

2
μ (22.64)

breaks gauge invariance. In the limit mγ = 0, gauge invariance is exact, and thus gauge
invariance is a custodial symmetry. Thus, any contribution to the photon mass will be
proportional to mγ . For mγ = 0, the photon will not get any corrections to any order in
perturbation theory. Keep in mind that this only works if the only term that breaks gauge
invariance is the mass term. If there are other interactions breaking gauge invariance, the
mass correction can be proportional to them as well. For example, in the theory of weak
interactions, the W and Z bosons have masses that get corrections proportional not only
to mW and mZ respectively, but also to fermion masses, since these masses are forbidden
by the SU(2)weak gauge symmetry, which is spontaneously broken in the Standard Model
(see Chapter 29).

An important example of a custodial symmetry not related to anything being massless is
custodial isospin, which will be defined in Section 31.2.

22.7 Super-renormalizable theories

In four dimensions there are not many options for Lagrangian terms with coefficients of
positive mass dimension. The possibilities are mass terms, which we already discussed,
a constant term, terms linear in fields, such as Λ3φ, and cubic couplings among bosons,
such as gφ3 or gφA2

μ. That exhausts the possibilities in four dimensions. We have already
discussed masses, so now we will quickly go through the other possibilities.

22.7.1 Cosmological constant and tadpoles

The only possible term of mass dimension 4 is a constant:

L = · · ·+ ρ. (22.65)

This constant ρ has a name: the cosmological constant. By itself, this term does nothing.
It couples to nothing and in fact it can just be pulled out of the path integral. The reason it
is dangerous is because when one couples to gravity and expands gμν = ημν + 1

MPl
hμν ,

the Lagrangian becomes

L =
√
g (R+ ρ) =

1
2

1
MPl

hμμρ+
1
M2

Pl

h2
μνρ+ · · ·+√gR. (22.66)
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The first term generates a vacuum expectation value for hμν , 〈Ω|hμμ|Ω〉 �= 0 (see Sec-
tion 18.1 and Chapters 28 and 34), which indicates that we are expanding around the
wrong vacuum. By redefining hμν → h0

μν + hμν for some non-dynamical x-dependent
field h0

μν(x) with R
[
h0
μν

]
= ρ, we can remove this term (we know h0

μν has to be x-
dependent because all the terms in the expansion of R have derivatives, so R will vanish
on any space-time-independent h0

μν). Since the renormalized value of the cosmological

constant is experimentally quite small, ρ ∼ 10−122M4
Pl ∼
(
10−3 eV

)4
(and positive – we

live in de Sitter space), we can ignore it for terrestrial experiments. To account for a non-
zero cosmological constant in quantum field theory requires field theory in curved space, a
topic beyond the scope of this text.

Terms with coefficients of mass dimension 3 are linear in fields. For example,

L = −1
2
φ(� +m2)φ+ Λ3φ, (22.67)

where Λ is some number with dimensions of mass. The linear term generates a tadpole
diagram that gives a vacuum expectation value to φ: 〈Ω|φ|Ω〉 �= 0. Tadpoles were discussed
briefly in Section 18.1 and will be studied in detail in the context of spontaneous symmetry
breaking in Chapter 28.

22.7.2 Relevant interactions

Next, we consider radiative corrections in a theory with a gφ3 coupling, that is, with
Lagrangian

L = −1
2
φ(� +m2)φ+

g

3!
φ3. (22.68)

We will consider the 3-point function of three scalars, which illustrates a number of
interesting features of this theory. At tree-level, the 3-point function is just

M (p, q1, q2) = g. (22.69)

Here we are allowing the particles to be off-shell, for example, if this vertex were embedded
in a larger diagram.

Now consider a radiative correction from loops of φ:

iM =
q1 + q2

k

q2

q1

k −
q1

k + q2

(22.70)

= −g3

∫
d4k

(2π)4
1

(k2 −m2)
[
(k − q1)2 −m2

][
(k + q2)

2 −m2
] . (22.71)

This integral scales as
∫
d4k
k6 at large k and is therefore UV finite. The mass cuts off the IR

divergences, and therefore for generic momenta and masses the loop is finite. While there
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is a closed-form solution for the integral in terms of polylogarithms, it is unilluminating.
By dimensional analysis, the matrix element is proportional to g3 divided by some external
scale of dimension mass-squared. Now consider the long-distance (low-energy) limit. For
energies much less than m, we find

M∼ g3

m2
(· · · ). (22.72)

Similarly, at higher order in perturbation theory, we would have

M∼ g

(
1 +

g2

m2
+
(
g2

m2

)2

+ · · ·
)
. (22.73)

Thus, if m � g, perturbation theory is not useful. Similarly, if m 
 g, then at large
distances (low energies), m−1 � r > g−1, perturbation theory breaks down. Thus, this
theory does not have a sensible long-distance limit. This is a general feature of super-
renormalizable theories: they do not admit effective long-distance descriptions.

One can consider the short-distance limit of φ3 theory in perturbation theory. Unfortu-
nately, this theory is sick in the same way a theory with a linear tadpole term is sick, since
the potential is unbounded from below. If one adds a quartic term to the potential to make
it bounded, then the quartic interaction will dominate over the cubic one at short distances.
Thus, it is not clear how to make any self-consistent theoretical predictions in φ3 theory.

Problems

22.1 Treating the p4

m4 term in the Schrödinger equation as a perturbation, calculate its
effects on the energy levels of the hydrogen atom in quantum mechanics. Compare
your result to the effect of a ln �p 2

m2 term. Which can be more easily measured?
22.2 Calculate the term of order M−4 in the expansion of the 4-Fermi theory. That is,

expand Eq. (22.15) as in Eq. (22.16) to next order. You can use that the spinors
are on-shell, but you should not have factors of momentum or s – any factors of
momentum must come from derivatives acting on the spinor fields.

22.3 Verify the coefficients in Eq. (22.20). Write down one correctly normalized term in
the expansion of each term in Eq. (22.21).

22.4 In a scalar approximation to gravity, show that an interaction of the form
L1

1
MPl

h�2h2, as in Eq. (22.30), indeed generates an exponentially suppressed
contribution to Newton’s potential, as in Eq. (22.33).

22.5 What is the form of the non-relativistic potential in a theory with a gφ3 interaction?
Why might this theory have been considered relevant as a possible theory of strong
interactions in the 1960s?



The renormalization group 23

The renormalization group is one of those brilliant ideas that lets you get something for
nothing through clever reorganization of things you already know. It is hard to under-
estimate the importance of the renormalization group in shaping the way we think about
quantum field theory. The phrase renormalization group refers to an invariance of
observables under changes in the way things are calculated. There are two versions of
the renormalization group used in quantum field theory, the Wilsonian renormaliza-
tion group and the continuum renormalization group. They are defined in Boxes 23.1
and 23.2.

The Wilsonian renormalization group Box 23.1

In a finite theory with a UV cutoff Λ, physics at energies E 
 Λ is inde-
pendent of the precise value of Λ. Changing Λ changes the couplings in the
theory so that observables remain the same.

The continuum renormalization group Box 23.2

Observables are independent of the renormalization conditions, in particular,
of the scales {p0} at which we choose to define our renormalized quanti-
ties. This invariance holds after the theory is renormalized and the cutoff is
removed (Λ = ∞, d = 4). In dimensional regularization with MS, the scales
{p0} are replaced by μ, and the continuum renormalization group comes
from μ independence.

The two versions are closely related, but technically different. Much confusion arises
from conflating them, for example trying to take Λ all the way down to physical low-
energy scales in the Wilsonian case or taking μ → ∞ in the continuum case. Although
the renormalization group equations have essentially the same form in the two versions,
the two methods really are conceptually different and we will try to keep them separate
as much as possible, concentrating on the continuum method, which is more practical for
actual quantum field theory calculations.

In both cases, the fact that the theory is independent of something means one can set
up differential equations such as d

dΛX = 0, d
dp0

X = 0 or d
dμX = 0, where X is some

observable. Solving these differential equations leads to a trajectory in the space of theo-
ries. The term renormalization group (RG) or renormalization group evolution refers to the

417
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flow along these trajectories. In practice, there are three types of things whose RG evolu-
tion we often look at: coupling constants (such as the electric charge), operators (such as
the current, Jμ(x) = ψ̄(x)γμψ(x)) and Green’s functions.

The Wilsonian renormalization group has its origins in condensed matter physics. Sup-
pose you have a solid with atoms at evenly spaced lattice sites. Many physical quantities,
such as resistivity, are independent of the precise inter-atomic spacing. In other words, the
lattice spacing Λ−1 is a UV cutoff which should drop out of calculations of properties
of the long-distance physics. It is therefore reasonable to think about coarse-graining the
lattice. This means that, instead of taking as input to your calculation the spin degrees of
freedom for an atom on a site, one should be able to use the average spin over a group of
nearby sites and get the same answer, with an appropriately rescaled value of the spin–spin
interaction strength. Thus, there should be a transformation by which nearby degrees of
freedom are replaced by a single effective degree of freedom and parameters of the theory
are changed accordingly. This is known as a block-spin renormalization group, and was
first introduced by Leo Kadanoff in the mid 1960s [Kadanoff, 1966]. In the continuum
limit, this replacement becomes a differential equation known as the RG equation, which
was first understood by Kenneth Wilson in the early 1970s [Wilson, 1971].

The Wilsonian RG can be implemented through the path integral, an approach clari-
fied by Joseph Polchinski in the mid 1980s [Polchinski, 1984]. There, one can literally
integrate out all the short-distance degrees of freedom of a field, say at energies E > Λ,
making the path integral a function of the cutoff Λ. Changing Λ to Λ′ and demanding
physics be the same (since Λ is arbitrary) means that the couplings in the theory, such
as the gauge coupling g, must depend on Λ. Taking Λ′ close to Λ induces a differential
equation on the couplings, also known as the renormalization group equation. This induces
a flow in the coupling constants of the theory as a function of the effective cutoff. Note,
the RG is not a group in the traditional mathematical sense, only in the sense that it maps
G → G, where G is the set of couplings in a theory.

Implementing the Wilsonian RG picture in field theory, either through a lattice or
through the path integral, is a mess from a practical point of view. For actual calculations, at
least in high-energy contexts, the continuum RG is exclusively used. In the continuum pic-
ture, the RG is an invariance to the arbitrary scale one chooses to define the renormalized
couplings. In dimensional regularization, this scale is implicitly set by the dimension-
ful parameter μ. This approach to renormalization was envisioned by Stueckelberg and
Petermann in 1953 [Stueckelberg and Petermann, 1953] and made precise the year after
by Gell-Mann and Low [Gell-Mann and Low, 1954]. It found widespread application to
particle physics in the early 1970s through the work of Callan and Symanzik [Callan,
1970; Symanzik, 1970], who applied the RG to correlation functions in renormalizable
theories. Applications of the enormous power of the continuum renormalization group to
precision calculations in non-renormalizable theories, such as the Chiral Lagrangian, the
4-Fermi theory, heavy-quark effective theory, etc., have been developing since the 1970s,
and continue to develop today. We will cover these examples in detail in Parts IV and V.

The continuum RG is an extremely practical tool for getting partial results for high-
order loops from low-order loops. Recall from Section 16.3 that the difference between
the momentum-space Coulomb potential Ṽ (t) at two scales, t1 and t2, was proportional to
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α2 ln t1
t2

for t1 
 t2. The RG is able to reproduce this logarithm, and similar logarithms
of physical quantities. Moreover, the solution to the RG equation is equivalent to summing
series of logarithms to all orders in perturbation theory. With these all-orders results, quali-
tatively important aspects of field theory can be understood quantitatively. Two of the most
important examples are the asymptotic behavior of gauge theories, and critical exponents
near second-order phase transitions. Many other examples will be discussed in later chap-
ters. We begin our discussion with the continuum RG, since it leads directly to important
physical results. The Wilsonian picture is discussed in Section 23.6.

23.1 Running couplings

Let us begin by reviewing what we have already shown about scale-dependent coupling
constants. The scale-dependent electric charge, eeff(μ), showed up as a natural object in
Chapter 16, where we calculated the vacuum polarization effect, and also in Chapter 20,
where it played a role in the total cross section for e+e− → μ+μ−(+γ). In this section,
we review the effective coupling and point out some important features exploited by the
renormalization group.

23.1.1 Large logarithms

In Chapters 16 and 19 we calculated the vacuum polarization diagrams at 1-loop and found
(Eq. (19.29))

p p
+

p p

= −i(p2gμν − pμpν)
(
e2RΠ2(p2) + δ3

)
, (23.1)

where δ3 is the 1-loop counterterm and

Π2(p2) =
1

2π2

∫ 1

0

dxx(1− x)
[
2
ε

+ ln
(

μ̃2

m2
R − p2x(1− x)

)]
(23.2)

in dimensional regularization, with d = 4 − ε. Then, by embedding this off-shell ampli-
tude into a scattering diagram, we extracted an effective Coulomb potential whose Fourier
transform was

Ṽ (p2) = e2R
1− e2RΠ2(p2)

p2
. (23.3)

Defining the gauge coupling eR so that Ṽ
(
p2
0

)
= e2R

p20
exactly at the scale p0 fixes the

counterterm δ3 and lets us write the renormalized potential as

Ṽ (p2) =
e2R
p2

{
1 +

e2R
2π2

∫ 1

0

dxx(1− x) ln
(
p2x (1− x)−m2

p2
0x(1− x)−m2

)}
, (23.4)

which is finite and ε and μ independent.
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The entire functional form of this potential is phenomenologically important, especially
at low energies, where we saw it gives the Uehling potential and contributes to the Lamb
shift. However, when p� m, the mass drops out and the potential simplifies to

Ṽ (p2) =
e2R
p2

(
1 +

e2R
12π2

ln
p2

p2
0

)
. (23.5)

In this limit, we can see clearly the problem of large logarithms, which the RG will solve.

Normally, one would expect that, since the correction is proportional to e2R
12π2 ∼ 10−3,

higher-order terms would be proportional to the square, cube, etc. of this term and therefore
would be negligible. However, there exist scales p2 � p2

0 where lnp
2

p20
> 103 so that

this correction is of order 1. When these logarithms are this large, then terms of the form(
e2R

12π2 lnp
2

p20

)2
, which would appear at the next order in perturbation theory, will also be

order 1 and so perturbation theory breaks down.
The running coupling was also introduced in Chapter 16, where we saw that we could

sum additional 1PI insertions into the photon propagator,

p
+

p p
+

p p p
+ · · · , (23.6)

to get

Ṽ (p2) =
e2R
p2

[
1 +

e2R
12π2

ln
p2

p2
0

+
(

e2R
12π2

ln
p2

p2
0

)2

+ · · ·
]

=
1
p2

⎡⎣ e2R

1− e2R
12π2 ln p2

p20

⎤⎦ .
(23.7)

We then defined the effective coupling through the potential by e2eff

(
p2
)
≡ p2Ṽ
(
p2
)
, so

that

e2eff

(
p2
)

=
e2R

1− e2R
12π2 ln p2

p20

. (23.8)

This is the effective coupling including the 1-loop 1PI graphs, This is called leading-
logarithmic resummation.

Once all of these 1PI 1-loop contributions are included, the next terms we are missing
should be subleading in some expansion. The terms included in the effective charge are

of the form e2R

(
e2R ln p2

p20

)n
for n ≥ 0. For the 2-loop 1PI contributions to be subleading,

they should be of the form e4R

(
e2R ln p2

p20

)n
. However, it is not obvious at this point that

there cannot be a contribution of the form e6R ln2 p20
p2 from a 2-loop 1PI graph. To check,

we would need to perform the full O
(
e4R
)

calculation, including graphs with loops and
counterterms. As you might imagine, trying to resum large logarithms beyond the leading-
logarithmic level diagrammatically is extremely impractical. The RG provides a shortcut
to systematic resummation beyond the leading-logarithmic level.

The key to systematizing the above QED calculation is to first observe that the problem
we are trying to solve is one of large logarithms. If there were no large logarithms, we
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would not need the RG – fixed-order perturbation theory would be fine. For the Coulomb
potential, the large logarithms related the physical scale p2 where the potential was to be
measured to an arbitrary scale p2

0 where the coupling was defined. The renormalization
group equation (RGE) then comes from requiring that the potential is independent of p2

0:

p2
0

d

dp2
0

Ṽ
(
p2
)

= 0. (23.9)

Ṽ
(
p2
)

has both explicit p2
0 dependence, as in Eq. (23.5), and implicit p2

0 dependence,
through the scale where eR is defined. In fact, recalling that eR was defined so that
p2
0Ṽ
(
p2
0

)
= e2R exactly, and that the effective charge is defined by e2eff

(
p2
)
≡ p2Ṽ
(
p2
)
, we

can make the p2
0 dependence of Ṽ

(
p2
)

explicit by replacing eR by eeff
(
p2
0

)
.

So, Eq. (23.5) becomes

Ṽ
(
p2
)

=
e2eff

(
p2
0

)
p2

(
1−

e2eff

(
p2
0

)
12π2

ln
p2
0

p2

)
+ · · · . (23.10)

Then at 1-loop the RGE is

0 = p2
0

d

dp2
0

Ṽ
(
p2
)

=
1
p2

(
p2
0

deeff

dp2
0

2eeff −
e4eff

12π2
− p2

0

deeff

dp2
0

e3eff

3π2
ln
p2
0

p2
+ · · ·
)
. (23.11)

To solve this equation perturbatively, we note that deeff
dp20

must scale as e3eff and so the third
term inside the brackets is subleading. Thus, the 1-loop RGE is

p2
0

deeff

dp2
0

=
e3eff

24π2
. (23.12)

Solving this differential equation with boundary condition eeff(p0) = eR gives

e2eff

(
p2
)

=
e2R

1− e2R
12π2 ln p2

p20

, (23.13)

which is the same effective charge that we got above by summing 1PI diagrams.
Note, however, that we did not need to talk about the geometric series or 1PI diagrams

at all to arrive at Eq. (23.13); we only used the 1-loop graph. In this way, the RG efficiently
encodes information about some higher-order Feynman diagrams without having to be
explicit about which diagrams are included. This improvement in efficiency is extremely
helpful, especially in problems with multiple couplings, or beyond 1-loop.

23.1.2 Universality of large logarithms

Before getting to the systematics of the RG, let us think about the large logarithms in a little
more detail. Large logarithms arise when one scale is much bigger or much smaller than
every other relevant scale. In the vacuum polarization calculation, we considered the limit
where the off-shellness p2 of the photon was much larger than the electron mass m2. In the
limit where one scale is much larger than all the other scales, we can set all the other phys-
ical scales to zero to first approximation. If we do this in the vacuum polarization diagram
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we find from Eq. (23.2) that the full vacuum polarization function Π
(
p2
)

= e2RΠ2

(
p2
)
+δ3

at order e2R is

Π(p2) =
e2R

12π2

[
2
ε

+ ln
(
μ2

−p2

)
+ const.

]
+ δ3 (DR) , (23.14)

where “const.” is independent of p.
The equivalent result using a regulator with a dimensional UV cutoff, such as Pauli–

Villars, is

Π(p2) =
e2R

12π2

[
ln
(

Λ2

−p2

)
+ const.

]
+ δ3 (PV) . (23.15)

As was discussed in Chapters 21 and 22, the logarithmic, non-analytic dependence on
momentum is characteristic of a loop effect and a true quantum prediction. The RG focuses
in on these logarithmic terms, which give the dominant quantum effects in certain limits.

If the only physical scale is p2, the logarithm of p2 must be compensated by a logarithm
of some other unphysical scale, in this case, the cutoff Λ2 (or μ2 in dimensional regulariza-

tion). If we renormalize the theory at some scale p0 by defining δ3 = − e2R
12π2 ln Λ2

−p20 , then
this becomes

Π(p2) =
e2R

12π2

[
ln
(
p2
0

p2

)
+ const.

]
(PV) . (23.16)

In dimensional regularization, the MS prescription is that δ3 = e2R
12π2

(
− 2
ε

)
, so that

Π(p2) =
e2R

12π2

[
ln
(
μ2

p2

)
+ const.

]
(DR) . (23.17)

In Eqs. (23.14) to (23.17), the logarithmic dependence on the unphysical scales Λ2, p2
0 or

μ2 uniquely determines the logarithmic dependence of the amplitude on the physical scale
p2. The Wilsonian RG extracts physics from the ln Λ2 dependence (see Section 23.6),
while the continuum RG uses p2

0 or μ2.
In practical applications of the RG, dimensional regularization is almost exclusively

used. It is therefore important to understand the roles of ε = 4−d, the arbitrary scale μ2 and
scales such as p2

0 where couplings are defined. Ultraviolet divergences show up as poles of
the form 1

ε . Do not confuse the scale μ, which was added to make quantities dimensionally
correct, with a UV cutoff! Removing the cutoff is taking ε → 0, not μ → ∞. In minimal
subtraction, renormalized amplitudes depend on μ. In observables, such as the difference
p2
1Ṽ
(
p2
1

)
− p2

2Ṽ
(
p2
2

)
, μ necessarily drops out. However, one can imagine choosing

δ3 =
e2R

12π2

[
−2
ε
− ln

μ2

p2
0

]
(23.18)

in dimensional regularization so that Eq. (23.14) turns into Eq. (23.16). This is equivalent
to choosing μ2 = p2

0 in Eq. (23.14) and minimally subtracting the 1
ε term. Thus, we usually

think of μ as a physical scale where amplitudes are renormalized and μ is often called the
renormalization scale.

Although we choose μ to be a physical scale, observables should be independent of μ.
At fixed order in perturbation theory, verifying μ independence can be a strong theoretical
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cross check on calculations in dimensional regularization. As we will see by generaliz-
ing the vacuum polarization discussion above, the μ independence of physical amplitudes
comes from a cancellation between μ dependence of loops and μ dependence of couplings.
Since μ is the renormalization point, the effective coupling becomes eeff(μ) and the RGE
in Eq. (23.12) becomes

μ
deeff(μ)
dμ

=
e3eff(μ)
12π2

, (23.19)

and we never have to talk about the physical scale p0 explicitly.
Although μ is a physical, low-energy scale, not taken to ∞, the dependence of ampli-

tudes on μ is closely connected with the dependences on 1
ε . For example, in the vacuum

polarization calculation, the lnμ2 dependence came from the expansion

με
(

2
ε
− ln p2 + · · ·

)
=

2
ε

+ ln
μ2

p2
+ · · · . (23.20)

The 1
ε pole and the lnμ2 in unrenormalized amplitudes are inseparable – in four dimen-

sions, there is no ε and no μ. In particular, the numerical coefficient of 2
ε is the same as

the coefficient of lnμ
2

p2 . Thus, even in dimensional regularization, the large logarithms of
the physical scale p2 are connected to UV divergences, as they would be in a theory with
a UV regulator Λ. Since the large logarithms correspond to UV divergences, it is possible
to resum them entirely from the ε dependence of the counterterms. This leads to the more
efficient, but more abstract, derivation of the continuum RGE, as we now show.

23.2 Renormalization group from counterterms

We have seen how large logarithms of the form lnp
2
1
p22

can be resummed though a dif-
ferential equation which establishes that physical quantities are independent of the scale
p2
0 where the renormalized coupling is defined. Dealing directly with physical renormal-

ization conditions for general amplitudes is extremely tedious. In this section, we will
develop the continuum RG with dimensional regularization, exploiting the observations
made in the previous section: the large logarithms are associated with UV divergences,
which determine the μ dependence of amplitudes; μ2 can be used as a proxy for the (arbi-
trary) physical renormalization scale p2

0; the RGE will then come from μ independence of
physical quantities.

Let us first recall where the factors of μ come from. Recall our bare Lagrangian for QED:

L = −1
4
F 2
μν + ψ̄0(i/∂ − e0γμA0

μ −m0)ψ0. (23.21)

The quantities appearing here are infinite, or if we are in d = 4 − ε dimensions they are
finite but scale as inverse powers of ε. The dimensions of the fields can be read off from
the Lagrangian:
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[
A0
μ

]
=
d− 2

2
,
[
ψ0
]

=
d− 1

2
,
[
m0
]

= 1,
[
e0
]

=
4− d

2
. (23.22)

In particular, notice that the bare charge is only dimensionless if d = 4. In renormalized
perturbation theory, the Lagrangian is expressed instead in terms of physical renormalized
fields and renormalized charges. In particular, we would like the charge eR we expand in
to be a number, and the fields to have canonical normalization. We therefore rescale by

Aμ =
1√
Z3

A0
μ, ψ =

1√
Z2

ψ0, mR =
1
Zm

m0, eR =
1
Ze
μ
d−4
2 e0, (23.23)

which leads to

L = −1
4
Z3F

2
μν + iZ2ψ̄ /∂ψ −mRZ2Zmψ̄ψ − μ

4−d
2 eRZeZ2

√
Z3 ψ̄ /Aψ, (23.24)

with eR and the ZX dimensionless, even in d = 4 − ε dimensions. (In this chapter we
will use the charge renormalization Ze instead of Z1, which we defined in Chapter 19 as
Z1 = ZeZ2

√
Z3.) Recall also from Chapter 19 the 1-loop MS counterterms (Eq. (19.66)):

δ2 =
e2R

16π2

[
−2
ε

]
, δ3 =

e2R
16π2

[
− 8

3ε

]
, δm =

e2R
16π2

[
−6
ε

]
, δe =

e2R
16π2

[
4
3ε

]
,

(23.25)
where each of these counterterms is defined by ZX = 1 + δX .

Now notice that, since there is μ dependence in the renormalized Lagrangian but not in
the bare Lagrangian, we must have

0 = μ
d

dμ
e0 = μ

d

dμ

[
μ
ε
2 eRZe
]

= μ
ε
2 eRZe

[
ε

2
+

μ

eR

d

dμ
eR +

μ

Ze

dZe
dμ

]
. (23.26)

At leading order in eR, Ze = 1 and so

μ
d

dμ
eR = −ε

2
eR. (23.27)

At next order, we have

μ
d

dμ
Ze = μ

d

dμ

(
1 +

e2R
16π2

4
3ε

)
=

1
ε

eR
6π2

μ
d

dμ
eR = − e2R

12π2
, (23.28)

where Eq. (23.27) has been used in the last step. So,

β(eR) ≡ μ
d

dμ
eR = −ε

2
eR +

e3R
12π2

. (23.29)

This is the leading-order QED β-function. Taking ε→ 0, this agrees with Eq. (23.19) (and
Eq. (16.73)) when we identify eR(μ) = eeff(μ), but here we calculated the RGE using only
counterterms with no mention of logarithms.

It is worth tracing back to which diagrams contributed to the β-function. The β-function
depended on Ze = Z1

Z2
√
Z3

. In Chapter 19 we found Z1 from the ψ̄Aμψ vertex, Z3 came
from the vacuum polarization diagrams, and Z2 from the electron self-energy. In QED,
since Z1 = Z2, the β-function can be calculated from Z3 alone, which is why Eq. (23.29)
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agrees with Eq. (23.19). In other theories, such as QCD, Z1 �= Z2 and all three diagrams
will contribute. As we will see in Chapter 26, we will need to use the full relation δe =
δ1 − δ2 − 1

2δ3. There, and in other examples in this chapter, it will be clearer why having
an abstract way to calculate the running coupling, through the μ independence of the bare
Lagrangian, is better than having to deal with explicit observables such as Ṽ

(
p2
)
.

The β-function is sometimes written as a function of α = e2R
4π defined by

β(α) ≡ μ
dα

dμ
. (23.30)

The expansion is conventionally written as

β(α) = −2α
[
ε

2
+
( α

4π

)
β0 +
( α

4π

)2
β1 +
( α

4π

)2
β2 + · · ·

]
. (23.31)

Matching to Eq. (23.29) in d = 4 then gives β0 = − 4
3 . At leading order (at ε = 0), the

solution is

α(μ) =
2π
β0

1
ln μ

ΛQED

, (23.32)

which increases with μ. Here, ΛQED is an integration constant fixed by the boundary con-
dition of the RGE. Using α(me = 511 keV) = 1

137 we find ΛQED = 10286 eV. Since α
blows up when μ = ΛQED, ΛQED is the location of the Landau pole.

In writing the solution to the RGE in Eq. (23.32) we have swapped a dimensionless
number, 1

137 , for a dimensionful scale ΛQED. This is known as dimensional transmuta-
tion. When we introduced the effective charge, we specified a scale and the value of α
measured at that scale. But now we see that only a scale is needed. This uncovers a very
profound misconception about nature: electrodynamics is fundamentally not defined by
the electric charge, as you learned classically, but by a dimensionful scale ΛQED. More-
over, this scale only has meaning if there is another scale in the theory, such as the electron
mass, so really it is the ratio me/ΛQED that specifies QED completely.

While we have the counterterms handy, let us work out the RGE for the electron mass.
The bare mass m0 must be independent of μ, so

0 = μ
d

dμ
m0 = μ

d

dμ

(
ZmmR

)
= ZmmR

[
μ

mR

dmR

dμ
+

μ

Zm

dZm
dμ

]
. (23.33)

We conventionally define

γm ≡
μ

mR

dmR

dμ
. (23.34)

γm is called an anomalous dimension. (This terminology will be explained in Sec-
tion 23.4.4.) Since Zm only depends on μ through eR, we have

γm = − μ

Zm

dZm
dμ

= − 1
Zm

dZm
deR

μ
deR
dμ

. (23.35)
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At 1-loop, Zm = 1 − 3e2R
8π2ε and to leading non-vanishing order μdeRdμ = β(eR) = − ε

2eR,
so

γm = − 1
1 + δm

(
2
eR
δm

)(
−ε

2
eR

)
= δmε = −3e2R

8π2
. (23.36)

We will give a physical interpretation of a running mass in Section 23.5.

23.3 Renormalization group equation for the
4-Fermi theory

We have seen that the RGE for the electric charge allows us to resum large logarithms
of kinematic scales, for example in Coulomb scattering. In that case, the logarithms were
resummed through the running electric charge. Large logarithms can also appear in pretty
much any scattering process, with any Lagrangian, whether renormalizable or not. In fact,
non-renormalizable theories, with their infinite number of operators, provide a great arena
for understanding the variety of possible RGEs. We will begin with a concrete example:
large logarithmic corrections to the muon decay rate from QED. Then we discuss the gen-
eralization for renormalizing operators in the Lagrangian and external operators inserted
into Green’s functions.

The muon decays into an electron and two neutrinos through an intermediate off-shellW
boson. In the Standard Model, the decay rate comes from the following tree-level diagram,
which leads to

Γ
(
μ− → νμe

−ν̄e
)

=
1

2mμ

∫
dΠLIPS

∣∣∣∣∣∣∣∣∣
μ−

ν̄e

νμ

W−

e−

∣∣∣∣∣∣∣∣∣

2

=

(√
2g2

8m2
W

)2
m5
μ

192π3

(23.37)

plus corrections suppressed by additional factors of mμ
mW

or me
mμ

, with g = 0.64 the weak
coupling constant and mW = 80.4 GeV (see Chapter 29 for more details). A photon loop
gives a correction to this decay rate of the form

Γ
(
μ− → νμe

−ν̄e
)

=
1

2mμ

∫
dΠLIPS

∣∣∣∣∣∣∣∣∣
μ−

ν̄e

νμ

W−

e−

+
γ

∣∣∣∣∣∣∣∣∣

2

=

(√
2g2

8m2
W

)2
m5
μ

192π3

(
1 +A

α

4π
ln
mW

mμ
+ · · ·
)
. (23.38)

We have only shown the term in this correction that dominates for mμ 
 mW , which is
a large logarithm. To extract the coefficient A of this logarithm we would need to evalu-
ate the diagram, which is both difficult and unnecessary. At higher order in perturbation
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theory, there will be additional large logarithms, proportional to
(
A α

4π lnmWmμ

)n
. While

we could attempt to isolate the series of diagrams that contributes these logarithms (as we
isolated the geometric series of 1PI corrections to the Coulomb potential in Section 23.1)
such an approach is not nearly as straightforward in this case – there are many relevant
diagrams with no obvious relation between them. Instead, we will resum the logarithms
using the RG.

In order to use the RG to resum logarithms besides those in the effective charge, we
need another parameter to renormalize besides eR. To see what we can renormalize, we
first expand in the limit that the W is very heavy, so that we can replace i

p2−m2
W
→ − i

m2
W

for p2 
 m2
W . Graphically, this means

μ−
νμ

W−

e−

ν̄e −→
μ−

νμ

e−

ν̄e
. (23.39)

This approximation leads to the 4-Fermi theory, discussed briefly in Section 22.2 and to
be discussed in more detail here and extensively in Part IV. The 4-Fermi theory replaces
the W boson with a set of effective interactions involving four fermions. The relevant
Lagrangian interaction in this case is

L4F =
GF√

2
ψ̄μγ

μPLψνμ ψ̄eγ
μPLψνe + h.c., (23.40)

where PL = 1−γ5
2 projects onto left-handed fermions and GF =

√
2g2

8m2
W

= 1.166 ×
10−5 GeV−2 (see Section 29.4 for the derivation of Eq. (23.40)). This leads to a decay

rate of Γ(μ− → νμe
−ν̄e) = G2

F

m5
μ

192π3 , which agrees with Eq. (23.37). The point of doing
this is twofold: first, the 4-Fermi theory is simpler than the theory with the full propagat-
ing W boson; second, we can use the RG to compute the RG evolution of GF that will
reproduce the large logarithms in Eq. (23.38) and let us resum them to all orders in α.

It is not hard to go from the RGE for the electric charge to the RGE for a general operator.
Indeed, the electric charge can be thought of as the coefficient of the operator Oe = ψ̄ /Aψ

in the QED Lagrangian. The RGE was determined by the renormalization factor Ze =
Z1

Z2
√
Z3

, which was calculated from the radiative correction to the ψ̄ /Aψ vertex (this gave
Z1), and then subtracting off the field strength renormalizations that came from the electron
self-energy graph and vacuum polarization graphs (giving Z2 and Z3, respectively).

Unfortunately for the pedagogical purposes of this example, in the actual weak theory,
the coefficient A of the large logarithm in Eq. (23.38) is 0 (see Problem 23.2). This fact is
closely related to the non-renormalization of the QED current (see Section 23.4.1 below)
and is somewhat of an accident. For example, a similar process for the weak decays of
quarks does have a non-zero coefficient of the large logarithm, proportional to the strong
coupling constant αs (see Section 31.3). To get something non-zero, let us pretend that
the weak interaction is generated by the exchange of a neutral scalar instead, so that the
4-Fermi interaction is
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L4 =
G√
2

(
ψ̄μψe
)(
ψ̄νeψνμ

)
+ h.c. (23.41)

In this case, we will get a non-zero coefficient of the large logarithm.
To calculate the renormalization factor for G, we must compute the 1-loop correction to

this 4-Fermi interaction. There is only one diagram,

iM =

p1 p4
p1 − k

k

p3

p2 − k

p2

μ−

e−

ν̄e

νμ

=
G√
2
e2Rμ

4−d
∫

ddk

(2π)d
ū(p2) γμ

(
/p2 − /k +me

) (
/p1 − /k +mμ

)
γμu(p1) ū(p3) v(p4)[

(p1 − k)2 −m2
μ

] [
(p2 − k)2 −m2

e

]
k2

.

(23.42)

To get at the RGE, we just need the counterterm, which comes from the coefficient of the
UV divergence of this amplitude. To that end, we can set all the external momenta and
masses to zero. Thus,

M =M0

(
−ie2Rμ4−d

∫
ddk

(2π)d
d

k4

)
+ finite, (23.43)

with the d coming from γμ/k/kγμ = dk2 and

M0 =
G√
2
ū(p2)u(p1) ū(p3) v(p4) (23.44)

is the tree-level matrix element from L4. Extracting the pole gives

M =M0

(
e2R
2π2

με
1
ε

)
+ finite, (23.45)

which is all we will need for the RG analysis.
To remove this divergence, we have to renormalizeG. We do so by writingG = GRZG,

giving

L =
GR√

2
ZG
(
ψ̄μψe
)(
ψ̄νeψνμ

)
+ h.c. (23.46)

To extract the counterterm, we expand ZG = 1 + δG. The counterterm then contributes
M0δG. To remove the divergence we therefore need to take

δG = − e2R
16π2

8
ε
. (23.47)

Now that we know the counterterm, we can calculate the RGE, just as for the electric
charge. Expressing the 4-Fermi term in terms of bare fields, we find
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GR√
2
ZG
(
ψ̄μψe
)(
ψ̄νμψνe

)
=
GR√

2
ZG√

Z2μZ2eZ2νμZ2νe

(
ψ̄(0)
μ ψ(0)

e

)(
ψ̄(0)
νe ψ

(0)
νμ

)
. (23.48)

The coefficient of the bare operator must be independent of μ, since there is no μ in the
bare Lagrangian. So, setting Z2ν = 1 since the neutrino is neutral and therefore not renor-
malized until higher order in eR, and using Z2μ = Z2e = Z2 since the muon and electron
have identical QED interactions, we find

0 = μ
d

dμ

(
GRZG
Z2

)
=
GRZG
Z2

[
μ

GR

dGR
dμ

+
1
ZG

∂ZG
∂eR

μ
deR
dμ

− 1
Z2

∂Z2

∂eR
μ
deR
dμ

]
,

(23.49)

where we have used that ZG and Z2 only depend on μ through eR in the last step. Using

the 1-loop results, ZG = 1 − e2R
16π2

8
ε and Z2 = 1 − e2R

16π2
2
ε , and keeping only the leading

terms, we have

γG ≡
μ

GR

dGR
dμ

=
(
−∂ZG
∂eR

+
∂Z2

∂eR

)
β(eR) =

3eR
4επ2

(
−ε

2
eR

)
= −3e2R

8π2
= −3α

2π
,

(23.50)
where γG is the anomalous dimension for OG = ZG

(
ψ̄μψe
)(
ψ̄νμψνe

)
.

Using μdαdμ = β(α), the solution to this differential equation is

GR(μ) = GR(μ0) exp

[∫ α(μ)

α(μ0)

γG(α)
β(α)

dα

]
. (23.51)

In particular, with β(α) = −α2

2πβ0 = 2α2

3π at leading order we find

GR(μ) = GR(μ0) exp

[
−9

4

∫ α(μ)

α(μ0)

dα

α

]
= GR (μ0)

(
α(μ)
α(μ0)

)− 9
4

. (23.52)

Now, we are assuming that we know the value for G at the scale μ0 = mW where the W
boson (or its equivalent in our toy model) is integrated out, and we would like to know
the value of G at the scale relevant for muon decay, μ = mμ. Using Eq. (23.32), we find
α(mμ) = 0.007 36 and α(mW ) = 0.007 43 so that

GR (mμ) = 1.024×G(mW ) , (23.53)

which would have given a 4.8% correction to the muon decay rate if the muon decay were
mediated by a neutral scalar. In the actual weak theory, where muon decay is mediated by
a vector boson coupled to left-handed spinors, the anomalous dimension for the operator
in Eq. (23.40) is zero and so GF does not run in QED.

23.4 Renormalization group equation for general
interactions

In the muon decay example, we calculated the running of G, defined as the coefficient of
the local operator OG = ZG

(
ψ̄μψe
)(
ψ̄νeψνμ

)
in a 4-Fermi Lagrangian. More generally,
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we can consider adding additional operators to QED, with an effective Lagrangian of the
form

L = −1
4
Z3F

2
μν +Zi2ψ̄ii /∂ψi−Zi2ZimmR

i ψ̄iψi+ZeZ2
i
√
Z3QieRψ̄i /Aψi+

∑
j

CjOj(x).

(23.54)

These operators, Oj = Zj∂
nγmAμ(x) · · ·Aν(x)ψ̄i1(x) · · ·ψjn(x), are composite local

operators, with all fields evaluated at the same space-time point. They can have any num-
ber of photons, fermions, γ-matrices, factors of the metric, etc. and analytic (power-law)
dependence on derivatives. Keep in mind that the fields Aμ and ψj are the renormalized
fields. The Cj are known as Wilson coefficients. Note that in this convention each Zj is
grouped with its corresponding operator, which is composed of renormalized fields; the Zj
is not included in the Wilson coefficient so that the Wilson coefficient will be a finite num-
ber at any given scale. Since the Lagrangian is independent of μ, if we assume no mixing,
the RGEs take the form

μ
d

dμ
(CjOj) = 0 (no sum on j). (23.55)

These equations (one for each j) let us extract the RG evolution of Wilson coefficients from
the μ dependence of matrix elements of operators. In general, there can be mixing among
the operators (see Section 23.5.2 and Section 31.3), in which case this equation must be

generalized to μ d
dμ

(∑
j CjOj

)
= 0. One can also have mixing between the operators and

the other terms in the Lagrangian in Eq. (23.54), in which case the RGE is just μ d
dμL = 0.

The way these effective Lagrangians are used is that the Cj are first either calculated or
measured at some scale μ0. We can calculate them if we have a (full) theory that is equiva-
lent to this (effective) theory at a particular scale. For example, we found GF by designing
the 4-Fermi theory to reproduce the muon decay rate from the full electroweak theory, to
leading order in 1

m2
W

at the scale μ0 = mW . This is known as matching. Alternatively,
if a full theory to which our effective Lagrangian can be matched is not known (or is not
perturbative), one can simply measure the Cj at some scale μ0. For example, in the Chiral
Lagrangian (describing the low-energy theory of pions) one could in principle match to the
theory of strong interactions (QCD), but in practice it is easier just to measure the Wilson
coefficients. In either case, once the values of the Cj are set at some scale, we can solve
the RGE to resum large logarithms. In the toy muon-decay example, we evolved GR to the
scale μ = mμ in order to incorporate large logarithmic corrections of the form α ln mμ

mW
into the rate calculation.

23.4.1 External operators

Equation (23.55) implies that the RG evolution of Wilson coefficients is exactly compen-
sated for by the RG evolution of the operators. Operator running provides a useful language
in which to consider physical implications of the RG. An important example is the running
of the current Jμ(x) = ZJ ψ̄(x)γμψ(x), which we will now explore. Rather than thinking
of Jμ as the coefficient of Aμ in the QED interaction, we will treat Jμ(x) as an external
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operator: an operator that is not part of the Lagrangian, but which can be inserted into
Green’s functions.

The running of Jμ is determined by the μ dependence of ZJ and of the renormalized
fields ψ̄(x) and ψ(x) appearing in the operator. To find ZJ , we can calculate any Green’s
function involving Jμ. The simplest non-vanishing one is the 3-point function with the
current and two fields, whose Fourier transform we already discussed in the context of the
Ward–Takahashi identity in Section 14.8 and the proof of Z1 = Z2 in Section 19.5. We
define

〈Ω|T
{
Jμ(x)ψ(x1)ψ̄(x2)

}
|Ω〉 =
∫

d4p

(2π)4
d4q1
(2π)4

d4q2
(2π)4

e−ipxe−iq1x1eiq2x2

× iMμ(p, q1, q2)(2π)4δ4(p+ q1 − q2), (23.56)

so that Mμ is given by Feynman diagrams without truncating the external lines or adding
external spinors. At tree-level,

iMμ
tree(p, q1, q2) =

i

/q1 −m
γμ

i

/q2 −m
. (23.57)

At next-to-leading order, there is a 1PI loop contribution and a counterterm:

+ . (23.58)

Here the indicates an insertion of the current and the indicates the counterterm
for the current, both with incoming momentum pμ. The counterterm contribution to the
Green’s function comes from expanding ZJ = 1 + δJ directly in the Green’s function (we
have not added Jμ to the Lagrangian). These two graphs give, in Feynman gauge,

iMμ
1−loop =

i

/q1 −m

[
(−ieR)2μ4−d

∫
ddk

(2π)d
iγν
(
/q1 − /k +m

)
(q1 − k)2 −m2

×γμ
i
(
/q2 − /k +m

)
γν

(q2 − k)2 −m2

−i
k2

+ γμδJ

]
i

/q2 −m
. (23.59)

Since we are just interested in the counterterm we take k � q1, q2. Then this reduces to

iMμ
1−loop =

i

/q1 −m
γμ

i

/q2 −m

[
−ie2Rμ4−d (2− d)2

d

∫
ddk

(2π)d
1
k4

+ δJ

]

= iMμ
tree

{
e2R

16π2

[
2
ε

]
+ δJ

}
. (23.60)

Thus, δJ = e2R
16π2

[
− 2
ε

]
, which also happens to equal δ2 and δ1. Thus Z2 = ZJ at 1-loop.

Now that we know ZJ we can calculate the renormalization of the current. The bare
current is independent of μ. Since Jμbare(x) = ψ̄0γ

μψ0 = 1
ZJ
Z2J

μ(x), then

0 = μ
d

dμ
Jμbare = μ

d

dμ

(
Z2

ZJ
Jμ(x)
)

= μ
d

dμ
Jμ(x). (23.61)
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Thus, the current does not run. In other words, whatever scale we measure the current at,
it will have the same value. To be clear, the current is renormalized, but it does not run.
Defining the anomalous dimension γJ for the current by

μ
d

dμ
Jμ = γJJ

μ (23.62)

we have found that

γJ = 0. (23.63)

That is, the anomalous dimension for the current vanishes.
As you might have figured out by now, the Ward–Takahashi identity implies γJ = 0 to

all orders. In fact, γJ = 0 is just the RG version of the Ward–Takahashi identity, which
actually has a nice physical interpretation. The vanishing anomalous dimension of the cur-
rent is equivalent to the statement that the total number of particles minus the number of
antiparticles does not depend on the scale at which we count them. To see this, observe
that the 0 component of the renormalized current when integrated over all space gives a
conserved total charge:

Q =
∫
d3xJ0 =

∫
d3xψ†ψ = total charge. (23.64)

This does not change with time, since the current vanishes at infinity and

∂tQ =
∫
d3x ∂0J0 =

∫
d3x �∇ · �J = �J (∞) = 0. (23.65)

To see whatQ does, note that since the (renormalized) fields at the same time anticommute,{
ψ†(x), ψ(y)

}
= δ3(x− y), we have

ψ(x)Q =
∫
d3y ψ(x)ψ†(y)ψ(y) = Qψ(x) +

∫
d3y δ3(x− y)ψ(y) = Qψ(x) + ψ(x),

(23.66)
and

Qψ†(x) =
∫
d3y ψ†(y)ψ(y)ψ†(x) = ψ†(x)Q+

∫
d3y δ3(x−y)ψ†(y) = ψ†(x)Q+ψ†(x).

(23.67)
So,

[Q,ψ] = −ψ, [Q,ψ†] = ψ†. (23.68)

That is, Q counts the number of particles minus antiparticles. The fields ψ can be (and are)
scale dependent. Thus, the only way for these equations to be satisfied is ifQ does not have
scale dependence itself. Thus, the current cannot run.

23.4.2 Lagrangian operators versus external operators

There is of course not much difference between the calculation of the RGE for the
coefficients of operators in a Lagrangian or for external operators. In fact, the relation

μ
d

dμ
(CjOj) = 0 (23.69)
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implies that the RGE for the Wilson coefficient and the operator it multiplies carry the
same information.

Some distinctions between external operators and operators in the Lagrangian include:

1. External operators do not have to be Lorentz invariant, while operators in the
Lagrangian do.

2. External operators can insert momentum into a Feynman diagram, while operators in
the Lagrangian just give Feynman rules that are momentum conserving.

3. For external operators, it is the operators themselves that run, whereas for operators
in a Lagrangian we usually talk about their Wilson coefficients as having the scale
dependence.

In this sense, an operator in the Lagrangian is a special case of an external operator, which
is Lorentz invariant and evaluated at p = 0. For example, we can treat the 4-Fermi operator
OF = ψ̄γμPLψψ̄γ

μPLψ as external. Then, we can determine its anomalous dimension
by evaluating

〈Ω|T
{
OF (x)ψ̄(x1)γμPLψ(x2)ψ̄(x3)γμPLψ(x4)

}
|Ω〉. (23.70)

This will amount to the same Feynman diagram as in Section 23.3, but now we can have
momentum pμ coming in at the vertex. As far as the RGE is concerned, we only need the
UV divergences, which are independent of external momentum. So, in this case we would
find that the operator runs with the same RGE that its Wilson coefficient had before. That
is, it runs with exactly what is required by d

dμ (GFOF ) = 0.

23.4.3 Renormalization group equation for Green’s
functions

We have now discussed the RGE for operators, coupling constants and scalar masses. We
can also consider directly the running of Green’s functions. Consider, for example, the bare
Green’s function of n photons and m fermions in QED:

G(0)
n,m = 〈Ω|T

{
A0
μ1
· · ·A0

μnψ
0
1 · · ·ψ0

m

}
|Ω〉 . (23.71)

This is constructed out of bare fields, and since there is no μ in the bare Lagrangian, this
is μ independent. The bare Green’s function is infinite, but it is related to the renormalized
Green’s function by

G(0)
n,m = Z3

n
2 Z2

m
2 Gn,m, (23.72)

where

Gn,m(p, eR,mR, μ) = 〈Ω|T {Aμ1 · · ·Aμnψ1 · · ·ψm} |Ω〉 . (23.73)

The renormalized Green’s function is finite. It can depend on μ explicitly as well as
on momenta, collectively called p, and the parameters of the renormalized Lagrangian,
namely the renormalized coupling eR and the mass mR, which themselves depend on μ.
Then,
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0 = μ
d

dμ
G(0)
n,m

= Z3
n
2 Z2

m
2

(
μ
∂

∂μ
+
n

2
μ

Z3

dZ3

dμ
+
m

2
μ

Z2

dZ2

dμ
+ μ

∂eR
∂μ

∂

∂eR
+ μ

∂mR

∂μ

∂

∂mR

)
Gn,m.

(23.74)

Defining

γ3 =
μ

Z3

dZ3

dμ
, γ2 =

μ

Z2

dZ2

dμ
, (23.75)

this reduces to

(
μ
∂

∂μ
+
n

2
γ3 +

m

2
γ2 + β

∂

∂eR
+ γmmR

∂

∂mR

)
Gn,m = 0. (23.76)

This equation is known variously as the Callan–Symanzik equation, the Gell-Mann–
Low equation, the ’t Hooft–Weinberg equation and the Georgi–Politzer equation. (The
differences refer to different schemes, such as MS or the on-shell physical renormalization
scheme.)

One can also calculate Green’s functions with external operators inserted, such as
〈Ω|T{Jμ(x)ψ1(x1) ψ̄2(x2)}|Ω〉 considered in Section 23.4.1. For a general operator, we
define

μ
d

dμ
O = γOO. (23.77)

Then a Green’s function with an operator O in it satisfies(
μ
∂

∂μ
+
n

2
γ3 +

m

2
γ2 + β

∂

∂eR
+ γmmR

∂

∂mR
+ γO

)
G = 0. (23.78)

If there are more operators, there will be more γO terms.

23.4.4 Anomalous dimensions

Now let us discuss the term “anomalous dimension”. We have talked about the mass dimen-
sion of a field many times. For example, in four dimensions, [φ] = M1, [m] = M1,
[ψ] = M3/2 and so on. These numbers just tell us what happens if we change units. To be
more precise, consider the action for φ4:

S =
∫
d4x

[
−1

2
φ
(
� +m2

)
φ+ gφ4

]
. (23.79)

This has a symmetry under xμ → 1
λx

μ, ∂μ → λ∂μ, m → λm, g → g and φ → λφ. This
operation is called dilatation and denoted by D. Thus,

D : φ→ λd0φ. (23.80)

The d0 are called the classical or canonical scaling dimensions of the various fields and
couplings in the theory.
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Now consider a correlation function

Gn = 〈Ω |T {φ1(x1) · · ·φn(xn)}|Ω〉. (23.81)

In a classical theory, this Green’s function can only depend on the various quantities in the
Lagrangian raised to various powers:

Gn(x, g,m) = magbxc11 · · ·xcnn . (23.82)

By dimensional analysis, we must have a − c1 − · · · − cn = n. Thus we expect that
D : Gn → λnGn.

In the quantum theory,Gn can also depend on the scale where the theory is renormalized,
μ. So we could have

Gn(x, g,m, μ) = magbxc11 · · ·xcnn μγ , (23.83)

where now a−c1−· · ·−cn = n−γ. Note that μ does not transform underD since it does
not appear in the Lagrangian – it is the subtraction point used to connect to experiment. So
when we act with D, only the x and m terms change; thus, we find D : Gn → λn−γGn.
Thus, Gn does not have the canonical scaling dimension. In particular,

μ
d

dμ
Gn = γGn, (23.84)

which is how we have been defining anomalous dimensions. Thus, the anomalous
dimensions tell us about deviations from the classical scaling behavior.

23.5 Scalar masses and renormalization
group flows

In this section we will examine the RG evolution of a super-renormalizable operator,
namely a scalar mass term m2φ2. To extract physics from running masses, we have to
think of masses more generally than just the location of the renormalized physical pole in
an S-matrix, since by definition the pole mass is independent of scale. Rather, we should
think of them as a term in a potential, like a φ4 interaction would be. This language is
very natural in condensed matter physics. As we will now see, in an off-shell scheme
(such as MS) masses can have scale dependence. This scale dependence can induce phase
transitions and signal spontaneous symmetry breaking (see Chapters 28 and 34).

23.5.1 Yukawa potential correction

Recall that the exchange of a massive particle generates a Yukawa potential, with the mass
giving the characteristic scale of the interactions. Just as the Coulomb potential let us
understand the physics of a running coupling, the Yukawa potential will help us understand
running scalar masses. For example, consider the Lagrangian

L = −1
2
φ
(
� +m2

)
φ− 1

4!
λφ4 + gφJ, (23.85)
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which has the scalar field interacting with some external current J . The current–current
interaction at leading order comes from an exchange of φ, which generates the Yukawa
potential. For the static potential, we can drop time derivatives and then Fourier transform
the propagator, giving

V (r) = 〈Ω |φ(�x)φ(0)|Ω〉 = −
∫

d3k

(2π)3
g2

�k2 +m2
ei
�k·�x = − g2

4πr
e−mr. (23.86)

In the language of condensed matter physics, this correlation function has a correlation
length ξ given by the inverse mass, ξ = 1

m . In this language, we can easily give a physical
interpretation to a running mass: the Yukawa potential will be modified by m → m(r)
with calculable logarithmic dependence on r.

To calculate m(r) we will solve the RG evolution induced by the λφ4 interaction. The
first step to studying the RGE for this theory is to renormalize it at 1-loop, for which
we need to introduce the various Z-factors into the Lagrangian. In terms of renormalized
fields,

L = −1
2
Zφφ�φ− 1

2
ZmZφm

2
Rφ

2 − μ4−dλR
4!
ZλZ

2
φφ

4. (23.87)

Since φ has mass dimension d−2
2 , an extra factor of μ4−d has been added to keep λR

dimensionless, as was done for the electric charge in QED. The RGE for the mass comes
from the μ independence of the bare mass, m2 = m2

RZm:

0 = μ
d

dμ

(
m2
)

= μ
d

dμ

(
m2
RZm
)

= m2
RZm

(
1
m2
R

μ
d

dμ
m2
R +

1
Zm

μ
d

dμ
δm

)
. (23.88)

Since the only μ dependence in the Lagrangian comes from the φ4 interaction, we need to
compute the dependence of δm on λR and the dependence of λR on μ.

We can extract Zm (and Zφ) from corrections to the scalar propagator. The leading
graph is

iΣ2(p2) =
p p

k

=
−iλR

2
μ4−d
∫

ddk

(2π)d
i

k2 −m2
R

=
−iλRμ4−d

2 (4π)d/2

(
1
m2
R

)1− d
2

Γ
(

1− d

2

)
. (23.89)

The quadratic divergence in this integral shows up in dimensional regularization as a pole
at d = 2 but is hidden if one expands near d = 4. Nevertheless, since quadratic divergences
are just absorbed into the counterterms, we can safely ignore them and focus on the log-
arithmic divergences. After all, it is the non-analytic logarithmic momentum dependence
that we will resum using the renormalization group.

Expanding in d = 4− ε dimensions, Σ2

(
p2
)

= λRm
2
R

16π2
1
ε + · · · . The counterterms from

Zφ = 1 + δφ and Zm = 1 + δm give a contribution

iΣc.t.(p2) =
p p

= iδφ
(
p2 −m2

R

)
− iδmm2

R. (23.90)

So, to order λR, δφ = 0 and δm = λR
16π2

1
ε .

An alternative way to extract these counterterms is to use the propagator of the massless
theory and to treat m2

Rφ
2 as a perturbation. This does not change the physics, since the



23.5 Scalar masses and renormalization group flows 437

massive propagator is reproduced by summing the usual geometric series of 1PI insertions
of the mass:

i

p2
+

i

p2

(
−im2

R

) i
p2

+
i

p2

(
−im2

R

) i
p2

(
−im2

R

) i
p2

+ · · · = i

p2 −m2
R

. (23.91)

However, one can look at just the first mass insertion to calculate the counterterms. The
leading graph with a insertion of the mass and the coupling λR is

iΣ2(p2) =

p p

k k =
(
−im2

R

)−iλR
2

μ4−d
∫

ddk

(2π)d
i

k2

i

k2
. (23.92)

This is now only logarithmically divergent. Extracting the UV divergence with the usual

trick gives Σ2(p2) = λRm
2
R

16π2
1
ε + · · · and so δm = λR

16π2
1
ε , which is the same result we got

from the quadratically divergent integral.
Next, we need the dependence of λR on μ. The RGE for λR is derived by using that the

bare coupling, λ0 = μ4−dλRZλ, is μ independent, so

0 = μ
d

dμ
(λ0) = μ

d

dμ

(
μ4−dλRZλ

)
= μελRZλ

(
ε+

μ

λR

d

dμ
λR +

μ

Zλ

d

dμ
δλ

)
. (23.93)

Then, since δλ starts at order λR we have μ d
dμλR = −ελR + O

(
λ2
R

)
. Although not

necessary for the running of mR, it is not hard to calculate δλ at 1-loop. We can extract it
from the radiative correction to the 4-point function. With zero external momenta, the loop
gives

(−iλR)2
3
2
μ2(4−d)

∫
ddk

(2π)d
i

k2

i

k2
= μ2(4−d) 3λ2

R

16π2

i

ε
, (23.94)

so that δλ = 3λR
16π2

1
ε and then the β-function to order λ2

R is

β(λR) ≡ μ
d

dμ
λR(μ) = −ελR −

3λ2
R

16π2

1
ε
(−ε) = −ελR +

3λ2
R

16π2
. (23.95)

Using the RGE for the mass, Eq. (23.88), μ d
dμλR = −ελR and δm = λR

16π2
1
ε , we find

γm ≡
μ

m2
R

d

dμ
m2
R = − 1

Zm

∂δm
∂λR

μ
dλR
dμ

=
λR

16π2
+O
(
λ3
R

)
. (23.96)

The solution, treating γm as constant, is

m2
R(μ) = m2

R(μ0)
(
μ

μ0

)γm
. (23.97)

You can check in Problem 23.3 that the more general solution (including the μ dependence
of λR following Eq. (23.51)) reduces to Eq. (23.97) for small λR.

Now let us return to the Yukawa potential. Since μ just represents an arbitrary scale with
dimensions of mass, we can equally well write the solution to the RGE in position space as

m2(r) = m2
0

(
r

r0

)−γm
, (23.98)
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where m0 = m(r = r0). This leads to a corrected Yukawa potential:

V(r) = − g2

4πr
exp[−rm(r)] = − g2

4πr
exp
[
−r1−

γm
2 r

γm
2

0 m0

]
, (23.99)

which is in principle measurable. The final form has been written in a suggestive way
to connect to what we will discuss below. Indeed, extracting a correlation length by
dimensional analysis, we find

V(r) = − g2

4πr
exp
[
−(r/ξ)1−

γm
2

]
, ξ = r1−2ν

0 m−2ν
0 , ν =

1
2− γm

. (23.100)

In the free theory, ξ scales as m−1
0 , by dimensional analysis. With interactions we see

that it scales as m0 to a different power of the mass, determined by ν. This quantity ν is
known as a critical exponent. Dimensional transmutation has given us another scale with
dimensions of mass, r−1

0 , which has changed the scaling relation predicted by dimensional
analysis. These critical exponents have been measured in a number of situations. We next
discuss how to compare the result of our RG calculation to experimental results.

23.5.2 Wilson–Fisher fixed point

It is a remarkable experimental fact that very different physical systems exhibit very similar
scaling behaviors in the vicinity of second-order phase transitions. For example, for many
materials there is a critical point in the phase diagram when the liquid–gas phase transition
becomes second order. In water, this critical point is at a critical temperature TC = 173 ◦C
and a critical pressure pC = 217 atm. One can measure correlation functions in water
(for example by scattering light off it) and extract from those functions a characteristic
scale ξ called the correlation length. For example, measuring the intensity of light as a
function of momentum, one might find I(q) = I0(1 + q2ξ2)−1. In water, near its critical
point, the correlation length is found to scale with temperature as ξ ∼ (T −TC)−0.63. This
0.63 is an example of a critical exponent. This particular critical exponent is called ν and
conventionally defined by ξ ∼ (T − TC)−ν . Remarkably, this scaling behavior with the
same exponent ν = 0.63, can be seen in thousands of other systems, with very different
microscopic descriptions, near their critical points (see [Pelissetto and Vicari, 2002] for a
review). A very important example is the 3D Ising model (defined on a rectangular lattice
with nearest-neighbor spin–spin interactions). The set of systems that share this scaling
behavior near their critical points are said to be in the 3D Ising model universality class.
The universality of the critical exponent ν suggests that it should be calculable without
detailed knowledge of the microscopic system. In fact it can. Moreover, the universality
can be understood with the RG.

The starting point for a calculation of ν from field theory is to represent the Ising model
system with a single scalar field. For water, this field, φ(x), might be the density, but it
does not actually matter what the field is. All that matters is that the effective description
shares the symmetries of the microscopic theory (in the case of Ising model systems, there
is no symmetry and so a single scalar field will do). The effective description of a field
theory near a second-order phase transition can be described by a Ginzburg–Landau model
defined by the Lagrangian
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Leff = Lkin −
1
2
(T − TC)φ2 − 1

4!
λφ4 + · · · . (23.101)

The T − TC factor in this Lagrangian is a well-motivated guess. First of all, one expects
some kind of temperature dependence in the effective Lagrangian. For T ∼ TC , we can
then Taylor expand this Lagangian. Thus, if nothing special forces the linear term to vanish,
the leading term should be linear in T −TC . The− 1

2 (T −TC)φ2 term gives φ a massm =√
T − TC . For T > TC ,m2 is positive and there is a finite correlation length to the system.

When T goes below TC , then m2 becomes negative, signaling spontaneous symmetry
breaking into a different phase (see Chapter 28 for more details). Moreover, the transition
is smooth across TC , as required for a second-order phase transition. Thus, this form of the
temperature dependence is a natural guess for an effective description for T ∼ TC .

As a quick check, we already know that the 2-point function in such a scalar theory such
should behave like a Yukawa potential

〈Ω|φ(r)φ(0)|Ω〉 ∼ 1
r
e−rm =

1
r

exp
(
−r (T − TC)1/2

)
. (23.102)

Thus, the classical theory predicts ν = 1
2 , which is not far from the observed universal

value (ν = 0.63). To calculate corrections to this classical value, we can use Eq. (23.100):

ν =
1

2− γm
. (23.103)

Thus, corrections to the critical exponent are given by an anomalous dimension calculable
(analytically or numerically) in quantum field theory.

To calculate γm in perturbation theory, it looks like we can use Eqs. (23.95) and (23.96):

μ
d

dμ
m2
R =

λR
16π2

m2
R +O(λ2

R), (23.104)

μ
d

dμ
λR = −ελR +

3λ2
R

16π2
+O(λ3

R). (23.105)

But, what do we take for μ and what do we take for λR? Here we arrive at the key reason
for universality of critical exponents: although mR and λR are in general scale dependent,
for certain values of mR and λR we may find that the right-hand sides of Eqs. (23.104)
and (23.105) vanish. It is precisely at these values, which are fixed points of the RG evolu-
tion equations, that systems become universal. A simple example of a fixed point is where
λR = mR = 0, or more generally when all couplings and masses vanish. Such a solution,
for which all the RGEs are trivial, is known as a Gaussian fixed point (since at this point
the Lagrangian is a free theory of a massless scalar field and the path integral is an exact
Gaussian). To calculate ν we want to find a non-trivial fixed point.

In condensed matter physics we are interested in the macroscopic, long-distance behav-
ior of a system. In particle physics we are interested usually in the low-energy limit of a
system, which is most accessible experimentally. So, in either case we would like to know
what happens as we lower μ. The behavior of a system as μ is lowered gives the RG tra-
jectory or RG flow of the couplings in a system. For example, suppose we start near (but
not on) the Gaussian fixed point. Then the RGE for λR at leading order is d lnλR

d lnμ = −ε,
which implies that if d > 4 (ε < 0), the system will flow back towards the fixed point as
μ decreases, while for d < 4 (ε > 0), the system will flow away from the fixed point. The
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liquid–gas phase transitions for water and the 3D Ising model take place in d = 3 (one can
ignore time in these non-relativistic systems). For d = 3, the flow is away from the fixed
point. Thus, the natural question is, where do the couplings flow to? As μ → 0, they can
either blow up, go to zero, or go to some non-trivial fixed point.

Instead of going all the way to d = 3, let us explore what happens in d = 4 − ε

dimensions. From Eq. (23.105), we can see that for 0 < ε 
 1, there exist values of λR
and mR for which d

dμλR = d
dμmR = 0, namely

λ� =
16π2ε

3
, m2

� = 0. (23.106)

This is the location of the Wilson–Fisher fixed point to order ε (using dimensional
regularization). At this fixed point, γm = ε

3 from Eq. (23.96) and so, from Eq. (23.103),

ν =
3

6− ε . (23.107)

Although the values ofm� and λ� are scheme dependent and therefore unphysical, the crit-
ical exponents are scheme independent. Indeed, they must be, since they can be measured.
You can explore the scheme dependence of the Wilson–Fisher fixed point in Problem 23.6.
See [Wilson and Kogut, 1974; Pelissetto and Vicari, 2002] or [Sachdev, 2011, Chapter 4]
for more information.

For ε = 1 corresponding to three dimensions, ν = 0.6 at this point, which is quite
close to the observed value of 0.63. This (somewhat questionable) practice of expanding
around d = 4 to get results in d = 3 is known as the epsilon expansion. You can compute
the 2-loop value of ν in Problem 23.5. Currently, ν is known to 5-loops in the epsilon
expansion [Kleinert et al., 1991] and has been computed many other ways (with Monte-
Carlo methods, high- or low-temperature expansions, Borel resummed perturbation theory,
etc.). See [Pelissetto and Vicari, 2002] for a review.

Regardless of whether the epsilon expansion can be justified, we can at least trust the
qualitative observation of Wilson and Fisher, that there is a non-trivial fixed point (cou-
plings do not all vanish) in this effective theory for d < 4. As ε increases, the fixed point
will move away from the λ�, due to large ε2 corrections. This justifies the universality
of the critical exponents in three-dimensional systems – even if we cannot calculate the
anomalous dimension, we expect that for d < 3 it should still exist and should be separate
from the Gaussian fixed point.

Fixed points are interesting places. Exactly on the fixed point, the theory is scale invari-
ant, since μ d

dμm
2
R = μ d

dμλR = 0. While there are many classical theories that are scale
invariant (such as QED with massless fermions), theories that are scale invariant at the
quantum level are much rarer. Such theories are known as conformal field theories. In
a conformal theory, the Poincaré group is enhanced to a larger group called the confor-
mal group. Recall that the Poincaré group acting on functions of space-time is generated
by translations, Pμ = −i∂μ, and Lorentz transformations, Λμν = i (xμ∂ν − xν∂μ).
In the conformal group, these are supplemented with a generator for scale transfor-
mations, D = −ixμ∂μ, and four generators for special-conformal transformations,
Kμ = i

(
x2∂μ − 2xμxν∂ν

)
. Invariance under the conformal group is so restrictive that
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m̃2
R

λR

� ���

Renormalization group flow in the Wilson–Fisher theory. The Wilson–Fisher fixed point is
indicated by the � at m̃� = 0 and λ = λ�. The Gaussian fixed point at m = λ = 0 is
indicated by the 
. The arrows denote flow as the length scale is increased, or equivalently,
as μ is decreased. Although the location of the Wilson–Fisher fixed point is scheme
dependent, the trajectories near the fixed point can be used to extract
scheme-independent information about the conformal field theory living on the fixed point
(such as critical exponents).

�Fig. 23.1

correlation functions in conformal field theories are strongly constrained. On the other
hand, conformal field theories do not have massive particles. In fact, they do not have par-
ticles at all. That is, there is no sensible way to define asymptotic single-particle states in
such a theory. Thus, they do not have an S-matrix.

One way to find conformal field theories is by looking for fixed points of RG flows
in non-conformal field theories, as in the Wilson–Fisher example. Since conformal field
theories have no inherent scales, dimensional parameters such as mR in the Wilson–Fisher
theory become dimensionless. To see how the fixed point is approached, it is natural to
rescale away any classical scaling dimension of the various couplings. In the Wilson–Fisher
case, we do this by defining m̃R(μ) ≡ 1

μmR(μ) so that m̃R is dimensionless. Then the
RG equations become

μ
d

dμ
m̃2
R =
(
−2 +

λR
16π2

)
m̃2
R, (23.108)

μ
d

dμ
λR = −ελR +

3λ2
R

16π2
. (23.109)

The fixed point is at the same place, λ� = 16π2ε
3 and m2

R = 0. The RG flow for m̃2
R is

shown in Figure 23.1.
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The different trajectories in an RG flow diagram represent different values ofm2
R and λR

that might correspond to different microscopic systems. For example, changing the tem-
perature of a system moves it from one trajectory to another. The temperature for which
mR = 0 is the critical temperature where the theory intersects the non-trivial fixed point.
To get close to the non-trivial fixed point, one would have to be very close to the mR = 0
trajectory.

23.5.3 Varieties of asymptotic behavior

One can easily imagine more complicated RG flows than those described by the Wilson–
Fisher theory. With just one coupling, such as in QED or in QCD, the RG flow is
determined by the β-function β(α) = μ d

dμα. When the coupling is small, the theory is
perturbative, and then the coupling must either increase or decrease with scale. If the cou-
pling increases with μ, as in QED, it goes to zero at long distances. In this case it is said
to be infrared free. If it decreases with μ (as the strong coupling in QCD does, as we will
show in Chapter 26), it goes to zero at short distances and the theory is said to be asymptot-
ically free. The third possibility in a perturbative theory is that β(α) = 0 exactly, in which
case the theory is scale invariant. If the coupling is non-perturbative, one can still define a
coupling through the value of a Green’s function. Then, as long as β(α) > 0 at one α and
β(α) < 0 at a larger α, there is guaranteed to be an intermediate value where β(α�) = 0.
With multiple couplings there are other possibilities for solutions to the RGEs. For exam-
ple, one could imagine a situation in which couplings circle around each other. It is
certainly easy to write down coupled differential equations with bizarre solutions; whether
such equations correspond to anything in nature or in a laboratory is another question.

There are not many known examples of perturbative conformal field theories in four
dimensions. One is called N = 4 super Yang–Mills theory. Another possibility is if the
leading β-function coefficient is small, for example if β(α) = β0α

2 + β1α
3 + · · · , where

β0 happens to be of order α. Then there could be a cancellation between β0 and β1 and a
non-trivial fixed point at some finite value of α. That this might happen in a non-Abelian
gauge theory with a large enough number of matter fields was conjectured by Banks and
Zaks [Banks and Zaks, 1982] and is known as the Banks–Zaks theory.

23.6 Wilsonian renormalization group equation

So far we have been discussing the RGE as an invariance of physical quantities to the
scale μ, where the renormalization conditions are imposed. This is the continuum RG,
where all comparisons are made after the UV regulator has been completely removed. The
Wilsonian picture instead supposes that there is an actual physical cutoff Λ, as there would
be in a metal (the atomic spacing) or string theory (the string scale). Then all loops are
finite and the theory is well defined. In this case, one can (in principle) integrate over a
shell of momentum in the path integral Λ′ < p < Λ and change the couplings of the



23.6 Wilsonian renormalization group equation 443

theory so that low-energy physics is the same. The Wilsonian RGE describes the resulting
flow of coupling constants under infinitesimal changes in Λ. The reason we focused on the
continuum RG first is that it is easier to connect to observables, which coupling constants
are not. However, the Wilsonian RGE helps explain why renormalizable theories play such
an important role in physics.

You have perhaps heard people say mysterious phrases such as “a dimension 6 operator,
such as ψ̄ψψ̄ψ is irrelevant since it should have a coefficient 1

Λ2 , where Λ is an arbitrarily
large cutoff.” You may also have wondered how the word “should” earned a place in scien-
tific discourse. There is indeed something very odd about this language, since if Λ = 1019

GeV the operator 1
Λ2 ψ̄ψψ̄ψ can be safely be ignored at low energy, but if Λ is lowered

to 1 GeV this operator becomes extremely important. This language, although imprecise,
actually is logical. It originates from the Wilsonian RG, as we will now explain.

To begin, imagine that you have a theory with a physical short-distance cutoff ΛH ,
which is described by a Lagrangian with a finite or infinite set of operators Or of vari-
ous mass dimensions r. For example, in a metal with atomic spacing ξ the physical cutoff
would be ΛH ∼ ξ−1 and the operators might include 1

Λ2
H
ψ̄ψψ̄ψ, where ψ correspond to

atoms. Let us write a general Lagrangian with cutoff ΛH as L(ΛH) =
∑
Cr(ΛH) Λ4−r

H Or
with Cr(ΛH) some dimensionless numbers. These numbers can be large and are probably
impossible to compute. In principle they could all be measured, but we would need an
infinite number of renormalization conditions for all the Cr(ΛH) to completely specify the
theory. The key point, however, as we will show, is that not all the Cr(ΛH) are important
for long-distance physics.

At low energies, we do not need to take Λ to be as large as ξ−1. As long as Λ is much
larger than any energy scale of interest, we can perform loops as if Λ = ∞ and cutoff-
dependent effects will be suppressed by powers of E

Λ . (For example, for observables with
E ∼ 100 GeV, you do not need Λ = 1019 GeV; Λ ∼ 1010 GeV works just as well.) So
let us compute a different Lagrangian, L(Λ) =

∑
Cr(Λ) Λ4−rOr, with a cutoff Λ < ΛH ,

by demanding that physical quantities computed with the two Lagrangians be the same.
With Λ = ΛL 
 ΛH , the coefficients Cr(ΛL) will be some other dimensionless numbers,
which may be big or small, and which are (in principle) computable in terms of Cr(ΛH).

Now, if we are making large-distance measurements only, we should be able to work
with L(ΛL) just as well as with L(ΛH). So we might as well measure Cr(ΛL) to connect
our theory to experiment. The important point, which follows from the Wilsonian RG, is
that Cr(ΛL) is independent of Cr(ΛH) if r > 4. Since there will only be a finite number
of operators in a given theory with mass dimension r ≤ 4, if we measure Cr≤4(ΛL) for
these operators (as renormalization conditions), we can then calculate Cr>4(ΛL) for all
the other operators as functions of the Cr≤4(ΛL). An explicit example is given below.

This result motivates the definition of relevant operators as those with r < 4 and irrel-
evant operators as those with r > 4. Operators with r = 4 are called marginal. We
only need to specify renormalization conditions for the relevant and marginal operators,
of which there are always a finite number. The Wilson coefficients for the irrelevant oper-
ators can be computed with very weak dependence on any boundary condition related to
short-distance physics, that is, on the values of Cr(ΛH).
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Thus, it is true that with Λ = ΛH or Λ = ΛL the Lagrangian should have operators with
coefficients determined by Λ to some power. Therefore, irrelevant operators do get more
important as the cutoff is lowered. However, the important point is not the size of these
operators, but that their Wilson coefficients are computable. In other words:

Values of couplings when the cutoff is low are insensitive to the boundary conditions
associated with irrelevant operators when the cutoff is high.

If we take the high cutoff to infinity then the irrelevant operators are precisely those for
which there is zero effect on the low-cutoff Lagrangian. Only relevant operators remain
when the cutoff is removed. So:

The space of renormalizable field theories is the space for which the limit ΛH → ∞
exists, holding the couplings fixed when the cutoff is ΛL.

Another important point is that in the Wilsonian picture one does not want to take ΛL down
to physical scales of interest. One wants to lower Λ enough so that the irrelevant operators
become insensitive to boundary conditions, but then to leave it high enough so one can
perform loop integrals as if Λ = ∞. That is:

The Wilsonian cutoff Λ should always be much larger than all relevant physical scales.
This is in contrast to the μ in the continuum picture, which should be taken equal to a
relevant physical scale.

For example, in the electroweak theory, one can imagine taking Λ = 100 TeV, not Λ =
1019 GeV and not Λ = 100 GeV.

23.6.1 Wilson–Polchinski renormalization group equation

To prove the above statements, we need to sort out what is being held fixed and what is
changing. Since the theory is supposed to be finite with UV cutoff Λ, the path integral is
finite (at least to a physicist), and all the physics is contained in the generating functional
Z[J ]. The RGE is then simply Λ d

dΛZ[J ] = 0. If we change the cutoff Λ, then the coupling
constants in the Lagrangian must change to hold Z[J ] constant. For example, in a scalar
theory, we might have

Z[J ] =
∫ ΛH

Dφ exp
{
i

∫
d4x

(
−1

2
φ
(
� +m2

)
φ+

g3
3!
φ3 +

g4
4!
φ4 +

g6
6!
φ6 · · ·+ φJ

)}
(23.110)

for some cutoff ΛH on the momenta of the fields in the path integral. All the couplings,
m, g3, g4 etc., are finite. If we change the cutoff to Λ then the couplings change tom′, g′3, g

′
4

etc., so that Z[J ] is the same.
Unfortunately, actually performing the path integral over a Λ-shell is extremely difficult

to do in practice. A more efficient way to phrase the Wilsonian RGE in field theory was
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developed by Polchinski [Polchinski, 1984]. Polchinski’s idea was first to cut off the path
integral more smoothly by writing

Z[J ] =
∫
Dφ eiS+φJ

=
∫
Dφ exp

{
i

∫
d4x

(
−1

2
φ(� +m2)e

�
Λ2 φ+

g3
3!
φ3 +

g4
4!
φ4 + · · ·+ φJ

)}
.

(23.111)

The e�/Λ2
factor makes the propagator go as e−p

2/Λ2 → 0 at high energy. You can get
away with this only in a scalar theory in Euclidean space, but we will not let such tech-
nical details prevent us from making very general conclusions. It is easiest to proceed in
momentum space, where φ(x)2 → φ(p)φ(−p). Then,

Z[J ] =
∫
Dφ eiS+φJ

=
∫
Dφ exp

{
i

∫
d4p

(2π)4

(
1
2
φ(p)(p2 −m2)e−

p2

Λ2 φ(−p) + Lint(φ) + φJ

)}
.

(23.112)

Taking d
dΛ on both sides gives

Λ
d

dΛ
Z[J ] = i

∫
Dφ
∫

d4p

(2π)4

(
φ(p)(p2 −m2)φ(−p) p

2

Λ2
e−

p2

Λ2 + Λ
d

dΛ
Lint(φ)
)
eiS+φJ .

(23.113)

Since p2

Λ2 e
− p2

Λ2 only has support near p2 ∼ Λ2, the change in Lint comes from that momen-
tum region. Therefore, the RGE will be local in Λ. This is a general result, independent of
the precise way the cutoff is imposed. It can also be used to define a functional differential
equation known as the exact renormalization group (see Problem 23.7), which we will
not make use of here.

As a concrete example, consider a theory with a dimension-4 operator (with dimension-
less coupling g4) and a dimension-6 operator (with coupling g6 with mass dimension −2).
Then the RGE Λ d

dΛZ[J ] = 0 would imply some equations that we can write as

Λ
d

dΛ
g4 = β4

(
g4,Λ2g6

)
, (23.114)

Λ
d

dΛ
g6 =

1
Λ2
β6

(
g4,Λ2g6

)
, (23.115)

where β4 and β6 are some general, complicated functions. The factors of Λ have all been
inserted by dimensional analysis since, as we just showed, no other scale can appear
in Λ d

dΛZ[J ]. To make these equations more homogeneous, let us define dimensionless
couplings λ4 = g4 and λ6 = Λ2g6. Then,

Λ
d

dΛ
λ4 = β4(λ4, λ6) , (23.116)

Λ
d

dΛ
λ6 − 2λ6 = β6 (λ4, λ6) . (23.117)
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The −2λ6 term implies that if β6 is small, then λ6(Λ) = λ6(ΛH)
(

Λ
ΛH

)2
is a solution.

We would like this to mean that as the coupling Λ is taken small, Λ 
 ΛH , the higher-
dimension operators die away. However, the actual coupling of the operator for this solution
is just g6(Λ) = 1

Λ2
H
λ6(ΛH) = g6(ΛH), which does not die off (it does not run since we

have set β = 0), so things are not quite that simple. We clearly need to work beyond zeroth
order.

It is not hard to solve the RGEs explicitly in the case when β4 and β6 are small. Actually,
one does not need the βi to be small; rather, one can start with an exact solution to the
full RGEs and then expand perturbatively around the solution. For simplicity, we will just
assume that the βi can be expanded in their arguments. To linear order, we can write

Λ
d

dΛ
λ4 = aλ4 + bλ6, (23.118)

Λ
d

dΛ
λ6 = cλ4 + (2 + d)λ6, (23.119)

and we assume a, b, c, d are small real numbers, so that the anomalous dimension does not
overwhelm the classical dimension (otherwise perturbation theory would not be valid). It
is now easy to solve this vector of homogeneous linear differential equations by changing
to a diagonal basis:

λ̃4 = − c

Δ
λ4 −

2 + d− a−Δ
2Δ

λ6, λ̃6 =
c

Δ
λ4 +

2 + d− a+ Δ
2Δ

λ6, (23.120)

where Δ =
√

4bc+ (d− a+ 2)2. The RGEs are easy to solve now:

λ̃4(Λ) =
(

Λ
Λ0

)d+2+a−Δ
2

λ̃4(Λ0) , λ̃6(Λ) =
(

Λ
Λ0

)d+2+a+Δ
2

λ̃6(Λ0) . (23.121)

Back in terms of the original basis, we then have

λ4(Λ) =
(

Λ
Λ0

)d+2+a−Δ
2
[(

2 + d− a+ Δ
2Δ

)
λ4(Λ0)−

b

Δ
λ6(Λ0)

]
+
(

Λ
Λ0

)d+2+a+Δ
2
[
−
(

2 + d− a−Δ
2Δ

)
λ4(Λ0) +

b

Δ
λ6(Λ0)

]}
(23.122)

and

λ6(Λ) =
(

Λ
Λ0

)d+2+a−Δ
2
[
− c

Δ
λ4(Λ0)−

(
2 + d− a−Δ

2Δ

)
λ6(Λ0)

]
+
(

Λ
Λ0

)d+2+a+Δ
2
[
c

Δ
λ4(Λ0) +

(
2 + d− a+ Δ

2Δ

)
λ6(Λ0)

]}
, (23.123)

which is an exact solution to Eqs. (23.118) and (23.119). In these solutions, λ4(Λ0) and
λ6(Λ0) are free parameters to be set by boundary conditions.

What we would like to know is the sensitivity of λ6 at some low scale ΛL to its initial
condition at some high scale ΛH for fixed, renormalized, values of λ4(ΛL). For simplicity,
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Solutions of the Wilsonian RGEs with a = 0.1, b = 0.2, c = −0.5 and d = 0.3. We fix
λ4(ΛL) = 0.5 and look at how the value of λ6(ΛL) depends on λ6(ΛH) for some higher
ΛH . As ΛH → ∞ the value of λ6(Λ) goes to a constant value, entirely set by λ4(Λ) and the
anomalous dimensions. Arrows denote RG flow to decreasing Λ. Note the convergence is
extremely quick.

�Fig. 23.2

let us take λ6(ΛH) = 0 (any other boundary value would do just as well, but the solution
is messier). Then, Eqs. (23.122) and (23.123) can be combined into

λ6(Λ) =
2c
[(

Λ
ΛH

)Δ
− 1
]

(2 + d− a+ Δ)− (2 + d− a−Δ)
(

Λ
ΛH

)Δλ4(Λ) . (23.124)

Setting Λ = ΛL 
 ΛH and assuming a, b, c, d
 2, so that Δ ≈ 2, we find

λ6(ΛL) = − c
2

(
1− Λ2

L

Λ2
H

)
λL4 (ΛL) . (23.125)

In particular, the limit ΛH → ∞ exists. Back in terms of g4 and g6 we have fixed g4(ΛL)
and set g6(ΛH) = 0. Thus, as ΛH → ∞ we have g6(ΛL) = − c

2
1

Λ2
L
g4 (ΛL). That is, the

boundary condition at large ΛH is totally irrelevant to the value of g6 at the low scale. That
is why operators with dimension greater than 4 are called irrelevant. This result is shown
in Figure 23.2.

To relate all this rather abstract manipulation to physics, recall the calculation of the
electron magnetic moment from Chapter 17. We found that the moment was g = 2 at tree-
level and g = 2 + α

π at 1-loop. If we had added to the QED Lagrangian an operator of the
formOσ = e

4 ψ̄σ
μνψFμν with some coefficientCσ , this would have given g = 2+ α

π +Cσ .
Since the measured value of g is in excellent agreement with the calculation ignoring Cσ ,
we need an explanation of whyOσ should be absent or have a small coefficient. The answer
is given by the above calculation, with g4 representing α and g6 representing the coefficient
of Oσ . Say we do add Oσ to the QED Lagrangian with even a very large coefficient, but
with the cutoff set to some very high scale, say ΛH ∼ MPl ∼ 1019 GeV. Then, when the
cutoff is lowered, even a little bit (say to 1015 GeV), whatever you set your coefficient to at
MPl would be totally irrelevant: the coefficient ofOσ would now be determined completely
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in terms of α, like g6 is determined by g4. Hence g becomes a calculable function of α.
The operator Oσ is irrelevant to the g − 2 calculation.

Note that if we lowered the cutoff down to say 1 MeV, then Oσ would indeed give
a contribution to g, but a contribution calculable entirely in terms of α. With such a low
cutoff, there would be cutoff dependence in the 1-loop calculation of g−2 as well (which is
tremendously difficult to actually calculate). Indeed, these two contributions must precisely
cancel, since the theory is independent of cutoff. That is why one does not want to take the
cutoff ΛL down to scales near physics of interest in the Wilsonian picture. To repeat, in the
continuum picture, μ is of the order of physical scales, but in the Wilsonian picture, Λ is
always much higher than all of the relevant physical scales.

Returning to our toy RGEs, suppose we set λ4(ΛH) = 0. Then we would have found

λ4(Λ) =
2b
[
1−
(

Λ
ΛH

)Δ]
2 + d− a−Δ− (2 + d− a+ Δ)

(
Λ

ΛH

)Δλ6(Λ) . (23.126)

Expanding this for a, b, c, d
 2 gives

λ4(ΛL) =
b

2

(
1− Λ2

H

Λ2
L

)
λ6(ΛL) , (23.127)

which diverges as ΛH → ∞! Thus, we cannot self-consistently hold the irrelevant
couplings fixed at low energy and take the high-energy cutoff to infinity.

The same would be true if we had a dimension 4 coupling (such as a gauge coupling) and
a dimension-2 parameter, such as m2 for a scalar. Then, we would have found an extraor-
dinary sensitivity of m2(ΛL) to the boundary condition m2(ΛH) if g(ΛL) is held fixed.
Of course, like any renormalizable coupling, one should fix m2(ΛL) through a low-energy
experiment, for example measuring the Higgs mass. The Wilsonian RG simply implies that
if there is a short-distance theory with cutoff ΛH in which mh is calculable, then mh(ΛH)
should have a very peculiar looking value. For example, suppose m(ΛL) = 10GeV when
ΛL = 105 GeV. Then, there is some value for m2(ΛH) with ΛH = 1019 GeV. If there
were a different short-distance theory for which m2(ΛH) were different by a factor of

order Λ2
L

Λ2
H

= 10−38, then m2(ΛL) would differ by a factor of order 1 (see Problem 23.8).
This is the fine-tuning problem. It is a sensitivity of long-distance measurements to small
deformations of a theory defined at some short-distance scale. The general result is that
relevant operators, such as scalar masses, are UV sensitive (unless they are protected by a
custodial symmetry; see Section 22.6).

23.6.2 Generalization and discussion

The generalization of the above 2-operator example is a theory with an arbitrary set of
operators On. To match onto the Wilson operator language (this is, after all, the Wilsonian
RGE), let us write

Z[J ] =
∫ Λ

Dφ exp

{
i

∫
d4x
∑
n

CnOn(φ)

}
. (23.128)
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Since there is a cutoff, all couplings (Wilson coefficients Cn) in the theory are finite. The
RGE in the Wilsonian picture is Λ d

dΛZ[J ] = 0, which forces

Λ
d

dΛ
Cn = βn({Cm} ,Λ) (23.129)

for some βn. In the continuum picture, the RGE we used was

μ
d

dμ
Cn = γnmCm, (23.130)

which looks a lot like the linear approximation to the Wilsonian RGE. In fact, we can
linearize the Wilsonian RGE, not necessarily by requiring that all the couplings be small,
but simply by expanding around a fixed point, which is a solution of Eq. (23.129) for which
βn = 0.

In the continuum language, although the cutoff is removed, the anomalous dimen-
sions γmn are still determined by the UV divergences. So these two equations are very
closely related. However, there is one very important difference: in the continuum picture
quadratic and higher-order power-law divergences are exactly removed by counterterms.
In the continuum picture of renormalization, the only UV divergences corresponding to
physically observable effects are logarithmic ones (examples were given in various non-
renormalizable theories in Chapter 22). With a finite cutoff, one simply has Λ2 terms in
the RGE. This Λ2 dependence was critical for the analysis of g4 and g6 in the previous
subsection.

For a theory with general, possibly non-perturbative βn, consider a given subset S of
the operators and its complement S. Choose coefficients for the operators in S to be fixed
at a scale ΛL and set the coefficients for the operators in S to 0 at a scale ΛH . If it is
possible to take the limit ΛH → ∞ so that all operators have finite coefficients at ΛL,
the theory restricted to the set S is called a renormalizable theory. Actually, one does not
have to set all the operators in S to 0 at ΛH ; if there is any way to choose their coefficients
as a function of ΛH so that the theory at ΛL is finite, then the theory is still considered
renormalizable.

It is not hard to see that this definition coincides with the one we have been using
all along. As you might imagine, generalizing the g4/g6 example above, any operator
with dimension greater than 4 will be non-renormalizable and irrelevant. Operators with
dimension less than 4 are super-renormalizable and relevant. Marginal operators have
dimension equal to 4; however, if the operator has any anomalous dimension at all it will
become marginally relevant or marginally irrelevant. From the Wilsonian point of view,
marginally irrelevant operators are the same as irrelevant ones – one cannot keep their
couplings fixed at low energy and remove the cutoff.

Technically, the terms relevant and irrelevant should be applied only to operators cor-
responding to eigenvectors of the RG. Otherwise there is operator mixing. So, let us
diagonalize the matrix γmn and consider its eigenvalues. Any eigenvalue λn of γmn with
λn > 0 will will cause the couplings Cn to decrease as μ is lowered. Thus, these operators
decrease in importance at long distances. They are the irrelevant operators. Relevant oper-
ators have λn < 0. These operators increase in importance as μ is lowered. If we try to
take the long-distance limit, the relevant operators blow up. It is sometimes helpful to think
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of all possible couplings in the theory as a large multi-dimensional surface. An RG fixed
point therefore lies on the subsurface of irrelevant operators. Any point on this surface will
be attracted to the fixed point, while any point off the surface will be repelled away from it.

In practice, we do not normally work in a basis of operators that are eigenstates of the
RG. In a perturbative theory (near a Gaussian fixed point), operators are usually classified
by their classical scaling dimension dn. The coefficient of such an operator (in four dimen-
sions) has classical dimension [Cn] = 4 − dn. If we rescale Cn → Cnμ

dn−4 to make
the coefficient dimensionless, then the γnn component in the matrix Eq. (23.130) becomes
γnn = dn − 4. Thus, at leading order, irrelevant operators are those with dn > 4. In the
quantum theory, loops induce non-diagonal components in γmn. If a marginal or relevant
operator mixes into an irrelevant one, this mixing completely dominates the RG evolution
of Cn at low energy. In this way, an operator that is classified as irrelevant based on its
scaling dimension can become more important at large distances. However, the value of its
coefficient quickly becomes a calculable function of coupling constants corresponding to
more relevant operators. We saw this through direct calculation.

Problems

23.1 Consider the operator O = ψ̄ /∂ψψ̄/∂ψ in QED.
(a) Evaluate the anomalous dimension of Oμν at 1-loop.
(b) If the coefficient for this operator is C = 1 at 1 TeV, what is C at 1 GeV?

23.2 Show that A = 0 in Eq. (23.38) by evaluating the anomalous dimension of GF from
Eq. (23.40) in QED. At an intermediate stage, you may want to use the Fierz identity:(

ψ̄1PLγ
μγαγβψ2

)(
ψ̄3PLγ

μγαγβψ4

)
= 16
(
ψ̄1PLγ

μψ2

)(
ψ̄3PLγ

μψ4

)
,

(23.131)
which you derived in Problem 11.8.

23.3 Show that Eq. (23.97) follows from the small λR limit of the general solution to
mR(μ).

23.4 Consider a theory with N real scalar fields φi with Lagrangian

L = −1
2
φi(� +m2)φi −

λ

4
(φi)2(φj)2. (23.132)

This effective Lagrangian can describe systems with multiple degrees of freedom
near critical points (for example, the superfluid transition in 4He corresponds to
N = 2).
(a) Calculate γm and β(λR) in this theory. Check that for N = 1 you reproduce

Eqs. (23.96) and (23.95). (Note that the normalizations of λ in Eqs. (23.85)
and (23.132) are different.)

(b) Where is the location of the Wilson–Fisher fixed point in this theory in 4 − ε

dimensions?
(c) What is the value of the critical exponent ν is this theory in d = 3 in the epsilon

expansion?
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23.5 Compute the value of the critical exponent ν in the Wilson–Fisher theory (with N =
1, as in Section 23.5.2) to order ε2.

23.6 Scheme dependence in the Wilson–Fisher theory.
(a) Compute the 1-loop RGEs in scalar φ4 theory (with Lagrangian Eq. (23.85))

using a hard cutoff. Show that you get non-zero values for λ and m at the fixed
point, but the critical exponent ν is the same as computed in Section 23.5.2.

(b) Plot the RG flow trajectories using the RGEs you just computed with a fixed
cutoff. What is different about these trajectories from those in Figure 23.1?

(c) Compute the 1-loop RGEs in the Wilsonian picture by literally integrating over
a shell in momentum from bΛ to Λ. Show that you get the same value for ν.

(d) Show that the critical exponent ν is independent of regulator and subtraction
scheme at 1-loop. Can you choose a scheme so that λ� andm� are whatever you
want?

23.7 Derive

Λ
d

dΛ
Lint(φ) =

∫
d4p

(2π)4

p2 +m2

p2

Λ2
e
p2

Λ2

[
δLint

δφ(p)
δLint

δφ(−p) −
δ2Lint

δφ(p)δφ(−p)

]
(23.133)

using the Wilson–Polchinski RGE. Show that the first term corresponds to integrat-
ing out the tree-level diagram and the second from loops.

23.8 Consider a theory with a dimension-2 mass parameter m2 and a dimensionless
coupling g.
(a) Write down and solve generic Wilsonian RGEs for this theory, as in Eqs.

(23.118) and (23.119).
(b) Fix g(ΛL) = 0.1 for concreteness with ΛL = 105 GeV. What value of m2(ΛH)

would lead to m2(ΛL) = 100GeV?
(c) What would m2(ΛL) be if you changed m2(ΛH) by 1 part in 1020?
(d) Sketch the RG flows for this theory.
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We have discussed the concept of unitarity a number of times now. Informally, unitarity
means conservation of probability: something cannot be created from nothing, nor can
something just disappear. Our insistence on unitarity constrains the states in the Hilbert
space to transform in unitary representations of the Poincaré group. As we will see, this
aspect of unitarity provides powerful constraints even if the set of states is not known
exactly. (For example, we do not need to know the spectrum of bound states.) Unitarity
also constrains the form that interactions can have, since the S-matrix must be unitary.

In Chapter 8, we argued that particles should be identified with states in the Hilbert
space that transform in unitary irreducible representations of the Poincaré group. Single-
and multi-particle states are eigenstates of the momentum operator P̂μ, with P̂μ|X〉 =
pμ|X〉 for a set of real numbers pμ with p0 > 0 and p2 ≥ 0, which transform in the 4-
vector representation of the Lorentz group. The corresponding adjoint states 〈X| satisfy
〈X|P̂μ = 〈X|pμ for the same pμ. Single-particle states |X〉 transform under irreducible
unitary representations of the Lorentz group as well, as |X〉 → exp(iθμνSμν) |X〉 where
θμν are the boost and rotation angles and Sμν are the generators of the Lorentz group in the
representation of that particle. The transformations of a multi-particle state are induced by
the transformations of the particles in that state. The vacuum |Ω〉 is assumed to be Lorentz
invariant and to have zero momentum: P̂ |Ω〉 = 0.

An important feature of the Hilbert space is that it is complete, in the sense that

1 =
∑
X

∫
dΠX |X〉 〈X| , (24.1)

where the sum is over single- and multi-particle states |X〉 and

dΠX ≡
∏
j∈X

d3pj
(2π)3

1
2Ej

. (24.2)

Up to an overall δ-function, this is the Lorentz-invariant phase space of the particles in state
X , dΠLIPS = (2π)4 δ4 (Σp) dΠX . We verified the normalization of this completeness
relation for one-particle states in Eq. (2.74); Eq. (24.1) is the natural generalization to
multi-particle states. For the completeness relation to hold, all possible independent states
in the theory must be included. As we will see, there is a close connection between unitarity
of the S-matrix and having all the states included in the theory.

We begin the discussion of implications of unitarity in Section 24.1 with the optical the-
orem. The optical theorem gives a powerful, non-perturbative relationship between cross
sections and the imaginary part of scattering amplitudes. In perturbation theory, the optical

452
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theorem relates loop amplitudes to tree-level cross sections. To the extent that trees rep-
resent classical physics and loops represent quantum effects, the optical theorem implies
that the quantum theory is uniquely determined by the classical theory because of unitar-
ity. The relation between loops and trees can be verified in perturbation theory if we have
a Lagrangian; however, the optical theorem lets us make statements beyond perturbation
theory.

Section 24.2 discusses additional non-perturbative results for general field theories. We
show that one-particle states will always give poles in Green’s functions. From this, a
non-perturbative version of the LSZ reduction formula follows as a special case. Although
having states in a theory corresponding to every pole in Green’s functions is a requirement
of unitarity, unitary theories are not necessarily described by local Lagrangians. Some
connections between locality and unitarity are discussed in Section 24.4.

24.1 The optical theorem

Unitarity is a fancy way of saying probabilities add up to 1. Conservation of probability in
a quantum theory implies that, in the Schrödinger picture, the norm of a state |Ψ; t〉 is the
same at any time t. For example,

〈Ψ; t|Ψ; t〉 = 〈Ψ; 0|Ψ; 0〉 . (24.3)

Now, since

|Ψ; t〉 = e−iHt|Ψ; 0
〉
, (24.4)

unitarity means the Hamiltonian should be Hermitian, H† = H . Then, since the S-matrix
is S = e−iHt, unitarity implies

S†S = 1. (24.5)

That is, the S-matrix is a unitary matrix. Despite its apparent simplicity, this equation has
remarkable consequences.

One of the most important implications of unitarity is a relationship between scattering
amplitudes and cross sections called (for historical reasons) the optical theorem. To derive
the optical theorem, first recall from Chapter 5 that the S-matrix elements that we have
been calculating with Feynman graphs were defined by

〈f |T |i〉 = (2π)4δ4(pi − pf )M(i→ f), (24.6)

where the transfer matrix T is the non-trivial part of the S-matrix:

S = 1 + iT . (24.7)

The matrix T is not Hermitian. In fact, unitarity implies 1 = S†S = (1 − iT †)(1 + iT )
and so

i
(
T † − T

)
= T †T . (24.8)
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Sandwiching the left-hand side between 〈f | and |i〉 gives〈
f |i
(
T † − T

)
|i
〉

= i〈i |T | f〉� − i 〈f |T |i〉
= i(2π)4δ4(pi − pf ) (M�(f→i)−M(i→f)) . (24.9)

Using the completeness relation in Eq. (24.1), we get

〈
f |T †T |i

〉
=
∑
X

∫
dΠX

〈
f |T †|X

〉
〈X|T |i〉

=
∑
X

(2π)4δ4(pf − pX) (2π)4δ4(pi − pX)
∫
dΠXM (i→X)M� (f→X) . (24.10)

Thus, unitarity implies:

Box 24.1 The generalized optical theorem

M(i→f)−M�(f→ i)= i
∑

X

∫
dΠX(2π)4δ4(pi−pX)M(i→X)M�(f→X).

This generalized optical theorem must hold order-by-order in perturbation theory.
But while its left-hand side has matrix elements, the right-hand side has matrix ele-
ments squared. This means that at order λ2 in some coupling the left-hand side must
be a loop to match a tree-level calculation on the right-hand side. Thus, the imagi-
nary parts of loop amplitudes are determined by tree-level amplitudes. In particular,
we must have loops – an interacting classical theory by itself, without loops, violates
unitarity.

An important special case of the generalized optical theorem is when |i〉 = |f〉 = |A〉
for some state A. Then,

2i ImM(A→ A) = i
∑
X

∫
dΠX(2π)4δ4(pA − pX)|M(A→ X) |2. (24.11)

In particular, when |A〉 is a one-particle state, the decay rate is

Γ(A→ X) =
1

2mA

∫
dΠX(2π)4δ4(pA − pX) |M(A→ X)|2. (24.12)

So,

ImM(A→ A) = mA

∑
X

Γ(A→ X) = mAΓ tot, (24.13)

where Γ tot is the total decay rate of a particle, equal to its inverse lifetime. This says that
the imaginary part of the amplitude associated with the exact propagator is equal to mass
times the total decay rate.
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If |A〉 is a two-particle state, then the cross section in the center-of-mass frame is

σ(A→ X) =
1

4ECM|�pi|

∫
dΠX(2π)4 δ4(pA − pX)|M(A→ X)|2. (24.14)

So,

The optical theorem Box 24.2

ImM(A→ A) = 2ECM|�pi|
∑

X σ(A→ X).

This special case is often called the optical theorem. It says that the imaginary part of the
forward scattering amplitude is proportional to the total scattering cross section.

24.1.1 Decay rates

To see the implications of Eq. (24.13), let us take as an example a simple theory with two
scalar fields φ and π and Lagrangian

L = −1
2
φ
(
� +M2

)
φ− 1

2
π
(
� +m2

)
π +

λ

2
φπ2. (24.15)

If M > 2m then φ can decay into ππ. Then Eq. (24.13) implies

ImM(φ→ φ) = MΓ(φ→ ππ) + other decay modes. (24.16)

We will now verify this at order λ2.
The 1-loop amplitude was evaluated in Chapter 16 (see Eq. (16.10)):

iM loop(p2) =
p p

= − iλ2

32π2

∫ 1

0

dx ln
(
m2 − iε− p2x(1− x)

Λ2

)
,

(24.17)

where we have included the iε from the virtual scalar propagator
(
k2 −m2 + iε

)−1
by

m2 → m2 − iε to move off the branch cut. For a 1 → 1 S-matrix element, we need to put
φ on-shell by setting p2 = M2 . This gives

M loop(M2) = − λ2

32π2

∫ 1

0

dx ln
(
m2 −M2x(1− x)− iε

Λ2

)
. (24.18)

Now, x(1− x) ≤ 1
4 , so for M < 2m this expression is real, and therefore ImM loop = 0.

In this regime the decay rate is also zero, so Eq. (24.16) holds for M < 2m.
For M > 2m we use

ln(−A− iε) = lnA− iπ. (24.19)

Then,

ImM loop =
λ2

32π

∫ 1

0

dx θ(M2x(1− x)−m2)

=
λ2

32π

√
1− 4

m2

M2
θ(M − 2m). (24.20)
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The two-body decay rate (see Chapter 5), including the 1
2 for identical particles, is

Γ tot = Γ(φ→ ππ) =
1
2

∫
1

2M
|M|2 |�pf |

M

dΩ
16π2

θ(M − 2m) . (24.21)

With �p 2
f =
(
M
2

)2 −m2 andM = λ the total rate is

Γ tot =
λ2

32πM

√
1− 4

m2

M2
θ(M − 2m). (24.22)

So Eq. (24.16) holds and the optical theorem is verified in this case to order λ2.

24.1.2 Cutting rules

To dissect the calculation we just did, it is helpful to think about the real and imaginary
parts of a Feynman propagator. To evaluate the imaginary part of a propagator, note that

Im
1

p2 −m2 + iε
=

1
2i

(
1

p2 −m2 + iε
− 1
p2 −m2 − iε

)
=

−ε
(p2 −m2)2 + ε2

.

(24.23)
This vanishes as ε→ 0, except near p2 = m2. If we integrate over p2, we find

∫ ∞

0

dp2 −ε
(p2 −m2)2 + ε2

= −π, (24.24)

implying that

Im
1

p2 −m2 + iε
= −πδ(p2 −m2). (24.25)

This is a useful formula. It says that the propagator is real except for when the particle
goes on-shell. More generally:

Imaginary parts of loop amplitudes come from intermediate particles going on-shell.

Similarly,

1
k0 − ωk + iε

− 1
k0 − ωk − iε

= −2πiδ(k0 − ωk) , (24.26)
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where ωk =
√
�k2 +m2. This lets us write the Feynman propagator as

ΠF(k) ≡
i

k2 −m2 + iε
=

i

2ωk

[
1

k0 − ωk + iε
− 1
k0 + ωk − iε

]
= ΠR(k) +

π

ωk
δ(k0 − ωk), (24.27)

where the retarded propagator is

ΠR(k) =
i

2ωk

[
1

k0 − ωk − iε
− 1
k0 + ωk − iε

]
. (24.28)

An important point is that while ΠF(k) has poles at k0 = ±ωk ∓ iε, which lie above and
below the real k0 axis, ΠR(k) only has poles above the real axis, at k0 = ±ωk + iε.

Now consider our loop integral:

iM loop(p2) =
p

p− k

k

p

=
(iλ)2

2

∫
d4k

(2π)4
i

(k − p)2 −m2 + iε

i

k2 −m2 + iε

= −λ
2

2

∫
d4k

(2π)4

[
ΠR(k − p) +

π

ωk−p
δ(k0 − p0 − ωk−p)

] [
ΠR(k) +

π

ωk
δ(k0 − ωk)

]
.

(24.29)

The term with ΠR(k − p)ΠR(k) in it only has poles above the real k0 axis. Thus, we can
close the k0 integration contour in the lower half-plane and the integral gives zero. Also,
the two δ-functions can never be simultaneously satisfied (this is easiest to see in the frame
where �p = 0 so that p0 = M and ωk−p = ωk). Dropping such terms, we can use Eq.
(24.27) again to write

M loop
(
p2
)

= −λ
2

2

∫
d4k

(2π)4

[
ΠF (k − p) π

ωk
δ(k0 − ωk)

+ΠF(k)
π

ωk−p
δ(k0 − p0 − ωk−p)

]
. (24.30)

Now, since the δ-functions are real, the only place an imaginary piece can come from is
the Feynman propagator. Thus, to calculate ImM loop(p) we can use Eq. (24.25) to get

ImM loop
(
p2
)

=
λ2

2

∫
d4k

(2π)4

[
πδ
(

(k − p)2 −m2
) π
ωk
δ(k0 − ωk)

+πδ
(
k2 −m2

) π

ωk−p
δ(k0 − p0 − ωk−p)

]
. (24.31)

The term on the second line vanishes (as before, this is easiest to see in the pμ rest frame).
Then we use

1
2ωk

δ(k0 − ωk) = δ
(
k2 −m2

)
− 1

2ωk
δ(k0 + ωk) . (24.32)
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Box 24.3 Cutting rules

1. Cut through the diagram in any way that can put all of the cut propagators
on-shell without violating momentum conservation.

2. For each cut, replace 1
p2−m2+iε

→ −2iπδ(p2 −m2)θ(p0).
3. Sum over all cuts.
4. The result is the discontinuity of the diagram, where Disc(iM) =
−2ImM.

Since
∫
dk0δ
(
(p− k)2 −m2

)
δ(k0 + ωk) = 0 we find a final simple form

2ImM loop
(
p2
)

= −λ
2

2

∫
d4k

(2π)4
(−2πi) δ

(
(p− k)2 −m2

)
(−2πi) δ

(
k2 −m2

)
.

(24.33)
This equation indicates that the imaginary part of the amplitude can be calculated by
putting intermediate particles on-shell.

It turns out the above manipulations can be performed for any amplitude. The generaliza-
tion of Eq. (24.33) is an efficient shortcut to calculating imaginary parts of loop amplitudes
known as the cutting rules. These rules are given in Box 24.3. Each way of putting inter-
mediate states in a loop amplitude on-shell is known as a cut. Cut diagrams are often drawn
as

with the dashed line indicating that the particles in the loop intersecting the cut are to be
put on-shell. Cuts are directional, in the sense that cut particles should have positive energy
when flowing from the left to the right side of the diagrams. You can explore another way
to derive the cutting rules in Problem 24.1. An excellent discussion of the cutting rules can
be found in [Veltman, 1994].

As an example, one can use the cutting rules to directly confirm the optical theorem.
Changing variables in Eq. (24.33) to k = q2 and p − k = q1 and inserting a factor of
1 =
∫
d4q1δ

4(p− q1 − q2), we get

2ImM loop =
λ2

2

∫
d4q1
(2π)4

∫
d4q2
(2π)4

(2π)2δ(q21−m2)δ(q22−m2)δ4(p−q1−q2). (24.34)

Since p0 > 0, these δ-functions only have support if q01 > 0 and q02 > 0 as well. Then we
can use ∫

d4q

(2π)4
2πδ(q2 −m2)θ(q0) =

∫
d3q

(2π)3
1

2ωq
(24.35)

to find

ImM loop =
1
2

(
λ2

2

)∫
dΠLIPS = MΓ(φ→ ππ), (24.36)
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in agreement with Eq. (24.16).
The discontinuity of an amplitude considered as a complex function of momenta is given

by the cutting rules [Cutkosky, 1960]. The discontinuity of an amplitude means the differ-
ence between the amplitude when the energies are given small positive imaginary parts or
small negative imaginary parts. That is,

Disc iM
(
p0
)
≡ iM(p0 + iε)− iM(p0 − iε) = −2ImM(p0). (24.37)

Amusingly, the word cut refers simultaneously to the procedure of slicing open loops to
form trees, to branch cut singularities associated with particle thresholds producing the dis-
continuity, and to Cutkosky’s name. The analytic structure of the S-matrix in the complex
plane is a fascinating and important subject (see for example [Eden et al., 1966]).

By the way, you may have noticed in Eq. (24.30) that the entire loop amplitude was
given by a sum of terms with δ-functions, not just its imaginary part. In fact, one can
perform similar substitutions for any loop amplitude, replacing all the propagators with
ΠF = ΠR + δ and dropping all the terms with only ΠR. For the remaining terms, one
can substitute back in ΠR = ΠF − δ to produce a set of terms with Feynman propagators,
each one of which has at least one δ-function. In this way, loops can be decomposed into
tree amplitudes. That this can always be done is known as the Feynman tree theorem
[Feynman, 1972]. Essentially, the Feynman tree theorem reduces Lorentz-covariant time-
dependent perturbation theory to old-fashioned perturbation theory (see Chapter 4), which
is formulated in terms of on-shell intermediate states from the start. In fact, one of the
simplest ways to prove the generalized optical theorem for a given theory, and hence that
the theory is unitary, is using old-fashioned perturbation theory (see, for example [Sterman
1993, Section 9.6]).

24.1.3 Propagators and polarization sums

The optical theorem and the cutting rules work for particles of any spin. For particles with
spin, one must sum over final state spins in the decay rate. In fact, the optical theorem
efficiently connects propagators to spin sums, as we now explain.

For example, take Yukawa theory with Lagrangian

L = −1
2
φ(� +M2)φ+ ψ̄

(
i/∂ −m

)
ψ + λφψ̄ψ. (24.38)

For the decay of φ into ψ̄ψ, we find

Γ(φ→ ψ̄ψ) =
∑
s,s′

λ2

2M

∫
d3q1
(2π)3

1
2ωq1

∫
d3q2
(2π)3

1
2ωq2

v̄s′(q1)us(q2) ūs(q2) vs′(q1) .

(24.39)
Using Eq. (24.35) we can write this as

Γ =
λ2

2M

∫
d4q2

(2π)4

∫
d4q1
(2π)4

(2π)4δ4(p− q1 − q2)

× 2πδ
(
q22 −m2

)
2πδ
(
q22 −m2

)
Tr[( /q2 +m)( /q1 −m)]. (24.40)
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The loop is

iMloop =
p

q2

q1

p

= λ2

∫
d4q2

(2π)4

∫
d4q1
(2π)4

Tr[( /q2 +m)( /q1 −m)]
[q21 −m2 + iε][q22 −m2 + iε]

(2π)4 δ4(p− q1 − q2) .

(24.41)

For the imaginary part of M loop, we have to put the intermediate states on-shell. This
replaces the propagators by−2πi times δ-functions, just as for the scalar case. The numer-
ator factor is unaffected, and stays as Tr[( /q1 −m)( /q2 +m)]. Thus, the cut loop amplitude
gives 2M times the decay rate, which is twice the imaginary part, as expected.

Note, however, that the Tr[( /q1 −m)( /q2 +m)] factor in the decay rate came from a sum
over physical on-shell final states, while this factor in the loop came from the numerators
of the propagators. Thus, for the optical theorem to hold in general:

The numerator of a propagator must be equal to the sum over physical spin states.

This is a consequence of unitarity.
As a check, for a massive spin-1 field, the spin sum is (see Problem 8.5)

3∑
i=1

εiμε
i�
ν = −gμν +

pμpν

m2
(24.42)

and the propagator is

iΠμν(p2) = −i
gμν − pμpν

m2

p2 −m2 + iε
. (24.43)

So the numerator is again given by the sum over physical spin states and the optical theorem
holds.

What about a massless spin-1 field? There, the spin sum includes only transverse polar-
izations. There is no way to write the sum in a Lorentz-invariant way, but we can write
it as

2∑
i=1

εμj ε
μ�
j = −gμν +

1
2E2

(pμp̄ν + p̄νpμ) , (24.44)

where p̄μ = (E,−�p) (see Section 13.5.1). The photon propagator is

iΠμν(p2) = −i
gμν − (1− ξ)p

μpν

p2

p2 + iε
. (24.45)

So the numerator of the propagator is not just the sum over physical polarizations. How-
ever, because of gauge invariance (for the propagator) and the Ward identity (for the decay
rate), all the pμ terms drop out in physical calculations. Thus we see that gauge invariance
and the Ward identity are tied together and, moreover, both are required for a unitary theory
of a massless spin-1 particle. That is:
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Unitarity for massless spin-1 fields requires gauge invariance.

The same analysis can be made for massive and massless spin-2, although it is not terribly
illuminating. The result is that we can always write the propagator for any spin particle in
the form

Πs(p) =

∑
j εjε

�
j

p2 −m2 + iε
, (24.46)

where εj are a basis of physical polarizations for a particle of given spin.

24.1.4 Unstable particles

In Chapter 18 we showed that after summing all the 1PI insertions the full propagator in
the interacting theory becomes (Eq. (18.37) for a scalar)

iG(p2) =
i

p2 −m2
R + Σ(p2) + iε

, (24.47)

where iΣ(p2) is defined as the sum of 1PI self-energy graphs and mR is whatever renor-
malized mass appears in the Lagrangian (e.g.mR is the MS mass). The pole massmP was
defined so that G

(
p2
)

has a pole at p2 = m2
P , which led to m2

P −m2
R + Σ
(
m2
P

)
= 0.

If the particle is unstable, then Σ
(
p2
)

will in general have an imaginary part, and the
definition of pole mass needs to be modified. To see this, recall that by the optical theorem,

Γ tot =
1
mP

Im
( )

=
1
mP

Im
(

1PI + · · ·
)

=
1
mP

ImΣ
(
m2
P

)
+ · · · , (24.48)

where the · · · refer to non-1PI diagrams. If we assume that Γ tot 
 mP , as in a weakly
coupled theory, then these additional contributions will be suppressed by additional factors
of some couplings and can be ignored. Thus, ImΣ

(
m2
P

)
= mPΓ tot, which is non-zero for

unstable particles.
A natural way to keep the mass real is to modify the definition of pole mass so that

m2
P −m2

R + ReΣ(m2
P ) = 0. (24.49)

This new definition is sometimes called the real pole mass or the Breit–Wigner mass. By
Eq. (24.48), near the pole the propagator has the form

iG(p2) =
i

p2 −m2
P + imPΓ tot

. (24.50)

This expression is valid for Γ tot 
 mP .
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For example, consider an s-channel diagram involving this modified propagator:

σ ∝

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= g4

∣∣∣∣ i

p2 −m2
P + imPΓ tot

∣∣∣∣2 = g4 1
(p2 −m2

P )2 + (mPΓ tot)2
.

(24.51)

This is known as a Breit–Wigner distribution. It is the characteristic shape of a res-
onance. Examples are shown in Figure 24.1. The full-width at half-maximum of the
Breit–Wigner distribution is 2mPΓ tot. This is why we use the words width and decay
rate interchangeably.

Note also that we can justify treating Σ(p2) as constant when Γtot 
 mP , since then
the cross section only has support for p2 ∼ m2

P . In the Γtot → 0 limit, we can treat the
cross section as a δ-function with coefficient given by the integral over the Breit–Wigner
distribution:

g4

∣∣∣∣ i

p2 −m2
P + imPΓ

∣∣∣∣2 ≈ g4 π

mPΓ
δ(p2 −m2

P ), Γ 
 mP . (24.52)

This is called the narrow-width approximation. It says that near a resonance we can treat
the resonant particle as being on-shell. In the narrow-width approximation, the production
and decay of the resonance can be treated separately – there can be no interference between
production and decay. For example,

does not interfere with near resonance. (24.53)
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This follows simply because the resonance cannot be on-shell at the same phase space
point in the two diagrams. Factorization when intermediate particles go on-shell is a gen-
eral consequence of unitarity with other important implications, to be discussed further
in Section 24.3.

Another implication of the narrow-width approximation is that cross sections can be
calculated as production rates. For example, consider the process e+e− → Z → ν̄ν in
a simplified model where the Z is a vector boson of mass mZ that couples only to the
electron, e−, and the neutrino, ν, with strength g. At center-of-mass energies ECM 

mZ , the total cross section for this process is proportional to g4. However, for ECM ∼
mZ , there is resonant enhancement and σ is proportional only to g2. Indeed, the total
decay rate Γ of the Z is proportional to g2 (since Γ ∼ Im(iΣ) ∼ g2) and thus a factor

of g2 cancels near resonance, σ ∼ g4 π
mΓδ
(
p2 −m2

)
∼ g2

m δ
(
p2 −m2

)
. To exploit this

resonance enhancement, from 1989 to 1996 the Large Electron-Positron (LEP) collider at
CERN collided electrons at the Z-pole (ECM = 91 GeV). Running at the Z-pole greatly
enhanced the production rate of Z’s and allowed for precision tests of the Standard Model.
To compare this LEP data to theory predictions, the narrow-width approximation works
excellently, and one can completely ignore Z/γ interference. At higher center-of-mass
energies, at which LEP ran from 1998 to 2000, Z/γ interference is important and must be
included.

When Γ tot � mP , there is no natural definition for the mass of a particle. For example,
in a strongly coupled theory the decay rate becomes large as do both the real and imaginary
parts of Σ

(
p2
)
. A particle decaying very fast relative to its mass cannot be reliably iden-

tified as a particle. Examples include certain bound states in pure QCD called glueballs.
These decay as fast as they are formed and do not form sharp resonances. Identifying a
resonance with a particle only makes sense when Γ tot < mP .

There are alternatives to the real pole mass. An obvious one is the complex pole mass,
mC , defined by m2

C − m2
R + Σ
(
m2
C

)
= 0. A much more important mass definition is

the MS mass, mR, discussed in Section 18.4. The MS mass is not defined by any pole
prescription. Instead, it is a renormalized quantity which must be extracted from scattering
processes that depend on it. Recall from Chapter 18 that a mass definition is equivalent to
a subtraction scheme that is a prescription for determining the finite parts of counterterms.
For the MS mass, one simply sets the finite parts of the counterterms to zero. The MS mass
can be converted to the pole mass using Eq. (24.49). MS masses are particularly useful for
particles that do not form asymptotic states and cannot be identified as resonances, such
as quarks. For example, there is no way to extract the bottom-quark mass from a Breit–
Wigner distribution. MS masses are also important for precision physics, as we will see in
Chapter 31.

24.1.5 Partial wave unitarity bounds

Another important implication of the optical theorem is that scattering amplitudes cannot
be arbitrarily large. That unitarity bounds should exist follows from conservation of proba-
bility: what comes out should not be more than what goes in. Roughly speaking, the optical
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theorem says that ImM ≤ |M|2, which implies |M| < 1. There are a number of ways
to make this more precise. An important example is the Froissart bound, which says that
total cross sections cannot grow faster than ln2ECM at high energy [Froissart, 1961]. In
this section, we will discuss a different bound, called the partial wave unitarity bound.

Consider 2 → 2 elastic scattering of two particles A and B in the center-of-mass frame:
A(p1) + B(p2) → A(p3) + B(p4). The total cross section for this process in the center-
of-mass frame is (integrating the general formula in Eq. (5.32) over dφ)

σ tot(AB → AB) =
1

32πE2
CM

∫
d cos θ|M(θ)|2. (24.54)

To derive a useful bound, it is helpful to decompose the amplitude into partial waves. We
can always write

M(θ) = 16π
∞∑
j=0

aj(2j + 1)Pj(cos θ), (24.55)

where Pj (cos θ) are the Legendre polynomials that satisfy Pj(1) = 1 and∫ 1

−1

Pj(cos θ)Pk(cos θ)d cos θ =
2

2j + 1
δjk. (24.56)

Thus, we can perform the cos θ integral in Eq. (24.54) to get

σ tot =
16π
E2

CM

∞∑
j=0

(2j + 1) |aj |2 . (24.57)

Now, the optical theorem relates the imaginary part of the forward scattering amplitude,
at θ = 0, to the total cross section:

ImM(AB→AB at θ = 0) = 2ECM|�pi|
∑
X

σtot(AB→X)

≥ 2ECM|�pi|σ tot(AB→AB), (24.58)

and therefore
∞∑
j=0

(2j + 1)Im(aj) ≥
2 |�pi|
ECM

∞∑
j=0

(2j + 1) |aj |2 . (24.59)

Since |aj | ≥ Im(aj), this equation says that |aj | cannot be arbitrarily large. This is
an example of a partial wave unitarity bound. The sum on j can in fact be dropped
by considering scattering of angular momentum eigenstates rather than plane waves (see
[Itzykson and Zuber, 1980, Section 5.3]).

To get a cleaner-looking bound, consider the case when the total cross section is well
approximated by the elastic cross section; that is, when the only relevant final state is the
same as the initial one, in which case the inequality becomes an equality. Moreover, let
us take the high-energy limit, ECM � mA,mB , so that masses can be neglected and
|�pi| = 1

2ECM. Then Eq. (24.59) becomes

Im(aj) = |aj |2 . (24.60)
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This equation is solved by a circle in the complex plane, as in Figure 24.2. It implies

|aj | ≤ 1, 0 ≤ Im(aj) ≤ 1, and | Re(aj)| ≤
1
2

(24.61)

for all j. These bounds actually follow more generally, without having to assume the elastic
scattering cross section dominates, but the complete derivation is more involved, requir-
ing angular momentum conservation of the S-matrix, which depends on the spins of the
particles involved (see Problem 24.3).

The partial wave unitary bound provides extremely important limitations on the behav-
ior of scattering amplitudes. For example, suppose we have a theory with a dimension-5
interaction, such as

L =
1
2
φ�φ+

1
Λ
φ2�φ. (24.62)

The s-channel exchange diagram gives

M(φφ→ φφ) = ∼ p2

Λ
1
p2

p2

Λ
∼ s

Λ2
. (24.63)

This has no angular dependence, so |a0| = s
16πΛ2 and aj = 0 for j > 0. Thus, this

amplitude violates the unitarity bound forECM >
√

16πΛ (including the t- and u-channels
does not change this bound by much). That does not mean this theory is not unitarity, but
that this diagram cannot represent the physics of this process for ECM >

√
16πΛ. Of

course, we already knew that because this is a non-renormalizable theory loops should
become important around the scale Λ. The perturbative unitarity bound implies that loops
must be important around the scale Λ.

For a more physical example, the perturbative unitary bound would be violated by the
scattering of longitudinal W bosons in the Standard Model if there were no Higgs boson.
Due to the E

mW
dependence of the longitudinal polarization of the W boson, the amplitude
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for W boson scattering violates the unitary bound at ∼1 TeV. The Higgs boson restores
perturbative unitarity, as we will see in Section 29.2.

An important point is that the bound does not imply that above some scale unitarity is
violated. It says only that unitary would be violated if we could trust perturbation theory,
which we cannot. The standard resolution is to introduce new particles or to look for a UV
completion above the scale where perturbativity is lost.

24.2 Spectral decomposition

Fields are a crucial ingredient of quantum field theory. In a free theory (or an interacting
theory at any fixed time) we have constructed a set of fields out of creation and annihilation
operators that add or remove particles from states in the Hilbert space. Constructing fields
out of creation and annihilation operators has a number of advantages: it smoothly connects
classical field theory and quantum mechanics; it leads naturally to a well-defined perturba-
tion expansion; and it guarantees that the cluster decomposition principle holds.1 However,
one can also consider a generalized notion of fields that is not necessarily connected to
creation and annihilation operators.

A field φ(x) is an operator acting on the Hilbert space which is a function of space-time.
Certain fields are associated with particles, meaning they have non-zero matrix elements
with some single-particle states:

〈Ω|φ(x)|p〉 = Ne−ipx, (24.64)

where |p〉 is some one-particle state with momentum pμ and |Ω〉 is the vacuum. The nor-
malizationN is a number. A special case is fields φ(x) that are the renormalized interacting
fields constructed out of creation and annihilation operators for which N = 1 by construc-
tion. Another special case is the bare fields φ0(x) appearing in a bare Lagrangian, related to
the renormalized fields by φ0(x) =

√
Zφ(x), whereZ is the field strength renormalization.

For these, N =
√
Z. Another example, which will play an important role in Chapter 28, is

the pions, which are composite particles of mass mπ ∼ 140 MeV. The neutral pion state
|π0〉 has a non-zero matrix element with the current Jμ5(x) = ψ̄(x)γμγ5ψ(x). Explicitly,
〈Ω|J5

μ(x)|π0(p)〉 = ieipxpμFπ with Fπ = 92 MeV (up to some isospin factors that we are
ignoring).

Equation (24.64) does not care if the fields are elementary, meaning they appear in a
Lagrangian, or composite, like the pions which are made of quarks. Indeed, going back-
and-forth between elementary and composite notation is the idea behind effective field
theory, a powerful technique which will play an important role in Parts IV and V. In this
section, we show how one can understand the existence of particles as poles in Green’s
functions without using creation and annihilation operators.

1 Recall from Section 7.3.2 that cluster decomposition requires there be no δ-function singularities in the con-
nected part of the S-matrix. Since connected Feynman diagrams only have at most poles or branch cuts, cluster
decomposition is automatic in perturbation theory. One can also define the connected part of the S-matrix
without Feynman diagrams (see [Eden et al., 1966]).
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The general fields φ(x) are Heisenberg picture operators acting on the Hilbert space.
They can therefore be translated to the origin using e−iP̂xφ(x)eiP̂ x = φ (0). If we have a
state |X〉 with momentum pμ, so P̂μ|X〉 = pμ|X〉, then we have

〈Ω|φ(x)|X〉 = 〈Ω|eiP̂ xe−iP̂xφ(x)eiP̂ xe−iP̂x |X〉 = e−ipx〈Ω|φ(0)|X〉 , (24.65)

where 〈Ω|P̂ = 0 has been used, since the vacuum has zero momentum. Similarly,
〈X|φ(x)|Ω〉 = eipx〈Ω|φ(0)|X〉. This kind of algebraic trick will let us produce some
non-trivial constraints on Green’s functions.

24.2.1 Two-point functions

Consider the two-point function 〈Ω |φ(x)φ(y)|Ω〉 (no time-ordering). Recalling the
completeness relation in Eq. (24.1) we can use Eq. (24.65) to write

〈Ω|φ(x)φ(y)|Ω〉 =
∑
X

∫
dΠXe

−ipX(x−y)〈Ω|e−iP̂ xφ(x)eiP̂x|X〉〈X|e−iP̂ yφ(y)eiP̂ y|Ω〉

=
∑
X

∫
dΠXe

−ipX(x−y) |〈Ω|φ(0)|X〉|2

=
∫

d4p

(2π)4
e−ip(x−y)

{∑
X

∫
dΠX(2π)4δ4(p− pX) |〈Ω |φ (0)|X〉|2

}
,

(24.66)

where a δ-function has been inserted in the last line. Now, the quantity in brackets in Eq.
(24.66) is a Lorentz scalar, so it can only depend on p2. Since the states |X〉 are physical,
on-shell states in the Hilbert space, they all have momentum pμX with p2

X ≥ 0 and positive
energy. Thus p2 ≥ 0 and for p0 > 0 as well. Therefore, we can write

∑
X

∫
dΠX(2π)4 δ4(p− pX) |〈Ω|φ(0)|X〉|2 = 2πθ

(
p0
)
ρ
(
p2
)
, (24.67)

where ρ
(
p2
)

is known as a spectral density. From this equation, it follows that ρ
(
p2
)

is
real and that ρ

(
p2
)
≥ 0 for all p2 > 0 and that ρ

(
p2
)

= 0 if p2 ≤ 0. That the spectral
function is non-negative has important implications, as we will see.

The two-point function can then be written as

〈Ω|φ(x)φ(y)|Ω〉 =
∫

d4p

(2π)3
e−ip(x−y)θ

(
p0
)
ρ
(
p2
)
. (24.68)
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To simplify this further we define

D
(
x, y,m2

)
≡
∫

d3p

(2π)3
1

2ωp
e−ip(x−y), ωp =

√
�p 2 +m2

=
∫

d4p

(2π)3
e−ip(x−y)θ(p0) δ

(
p2 −m2

)
, (24.69)

which lets us write

〈Ω |φ(x)φ(y)|Ω〉 =
∫ ∞

0

dq2ρ
(
q2
)
D
(
x, y, q2

)
. (24.70)

For a free scalar field, D
(
x, y,m2

)
= 〈Ω |φ0(x)φ0(y)|Ω〉 and therefore ρ

(
q2
)

=
δ
(
q2 −m2

)
. However, Eq. (24.70) makes no assumption about expanding around the free

theory; D
(
x, y,m2

)
is just the mathematical expression given by Eq. (24.69) and so Eq.

(24.70) holds for an arbitrary interacting theory.
To connect to S-matrix elements, we need to relate the spectral function to time-ordered

products. This is easy to do:

〈Ω|T {φ(x)φ(y)} |Ω〉 = 〈Ω|φ(x)φ(y)|Ω〉 θ(x0 − y0) + 〈Ω|φ(y)φ(x)|Ω〉 θ(y0 − x0)

=
∫ ∞

0

dq2ρ(q2)
[
D
(
x, y, q2

)
θ(x0 − y0) +D(y, x, q2) θ(y0 − x0)

]
. (24.71)

Now, the calculation of the Feynman propagator in Section 6.2 involved the mathematical
identity

D(x, y, q2)θ(x0−y0)+D(y, x, q2)θ(y0−x0) =
∫

d4p

(2π)4
i

p2 − q2 + iε
eip(x−y). (24.72)

We therefore find

〈Ω|T {φ(x)φ(y)} |Ω〉 =
∫

d4p

(2π)4
eip(x−y)iΠ

(
p2
)
, (24.73)

where

Π
(
p2
)
≡
∫ ∞

0

dq2
ρ
(
q2
)

p2 − q2 + iε
(24.74)

is known as the spectral representation or Källén–Lehmann representation of the two-
point function.

To be clear, we have derived an expression for the Fourier transform of the exact non-
perturbative two-point function in terms of a spectral density – no dynamics has been used,
and we are not expanding around the free theory in any way. In fact, we have hardly used
quantum field theory at all: no mention of creation and annihilation operators went into
Eq. (24.73). One can do the same analysis for a fermion or gauge boson two-point function
without any unusual complications; however, we stick to the scalar case here for simplicity
(see Problem 24.2).

The spectral density has a lot of information in it. Basically, it tells us about all the
on-shell intermediate states in the theory. It is observable (in principle) since it is just
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based on an (in principle) observable Green’s function, 〈Ω|T {φ(x)φ(y)} |Ω〉. For a free
theory

Π
(
p2
)

=
1

p2 −m2 + iε
(24.75)

and ρ
(
q2
)

= δ
(
q2 −m2

)
. For an interacting theory, the spectral function will have singu-

larities at locations of physical, renormalized particle masses and other physical thresholds.
Since ρ

(
q2
)

is real and ρ
(
q2
)
> 0, we can calculate it from the 2-point function by taking

the imaginary part of Π
(
q2
)

using Eq. (24.25):

ρ
(
p2
)

= − 1
π

Im
[
Π
(
p2
)]
. (24.76)

As we have already observed, in a unitary theory Π
(
p2
)

can have an imaginary part
only when cuts can put intermediate particles on-shell. Thus, the spectral density con-
tains information about the particles in the theory. In particular, it can tell us about these
particles regardless of whether there are fundamental fields corresponding to them in the
Lagrangian.

As an example, recall the Lagrangian in Eq. (24.15), which describes a scalar φ of mass
M interacting with a scalar π of mass m, with interaction λ

2φπ
2. In this case, Π(p2) has

an imaginary part at p2 = M2 (from Eq. (24.25)). This is an isolated pole. For p2 > 4m2

(above the φ → ππ threshold) there is an additional imaginary part. To be explicit, using
Eqs. (24.20) and (24.47) we have

ρ
(
q2
)

= − 1
π

Im
[
Π(q2)
]

= − 1
π

Im

[
q2 −M2 + iε+ i

λ2

32π

√
q2 − 4m2

q2
θ(q2 − 4m2) + · · ·

]−1

= δ
(
q2 −M2

)
+ θ(q2 − 4m2)

λ2

32π2

1
(q2 −M2)2

√
q2 − 4m2

q2
+ · · · . (24.77)

This is typical of spectral functions: it has a pole at one-particle states (and possible bound
states) and then a branch-cut singularity above the multi-particle threshold. Note that the
coefficient of δ

(
q2 −M2

)
is 1 only when we use on-shell renormalization. Otherwise, it

is given by the residue of the pole in the Π
(
p2
)

at the pole mass p2 = m2
P , which is

subtraction-scheme dependent.
The spectral representation gives powerful non-perturbative constraints. For example,

suppose we tried to define a UV-finite quantum field theory by writing the Lagrangian for
a scalar field as

L = −1
2
φ

(
� + c

�2

Λ2
+m2

)
φ+ L int(φ) . (24.78)

This would lead to a propagator with Π
(
p2
)

= 1

p2−m2−c p4
Λ2

. This propagator would have

the appealing feature that Π
(
p2
)
→ − 1

c
Λ2

p4 as p2 → ∞ so that loops involving this scalar

would be much more convergent than in a theory without the �2

Λ2 term. More generically, let
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us consider deformations of Π
(
p2
)

to make it vanish as p2 → ∞. In a Feynman diagram,
we would Wick rotate p0 → ip0 to evaluate the loop. Then p2 → −p2

E , so we would like
Π
(
−p2

E

)
to go to zero as p2

E → ∞ faster than 1
p2E

. Unfortunately, any such behavior is

forbidden by unitarity. As p2
E →∞ the spectral decomposition implies

∣∣Π(−p2
E

)∣∣ = ∣∣∣∣∣
∫ ∞

0

dq2
ρ
(
q2
)

p2
E + q2

∣∣∣∣∣ ≥
∣∣∣∣∣
∫ q20

0

dq2
ρ
(
q2
)

p2
E + q20

∣∣∣∣∣ (24.79)

for any q20 . In taking the limit p2
E →∞, eventually we must have p2

E > q20 . Then

lim
p2E→∞

p2
E

∣∣Π(−p2
E

)∣∣ ≥ lim
p2E→∞

p2
E

∣∣∣∣∣
∫ q20

0

dq2
ρ
(
q2
)

2p2
E

∣∣∣∣∣ = A

2
(24.80)

for some finite positive number A =
∫ q20
0
ρ
(
q2
)
dq2. A propagator such as Π

(
p2
)

=
1

p2−m2−c p4
Λ2

would violate this bound for any c andA at large enough p2
E . Note that the pos-

itivity of ρ
(
q2
)
, which follows from Eq. (24.67), was critical for this bound. The conclusion

is:

Propagators cannot decrease faster than 1
p2 at large p2.

This is a very powerful, general non-perturbative result.

24.2.2 Spectral decomposition for bare fields

Up to this point, φ(x) has been referring to the renormalized field. However, all the deriva-
tions in this section work equally well for a bare field φ0(x), since all we have used is that
the fields have unitary transformations under the Poincaré group. For a general quantum
field theory, the bare fields φ0(x) are infinite and meaningless. However, once the theory
has been regulated (or if it is finite or conformal), then we can legitimately talk about
correlation functions of bare fields, calculated from some bare Lagrangian.

For bare fields, let us write the spectral decomposition as

〈Ω|T {φ0(x)φ0(y)} |Ω〉 =
∫

d4p

(2π)4
e−ip(x−y)

∫ ∞

0

dq2
i

p2 − q2 + iε
ρ0

(
q2
)
. (24.81)

One can derive an important normalization condition on the spectral function for bare
fields: ∫ ∞

0

dq2ρ0

(
q2
)

= 1. (24.82)

To derive this, first observe that by taking a time derivative of Eq. (24.69) we find

2
∂

∂t
D
(
x, 0, μ2

)∣∣∣∣
t=0

= − 2
∂

∂t
D
(
0, x, μ2

)∣∣∣∣
t=0

= −iδ3(�x) , (24.83)
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where xμ = (t, �x). Next recall the canonical commutation relation among the bare free
fields:

[φ0(�x′, t′) , ∂tφ0(�x, t)]t=t′ = iδ3(�x− �x′) . (24.84)

We derived this relation for the free theory in Section 2.3.3, and used it as a specification of
the dynamics for interacting theories in Section 7.1. Setting �x′ = 0 and t′ = 0, this relation
implies that

−iδ3(�x) = ∂t〈Ω|[φ0(x), φ0(0)]|Ω〉
∣∣∣
t=0

= ∂t

∫ ∞

0

dq2ρ0

(
q2
)[
D
(
x, 0, q2

)
−D
(
0, x, q2

)]
= −iδ3(x)

∫ ∞

0

dq2ρ0

(
q2
)
, (24.85)

from which Eq. (24.82) follows.
The importance of Eq. (24.82) is that it constrains the form of the divergences that can

appear. For example, recall that the bare fields are related to the renormalized fields by
φ0(x) =

√
Zφ(x). In the on-shell scheme,

〈Ω|T{φ0(x)φ0(y)}|Ω〉 =
iZ

p2 −m2
P + iε

. (24.86)

Thus ρ0(p2) = Zδ(p2 − m2
P ) + ρ̂0(p2) as in Eq. (24.77), where ρ̂0(p2) is everything

beyond the pole and, like ρ0(p2), is positive. Thus, the normalization condition implies

Z = 1−
∫
dp2ρ̂0(p2), (24.87)

which then implies 0 ≤ Z ≤ 1.
As an example, we computed Z = Z2 for QED in Chapter 18, finding

Z2 = 1− α

2π

(
1
2

ln
Λ2

m2
P

+
9
4

+ ln
m2
γ

m2
P

)
, (24.88)

where Λ is the Pauli–Villars mass and mγ is an IR regulator. Clearly, Z2 is not between 0
and 1 as mγ → 0. Unfortunately, the only conclusion we can really draw from this is that
Z2 cannot be computed in perturbation theory, even in a finite theory. This is, of course,
not a problem, since Z2 is not measurable.

24.3 Polology

The spectral decomposition also has non-trivial implications for arbitrary scattering ampli-
tudes. In particular, it will let us associate poles in the S-matrix with on-shell intermediate
states. This proof follows [Weinberg, 1995, Section 10.2].

Consider the momentum space Green’s function:

Gn(p1, . . . , pn) =
∫
d4x1e

ip1x1 · · ·
∫
d4xne

−ipnxn〈Ω |T{φ(x1) · · ·φ(xn)}|Ω〉.
(24.89)
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We will now prove that if pμ = pμ1 + · · · + pμr = pμr+1 + · · · + pμn for some
subset of the momenta and if there is a one-particle state |Ψ〉 of mass m for which
〈Ψ|φ(x1) · · ·φ(xr)|Ω〉 �= 0 then G will have a pole at p2 = m2 and the Green’s function
will factorize near the pole.

To prove this, we first write

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉
= Θ1r〈Ω|T{φ(x1) · · ·φ(xr)}T{φ(xr+1) · · ·φ(xn)}|Ω〉+ extra, (24.90)

where

Θ1r ≡ θ(min(t1, . . . , tr)−max(tr+1, . . . , tn)) (24.91)

puts the two subsets in time order and “extra” refers to the other time orderings. We have
dropped the subscripts on the fields for conciseness.

Next, we insert a complete set of states. The sum time-ordered product can then be
written as

〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =
∫

d3pΨ

(2π)3
1

2EΨ
Θ1r

× 〈Ω|T {φ(x1) · · ·φ(xr)}|Ψ〉〈Ψ|T{φ (xr+1) · · ·φ(xn)}|Ω〉+ extra. (24.92)

The complete set of states sums over all one- and multi-particle states, but we are only
exhibiting one term from this sum – the one involving the one-particle state |Ψ〉 of mass
m. Other one-particle states and all the multi-particle states in the sum are in the “extra”
part.

Now, inserting momentum operators, as in Eq. (24.66), we can write

〈Ω|T{φ(x1) · · ·φ(xr)}|Ψ〉

= e−ipΨx1〈Ω|T
{
e−iP̂x1φ(x1)eiP̂ x1e−iP̂x1φ(x2) · · ·φ(xr)eiP̂ x1

}
|Ψ〉

= e−ipΨx1〈Ω|T{φ(0)φ(x2 − x1) · · ·φ(xr − x1)}|Ψ〉
= e−ipΨx1〈Ω|T{φ(0)φ(x′2) · · ·φ(x′r)}|Ψ〉, (24.93)

where we have defined x′j ≡ xj − x1 for j ≤ r. Similarly,

〈Ψ|T{φ(xr+1) · · ·φ(xn)}|Ω〉 = eipΨxr+1〈Ψ|T{φ(0)φ(x′r+2) · · ·φ(x′n)}|Ω〉, (24.94)

with x′j = xj −xr+1 for j > r. Then, changing variables on all but x1 and xr+1, we have∫
d4x1e

ip1x1 · · ·
∫
d4xne

−ipnxn

=
∫
d4x1e

ip1x1 · · ·
∫
d4x′ne

−ipnx′
nei(p2+···+pr)x1e−i(pr+2+···+pn)xr+1 . (24.95)

Also,

min(t1, . . . , tr)−max(tr+1, . . . , tn)

= t1−tr+1 + min(0, t′2, . . . , t
′
r)−max

(
0, t′r+2, . . . , t

′
n

)
, (24.96)



24.3 Polology 473

which we will include using the following representation of the θ-function:

θ(x) =
∫ ∞

−∞

dω

2π
i

ω + iε
e−iωx. (24.97)

Then we have

Gn(p1, . . . , pn) =
∫

d3pΨ

(2π)3
1

2EΨ

∫
d4x1e

ip1x1 · · ·
∫
d4x′ne

−ipnx′
n

∫
dω

2π
i

ω + iε

× e−ipΨ(x1−xr+1)ei(p2+···+pr)x1e−i(pr+2+···+pn)xr+1

× e−iω(t1−tr+1)e−iω(min(0,t′2,...,t′r)−max(0,t′r+2−t′n))

× 〈Ω
∣∣T{φ(0)φ(x′2) · · ·φ(x′r)} |Ψ〉 〈Ψ

∣∣T{φ(0)φ
(
x′r+2

)
· · ·φ(x′n)

}
|Ω〉 + extra.

(24.98)

Next, performing the d4x1 integral over the exponentials containing x1 or t1 gives

(2π)3 δ3(�p1 + · · ·+ �pr − �pΨ) (2π) δ(E1 + · · ·+ Er − EΨ − ω) , (24.99)

whereEΨ =
√
�p 2
Ψ +m2

Ψ since |Ψ〉 is an on-shell, one-particle state. Similarly, the d4xr+1

integral gives

(2π)3 δ3(�pr+1 + · · ·+ �pn − �pΨ) (2π) δ(Er+1 + · · ·+En − EΨ − ω) . (24.100)

Performing the d3pΨ integral next over the δ3-function setsEΨ =
√

(�p1+· · ·+�pr)2+m2
Ψ

and leads to

Gn(p1, . . . , pn)

=
1

2EΨ

∫
d4x′2e

ip2x
′
2 · · ·
∫
d4x′ne

−ipnx′
n

∫
dω

2π
i

ω + iε
e−iω(min(··· )−max(··· ))

× (2π)5δ4(p1 + · · ·+ pr − pr+1 − · · · − pn)δ(E1 + · · ·+ Er − EΨ − ω)

× 〈Ω|T{φ(0)φ(x′2) · · ·φ(x′r)} |Ψ〉〈Ψ|T
{
φ(0)φ(x′r+2) · · ·φ(x′n)

}
|Ω〉+ extra.

(24.101)

By assumption, the matrix elements on the last line are non-zero. Then, this expression has
a pole at ω = 0, which is the pole we were looking for. Near this pole, we can drop the
e−iω(min(··· )−max(··· )) term and perform the ω integral over the δ-function to give

Gn(p1, . . . , pn) =
∫
d4x′2e

ip2x
′
2 · · ·
∫
d4x′ne

−ipnx′
n

1
2Eψ

i

E1 + · · ·+ Er − EΨ + iε

× (2π)4δ4(p1 + · · · − pn)〈Ω|T{φ(0)φ(x′2) · · ·φ(x′r)}|Ψ〉
× 〈Ψ|T{φ(0)φ(x′r+2) · · ·φ(x′n)}|Ω〉+ extra. (24.102)

The factors of Ej can be simplified. Write pμ = pμ1 + · · ·+ pμr , then
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1
E1 + · · ·+ Er − EΨ + iε

=
1

p0 −
√
�p 2 +m2

Ψ + iε

=
p0 +
√
�p 2 +m2

Ψ

p2
0 − (�p 2 +m2

Ψ) + iε

=
2EΨ

p 2 −m2
Ψ + iε

, (24.103)

where the last equality holds near the pole, where EΨ = p0, and we have used the fact that
ε is infinitesimal.

Now the matrix elementM1,r
Ψ for φ1 · · ·φr → Ψ is given by

(2π)4δ4(p1 + · · ·+ pr − pΨ)M1,r
Ψ

=
∫
d4x1 · · · d4xre

ip1x1 · · · eiprxr 〈Ω|T{φ(x1) · · ·φ(xr)}|Ψ〉

= (2π)4δ4(p1 + · · ·+ pr − pΨ)
∫
d4x′2 · · · d4x′re

ip2x
′
2 · · · eiprx′

r

× 〈Ω|T{φ(0)φ(x′2) · · ·φ(x′r)}|Ψ〉, (24.104)

where Eq. (24.93) has been used to get to the second line.
Thus, for p2

ψ near m2
ψ ,

Gn(p1, . . . , pn) = (2π)4 δ4(Σp)
i

p2
Ψ −m2

Ψ + iε
M1,r

Ψ Mr+1,n†
Ψ + extra, (24.105)

where “extra” refers to anything else that contributes. This equation says that Green’s
functions always have poles when on-shell intermediate particles can be produced. For
example, positronium (an e+e− bound state) would appear as a pole in a Green’s function
corresponding to e+e− scattering.

In deriving Eq. (24.105), the only thing we used was that the state |Ψ〉 is a one-particle
state with overlap with the state with r fields φ1 · · ·φr. We never needed to associate Ψ
with a field in a Lagrangian. This formula does not distinguish elementary particles (those
with corresponding fields in a Lagrangian) from composite particles. All that is needed is
that the particle transforms in an irreducible representation of the Poincaré group, so that
it has some on-shell momentum pμ with p2 = m2.

In fact, we never even used the fact that the fields φ(x) each have non-vanishing matrix
elements in one-particle states. Equation (24.105) holds even if the fields φi(x) are generic
operators Oi(x), as long as the product O1(x1) · · · Or(xr) still has a non-zero matrix ele-
ment between the vacuum 〈Ω| and some one-particle state |Ψ〉. Now suppose that the φi(x)
do correspond to elementary fields. In fact, suppose they are the renormalized fields that
satisfy

〈Ω|φ(x)|p〉 = e−ipx, (24.106)

where |p〉 is the one-particle state corresponding to the field φ. Then there will be a pole
in the Green’s function even for r = 1. For r = 1, the pole occurs when the momentum
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pμ1 in the Fourier transform of the Green’s function Eq. (24.89) goes on-shell: p2
1 → m2,

where m is the mass of the one-particle state corresponding to the field φ. Since there was
nothing special about the first field in the time-ordered product, a generic Green’s function
constructed from elementary fields will have poles when all of the external momenta go
on-shell. This is exactly what we expect from the LSZ reduction formula, but now it has
been proven non-perturbatively.

Another important implication of Eq. (24.105) is that massless spin-1 particles that inter-
act with each other must transform in the adjoint representation of a non-Abelian gauge
group. If this were not true, that is, if the couplings among the particles did not satisfy
the Jacobi identity, Eq. (24.105) would be violated. We prove this in Chapter 27. See also
Problem 9.3.

24.4 Locality

We have seen that we do not need to have fields in the Lagrangian corresponding to every
particle. Green’s functions will always have poles at the mass of any particle that has
non-zero overlap with some subset of the fields in the Green’s functions. However, if one
wants to calculate S-matrix elements involving some particle, it is extremely helpful to
have an associated field. In fact, it is often extremely useful to go from one description in
which a pole is emergent as a bound state to a description in which that bound state has
a corresponding field. For example, we go from a theory (QCD) in which a pion is a pole
in a Green’s function to a theory (the Chiral Lagrangian) with a field corresponding to the
pion. The two descriptions have their own Lagrangians. The QCD Lagrangian is useful for
calculating the pion mass, while the Chiral Lagrangian is useful if one wants to calculate
the ππ → ππ cross section, taking the pion mass from data. A great virtue of quantum
field theory is its flexibility: one can use different Lagrangians for different processes. A
number of examples of effective field theories, such as the Chiral Lagrangian, were given
in Chapter 22. More will be discussed in Parts IV and V.

There is an interesting connection between the emergence of particles as poles in Green’s
functions and locality. Informally, locality means that physics over here is independent of
physics over there – we do not have to have the wavefunction of the universe to see what
happens in our lab. However, defining locality in terms of observables is not straightfor-
ward – there are a number of different definitions we can give. For example, we could
identify locality with the cluster decomposition principle (mentioned in Section 7.3.2),
which requires the connected S-matrix not to be more singular than having poles or
branch cuts (see [Weinberg, 1995, Chapter 4]). Alternatively, we could associate local-
ity with commutators vanishing outside the light cone (a property we called causality in
Chapter 12). There are many related ways to define locality.

To be concrete, we will define locality in terms of a Lagrangian. We take locality to mean
that the Lagrangian is an integral over a Lagrangian density that is a functional of fields and
their derivatives evaluated at the same space-time point. For example, a Lagrangian term
such as φ�φ is local by this definition, but a term such as φ 1

�φ is not. To be clear, this
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definition is mathematical, not physical: it is a property of our calculational framework,
not of observables. Nevertheless, it has interesting consequences.

To understand the connection between this definition of locality and unitarity, consider
integrating out a field. We will integrate out particles (at both the classical and quantum
levels) in a number of different ways in later chapters. For now, we use the classical mean-
ing, which is to set a field equal to its classical expectation value, given by the solution to
its equations of motion. For example, start with the local Lagrangian in Eq. (24.15) . The
equations of motion for φ are

− (� +M2)φ+
λ

2
π2 = 0. (24.107)

Integrating out φ therefore gives

L non-local = −1
2
π(� +m2)π +

λ

8

2

π2 1
� +M2

π2, (24.108)

which now appears non-local. If we expand this Lagrangian for � 
 M2 we get a local
theory

L local = −1
2
π(� +m2)π +

λ

8

2( 1
M2

π4 − π2 �
M4

π2 + · · ·
)
. (24.109)

This is a very similar procedure to how we integrate out the W and Z bosons to derive the
4-Fermi theory (discussed already in Chapter 22 and an important theme for Part IV). Now,
both L non-local and L local appear to describe exactly the same theory, but one appears non-
local and the other local. Thus, our definition of locality, no negative powers of derivatives
in the Lagrangian, already appears ambiguous.

What goes wrong with the apparently local (but really non-local) Lagrangian, L local? At
energies p2 ∼M2 we will see the apparent pole where the φ particle should have been, but
had been integrated out. If the particle φ has really been removed from the Hilbert space
when we integrated it out, unitarity would be violated. Indeed, the pole would give a non-
vanishing imaginary part to an appropriate amplitude, but there would be no corresponding
on-shell state so the optical theorem would be violated. Thus, the non-local theory suggests
that one should use a different effective description for energies greater than M in which
the particle in the Hilbert space corresponding to the pole (present even in L local) is given
its own field.

Another example is the theory of a massive vector boson, with Lagrangian

L = −1
4
F 2
μν +

1
2
m2A2

μ. (24.110)

This theory has no gauge invariance and three polarizations. Thus, there are three states
with poles at p2 = m2 in the S-matrix. Now let us integrate in a Stueckelberg field π(x)
via Aμ → Aμ + ∂μπ, as we did in Section 8.7. This restores gauge invariance, with
π → π − α and Aμ → Aμ + ∂μα. The Lagrangian is now

L = −1
4
F 2
μν +

1
2
m2
(
A2
μ − 2(∂μAμ)π − π�π

)
, (24.111)
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where we have integrated by parts. The equations of motion for π are π = − 1
�∂μAμ. Then

integrating π back out gives

L = −1
4
F 2
μν +

1
2
m2

(
A2
μ + ∂μAμ

1
�∂νAν

)
= −1

4
F 2
μν −

1
4
Fμν

m2

� Fμν . (24.112)

This theory is now gauge invariant, but apparently non-local. Because of gauge invariance,
there are only two polarizations for the photon, instead of three for the massive vector
boson. The non-locality tells us that an on-shell state is missing.

Problems

24.1 In this problem you will show how the cutting rules can be obtained directly from
contour integration.
(a) Where are the poles in the integrand in Eq. (24.29) in the complex k0 plane?
(b) Close the contour upward and write the result as the sum of two residues. Show

that one of these residues cannot contribute to the imaginary part ofM.
(c) Evaluate the imaginary part of the amplitude by using the other pole. Show that

you reproduce Eq. (24.33).
(d) Now consider a more complicated 2 → 3 process:

p1

p2

p4

p3

p5

Explore the pole structure of this amplitude in the complex plane and show that
the imaginary part of this amplitude is given by the cutting rules.

24.2 Derive the spectral representation for a Dirac spinor.
24.3 Derive the partial wave unitarity bound for elastic scattering for a theory with

scalars only.
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Yang–Mills theory 25

So far, the only massless spin-1 particle we have considered is the photon of QED. Yang–
Mills theories are a generalization of QED with multiple massless spin-1 particles that
can interact among themselves. Just as the Lagrangian description of QED is strongly con-
strained by gauge invariance, Lagrangians for Yang–Mills theories are strongly constrained
by a generalization called non-Abelian gauge invariance. You already derived a number of
these constraints by considering the soft limit in Problem 9.3. In this chapter we begin a
systematic study of Yang–Mills theories.

To begin, we review how the QED Lagrangian was determined. In Chapter 8 we saw that
to write down a local Lagrangian for a massless spin-1 particle, whose irreducible repre-
sentation of the Poincaré group has two degrees of freedom, we had to embed the particle
in a vector field Aμ(x), which has four degrees of freedom. The two extra degrees of free-
dom in Aμ(x) are removed in quantum field theory through gauge invariance. The gauge
symmetry Aμ(x) → Aμ(x) + 1

e∂μα(x) identifies the photon with an equivalence class of
vector fields. The kinetic Lagrangian invariant under this symmetry is unique: L = − 1

4F
2
μν

with Fμν = ∂μAν − ∂νAμ. This kinetic Lagrangian propagates two degrees of freedom,
as required for an irreducible unitary representation of a massless spin-1 particle. To have
the photon interact with matter, the interactions have to preserve the gauge symmetry.
We found that an easy way to determine gauge-invariant interactions is with the covariant
derivative Dμψ = (∂μ − iQeAμ)ψ. For example, replacing ∂μ → Dμ in the fermionic
kinetic term ψ̄γμ∂μψ gives ψ̄γμDμψ, which is gauge invariant under the transformation
ψ(x) → eiQα(x)ψ(x). In fact, ψ̄γμDμψ contains the unique renormalizable interaction
we can write down in QED. Yang–Mills theories are the unique generalizations of QED in
which renormalizable self-interactions among massless spin-1 particles are possible.

We begin our study of Yang–Mills theories with an example. Suppose we have two fields
φ1 and φ2. Then the kinetic Lagrangian

Lkin = (∂μφ�1)(∂μφ1) + (∂μφ�2)(∂μφ2) = (∂μ�φ)†(∂μ�φ), (25.1)

where �φ = (φ1, φ2)
T , is invariant under a global SU(2) symmetry, �φ → U�φ, with U a

special unitary 2× 2 matrix.1 In general, such a U can always be written as

1 This Lagrangian is actually invariant under a larger U(2) = U(1) × SU(2) symmetry. But, as we will come
to understand, there is no point in considering non-simple groups such as U(N) in quantum field theory.
For example, in a gauge theory the coupling constants for the U(1) and SU(2) subgroups will in general be
different; even if we set them equal at one scale, they will run differently. Moreover, the U(1) symmetry in
Lagrangians such as Eq. (25.1) will often be violated by a quantum effect called an anomaly, to be discussed
in Chapter 30. Thus, we will restrict attention to the simple SU(N) subgroups.

481
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U = exp [i(α1τ1 + α2τ2 + α3τ3)] = exp(iαaτa), (25.2)

where τa = 1
2σ

a and σa are the Pauli sigma matrices (see Eq. (10.3)) and αa are real num-
bers. The normalization of the τa matrices is chosen so that [τa, τ b] = iεabcτ c. Here, εabc

is the Levi-Civita tensor (the totally antisymmetric tensor with ε123 = 1). Infinitesimally,

�φ→ �φ+ iαaτa�φ. (25.3)

We can promote the global SU(2) symmetry to a local symmetry by elevating the real
numbers αa to real functions of space-time αa(x). To make the kinetic terms invariant
under the local symmetry, we can elevate the ordinary derivatives to covariant derivatives
defined by

Dμ
�φ = ∂μ�φ− igAaμτa�φ, (25.4)

where g is a number (the strength of the force) and Aaμ are a set of three gauge bosons,
which transform as

Aaμ(x) → Aaμ(x) +
1
g
∂μα

a(x)− fabcαb(x)Acμ(x), (25.5)

where fabc = εabc are the structure constants for SU(2). The unique gauge-invariant
kinetic term for the Aaμ is

LYM = −1
4

∑
a

(
∂μA

a
ν − ∂νAaμ + gfabcAbμA

c
ν

)2
. (25.6)

You should check (Problem 25.1) that Lkin with ∂μ → Dμ and LYM are gauge invariant.
This gauge symmetry is called non-Abelian because the group generators τa do not com-
mute with each other. Yang–Mills theories are also known as non-Abelian gauge theories.
In Section 25.2 we will see why the form of Eq. (25.6) is natural from a geometric point
of view.

Note that the kinetic term in Eq. (25.6) includes renormalizable interactions among the
three gauge bosons for SU(2). These interactions are very important. For example, as we
will see in Chapter 26, virtual gauge bosons produce a vacuum polarization effect with
the opposite sign from virtual spinors or scalars. Thus, in contrast to QED where the fine-
structure constant was logarithmically weaker at larger distances, coupling constants in
Yang–Mills theories can get logarithmically stronger at larger distances. This property of
Yang–Mills theories explains qualitative features of the strong force, such as why quarks
act as essentially free within a nucleus yet can never escape. In the next few chapters, we
will study the fascinating physics of Yang–Mills theories.

25.1 Lie groups

We have already seen a few examples of Lie groups: the 3D rotation group SO(3), the
Pauli spin group SU(2) and the Lorentz group O(1, 3). The Lie group associated with
QED, whose elements are phases eiα with 0 ≤ α < 2π, is called U(1). This section
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provides a summary of some of the relevant mathematics of group theory (see also the
discussion in Section 10.1).

Lie groups are groups with infinite numbers of elements that are also differentiable man-
ifolds. All groups have an identity element 1. Any group element continuously connected
to the identity can be written as

U = exp(iθaT a) · 1, (25.7)

where θa are numbers parametrizing the group elements and T a are called the group gen-
erators. Given any explicit form of the elements U of a Lie group, you can always figure
out what the T a are by expanding in a small neighborhood of 1. We performed this exercise
for the Lorentz group, O(1, 3), in Chapter 10.

The generators of a Lie group T a form a Lie algebra. The Lie algebra is defined through
its commutation relations: [

T a, T b
]

= ifabcT c, (25.8)

where fabc are known as structure constants. A Lie group is Abelian if fabc = 0 and
non-Abelian otherwise. For example, the algebra su(2) associated with the non-Abelian
group SU(2) has fabc = εabc.

Note that we are calling Eq. (25.8) a commutation relation, but really it is just a map-
ping G × G → G. This mapping is more generally called a Lie bracket. By calling it a
commutator, we are implying that it can be represented as

[A,B] = AB −BA. (25.9)

Such notation implies, in addition to the Lie bracket mapping, that products of elements
are well defined. When this holds, then [A, [B,C]] = ABC −ACB −BCA+CBA and
it automatically follows that

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (25.10)

This last equation is known as the Jacobi identity. In terms of the structure constants, the
Jacobi identity can be written as

fabdfdce + f bcdfdae + fcadfdbe = 0. (25.11)

The formal definition of a Lie algebra does not require that we write [A,B] = AB −BA,
but it does require that the Jacobi identity holds. The Jacobi identity is formally defined
only using the Lie bracket, and not through products. This is really just a technical math-
ematical point – in all the cases with physics applications, the generators are embedded
into matrices and the Lie bracket can be defined as a commutator, so the Jacobi identity is
automatically satisfied.

An ideal is a subalgebra I ⊂ G satisfying [g, i] ⊂ I for any g ∈ G and i ∈ I. A simple
Lie algebra has no non-trivial ideals. Important simple Lie algebras are su(N) and so(N).
The Standard Model is based on the gauge group SU(3)⊗ SU(2)⊗U(1) whose Lie alge-
bra is su(3)⊕ su(2)⊕ u(1). The Standard Model Lie algebra is semisimple, meaning it is
the direct sum of simple Lie algebras. A theorem that explains the importance of semisim-
ple Lie algebras in physics states that all finite-dimensional representations of semisimple
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algebras are Hermitian (see Problem 25.3). Hence, one can construct unitary theories based
on semisimple algebras. There can be an infinite or finite number of generators T a for the
Lie algebra. If there are a finite number, the algebra and the group it generates are said to
be finite dimensional.

Unitary groups can be defined as preserving a complex inner product:

〈�ψ|�χ〉 = 〈�ψ|U†U |�χ〉. (25.12)

That is, U†U = 1. Elements of special unitary groups also have det(U) = 1. The group
SU(N) is defined by its action on N -dimensional vector spaces. In the defining repre-
sentation, group elements can be written as U = exp(iθaT a), where T a is a Hermitian
matrix. There are N2 − 1 generators for SU(N), so we say the dimension of the group
d (G) = N2 − 1 for G = SU(N).

The orthogonal groups preserve a real inner product:

V ·W = V ·OT ·O ·W. (25.13)

So, OTO = 1. For these d(O(N)) = 1
2N(N − 1). Every orthogonal matrix has deter-

minant ±1. Those with determinant 1 are elements of the special orthogonal group. The
dimensions of O(N) and SO(N) are the same.

Other finite-dimensional simple Lie groups include the symplectic groups, Sp(N),
which are the next step in the generalization from a real to a complex inner product:
they preserve a quaternionic inner product. An equivalent definition is that they satisfy

ΩS = −STΩ, with Ω =
(

0 1

−1 0

)
. Finally, there are five exceptional simple Lie groups,

G2,F4,E6,E7 and E8. The algebras for SU(N), SO(N), Sp(N) and the exceptional
groups are the only finite-dimensional simple Lie algebras [Cartan, 1894].

25.1.1 Representations

We will now discuss representations of the SU(N) groups. These groups play an essential
role in quantum field theory due to the simple observation that the free theory of N com-
plex fields is automatically invariant under U(1)× SU(N). The SU(N) groups are simply
connected (see Section 10.5.1), meaning that they are topologically trivial. Thus, represen-
tations of the SU(N) groups are in one-to-one correspondence with representations of the
su(N) algebra.

Recall from Section 10.1 that representations of a Lie algebra can be constructed by
embedding the generators into matrices. The two most important representations are the
defining (or fundamental) representation and the adjoint representation. The fundamental
representation is the smallest non-trivial representation of the algebra. For SU(N), the
fundamental representation is the set of the N × N Hermitian matrices with determinant
1. A set of N fields φi transforming in the fundamental representation, transform under
infinitesimal group transformations as

φi → φi + iαa(T afund)ij φj (25.14)
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for real numbers αa. The complex conjugate fields transform in the anti-fundamental
representation for which T aanti-fund = − (T afund)

�, thus

φ�i → φ�i + iαa(T aanti-fund)ij φ
�
j = φ�i − iαaφ�j (T afund)ji , (25.15)

where we have used that T afund is Hermitian for SU(N) in the last step. In this way, we can
always replace anti-fundamental generators with fundamental ones.

Our default representation will be the fundamental one, so we write T a (with no
subscript) for T afund. Generators in a general representation will be denoted T aR. It will
occasionally be useful to write explicitly the row and column indices i and j as in T aij . We
use mid-alphabet Latin letters such as i and j to index the color (for SU(3) of the strong
interactions) or flavor (as in up or down quark for SU(2)isospin), hence these are sometimes
called color indices or flavor indices. We use early-alphabet Latin letters such as a and b
to index different generators in the algebra.

The algebra can be determined by expanding a basis of group elements around 1.
For SU(2) the generators in the fundamental representation are the Pauli matrices σa

conventionally normalized by dividing by 2:

T a = τa ≡ σa

2
. (25.16)

These satisfy
[
T a, T b
]

= iεabcT c. For SU(3) the generators are often written in a standard
basis T a = 1

2λ
a, with λ3 and λ8 diagonal (the Gell-Mann matrices):

λ1 =

⎛⎝0 1
1 0

0

⎞⎠ , λ2 =

⎛⎝0 −i
i 0

0

⎞⎠ , λ3 =

⎛⎝1
−1

0

⎞⎠ , λ4 =

⎛⎝ 1
0

1

⎞⎠ ,
λ5 =

⎛⎝0 −i
0

i 0

⎞⎠ , λ6 =

⎛⎝0
0 1
1 0

⎞⎠ , λ7 =

⎛⎝0
0 −i
i 0

⎞⎠ , λ8 =
1√
3

⎛⎝1
1

−2

⎞⎠.
(25.17)

The normalization of the generators is arbitrary and a convention must be chosen.
A common convention in physics is to normalize the structure constants by∑

c,d

facdf bcd = Nδab. (25.18)

(In mathematics, the convention
∑
c,d f

acdf bcd = δab is often used instead.) Once the
normalization of the structure constants is fixed, the normalization of the generators in any
representation is also fixed. Indeed,

[
T aR, T

b
R

]
= ifabcT cR, which must hold for any repre-

sentation with the same fabc, is not invariant under rescaling of the T aR. Equation (25.18)
implies that the generators for SU(N) in the fundamental representation are normalized
so that

tr
(
T aT b
)

=
1
2
δab, (25.19)

which you can easily check for SU(2) or SU(3) using the explicit generators above.
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In a generic Lie algebra, the commutator of generators [T a, T b] is well defined but
the product T aT b is not. In the fundamental representation of SU(N), the generators are
matrices that can be multiplied. We write

T aT b =
1

2N
δab +

1
2
dabcT c +

1
2
ifabcT c. (25.20)

The constants dabc = 2 tr
[
T a
{
T b, T c
}]

provide a totally symmetric group invariant. For
SU(N), there is a unique such invariant up to an overall constant. For SU(2), dabc = 0.
One can also show that (see Problem 25.2)

tr
[
T aT bT c

]
=

1
4
(
dabc + ifabc

)
, (25.21)

tr
[
T aT bT cT d

]
=

1
4N

δabδcd +
1
8
(
dabe + ifabe

)(
dcde + ifcde

)
(25.22)

and so on.
The next important representation is the adjoint representation, which acts on the vec-

tor space spanned by the generators themselves. For SU(N) there areN2−1 generators, so
this is anN2−1-dimensional representation. Matrices describing the adjoint representation
are given by (T aadj)

bc = −ifabc. For SU(2) these are 3× 3 matrices:

T 1
adj =

⎛⎝ 0
0 −i
i 0

⎞⎠ , T 2
adj =

⎛⎝ 0 i

0
−i 0

⎞⎠ , T 3
adj =

⎛⎝ 0 −i
i 0

0

⎞⎠ . (25.23)

For SU(3) they are 8×8 matrices. It is easy to check that both the adjoint and fundamental
representations satisfy [T aadj, T

b
adj] = ifabcT cadj with fabc = εabc for SU(2). As we will

soon see, gauge fields must transform in the adjoint representation. There are lots of other
representations as well, but the fundamental and adjoint representations are by far the most
important for physics.

It will be extremely useful to have basis-independent ways to characterize representa-
tions. These are known as Casimir operators or Casimirs. For example, for SU(2) we
know �J 2 =

∑
a T

a
RT

a
R is a Casimir operator with eigenvalue j(j + 1); j labels the rep-

resentation and is given the special name spin. More generally, we define the quadratic
Casimir C2(R) by

T aRT
a
R = C2(R)1, (25.24)

where the sum over a is implicit. That this operator will always be proportional to the
identity follows from Schur’s lemma: a group element that commutes with all other group
elements in any irreducible representation must be proportional to 1. In this case, it is
enough to show that our operator commutes with all the generators:[

T aRT
a
R, T

b
R

]
=
(
ifabcT cR

)
T aR + T aR

(
ifabcT cR

)
= ifabc{T cR, T aR} = 0. (25.25)

We have used the antisymmetry of fabc in the last step. Therefore Eq. (25.24) holds for
some C2(R) by Schur’s lemma.
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To evaluate the quadratic Casimir, it is helpful to first define an inner product on the
generators. In any representation the generators can be chosen so that

tr
[
T aRT

b
R

]
= T (R)δab, (25.26)

where T (R) is a number known as the index of the representation. Sometimes C(R) is
written instead of T (R) for the index. For the fundamental representation, our convention
in Eq. (25.18) implies

T (fund) = TF =
1
2
, (25.27)

that is, T ajiT
b
ij = 1

2δ
ab. For the adjoint representation,

T (adj) = TA = N, (25.28)

that is, facdf bcd = Nδab.
Setting a = b in Eq. (25.26) and summing over a gives

d(R)C2(R) = T (R) d(G) , (25.29)

where d(R) is the dimension of the representation (d(fund) = N and d(adj) = N2−1) and
d(G) is the dimension of the group (number of group generators: d(SU(N)) = N2 − 1).
Equation (25.29) implies that for SU(N) the quadratic Casimir for the fundamental
representation is

CF ≡ C2(fund) =
N2 − 1

2N
, (25.30)

that is, (T aT a)ij = CF δij . In particular, CF = 3
4 for SU(2) and CF = 4

3 for SU(3). For
the adjoint representation,

CA ≡ C2(adj) = N, (25.31)

that is, facdf bcd = CAδ
ab. For the adjoint representation the index and quadratic Casimir

are the same. Almost every calculation in Yang–Mills theories will have factors of CF or
CA in it.

Since, for any representation,

tr
([
T aR, T

b
R

]
T cR
)

= ifabdtr
(
T dRT

c
R

)
= ifabcT (R), (25.32)

we can write

fabc ≡ − i

TF
tr
( [
T a, T b
]
T c
)
, (25.33)

where T a are the fundamental generators. Thus, we can always replace the structure con-
stants with commutators and products of fundamental group generators. This is extremely
handy when one tries to compute complicated gluon scattering amplitudes.

In SU(N) one also has a Fierz identity of the form∑
a

T aijT
a
kl =

1
2

(
δilδkj −

1
N
δijδkl

)
. (25.34)
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You can check that, since the generators in SU(N) are traceless, summing over δij or δkl

gives zero. This is a useful relation, since it implies

tr[T aA] tr[T aB] =
1
2

[
tr(AB)− 1

N
tr(A) tr(B)

]
(25.35)

for any A and B, which lets us reduce products of traces to single traces.
Another invariant that characterizes SU(N) representations is the anomaly coefficient

A(R) defined by

tr
[
T aR
{
T bR, T

c
R

}]
=

1
2
A(R)dabc = A(R)tr

[
T a
{
T b, T c
}]
, (25.36)

where dabc are as in Eq. (25.20), or equivalently by A(fund) = 1. These anomaly coeffi-
cients will be used in the study of anomalies in Chapter 30. Some relations among them
are explored in Problem 25.4.

In summary, the main relations we will use often for SU(N) are

tr
(
T aT b
)

= T ajiT
b
ij = TF δ

ab, (25.37)∑
a

(T aT a)ij = CF δij , (25.38)

facdf bcd = CAδ
ab, (25.39)

with TF = 1
2 , CA = N and CF = N2−1

2N . These relations are used in almost every QCD
calculation.

25.2 Gauge invariance and Wilson lines

Now that we understand the mathematics of Lie groups, we will develop a more geo-
metric way to think about gauge theories. This is not strictly necessary, and if you just
want to know the rules for computation, you can safely skip this section (and in fact the
remainder of this chapter; the Feynman rules for non-Abelian gauge theories are given
in Section 26.1).

25.2.1 Abelian case

Consider first a complex scalar field φ(x). The phase of this field is just a convention.
Thus, a theory of such a field should be invariant under redefinitions φ(x) → eiαφ(x) (as
if Q = 1). Now suppose we want to examine the field at two points xμ and yμ very far
away from each other. In a local theory, the convention that we choose at xμ should be
independent of the convention we choose at yμ. But then how can we tell if φ(x) = φ(y)?
If we changed conventions we would have

φ(y)− φ(x) → eiα(y)φ(y)− eiα(x)φ(x). (25.40)
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So, for example, |φ(y)− φ(x)| depends on our choice of local phases. In fact, it is
impossible to come up with a convention-independent way to compare these fields at dif-
ferent points. Moreover, it is also impossible to compute ∂μφ(x), since the derivative is a
difference, and the difference depends on the phase choices.

To make comparisons of field values at different points well defined, we need another
ingredient. This motivates defining a new field W (x, y) called a Wilson line. It is a kind of
bi-local field that depends on two points. We want it to transform as

W (x, y) → eiα(x)W(x, y)e−iα(y) (25.41)

so that

W(x, y)φ(y)− φ(x)→ eiα(x)W(x, y)e−iα(y)eiα(y)φ(y)− eiα(x)φ(x)

= eiα(x)[W(x, y)φ(y)− φ(x)] . (25.42)

The point of this is that now |W(x, y)φ(y)− φ(x)| is independent of our choice of a local
phase convention.

Taking yμ = xμ+δxμ, dividing by δxμ, and letting δxμ → 0 lets us turn this difference
into a derivative:

Dμφ(x) ≡ lim
δxμ→0

W (x, x+ δx)φ(x+ δx)− φ(x)
δxμ

. (25.43)

Then

Dμφ(x) → eiα(x)Dμφ(x), (25.44)

which holds from Eq. (25.42) even if δxμ in (25.43) is not small.
We naturally want W (x, x) = 1. So if δxμ is small, then we should be able to expand

W (x, x+ δx) = 1− ieδxμAμ(x) +O
(
δx2
)
, (25.45)

where e is arbitrary. It then follows from the transformation of W (x, y) in Eq. (25.41) that

Aμ(x) → Aμ(x) +
1
e
∂μα(x) (25.46)

and then, from Eq. (25.43), Dμφ = ∂μφ − ieAμφ. In this way, the gauge field is intro-
duced as a connection, allowing us to compare field values at different points, despite their
arbitrary phases. Another example of a connection that you might be familiar with from
general relativity is the Christoffel connection, which allows us to compare field values at
different points, despite their different local coordinate systems.

It is possible to write a closed-form expression for W (x, y):

WP (x, y) = exp
(
ie

∫ x
y

Aμ(z)dzμ
)
. (25.47)

This functional of Aμ(x) is known as a Wilson line. The integral is a line integral along
the path P from yμ to xμ. More precisely, the path P is a function zμ(λ) with 0 ≤ λ ≤ 1
with zμ(0) = yμ and zμ(1) = xμ and so

WP (x, y) = exp
(
ie

∫ 1

0

dzμ(λ)
dλ

Aμ(z (λ)) dλ
)
. (25.48)
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Expanding WP (x, x+ δx) using the fundamental theorem of calculus confirms Eq.
(25.45). To check that WP satisfies Eq. (25.41), we note that under a gauge transformation

WP (x, y) → exp
(
ie

∫ x
y

Aμ(z)dzμ + i

∫ x
y

∂μα(z)dzμ
)

= eiα(x)WP (x, y)e−iα(y)

(25.49)
as desired. Note that the transformation is independent of the path – it just depends on the
endpoints.

An important observation is that if we set x = y we get a contour integral:

W loop
P = exp

(
ie

∮
P

Aμdx
μ

)
, (25.50)

which is known as a Wilson loop. Wilson loops are gauge invariant, as can be seen from
Eq. (25.49). By Stokes’ theorem, the contour integral can be written as

W loop
P = exp

(
i
e

2

∫
Σ

Fμνdσ
μν

)
= 1 + i

e

2

∫
Σ

Fμνdσ
μν +O

(
e2
)

(25.51)

over the surface Σ with surface element σμν that the path P bounds. So the Wilson loop
only depends on the gauge-invariant field strength Fμν . As we will discuss in Section 25.5,
Wilson loops have a simple discretization known as a plaquette, which is used to construct
the lattice action.

Next, note that since Dμφ(x) transforms nicely, so will DμDνφ(x) and so

[Dμ,Dν ]φ(x) → eiα(x) [Dμ,Dν ]φ(x). (25.52)

We then have

[Dμ,Dν ]φ(x) = ( [∂μ, ∂ν ]− ie [∂μ, Aν ] + ie [∂ν , Aμ])φ(x) = −ieFμνφ(x). (25.53)

Thus, remarkably [Dμ,Dν ] turns out not to be an operator but just a function. In this way,
the field strength for QED can be defined as

Fμν ≡
i

e
[Dμ,Dν ] . (25.54)

This has a nice geometric interpretation: it is the difference between what you get from
DμDν , which compares values for fields separated in the ν direction followed by a sep-
aration in the μ direction, to what you get from doing the comparison in the other order.
Equivalently, it is the result of comparing field values around an infinitesimal closed loop
in the μ−ν plane, as shown in Figure 25.1. This is, not coincidentally, also the limit of
the Wilson loop around a small rectangular path as in Eq. (25.51), as we discuss further in
Section 25.5.

25.2.2 Non-Abelian case

The non-Abelian case is natural for a Lagrangian whose global symmetries include more
than just a simple phase rotation. For example, the kinetic Lagrangian with N Dirac
fermions is
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Dμ

Dν

Dμ
Dν

The field strength can be constructed from a commutator of covariant derivatives:
Fμν = [Dμ, Dν ].

�Fig. 25.1

L =
N∑
j=1

ψ̄j
(
i/∂ −m

)
ψj . (25.55)

This is invariant under a global SU(N) symmetry where the fields transform as

ψi → (eiα
aTa)ijψj , (25.56)

where T a are the SU(N) generators in the fundamental representation.
The SU(N) symmetry of this Lagrangian is a global symmetry because αa does not

depend on x. But now we have the same problem as in the Abelian case: we cannot compare
field values at different points and cannot make a well-defined derivative. The solution
is just as before. For a non-Abelian symmetry, the whole Wilson line construction goes
through in exactly the same way. The Wilson line is now

WP (x, y) = P

{
exp
(
ig

∫ x
y

Aaμ(z)T
adzμ
)}

. (25.57)

Here we have inserted a path-ordering operator P{· · · }, which is important because the
group generators at different points do not commute. You can explore why path ordering
is necessary in Problem 25.6. The exponential in the Wilson line is defined by its Taylor
expansion and the path ordering applies to the fields in each term. Explicitly,

WP (x, y) = 1 + ig

∫ 1

0

dzμ(λ)
dλ

Aaμ(z(λ))T a dλ− 1
2
g2

∫ 1

0

dλ

∫ 1

0

dτ
dzμ(λ)
dλ

dzν(τ)
dτ

×Aaμ(z(λ))Abν(z(τ))
[
T aT bθ(λ− τ) + T bT aθ(τ − λ)

]
+ · · · . (25.58)

One can define Wilson lines in any representation using AaμT
a
R in the definition in Eq.

(25.57), but we stick to fundamental Wilson lines for now. Under gauge transformations,

WP (x, y) → eiα
a(x)TaW (x, y)e−iα

a(y)Ta , (25.59)
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where we have used that T a† = T a for SU(N).
In the non-Abelian case, it is often convenient to represent the gauge field as a Lie-

algebra-valued field by writing

Aμ ≡ AaμT
a. (25.60)

Then, WP (x, y) = P
{

exp
(
ig
∫ x
y
Aμ(z) dzμ

)}
, which looks a lot like the Abelian case.

(Technically, Aaμ are the components of a Lie-algebra-valued one-form A = Aμdx
μ.)

The infinitesimal expansion of the Wilson line is

W (xμ, xμ + δxμ) = 1− igAμδx
μ. (25.61)

The local transformations can be expressed in terms of U(x) = eiα
a(x)Ta ∈ SU(N),

which is the group element for the transformation at point x. They are

�ψ(x) → U(x) · �ψ(x) (25.62)

and

W (x, y) → U(x)W (x, y)U†(y), (25.63)

where U†(y) = U−1(y) in SU(N).
To determine how Aaμ transforms, we could just expand the transformation of W . A

more efficient way to derive the transformation law is to use that the covariant derivative
must transform like the field Dμ

�ψ → U ·Dμ
�ψ and therefore(

∂μ − igA′
μ

)
· U · �ψ = U · (∂μ − igAμ) · �ψ, (25.64)

where A′
μ is the transformed version of Aμ. Thus,

∂μU − igA′
μU = −igUAμ, (25.65)

which implies

A′
μ = UAμU

−1 − i

g
(∂μU)U−1. (25.66)

In terms of components, the infinitesimal version is

Aaμ(x) → Aaμ +
1
g
∂μα

a(x)− fabcαb(x)Acμ (25.67)

plus terms higher order in α.
Finally, let us look at the commutator of covariant derivatives as before. We now find

[Dμ,Dν ]ψ(x) =
(
−ig(∂μAν − ∂νAμ)− g2[Aμ,Aν ]

)
ψ(x). (25.68)

As in the Abelian case, there are no derivatives acting on ψ(x) in this expansion. We now
see that the natural field strength in the non-Abelian case is

Fμν ≡
i

g
[Dμ,Dν ] = (∂μAν − ∂νAμ)− ig[Aμ,Aν ] . (25.69)
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Or in components, Fμν = F aμνT
a, where

F aμν = ∂μA
a
ν − ∂νAaμ + gfabcAbμA

c
ν . (25.70)

In the Abelian case fabc = 0 and F aμν reduces to the electromagnetic field strength. Note
that, as in the Abelian case, F aμν is antisymmetric: F aμν = −F aνμ. The transformation law
for F aμν is

F aμν → F aμν − fabcαbF cμν , (25.71)

which is the same for a constant α or a local α(x). Thus, although initially Fμν = F aμνT
a

was defined with generators in the fundamental representation, the kinetic term just
depends on the F aμν fields, which naturally transform in the adjoint representation.

We can now write down a locally SU(N) invariant Lagrangian:

L = −1
4
(
F aμν
)2 +

N∑
i,j=1

ψ̄i
(
δiji/∂ + g /A

a
T aij −mδij

)
ψj . (25.72)

The first term is exactly the kinetic term in Eq. (25.6). The constant g is the analog of the
QED strength e.

There is one more renormalizable term we could add consistent with gauge invariance:

Lθ = θεμναβF aμνF
a
αβ = 2θ∂μ

(
εμναβAaνF

a
αβ

)
, (25.73)

where θ is a number. Since this term is a total derivative it does not contribute at any order in
perturbation theory (see Section 7.4.2). However, it can contribute due to non-perturbative
effects, as will be discussed in Sections 29.5 and 30.5. For example, in QCD, θ is called
the strong CP phase. If θ were non-zero, the neutron would have an electric dipole moment
proportional to θ. The absence of such a moment experimentally is a mystery known as the
strong CP problem.

25.3 Conserved currents

If we expand out the Lagrangian in Eq. (25.72) we find

L = −1
4
(
∂μA

a
ν − ∂νAaμ + gfabcAbμA

c
ν

)2
+ ψ̄i
(
iδijγ

μ∂μ + gγμAaμT
a
ij −mδij

)
ψj ,

(25.74)
where indices that appear twice are summed over. The equations of motion are

∂μF
a
μν + gfabcAbμF

c
μν = −gψ̄iγνT aijψj (25.75)

for the gauge fields and (
i/∂ −m

)
ψi = −g /AaT aijψj (25.76)

for the spinors.
Because the Lagrangian has a gauge symmetry, it has a global symmetry, under which

ψi → ψi + iαaT aijψj (25.77)
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and

Aaμ → Aaμ − fabcαbAcμ (25.78)

for infinitesimal α. In Section 3.3 we proved Noether’s theorem, that a global symmetry
implies a conserved current given by

Jμ =
∑
n

∂L
∂(∂μφn)

δφn
δα

. (25.79)

In the non-Abelian case, there will be N2 − 1 currents, one for each symmetry direction
αa. Summing over both matter fields φn = ψi and gauge fields φn = Aaμ gives

Jaμ = −ψ̄iγμT aijψj + fabcAbνF
c
μν . (25.80)

It is not hard to check that the current is conserved on the equation of motion, ∂μJaμ = 0,
which we leave for an exercise (Problem 25.5).

In contrast to the QED current, the Noether current associated with a global non-Abelian
symmetry in a theory with gauge bosons is not gauge invariant (or even gauge covari-
ant). Thus, it is not physical and there is not a well defined charge that one can measure.
Although it is true that the charges

Qa =
∫
d3xJa0 (25.81)

are conserved, that is ∂tQa = 0, these charges depend on our choice of gauge. Thus, in a
non-Abelian gauge theory such as QCD there is no such thing as a classical current, like a
wire with quarks in it instead of electrons. There is no simple analog of Gauss’s law either;
the gauge fields are bound up with the matter fields in an intricate and nonlinear way.

One can define a matter current constructed only out of fermions as

jaμ = −ψ̄iγμT aijψj , (25.82)

which is gauge covariant. However, this current satisfies

Dμj
a
μ = 0, (25.83)

where Dμj
a
ν = ∂μj

a
ν + gfabcAbμj

c
ν is the covariant derivative in the adjoint representation.

Thus, the matter current is not conserved, ∂μjaμ �= 0, and there is no associated conserved
charge.

Our observations about currents follow from a very general theorem known as the
Weinberg–Witten theorem [Weinberg and Witten, 1980]:

Box 25.1 The Weinberg–Witten theorem (for spin 1)

A theory with a global non-Abelian symmetry under which massless spin-1
particles are charged does not admit a gauge-invariant conserved current.

Another way to phrase the theorem without reference to gauge invariance (which is unphys-
ical) is that there cannot be a conserved Lorentz-covariant current in a theory with massless
spin-1 particles with non-vanishing values of the charge associated with that current.



25.4 Gluon propagator 495

Lorentz covariance replaces gauge invariance because the physical polarizations of a mass-
less spin-1 particle transform non-covariantly as εμ(p) → εμ(p)+pμ under certain Lorentz
transformations. The connection between these non-covariant transformations and charge
conservation was discussed in Sections 8.4.2 and 9.5.

The Weinberg–Witten theorem for spin 2 implies:

A theory with a conserved and Lorentz-covariant energy-momentum tensor can never
have a massless particle of spin 2.

In this case also, Lorentz covariance is equivalent to saying that there cannot be a gauge
field associated with the local symmetry. For the energy-momentum tensor, this local
symmetry is local translations (see Section 3.3.1) and the gauge field is the graviton
(see Section 8.7.2).

The Weinberg–Witten theorem does not say anything useful about the Standard Model,
since it has non-conserved currents under which non-Abelian gauge fields and gravity are
charged and conserved currents that are not gauge invariant. But it does say that if you
started with a theory without gravity, say only with scalars, spinors and gauge fields, which
does have a conserved energy-momentum tensor, you would never have some kind of phase
transition that gives you a massless graviton, since the same energy-momentum tensor
could no longer exist. String theory and the anti de Sitter/conformal field theory (AdS/CFT)
correspondence get around this by having gravity emerge in a different space-time – ten
dimensions for string theory from a two-dimensional world sheet, and four dimensions for
the CFT from a ten-dimensional string theory. The Weinberg–Witten theorem assumes the
space-time dimension is fixed.

25.4 Gluon propagator

The next step is to derive the gluon propagator. For simplicity, we call the massless spin-1
particles gluons and the theory QCD, although the derivation that follows applies for any
gauge group. We will compute the gluon propagator in the covariant Rξ gauges, as we did
for the photon propagator, but we will find a new feature: Faddeev–Popov ghosts. These
ghosts are unphysical virtual states. They are an artifact of insisting on Lorentz invariance
(through the covariant Rξ gauges) from which reemerges the conflict between unitarity for
massless spin-1 particles and manifest Lorentz invariance (this conflict was the subject of
Chapter 8). In some non-covariant gauges, such as axial gauges, discussed below, ghosts
are absent. However, covariant gauges are vastly simpler for most calculations despite the
required ghosts, thus we will learn to work with ghosts as the lesser of two evils.

25.4.1 Faddeev–Popov procedure

Recall our derivation of the photon propagator in QED. We first observed that the equations
of motion for a photon coupled to an external current,
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(gμν�− ∂μ∂ν)Aμ = Jν , (25.84)

were not invertible: the operator kμkν−k2gμν has an eigenvector kν with eigenvalue 0. We
made them invertible by modifying the Lagrangian with a Lagrange multiplier 1

2ξ (∂μAμ)
2.

This modification led to a one-parameter family of propagators; we had to carefully check
that our modification would not violate gauge invariance through a dependence of physical
quantities on ξ.

A more systematic way of calculating the photon propagator came with the introduction
of path integrals in Chapter 14. In Section 14.5 we observed that

f(ξ) =
∫
Dπe−i

∫
d4x 1

2ξ (�π)2 =
∫
Dπe−i

∫
d4x 1

2ξ (�π−∂μAμ)2 (25.85)

was independent of Aμ, since the last step is a simple shift π → π− 1
�∂μAμ. We then saw

that∫
DAμDφiei

∫
d4xL[A,φi] =

1
f(ξ)

∫
DπDAμDφiei

∫
d4xL[A,φi]− 1

2ξ (�π−∂μAμ)2

=
[

1
f(ξ)

∫
Dπ
] ∫

DAμDφiei
∫
d4xL[A,φi]− 1

2ξ (∂μAμ)2 ,

(25.86)

implying that (up to an overall normalization factor 1
f(ξ)

∫
Dπ, which drops out of physi-

cal quantities) the un-gauge-fixed Lagrangian will give the same result as the gauge-fixed
one. The interpretation of the normalization factor is that it describes the path integral over
gauge orbits, as can be seen in Eq. (25.85), on which physical quantities do not depend.
Removing this normalization leaves a path integral over only the physical degrees of free-
dom for a massless spin-1 particle. If any of these steps are not familiar, please review the
derivation in Section 14.5.

For the non-Abelian theory, we can do the same trick, but there are some subtleties. To
start, we will need N2 − 1 fields πa. The gauge transformation is more complicated in the
non-Abelian case. For infinitesimal transformations parametrized by πa, we now have

Aaμ → Aaμ +
1
g
∂μπ

a + fabcAbμπ
c. (25.87)

Since πa is in the adjoint representation, this can be written more concisely as

Aaμ → Aaμ +
1
g
Dμπ

a, (25.88)

where Dμπ
a = ∂μπ

a + gfabcAbμπ
c is the way a covariant derivative acts on a field trans-

forming in the adjoint representation. Note thatDμ mixes different πa fields, thus we might
more accurately writeDab

μ π
b; insteadDμπ

a is used for simplicity. Now let us multiply and
divide our path integral by

f [A] =
∫
Dπ exp

[
−i
∫
d4x

1
2ξ

(∂μDμπ
a)2
]
. (25.89)

Unlike in the Abelian case, f is not just a number, but is now a functional of Aμ. Never-
theless, we can still define αa[A] as the gauge-transformation parameters that take a given
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Aaμ configuration to Lorenz gauge. That is, ∂μAaμ = 1
g∂μD

a
μα

a[A] has a solution. Shifting

πa by 1
gα

a[A] then gives

f [A] =
∫
Dπ exp

[
−i
∫
d4x

1
2ξ
(
∂μA

a
μ − ∂μDμπ

a
)2]

, (25.90)

so that∫
DAμDφiei

∫
d4xL[A,φi]

=
∫
DπDAμDφi

1
f [A]

exp
(
i

∫
d4xL [A,φi]−

1
2ξ
(
∂μA

a
μ − ∂μDμπ

a
)2)

=
[∫

Dπ
] ∫

DAμDφi
1

f [A]
exp
(
i

∫
d4xL [A,φi]−

1
2ξ
(
∂μA

a
μ

)2)
, (25.91)

where we have redefined Aaμ → Aaμ +Dμπ
a in the last step, which leaves L [A,φi] unaf-

fected. Since this redefinition removes π from the Lagrangian, the π integral just gives an
unphysical constant. The result is almost identical to the Abelian case, except now f [A]
depends on the gauge fields.

Before evaluating this integral, let us pause and think about what is going on. When
we gauge-fix the path integral, we are no longer guaranteed that only the physical trans-
verse modes of Aaμ propagate. Indeed, there are additional modes πa that have 4-derivative
kinetic terms, and are therefore ghost-like (see Section 8.7). However, the path integral also
tells us we have to divide out by the diagrams involving πa, just as we divide out by the
vacuum bubbles in calculating the connected Green’s functions. We could just calculate
this way. But it is easier to rewrite f [A] in such a way that we can add Feynman diagrams
instead of subtracting them.

To simplify f [A], observe that in the form of Eq. (25.89), despite its dependence on Aμ,
f [A] is still quadratic in π, so we can perform the Gaussian integral as a functional of Aμ.
We find

f =

√
1

det(∂μDμ)2
× const. , (25.92)

so that

Z[0] = const.×
∫
DAμDφi[det(∂μDμ)] exp

{
i

∫
d4x

[
L[A,φi]−

1
2ξ
(
∂μA

a
μ

)2]}
,

(25.93)
with the determinant in the numerator.

Now recall from Section 14.6 that a determinant can be written as a path integral over
Grassmann numbers:

det(O) =
∫
Dψ̄Dψ exp

(
−i
∫
d4x ψ̄Oψ

)
. (25.94)

Thus, we can write

det(∂μDμ) =
∫
Dc̄Dc exp

(
i

∫
d4x c̄(−∂μDμ)c

)
(25.95)
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for Grassmann-valued fields c and c̄. Thus, we finally have the gauge-fixed path integral
for a non-Abelian gauge theory:

Z[0] = const.×
∫
DAμDφiDc̄Dc exp

{
i

∫
d4x

[
L[A,φi]−

1
2ξ
(
∂μA

a
μ

)2 − c̄a∂μDμc
a

]}
.

(25.96)

Here ca and c̄a are anticommuting Lorentz scalars, called Faddeev–Popov ghosts and
anti-ghosts respectively. There is one ghost and one anti-ghost for each gauge field. The
sector of this gauge-fixed Lagrangian involving just the non-Abelian gauge bosons is

LRξ = −1
4
(F aμν)

2 − 1
2ξ

(∂μAaμ)
2 + (∂μc̄a)(δac∂μ + gfabcAbμ)c

c. (25.97)

This is the Faddeev–Popov Lagrangian. The resulting propagator is

p

ν; b μ; a = i
−gμν + (1− ξ) p

μpν

p2

p2 + iε
δab, (25.98)

which is the same as the photon propagator up to the δab term. The ghost propagator and
the interaction vertices for Yang–Mills theory are given in Section 26.1.

Ghosts are unphysical since they violate the spin-statistics theorem. As we showed in
Chapter 12, there cannot be physical states that anticommute and transform like scalars
under the Lorentz group. However, nothing prevents ghosts from appearing in the path
integral. As with physical fields, one can expand the path integral in perturbation theory,
generating Feynman diagrams involving these ghosts. For S-matrix elements of physical
states, the ghosts will appear in internal lines.

One way to understand why ghosts have to be fermionic is so that they can cancel
unphysical degrees of freedom of the gluons in loops. When we take the gluons off-shell,
we are no longer guaranteed to have the right number of physical degrees of freedom. The
ghosts are fermionic because they need a−1 in loops to cancel the +1 from the unphysical
polarizations.

One can generalize the above argument to allow for integrals along arbitrary gauge orbits
to be factored out. Begin by picking a gauge, that is, some element of the equivalence class
of gauge fields, and call it Âaμ. Fields in this gauge satisfy some constraint G[Â] = 0,
where G is a functional. For example, in Lorenz gauge we could take G[A] = ∂μA

a
μ. Any

gauge field can be written as Aaμ = Âaμ + Dμπ
a for some πa. In this way, we should be

able to split the path integral into an integral over Âaμ and an integral over πa. To do so, we
observe that

1 =
∫
Dπδ
(
G
[
Aaμ −Dμπ

a
])

det

(
δG
[
Aaμ −Dμπ

a
]

δπb

)
. (25.99)

For example, with G[Aaμ] = ∂μA
a
μ we find

det

(
δG
[
Aaμ −Dμπ

a
]

δπb

)
= det(∂μDμ) =

1
f [A]

=
∫
Dc̄Dc exp

(
i

∫
d4x c̄a(−∂μDμ)ca

)
(25.100)
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as above. Folding the 1 in Eq. (25.99) into the path integral gives

Z[0] = const.×
∫
Dπ
∫
DAμDφiδ

(
G
[
Aaμ −Dμπ

a
])

det

(
δG
[
Aaμ −Dμπ

a
]

δπb

)

× exp
(
i

∫
d4xL[A,φi]

)
. (25.101)

Now we can shift Aaμ → Aaμ + Dμπ
a. This is a linear shift, accompanied by a global

transformation, so the measure does not change. Assuming the determinant is independent
of π, we then have

Z[0] = const.×
[∫

Dπ
] ∫

DAμDφiδ
(
G
[
Aaμ
])

det

(
δG
[
Aaμ −Dμπ

a
]

δπb

)∣∣∣∣∣
π→0

× exp
(
i

∫
d4xL[A,φi]

)
. (25.102)

The π integral is now just an (infinite) constant. Now we note that if we shift G by a
constant the determinant does not change. So we can average over a Gaussian-weighted
selection of shifts using∫

Dχexp
(
−i
∫
d4x

χ2

2ξ

)
δ
(
G
[
Aaμ
]
− χ
)

= exp
(
−i
∫
d4x

1
2ξ
G
[
Aaμ
]2)

. (25.103)

Thus,

Z[0] = const.×
∫
DAμDφi det

(
δG
[
Aaμ −Dμπ

a
]

δπb

)∣∣∣∣∣
π→0

× exp
[
i

∫
d4x

(
L[A,φi]−

1
2ξ
G
[
Aaμ
]2)]

. (25.104)

For G
[
Aaμ
]

= ∂μAμ this reduces to the Lagrangian for the covariant gauges discussed
above.

25.4.2 BRST invariance

Since Faddeev–Popov ghosts are so strange, it is worth considering why they must be there
from another perspective. Recall that to be able to renormalize a theory, we need to include
every operator consistent with symmetries, or else there may be infinities for which we
do not have appropriate counterterms. In QED, although gauge invariance was broken by
the 1

2ξ (∂μAμ)
2 term, we still used gauge invariance to forbid additional gauge-violating

terms. We were able to get away with this in QED because Aμ coupled to a conserved
current, so modifying only its kinetic term had no effect. In QCD, the gauge fields do
not couple to a conserved current because of self-interactions of the gauge fields, so the
1
2ξ

(
∂μA

a
μ

)2
term, with its associated Faddeev–Popov ghosts, is not so clearly an innocuous

deformation. Remarkably, when ghosts are included, the QCD Lagrangian retains an exact
global symmetry called BRST invariance (named after Becchi, Rouet, Stara and Tyutin).
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BRST invariance is therefore critical in proving renormalizability of non-Abelian gauge
theories.

BRST invariance can be seen even in QED, where it is a little simpler. Taking the Abelian
limit of the Faddeev–Popov Lagrangian with scalar matter fields φi included, we find

L = −1
4
F 2
μν + (Dμφ

�
i )(Dμφi)−m2φ�iφi −

1
2ξ

(∂μAμ)
2 − c̄� c. (25.105)

The term 1
2ξ (∂μAμ)

2 breaks the gauge symmetry down to a residual symmetry under which

Aμ → Aμ + 1
e∂μα for fields α(x) satisfying �α = 0. This is a residual symmetry of the

entire Lagrangian. Now note that the equations of motion for c and c̄ are �c = �c̄ = 0.
Thus, instead of gauge transforming with a parameter α, we can gauge transform with
α(x) = θc(x) for any Grassmann number θ. In other words, the Lagrangian is invariant
under

φi(x) → eiθc(x)φi(x) = φi(x) + iθc(x)φi(x), (25.106)

Aμ(x) → Aμ(x) +
1
e
θ∂μc(x), (25.107)

as long as the equations of motion �c = �c̄ = 0 can be used. If we do not use the equations
of motion, we find the first three terms in Eq. (25.105) are invariant; however,

(∂μAμ)2 → (∂μAμ)2 +
2
e
(∂μAμ)(θ�c) +

1
e2

(θ�c)(θ�c) . (25.108)

Since θ is Grassmann, θ2 = 0 and the last term vanishes. Thus, if we also take

c̄(x) → c̄(x)− 1
e
θ
1
ξ
∂μAμ(x), (25.109)

then the Lagrangian is invariant without using the equations of motion. This is an example
of BRST invariance. Since θc(x) acts like α(x) for the Aμ and φi transformations, BRST
is a generalization of gauge invariance that holds despite the gauge-breaking 1

2ξ (∂μAμ)
2

term.
In the non-Abelian case, the Lagrangian is

LFP = L
[
Aaμ, φi
]
− 1

2ξ
(
∂μA

a
μ

)2 + (∂μc̄a)(Dμc
a) , (25.110)

where Dμc
a = ∂μc

a + gfabcAbμc
c. Thus, we can proceed as in the Abelian case, defining

the transformations as

φi → φi + iθcaT aijφj , (25.111)

Aaμ → Aaμ +
1
g
θDμc

a, (25.112)

c̄a → c̄a − 1
g
θ
1
ξ
∂μA

a
μ. (25.113)

As in the Abelian case, these are just gauge transformations with αa(x) = θca(x) when
acting on φi or Aaμ; thus, L

[
Aaμ, φi
]

is invariant. Also the transformation of (∂μc̄a) is
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designed to exactly cancel the transformation of − 1
2ξ

(
∂μA

a
μ

)2
. However, unlike in the

Abelian case, the Dμc
a term is not invariant, because of the Aaμ hidden in Dμc

a:

Dμc
a → Dμc

a + θfabc
(
Dμc

b
)
cc. (25.114)

To make this covariant derivative invariant, we will need to transform ca as well. This can
be done by defining the BRST transformation for ca as

ca → ca − 1
2
θfabccbcc. (25.115)

Note that nowhere did we use that ca and c̄a were related in any way (as ψ and ψ̄ are related
by charge-conjugation invariance); thus, we are free to give them different transformation
laws. To check this, we compute

Dμc
a → Dμc

a + θfabc
(
Dμc

b
)
cc − θfabc

[
1
2
(
∂μc

b
)
cc +

1
2
cb(∂μcc) +

g

2
Abμf

cdecdce
]
.

(25.116)

The first two terms in brackets are equal, since
(
∂μc

b
)
cc = −cc

(
∂μc

b
)

and fabc = −facb.
For the last term, we note that by the Jacobi identity in Eq. (25.11),

fabcfcdeAbμc
dce = −f bdcfcaeAbμcdce − fdacfcbeAbμcdce

= 2fabcf bedAeμc
dcc, (25.117)

where we have used antisymmetry of fabc and a fair amount of index relabeling to get to
the second line. We therefore have that

Dμc
a → Dμc

a+θfabc
(
Dμc

b
)
cc−θfabc

[(
∂μc

b
)
cc + gf bedAeμc

dcc
]

= Dμc
a (25.118)

and that LFP is invariant.
We conclude that the Faddeev–Popov Lagrangian is BRST invariant. BRST invariance

is global symmetry parametrized by a Grassmann number θ under which fields transform
as in Eqs. (25.111) to (25.115).

One implication of BRST invariance is for renormalization. Since BRST invariance is
an exact symmetry of the Lagrangian, it will be preserved in loops. Thus, one will not
need any counterterms that violate BRST invariance. Since the Faddeev–Popov ghosts and
anti-ghosts are critical in establishing BRST invariance of the gauge-fixed non-Abelian
Lagrangian, this strongly constrains how they can appear at higher orders. The proof of
renormalizability for non-Abelian theories shows that all the infinities are canceled with the
finite number of counterterms corresponding to terms in the most general BRST-invariant
Lagrangian.

By the way, BRST invariance has a sophisticated mathematical foundation and many
formal applications. For example, if one writes the transformations as φi → φi + θΔφi,
Aaμ → Aaμ + θΔAaμ and so on, the operator Δ turns out to be nilpotent, Δ2 = 0. You
can check this in Problem 25.7. Δ is sometimes called the Slavnov operator. Thus, all
states that are exact, |X〉 = Δ |Y 〉, for some |Y 〉 are closed, Δ |X〉 = 0. This establishes
a cohomology: there is a well-defined equivalence class of states that are closed but not
exact. It turns out that one can identify physical states with the cohomology of Δ. Shifting
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an element of this class by an exact state does not change the physical state. This is a
precise mathematical way of saying statements such as the electric and magnetic fields �E
and �B correspond to an equivalence class of potentialsAμ for which Fμν = ∂μAν−∂νAμ.
A physical but heuristic discussion can be found in [Peskin and Schroeder, 1995, Section
16.4] and a more formal treatment in [Weinberg, 1996].

25.4.3 Axial gauges

The whole discussion of ghosts and BRST in the previous sections makes it seem like
these are crucial things. Ghosts are in fact crucial, in the sense that you have to include
them to get the right answer in perturbation theory, at least in covariant gauges. But ghosts
are also unphysical. They arise as an artifact of insisting on a gauge in which the gluon
propagator is Lorentz covariant. If we never tried to embed the two physical polarizations
of a massless spin-1 particle into a field Aμ(x) we would never have had to deal with
ghosts. Or, if we restricted to gauge-invariant objects, such as the field strength Fμν (as is
done on the lattice), we also would not have to deal with ghosts.

An alternative to dealing with ghosts is to choose a gauge in which the ghosts decou-
ple from the physical particles, and hence can be ignored. All such gauges are explicitly
Lorentz violating. The most important class of non-covariant gauges are the axial gauges.
The axial-gauge gauge-fixing and ghost terms are

Lgauge-fixing + Lghost = − 1
2λ

(rμAaμ)
2 + c̄arμ(δac∂μ + gfabcAbμ)c

c (25.119)

where there are now two parameters, λ (a number) and rμ (a 4-vector). For example, rμ =
(1, 0, 0, 0) would put− 1

2λA
2
0 in the Lagrangian; then taking the limit λ→ 0 forcesA0 = 0,

which is axial gauge in electromagnetism.
The propagator following from this modification is

iΠμνab
axial =

i

p2 + iε

[
−gμν +

rμpν + rνpμ

rp
− (r2 + λp2)pμpν

(rp)2

]
δab. (25.120)

It satisfies pμΠμνab
axial = 0 when pμ is on-shell (p2 = 0). In addition, for λ = 0, the axial

propagator satisfies rμΠμνab
axial . Then, since the ghost-antighost-gluon vertex is proportional

to rμ, it will vanish when contracted with gluon propagator. Thus, for λ = 0 and any rμ,
the ghosts decouple.

A special case known as lightcone gauge has r2 = 0 (rμ is light-like) and λ = 0. Then,

iΠμνab
lightcone =

i

p2 + iε

[
−gμν +

rμpν + pμrν

rp

]
δab. (25.121)

In lightcone gauge, there are only two physical polarizations: those transverse to the r−p
plane, summed over in the numerator of this propagator. That is, the numerator is the
polarization sum of transverse modes in a particular basis. Since only two polarizations
are being propagated, we do not need ghosts to cancel the unphysical polarizations, which
explains why they decouple. In contrast, in the Feynman-gauge propagator (ξ = 1), the
numerator −gμν is the sum over four polarizations and so ghosts are needed to cancel the
unphysical modes.
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Axial gauges make it clear that ghosts are not strictly necessary to describe non-Abelian
gauge theories. In practice, unless you are in a situation where there is some natural
direction rμ, axial gauges are very unwieldy. Ghosts are a formal annoyance, but from
a practical point of view they are not that bad. On the other hand, for external polariza-
tions, having the freedom to choose rμ separately for each gluon (corresponding to a basis
of transverse polarizations) can be extremely useful. We will show how this freedom can
be exploited to great practical advantage in Chapter 27 (on the spinor-helicity formalism).
Further discussion of non-covariant gauges can be found in [Liebbrandt, 1987].

25.5 Lattice gauge theories

Before going on to perturbative calculations in non-Abelian gauge theories, it is worth
discussing the only systematically improvable method for computing non-perturbative
quantities in gauge theories: the lattice. Lattice simulations are useful when gauge fields
are strongly interacting, as is the case for QCD at low energies. There are enormous practi-
cal difficulties with lattice simulations, and many open theoretical questions (such as how
to simulate chiral gauge theories). Here we only superficially summarize the approach to
lattice QCD pioneered by Wilson. This discussion is adapted from [Gattringer and Lang,
2010].

Let us define a four-dimensional lattice with nsites sites in each dimension spaced a
distance a apart. We denote the lattice sites by n. On the lattice, quantum field theory
reduces to quantum mechanics with n4

sites fields. Matter fields �φ(n) naturally reside on the
lattice sites. We denote by μ̂ a vector of unit length a in the μ direction, so �φ (n+ μ̂) and
�φ(n) are the field values on nearest-neighbor sites. Gauge transformations are also discrete,
so we can rotate fields by group elements

�φ(n) → U(n) · �φ(n), (25.122)

where U(n) = exp(iαa(n)T a) defined separately on each site. To be able to compare field
values at different sites in a gauge-invariant way, we need the discrete version of the Wilson
line discussed in Section 25.2. We therefore define new fields Wμ(n) transforming as

Wμ(n) → U(n)Wμ(n)U†(n+ μ̂). (25.123)

Then,

�φ†(n)Wμ(n)�φ(n+ μ̂) →�φ†(n)U†(n)U(n)Wμ(n)U†(n+ μ̂)U(n+ μ̂)�φ(n+ μ̂)

=�φ†(n)Wμ(n)�φ(n+ μ̂). (25.124)

Products of fields on distant lattice sites can be multiplied in a gauge-invariant way by
multiplying together Wμ(ni) factors along any path between the sites. The Wμ(n) can be
thought to live between neighboring sites; thus they are called link fields. To connect any
two sites, it is enough to have one link between every neighboring pair. For convenience,
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Wμ (n)

Wν (n + μ̂ )W–ν (n + ν̂ )

W–μ (n + μ̂  + ν̂ )

Wμν (n)

n + μ̂  + ν̂n + ν̂

n + μ̂n

�Fig. 25.2 The plaquette Wμν(n) is a gauge-invariant object constructed from multiplying links in a
closed loop.

we also define

W−μ(n) = W †
μ(n− μ̂), (25.125)

which acts as a link in the opposite direction. In analogy to the continuum case, we write

Wμ(n) = exp(iaAμ (n)) , (25.126)

where Aμ(N) = Aaμ(N)T a and a is the lattice spacing. The coupling g, which is not a
useful quantity on the lattice, has been absorbed into the gauge field.

To construct the Yang–Mills action, we need a gauge-invariant object constructed out of
the link fields. These will be the analogs of the Wilson loop. Indeed, from the transforma-
tion property in Eq. (25.123), any closed loop of links will be gauge invariant. The simplest
loop just goes between two sites and back. However, since Wμ(N)W−μ(n+ μ̂) = 1, this
it not useful. The next simplest loop, which is non-trivial, goes in a little square. We call
this a plaquette (see Figure 25.2) and define it by

Wμν(N) ≡W−ν(n+ ν̂)W−μ(n+ μ̂+ ν̂)Wν(n+ μ̂)Wμ(N)

= W †
ν (N)W †

μ(n+ ν̂)Wν(n+ μ̂)Wμ(N). (25.127)

To connect plaquettes to the continuum field strengths Fμν(x) we can rewrite Wμν with
the Campbell–Baker–Hausdorff formula:

exp(A) exp(B) = exp
(
A+B +

1
2

[A,B] + · · ·
)
. (25.128)

Up to order a2 we find

lnWμν(N) = ia(Aμ(n) + Aν(n+ μ̂)−Aμ(n+ ν̂)−Aν(n))

+
a2

2

{
[Aν(N) + Aμ(n+ ν̂) ,Aν(n+ μ̂) + Aμ (n)]

− [Aν(N),Aμ(n+ ν̂)]− [Aν(n+ μ̂) ,Aμ(n)]} . (25.129)

To connect to the continuum limit, we Taylor expand:

Aν(n+ μ̂) = Aν(n) + a∂μAν(N) +O
(
a2
)
. (25.130)
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This gives

Wμν(n) = exp
{
ia2(∂μAν(n)− ∂νAμ(n)) + a2[Aμ(n) ,Aν(n)] +O

(
a3
)}

= exp
{
ia2Fμν(n) +O

(
a3
)}
, (25.131)

where Fμν ≡ (∂μAν − ∂νAμ) − i [Aμ,Aν ], as in Eq. (25.69) with g = 1. Expanding at
small a we find

Wμν(N) = 1 + ia2Fμν(N)− a4

2
F2
μν(N) +O

(
a5
)
. (25.132)

What we are looking for is something that approaches the discretization of the
continuum Yang–Mills action after rescaling Aμ → 1

gAμ:

SYM[Fμν ] = i

∫
d4x

[
− 1

4g2

(
F aμν
)2] = − ia4

4Ng2

∑
n,μν

tr
(
F2
μν

)
, (25.133)

where Eq. (25.28) has been used to get the factor of N in the last step. We therefore define
the Yang–Mills action on the lattice as

Slattice[Wμν ] ≡ −
i

2g2N

∑
n,μν

Re(tr(1−Wμν(N))) . (25.134)

The lattice action is the sum over all plaquettes, which are in turn defined in terms of link
fields Wμ(N). One can now evaluate the path integral for the lattice (in Euclidean space)
numerically by literally summing over values for the links at each site.

There are many things one can calculate with the lattice. For a concrete example, the
most straightforward physical quantities to calculate are particle masses. These can be
extracted from 2-point functions, which are calculated on the lattice by inserting fields at
different lattice points into the discretized path integral weighted by the Euclidean action.
For example, to calculate the pion mass in QCD with one flavor, one would calculate the
discrete Euclidean version of

C(x)〈Ω |O(0)O(x)|Ω〉 =
∫
DAμDūDueiSO(0)O(x), (25.135)

where O(x) = ū(x)γ5u(x). This correlation function should die off at large distances as
e−mr, where m is the mass of the lightest particle with the same quantum numbers as
O. Thus, by varying the distance between the points, one can extract asymptotic behavior.
One wants to find characteristic scaling at intermediate regimes, as shown on the left Fig-
ure 25.3. This plot indicates that the pion mass scales as the square root of quark masses,
a result we will derive using chiral perturbation theory in Chapter 28. By using one such
mass to set the overall units, one can then predict other things, such as other particle masses.
Besides masses, the lattice is used to calculate many non-perturbative quantities, such as
form factors. The lattice also gives insights into purely theoretical issues, such as sponta-
neous symmetry breaking in Yang–Mills theories with various number of flavors and colors
(see Chapter 28).
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�Fig. 25.3 The pion mass can be extracted from the scaling behavior of the correlation function
C(nt) = 〈O(0)O(nt)〉 ∼ exp(−meffnt), where nt is the number of sites and meff is the
effective mass in lattice units. The left figure shows lnC(nt) and the right plot its slope.
One learns from these plots, for example, that as the quark mass is quadrupled from 0.05
to 0.2, the pion mass doubles. That m2

π ∝ mq will be derived with chiral pertubation theory
in Chapter 28. (Figure from [Gattringer and Lang, 2010].)

Problems

25.1 Check that the Yang–Mills Lagrangian in Eq. (25.6) is gauge invariant by explicitly
inserting the transformation in Eq. (25.67).

25.2 Derive Eqs. (25.20) to (25.22).
25.3 Semisimplicity.

(a) The key reason that semisimple Lie algebras are of interest in physics is that all
finite-dimension representations of semisimple algebras are Hermitian. Prove
this fact.

(b) Prove that the Lorentz algebra so(1, 3) is not semisimple, but its complexifica-
tion su(2)⊕ su(2) is.

(c) An important algebra that is not semisimple is the Heisenberg algebra. It has
three generators p, x and � satisfying [x, p] = i� and [x, �] = [p, �] = 0. Find a
three-dimensional matrix representation of this algebra. Show that this algebra
is neither simple nor semisimple.

25.4 Anomaly coefficients.
(a) Show that anomaly coefficients for complex conjugate representations are equal

with opposite sign: A(R) = −A
(
R̄
)
. Conclude that the anomaly coefficient for

a real representation is zero.
(b) Show that for reducible representations A(R1 ⊕R2) = A(R1) +A(R2).
(c) Show that for tensor product representations A(R1 ⊗ R2) = A(R1)d(R2) +

d(R1)A(R2).
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(d) What is A(10) for SU(4)? You can use that 4⊗4 = 6+10, with 6 being a real
representation.

25.5 Check that the Noether current, Jaμ = gψ̄iγ
μT aijψj + gfabcAbμF

c
μν , is conserved on

the equations of motion.
25.6 Show that the path ordering is necessary in the definition of the non-Abelian Wilson

line, Eq. (25.57), for the transformation property in Eq. (25.63) to be satisfied.
(a) First show gauge invariance to leading non-trivial order in perturbation theory.

That is, show that the θ-functions are necessary in Eq. (25.58).
(b) Show that the Wilson line with path ordering satisfies Eq. (25.63) exactly.

25.7 Check that the Slavnov operator Δ, defined so that φ → φ + θΔφ for the various
fields under BRST transformations, is nilpotent Δ2 = 0.



26 Quantum Yang–Mills theory

In the previous chapter, we introduced Yang–Mills theory as the natural generalization of
electrodynamics to systems with many fields. If we have N fields φi, then the Lagrangian
L = −φ�i�φi is invariant under a global SU(N) symmetry, under which φi → Uijφj for
U ∈ SU(N). In Yang–Mills theory there are massless spin-1 particles which transform in
the adjoint representation of SU(N). Since SU(N) is a non-Abelian group, Yang–Mills
theories are often called non-Abelian gauge theories. It is perhaps worth emphasizing that
the important feature of these theories is not gauge invariance (which is an unphysical fea-
ture of Lagrangians) but the existence of massless spin-1 particles that are charged, that is,
they carry quantum numbers. In the next chapter we will discuss a method for performing
S-matrix calculations in Yang–Mills theories that sidesteps gauge invariance altogether.
These caveats aside, introducing a local Lagrangian for Yang–Mills theory with gauge
invariance is by far the most powerful and general method for studying these theories.
Thus, we focus in this chapter on perturbative calculations in non-Abelian gauge theories.

In Chapter 25, gauge invariance was motivated as allowing us to choose a different
SU(N) convention at different points. We saw that we could compare field values at dif-
ferent points in a convention-independent way if we used Wilson lines W (x, y) defined so
that W (x, y)φ (y) transforms as φ(x). Expanding such a Wilson line out for small devia-
tions led toW (x, x+ δx) = 1−igδxμAaμT a, where T a are the generators of SU(N) in the
fundamental representation. In this way, we found that a local theory needs one gauge field
Aaμ for each generator, and thus the gauge fields Aaμ transform in the adjoint representation
of SU(N).

Next, we found that, in computing the propagator for the gauge boson, we had to gauge-
fix, as in QED. But in the non-Abelian case, the covariant gauge-fixing (Rξ gauges),
when done properly through the path integral, generated new particles called Faddeev–
Popov ghosts, which have spin 0 but fermionic statistics. These particles never appear as
external states but must be included in internal lines for consistency. That we need these
ghosts is a horrible consequence of the Lagrangian formulation of field theory. There is
no observable consequence of ghosts, we just need them to describe an interacting theory
of massless spin-1 particles using a local manifestly Lorentz-invariant Lagrangian. Alter-
native formulations (such as the lattice) do not require ghosts. Perturbative gauge theories
in certain non-covariant gauges, such as lightcone gauge, are also ghost free. However, to
maintain manifest Lorentz invariance in a perturbative gauge theory, it seems ghosts are
unavoidable.

In this chapter we will perform some perturbative calculations in the non-Abelian theory.
This will allow us to understand both the theory of the strong interactions, QCD, which is

508
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a non-Abelian gauge theory with gauge group SU(3), and the theory of the weak inter-
actions, which is based on SU(2). For simplicity, we will refer to the non-Abelian gauge
theory as QCD, and the gauge bosons as gluons. Our results will be more general than this,
but it is helpful to talk about QCD for concreteness.

We will discuss some tree-level and 1-loop results, including probably the most impor-
tant calculation in QCD – vacuum polarization. We will find that the QCD gauge coupling
runs in the opposite direction from QED: it gets larger at larger distances. This makes the
phenomenology of QCD completely different from the phenomenology of QED. In the
next chapter, we will return to tree-level graphs through the spinor-helicity formalism.

Due to the many possible contractions in each vertex, calculations in non-Abelian gauge
theories quickly get intractably complicated. For example, the process gg → ggg even at
tree-level contains around 10 000 terms. Part of the reason things are so complicated is
because there is a huge redundancy when we sum over off-shell intermediate states. In the
next chapter, we will see that there is a smarter way to organize the tree-level structure. In
this chapter we concentrate on processes with few gluons so that the number of terms is
manageable and we can perform the calculations using traditional Feynman rules.

26.1 Feynman rules

The first step in performing perturbative calculations in a non-Abelian gauge theory is to
work out the Feynman rules. The SU(N)-invariant Lagrangian for a set of N fermions and
N scalars interacting with non-Abelian gauge fields is

L = −1
4
(
F aμν
)2 − 1

2ξ
(
∂μA

a
μ

)2 + (∂μc̄a)
(
δac∂μ + gfabcAbμ

)
cc

+ ψ̄i
(
δiji/∂ + g /A

a
T aij −mδij

)
ψj

+
[(
δki∂μ − igAaμT aki

)
φi
]� [(

δkj∂μ − igAaμT akj
)
φj
]
−M2φ�iφi, (26.1)

where ca and c̄a are the Faddeev–Popov ghosts and anti-ghosts respectively and

F aμν = ∂μA
a
ν − ∂νAaμ + gfabcAbμA

c
ν . (26.2)

We have included scalars in this Lagrangian for generality, even though we have observed
no scalar states in nature that are colored (charged under QCD). Many theories, such as
supersymmetric QCD, do have colored scalars. The Higgs doublet in the Standard Model
is an example of a scalar field charged under the weak gauge group SU(2).

The kinetic terms from the QCD Lagrangian are

Lkin = −1
4
(
∂μA

a
ν − ∂νAaμ

)2− 1
2ξ
(
∂μA

a
μ

)2+ψ̄i
(
i/∂ −m

)
ψi−φ�i

(
� +M2

)
φi−ca�ca.

(26.3)
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Since the kinetic term for the gauge bosons is just the sum over N2− 1 free gauge bosons,
the propagator for each should be just the same as the propagator for a photon. Since we
chose the basis of group generators to be orthogonal there is no kinetic mixing between
gluons. So the propagator is

p

ν; b μ; a = i
−gμν + (1− ξ) p

μpν

p2

p2 + iε
δab. (26.4)

The gluon propagator is the photon propagator with an extra δab factor. When gluons
appear as intermediate states, one must sum over all possible gluons, which gives a sum
over a and b.

The ghost propagator is

p
b a =

iδab

p2 + iε
. (26.5)

The propagators for colored fermions,

p
j i =

iδij

/p−m+ iε
, (26.6)

and for colored scalars,

p
j i =

iδij

p2 −M2 + iε
, (26.7)

are the same as in QED but with δij factors, where i, j refer to fundamental color indices.
These δab and δij factors just say that the color that comes in is the same as the color that
comes out – color is conserved. As with the gluon, we must sum over colors when these
propagators appear as intermediate states.

The interactions are

Lint = −gfabc(∂μAaν)AbμAcν −
1
4
g2
(
feabAaμA

b
ν

)(
fecdAcμA

d
ν

)
+ gfabc(∂μc̄a)Abμc

c

+ gAaμψ̄iγ
μT aijψj + igAaμT

a
ij(φ

�
i ∂μφj − φj∂μφ�i ) + g2φ�iA

a
μT

a
ikT

b
kjA

b
μφj ,

(26.8)

where we have used that
(
T aij
)� = T aji for SU(N). For the triple-gluon vertex, the

derivative can act on any of the gluons, giving the Feynman rule
μ; a

ν; b

ρ; c

k

p
q

= gfabc[gμν(k − p)ρ + gνρ(p− q)μ + gρμ(q − k)ν ] . (26.9)
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Note that we take all the momentum incoming, so p+k+ q = 0. This is different from the
convention we used for QED, where all momenta were going to the right. The four-gluon
vertex gives

ν; bμ; a

ρ; c σ; d

= −ig2×
[
fabefcde (gμρgνσ − gμσgνρ)

+facef bde(gμνgρσ − gμσgνρ)
+fadef bce(gμνgρσ − gμρgνσ)

]
.

(26.10)

The ghost vertex Feynman rule is

pcc c̄a

μ; b

= −gfabcpμ. (26.11)

Note that there is only one contraction (since ghosts and anti-ghosts are different), in
contrast to the scalar QED vertex.

There is one vertex for interaction with a fermion, which gives

j i

μ; a

= igγμT aij . (26.12)

As in QED, the orientation of the vertex in a Feynman diagram does not matter. The vertex
gets a factor of igγμT aij , with i the color of the quark with the arrow pointing away from
the vertex and j the other color.

Finally, there are two vertices for the scalar, just as in scalar QED. These are

j i

μ; a

p

k q

= ig(kμ + qμ)T aij (26.13)

and

ν; aμ; b

j i

= ig2T aikT
b
kjg

μν . (26.14)
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26.2 Attractive and repulsive potentials

To get a feeling for how QCD differs from QED, we first examime the tree-level potential
between quarks. In QED, we saw that the potential could be extracted from Coulomb scat-
tering, e−p+ → e−p+, which has a contribution from t-channel photons. We also saw in
Chapter 16 that loop contributions to Coulomb scattering gave finite analytic (the Uehling
potential) and logarithmic (the effective coupling) corrections. So let us now consider the
process ud̄→ ud̄where u and d are the up and down quarks. These are Dirac spinors trans-
forming in the fundamental representation of QCD. The sign and strength of the potential
extracted from the t-channel exchange will tell us whether the interaction is attractive or
repulsive, and thus whether bound states can exist.

The tree-level diagram for elastic ud̄→ ud̄ scattering in QCD is

p1

p4

p2

k

p3

i j

k l

a

b

= T ajiT
a
kl(igs)

2ūj(p2)γμui(p1)
−i[gμν − (1− ξ)kμkνk2 ]

k2
v̄k(p3)γνvl(p4),

(26.15)

where the sum over a is implicit and the i, j, k and l indices refer to the colors of the
external quarks and antiquarks. This is identical to the QED case, up to e → −gs, where
gs is the strong coupling constant, and the addition of the color factors. With on-shell
spinors the ξ dependence drops out, as in QED.

To understand the T ajiT
a
kl coefficient, let us consider different choices for the color of

the incoming u and d̄ quarks. There are three possibilities for each, which we often call
red, green and blue for quarks and anti-red, anti-green and anti-blue for antiquarks. For
example, suppose the incoming u is red and the incoming d̄ is anti-green (i = 1, k = 2).
Then, by explicit computation using Eq. (25.15),

T aj1T
a
2l =

⎛⎝ 0 − 1
6 0

0 0 0
0 0 0

⎞⎠
jl

= −1
6
δj1δ2l, (26.16)

so that j = 1 and l = 2. That is, the final state must also have a red quark and an anti-green
antiquark. This is, of course, just because color is conserved. Since T a11T

a
22 = − 1

6 , the
t-channel diagram has the opposite sign from the e−p+ case and the potential is therefore
repulsive (as it would be for say e+p+ scattering).

On the other hand, suppose the u is red but the d̄ is anti-red. Then the initial state is a
color singlet. In this case i = 1 and k = 1 and

T aj1T
a
1l =

⎛⎝ 1
3 0 0
0 1

2 0
0 0 1

2

⎞⎠
jl

, (26.17)
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so the final state can be red/anti-red, blue/anti-blue or green/anti-green. In any of these
cases, the color factor will have a positive coefficient and the potential will be attractive.

To get the overall strength of the potential, we want to consider a state that is left
invariant by the gluon exchange. Since 3 ⊗ 3̄ = 8 ⊕ 1, among the nine quark/anti-quark
configurations there are eight with color (the octet) and one colorless (the singlet), all of
which will be left invariant by the exchange of a gluon. For the color octet states (such as
red/anti-blue) we already saw, in Eq. (26.16), that they were left invariant. For the color
singlet state, we need the linear combination

|1〉 =
1√
3

(
|rr̄〉+ |bb̄〉+ |gḡ〉

)
. (26.18)

Summing over all the possibilities for |rr̄〉 → anything gives a factor of 4
3 from the

trace of Eq. (26.17). We then get three times this (for the three colors) multiplied by the
normalization ( 1√

3
)2. Therefore the potentials are

V (r) = −4
3
g2
s

4πr
(color singlet) (26.19)

and

V (r) =
1
6
g2
s

4πr
(color octet) . (26.20)

That only the color singlet channel is attractive is consistent with the observational fact
that we do not find colored mesons (quark/antiquark bound states) in nature.

In QCD, color-neutral bound states are called hadrons. Hadrons are either mesons,
or baryons that are bound states of three quarks such as B = εijkqiqjqk (see Sec-
tion 28.2.3). One can perform a similar bound-state analysis for baryon QCD (see for
example [Griffiths, 2008]).

Unfortunately, the potentials we calculated are not quantitatively useful for the physics
of light mesons such as pions. The problem is that gs � 1 at low energy. We will discuss
the scale dependence of gs soon. But before that, we have to discuss a way to measure gs
in the first place.

26.3 e+e− → hadrons and αs

One way to measure the strong coupling constant is from scattering processes. In particular,
the total cross section for e+e− → hadrons, inclusive over the final-state hadrons, will
give a clean way to measure gs. e+e− → hadrons is a straightforward generalization of
e+e− → muons discussed in depth in Chapter 20. All we have to do is add the color factors
and appropriate sum over charges.

26.3.1 e+e− → hadrons at tree-level

The process e+e− → hadrons can proceed through an intermediate photon or a Z boson.
Although we have not formally introduced the Z boson yet, as far as QCD is concerned, it



514 Quantum Yang–Mills theory

Table 26.1 Quark masses and charges in the MS scheme
[Particle Data Group (Beringer et al.), 2012].

Quark down up strange charm bottom top

MS mass (GeV) 4.70 2.15 93.5 1270 4180 163 000

Charge −1/3 +2/3 −1/3 +2/3 −1/3 +2/3

acts just like a massive photon with its own set of charges. The photon couples to anything
charged, such as the quarks. There are six flavors of quarks each transforming under the
fundamental representation of SU(3) whose masses in the MS scheme and charges are
shown in Table 26.1. Note that in the first generation, the charge 2

3 quark (the up) is lighter
than the charge − 1

3 quark (the down), while in the second and third generations the oppo-
site is true. There are many subtleties with quark-mass definitions, since quarks do not
appear as asymptotic states and therefore do not have well-defined pole masses.

In Chapter 20 we calculated that the total cross section for unpolarized e+e− → γ� →
μ+μ− scattering at tree-level is

σ
(
e+e− → μ+μ−) = 4πα2

e

3E2
CM

≡ σ0. (26.21)

The Feynman diagram for quark production is identical, except now we must factor in the
charges of the quarks and sum over quark colors. Only color singlet pairs such as red/anti-
red can be produced. And thus we get a factor of N = 3 from the color sum. Thus, at
tree-level,

σ
(
e+e− → q̄q

)
= 3σ0

((
2
3

)2
+
(
−1

3

)2
+
(
−1

3

)2
+
(

2
3

)2
+
(
−1

3

)2
+
(

2
3

)2)
.

(26.22)

The center-of-mass energies at LEP (an e+e− collider at CERN), which ranged from 90
to 205 GeV, were above the bottom-quark pair-production threshold (∼9 GeV) but below
the top-quark pair-production threshold (∼350 GeV), and so only five quarks should be
summed over to compare theory to LEP data. The theory prediction for LEP is therefore

Rγhad ≡
σ(e+e− → γ → hadrons)
σ(e+e− → γ → μ+μ−)

= Rγ0had +O(αs) , (26.23)

where

Rγ0had =
∑
colors

b∑
q=u

Q2
q = 3.67. (26.24)

The equivalent ratio including also an intermediate Z boson (see Chapter 29) is R0
had =

20.09. We can compare this directly to the measured value of

Rhad ≡
σ(e+e− → hadrons)
σ(e+e− → μ+μ−)

. (26.25)
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The measured value at LEP 1, which ran at ECM = MZ , was Rhad = 20.79± 0.04, which
is close to R0

had but about 3.5% higher. Nonetheless, this comparison is only consistent
with there being three colors of quarks (not four or two) and five flavors. The correction
at the small percentage level is what one expects from loop corrections and can be used to
extract αs from data, as we will see shortly.

By the way it is very convenient, and non-trivial, that we can sum over quarks in the
theory calculation and compare to a measurement made on hadrons. The reason this works
is that the quarks are produced at short distance and hadronization occurs at long distance.
Because the long-distance physics is too slow to affect the short-distance physics, the total
rate gets frozen-in well before hadronization, a process known as factorization. Factor-
ization is one of the most profound, important, and subtle concepts in QCD. It will be
discussed in more detail in Chapters 32 and 36.

26.3.2 e+e− → hadrons at next-to-leading order

Now let us consider the radiative corrections to the total e+e− → hadrons rate. Again,
we will be able to steal the results for the radiative corrections to e+e− → μ+μ−, which
we computed in Chapter 20, modifying them only with the appropriate color factors when
necessary.

There are two real-emission contributions at next-to-leading order given by the diagrams

+ . (26.26)

These are identical to the e+e− → μ+μ−γ diagrams from Chapter 20, up to the replace-
ment e → −gs and the addition of a color matrix T aij , where a is the color of the gluon
and i and j are the colors of the quarks. When we square these diagrams to get the cross
section for fixed external colors, we getMM† ∼ T aijT

a
ji with no sum over a. For the color-

summed cross section, we then sum over a, i and j to get factor of Tr[T aT a] = CF = 4
3 .

Integrating over phase space gives the same thing as in QED, up to αe → αs, the CF and
σ0 → Rγ0hadσ0 from Eq. (26.24). So we have, from Eq. (20.A.102) of Chapter 20,

σR = Rγ0hadσ0

(
4αs
π

)
CF

(
μ̃2

Q2

)4−d( 1
ε2

+
13
12ε

− 5π2

24
+

259
144

+O(ε)
)
. (26.27)

The virtual graph

(26.28)

is also the same as in QED up to e→ −gs, the color matrices, and the factor ofRγ0had. In this
case, the color matrices are T aikT

a
kj summed over a, since the gluon propagator contains

a δab factor. The tree-level graph which contributes to the same final state has only a δij
factor. Thus, the interference between these two gives T aikT

a
kj . Summing over final-state
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colors gives the same Tr[T aT a] = CF factor as for the real emission graphs. Thus, the
virtual contribution, using the result in Eq. (20.A.116), is

σV = Rγ0hadσ0

(
4αs
π

)(
μ̃2

Q2

)4−d
CF

(
− 1
ε2
− 13

12ε
+

5π2

24
− 29

18
+O(ε)

)
. (26.29)

As expected, the IR divergences cancel when we sum these graphs, giving a result

σNLO = σ0 + σR + σV = Rγ0hadσ0

(
1 +

3αs
4π

CF

)
. (26.30)

The Z boson couples like the photon with different charges (and different charges for left-
and right-handed quarks, as we will see in Chapter 29). However, QCD corrections are the
same for left- or right-handed quarks, since QCD is non-chiral. Thus we find

Rhad = R0
had

(
1 +

αs
π

+O
(
α2
s

))
. (26.31)

Thus, to explain the 3.5% discrepancy from the LEP 1 data, we require αs
π = 0.035 or

αs = 0.11. For comparison, the fine-structure constant at LEP 1 energies is αe(mZ) ≈
1

129 = 0.0077.
There are many other ways to measure αs, such as from the hadronic decay rate of the τ

lepton, from deep inelastic scattering, lattice calculations, multijet rates, event shapes, etc.
In each of these measurements, αs is extracted from physical quantities. However, αs is
only defined within some regularization and subtraction scheme, so some convention must
be chosen to make comparisons between these extractions useful. In particular, since αs
is scale dependent (see next section), one also needs to evolve αs to a common scale. It
is conventional to present results for αs defined in dimensional regularization with mod-
ified minimal subtraction (MS) at the scale μ = mZ . A comparison of various values of
αs extracted at different scales using different methods is shown in Figure 26.1. As of

0.5

τ decays (N3LO)

Lattice QCD (NNLO)
DIS jets (NLO)

Heavy Quarkonia (NLO)
e+e− jets & shapes (res. NNLO)

Z pole fit (N3LO)

pp−> jets (NLO)

April 2012

0.4

αs(Q)

αs(MZ) = 0.1184  ±  0.0007

0.3

0.2

0.1

1 10

QCD

Q [GeV] 100

−

�Fig. 26.1 Running coupling and data. The best fit value for the MS strong coupling constant is
αs(mZ) = 0.1184 ± 0.0007. Image from [Particle Data Group (Beringer et al.), 2012].
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this writing, the current world average is αs = 0.1184 ± 0.0007. In the next section, we
calculate the QCD β-function, which allows us to evolve αs between the different scales.

26.4 Vacuum polarization

Now we turn to vacuum polarization and the QCD β-function. Unlike in QED, where only
the electron loop contributed at 1-loop order, in QCD there are five contributions:

Mabμν =Mabμν
F +Mabμν

3 +Mabμν
4 +Mabμν

gh +Mabμν
c.t. , (26.32)

given by the graphs

+ +

+ + . (26.33)

The first is the fermion (or scalar) loop, the next two are gauge boson loops, the fourth is
the ghost loop and the fifth is the counterterm. We will use dimensional regularization to
compute these loops, since it preserves gauge invariance. We will also do the calculation
in Feynman gauge, ξ = 1, for which the propagator is

iΠμν = δab
−igμν
p2 + iε

. (26.34)

Results for arbitrary ξ are summarized at the end of this section (you can check them as an
exercise). We will also express answers in terms of SU(N) Casimirs, so they will be valid
for any N .

26.4.1 Fermion bubble

The fermionic loop is almost identical to the QED case. The integral is

iMabμν
F =

p
k

p

k − p

= −trT aT b](ig)2
∫

d4k

(2π)4
i

(p− k)2 −m2

i

k2 −m2
Tr[γμ(/k − /p+m)γν(/k +m)].

(26.35)

This is exactly the same as in QED but with a color factor tr[T aT b] = TF δ
ab out front,

with TF = 1
2 . The result, as in the QED case, manifestly preserves gauge invariance. The

result has the form

Mabμν
F = −g2(gμνp2 − pμpν)δabΠ2(p2). (26.36)



518 Quantum Yang–Mills theory

So, taking loop amplitude from Chapter 16, Eq. (16.47) is expanded as in Eq. (16.45):

Mabμν
F = −δabTF

g2

2π2

(
p2gμν − pμpν

)
×
∫ 1

0

dxx(1− x)
[
2
ε

+ ln
(

μ̃2

m2 − p2x(1− x)

)
+O(ε)

]
. (26.37)

The pole and coefficient of ln μ̃2 are independent of the quark mass, as expected. For
massless quarks, this reduces to

Mabμν
F = δabTF

(
g2

16π2

)(
p2gμν − pμpν

)[
−8

3
1
ε
− 20

9
− 4

3
ln

μ̃2

−p2

]
. (26.38)

26.4.2 Gluon bubble

For the Ward identity to be satisfied in Yang–Mills theory, the contribution from the gluon
and ghost graphs should be proportional to gμνp2 − pμpν . The gluon bubble is

iMabμν
3 =

p

k

p

k − p

=
g2

2

∫
d4k

(2π)4
−i
k2

−i
(k − p)2

facef bdfδcfδedNμν .

(26.39)

The overall factor of 1
2 is a symmetry factor that is required since gluons are their own

antiparticles (unlike quarks). The numerator is

Nμν = [gμα (p+ k)ρ + gαρ(p− 2k)μ + gρμ(k − 2p)α] gαβgρσ

×
[
gνβ(p+ k)σ − gβσ(2k − p)ν − gσν(2p− k)β

]
. (26.40)

We next introduce Feynman parameters, so

1
k2

1
(p− k)2

=
∫ 1

0

dx
1[

(1− x) k2 + x (p− k)2
]2 . (26.41)

We then complete the square by k → k + xp. This leads to

iMabμν
3 =

g2

2

∫ 1

0

dx

∫
d4k

(2π)4
1

(k2 −Δ)2
facdf bcdNμν , (26.42)
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with Δ = x (x− 1) p2, and now (keeping in mind that gμμ = d in d dimensions)

Nμν = 2k2gμν − (6− 4d)kμkν

−
[
6
(
x2 − x+ 1

)
− d(1− 2x)2

]
pμpν +

(
2x2 − 2x+ 5

)
p2gμν

− (2− 4x)gμν(k · p) + (2d− 3)(2x− 1)(kμpν + kνpμ) . (26.43)

As usual, the kμpν and k · p terms vanish since they are odd in k → −k, so terms in the
second line vanish. In dimensional regularization, we can replace kμkν → 1

dk
2gμν . Then

the integrals are all straightforward. The result is

Mabμν
3 = −g

2

2
μ4−d

(4π)d/2
δabCA

∫ 1

0

dx

(
1
Δ

)2− d
2

×
{
gμν3(d− 1) Γ

(
1− d

2

)
Δ

+ pμpν
[
6
(
x2 − x+ 1

)
− d(1− 2x)2

]
Γ
(

2− d

2

)
+ gμνp2

[(
−2x2 + 2x− 5

)
Γ
(

2− d

2

)]}
. (26.44)

Before analyzing this further, let us work out the other graphs. As in QED, it is expected
that only the sum of all the relevant graphs will satisfy the Ward identity.

26.4.3 Four-point gluon bubble

The other gluon bubble is the seagull graph:

iMabμν
4 =

p p

k

∼
∫

d4k

(2π)4
1
k2

= 0. (26.45)

This is a scaleless integral and formally vanishes in dimensional regularization. In a differ-
ent regulator, such as Pauli–Villars, this would be quadratically divergent. As was discussed
in the context of scalar QED in Section 16.2.1, the quadratic divergence shows up as a pole
at d = 2 in dimensional regularization. This pole is canceled by the d = 2 pole in the gluon
bubble graph. Although here they add up to zero trivially (0 + 0 = 0), it is important to
understand that the cancellation of the pole requires that the coupling constants be equal
for the two graphs.

Putting in all the factors, the diagram is

iMabμν
4 = − ig

2

2
μ4−d
∫

ddk

(2π)d
−igρσδcd
k2 + iε

×
[
fabefcde(gμρgνσ − gμσgνρ) + facef bde(gμνgρσ − gμσgνρ)

+fadef bce(gμνgρσ − gμρgνσ)
]

= −g2δabgμνCA(d− 1)μ4−d
∫

ddk

(2π)d
1

k2 + iε
, (26.46)
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where we have used gμμ = d and facef bce = CAδ
ab and, as with the bubble, the 1

2 is a
symmetry factor. As we said, this is zero in dimensional regularization.

We can finagle this integral into a form where we can see the poles by multiplying

by (p−k)2
(p−k)2 , which gives a numerator Nμν = gμν (p− k)2. Evaluating the integral with

Feynman parameters and completing the square with the same shift, k → k + xp, gives
something of the same form as the vacuum bubble:

Mabμν
4 = −g2δabCA

μ4−d

(4π)d/2
gμν
∫ 1

0

dx

(
1
Δ

)2− d
2

(d− 1)

×
[
−d

2
Γ
(

1− d

2

)
Δ+ (1− x)2p2Γ

(
2− d

2

)]
, (26.47)

where Δ = x (x− 1) p2 as above. This is still zero, despite appearances, but only after the
x integration (to check, try evaluating the integral numerically).

26.4.4 Ghost bubble

Finally, we need the ghost bubble. The diagram gives

iMabμν
gh =

p
k

p

k − p

= (−1)(−g)2
∫

d4k

(2π)4
i

(k − p)2
i

k2
fcadkμfdbc(k − p)ν ,

(26.48)

where the −1 comes from the ghosts anticommuting. We now use the same Feynman
parameters and shift k → k + xp, as in the other cases, to get

Mabμν
gh = g2 μ4−d

(4π)d/2
δabCA

∫ 1

0

dx

(
1
Δ

)2− d
2
{
gμν
[
1
2
Γ
(

1− d

2

)
Δ
]

+pμpν
[
x(1− x)Γ

(
2− d

2

)]}
. (26.49)

26.4.5 Complete vacuum polarization

Adding all the gluon and ghost graphs we get

Mabμν
glue =Mabμν

3 +Mabμν
4 +Mabμν

gh

= δabCAg
2 μ4−d

(4π)d/2

∫ 1

0

dx

(
1
Δ

)2− d
2
{
gμνΔ
[(

3− 3d
d

+ (d− 1) +
1
d

)
d

2
Γ
(

1− d

2

)]
+ pμpν

[
−3
(
x2 − x+ 1

)
+
d

2
(1− 2x)2 + x(1− x)

]
Γ
(

2− d

2

)
+ gμνp2

[(
x2 − x+

5
2
− (1− x)2(d− 1)

)
Γ
(

2− d

2

)]}
. (26.50)
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Now recall that the quadratic divergence is recorded in the Γ
(
1− d

2

)
factor, which has a

pole at d = 2. However, its coefficient is proportional to 3−3d
d +(d− 1) + 1

d = 1
d (d− 2)2,

so the pole at d = 2 cancels. Note that this requires the coupling constant for the four-
gluon vertex, the three-gluon vertex, and the ghost vertex to all be the same. Using
Γ
(
1− d

2

)
(d− 2) = −2Γ

(
2− d

2

)
, the whole thing simplifies to

Mabμν
glue = δabCAg

2 μ4−d

(4π)d/2

∫ 1

0

dx

(
1
Δ

)2− d
2

Γ
(

2− d

2

)
×
{
gμνp2

[(
−2x2 + 3x− 1

)
d+ x(4x− 5) +

7
2

]
+ pμpν

[
d

2
(1− 2x)2 − 4x2 + 4x− 3

]}
. (26.51)

Expanding in d = 4− ε dimensions, this is

Mabμν
glue = CAδ

ab g2

16π2

(
gμνp2 − pμpν

)[10
3ε

+
31
9

+
5
3

ln
μ̃2

−p2
+O(ε)

]
. (26.52)

As expected, the correct tensor structure to satisfy the Ward identity has appeared. For this
to work, both gluon bubble graphs and the ghost graph had to contribute.

Adding the fermion graphs with nf flavors we have, for the divergent and μ-dependent
pieces,

Mabμν = δab
g2

16π2

(
gμνp2 − pμpν

)[
CA

(
10
3ε

+
5
3

ln
μ̃2

−p2

)
− nfTF

(
8
3

1
ε

+
4
3

ln
μ̃2

−p2

)]
.

(26.53)

26.5 Renormalization at 1-loop

Having warmed up with some loop calculations in QCD, we are now ready to understand
how the theory is renormalized. Introducing field strength, mass, and coupling constant
renormalizations, the QCD Lagrangian becomes

L = −1
4
Z3

(
∂μA

a
ν − ∂νAaμ

)2 + Z2ψ̄i
(
i/∂ − ZmmR

)
ψi − Z3cc̄

a�ca

− gRZA3fabc(∂μAaν)A
b
μA

c
ν −

1
4
g2
RZA4

(
feabAaμA

b
ν

)(
fecdAcμA

d
ν

)
+ gRZ1A

a
μψ̄iγ

μT aijψj + gRZ1cf
abc(∂μc̄a)Abμc

c. (26.54)

Since the coupling constant appears in four different places, we actually need four separate
renormalization factors for it, which we have called Z1, ZA3 , ZA4 and Z1c. We will omit
the subscripts R on the renormalized Lagrangian parameters in this section for simplicity.
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We will work in MS only in this section. Since we are only interested in the UV poles,
we can take all the external momenta and masses to zero. This will make many of the
relevant integrals scaleless. To extract the UV pole from a scaleless integral at 1-loop, we
use the trick from Eq. (B.49) of Appendix B:[∫

ddk

(2π)d
1
k4

]
UV-div

=
i

8π2

1
ε
. (26.55)

This will let us pull out the 1-loop counterterms without actually doing any hard integrals.
We will also work in Feynman gauge, ξ = 1, although we give the result for any covariant
gauge in the summary section.

In this section all factors of g are really gR and factors of m are mR, but we drop the
subscripts for clarity.

26.5.1 Two-point functions

The 2-point functions will give us δ2, δm, δ3 and δ3c. Let us start with the vacuum
polarization graphs, since we have already computed them. Adding the counterterms we
have

Mabμν = δab
(
gμνp2 − pμpν

){ g2

16π2

[
CA

(
10
3ε

)
− nfTF

(
8
3

1
ε

)]
− δ3
}

+ finite.

(26.56)
Therefore,

δ3 =
1
ε

g2

16π2

[
10
3
CA −

8
3
nfTF

]
. (26.57)

For δ2 and δm we need the quark self-energy graph:

i j (26.58)

This is identical to the self-energy graph in QED, up to color factors. The color factors are∑
a,b,k,l

T akiT
b
jlδ

abδkl =
∑
a

(T aT a)ij = CF δij , (26.59)

where CF = N2−1
2N . The loop gives

iΣij2 (/p) = δijCF (ig)2
∫

d4k

(2π)4
γμ

i(/k +m)
k2 −m2 + iε

γμ
−i

(k − p)2 + iε
. (26.60)

We already computed this integral in QED. Taking that result, we have

Σij2 (/p) = δij
{
− g2

8π2
CF

∫ 1

0

dx(2m− x/p)
[
2
ε

+ ln
μ̃2

(1− x)(m2 − p2x)

]
+ δ2/p− (δm + δ2)m

}
= δij
{

g2

16π2
CF

(
2/p− 8m

ε

)
+ finite + δ2/p− (δm + δ2)m

}
, (26.61)
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from which we get

δ2 =
1
ε

g2

16π2
[−2CF ] (26.62)

and

δm =
1
ε

g2

16π2
[−6CF ] . (26.63)

Finally, there is the ghost 2-point function, which gives

δ3c =
1
ε

g2

16π2
[CA] . (26.64)

We leave this for you to verify in Problem 26.1.

26.5.2 Three-point functions

Next, let us work out the O(g3) contributions to the 3-point function:
i

μ; a

j

≡ igΓaμij . (26.65)

At tree-level, Γaμij (q1, q2, p) = γμT aij .
At 1-loop, there are two contributions. The first graph is identical to the QED vertex

correction, up to some color factors:

δbcμ; a

j

i

b

c

= ig
(
T cT aT b

)
ij
δbc × Γμ(2A), (26.66)

with Γμ(2A) the part involving momentum integrals that are identical to what we calculated
in QED up to e→ −g.

The color factors can be simplified using

T bT aT b = T bT bT a + T b
[
T a, T b
]

= CFT
a + ifabcT bT c = CFT

a +
1
2
ifabc
[
T b, T c
]

= CFT
a − 1

2
fabcf bcdT d

=
(
CF −

1
2
CA

)
T a. (26.67)

The momentum dependence is exactly as in QED:

Γμ(2A) = F
(2A)
1

(
p2

m2

)
γμ +

iσμν

2m
pνF

(2A)
2

(
p2

m2

)
, (26.68)
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where

F
(2A)
2 (p2) =

g2

4π2
m2

∫ 1

0

dx dy dz δ(x+ y + z − 1)
z(1− z)

(1− z)2m2 − xyp2
, (26.69)

which is finite, and

F
(2A)
1 (p2) =

g2

8π2

(
1
ε
− 1

2

+
∫ 1

0

dx dy dz δ(x+ y + z − 1)
[
p2(1− x)(1− y) +m2(1− 4z + z2)

Δ
+ ln

μ̃2

Δ

])
,

(26.70)

with Δ = (1− z)2m2 − xyp2. To extract the divergences, we take p2 � m2, which gives

δbcμ; a

j

i

b

c

= ig

(
CF −

1
2
CA

)
T aijγ

μ

(
g2

16π2

)(
2
ε

+ ln
μ̃2

−p2
+ finite

)
.

(26.71)
The next graph is new:

p
q1

k

q2

μ; a

j

i

q2
−k

−q
1−
k

= (ig)fabc
(
T cT b
)
ij

Γμ(2B), (26.72)

where Γμ(2B) can be written in terms of the same form factors as the other graph, so it only

depends on p2. The color factor is

T cT bfabc =
1
2
fabc
[
T c, T b
]

= − i
2
fabcfdbcT d = − i

2
CAT

a. (26.73)

The loop is (with m = 0 for simplicity)

(ig)Γμ(2B)

(
p2
)

= (ig)2g
∫

d4k

(2π)4
γρ
i/k

k2
γν

−i
(q1 + k)2 + iε

−i
(q2 − k)2 + iε

× [gμν(2q1 + q2 + k)ρ + gνρ(−q1 + q2 − 2k)μ + gρμ(k − 2q2 − q1)ν ] . (26.74)

This integral is the same as the vertex correction in QED, up to the numerator structure. For
our purposes, we would just like to know the structure associated with the UV divergence.
To extract this, let us set all the external momenta to zero. Then

Γμ(2B)(0) = g2

∫
d4k

(2π)4
γρ/kγν

k6
[gμνkρ − 2gνρkμ + gρμkν ]

= g2

∫
d4k

(2π)4
1
k6

[2k2γμ − 2γρ/kγρkμ]. (26.75)
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Going to d dimensions, replacing kμkν → k2

d g
μν and γργνγρ = (2− d)γν , we have

Γμ(2B)(0) =
(

4− 4
d

)
γμg2μ4−d

∫
ddk

(2π)d
1
k4

= iγμ
g2

8π2

(
3
ε

+
3
2

ln μ̃2 + · · ·
)
. (26.76)

Now we know that Γμ(2b)
(
p2
)

only depends on p2 so we can restore the leading non-analytic

p2 dependence by dimensional analysis:

p

μ; a

j

i

= igCAT
a
ijγ

μ

(
g2

16π2

)(
3
ε

+
3
2

ln
μ̃2

−p2
+ finite

)
. (26.77)

Finally, the counterterm gives
i

μ; a

j

= igT aijγ
μδ1. (26.78)

For this to cancel the UV divergences in the 1-loop graphs, the counterterm must be

δ1 =
1
ε

(
g2

16π2

)
[−2CF − 2CA] . (26.79)

One can continue this for the gluon 3-point function, 4-point function, and a 3-point
function involving the ghost-gluon vertex to find the remaining counterterms, δA3 , δA4 and
δ1c at 1-loop. The explicit calculations make a useful exercise (Problem 26.2). However,
due to gauge invariance, these counterterms are in fact determined by the counterterms we
have already computed (see Eqs. (26.80)–(26.87) below).

26.5.3 Summary

For reference, we summarize the results for all the counterterms in QCD at 1-loop, for an
arbitrary Rξ gauge:

δ1 =
1
ε

(
g2

16π2

)[
−2CF − 2CA + 2(1− ξ)CF +

1
2
(1− ξ)CA

]
, (26.80)

δ2 =
1
ε

(
g2

16π2

)
[−2CF + 2(1− ξ)CF ] , (26.81)

δm =
1
ε

(
g2

16π2

)
[−6CF ] , (26.82)
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δ3 =
1
ε

(
g2

16π2

)[
10
3
CA −

8
3
nfTF + (1− ξ)CA

]
, (26.83)

δ3c =
1
ε

(
g2

16π2

)[
CA +

1
2
(1− ξ)CA

]
, (26.84)

δA3 =
1
ε

(
g2

16π2

)[
4
3
CA −

8
3
nfTF +

3
2
(1− ξ)CA

]
, (26.85)

δA4 =
1
ε

(
g2

16π2

)[
−2

3
CA −

8
3
nfTF + 2(1− ξ)CA

]
, (26.86)

δ1c =
1
ε

(
g2

16π2

)
[−CA + (1− ξ)CA] . (26.87)

The answers have been written so the Feynman gauge results with ξ = 1 can be easily read
off.

26.6 Running coupling

With the results for these 1-loop counterterms, we can now calculate the β function for non-
Abelian gauge theories. As discussed in Chapter 23, the renormalization group equation is
determined by demanding that observables be independent of, variously, the UV cutoff, the
subtraction point where the theory is renormalized, or the arbitrary scale μ in dimensional
regularization. In practice, using MS subtraction, one usually sets μ equal to the subtraction
point and then uses μ independence to find α(μ) as a solution to the RGE.

26.6.1 β-function calculation

The fermion–gauge boson interaction in the Lagrangian for a non-Abelian gauge theory is

L = μ
4−d
2 gRZ1A

a
μψ̄iγ

μT aijψj = μ
4−d
2 gR

Z1

Z2

√
Z3

Aa(0)μ ψ̄
(0)
i γμT aijψ

(0)
j , (26.88)

where we have put the μ
4−d
2 factors that appear in the loops explicitly in the Lagrangian.

So we identify the bare charge as

g0 = gR
Z1

Z2

√
Z3

μ
4−d
2 . (26.89)

This must be independent of μ, since there is no μ in the bare Lagrangian. So

0 = μ
d

dμ
g0 = μ

d

dμ

[
gR

Z1

Z2

√
Z3

μ
4−d
2

]
. (26.90)

Expanding perturbatively, counting the δi as O(g2
R), this gives

β(gR) = μ
d

dμ
gR = gR

[(
−ε

2

)
− μ d

dμ

(
δ1 − δ2 −

1
2
δ3

)]
+ · · · . (26.91)
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Since each δ only depends on μ through gR, we solve this perturbatively, giving

β(gR) = −ε
2
gR +

ε

2
g2
R

∂

∂gR

(
δ1 − δ2 −

1
2
δ3

)
. (26.92)

Using the 1-loop values for the counterterms, we find

β(gR) = −ε
2
gR −

g3
R

16π2

[
11
3
CA −

4
3
nfTF

]
. (26.93)

Note the very important fact that the ξ dependence completely cancels in β(gR).
We could equally well have computed the β-function for the running of the charge in

the A3 interaction. Then we would have computed β from

β(gR) = −ε
2
gR +

ε

2
g2
R

∂

∂gR

(
δA3 − 3

2
δ3

)
. (26.94)

That this gives the same answer as using the coupling to fermions is due to gauge
invariance, as discussed in Section 26.6.3 below.

Specializing to QCD now, we take N = 3, so CA = 3, and we write αs = g2s
4π . Then,

also using TF = 1
2 , the RGE at 1-loop (at ε = 0) is μ d

dμαs = −α2
s

2πβ0, with β0 = 11− 2nf
3 .

So as long as there are fewer than 17 flavors of quarks (there are six in nature), β0 > 0 and
hence α(μ) decreases with increasing μ. The solution to the 1-loop RGE can be written as

αs(μ) =
2π
β0

1
ln μ

ΛQCD

, (26.95)

where ΛQCD is the location of the Landau pole of QCD. In contrast to QED, since αs(μ)
increases at smaller μ, this equation is valid for μ > ΛQCD. As discussed in Section 23.2,
the scale ΛQCD appears through dimensional transmutation as a boundary condition set by
a renormalization condition at a particular scale. Measuring αs at any scale fixes ΛQCD.

That the coupling constant gets weaker at high energy is called asymptotic freedom.
Asymptotic freedom explains a number of important qualitative features of the strong inter-
actions, such as how QCD can be strong but also short-ranged and why free quarks have
never been seen.

26.6.2 Higher-order β-function

The expansion of the QCD β-function, β(αs) ≡ μ d
dμαs, in powers of αs is

β(αs) = −εαs − 2αs

[(αs
4π

)
β0 +
(αs

4π

)2
β1 +
(αs

4π

)3
β2 +
(αs

4π

)3
β3 +O

(
α4
s

)]
.

(26.96)

The ε term is only useful for calculating RGEs for other quantities; when solving this
differential equation for αs(μ) one can set ε = 0. The QCD β-function is currently known
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to fourth order, with coefficients [van Ritbergen et al., 1997]

β0 =
11
3
CA −

4
3
TFnf , (26.97)

β1 =
34
3
C2
A −

20
3
CATFnf − 4CFTFnf , (26.98)

β2 =
325
54

n2
f −

5033
18

nf +
2857

2
, (26.99)

β3 =
1093
729

n3
f +
(

50 065
162

+
6472
81

ζ3

)
n2
f +
(
−1 078 361

162
− 6508

27
ζ3

)
nf

+ 3564ζ3 +
149 753

6
, (26.100)

where CA = 3, CF = 4
3 and TF = 1

2 have been used in the last two lines and ζ3 = ζ(3) =∑∞
n=1

1
n3 ≈ 1.202 is a value of the Riemann zeta function.

The leading-order solution to the RGE is given in Eq. (26.95), where ΛQCD is the
location of the Landau pole of QCD. From the best-fit value, αs(mZ) = 0.1184 with
mZ = 91.1876 GeV, we find ΛQCD = 89.9 MeV from Eq. (26.95) with nf = 5. The exact
solution to the RGE at higher order can be well approximated by a perturbation expansion
around the leading-order solution. For example,

αs(μ) ≈ 4π
β0

[
1
L
− β1

β2
0L

2
lnL+

β2
1

β4
0L

3

(
ln2L− lnL− 1

)
+

β2

β3
0L

3
− 3β1β2

β5
0L

4
lnL

+
β3

1

β6
0L

4

(
− ln3L+

5
2

ln2L+ 2 lnL− 1
2

)
− 3

β1β2

β5
0L

4
lnL+

β3

2β4
0L

4
+ · · ·
]
,

(26.101)

where L = ln μ2

Λ2
QCD

. Including β0, β1, β2 and β3, and using αs(mZ) = 0.1184, we find

ΛQCD = 213 MeV.
It is also sometimes helpful in checking results to expand αs(μ) around its value at some

reference scale μR. To this end, one can use

αs(μ) = αs(μR)− α2
s(μR)
2π

β0 ln
μ

μR
+

α3
s

8π2

(
−β1 ln

μ

μR
+ 2β2

0 ln2 μ

μR

)
+O
(
α4
s(μR)
)
,

(26.102)
which is easy to check by differentiation.

The 4-loop β-function is one of the great triumphs of perturbative QCD. A comparison
of the running coupling to data at various energies is shown in Figure 26.1.

26.6.3 Charge universality

Recall that in QED Z1 = Z2 exactly in the on-shell scheme (as we proved in Section 19.5).
This is not the case in QCD, as can be seen explicitly from the 1-loop counterterms.
In QED, Z1 = Z2 had a number of implications. For example, it implied that there is
a universal electric charge, even after radiative corrections. That is, the electron charge
and the proton charge get renormalized in the same way, despite the fact that beyond
1-loop the radiative corrections are very different for the two objects. We also understood
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Z1 = Z2 as a consequence of the non-renormalization of charge. In particular, we found
in Section 23.4.1 that the QED current, Jμ = ψ̄γμψ, was not renormalized.

Similarly, if there are two different species of quark, such as the up and down quarks,
we would expect that they would couple to QCD with the same strength. With two species
of quark, there are two separate interaction terms:

L2quarks = Z2dψ̄d

(
i/∂ + gR

Z1d

Z2d

/A
a
T a
)
ψd + Z2uψ̄u

(
i/∂ + gR

Z1u

Z2u

/A
a
T a
)
ψu. (26.103)

From this equation we see that it is not strictly necessary to have Z1 = Z2 for all quarks,
only that the ratio Z1/Z2 be the same. That Z1/Z2 is the same for all quarks at 1-loop
follows trivially from the flavor independence of Z1 and Z2. Thus, as far as quarks are con-
cerned, there is a universal renormalized charge gR and a well-defined covariant derivative,
Dμ = ∂μ − igRAaμT a.

For a non-trivial check, we recall that the same charge gR appears in the QCD
Lagrangian multiplying the interactions of quarks with gluons as well as the gluon self-
interactions. We saw in Section 26.4 that the relative size of the gluon 3- and 4-point
self-interactions was critical to the Ward identity being satisfied at 1-loop. Thus, if the
couplings of the 3- and 4-point vertices were renormalized differently, the Ward identity
would be violated. The only way all of the factors of gs in the QCD Lagrangian will be
renormalized in the same way is if

Z1

Z2
=
Z1c

Z3c
=
ZA3

Z3
=
√
ZA4√
Z3

. (26.104)

At 1-loop, from Eqs. (26.80) to (26.87), we find that

δ1 − δ2 = δ1c − δ3c = δA3 − δ3 =
1
2
(δA4 − δ3) = −1

ε

g2

32π2
CA(ξ + 3) , (26.105)

so that Eq. (26.104) does in fact hold to order g2. Indeed, charge in Yang–Mills theories is
universal.

26.7 Defining the charge

Unlike in QED, where there are many ways to define the electric charge (from the 3-point
function, from the potential between two classical currents, etc.), in Yang–Mills theories,
defining the charge with an observable is much more subtle. The problem is that the QCD
current, Jaμ , is not gauge invariant, as was discussed in Section 25.3. First we will see how
the definition of the charge from generalizing QED fails for the QCD case, then we will
describe a gauge-invariant definition through the expectation value of a Wilson loop.
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26.7.1 Physical definition of the strong coupling

Suppose we had tried to calculate the running coupling in QCD as we did in QED, by
calculating the potential between two charges. That is, we calculate

V (r) = 〈Ω|T
{
J0(r)J0(0)

}
|Ω〉 , (26.106)

with J0(x) = δ3(�x), �J(x) = 0 and r = |�x|. In QED (as we saw back in Section 3.4), the
leading-order potential is V (r) = e2

4πr or in momentum space Ṽ (�p2) = e2

�p2 . This is just the
photon propagator with two factors of e from the eAμJμ coupling in the Lagrangian. At
next-to-leading order, we showed in Chapter 16 that the vacuum polarization graphs give
a correction to the propagator of the form 1

p2
e4

12π2 ln −p2
μ2 . Renormalizing e at one scale p2

1

and evaluating it at another p2
2 implied that

p2
1Ṽ
(
p2
1

)
− p2

2Ṽ
(
p2
2

)
=

e4

12π2
ln
p2
1

p2
2

, (26.107)

which is equivalent to what you would get from the QED β-function calculation.
In QCD this physical interpretation of the running coupling does not work. The analogy

would be a potential defined from

〈Ω|T {Ja0 (r)Ja0 (0)} |Ω〉 = V (r), (26.108)

where Jaμ = ψ̄iγ
μT aijψj is the Noether current associated with the global SU(3) transfor-

mation of QCD acting on quarks. Taking the current in the color singlet state, as in Eq.
(26.18), the potential is just what we calculated in Eq. (26.19):

V (r) = −CF
g2
s

4πr
(26.109)

and everything is fine, at leading order.
At next-to-leading order, we must include the vacuum polarization graphs, which gives

something proportional to δ3 with the associated αs ln−p2
μ2 factor. Renormalizing the

potential at one scale and evaluating at another would imply that (with nf = 0)

p2
1Ṽ
(
p2
1

)
− p2

2Ṽ
(
p2
2

)
=
[
10
3
CA + (1− ξ)CA

]
g4
s

32π2
ln
p2
1

p2
2

, (26.110)

which is not gauge invariant! The origin of the problem is that Jaμ is not conserved, only
covariantly conserved, DμJ

a
μ = 0. So ∂μJ

a
μ = −gsfabcAbμJcμ �= 0. This was shown

in Section 25.3 (where the matter current was called jaμ). In other words, while a current
of electrons makes a well-defined source for photons, a current of quarks does not make a
well-defined source of gluons.

Another way to understand the problem is to recall that the β-function calculation
required not just the vacuum polarization graphs but also the vertex renormalization and
the quark self-energy. These last two diagrams are absent for a classical current Jaμ not
associated with propagating fields.

There are a few ways around the absence of classical currents. One way is just to be
careful about renormalization and computing physical quantities. This is what led to the
β-function calculation. For S-matrix elements, this rather formal approach is the most
practical – one does not need a classical interpretation of the QCD charge in terms of a
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T

R

The expectation value of a rectangular Wilson loop (shown on the left) in the limit T  R

can be used as a gauge-invariant definition of the QCD potential. On the lattice, this
expectation value grows as the area of the loop not its perimeter, since the leading
contribution comes from tiling the loop with plaquettes (shown on the right).

�Fig. 26.2

potential to get physical predictions for colliders. On the other hand, being able to define a
potential and evaluate it at large distances and strong coupling might give us insights into
confinement. This led Wilson to propose a definition of a potential in terms of a Wilson
loop, which we now discuss.

26.7.2 Potential from Wilson loops

We saw that 〈Ω|T
{
Jaμ(r)Jbν (0)

}
|Ω〉 is not gauge invariant and therefore does not provide

a useful definition of a potential in QCD. We now argue that a better definition can be made
through the expectation value of a Wilson loop:

V (r) = lim
T→∞

1
iT

ln〈Ω
∣∣tr{WP

loop

}∣∣Ω〉, (26.111)

where the trace is a color trace (projecting out the color singlet contribution) and

WP
loop = P

{
exp
[
igs

∮
P

AaμT
a
ijdx

μ

]}
, (26.112)

where P{· · · } denotes path ordering and P denotes the path of the loop, which we take to
be a large rectangle in the t–z plane going from (t, z) = (−T

2 , 0) to (T2 , 0) to (T2 , R) to
−(T2 , R) and then back to

(
−T

2 , 0
)
, as shown in Figure 26.2. This definition is manifestly

gauge invariant.
To justify this definition, first consider modifying the pure QED action by adding an

eAμJμ term with J0(x) = δ(x)δ(y)δ(z − R) − δ(x)δ(y)δ(z) representing two charges
separated by a distance R. To be careful, we want to adiabatically turn on this current at
time t = −T

2 and turn it off at time t = T
2 with T � R, so that at asymptotically early

and late times the vacuum is unchanged. Since this term adds directly to the Hamiltonian
density, the vacuum in this background will have non-zero energy E for the time T . As
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T →∞, transient fluctuations drop out and

eiET = 〈Ω
∣∣eiHT ∣∣Ω〉 =

∫
DA exp

[
i
∫
d4x
(
− 1

4F
2
μν + eAμJ

μ
)]∫

DA exp
[
i
∫
d4x
(
− 1

4F
2
μν

)] . (26.113)

If we identify E = V (r) as the energy of the two charges separated by R, then we have
already justified Eq. (26.111) with the Abelian version of Eq. (26.112).

As a cross-check, let us evaluate this path integral explicitly. Since the path integral is
quadratic in fields for QED, we can solve it exactly:

exp(iET ) = exp
{
i

∫
d4x

∫
d4y

e2

2
Jμ(x)Dμν(x, y)Jν(y)

}
, (26.114)

where iDμν(x, y) is the gauge boson position-space Feynman propagator. In Feynman
gauge,

iDμν(x, y) = 〈Ω|T{Aμ(x)Aν(y)}|Ω〉 =
1

4π2

gμν

(x− y)2 − iε (26.115)

(see Problem 6.1 or Section 33.2). The integrals over x and y will be divergent when both
currents are at z = R or both at z = 0. However, these contributions will have no R
dependence. The only R-dependent part comes from x and y on opposite sides of the loop,
which gives

iET = −2
e2

8π2

∫ T
2

−T
2

dx0

∫ ∞

−∞
dy0 1

(x0 − y0)2 −R2 − iε
= i

e2

4πR

∫ T
2

−T
2

dx0 = i
e2T

4πR
.

(26.116)

T has been taken to ∞ in the y0 integral to extract the leading T behavior. This confirms
that E = e2

4πR = V (R). In QED, this result is exact since the path integral is Gaussian.
We conclude that Eqs. (26.108) and (26.109) provide a gauge-invariant definition of a

potential that reduces to the expected answer in the QED case. For QCD, the leading-order
calculation is identical to QED. At next-to-leading order, the calculation gives, with nf = 0
[Susskind, 1977; Fischler, 1977],

E = Ṽ (�q) = −CF
g2
s

�q 2

(
1 +

g2
s

16π2

(
11
3
CA ln

�q 2

μ2
+ �q − independent

)
+O
(
g4
s

))
.

(26.117)

This expression is gauge invariant as desired. Thus, the expectation value of a Wilson
loop can be used to give an exact definition of the potential and therefore of the running
coupling.1

One motivation for defining a potential in terms of the expectation value of a Wilson
loop is in the hope that it could help prove confinement in QCD. If the non-perturbative
QCD potential grew linearly with distance, it would take an infinite amount of energy
to separate quarks asymptotically. This would explain why free quarks have never been
seen and explain confinement. Wilson proposed to address this question on the lattice
by evaluating the expectation value of a Wilson loop. Indeed, as we saw in Section 25.5,

1 This definition is actually not quite well defined. There is a subtlety at 3-loops where IR divergences in
〈Ω|WP

loop|Ω〉 appear [Appelquist et al., 1977]
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expectation values of Wilson loops are very natural things to evaluate in lattice QCD.
Wilson’s idea was that if the potential grew with distance it should act like ln〈Wloop〉 ∼ TR

rather than ln〈Wloop〉 ∼ T
R . That is, the expectation value would be proportional to the area

of the Wilson loop.
In his paper [Wilson, 1974] Wilson was able to show analytically that on the lattice

ln〈Wloop〉 scales as the area of the loop at strong coupling. His argument was that, as
gs → ∞, contributions that have links not compensated by links in the opposite direction
vanish. Thus, the leading contribution comes from configurations in which the entire loop
is tiled with plaquettes, as in Figure 26.2. This has been confirmed by numerical simulation
[Gattringer and Lang, 2010]. Unfortunately, Wilson’s argument holds equally well in any
gauge theory, including QED. The challenge with this approach is to show that confinement
persists in the continuum limit, that is, after the lattice spacing is removed. This remains
an open question in QCD.

By the way, there is indirect experimental evidence for the linear growth of the energy
with separation. In the 1970s, by carefully examining the spectrum of various hadrons, peo-
ple found the interesting relation that the square of the mass of hadrons was proportional
to their spin, m2 ∼ J . This is known as Regge behavior. Such a spectrum is exactly what
one would expect from a spinning string. Moreover, a string at constant tension also has
energy that grows linearly with the length of the string. One can think of the string as a tube
of chromoelectric flux with constant energy density between two quarks. This led people to
postulate strings as a fundamental explanation of the strong force before QCD was estab-
lished and understood. Now we know that the linear growth with distance is explained by
QCD, so fundamental strings are not needed. In the 2000s, string theory had a resurgence
as a theory of strong interactions when it was found that it could quantitatively explain
features of strongly coupled QCD through the AdS/CFT duality [Maldacena, 1998].

Problems

26.1 Calculate δ3c at 1-loop in dimensional regularization by evaluating the ghost 2-point
function.

26.2 Work out the remaining counterterms in QCD in Feynman gauge.
26.3 Colored scalars.

(a) Compute the contribution of a color triplet scalar to δ3.
(b) Compute the contribution of a color triplet scalar to δA3.
(c) Compute the contribution of a color triplet scalar to the QCD β-function at

1-loop.
(d) Can you find some number of scalars and/or spinors for which the 1-loop QCD

β-function vanishes at 1-loop?



27 Gluon scattering and the
spinor-helicity formalism

Matrix element and cross section calculations in QCD increase in complexity extremely
fast. For example, consider the process gg → gg. At tree-level gg → gg gets contributions
from Feynman diagrams with gluons being exchanged in the s, t and u channels, and from
diagrams with the 4-point vertex. The s-channel diagram gives (in Feynman gauge)

iMs (p1p2 → p3p4) =

ε2; b

ε1; a

ε4; d

ε3; c

qp2

p1

p4

p3

= −ig
2
s

s
fabefcde[(ε1 · ε2)(p1 − p2)

μ + εμ2 (p2 + q) · ε1 + εμ1 (−q − p1) · ε2]

×
[
(ε�4 · ε�3)(p4 − p3)

μ + ε�μ3 (p3 + q) · ε�4 + ε�μ4 (−q − p4) · ε�3
]
, (27.1)

where q = p1 + p2 = p3 + p4. We can simplify this a little, using transversality of the
gluons, pi · εi = 0, but not much. The answer is still a mess:

Ms(p1p2 → p3p4) = −g
2
s

s
fabefcde

×{−4ε1 · ε�3ε2 · p1p3 · ε�4 +2ε1 · ε2ε�3 · p1ε
�
4 · p3− 2ε1 · p4ε2 · p1ε

�
3 · ε�4 + ε1 · ε2p4 · p1ε

�
3 · ε�4

+ 4ε1 · ε�4ε2 · p1ε
�
3 · p4 − 2ε1 · ε2ε�3 · p4ε

�
4 · p1 − 2ε1 · p2ε2 · p3ε

�
3 · ε�4 + ε1 · ε2ε�3 · ε�4p2 · p3

+ 4ε1 · p2ε2 · ε�3ε�4 · p3 − 2ε1 · ε2ε3 · p2ε
�
4 · p3 + 2ε1 · p2ε2 · p4ε

�
3 · ε�4 − ε1 · ε2ε�3 · ε�4p4 · p2

−4ε1 ·p2ε2 · ε�4ε�3 ·p4 +2ε1 · ε2ε�3 ·p4ε
�
4 ·p2 +2ε1 ·p3ε2 ·p1ε

�
3 · ε�4− ε1 · ε2ε�3 · ε�4p1 ·p3 } .

(27.2)

To get the cross section, you would also need to compute the crossed diagrams, add the
4-point vertex, square the amplitude, sum over polarizations and simplify the color factor.
If you managed to do all that, adding all 1000 or so terms, summing over final states and
averaging over initial states you would find

1
256

∑
pols.

colors

|M|2 = g4
s

9
2

(
3− tu

s2
− su

t2
− st

u2

)
, (27.3)

which is remarkably simple.
Why are the matrix elements for gluon scattering such a mess and the final answer so

simple? The root of the problem is our insistence on manifest locality. In fact, the entire
formalism of quantum field theory that we have developed so far is based on describing

534
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interactions among particles in terms of local Lagrangians. In a local Lagrangian, inter-
actions involve non-negative powers of derivatives, such as ∂kφi1(x) · · ·φin(x). While the
local Lagrangian description has its advantages, such as manifest Lorentz invariance, it also
has disadvantages. In Chapter 8, we encountered subtleties in trying to write a Lagrangian
for a massless spin-1 particle that would only propagate the two physical degrees of
freedom. We needed to have a redundancy of description, called gauge invariance, that
established an equivalence among different components of the vector field Aμ(x) in which
these two polarizations were embedded. We also saw that we could integrate out this redun-
dancy directly at the level of the path integral, which, in the covariant Rξ gauges, led to
an additional complication, Faddeev–Popov ghosts. Even if we work in a gauge without
ghosts, such as lightcone gauge, there is still an enormous redundancy built into the entire
Feynman-diagram approach. The A2∂A interaction allows for multiple contractions, gen-
erating six terms in the Feynman rule, and theA4 vertex generates another six. That is why
even the gg → gg process above has so many pieces. For five gluon scattering, such as
gg → ggg, there are of order 10 000 terms in the matrix element. For a cross section, the
number of terms is unmanageable without a computer. With just a few more gluons in the
final state, even a numerical approach becomes unrealistic.

In this chapter, we describe an alternative approach to constructing amplitudes, using
only physical on-shell external states. This approach exploits the spinor-helicity formalism.
This formalism is based on the simple observation that spin-1 fields transform in the

(
1
2 ,

1
2

)
representation of the Lorentz group, so that they are naturally represented as bispinors,
εαα̇ = σμαα̇εμ (recall, σμ = (1, �σ) from Eq. (10.56)). In this way, the redundancy of
embedding a massless spin-1 particle into a vector field Aμ(x) can be avoided. It will take
a bit of patience to get used to the notation (as it did for Dirac spinors). Once that is done,
we will see some remarkable simplifications. For example, we will find that for gg → gg

there are only two non-vanishing amplitudes, which are

M̃
(
1−2−3+4+

)
=

〈12〉4
〈12〉〈23〉〈34〉〈41〉 , M̃

(
1−2+3−4+

)
=

〈13〉4
〈12〉〈23〉〈34〉〈41〉 .

(27.4)

Adding the appropriate prefactor, squaring and summing over spins and colors then leads
to Eq. (27.3) almost effortlessly.

Besides simplifying calculations, the spinor-helicity approach has led to a number
of insights into gauge theories, some of which we will discuss (such as their unique-
ness), and others (such as dual conformal invariance, or the sense in which gravity =
(gauge theory)2) that are still not completely understood. We make some comments on the
outlook for this approach in Section 27.7.

27.1 Spinor-helicity formalism

Since momenta transform in the
(

1
2 ,

1
2

)
representation of the Lorentz group, in a sense they

are more naturally described as bispinors, Pαα̇, than as 4-vectors, Pμ(x). To understand
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bispinors, we first recall some of the notation and results from Chapter 10. In Sec-
tion 10.6.2, we introduced a notation for Weyl spinors where ψα meant a left-handed
spinor, in the

(
1
2 , 0
)

representation, and ψ̃α̇ (with a dot over the Greek index and a tilde)
meant a right-handed spinor, in the

(
0, 1

2

)
representation. We also showed that

εαβψα(x)χβ(x) and εα̇β̇ψ̃α̇(x)χ̃β̇(x) (27.5)

were Lorentz invariant, where

εαβ = −εαβ = εα̇β̇ = −εα̇β̇ =
(

0 1
−1 0

)
. (27.6)

You should think of εαβ and εα̇β̇ as raising and lowering spinor indices, as gμν does
for vector indices (although you have to be careful of the index ordering since εαβ is
antisymmetric). The metric with one up and one down index is εαβεβγ = δγα.

Two useful relations that you derived in Problem 10.3 are

gμνσαα̇μ σββ̇ν = 2εαβεα̇β̇ (27.7)

and

εαβεα̇β̇σ
μββ̇ = σ̄μα̇α, (27.8)

where σμαα̇ =
(
δαα̇, �σαα̇

)
and σ̄μα̇α = (δα̇α,−�σα̇α). Each of these equations is 16

relations, which can be easily verified by explicit computation. Equations (27.5), (27.7)
and (27.8) are the only results we need from Section 10.6.2.

When dealing with spinors, we found the inner product ψχ = εαβψα(x)χβ(x) was
natural. This satisfies χψ = ψχ, since fermion fields ψα(x) and χβ(x) anticommute, and
provides a concise notation, particularly in applications to supersymmetry. In this chapter,
we are not interested in spinor fields, which transform in unitary irreducible infinite-
dimensional representations of the Poincaré group. Instead, we are interested in constant
spinors, which transform in finite-dimensional representations of the Lorentz group. These
constant spinors can be real numbers, complex numbers or Grassmann numbers. For appli-
cations to QCD, we will take them to be real or complex. We will therefore define helicity
spinors as real or complex doublets transforming in the

(
1
2 , 0
)

or
(
0, 1

2

)
representations

of the Lorentz group. To repeat, these are just two-component vectors of numbers, like
external spin states uα, not Grassmann numbers like ψα.

In terms of helicity spinors, it is natural to rewrite the antisymmetric inner product, Eq.
(27.5), as

〈λχ〉 = εαβλαχβ = λαχ
α = −λαχα, [λχ] = εα̇β̇λ̃

α̇χ̃β̇ = λ̃α̇χ̃α̇ = −λ̃α̇χ̃α̇.
(27.9)

With these inner products, whether the spinors are left- or right-handed is indicated by
angle or square brackets, so we drop the tilde. Since λ and χ are commuting numbers, we
have

〈λχ〉 = −〈χλ〉, [λχ] = −[χλ], (27.10)
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and in particular

[λλ] = 〈λλ〉 = 0, (27.11)

which will be key to many of the simplifications that follow.

27.1.1 Vectors

To represent momenta as bispinors, we use the σ-matrices:

pαα̇ ≡ σαα̇μ pμ =
(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
. (27.12)

More generally, we have four relations:

pαα̇ ≡ σαα̇μ pμ, pα̇α = σ̄μα̇αpμ, pμ =
1
2
σμαα̇pα̇α, pμ =

1
2
σ̄μα̇αp

αα̇, (27.13)

which can be checked with Eqs. (27.7) and (27.8). These equations allows us to convert
from the vector representation to the

(
1
2 ,

1
2

)
representation of the Lorentz group and back.

It follows that

det
(
pαα̇
)

= p2
0 − p2

1 − p2
2 − p2

3 = p2
μ = m2. (27.14)

In the special case that the momentum is lightlike we find det
(
pαα̇
)

= 0. For gauge
theories, which have massless momenta, this is a very important constraint. It holds even
if the momenta are complex, which, as we will see, is a very useful generalization.

A result from linear algebra is that any 2×2 matrix with zero determinant can be written
as an outer product

pαα̇ = λαλ̃α̇ (27.15)

for two vectors λα and λ̃α̇. To check that the right-hand side corresponds to a massless

bispinor, write λα =
(
a1

a2

)
and λ̃α̇ =

(
b1 b2
)
, then

det
(
λαλ̃α̇
)

= det
(
a1b1 a1b2
a2b1 a2b2

)
= a1b1a2b2 − a1b1a2b2 = 0. (27.16)

An explicit decomposition of a massless 4-vector is

λα =
z√

p0 − p3

(
p0 − p3

−p1 − ip2

)
, λ̃α̇ =

z−1√
p0 − p3

(
p0 − p3 −p1 + ip2

)
(27.17)

with

p0 ≡
√
p2
1 + p2

2 + p2
3. (27.18)

Then λαλ̃α̇ = pαα̇, as given in Eq. (27.12).
Note that a massless complex 4-momentum has three complex degrees of freedom, as

does λαλ̃α̇, due to the two complex degrees of freedom in each spinor and the invariance
of the product under λα → zλα and λ̃α̇ → 1

z λ̃
α̇. For a complex 4-momentum, λα and
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λ̃α̇ are different. If the momentum is real then λα = (λ̃α̇)† and the factor z in Eq. (27.17)
must be a pure phase: z = eiφ with φ ∈ R.

If we have two massless vectors, pαα̇ = λαλ̃α̇ and qαα̇ = χαχ̃α̇, then

p · q =
1
4
gμνσ

μ
αα̇σ

ν
ββ̇
λαλ̃α̇χβχ̃β̇ =

1
2
εαβεα̇β̇λ

αλ̃α̇χβχ̃β̇ =
1
2
〈λχ〉 [χλ] , (27.19)

where Eq. (27.8) has been used. As a consistency check, we note that p2 = q2 = 0. For
real momenta, where λα = (λ̃α̇)† and χα = (χ̃α̇)†, we have [χλ] = 〈λχ〉 up to a phase.
So,

〈λχ〉 =
√

2p · qeiφ, [χλ] =
√

2p · qe−iφ. (27.20)

In this sense, spinor inner products are a type of square root of the Lorentzian inner product.
This notation is quite general, and we can always just use brackets for the spinors

associated with a particular momentum. So if pαα̇ = λαλ̃α̇, we can write

λα = p〉, λα = 〈p, λ̃α̇ = p] , λ̃α̇ = [p , (27.21)

so that

pαα̇ = p〉[p, pα̇α = p]〈p, (27.22)

Contracting vector indices can then be defined as taking a trace of the bracketed expressions
with a factor of 1

2 :

q · p = qμpμ =
1
2
qα̇αp

αα̇ ≡ 1
2
tr
{
q]〈q p〉[p

}
=

1
2
〈qp〉[pq] (27.23)

which agrees with Eq. (27.19).
We have some additional identities among spinor-helicity products that are useful to

know. To derive these, it is simplest to take all momenta incoming, so that we can use∑
pμi = 0. Note that this means some of the energies must be negative and unphysical. In

terms of helicity spinors, momentum conservation implies
∑
j λ

j
αλ̃

j
α̇ = 0, or

n∑
j=1

j〉[j = 1〉[1 + 2〉[2 + 3〉[3 + · · ·+ n〉[n = 0 (27.24)

where we write i] for pi] for simplicity. If we sandwich this between any two spinors, we
get n2 equations: ∑

j

〈ij〉[jk] = 0. (27.25)

Thus, for example, if there were only 4-momenta we would have 〈13〉 [32] = −〈14〉 [42].
Another useful observation is that, since spinors are two-dimensional, we can express

any one of them in terms of any two others:

1〉 =
〈13〉
〈23〉 2〉 − 〈12〉

〈23〉 3〉 . (27.26)

You can check this by contracting with 〈1, 〈2, or 〈3. Contracting with an arbitrary
additional spinor 〈4| gives
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〈12〉 〈34〉+ 〈13〉 〈42〉+ 〈14〉 〈23〉 = 0. (27.27)

This is known as the Schouten identity.

27.1.2 Polarizations

The real power of the spinor-helicity formalism comes when talking about vector boson
polarizations. Recall that physical polarizations satisfy ε�με

μ = −1 and pμεμ = 0. For
example, for a fixed momentum, the polarizations for positive and negative helicity are

pμ = (E, 0, 0, E), εμ+ =
1√
2
(0, 1, i, 0), εμ− =

1√
2
(0, 1,−i, 0). (27.28)

Note that, although ε�με
μ = −1, the helicity polarizations satisfy εμεμ = 0, without the

conjugation. Thus, just as pμpμ = 0 implies pμ has a decomposition into an outer product
of spinors, the same holds for εμ. Also ε+μ ε

−μ = −1. Keep in mind that we always have
momenta incoming in this chapter, and as the momentum flips the helicity flips. For exam-
ple, M (−,−,+,+) describes 2 → 2 scattering where, after the outgoing momenta are
reversed back to physical (positive energy) momenta, all the helicities are negative.

To figure out how to decompose the polarizations, it is helpful to introduce in addition
to pμ another lightlike 4-momentum rμ called the reference momentum. The reference
momentum must not be aligned with pμ (r · p �= 0), but is otherwise arbitrary. It will often
be convenient to take rμ to be the momentum of another gluon in a scattering diagram, but
we leave rμ general for now.

Writing pαα̇ = p〉[p and rαα̇ = r〉[r, we have

[ε−p (r)]αα̇ =
√

2
p〉[r
[pr]

, [ε+p (r)]αα̇ =
√

2
r〉[p
〈rp〉 . (27.29)

We can then check that

ε−p (r) · ε+p (r) =
1
2
[ε−p (r)]α̇α[ε+p (r)]αα̇ =

1
2

2
[pr]〈rp〉 tr

{
r]〈p r〉[p

}
= −1 (27.30)

as desired. Similarly, since 〈pp〉 = [pp] = 0, it follows that ε+ · ε+ = ε− · ε− = 0 and
ε± · p = 0.

The freedom of choice of reference momenta automatically implies the Ward identity.
Note that since spinors are two-dimensional, any spinor can be written as λ〉 = 〈λr〉

〈pr〉p〉 −
〈λp〉
〈pr〉 r〉, so we can only either shift r by something proportional to r or by something
proportional to p. To see this, note that shifting r → r + p implies

1√
2
ε−p (r) =

p〉[r
[pr]

→ p〉[(r + p)
[p(r + p)]

=
p〉[r
[pr]

+
p〉[p
[pr]

=
1√
2
ε−p (r) +

1
[pr]

p. (27.31)
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That is, εμ → εμ +
√

2
[pr]pμ. Since the reference vector is arbitrary, any physical amplitude

must be invariant under this transformation. Thus, the Ward identity will be automati-
cally satisfied. Moreover, changing r to any other r is just a gauge transformation, and the
polarizations are unchanged.

We will often take rμ to be the momentum of another gluon in the problem. If the gluons
are all labeled by i, then we can write εi(j) for the polarization of the gluon with momen-
tum pμi with reference momentum rμ = pμj . In this way, any gluon scattering amplitude (or
more generally, scattering amplitudes for massless particles of any spin) can be expressed
in terms of [ij] and 〈ij〉 with the i corresponding to momenta in the problem.

With this notation, it is worth working out once and for all the various Lorentz contrac-
tions that can appear in scattering amplitudes. We have, using 1 and 2 for the particles and
i and j for the reference momenta,

ε−1 (i) · ε−2 (j) =
1
2
tr
(

2
i]∠1
[1i]

2〉[j
[2j]

)
=
〈12〉[ji]
[1i][2j]

. (27.32)

Also,

ε−1 (i) · ε+2 (j) =
〈1j〉[2i]
[1i]〈j2〉 , ε+1 (i) · ε+2 (j) =

〈ij〉[21]
〈i1〉〈j2〉 (27.33)

and

ε−1 (i) · p3 =
1√
2
〈13〉[3i]

[1i]
, ε+1 (i) · p3 =

1√
2

[13]〈3i〉
〈i1〉 , (27.34)

and finally p1 · p2 = 1
2 〈21〉[12] as above. As a check on these, note that parity conjugation

flips + to − and 〈· · · 〉 to [· · · ].
Finally, recall from Chapter 8 that Lorentz transformations which hold a particular

momentum fixed are called little-group transformations. In terms of helicity spinors, the
entire set of transformations that preserve the momentum pαα̇ = p〉[p are rescalings:

p〉 → z p〉, [p→ 1
z

[p, (27.35)

which can also be seen in the explicit decompositions in Eq. (27.17). Thus, little-
group transformations must be rescalings of this form. There is a separate little-group
transformation associated with each momentum.

If we have a gluon with momentum pμ then its polarizations transform under the little
group associated with p as

ε−p (r) =
√

2
p〉[r
[pr]

→ z2ε−p (r), ε+p (r) =
√

2
r〉[p
〈rp〉 → z−2ε+p (r). (27.36)

Note that the polarizations are independent of rescalings of spinors associated with the ref-
erence momentum. Since any gluon scattering amplitude can be written entirely in terms of
inner products of spinors associated with the momenta in the problem, and since momenta
and reference vectors are little-group invariant, the little-group scaling of any amplitude
is determined solely by the external polarizations. This strongly constrains the form that a
scattering amplitude can have, to all orders in perturbation theory.
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Explicitly, the number of factors of i〉 and 〈i minus the number of factors of i] and [i in
the amplitude must be equal to 2 for a negative helicity gluon and −2 for a positive helic-
ity gluon. For example, consider the scattering of two positive and two negative helicity
gluons. The result might be

M̃
(
1−, 2−, 3+, 4+

)
=

〈21〉[34]2

[21][14]〈41〉 or
〈12〉3

〈23〉〈34〉〈41〉 , (27.37)

but it could not be something like 〈12〉〈34〉 since that would scale incorrectly under the
little group.

27.1.3 Dirac spinors

Dirac spinors can also be handled smoothly with helicity spinors (although we will not
be using them much in this chapter). Recall that Dirac spinors can be either left- or right-
handed. Of course, a physical state can only be left- or right-handed. Thus we can write
left- and right-handed Dirac spinors (in the Weyl basis) as

p〉 =
(
λα

0

)
, p] =

(
0
λ̃α̇

)
, [p =

(
0 λ̃α̇
)
, 〈p =

(
λα 0
)
. (27.38)

Note that, for massless fermions, particles and antiparticles are represented by the same
spin states (cf. Eqs. (11.22) and (11.23)). That is, connecting to our usual Dirac spinor
notation, |p〉 = PLu(p) and p] = PRu(p) (for particles) or |p〉 = PLv(p) and p] = PRv(p)
(for antiparticles). We see that, using helicity spinors, p] and p〉 can be seamlessly treated
as either Weyl or Dirac.

The γ-matrices in the Weyl basis are

γμαα̇ =
(

0 σμαα̇

σ̄μα̇α 0

)
. (27.39)

We see immediately that

[pγμq] = 〈pγμq〉 = 0. (27.40)

Also,

〈pγμq] = 〈pσμq] = [qσ̄μα̇αp〉 = [qγμp〉, (27.41)

where Eq. (27.8) has been used.
With helicity spinors, Dirac algebra becomes very easy. For example,

〈pγμq]〈rγμs] = gμν〈pσμq]〈rσμs] = 2〈pr〉[sq], (27.42)

where Eq. (27.7) has been used. Similarly, we find

〈p/kq] = 〈pk〉[kq]. (27.43)

For a concrete application, consider unpolarized e+e− → μ+μ− scattering in QED in
the high-energy limit. If the electron is right-handed, we denote it as 1]. Since [2γμ1] = 0,



542 Gluon scattering and the spinor-helicity formalism

the positron must be left-handed. Similarly, take the muon to be 〈3, which forces the
antimuon to be 4]. For these helicities, the amplitude is

iM(1−2+3−4+) =
1

42

3
= (−ie)2 〈2γμ1]

−igμν
s

〈3γν4] = 2
ie2

s
[41]〈23〉.

(27.44)
Squaring this amplitude gives∣∣M(1−2+3−4+)

∣∣2 = 4e4
[41]〈14〉〈23〉[32]

s2
= 16e4

p1 · p4p2 · p3

s2
= 4e4

u2

s2
. (27.45)

The 1+2−3+4− amplitude is identical (by parity). The other two non-vanishing amplitudes
give the same thing with 1 ↔ 2, namely |M(1−2+3+4−)|2 = 4e4 t

2

s2 . Thus,

1
4

∑
spins

|M|2 = 2e4
t2 + u2

s2
, (27.46)

in agreement with Eq. (13.68) when me = mμ = 0.

27.2 Gluon scattering amplitudes

With all this algebra taken care of, we can now start to see some results. Consider first the
2 → 2 scattering of gluons, all of which have positive helicity (with incoming momenta).
Choose all the polarizations to have the same reference vector rμ, which can be any random
lightlike direction not aligned with any of the pμi . With this choice, it follows from Eq.
(27.33) that

ε+i (r) · ε+j (r) =
〈rr〉[ji]
〈ri〉〈rj〉 = 0, (27.47)

so that all the polarizations are orthogonal: ε+i · ε+j = 0. However, every term in the
s-channel amplitude has some εi · εj factor, as can been seen immediately from the explicit
expression in Eq. (27.2). Therefore Ms(1+, 2+, 3+, 4+) = 0. It is easy to see in the
same way that all terms in the t-channel, u-channel and 4-point vertex-channel have at
least one pair of polarization vectors contracted. We conclude that the tree-level amplitude
for + + + + scattering vanishes identically.

This result is actually quite general:

Amplitudes with all positive (or all negative) helicities vanish at tree-level in QCD, for
any number of legs.

To see why, again choose rμ to be different from all the momenta so that ε+i · ε+j = 0.
The only thing a polarization can get contracted with besides another polarization is a
momentum. But at tree-level, each vertex can contribute at most one factor of momentum
(none for the 4-point vertex). Since there are always fewer vertices than external lines,
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there must be a polarization contraction in each term in the answer, and thus the amplitude
must vanish.

What about having one negative helicity? Call the momentum of the negative helicity
gluon pμ1 . Now choose the reference vector for the pμi�=1 polarizations to be pμ1 . In this case,
we still have ε+i · ε+j = 0 for i, j �= 1, but we also now have

ε+i (1) · ε−1 (r) =
[ir] 〈11〉
〈1i〉 [1r] = 0, (27.48)

so every possible polarization contraction still must vanish. This works for any number
of gluons greater than three. Remember that the reference momentum could not have
pμr

μ = 0. But for three gluons, p1 · p3 = 1
2 (p1 + p3)

2 = 1
2p

2
2 = 0, so this trick does

not work. Of course, for three gluons, you cannot have non-trivial scattering anyway (at
least with real momenta; with complex momenta the three-gluon scattering amplitude does
not automatically vanish, as we will discuss below).

In summary, we have found:

Amplitudes with all but one positive (or all but one negative) helicity vanish at tree-level
for any number of external legs greater than three.

Beyond this, there is no general rule, and indeed amplitudes generally do not vanish.
Finally, QCD is parity invariant, so amplitudes are the same if we flip all the helicities.

Therefore:

Amplitudes are invariant under parity, which flips all the helicities hi → −hi.

Thus, the leading non-vanishing amplitudes will have at least two negative and two positive
helicities. Those with exactly two negative or exactly two positive helicities are called
maximum helicity violating (MHV) amplitudes.

27.2.1 Color factors

To get the full answer for gluon scattering amplitudes we need to deal with color. First
recall from Eq. (25.33) that the structure constants for SU(N) are related to the generators
in the fundamental representation by

fabc = −2itr
( [
T a, T b
]
T c
)
. (27.49)

This equation lets us reduce products of fabc factors to traces over products of matrices.
Another important equation from Chapter 25 is Eq. (25.34):∑

a

T aijT
a
kl =

1
2

(
δilδkj −

1
N
δijδkl

)
. (27.50)
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This identity is easier to understand in matrix language. Contracting with arbitrary matrices
Aji and Blk gives

tr{T aA}tr{T aB} =
1
2

(tr{AB} − 1
N

tr{A} tr{B}), (27.51)

while contracting with Ali and Bjk gives

tr{AT aBT a} =
1
2

(
tr{A} tr{B} − 1

N
tr{AB}

)
. (27.52)

These identities are great for simplifying color factors in gluon scattering amplitudes. They
hold for any A and B.

For example, the matrix element in Eq. (27.2) has color factor fabefcde. This simpli-
fies to

fabefcde = −4tr
{[
T a, T b
]
T e
}

tr
{[
T c, T d
]
T e
}

= −2tr
{[
T a, T b
][
T c, T d
]}

+
2
N

tr
{[
T a, T b
]}

tr
{[
T c, T d
]}

= −2tr
{[
T a, T b
][
T c, T d
]}
, (27.53)

where Eq. (27.49) was used on the first line, Eq. (27.51) on the second line, and the cyclic
property of the trace on the third.

That the 1
N terms dropped out can be understood on more general grounds. The 1

N

terms come from the difference between U(N) = SU(N) × U(1) and SU(N). One can
think of the U(N) as SU(N) plus a photon. However, if we calculated gluon scattering in
U(N) we would get the same result as in SU(N), since the photon has no self-interactions
and gluons are not charged. This is why the 1

N correction in Eq. (27.51) drops out, a
phenomenon sometimes called photon decoupling. Similarly, a product of color factors in
any tree-level gluon scattering diagram will reduce to one big single trace over fundamental
generators. At loop level, or when fermions are involved, SU(N) and U(N) are different,
so photon decoupling is a tree-level trick.

At tree-level, where SU(N) and U(N) are equivalent, there is an appealing graphical
representation for the color connections in gluon scattering diagrams: U(N) has N2 gen-
erators and is equivalent to a bifundamental representation, N × N̄ . Thus, each gluon has
a color and an anticolor, like red anti-blue (RB̄) or green anti-green (GḠ). It is then easy
to draw the color flow for gluons by representing them with double lines, as in Figure 27.1.
This is known as ’t Hooft double-line notation [’t Hooft, 1974]. By the way, one can use
double-line notation beyond tree-level as well. In fact, it is particularly useful for studying
SU(N) gauge theories in the limit N → ∞, where SU(N) is equivalent to U(N) even at
loop level.

Once products of fabc factors are reduced to products of traces over fundamental gener-
ators, we can simplify those products using Eqs. (27.51) and (27.52). For example, setting
A = B = 1 in Eq. (27.52) gives

tr{T aT a} =
N2 − 1

2
. (27.54)
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−→ , −→

Double-line graphs for gluon exchange. �Fig. 27.1

Taking A = B = T b in Eq. (27.51) and using tr {T a} = 0 gives

tr{T aT b}tr{T aT b} =
1
2

(
tr{T bT b} − 1

N
tr{T b}tr{T b}

)
=
N2 − 1

4
. (27.55)

These identities are a little easier to read if we write them as if color factor T a came from
gluon 1, color factor T b from gluon 2, and so on. Thus, Eqs. (27.54) and (27.55) become
tr{11} = N2−1

2 and tr{12}tr{12} = N2−1
4 respectively. Taking A = B = T b = 2

in Eq. (27.52) gives tr{2121} = − 1
2N tr{22} = 1−N2

4N . Similarly, you can show that

tr{123} tr{123} = 1−N2

4N , tr{123123} = N4−1
8N2 , and that

tr{1234} tr{1234} =
N4 + 2N2 − 3

16N2
=

2
3
, (27.56)

tr{1234} tr{4321} =
N6 − 4N4 + 6N2 − 3

16N2
=

19
6
, (27.57)

with N set to 3 on the right side of these equations.

27.3 gg → gg

Now let us work out the cross section for gg → gg. We already know that only the MHV
amplitudes are non-vanishing. We will actually only have to compute one MHV amplitude,
M(1−, 2−, 3+, 4+), with the others related by crossings.

As a reminder, in this chapter we take all momenta incoming and order the momenta
clockwise. We take t = (p1 + p4)

2, u = (p1 + p3)
2 and s = (p1 + p2)

2 so that s +
t+ u = 0. Note that these definitions are different from those used for two incoming and
two outgoing momenta (cf. Section 7.4.1). Since all momenta are incoming, the physical
process gg → gg with all negative helicities is described byM(1−2−3+4+).

We start by working out M(1−2−3+4+). We choose the reference momentum for ε1
and ε2 to be r = p4 and the reference momentum for ε3 and ε4 to be p1. Then the only
polarization contraction that does not vanish is ε2 ·ε3. Also, we now have ε1 ·p4 = ε2 ·p4 =
ε3 · p1 = ε4 · p1 = 0 as well as εi · pi = 0. All of these constraints vastly simplify the
answer.

First of all, consider the diagram with the 4-point vertex. There are no momentum factors
in the vertex, so the diagram can only give products of contractions of polarizations, such
as (ε2 · ε3) (ε1 · ε4). But since only one contraction, ε2 ·ε3, is non-zero, this diagram cannot
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contribute. Indeed, it is not hard to see that diagrams involving the 4-point vertex can never
contribute to MHV amplitudes.

Next, we look at the s-channel diagram. Assuming only that εi · pi = 0, it is

iMs =

ε3; cε2; b

ε1; a ε4; d

=
−ig2

s

s
fabefcde

× [(ε1 · ε2)(p1 − p2)
μ + 2εμ2 (p2 · ε1)− 2εμ1 (p1 · ε2)]

× [(ε3 · ε4)(p3 − p4)
μ + 2εμ4 (p4 · ε3)− 2εμ3 (p3 · ε4)] .

(27.58)

For the (−,−,+,+) helicity choice, only the term contracting ε2 with ε3 can survive,
so there is only one term:

Ms

(
1−2−3+4+

)
=

4g2
s

s
fabefcde

(
ε−2 · ε+3
)(
p2 · ε−1
)(
p3 · ε+4
)
. (27.59)

Now we plug in the spinor products, including s = 〈12〉 [21], to get

Ms

(
1−2−3+4+

)
= 2g2

sf
abefcde

1
〈12〉 [21]

(
〈21〉[34]
[24] 〈13〉

)(
〈12〉 [24]

[14]

)(
[43] 〈31〉
〈14〉

)
= 2g2

sf
abefcde

〈21〉[34]2

[21] [14] 〈14〉 . (27.60)

Now we put everything in terms of 〈〉 by using various relations. For example, momentum
conservation, Eq. (27.25), implies 〈12〉[23] = −〈14〉[43], (p1 + p2)

2 = (p3 + p4)
2 implies

[34]〈43〉 = [21]〈12〉, and (p1 + p4)
2 = (p2 + p3)

2 implies [14]〈41〉 = [23]〈32〉. Then we
can simplify the result as

Ms

(
1−2−3+4+

)
= −2g2

sf
abefcde

〈21〉[34]2

[21][14]〈41〉

(
[14]〈41〉
[23]〈32〉

)(
〈12〉[21]
〈43〉[34]

)(
−〈12〉[23]
〈14〉[43]

)
= −2g2

sf
abefcde

〈12〉4
〈12〉〈23〉〈34〉〈41〉 , (27.61)

which is a remarkably simple answer. It is a special case of a Parke–Taylor formula, as we
will discuss shortly.

As a check, we can look at the little-group scaling. There are two more spinors for each
of the negative helicity gluons (1 and 2) in the numerator than in the denominator, and
two more spinors for each of the positive helicity gluons in the denominator than in the
numerator.

Next, consider the t-channel diagram, which is 2 ↔ 4 and b↔ d from the s-channel:

iMt =

ε3; cε2; b

ε1; a ε4; d

=
−ig2

s

t
fadefcbe

× [(ε1 · ε4)(p1 − p4)
μ + 2εμ4 (p4 · ε1)− 2εμ1 (p1 · ε4)]

× [(ε3 · ε2)(p3 − p2)
μ + 2εμ2 (p2 · ε3)− 2εμ3 (p3 · ε2)] .

(27.62)
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With our polarization choice, ε1 · p4 = ε4 · p1 = ε1 · ε4 = 0 and therefore

Mt

(
1−2−3+4+

)
= 0. (27.63)

Finally, consider the u-channel diagram. This is 2 ↔ 3 and b↔ c from the s-channel:

iMu =

ε1; a

ε2; b

ε4; d

ε3; c

=
−ig2

s

u
facef bde

× [(ε1 · ε3)(p1 − p3)μ + 2εμ3 (p3 · ε1)− 2εμ1 (p1 · ε3)]
× [(ε2 · ε4)(p2 − p4)

μ + 2εμ4 (p4 · ε2)− 2εμ2 (p2 · ε4)] .
(27.64)

This does not vanish but gives

Mu

(
1−2−3+4+

)
= 4

g2
s

u
facef bde

(
ε+3 · ε−2
)(
p3 · ε−1
)(
p2 · ε+4
)

= 2g2
sf

acef bde
1

[13]〈31〉

(
〈21〉[34]
[24]〈13〉

)(
〈13〉[34]

[14]

)(
[42]〈21〉
〈14〉

)
.

(27.65)

After some simplification, this reduces to

Mu

(
1−2−3+4+

)
= −2g2

sf
acef bde

(
〈21〉2[34]2

[13]〈13〉〈41〉[14]

)
×
(
−〈12〉[23]
〈14〉[43]

)(
[14]〈41〉
[23]〈32〉

)(
− [31]〈12〉

[34]〈42〉

)
= −2g2

sf
acef bde

(
〈21〉4

〈14〉〈42〉〈23〉〈31〉

)
. (27.66)

So, the total matrix elementM = Ms +Mt +Mu is

M
(
1−2−3+4+

)
= −2g2

s

[
fabefcde

〈12〉4
〈12〉〈23〉〈34〉〈41〉 + facef bde

〈21〉4
〈14〉〈42〉〈23〉〈31〉

]
.

(27.67)

To get the cross section, we have to perform the color sums and square the matrix ele-
ments. Squaring the spinor products is easy, using s = 〈12〉[21] and t = 〈14〉[41], etc. We
have ∣∣∣∣ 〈12〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 =
s2

t2
,

∣∣∣∣ 〈21〉4
〈14〉〈42〉〈23〉〈31〉

∣∣∣∣2 =
s4

t2u2
(27.68)

and
[12]4

[12] [23] [34] [41]
〈21〉4

〈14〉〈42〉〈23〉〈31〉 =
s3

t2u
. (27.69)

Next, we can perform the color sums using the tricks above. We find(
fabefcde

)2
= N2
(
N2 − 1

)
, (27.70)(

fabefcde
)(
facgf bdg

)
=

1
2
N2
(
N2 − 1

)
, (27.71)
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so that ∑
colors

∣∣M(1−2−3+4+
)∣∣2 = 4g4

sN
2
(
N2 − 1

){s2
t2

+
s4

t2u2
+

s3

t2u

}
= 4g4

sN
2
(
N2 − 1

)( s4

t2u2
− s2

tu

)
, (27.72)

where s+ t+ u = 0 has been used to get to a form that is manifestly symmetric in t↔ u.
With this answer, it is not hard to complete the full cross section calculation. Since

only the MHV channels do not vanish, and each one is gauge invariant by itself, they
will all be given by some crossing of this result. For example, M(1−2+3−4+) is given
by M(1−2−3+4+) with s ↔ u. The six non-vanishing amplitudes correspond to the six
permutations of s, t, u. Summing all of these permutations gives∑

pols.
colors

|M|2 = 4g4
sN

2
(
N2 − 1

){( s4

t2u2
− s2

tu

)
+ perms of s, t, u

}

= 4g4
sN

2
(
N2 − 1

) (s2 + t2 + u2
)(
s4 + t4 + u4

)
s2u2t2

. (27.73)

Averaging over the number of initial states, which is 4 ×
(
N2 − 1

)2
for the spins and

colors, taking N = 3, and simplifying with s+ t+ u = 0 gives

1
256

∑
pols.

colors

|M|2 =
9
2
g4
s

(
3− su

t2
− ut

s2
− st

u2

)
. (27.74)

This final form is the standard way gg → gg is presented for QCD.

27.4 Color ordering

As we have seen in the gg → gg example, crossing relations can be extremely helpful
in gluon scattering. For multi-gluon amplitudes, with n > 4 gluons, crossings can be
complicated, so it is worth understanding how crossings work in general. The first step is
to separate the color from the kinematics.

Define a color-stripped amplitude as the part of the amplitude with the color factor
stripped off. The Feynman rules for computing color-stripped amplitudes are the same as
the regular QCD Feynman rules, but without a

√
2igsfabc factor. For example, for the

four-gluon amplitude, the color-stripped s-channel amplitude is

M̃s(1234) =
1
2s

[(ε1 · ε2)(p1 − p2)
μ + 2εμ2 (p2 · ε1)− 2εμ1 (p1 · ε2)]

×[(ε3 · ε4)(p3 − p4)
μ + 2εμ4 (p4 · ε3)− 2εμ3 (p3 · ε4)] .

(27.75)
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Here the numbers 1234 have implicit helicities associated with each gluon. Note that M̃s

is antisymmetric under interchange of 1 ↔ 2 or 3 ↔ 4, so

M̃s(1234) = −M̃s(2134) = −M̃s(1243) = M̃s(2143). (27.76)

Also, M̃s(1234) = M̃s(3412).
The color factor for the s-channel diagram can be written in terms of single traces, using

the SU(N) tricks from Section 27.2.1:

f12af34a = −2tr
{

[1, 2][3, 4]
}

= −2
[
tr{1234} − tr{2134} − tr{1243}+ tr{2143}

]
.

(27.77)

This is a sum of four terms that is antisymmetric under 1 ↔ 2 or 3 ↔ 4. Thus, the full
s-channel amplitude for Ms(1234) can be written as a sum of terms that have the gluons
ordered the same way in the color factor and the color-stripped amplitude:

Ms(1234) = 4g2
s

[
tr{1234}M̃s(1234) + tr{2134}M̃s(2134)

+ tr{1243}M̃s(1243) + tr{2143}M̃s(2143)
]
. (27.78)

Note that all the terms in the sum have the same sign.
The t-channel color-stripped amplitude is just the 2 ↔ 4 cross of the s-channel one:

M̃t(1234) = M̃s(1432) . (27.79)

Similarly, the u-channel is a 2↔ 3 cross:

M̃u(1234) = M̃s(1324) . (27.80)

Keep in mind, in these crossings, the polarizations stick with the momenta. For example,
M̃s(1−2−3+4+) = M̃t(1−4+3+2−) �= M̃t(1−4−3+2+). Both t- and u-channels also
have four terms in the color trace with appropriate signs, so the full amplitude can be
written as a sum of single trace color factors and color-stripped amplitudes with positive
signs.

The result is that the full amplitudeM(1234) =Ms(1234) +Mt(1234) +Mu(1234)
has twelve terms, four each from the s, t, u channels, all of which can be written as
tr{ijkl}M̃s(ijkl). The sum can be simplified further, since not all the color factors are
independent due to the cyclic property of the trace tr{1234} = tr{2341}. It is helpful to
pair up terms, so that

tr{1234}
[
M̃s(1234) + M̃s(1432)

]
= tr{1234}

[
M̃s(1234) + M̃t(1234)

]
= tr{1234}M̃(1234), (27.81)

where

M̃(ijkl) ≡ M̃s(ijkl) + M̃t(ijkl) =

kj

i l

+

kj

i l

(27.82)
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is known as the color-ordered partial amplitude. We can then write the four-gluon
scattering amplitude as

M(1234) = 4g2
s

∑
σ∈S3

tr {1σ(2)σ(3)σ(4)} M̃ (1σ(2)σ(3)σ(4)) , (27.83)

where S3 is the permutation group of {2, 3, 4}. Sometimes this group is written as S3 =
S4/Z4, with Z4 referring to the cyclic permutations.

Note that the two diagrams that contribute to the color-ordered partial amplitude are the
planar ones. In the double-line notation, the diagrams that are non-planar are suppressed
by factors of 1

N and drop out of tree-level amplitudes for SU(N). Thus, at tree-level, we
will always be able to express gluon scattering in terms of sums of planar diagrams. In
fact, the decomposition into partial amplitudes and single traces works for any number of
gluons, at tree-level. The generalized formula is simply

M(12 . . . n) = −2
(√

2igs
)n−2 ∑

σ∈Sn/Zn

tr {σ(1)σ(2) . . . σ(n)} M̃(σ(1)σ(2) . . . σ(n)) .

(27.84)

The general definition of M̃(12 . . . n) is the sum over all planar color-stripped graphs with
a given ordering of the external momenta. This equation can be derived by using the cyclic
property of the trace to uncross all the crossed diagrams (see Problem 27.3). Although it
should not be obvious at this point why one would want to express an amplitude in terms
of M̃(12 . . . n), it turns out that M̃(12 . . . n) can be remarkably simple.

For example, consider the MHV partial amplitude M̃(1−2−3+4+) for gg → gg.
Plugging Eqs. (27.61) and (27.63) into Eq. (27.82), this partial amplitude is

M̃
(
1−2−3+4+

)
=

〈12〉4
〈12〉〈23〉〈34〉〈41〉 (27.85)

because M̃t(1−2−3+4+) = 0. We can also compute

M̃
(
1−2+3−4+

)
= M̃s

(
1−2+3−4+

)
+ M̃t

(
1−2+3−4+

)
= M̃u

(
1−3−2+4+

)
+ M̃t

(
1−3−2+4+

)
. (27.86)

Again M̃t(1−3−2+4+) vanishes, and we computed M̃u(1−2−3+4+) in Eq. (27.66). So
we have

M̃
(
1−2+3−4+

)
= M̃u

(
1−3−2+4+

)
=

〈13〉4
〈12〉〈23〉〈34〉〈41〉 , (27.87)

which is remarkably similar to M̃(1−2−3+4+). In fact, an amazing feature of gluon
scattering is that the color-ordered MHV amplitude for any number of gluons is

M̃(1+2+ · · · j− · · · k− · · ·n+) =
〈jk〉4

〈12〉 〈23〉 〈34〉 · · · 〈n1〉 , (27.88)
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where j and k are the two negative helicity gluons. This is known as the Parke–Taylor
formula. It is an amazing result that shows that scattering amplitudes in QCD have a lot
more symmetry to them than you might guess from looking at the Feynman rules. You are
encouraged to verify that the Parke–Taylor formula reproduces the full gg → gg scattering
amplitude at tree-level in Problem 27.2.

As a highly non-trivial example, it is now quite easy to calculate the five-gluon scattering
cross section (Problem 27.6). For five gluons, everything but the MHV amplitudes vanish,
so as with four gluons there is only one independent amplitude to compute, and it is given
by the Parke–Taylor formula. If you tried to do five-gluon scattering with polarization
vectors and momenta, it would have 10 000 terms. Using the spinor-helicity formalism, the
calculation can be done by hand.

27.5 Complex momenta

We have seen that helicity spinors can be used to simplify Feynman diagrams. But so far,
we have only used spinors for the external momenta and polarizations. We still have to
compute the Feynman diagrams using the vertices from the Lagrangian. Of course, the
spinor-helicity formalism is still an enormous help, but it would be nice to be able to apply
the helicity formalism to internal lines too. This is not so simple, since we needed p2 = 0 to
write the momentum in terms of spinors, but p2 �= 0 in general on an internal line. In fact,
there is a procedure, not using Feynman diagrams, that uses only on-shell internal states
for which the helicities are also + or − For this to work, we need to consider complex
momenta. With complex momenta, the 3-point vertex will not identically vanish if the
three momenta are on-shell. As we will see, the 4-point and higher-order amplitudes can
be built up from the 3-point amplitude, and then the limit of real momenta can be taken.

27.5.1 3-point amplitude

Rather than compute the 3-point amplitude from the Feynman rules, let us just figure out
what the most general possible amplitude could be:

= ? (27.89)

It must depend on the three polarization vectors εi and the three momenta pi, or
equivalently on the spinors [1, [2, [3 and 〈1, 〈2, 〈3. Momentum conservation is

1〉[1 + 2〉[2 + 3〉[3 = 0 . (27.90)
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Contracting this on the left with 〈1 or 〈2 gives the two equations

〈12〉[2 = −〈13〉[3 , 〈21〉[1 = −〈23〉[3 . (27.91)

These equations imply either that 〈12〉 = 0, in which case 〈13〉 = 〈23〉 = 0 also, or
that all the [i are proportional to each other, in which case [12] = [13] = [23] = 0.
Thus, the answer must be a function of only 〈ij〉 or only [ij]. In the limit of real momenta
[ij] = 〈ji〉�, so all inner products vanish, which is a complicated way of saying that
momentum conservation implies you cannot have non-trivial 3-point functions for real
momenta.

Now let us use little-group scaling. If we take 1+ then the total power of [1 minus the
power of 〈1 must be 2 (see Section 27.1.2); for 1− it must be −2. The same argument
applies for the other momenta. Thus, for + + +, the most general amplitude is

M
(
1a+2b+3c+

)
= Cabc[12] [23] [31] or Cabc

1
〈12〉〈23〉〈31〉 , (27.92)

where Cabc is some color structure. The second form diverges instead of going to
zero in the limit of real momenta, therefore the first form is the only possibility. Since
M(123) has mass dimension 1 (see, for example, the discussion in Section 21.2.1) and
[12] [23] [31] has mass dimension 3, Cabc must have dimension −2. Thus, if we consider
only renormalizable theories with dimensionless couplings, the only solution is Cabc = 0.

Next, consider the MHV amplitude. Again, there are only two possibilities allowed
by little-group scaling. Since 〈12〉〈23〉〈31〉

〈12〉4 diverges in the limit of real momenta, the only
possibility is

M
(
1a+2b+3c−

)
= Cabc

[12]3

[13] [32]
. (27.93)

Similarly,

M
(
1a−2b−3c+

)
= Cabc

〈12〉3
〈13〉〈32〉 . (27.94)

Now, we are calculating the amplitude for identical particles, which must be bosons
since they have spin 1. Thus, the answer must be symmetric under interchange of two
particles. This is true even for the crossed processes with 3 ↔ 1. But the spinor products
in this formula are totally antisymmetric. Thus, Cabc must be totally antisymmetric under
the interchange of any two indices.

For real on-shell momenta the 3-point function vanishes. But we can use the form of the
complex 3-point function to write down a local interaction (with complex xμ), then take
the limit of real xμ to determine the unique local interaction with real fields. In that way,
we can say things about real momenta using complex momenta as a tool.

27.5.2 Uniqueness of Yang–Mills theory

Next, consider 4-point amplitudes. We consider again our favorite amplitude M(1−2−

3+4+) for four-gluon scattering. By little-group scaling, we must have

M
(
1a−2b−3c+4d+

)
= 〈12〉2 [34]2 Fabcd(s, t, u) , (27.95)
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where F scales as [M ]−4 by dimensional analysis. Since F scales as an inverse power of
mass, it must have a pole as a function of some of the external momenta. To constrain F
we use a very general result from Section 24.3: in a unitary theory, poles in the S-matrix
correspond to the exchange of on-shell intermediate states.

For example, let us suppose the pole is in the s-channel. Then we should be able to
describe the process through 12 → P and P → 34 with P 2 ∼ 0. That is,

≈
∓±

as (p1 + p2)
2 → 0. (27.96)

The requirement that P be nearly on-shell implies that the amplitude should factorize into
the product of 3-point amplitudes that communicate through the exchange of a gluon of
some helicity h = ±.

The gluon is massless, so its propagator must be i
P 2 δ

ab summed over helicities, which
becomes singular as P 2 → 0. Let us define Pμ = −pμ1 − pμ2 = pμ3 + pμ4 . Since P is
incoming for the left vertex, the 1−2−P− amplitude vanishes, and we need the helicity
of P to be positive on the left. The helicity must therefore be negative on the right. Since
the momentum is incoming in the left vertex, it is outgoing on the right. The spinors for
−P can always be chosen to be related to the spinors for P by a factor of i. That is,
(−P )〉 = iP 〉, (−P )] = iP ], 〈(−P ) = i〈P and [(−P ) = i[P . Thus we find

lim
s→0

sM
(
1a−2b−3c+4d+

)
= −CabeCcde 〈12〉3

〈2P 〉〈P1〉
[34]3

[3P ] [P4]
. (27.97)

Using 〈2P 〉[P4] = −〈21〉[14]−〈22〉[24] and [3P ]〈P1〉 = [33]〈31〉+[34]〈41〉 this reduces
to

lim
s→0

sM
(
1a−2b−3c+4d+

)
= −CabeCcde 〈12〉2

〈41〉
[34]2

[14]
. (27.98)

Thus,

lim
s→0

stFabcd(s, t, u) = −CabeCcde. (27.99)

Note that there are many different points in complex spinor space with P 2 = 0. For
example, if Pμ = pμ3 + pμ4 then P 2 = 〈34〉[43] so P 2 = 0 if either 〈34〉 = 0 or [34] = 0.
Since we have pulled out a factor of [34]2 in Eq. (27.95), we should set 〈34〉 = 0. This has
no effect on the s-channel factorization limit, since 〈34〉 never appeared, but is important
for the t-channel.

For the t-channel, Pμ = pμ1 +pμ4 = −pμ2−p
μ
3 . There are two possibilities for the helicity

of P . The two amplitudes are

lim
t→0

tM
(
1a−2b−3c+4d+

)
= CadeCbce

[
〈1P 〉3
〈14〉〈4P 〉

[3P ]3

[32] [2P ]
+

[4P ]3

[41][1P ]
〈2P 〉3
〈23〉 〈3P 〉

]
.

(27.100)



554 Gluon scattering and the spinor-helicity formalism

Using 〈1P 〉[3P ] = 〈14〉[34] and [4P ]〈2P 〉 = [41]〈21〉 this becomes

lim
t→0

tM
(
1a−2b−3c+4d+

)
= CadeCbce

[
〈41〉[34]3

[32][21]
+

[14]〈21〉3
〈23〉 〈34〉

]
. (27.101)

To simplify this further, we have to be careful about which point in complex momentum
space we are closing in on to take P 2 = 0. Since P 2 = 〈41〉[14], we can either have
〈41〉 = 0 or [14] = 0; either way one of the terms vanishes and not the other. It turns out
that both terms simplify to the same form CadeCbce 1

s , and thus we have

lim
t→0

tsFabcd(s, t, u) = CadeCbce. (27.102)

Finally, the u-channel amplitude is the same as for the t-channel with 3 ↔ 4 and
c↔ d. So,

lim
u→0

usFabcd(s, t, u) = CaceCbde. (27.103)

Unitarity implies that the 4-point function should have these single poles in the s, t
and u channels. What kind of function can possibly satisfy Eqs. (27.99), (27.102) and
(27.103) and have only single poles? First of all, since s + t + u = 0, there is only one
independent dimensionless ratio we can construct, which we can take to be s

t or t
u . Since

F has dimension −4, we can always write

Fabcd(s, t, u) =
1
st
fabcd
(s
t

)
(27.104)

for some function fabcd. For example, 1
u2 = 1

(s+t)2
= 1

st

(
2 + s

t + t
s

)−1
. It is slightly

more convenient to write

Fabcd(s, t, u) =
1
st
fabcd1

(s
t

)
+

1
tu
fabcd2

(u
t

)
. (27.105)

Next, let us write f1 and f2 as Taylor series:

Fabcd(s, t, u) =
1
st

∞∑
n=0

aabcdn

(s
t

)n
+

1
tu

∞∑
n=0

babcdn

(u
t

)n
. (27.106)

We know negative powers of st cannot appear in the first sum, since otherwise there would
be a 1

s2 or stronger singularity in the s-channel. Similarly, avoiding 1
u2 or stronger poles

excludes negative powers of ut in the second sum.
Now, the s → 0 limit, Eq. (27.99), implies aabcd0 = −CabeCcde. Similarly, the u → 0

limit, in which s → −t, implies babcd0 = −CaceCbde from Eq. (27.103). Finally, we take
the t→ 0 limit in which u→ −s and use Eq. (27.102) to get

CadeCbce = lim
t→0

tsFabcd(s, t, u) = lim
t→0

∞∑
n=0

(
aabcdn − (−1)n babcdn

)(s
t

)n
. (27.107)

For this not to be singular, we need aabcdn = (−1)n babcdn for all n > 0. Then

CadeCbce = aabcd0 − babcd0 = −CabeCcde + CaceCbde. (27.108)

In other words,

CabeCcde + CcaeCbde + CadeCbce = 0, (27.109)
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which is the Jacobi identity. Therefore we conclude:

Gauge theories based on Lie algebras are the unique interacting theories with massless
spin-1 particles.

The only thing we used in this proof is that a pole corresponds to a nearly on-shell particle,
which is a general requirement of unitarity.

The same argument also goes through for massless particles of other spins. For spin
0, there is no interesting constraint. For spin 2, it leads to Cabc being constant. For
spin 3, there is no solution. These are the same results we found using the soft limits
in Problem 9.3, using the same assumptions. Both derivations use Lorentz invariance, as
manifested through little-group scaling, and both use the existence of a pole to factorize
the amplitude.

27.6 On-shell recursion

One of the most important uses of complex momenta is to let us evaluate integrals using
residues. Consider a general tree-level n-gluon scattering amplitude. Let us shift two of the
spinors for gluons i and j as

[̂i = [i+ z[j, ĵ〉 = j〉 − zi〉, î〉 = i〉, [ĵ = [j, (27.110)

where z is some complex number. The momenta then shift to

p̂i = i〉[i+ z i〉[j, p̂j = j〉[j − z i〉[j, (27.111)

which preserves masslessness, p̂2
i = p̂2

j = 0, and overall momentum conservation,
pi + pj = p̂i + p̂j .

With this shift, we can think of the amplitude as an analytic function of z, M(z), with
the physical amplitude given byM(0). Now, ifM(z) → 0 at z →∞ (that’s a big if), then

0 =
∮

dz

2πi
1
z
M(z) = M(0) +

∑
poles z�

1
z�

Res(M(z�)) , (27.112)

which lets us solve for the physical answerM(0) in terms of the location of the poles.
Where can poles in M(z) come from? Since momentum proportional to z is added

and subtracted from two external lines, we can trace z through the diagram: it comes in
from gluon i and out through gluon j. So only propagators along this line can possibly
contribute poles in M(z). Say a propagator with a z in it has momentum P̂μ(z). The
pole is at P̂ 2 = 0, which puts this line on-shell, splitting the diagram into two on-shell
subdiagrams. Thus, each pole lets us split the diagram in two. That the amplitude is the
sum over such poles implies that it has an expression in terms of lower-order on-shell
amplitudes. Thus, we will be able to build up tree-level amplitudes recursively.

To be more specific, focus on a single pole associated with a nearly on-shell intermediate
gluon with momentum P̂ . Order the gluons 1 . . . n with gluons a . . . b to the right of the P̂
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a−1

p(z)

i
...

... ...
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...

...

a

j

b

1

n

b + 1

�Fig. 27.2 Momentum routing for BCFW recursion.

gluon. Let gluon i be on the left and gluon j be on the right, as shown in Figure 27.2. Then
the momentum of the intermediate gluon is

P̂ (z) =
b∑

k=a

k〉[k − zi〉[j. (27.113)

So, the pole at P̂ 2(z�a,b) = 0 implies

0 = (pa + · · ·+ pb)2 − z�a,b
b∑

k=a

〈ik〉 [kj] +
(z�a,b)

2

2
〈ii〉[jj], (27.114)

with the last term vanishing. Then,

z�a,b =
(pa + · · ·+ pb)2

〈ia〉[aj] + · · ·+ 〈ib〉[bj] . (27.115)

We will get one such z�a,b for each partition of the diagram by a, b. For each, we can use

− 1
z�a,b

Res
z→z�a,b

(
M1(z)

1
(pa + · · ·+ pb)2 − z

∑
〈ik〉 [kj]M2(z)

)
= M1(z�a,b)

1
(pa + · · ·+ pb)2

M2(z�a,b), (27.116)

whereM1 andM2 are the diagrams on either side of the partition.
Finally, plugging into Eq. (27.112) we find

M(1 . . . n) =
∑
a,b,h

M(1, . . . , a− 1, b+ 1, . . . , n→ P̂h)

× 1
(pa + · · ·+ pb)2

M(P̂−h → a, . . . , b), (27.117)

where the matrix elements on the right side are to be evaluated with their momentum
shifted by z = z�a,b. This is the BCFW recursion formula (Britto–Cachazo–Feng–
Witten). The matrix elements on the left and right sides have fewer than n gluons. This
formula lets us recursively build up arbitrary tree-level matrix elements algebraically. The
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helicity h of the internal now on-shell particle with momentum P̂μ must be summed over.
Note that, to be consistent with our convention that momenta are always incoming, h must
flip from the left to the right.

The BCFW formula requires the z →∞ limit to be well behaved. This is almost always
true, except for some choices of i and j. It is easiest to check if we already know the
answer. For example, recall the MHV color-ordered partial amplitude for gg → gg:

M̃(1−2−3+4+) =
〈12〉3

〈23〉〈34〉〈41〉 . (27.118)

Let us try i = 1 and j = 2. Then the only angle shift is 2〉 → 2〉 − z1〉. So, 〈12〉 → 〈12〉,
〈23〉 → 〈23〉 − z〈13〉 and 〈41〉 → 〈41〉, and at large z this amplitude vanishes as 1

z

as desired. For the amplitude not to vanish as z → ∞, 〈12〉 would have to shift, which
we could only get with i = 3 or i = 4 and j = 1 or j = 2. For i = 3 and j = 2,
we find 〈12〉 → 〈12〉 − z〈13〉, 〈23〉 → 〈23〉, 〈34〉 → 〈34〉 and 〈41〉 → 〈41〉 so the
amplitude blows up as z3. The general rule for 2 → 2 is that the helicity combinations
(i, j) = (+,+), (−,−) or (−,+) are good, while (+,−) is bad.

Intriguingly, while BCFW works for gauge theories, it does not work for scalar field
theories. For example, in a simple scalar field theory, such as φ4 theory, there are tree-level
amplitudes that are just constants. If the amplitude is momentum independent, shifting
the momentum introduces no z dependence, and therefore amplitudes will not vanish at
z = ∞. Thus, BCFW implies that gauge theories are in a way simpler than scalar theories
because they can be constructed from sewing together lower point amplitudes. Amplitudes
for the exchange of spin-2 particles vanish even faster as z → ∞ than for gauge theories
(for certain helicity choices). Thus, in a way, gravity is the simplest theory of them all.

27.6.1 Example

As an example, let us work out M̃(1−2−3+4+) using BCFW. There are still two diagrams
contributing to this partial amplitude, s- and t-channel, but now we will get the answer
from the 3-point vertex without using the Lagrangian. We take i = 1 and j = 4, which is a
(−,+) combination and so has good behavior as z →∞. For there to be a pole these have
to be on opposite sides of the internal line. So the t-channel diagram has no poles and does
not contribute. The s-channel diagram has P̂μ = −p̂μ1 − p̂

μ
2 , so

z�3,4 =
s

〈13〉[34] + 〈14〉[44]
=
〈34〉
〈31〉 . (27.119)

Thus,

M̃(1−2−3+4+) =
∑
h

M̃(1̂−2−P̂h)
1

〈12〉[21]
M̃([−P̂−h]3+4̂+) (27.120)

with [1̂ = [1 + z�3,4[4 and 4̂〉 = 4〉 − z�3,41〉. Since M̃(1̂−2−P̂−) vanishes, we must have
h = +. Then,

M̃(1−2−3+4+) = − 〈1̂2〉3

〈1̂P̂ 〉〈P̂2〉
1

〈12〉[21]
[34̂]3

[3P̂ ][P̂ 4̂]
. (27.121)
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Now,

P̂ 〉[P̂ = 3〉[3 + 4〉[4− 〈34〉
〈31〉1〉[4. (27.122)

Substituting this in for 〈1̂P̂ 〉[P̂ 4̂] and 〈2P̂ 〉[P̂3], we find, after some simplification,

M̃(1−2−3+4+) =
〈12〉4

〈12〉〈23〉〈34〉〈41〉 . (27.123)

This is identical to the MHV amplitude we computed in Section 27.3. Here we computed it
without Feynman rules, just using the 3-point MHV amplitude, which is fixed by symmetry
(little-group scaling) and sewing things together with scalar propagators, (pa+· · ·+pb)−2.

One reason BCFW is so efficient is that there is often only one diagram for each step in
the recursion. This is always true for MHV amplitudes. For example, for the 7-point MHV
amplitude, let us take i = 1 and j = 7, so that [1̂ = [1 + z[7 and 7̂〉 = 7〉 − z1〉. Then,

M̃(1−2−3+4+5+6+7+) =
〈16〉

〈17〉〈76〉M̃(1−2−3+4+5+6+)

=
〈16〉

〈17〉〈76〉
〈15〉

〈16〉〈65〉M̃(1−2−3+4+5+)

=
〈15〉

〈17〉〈76〉〈65〉
〈14〉

〈15〉〈54〉M̃(1−2−3+4+)

=
〈14〉

〈17〉〈76〉〈65〉〈54〉
〈13〉

〈14〉〈43〉M̃(1−2−3+)

=
〈12〉4

〈71〉〈12〉〈23〉〈34〉〈45〉〈56〉〈67〉 , (27.124)

with only one non-vanishing amplitude present in each step. In this way, one can
use BCFW to prove the Parke–Taylor formula for tree-level MHV amplitudes (see
Problem 27.7).

27.7 Outlook

The use of the spinor-helicity formalism and related ideas may provide an entirely new
way to calculate amplitudes in quantum field theory. We have already seen that it sim-
plifies gluon scattering at tree-level. These methods also generalize to loop computations,
although it seems that the most efficient way to perform loops, using spinors or otherwise,
is still not known.

As mentioned in the introduction, part of the reason helicity spinors work so well is
because they reduce the amount of extra baggage associated with embedding two helicities
into polarization vectors εμ. This is even more true for higher-spin fields. Indeed, massless
fields of arbitrary spin are described by two polarizations, so they can be described by one λ
and one λ̃, just as for spin 1. Of course, we cannot have interacting theories with massless
fields of spin > 2, but you can study their representations this way anyway. For spin 2
(i.e. for gravity) the polarization tensor notation is extremely tedious – one introduces 16
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elements of a tensor hμν , then has to impose tracelessness and transversality by hand.
Having two spinors makes things much easier.

Little-group scaling for spin 2 implies that the 3-point amplitude must be

M
(
1a+2b+3c−

)
∝
(

[12]4

[12] [23] [31]

)2
. (27.125)

This equation makes graviton scattering amplitudes appear to be the square of the corre-
sponding gauge-theory amplitudes. This actually seems to be true in a certain sense quite
generally, which is a very profound result that is not quite understood.

As an additional bonus, some symmetries become clear from the description of an ampli-
tude in terms of spinors instead of through a Lagrangian. The most well-known one is
called dual conformal invariance. Dual conformal invariance is a symmetry of amplitudes
in certain very symmetric theories when momenta are replaced by momenta differences
xμi = pμi − pμi+1. It is part of a larger infinite-dimensional symmetry called Yangian
invariance, which includes conformal invariance and special conformal invariance.

Due to the accumulation of surprising theoretical data (like the Parke–Taylor formula,
Eq. (27.88), or dual-conformal invariance) on the remarkable properties of scattering
amplitudes, it is reasonable to expect that the simplest way to describe fundamental physics
may not be with quantum field theory. For example, we may need to move away from the
formulation of a theory in terms of a local Lagrangian, L(x), to one where locality is
rather an emergent property. Of course, quantum field theory is likely to remain the most
efficient tool for calculating scattering amplitudes with few final-state particles at low-loop
order, much like Newtonian mechanics is still the tool of choice for computing the effect
of macroscopic forces on macroscopic objects. However, quantum field theory may well
be a certain limit of a more general theory, as classical mechanics is a limit of quantum
mechanics. Formulating such a general theory based on purely theoretical data (as opposed
to experimental data, as was the case for quantum mechanics) is a formidable but perhaps
not insurmountable challenge.

Problems

27.1 What are the explicit polarization vectors εμ± = 1
2σ

μ
αα̇ε

αα̇
± when pμ = (E, 0, 0, E)

and rμ = (1, 0, 0, 1)? What would you choose rμ to be so that εμ = (0, 1, 0, 0) when
pμ = (E, 0, 0, E)?

27.2 Verify that the color-stripped amplitudes and Parke–Taylor formula reproduce the
gg → gg scattering cross section by using Eqs. (27.84) and (27.88) and adding the
appropriate color factors.

27.3 Prove the general formula for the matrix element in terms of color-ordered partial
amplitudes, Eq. (27.84).

27.4 Compute the Compton scattering cross section, γe− → γe−, in the high-energy
limit using helicity spinors. Check that you reproduce Eq. (13.141).

27.5 Calculate |M|2 summed over spins and colors for the remaining 2 → 2 processes in
QCD. Fill out the following table:
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Process
∑ |M|2/g4

s Process
∑ |M|2/g4

s

qq̄ → q′q̄′ 4
9

t2+u2

s2 gg → gg 9
3
(3 − tu

s2 − su
t2

− st
u2 )

qq′ → qq′ qq̄ → gg

qq̄′ → qq̄′ gq → gq

qq → qq gg → qq̄

qq̄ → qq̄

where q and q′ refer to quarks of different flavor. The two entries shown come from
Eqs. (13.68) and (27.74).

27.6 Calculate the |M|2 summed over spins and colors for the process gg → ggg.
27.7 Prove the Parke–Taylor formula using BCFW recursion relations. If you do a couple

of cases (5-, 6- or 7-point amplitudes) you should see the pattern and the proof should
be straightforward.

27.8 In the proof of the Jacobi identity using factorization in Section 27.5.2, we chose a
particular pole, P 2 = 0, in the t-channel by taking [14] = 0 or 〈14〉 = 0. Since
P 2 = 〈23〉[32] = 〈14〉[41] one also must choose 〈23〉 = 0 or [23] = 0. Can you
derive any additional constraints on the form of the amplitude from considering all
four possible combinations, such as 〈23〉 = [14] = 0 or 〈23〉 = 〈14〉 = 0?
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Spontaneous symmetry breaking is one of the most important concepts in quantum field
theory. The distinction between spontaneous and explicit symmetry breaking is that with
spontaneous symmetry breaking the Lagrangian is invariant under the symmetry, but the
ground state of the theory is not. With explicit symmetry breaking, there was never an
exact symmetry to begin with. One usually associates spontaneous symmetry breaking
with phase transitions. The amazing thing about spontaneous symmetry breaking is that
one can say a tremendous amount about the broken phase with an effective field theory
whose only input is the symmetry that was broken – no detailed microscopic description is
needed. We will see a number of examples in this chapter.

You are undoubtedly already familiar with spontaneous symmetry breaking in the con-
text of ferromagnetic materials, such as iron. The magnetic moment of such a material
can be represented by a field

−→
M(x) related to the local direction the spins are pointing. At

high temperature, the entropic term in the free energy, F = E − TS, dominates the ener-
getic one and

−→
M(x) points in random directions at each point x. When a ferromagnetic

material is cooled below its Curie temperature TC (TC = 1032 K for iron), the energetic
contribution to the free energy, which is lower when neighboring atoms are aligned, starts
to dominate. As the temperature is lowered, domains with aligned spins start to grow, and
long-range order emerges. The typical size of these domains is known as the correlation
length, ξ. For T < TC it is helpful to write

−→
M(x) = �μ+ �σ(x), where �μ is the expectation

value of
−→
M in the vacuum (T = 0), and �σ are the excitations around this minimum. At

high temperature, the theory has a rotational symmetry (no direction is distinguished), but
at low temperature, this symmetry is spontaneously broken, since �μ points in some partic-
ular direction. The field, �σ(x), that encodes excitations around the vacuum encodes spin
waves whose quanta are called Goldstone bosons.

In this chapter, we will see that spontaneous symmetry breaking has different impli-
cations depending on the nature of the symmetry. The simplest symmetries are discrete,
such as a Z2 symmetry, φ(x) → −φ(x). For discrete symmetries, spontaneous symmetry
breaking looks a lot like explicit symmetry breaking. On the other hand, if the symmetry
is a continuous global symmetry, such as φ (x) → eiαφ(x) for any constant α ∈ R, the
breaking of the symmetry automatically implies the existence of long-range correlations
and associated massless particles. This is Goldstone’s theorem, and the massless particles
are the Goldstone bosons. If the symmetry is gauged, as for φ (x) → eiα(x)φ(x) with
an associated massless gauge field Aμ(x), then in the broken phase the gauge boson will
acquire a mass. This is known as the Higgs mechanism. In this chapter, we will consider
all of these cases, derive some important results about spontaneously broken theories, and
show how to consistently quantize the theories in the broken phase.

561
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28.1 Spontaneous breaking of discrete
symmetries

The simplest relativistic system in which we can see spontaneous symmetry breaking is
one with a single scalar field with Lagrangian

L =
1
2

(∂μφ)2 − 1
2
m2φ2 − λ

4!
φ4. (28.1)

Ginzburg and Landau argued that such a Lagrangian may correspond to the effective
description of some system (such as a ferromagnet) near its critical temperature with the
coefficientsm2 and λ having temperature dependence. In principle, one could calculate the
temperature dependence from some microscopic description. However, we can use simple
arguments to guess the behavior. If the symmetry breaking occurs at a critical temperature
TC , then near TC one should be able to writem2(T ) = c(T − TC) for some constant c. To
derive this, we just have to assume that the full potential from the microscopic description
can be Taylor expanded in T − TC .

If m2(T ) = c(T − TC), then for T > TC the mass term has the right sign,
m2 > 0, and the Lagrangian describes an ordinary scalar field theory. For T < TC ,
however, m2 < 0. Then the extremum at φ = 0 is a local maximum of the potential
V = −Lint = 1

2m
2φ2 + λ

4!φ
4 instead of a minimum, and is unstable. Having a nega-

tive mass-squared implies that a momentum is spacelike. Spacelike momenta can be used
to communicate faster than the speed of light, and therefore negative mass-squared par-
ticles are called tachyons (ταχυσ is the Greek prefix for “fast”). Of course, since the
microscopic theory is causal, there should be nothing non-casual about the effective theory
above or below the phase transition, but this is hard to see by expanding around φ = 0.
The problem is that for T < TC the field φ cannot be treated as a small excitation. In order
to have a perturbative quantum field theory, we have to consider excitations around the true
vacuum.

For T < TC , we replace m2 → −m2 so that m2 is still positive and the Lagrangian
becomes

L =
1
2
(∂μφ)2 +

1
2
m2φ2 − λ

4!
φ4. (28.2)

Note that this Lagrangian has a Z2 symmetry under φ → −φ. The potential is now
minimized when φ has a constant non-zero value. There are two possible minima, φ =

±
√

6m2

λ . At either minimum, the Z2 symmetry is spontaneously broken. If we expand φ

around one of the minima, say φ =
√

6m2

λ + φ̃, then the Lagrangian becomes

L =
1
2
(∂μφ̃)2 +

3m4

2λ
−m2φ̃2 −

√
λ

6
mφ̃3 − λ

4!
φ̃4. (28.3)

The excitation φ̃ has a positive mass-squared, so this theory is now tachyon-free.
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When a constant value φ = v satisfies the classical equations of motion L′ [v] = 0, the
classical expectation is that the field should be at this value over all space. If we take the
classical limit of the quantum theory, by taking � → 0, we find

〈Ω |φ|Ω〉 = lim
�→0

∫
Dφe i�

∫
d4xL[φ]φ = v. (28.4)

Here, � → 0 has forced the path integral to be dominated by the stationary point of the
action, letting us ignore fluctuations and evaluate the integral exactly. Thus, we can identify
this classical expectation with a quantum vacuum expectation value v = 〈Ω |φ|Ω〉, eval-
uated at tree-level. We will discuss how quantum corrections make 〈Ω|φ|Ω〉 differ from the
stationary point of the action in Chapter 34.

Thinking in terms of vacuum expectation values lets us understand what happens to a
symmetry when it is spontaneously broken. The original Lagrangian was invariant under

theZ2 symmetry φ→ −φ. Since 〈Ω |φ|Ω〉 = ±
√

6m2

λ are both minima, there must be two

different vacua: |Ω+〉with 〈Ω+|φ|Ω+〉 =
√

6m2

λ and |Ω−〉with 〈Ω− |φ|Ω−〉 = −
√

6m2

λ .

Since the Z2 symmetry takes φ → −φ, it must take |Ω+〉 ↔ |Ω−〉 as well. The two
possible vacua for the theory are equivalent, but one has to be chosen. This is just like
having to choose a direction for the magnetization of a ferromagnet in the example from
the introduction.

The new Lagrangian is not invariant under φ̃→ −φ̃, so it seems the Z2 symmetry might
have disappeared altogether. Actually, the Lagrangian is still invariant under the original
φ → −φ symmetry, because it acts on φ̃ as φ̃ → −φ̃ − 2v. So the symmetry is still
there, it is just realized in a funny way. This is a general feature of spontaneously broken
symmetries: the vacuum breaks them, but they are not actually broken in the Lagrangian,
just hidden, and often realized only in a nonlinear way.

28.2 Spontaneous breaking of continuous
global symmetries

In Section 3.3, we derived that the existence of a continuous global symmetry implies a
Noether current Jμ(x) which is conserved, ∂μJμ = 0, on the equations of motion. This is
true both in the classical and in the quantum theory. In the quantum theory, the conserved
charge,

Q =
∫
d3xJ0(x) =

∫
d3x
∑
m

∂L
∂φ̇m

δφm
δα

, (28.5)

is an operator, since the fields are operators. Recalling the canonically conjugate fields
πm = δL

δφ̇m
and the canonical commutation relations[φn(�x), πm(�y)] = iδ3(�x− �y)δnm, we

then find that

[Q,φn(�y)] =
∑
m

∫
d3x[πm(�x), φn(�y)]

δφm(�x)
δα

= −i δφn(�y)
δα

, (28.6)
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so that Q generates the symmetry transformation. Also, since the charge is conserved, it
commutes with the Hamiltonian: [H,Q] = i∂tQ = 0.

The operator Q corresponds to a conserved charge no matter what vacuum we expand
around. Spontaneous symmetry breaking occurs, by definition, if the symmetric vacuum,
with Q|Ω〉sym = 0, is unstable and the true (stable) vacuum is charged, Q|Ω〉 �= 0. If the
vacuum has energy E0, that is H|Ω〉 = E0|Ω〉, then

HQ|Ω〉 = [H,Q] |Ω〉+QH |Ω〉 = E0Q |Ω〉 (28.7)

and therefore the state Q |Ω〉 is degenerate with the ground state.
Now we can always construct states of 3-momentum �p from the vacuum via

|π(�p)〉 =
−2i
F

∫
d3x ei�p·�xJ0(x)|Ω〉, (28.8)

which have energy E(�p) + E0. Here, F is a constant with dimension of mass and the −2i
factor has been added for later convenience. Since |π(�0)〉 = −2i

F Q|Ω〉 has energy E0, we
can conclude that E(�p) → 0 as �p → 0 for these states. Therefore, the states |π〉 must
satisfy a massless dispersion relation. This is Goldstone’s theorem:

Box 28.1 Goldstone’s theorem

Spontaneous breaking of continuous global symmetries implies the exis-
tence of massless particles.

The states |π(�p)〉 are known as Goldstone bosons. Goldstone’s theorem is very general.
Sometimes it is useful to construct the Goldstone bosons from the vacuum using a Noether
current. Often it is easier just to locate the Goldstone bosons in the broken phase of the
theory through some other means.

Multiplying Eq. (28.8) by 〈π(�q)| and integrating over
∫

d3�p
(2π)3

ei�p·�y gives

〈π(�q)|J0(y)|Ω〉 = iωpFe
i�q·�y, (28.9)

where the normalization of one-particle states 〈π(�q)|π(�p)〉 = 2ωp(2π)3δ3(�p−�k) has been
used. The Lorentz-invariant version of this equation, 〈π(�q)|Jμ(y)|Ω〉 = iqμFe

i�q·�y , is a
useful way to identify a particle in the spectrum as the Goldstone boson, as we will see
below.

28.2.1 Linear sigma model

The simplest relativistic theory with spontaneous symmetry breaking of a continuous
global symmetry has a complex scalar field with Lagrangian

L = (∂μφ�)(∂μφ) +m2φφ� − λ

4
φ2φ�2. (28.10)

Note that the terms here are canonically normalized for a complex field. This theory has a
global U(1) symmetry φ(x) → eiαφ(x) for constant α. For m2 > 0 the theory is unstable
around φ = 0. The potential V (φ) = −m2|φ|2 + λ

4 |φ|
4 is minimized when |φ|2 = 2m2

λ .
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So now there are an infinite number of equivalent vacua |Ωθ〉 with 〈Ωθ|φ|Ωθ〉 =
√

2m2

λ eiθ

for any constant θ.
All the vacua are equivalent (by symmetry) so we can pick any convenient parametriza-

tion. It is conventional to pick |Ω〉 so that 〈Ω |φ|Ω〉 is real. Then 〈Ω |φ|Ω〉 = v =
√

2m2

λ .

Instead of writing φ(x) = v+ φ̃(x), with φ̃(x) a complex field, it is often more convenient
to expand around v by parametrizing φ(x) in terms of two real fields σ(x) and π(x) as

φ(x) =

(√
2m2

λ
+

1√
2
σ(x)

)
ei
π(x)
Fπ , (28.11)

with Fπ a real number. Then V (φ) depends only on σ, and not on π. Expanding the
Lagrangian around the minimum we find

L =
1
2
(∂μσ)2 +

(√
2m2

λ
+

1√
2
σ(x)

)2
1
F 2
π

(∂μπ)2

−
(
−m

4

λ
+m2σ2 +

1
2

√
λmσ3 +

1
16
λσ4

)
. (28.12)

Choosing Fπ = 2m√
λ

=
√

2v then makes the π kinetic term canonically normalized. This
theory is called a linear sigma model. The π field is massless and is the Goldstone boson.
π is often called a pion because, as we will see, it is closely related to the real-world
hadrons π± and π0.

The Lagrangian in Eq. (28.12) describes a massless particle π, as well as a massive
particle σ. Massless Goldstone bosons such as π will appear in any theory with spontaneous
symmetry breaking (by Goldstone’s theorem), with one massless particle for each broken
symmetry. Note that having a massless particle has nothing to do with how we parametrize
φ; if we wrote φ(x) = 2m√

λ
+ φ̃(x) there would be a mass matrix for the two complex

components of φ̃ which has a zero eigenvalue. Diagonalizing this matrix would lead back
to our sigma model (see Problem 28.1). In the linear sigma model, the σ field has mass
mσ =

√
2m. The σ field can be visualized as radial excitations of the potential shown in

Figure 28.1, which is commonly called a Mexican hat potential.
Goldstone bosons are naturally associated with shift symmetries. Recall that the broken

symmetry was φ(x) → eiθφ(x). The vacuum 〈φ〉 =
√

2m2

λ certainly breaks the symmetry.
However, the symmetry is still realized as

π(x) → π(x) + Fπθ (28.13)

with σ invariant. This is a symmetry of the sigma-model Lagrangian, Eq. (28.12). That a
phase rotation of φ amounts to a shift in π can be seen transparently in Eq. (28.11). The
symmetry can be used to strongly constrain the sigma model, even if the full theory that
is spontaneously broken is not known. In particular, the shift symmetry forbids a mass
term for π(x). In fact, there is a close connection between Goldstone’s theorem, which
requires a massless mode, and shift symmetries of the Goldstone bosons, corresponding to
movement around the flat direction of the potential, as in Figure 28.1.
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m2 = 0

m2 > 0

m2 < 0

�Fig. 28.1 Mexican hat potential. The masses squared of particles are given by the second
derivatives of the potential. Expanding around the origin, there are two tachyonic (negative
mass-squared) modes (long-dashed line). Expanding around a minimum, there is one
mode with positive mass-squared (small-dashed line), corresponding to excitations along
the radial direction, and one massless mode (solid line), corresponding to excitations along
the symmetry direction where the potential is flat.

To distinguish the Goldstone bosons, whose interactions are determined by symmetry,
from the radial modes, such as σ, which are model dependent and invariant under the
symmetry, we can take the limit m → ∞ and λ → ∞ keeping Fπ = 2m√

λ
fixed. Then the

Lagrangian reduces to

L =
1
2
(∂μπ)2 , (28.14)

which is a theory of a free pion. This decoupling limit is much more interesting in theories
where the pions do not become free particles, like the ones we are about to discuss. The
Lagrangian (28.14) is an example of a nonlinear sigma model, which is the linear sigma
model in which the σ field has been decoupled.

To see that π is the Goldstone boson in Eq. (28.8), we calculate the Noether current in
the decoupling limit from Eq. (28.14) using the symmetry transformation in Eq. (28.13).
We find

Jμ =
∂L
∂μπ

δπ

δθ
= Fπ∂μπ. (28.15)

Thus, defining |π〉 as the state created and annihilated by the π field, we have

〈Ω|Jμ(x) |π(p)〉 = ipμFπe
−ipx. (28.16)

Comparing to Eq. (28.9) we see |π〉 is the Goldstone boson.

28.2.2 SU(2) × SU(2)

Now let us study a more interesting case. The QCD Lagrangian including only the up and
down quarks is

L = −1
4
(
F aμν
)2 + iū /Du+ id̄ /Dd−muūu−mdd̄d. (28.17)
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If the quark masses were equal, this theory would have a global SU(2) symmetry that
rotates the up and down quarks into each other. In reality, the masses of the up and down
quarks are close but not equal; more importantly, they are very small compared to ΛQCD

(which is the relevant scale as we will see). So let us just set the masses to zero for now.
With mu = md = 0, the theory actually has two independent SU(2) symmetries, since the
left-handed quarks and the right-handed quarks are completely decoupled. Indeed, writing
the right- and left-handed spinors as ψR/Lq = 1

2 (1± γ5)ψq, the Lagrangian is

L = −1
4
(
F aμν
)2 + iūL /DuL + iūR /DuR + id̄L /DdL + id̄R /DdR. (28.18)

This is invariant under separate rotations:(
uL

dL

)
→ gL

(
uL

dL

)
,

(
uR

dR

)
→ gR

(
uR

dR

)
, (28.19)

where gL ∈ SU(2)L and gR ∈ SU(2)R. Equivalently, the symmetry can be written as

q → ei(θaτ
a+γ5βaτ

a)q where q =
(
u

d

)
is a flavor doublet of the Dirac spinors u and

d. The set of transformations parametrized by θa with βa = 0 is the diagonal subgroup,
called isospin. The set of transformations parametrized by βa with θa = 0 are the axial
rotations.

The SU(2)L×SU(2)R symmetry of QCD is called a chiral symmetry, since it acts dif-
ferently on left- and right-handed fields. Actually, the Lagrangian in Eq. (28.18) is invariant
under U(2)×U(2) = SU(2)L×SU(2)R×U(1)V ×U(1)A, with the two U(1) symmetries
called vector and axial. The Noether currents associated with these symmetries are (up to
a sign)

Jaμ = q̄τaγμq, J5a
μ = q̄τaγμγ5q, JVμ = q̄γμq, JAμ = q̄γμγ5q. (28.20)

We will see in Chapter 34 that the axial U(1), under which q → eiθγ5q, is not an exact sym-
metry of QCD with massless quarks since it is broken by quantum effects called anomalies.
The vector U(1) symmetry, under which q → eiθq, is a symmetry even when quark masses
are included, as in Eq. (28.17). It corresponds to baryon number conservation (or quark
number conservation: quarks contribute 1

3 to baryon number and antiquarks − 1
3 ). In the

full Standard Model, including weak interactions, baryon number is also anomalous. How-
ever, the difference between baryon number and lepton number, B−L, is non-anomalous.
Because of these anomalies, we will postpone the discussion of the U(1) symmetries until
Chapter 34 and concentrate on the spontaneous breaking of SU(2)× SU(2).

Spontaneous symmetry breaking of SU(2) × SU(2) happened 14 billion years ago,
when the temperature of the universe cooled below TC ∼ ΛQCD. Below that scale, the
thermal energy of quarks dropped below their binding energy and, instead of a big quark–
gluon plasma, hadrons appeared. Although it has not been proven from QCD itself, the
ground state of QCD apparently has a non-zero expectation value for the quark bilinears
ūu and d̄d:

〈ūu〉 = 〈d̄d〉 = V 3. (28.21)

We will confirm this by checking that it implies a spectrum of hadrons consistent with
nature. One may have imagined that 〈ūu〉 and 〈d̄d〉 could have had different expectation
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values. In that case, the SU(2)×SU(2) symmetry would be badly broken. Instead, it seems
that to a good approximation Eq. (28.21) holds with V ∼ ΛQCD ∼ 300MeV. The great
thing about spontaneous symmetry breaking is that we do not have to understand exactly
how the symmetry-breaking quark condensates form in QCD to be able to see the conse-
quences. (This is particularly convenient because we do not yet have a clear understanding
of how and when spontaneous symmetry breaking occurs in general Yang–Mills theories.)

With 〈ūu〉 = 〈d̄d〉 ≡ V 3, the symmetry breaks as SU(2) × SU(2) → SU(2)isospin. The
unbroken symmetry is the diagonal subgroup, which rotates left- and right-handed fields
the same way. This is the same isospin as in nuclear physics, which relates the neutron to
the proton. Indeed, the neutron is a udd bound state and the proton a uud bound state. Thus

the neutron and proton differ by d ↔ u, which is why Ψ =
(
p

n

)
form an isospin doublet

like

(
u

d

)
. The electric charge of course distinguishes the neutron from the proton, but this

is a small effect, and negligible from the point of much of nuclear physics. If we ignore
electric charge and quark masses, the proton and neutron are related by an exact unbroken
isospin symmetry.

At this point, we will forget all about QCD and just use the symmetry-breaking pattern
SU(2)×SU(2) → SU(2)isospin to write down an effective description in terms of composite
fields. The low-energy theory that we construct will be one of pions. While the pions are, in
reality, composite states of quarks and gluons, they are also Goldstone bosons. As we will
see, the symmetry-breaking pattern alone will to tell us a tremendous amount about how
pions must interact with each other. Their interactions are independent of whether they are
composed of QCD fields or of little green aliens.

As with the linear sigma model discussed in Section 28.2.1 above, we will model spon-
taneous symmetry breaking with a set of scalar fields Σij(x) transforming linearly under
SU(2)× SU(2):

Σ → gLΣg†R, Σ† → gRΣ†g†L. (28.22)

An effective Lagrangian for this field is the linear sigma model:

L = |∂μΣ|2 +m2 |Σ|2 − λ

4
|Σ|4 , (28.23)

where |Σ|2 = ΣijΣ
†
ji. This is invariant under SU(2) × SU(2) through Eq. (28.22). Note

that only ordinary (not covariant) derivatives are required since we are interested in the
global (not local) symmetries. Also, the potential has been chosen so that spontaneous

symmetry breaking occurs. The potential is minimized for 〈Σij〉 = v√
2

(
1 0
0 1

)
, where

v = 2m√
λ

, which breaks the SU(2) × SU(2) symmetry down to the diagonal SU(2). One
expects v ∼ V ∼ ΛQCD, but there can be constant factors between these quantities. To be
clear, v = 2m√

λ
depends on parameters in the sigma model, V = 〈ūu〉1/3 is the expectation

value of a quark operator in the QCD vacuum, and ΛQCD is the location of the Landau
pole in the running αs.

As in Section 28.2.1 we then write Σ in terms of a modulus field σ(x) and angular
fields π(x):
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Σ(x) =
v + σ(x)√

2
exp
(

2i
πa(x)τa

Fπ

)
, (28.24)

with Fπ = 2m√
λ

= v chosen so that πa(x) have canonically normalized kinetic terms, as you
can check by expanding Eq. (28.23). If we write gL = exp(iθaLτ

a) and gR = exp(iθaRτ
a)

then, for infinitesimal transformations, σ is invariant and (see Problem 28.2)

πa → πa +
Fπ
2

(θaL − θaR)− 1
2
fabc
(
θbL + θbR

)
πc + · · · , (28.25)

where fabc = εabc are the structure constants for the unbroken subgroup SU(2)isospin. We
see that for the unbroken transformations (isospin, θaL = θaR) the πa fields transform in the
adjoint representation. This is consistent with nature, where the physical pion fields, π0, π+

and π−, transform in the adjoint representation of isospin. Under the axial transformations,
with θaL = −θaR, the πa fields transform nonlinearly – they shift at leading order. Higher-
order terms in the transformation can be determined straightforwardly (see Problem 28.2).

This shift symmetry in Eq. (28.25) forbids a mass term for πa. Indeed, since the field σ
does not transform under any of the symmetries, it is irrelevant to anything we can predict
using symmetries. So we will decouple σ by taking m → ∞ and λ → ∞, holding Fπ
fixed. Then we have

√
2
v

Σ(x) → U(x) ≡ exp
[
2i
πaτa

Fπ

]
= exp
[
i

Fπ

(
π0

√
2π−

√
2π+ −π0

)]
, (28.26)

where π0 = π3 and π± = 1√
2

(
π1 ± iπ2

)
. This matrix U depends only on the three πa

degrees of freedom (i.e. not on σ) and has UU† = 1. Like Σ it transforms under SU(2)×
SU(2) as U → gLUg

†
R. All we need to see the consequences of symmetry breaking is the

nonlinear sigma model constructed only out of U .
With nothing but symmetry to guide us, we should write down the most general

Lagrangian involving U invariant under SU(2)× SU(2). It is

Lχ =
F 2
π

4
tr
[
(DμU)(DμU)†

]
+ L1tr

[
(DμU)(DμU)†

]2
+ L2tr

[
(DμU)(DνU)†

]
tr
[
(DνU)†(DμU)

]
+ L3tr

[
(DμU)(DμU)†(DνU)(DνU)†

]
+ · · · . (28.27)

This is the Chiral Lagrangian. The covariant derivatives here contain only electroweak
gauge fields, not gluons. The electroweak gauge boson kinetic terms are inL but not written
for simplicity. Note that, since U† = U−1, terms such as UU† are trivial. Thus, every term
in the Chiral Lagrangian must have a derivative in it. In particular, a mass term for the
pions is forbidden, which is consistent with the pions being massless Goldstone bosons.

The F 2
π

4 normalization of the first term is added to canonically normalize the kinetic
terms for the pions. Expanding out the leading term gives

F 2
π

4
tr
[
(DμU)(DμU)†

]
=

1
2
(
∂μπ

0
)(
∂μπ

0
)

+ (Dμπ
+)(Dμπ

−)†

+
1
F 2
π

[
−1

3
π0π0Dμπ

+Dμπ
− + · · ·

]
+

1
F 4
π

[
1
18

(π−π+)2Dμπ
0Dμπ

0 + · · ·
]

+ · · · .

(28.28)
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Thus, we find kinetic terms and a set of interactions suppressed by powers of 1
F 2
π

. Although
there are an infinite number of interactions in this expansion, they are tightly constrained:
only certain terms appear and each coefficient is completely fixed from the expansion of
F 2
π

4 tr
[
(DμU)(DμU)†

]
. In other words, pion interactions have a very special form. Before

the advent of effective Lagrangians, like the Chiral Lagrangian, people understood the
constraints among the interactions of pions using symmetries and on-shell states directly,
through a technique called current algebra. Since effective actions provide a more effi-
cient way to encode the symmetries of a theory, current algebra is now mostly of historical
interest.

Note that the interactions coming from the leading term in the Chiral Lagrangian all
have two derivatives, while the interactions from the subleading Li terms have four or
more derivatives. Thus, at low energy, these terms will give contributions suppressed by
powers of E

Fπ
compared to the predictions of the leading term. Thus, even though the Chi-

ral Lagrangian is a non-renormalizable theory, it still makes predictions. In fact, it makes
predictions at loop level as well through calculable non-analytic momentum dependence
(sometimes called chiral logarithms). Once the leading term is renormalized, finite ana-
lytic predictions from the Chiral Lagrangian can also be made. Indeed, there is a whole
industry of people computing various low-energy observables using the Chiral Lagrangian
and its generalizations.

By a lucky coincidence, the chiral symmetry that is spontaneously broken by QCD is
connected to weak interactions in the Standard Model. The weak interactions are the sub-
ject of Chapter 29, and here we only summarize some relevant results. In the Standard
Model, SU(2)L is gauged, with associated gauge bosons W a

μ . The interactions of the W
bosons have the form

Lweak =
g

2
W a
μ

(
Jaμ − J5a

m

)
=
g

2
W a
μ

[
VijQ̄iγ

μ(1− γ5) τaQj + L̄iγ
μτa(1− γ5)Li

]
,

(28.29)

where Qi, with i = 1, 2, 3, are SU(2) doublets of quarks and the Li, also with i = 1, 2, 3,
are SU(2) doublets with leptons. For example, Q1 = (u, d) and L1 = (e, νe). Vij is the
CKM matrix which we set to δij for simplicity. Now, according to Goldstone’s theorem,
the pions are created from the vacuum by the chiral SU(2) current J5a

μ , as in Eq. (28.16):

〈Ω|J5a
μ (x)
∣∣πb(p)〉 = ipμFπe

−ipxδab. (28.30)

This would be true even if SU(2)L were not gauged. This equation allows pions to turn
into axial currents. The matrix element in Eq. (28.30) indicates that J5a

μ = Fπ∂μπ
a.

Indeed, this is nothing but the Noether current for isospin in the Chiral Lagrangian using
the transformation properties in Eq. (28.25).

The connection between the pions and the axial current in Eq. (28.30) lets us measure
Fπ from weak decays of charged pions. This is easiest to do in the 4-Fermi theory, which
integrates out the W a

μ bosons, giving a current–current interaction. Summarizing results
that we will derive in Chapter 29, the 4-Fermi interaction is
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L4F =
GF√

2
JLμ J

L
μ , (28.31)

where

JLμ = ψ̄uγ
μ
(
1− γ5
)
ψd + ψ̄νμγ

μγ5ψμ + · · · (28.32)

and ψu, ψd, ψμ and ψνμ refer to the up quark, down quark, muon, and muon neutrino
fields, respectively, and the · · · represent the other fermion species. L4F comprises a set
of 4-Fermi interactions involving four quarks, four leptons or two quarks and two leptons.
GF can be measured from the leptonic interactions, such as the decay rate μ− → e−ν̄eνμ,
which gives GF = 1.16 × 10−5 GeV−2 (see Chapters 29 and 31). Then, Eq. (28.30)
allows the pion to turn into an axial current, which turns into a leptonic current. The matrix
element for π+ → μ+νe is then

M
(
π+ → μ+νe

)
=
GF√

2
Fπp

μψ̄νμγ
μ
(
1− γ5
)
ψμ. (28.33)

Squaring this matrix element and integrating over the leptonic phase space, we find the rate
for π+ → μ+νμ is

Γ
(
π+ → μ+νμ

)
=
G2
FF

2
π

4π
mπm

2
μ

(
1−

m2
μ

m2
π

)2
. (28.34)

Using the measured pion lifetime τ = Γ−1 = 2.6 × 10−8 s, mπ = 139.5 MeV and
mμ = 106MeV, we find the pion decay constant is Fπ = 92MeV.1 With Fπ fit to data,
there are no longer any free parameters in the leading-order Chiral Lagrangian, Eq. (28.28).
We can therefore proceed to make predictions for amplitudes, such as σ

(
π0π0 → π+π−),

using the interactions in Eq. (28.28) that can be compared to data.
One can also relate the pion mass to quark masses, using either current algebra or effec-

tive Lagrangians. Quark masses explicitly break chiral symmetry, which in turn implies
that pions are not massless Goldstone bosons, but massive pseudo-Goldstone bosons. To
see how the pions are affected by the quark masses, we write the quark-mass term as

Lm = q̄Mq, M =
(
mu 0
0 md

)
. (28.35)

This term breaks chiral symmetry. However, we will now employ a trick to restore chiral
symmetry. Let us pretend for a moment that the masses are not constants but fields (which
happen to be constant). Then we can assign transformation properties to M . If we decide
that under SU(2)×SU(2) the mass matrix transforms asM → gLMg†R, then the mass term
would be invariant. Constants treated as fields in this way are sometimes called spurions,
since they are spurious (fictional) fields. Now, the low-energy theory of pions does not
have quarks in it, but it can depend on the mass matrix. Therefore we can use spurious
transformation properties to constrain the way the mass matrix can appear in the Chiral

1 Another common definition for Fπ you may find in the literature is 〈Ω
∣∣J5

μ(x)
∣∣ π− (p)〉 = ifπpμe−ipx

instead of Eq. (28.30). Since π− = 1√
2

(
π1 − iπ2

)
, this leads to fπ =

√
2Fπ = 130 MeV. To avoid a

proliferation of factors of
√

2 we stick with Fπ = 92 GeV. Occasionally, fπ = 92 GeV is used [Peskin and
Schroeder, 1995], but this convention is uncommon.
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Lagrangian. Indeed, the leading SU(2)×SU(2) invariant term we can add to our nonlinear
sigma model is

LM =
V 3

2
tr
(
MU +M†U†)

= V 3(mu +md)−
V 3

2F 2
π

(mu +md)
(
π2

0 + π2
1 + π2

2

)
+O
(
π3
)
. (28.36)

The prefactor V 3

2 is fixed so that the vacuum energy contributed by LM matches the vac-
uum energy in Lm. Indeed, when 〈ūu〉 = 〈d̄d〉 = V 3, we find Lm = V 3(mu +md),
which matches the expansion in Eq. (28.36). We can now read off the pion masses:

m2
π =

V 3

F 2
π

(mu +md) . (28.37)

This is known as the Gell-Mann–Oakes–Renner relation. It says that the square of
the pion mass scales linearly with the quark masses. For example, with V ∼ ΛQCD ∼
250MeV, Fπ = 130MeV, and mπ = 140MeV, this relation gives mu +md ∼ 11MeV.
The Gell-Mann–Oakes–Renner relation has been confirmed with lattice QCD (see Figure
25.3). Keep in mind that these quark masses correspond to whatever renormalized masses
appear in Eq. (28.35), which are not necessarily pole masses or MS masses.

Thus, using only the pattern of symmetry breaking, we were able to extract the pion
decay constant Fπ , relate pion masses to quark masses, and calculate quantum effects such
as pion scattering. The symmetries also constrain the pion interactions with baryons, such
as the proton and neutron. Indeed, it was the modeling of the strong interactions among
protons and neutrons through Yukawa forces mediated by pion exchange that elucidated
the symmetry principles we have so concisely encoded in the Chiral Lagrangian.

By the way, note that if we contract Eq. (28.30) with pμ we find, if the current J5a
μ is con-

served, that p2F 2
π = m2

πF
2
π = 0. This connects the chiral symmetry, with its corresponding

conserved current, to masslessness of the Goldstone bosons. If the current is not exactly
conserved, as in the real world because of quark masses, then ∂μJaμ = mq q̄γ

5τaq �= 0, in
which case the pion picks up a mass proportional to mq.

28.2.3 SU(3) × SU(3)

It is only a coincidence (as far as we know) that SU(2)weak and SU(2)L relate the same
two quarks. To the extent that three quarks can be treated as light, the discussion in Sec-
tion 28.2.2 can be extended to SU(3)L × SU(3)R in a straightforward way. The third
lightest quark is the strange quark, whose mass, ms ∼ 100GeV, is not particularly
small with respect to ΛQCD ∼ 300MeV. Nevertheless, the spontaneous breaking of
SU(3)× SU(3) → SU(3) provides an excellent description of additional strange mesons.
The relatively large strange quark masses can be added as a perturbation to this picture, as
the up and down quark masses were, and the resulting effective theory seems to work very
well phenomenologically.

When SU(3)L × SU(3)R → SU(3)V through 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = V 3, the 16
symmetries are reduced to 8, leaving 16 − 8 = 8 pseudo-Goldstone bosons. These are
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three pions, four kaons and an eta particle, which are embedded into the nonlinear sigma
model field U(x) as

U(x) ≡ exp
[
2i
πaT a

Fπ

]
= exp

⎡⎢⎢⎣
√

2i
Fπ

⎛⎜⎜⎝
1√
2
π0 + 1√

6
η0 π+ K+

π− − 1√
2
π0 + 1√

6
η0 K0

K̄− K̄0 −
√

2
3η

0

⎞⎟⎟⎠
⎤⎥⎥⎦ .

(28.38)

Chiral symmetry relates many properties of these mesons. For details see [Georgi, 1984;
Donoghue et al., 1992].

Besides mesons, chiral symmetry breaking also describes baryons, which are bound
states of three quarks. Three colored quarks can be combined into a color singlet with
the totally antisymmetric tensor as B = εijkq

iqjqk. We need a little-group theory to see
how they transform under the unbroken SU(3). The product of three triplets gives (see e.g.
[Georgi, 1982])

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = (6⊗ 3)⊕ (3̄⊗ 3) = 10⊕ 8⊕ 8⊕ 1. (28.39)

So there is a decuplet (the 10), two octets (called just 8 since the 8 is the adjoint
representation which is real) and a singlet. The proton and neutron sit in one octet:

B8 =

⎛⎜⎝
1√
2
Σ0 + 1√

6
Λ Σ+ P+

Σ− − 1√
2
Σ0 + 1√

6
Λ N

Ξ− Ξ0 − 2√
6
Λ

⎞⎟⎠ . (28.40)

The meson and baryon octets in Eqs. (28.38) and (28.40) were given the enlightened
moniker of the eightfold way by Murray Gell-Mann.

Another way to represent the octet or the decuplet is by their quantum numbers. Such
diagrams are shown in Figure 28.2. Gell-Mann worked out these representations in 1962,
when everything but the Ω− had been seen. He was therefore able to predict that the Ω−

should exist, and, using symmetry, its mass and quantum numbers. The Ω− was discov-
ered in 1964 with exactly the properties Gell-Mann predicted. The Ω− was historically
important as a true theoretical prediction and helped people believe in quarks.

28.2.4 Discussion

In summary, we have seen that spontaneous symmetry breaking of chiral SU(2) × SU(2)
leads to a triplet of pions (or the meson octet of pseudo-Goldstone bosons for the three-
flavor case). The pions can be studied through a nonlinear sigma model with a field
U(x)= exp(2iπaτa/Fπ). The Lagrangian written in terms of U(x) must be invariant
under the full SU(2) × SU(2) symmetry. This strongly constrains the terms that can
be written down. In fact, the transformation properties U(x) → gLUg

†
R, under which

the pions themselves transform nonlinearly, determine almost everything about pion
couplings. This approach to determining pion couplings was pioneered by Callan, Cole-
man, Wess and Zumino (CCWZ) in 1969 [Callan et al., 1969; Coleman et al., 1969].
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�Fig. 28.2 Baryon octet and decuplet organized by quantum numbers. Diagonal lines have the same
charge and horizontal lines have the same strangeness (number of strange quarks minus
strange antiquarks in the hadron).

The effective theory is extremely predictive even at the quantum level, despite being non-
renormalizable. Predictions were discussed in Chapter 22 on non-renormalizable theories.
We have actually used the CCWZ trick a couple of times already: one was in building up
the Lagrangians for massless spin-1 and spin-2 particles, in Section 8.7, and the other was
in the Faddeev–Popov procedure, in Sections 14.5 and 25.4.

More generally, consider a continuous global symmetry G spontaneously broken down
to a subgroup H . The vacuum is then invariant under H , but not under the remaining
elements of G, which are denoted as a coset and written as G/H . The coset is not a
subgroup of G (for example, it does not contain the identity element). We have seen that
the Goldstone bosons transform in a linear representation of the unbroken subgroup H
(e.g. the pions are a triplet of isospin) but nonlinearly under G/H .

An important point is that the nonlinear transformations, under which the Goldstone
bosons shift, are transformations of fields, such as πa(x), but not of states appearing as
excitations around the same vacuum in a Hilbert space. In that sense, nonlinear transfor-
mations are like gauge transformations, which are a concept derived from the Lagrangian
description. In contrast, linearly realized global symmetries, as for the unbroken group H ,
act on states. These are symmetries with associated conserved charges which can be mea-
sured. There is no conserved charged for a broken symmetry, despite the fact that it can be
restored in a Lagrangian with a nonlinear transformation. Since the vacuum is not invari-
ant, the broken symmetry relates different ground states, and relates excitations around one
ground state to excitations around another.

Finally, consider the case when the phase transition under which a symmetry group G
is broken is smooth (i.e. second order). Above the symmetry-breaking scale there should
be states transforming linearly under the full group. Thus, at the transition scale, since
the transition is smooth, it must be possible to describe the system either with Goldstone
bosons or with a linear multiplet. Thus, it must be possible to embed the Goldstone bosons
into a linear multiplet. Moreover, the whole linear multiplet must be massless at the transi-
tion point since the Goldstone bosons are massless and the transition is smooth. The linear
multiplet into which the Goldstone bosons are embedded is unique and therefore provides



28.3 The Higgs mechanism 575

a precise definition of the order parameter. A more detailed discussion of this point is given
in [Weinberg, 1996, Section 19.6].

28.3 The Higgs mechanism

We have seen that a spontaneously broken continuous global symmetry generates Gold-
stone bosons transforming as elements of the cosetG/H , whereG is the original symmetry
group andH is the symmetry group of the vacuum. Now we consider what happens if there
is a gauge boson associated with the broken symmetry. As we will see, this causes the
Goldstone boson to disappear from the spectrum and the gauge boson to become massive
through a procedure known as the Higgs mechanism.

The Higgs mechanism is not quite fairly named, since the same idea was discovered
and understood by many people in different contexts, including Anderson (who proposed
it first in a non-relativistic context in 1962), as well as Brout, Englert, Ginzburg, Guralnik,
Hagan, Kibble, Landau and, of course, Higgs.

We will first discuss one physical example, type-II superconductors, which can be under-
stood through an Abelian Higgs model. Then we will discuss non-Abelian theories, leading
up to the Glashow–Weinberg–Salam model of electroweak symmetry, which is the subject
of the next chapter.

28.3.1 Abelian Higgs model

Let us return to the linear sigma model from Section 28.2.1 and gauge the U(1) symmetry.
The Lagrangian is then

L = −1
4
F 2
μν + (∂μφ� − ieAμφ�)(∂μφ+ ieAμφ) +m2|φ|2 − λ

4
|φ|4 , (28.41)

which is known as the Abelian Higgs model. As before, the wrong-sign mass term for the

scalar indicates that the ground state has |〈φ〉| = v√
2

=
√

2m2

λ . To see what happens to
them, we write, as in Eq. (28.11),

φ(x) =
(
v + σ(x)√

2

)
ei
π(x)
Fπ φ(x). (28.42)

Plugging this in, our Lagrangian becomes

L = −1
4
F 2
μν +
(
v + σ√

2

)2 [
−i∂μπ

Fπ
+

∂μσ

v + σ
− ieAμ

] [
i
∂μπ

Fπ
+

∂μσ

v + σ
+ ieAμ

]
−
(
−m

4

λ
+m2σ2 +

1
2

√
λmσ3 +

1
16
λσ4

)
. (28.43)

First, look at the terms involving only Aμ:

L = −1
4
F 2
μν +

1
2
e2v2A2

μ + · · · . (28.44)
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This suggests that the gauge boson has picked up a mass:

mA = ev. (28.45)

Similarly, the σ field has massmσ =
√

2m and π is massless. Unfortunately, because there
are bilinear terms mixing π, σ and Aμ, extracting the spectrum is not quite that simple.

We can simplify things by decoupling σ through the limit m,λ → ∞ with v fixed. We
used this decoupling limit in Section 28.2.1. Taking this limit projects out the nonlinear
sigma model, which is constrained by symmetries, from the linear sigma model, which has
additional modes such as σ, about which we cannot say much. In the decoupling limit, the
Lagrangian in Eq. (28.43) simplifies to

L = −1
4
F 2
μν +

1
2
m2
A

(
Aμ +

1
eFπ

∂μπ

)2
. (28.46)

This implies that we should set Fπ = v so that π(x) has canonical normalization. This
Lagrangian has a gauge boson mass term, a kinetic term for π, as well as an Aμ∂μπ cross
term indicating kinetic mixing between π and Aμ. The kinetic mixing makes interpreting
the physical spectrum tricky; however, it can be removed through gauge-fixing, as we will
now see.

The gauge symmetry in the Lagrangian in Eq. (28.46) is

Aμ(x) → Aμ(x) +
1
e
∂μα(x), π(x) → π(x)− Fπα(x). (28.47)

Note that the π transformation is not the transformation law for a scalar field in a linear rep-
resentation, but it is a gauge transformation nonetheless. Now we can remove the kinetic
mixing by choosing a gauge. One gauge, called unitary gauge, just uses the shift to set
π(x) = 0. In this gauge the Lagrangian becomes simply that of a massive gauge boson.
Another convenient gauge is Lorenz gauge, ∂μAμ = 0. In this gauge the cross term van-
ishes (after integration by parts), and the field π is massless with a normal kinetic term with
the correct sign. In this gauge, the constrained gauge field has two degrees of freedom and
the pion has one degree of freedom, which are the same three degrees of freedom of the
unconstrained massive gauge boson in unitary gauge. Thus, we say that, in unitary gauge,
the gauge boson eats the Goldstone boson through the Higgs mechanism.

In the case of broken local symmetries (in contrast to global symmetries), the low-energy
theory has no memory that the symmetry was spontaneously broken instead of explicitly
broken. Indeed, the Lagrangian in Eq. (28.44), with explicit symmetry breaking, can be
turned into the nonlinear sigma model in Eq. (28.46) by integrating in a pion, that is,
by performing a field redefinition Aμ → Aμ + 1

eFπ
∂μπ (we performed this exercise in

Section 8.7). This introduces a gauge invariance, Eq. (28.47). Using this gauge invariance
to set π = 0 reverts to the theory with the massive gauge boson. In fact, introducing pions in
this way turns out to be an efficient way to study the high-energy properties of a theory with
a massive gauge boson, since scalars are easier to compute with than longitudinal modes of
gauge bosons. That the pions and the longitudinal modes are equivalent is a result known
as the Goldstone boson equivalence theorem, to be discussed more in Section 29.2.
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Although in the low-energy theory massive gauge bosons will not reveal if the origin of
their masses is from spontaneous symmetry breaking or not, spontaneously broken theo-
ries are renormalizable while explicitly broken ones are not. How is this possible if they are
indistinguishable? The difference is the σ field, also known as the Higgs boson, present
in the spontaneously broken theory in Eq. (28.43), but not in the explicitly broken one,
Eq. (28.44). The Higgs boson plays a crucial role in the renormalizability of spontaneously
broken gauge theories. This is easy to see from simply looking at the Lagrangian: the lin-
ear sigma model, including the full φ, has no terms with mass dimension greater than 4. In
contrast, a nonlinear sigma model, with just the π fields, is generally non-renormalizable,
as in Eq. (28.28). The Abelian Higgs model is a special case that happens to be renormaliz-
able without the σ field because a photon has no self-interactions, or equivalently, because
the π field has no interactions in the nonlinear sigma model.

28.3.2 Superconductors

The Abelian Higgs model is realized in nature in superconductors. The Ginzburg–Landau
model of superconductivity simply postulates that the Lagrangian in Eq. (28.41) describes
superconductors near the critical temperature TC with φ the order parameter. So the
effective Lagrangian is

L = −1
4
F 2
μν + |Dμφ|2 −m2|φ|2 − 1

4
λ|φ|4, (28.48)

withm2 ∼ T−TC andDμ the covariant derivative of QED. Below the critical temperature,
the mass-squared for φ becomes negative and the U(1)QED is spontaneously broken. Thus,
the photon picks up a mass, mA. The effective low-energy Lagrangian in unitary gauge
in the decoupling limit is

L = −1
4
F 2
μν +

1
2
m2
AA

2
μ. (28.49)

One immediate consequence of this effective description is that the photon mass term
makes it energetically unfavorable to have magnetic fields. Indeed, a constant magnetic
field would come from a linearly growing Aμ, giving an enormous contribution to the
energy. Thus, magnetic fields must not be able to exist inside superconductors. The screen-
ing of magnetic fields inside superconductors is known as the Meissner effect. Another
way to connect the Meissner effect to a photon mass is to recall that a massive photon gen-
erates a Yukawa potential with length scale R = 1

mA
, known as the penetration depth.

This is the characteristic scale with which magnetic fields can persist in a superconductor.
What happens if we crank up the magnetic field B? At some point, the field energy

would be larger than the energy saved by having 〈φ〉 �= 0, so we would lose supercon-
ductivity. Of course 〈φ〉 does not have to be 0 everywhere or v everywhere; it can have
finite-size domains where superconductivity is lost. These domains will have a character-
istic size ξ = 1

m , known as the correlation length. The two length scales are set by the
two parameters in the Ginzburg–Landau model: mA and m, with mA = ev = e 2m√

λ
. In the

case that ξ < R, so-called type-II superconductors, the system is unstable to formation
of flux tubes of cross-sectional area πξ2 within the superconductor. These are known as
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Abrikosov vortices. ForR > ξ, the type-I superconductors, the vortex size is larger than
the penetration depth, and so vortices will not spontaneously form.

To connect this model to superconductivity, we note that the flux in the vortices is quan-
tized in units ofBπξ2, so the vortices cannot dissipate smoothly to zero. At the microscopic
level, these vortices have to be formed by electrons swirling around within the material.
If there were any resistance to this motion, the electrons would slow down and the flux
would change. Thus, this system must be superconducting. Thus, the Ginzburg–Landau
model gives a direct connection between the Meissner effect and superconductivity (see
e.g. [Weinberg, 1995] or [Altland and Simons, 2010] for a less hand-waving explanation).

The Ginzburg–Landau effective field theory description corresponds to a beautiful
microscopic picture due to Bardeen, Cooper and Schrieffer. There, the phase transition
is understood as due to attractive interactions between electrons through phonon exchange.
So φ is identified with pairs of electrons, φ ∼ e−e−, which are known as Cooper pairs or
BCS pairs. When 〈φ〉 �= 0, the ground state has a non-zero charge, which explains why
the symmetry of QED is broken.

28.3.3 Non-Abelian gauge theories

Next, consider the spontaneous breaking of a gauged non-Abelian symmetry. The proce-
dure is almost identical to the Abelian case, but now there will be one massive gauge boson
for each broken-symmetry generator. So the number of massive and massless bosons in
the low-energy theory will depend on the representation of the group in which the order
parameter transforms.

For example, consider an SO(3) gauge theory. We introduce three real scalars φi and
the Lagrangian

L = −1
4
(
F aμν
)2 +

1
2
(
∂μφi − igAaμτaijφj

)2 +
1
2
m2φ2

i −
λ

4!
(
φ2
i

)2
. (28.50)

These scalars transform in the fundamental representation of SO(3). The potential is mini-

mized for |〈�φ〉| = v =
√

6m2

λ . By an SO(3) transformation, we can pick the direction and

phase so that 〈φ3〉 = v and 〈φ1〉 = 〈φ2〉 = 0. That is, without loss of generality, we take

〈⎛⎝φ1

φ2

φ3

⎞⎠〉 =

⎛⎝0
0
v

⎞⎠ . (28.51)

This vacuum is invariant under H = SO(2) ⊂ G = SO(3), which rotates φ1 and φ2.
Since SO(2) has one generator and SO(3) has three, there will be two Goldstone bosons
that are eaten to form two massive gauge bosons. To see this explicitly, we can expand the
Lagrangian in unitary gauge (that is, the nonlinear sigma model with π = 0). We find

L = −1
4
(
F aμν
)2 +

g2

4
AaμA

b
μ�v

T
{
τa, τ b
}
�v, (28.52)
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where �v = 〈�φ〉 =

⎛⎝ 0
0
v

⎞⎠. We have symmetrized the τaτ b using [Aaμ, A
b
μ] = 0. Plugging in

the SO(3) generators (cf. Eq. (10.14)):

τ1 = i

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ , τ2 = i

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ , τ3 = i

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠ , (28.53)

we see by explicit calculation that �vT
{
τa, τ b
}
�v is only non-zero for a = b = 1 or a =

b = 2. Thus,

L = −1
4
(
F aμν
)2 +

1
2
m2
A

(
A1
μA

1
μ +A2

μA
2
μ

)
, (28.54)

with m2
A = g2v2, which describes two massive gauge bosons and one massless one, as

expected.
As a second example, consider an SU(5) gauge theory where the order parameter is

a set of scalar fields Φa. This is called the Georgi–Glashow model. For SU(5) there are
52 − 1 = 24 generators, which we call τaadj in the adjoint representation. These are 24 trace-
less Hermitian matrices. One can write down a potential for Φ = Φaτa (see Problem 28.5)
so that its expectation value is

〈Φ〉 = v = v

⎛⎜⎜⎜⎜⎝
2

2
2
−3
−3

⎞⎟⎟⎟⎟⎠ . (28.55)

The number of massless gauge bosons in the broken phase is determined by the subgroup
of SU(5) that is unbroken by this vacuum expectation value. Clearly, there will be an SU(3)
subgroup, rotating the top-left 3 × 3 block, and an SU(2) subgroup, rotating the bottom-
right 2 × 2 block, which are unbroken and commute with each other. More generally,
the mass term for Aaμ is given by tr([v, τa] [v, τa]), so the unbroken subgroup is gener-
ated by the generators of SU(5) that commute with v. In addition to the block-diagonal
SU(3) and SU(2) generators, there is also the generator proportional to v itself, which
obviously commutes with v. This generates a U(1) subgroup. So this vacuum expectation
value breaks SU(5) → SU(3) × SU(2) × U(1). That is, it breaks SU(5) to the Standard
Model gauge group. This suggests that the Standard Model gauge group might actually
be just the unbroken subgroup of a larger SU(5). There are two amazing things about this
type of grand unification: the gauge coupling constants are related and must unify (which
they appear to do, more-or-less), and the quantum numbers of the quarks and leptons are
explained from SU(5) representations.

A third example is the spontaneous breaking of SU(2) × U(1) → U(1), corre-
sponding to the breaking of the electroweak symmetry down to the U(1) symmetry of
electromagnetism. We will study this example in detail in Chapter 29.
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28.4 Quantization of spontaneously broken
gauge theories

To derive the Feynman rules for a spontaneously broken gauge theory, we have to work
out the propagators for the Goldstone bosons as well as the massive gauge bosons. First
of all, as we already observed, a broken gauge theory at low energy is the same whether
it is explicitly or spontaneously broken; the difference is in the extra fields, such as σ in
the linear sigma model, which are in general heavy. While fields such as σ are relevant
to the UV completion of the theory with massive vector bosons, they are also model-
dependent (that is, how many there are and their quantum numbers depend on the details of
spontaneous symmetry breaking, in contrast to the Goldstone bosons and massive vector
bosons). Since the Goldstone bosons can be completely removed in unitary gauge, we can
choose this gauge, and then the only field left is the massive vector boson we discussed
in Chapter 8. In unitary gauge, taking all the gauge boson masses equal for simplicity, the
Lagrangian is

L = −1
4
(
F aμν
)2 +

1
2
m2
A

(
Aaμ
)2
. (28.56)

The propagator for the massive vector boson is then

=
i

p2 −m2
A

(
−gμν +

pμpν

m2
A

)
. (28.57)

This is the unitary-gauge propagator for the vector field. In many circumstances, it is
preferable to be able to use other gauges, in which case the Goldstone bosons will also
be propagating degrees of freedom.

The easiest way to derive the Lagrangian for the Goldstone bosons and the vector
fields after spontaneous symmetry breaking, that is, the gauged nonlinear sigma model,
is the CCWZ method discussed in Section 28.2.4. Starting with the Lagrangian for the
massive vector bosons, the Goldstone bosons are introduced to restore the broken sym-
metry. That is, we replace Aaμτ

a → UAaμτ
aU−1 − i

g (∂μU)U−1 as in Eq. (25.66) with

U = exp
(
2i 1
Fπ
πaτa
)

. This leads to

Aaμ → Aaμ +
2
gFπ

∂μπ
a − 2

Fπ
fabcπbAcμ + · · · , (28.58)

as in Eq. (25.67). With this substitution, the massive vector Lagrangian, Eq. (28.56),
becomes

L = −1
4
(
F aμν
)2 +

1
2
m2
A

(
Aaμ +

2
gFπ

∂μπ
a + · · ·

)2
. (28.59)

As before, we must take gFπ = 2mA to give the pions canonically normalized kinetic
terms. It is easy to check that this Lagrangian is gauge invariant underAμ → Aμ+ 1

g∂μα
a+

· · · and πa → πa − 1
2Fπα

a + · · · .
As it stands, this Lagrangian is not terribly convenient, since we still have the Aaμ∂μπ

a

cross term, which mixes the two particles. The kinetic terms are also no longer invertible
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since we have introduced a redundancy (gauge invariance). To remedy these problems, we
can break the gauge invariance we just introduced by adding a gauge-fixing term. In this
case, we would like to introduce something that also removes the kinetic mixing. A natural
choice, called Rξ gauges, is2

L = −1
4
(
F aμν
)2 +

1
2
m2
A

(
Aaμ +

1
mA

∂μπ
a + · · ·

)2

− 1
2ξ
(
∂μA

a
μ − ξmAπ

a
)2
. (28.60)

The new term removes the kinetic mixing and lets us invert the kinetic terms to find
propagators. For the Abelian case, this completes the gauge-fixing. In the non-Abelian
case, we have to gauge-fix carefully using the Faddeev–Popov procedure. We take as our
gauge-fixing functional

G(Aa, πa) = ∂μA
a
μ − ξmAπ

a. (28.61)

Then (changing the notation from Section 25.4 from π to α), we have

det

(
δG
(
Aaμ −Dμα

a, πa − αa
)

δα

)
= det(∂μDμ − ξmA)

=
∫
DcDc̄ exp

(
i

∫
d4x c̄a(−∂μDμ + ξmA) ca

)
.

(28.62)

So, the gauge-fixed Lagrangian with ghosts is now

L = −1
4
(
F aμν
)2 +

1
2
m2
A

(
Aaμ +

1
mA

∂μπ
a

)2
− 1

2ξ
(
∂μA

a
μ − ξmAπ

a
)2

+ c̄a
(
−∂μDμ + ξm2

A

)
ca + · · · . (28.63)

The kinetic terms are

Lkin = −1
2
Aaμ

(
−gμν� +

(
1− 1

ξ

)
∂μ∂ν −m2

Ag
μν

)
Aaν

− 1
2
πa
(
� + ξm2

A

)
πa − c̄a

(
�− ξm2

A

)
ca. (28.64)

Now we can simply calculate the propagators by inverting the kinetic terms. We find for
the gauge fields:

ν; b μ; a =
i

p2 −m2
A

(
−gμν +

pμpν

p2 − ξm2
A

(1− ξ)
)
δab, (28.65)

for the Goldstone bosons:

b a =
i

p2 − ξm2
A

δab, (28.66)

and for the ghosts:

b a =
i

p2 − ξm2
A

δab. (28.67)

2 An alternative choice, with ΔL = − 1
2ξ

(∂μAa
μ)2 are sometimes called Fermi gauges.
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These are the covariant Rξ gauge propagators for a spontaneously broken gauge theory.
For ξ =∞ we are back in unitary gauge. Here,

iΠAaμA
b
ν
(p) =

i
(
−gμν + pμpν

m2
A

)
p2 −m2

A

δab, Πππ(p) = 0, Πcc̄(p) = 0. (28.68)

The numerator in the vector boson propagator sums over the three physical polarizations.
Thus there is no need for anything else. This is called unitary gauge because only physical
modes propagate. Thus, if you cut through a diagram, you will find only states that can go
on-shell; thus unitarity will be satisfied trivially in the sense of the optical theorem.

For ξ = 1, Feynman–’t Hooft gauge,

iΠAaμA
b
ν
(p) =

−igμν
p2 −m2

A

δab, iΠπaπb =
i

p2 −m2
A

δab, iΠcac̄b(p) =
i

p2 −m2
A

δab.

(28.69)
In this gauge, all the propagators have the same mass and simple numerators. You can
think of the gμν in the vector boson propagator as summing over all four polarizations with
the ghosts removing the longitudinal and timelike polarizations (as in the massless case),
but now the Goldstone bosons put the longitudinal polarizations back into the physical
spectrum.

Note that in any gauge with finite ξ all the propagators scale as 1
p2 at large p, so the theory

will be renormalizable in the power-counting sense. And, of course, it can be renormalized.
But it is still non-renormalizable in the sense that an infinite number of counterterms are
needed. No problems are solved by these fancy gauges – the theory will still be strongly
coupled at the scale Fπ = mA

g , as we discussed in Section 22.2 and will elaborate upon in
Chapter 29.

The amazing thing about spontaneously broken gauge theories is that when they come
from linear sigma models they are in fact renormalizable – you only need a finite number of
counterterms. For renormalizability, the extra scalar field σ in the linear sigma model plays
a crucial role. In the Standard Model, this σ is the Higgs boson. Since σ is not charged
under the broken or unbroken symmetry, its kinetic terms have nothing to do with π or Aμ.
Indeed, its Lagrangian is just that of Eq. (28.12):

L = −1
2
σ
(
� + 2m2

)
σ − 1

2

√
λmσ3 − 1

16
λσ4, (28.70)

where mσ =
√

2m is a totally separate free parameter from mA. And so

iΠσσ(p) =
i

p2 −m2
σ

. (28.71)

At high energy this propagator scales as 1
p2 . σ comes into the theory in exactly the right way

to cancel the extra divergences of the massive vector theory. This is not at all obvious in
any of the Rξ gauges, but it is obvious physically: at high energy, E � m2, the mass can
be neglected and spontaneous symmetry breaking becomes a small effect. Thus, at high
energy, the linear sigma model is just a gauge theory coupled to a linearly transforming
matter field, and is renormalizable for the same reason that non-Abelian gauge theories are
renormalizable.
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Problems

28.1 Show that writing φ(x) =
√

2m2

λ +φ̃(x) for the linear sigma model in Section 28.2.1
leads to a mass matrix with zero eigenvalue. Show that when a linear combination of
the two real fields in the complex field φ̃ is chosen to diagonalize the mass matrix,
the expansion in Eq. (28.12) results.

28.2 Work out the transformations to order π2 and θ2 in Eq. (28.25) using the Baker–
Campbell–Hausdorff lemma:

exp(A) exp(B)

= exp
(
A+B +

1
2
[A,B] +

1
12

[A, [A,B]]− 1
12

[B, [A,B]] + · · ·
)
. (28.72)

Show that pions transform in the adjoint representation under isospin.
28.3 Work out the interaction terms of order π3 in the gauged nonlinear sigma model in

Eq. (28.59).
28.4 Consider a theory with n real scalar fields and Lagrangian L = − 1

2φi(�−m2)φi+
λ
4 (φiφi)2.
(a) What are the global symmetries of this theory?
(b) What are all the possible vacua of this theory? Are all the vacua equivalent?
(c) Write down the Lagrangian for small excitations around one of the vacua. How

many Goldstone bosons are there?
28.5 For grand unification based on SU(5) to work, there must be a potential for the 24

scalar fields Φa such that Φ = Φaτa has a minimum in the form of Eq. (28.55).
Consider the most general SU(5)-invariant potential for Φ:

V = −m2tr(Φ2) + a tr(Φ4) + b
[
tr(Φ2)
]2
. (28.73)

One can always choose a basis where 〈Φ〉 = v diag(a1, a2, a3, a4, a5) with∑
i ai = 0.

(a) For what values of m2, a and b is 〈Φ〉 = v diag(2, 2, 2,−3,−3) an extremum?
(b) Show that excitations around 〈Φ〉 = v diag(2, 2, 2,−3,−3) all have non-

negative mass-squared.
(c) Find all possible minima for this potential. This is easiest if you impose the

tracelessness condition with a Lagrange multiplier.
(d) For the minimum of the form 〈Φ〉 = v diag(1, 1, 1, 1,−4), what are the masses

of the massive gauge bosons, and what is the unbroken gauge group?
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Now that we have studied spontaneously broken gauge theories, we are finally ready to
understand the weak interactions. From a practical point of view, we understood almost
everything we needed about this theory back when we introduced the Lagrangian for a
massive vector boson. The weak interactions are mediated by massive vector bosons whose
kinetic terms are described by the Proca Lagrangian we derived in Section 8.2.2. The low-
energy limit of the massive vector theory, the 4-Fermi theory, completely characterizes the
most familiar effect of the weak force: radioactive decay. At high energy, there is no weak
force, per se, only an electroweak force which is spontaneously broken down to the electric
and weak forces at low energy. There are many aspects of electroweak physics that only
become apparent at high energy, such as the existence of W and Z bosons.

Once we introduce the Glashow–Weinberg–Salam model for electroweak unification,
we will be able to explore this quantum field theory both qualitatively and quantitatively.
We begin by describing the gauge sector and the symmetry-breaking pattern SU(2) ×
U(1) → U(1). We will then see how the nonlinear sigma model with just the W and
Z bosons violates unitarity bounds at tree-level, indicating that the theory is sick (non-
perturbative above ∼1 TeV). We then show how the physical Higgs boson comes to the
rescue and makes the theory perturbative again. The remainder of this chapter discusses
the fermion sector, mass generation and mixing angles, the absence of tree-level flavor-
changing neutral currents in the Standard Model, and CP violation.

29.1 Electroweak symmetry breaking

Electroweak unification is based on the symmetry breaking of SU(2)×U(1)Y → U(1)EM.
The high-energy U(1) symmetry is called hypercharge, denoted U(1)Y ; it is not to be
confused with the low-energy U(1) associated with electromagnetism, denoted U(1)EM.
As we will see, the massless particle we know as the photon is a linear combination of the
hypercharge gauge boson and one of the generators of SU(2).

In the Standard Model, SU(2)×U(1)Y is broken by the vacuum expectation value (vev)
of a complex doubletH with hypercharge 1

2 called the Higgs multiplet. The Lagrangian is

L = −1
4
(
W a
μν

)2 − 1
4
B2
μν + (DμH)†(DμH) +m2H†H − λ (H†H)2, (29.1)

where Bμ is the hypercharge gauge boson, with Bμν = ∂μBν − ∂νBμ, and where W a
μ

are the SU(2) gauge bosons, with W a
μν their field strengths. The normalization of the

584
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λ (H†H)2 term is conventional. The covariant derivative is

DμH = ∂μH − igW a
μ τ

aH − 1
2
ig′BμH. (29.2)

Here, g and g′ are the SU(2) and U(1)Y couplings, respectively. The factor of 1
2 in the

BμH coupling comes from the Higgs multiplet having hypercharge Y = 1
2 .

The Higgs potential V(H) = −m2|H|2 + λ|H|4 in Eq. (29.1) induces a vev for H ,
which we can take to be real and in the lower component without loss of generality. Thus
we can expand

H = exp
(

2i
πaτa

v

)(
0

v√
2

+ h√
2

)
, (29.3)

with v = m√
λ

and τa = 1
2σ

a the canonically normalized SU(2) generators. The factors of
1√
2

in this equation convert between the canonical normalization of a complex scalar (H)
and a real scalar (h). Other conventions are sometimes used. As discussed in Chapter 28,
it is simplest to study this theory in unitary gauge, so we set π = 0. We also postpone the
discussion of terms with h in them. Plugging in the vev, we get

|DμH|2 = g2 v
2

8
(
0 1
)(g′

g Bμ +W 3
μ W 1

μ − iW 2
μ

W 1
μ + iW 2

μ
g′

g Bμ −W 3
μ

)(
g′

g Bμ +W 3
μ W 1

μ − iW 2
μ

W 1
μ + iW 2

μ
g′

g Bμ −W 3
μ

)(
0
1

)

= g2 v
2

8

[(
W 1
μ

)2
+
(
W 2
μ

)2
+
(
g′

g
Bμ −W 3

μ

)2
]
. (29.4)

These are the mass terms associated with three massive gauge bosons.
To diagonalize the masses, we note that, because the kinetic terms for Bμ and W a

μ are
canonically normalized, we should only rotate and not rescale the gauge bosons in the
diagonalization. Thus we define

Zμ ≡ cos θwW 3
μ − sin θwBμ

Aμ ≡ sin θwW 3
μ + cos θwBμ

}
⇔
{

Bμ = cos θwAμ − sin θwZμ
W 3
μ = sin θwAμ + cos θwZμ

(29.5)

with

tan θw =
g′

g
. (29.6)

With these definitions, the kinetic terms in the Lagrangian for Zμ and the photon Aμ are

Lkin = −1
4
F 2
μν −

1
4
Z2
μν +

1
2
m2
ZZ

μZμ, (29.7)

with mZ = 1
2 cos θw

gv, Zμν = ∂μZν − ∂νZμ and Fμν = ∂μAν − ∂νAμ.
Since the gauge bosons transform in the adjoint representation, their interactions are

determined by commutators. In particular, since the photon is part of W 3
μ , its couplings to
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the W a
μ are determined by g[Aμ,W aτa] = g sin θwW 3W a[τ3, τa]. Thus, the electromag-

netic coupling strength is set by

e = g sin θw = g′ cos θw. (29.8)

To find the W -boson charges, define τ± = 1√
2

(
τ1 ± iτ2

)
. Since

[
τ3, τ±
]

= ±τ±, the

W boson that couples to τ± has charge ±1. Writing τaW a = W+τ+ +W−τ− +W 3τ3

we see that the linear combinations W±
μ = 1√

2

(
W 1
μ ∓ iW 2

μ

)2
have charges±1. Note that,

until we discuss fermions, saying the charges are ±1 in units of e = g sin θw is just a
convention. We will soon see that this is indeed the conventional normalization where the
electron has charge −1.

When the dust settles, the gauge Lagrangian can be written as

Lgauge = −1
4
F 2
μν −

1
4
Z2
μν +

1
2
m2
ZZ

μZμ −
1
2
(
∂μW

+
ν − ∂νW+

μ

)(
∂μW

−
ν − ∂νW−

μ

)
+m2

WW
+
μ W

−
μ − ie cot θw

[
∂μZν
(
W+
μ W

−
ν −W+

ν W
−
μ

)
+Zν
(
−W+

μ ∂νW
−
μ +W−

μ ∂νW
+
μ +W+

μ ∂μW
−
ν −W−

μ ∂μW
+
ν

) ]
− ie
[
∂μAν
(
W+
μ W

−
ν −W+

ν W
−
μ

)
+Aν
(
−W+

μ ∂νW
−
μ +W−

μ ∂νW
+
μ + W+

μ ∂μW
−
ν −W−

μ ∂μW
+
ν

) ]
− 1

2
e2

sin2θw
W+
μ W

−
μ W

+
ν W

−
ν +

1
2

e2

sin2θw
W+
μ W

−
ν W

+
μ W

−
ν

− e2 cot2θw(ZμW+
μ ZνW

−
ν − ZμZμW+

ν W
−
ν ) + e2(AμW+

μ AνW
−
ν −AμAμW+

ν W
−
ν )

+ e2 cot θw
[
AμW

+
μ W

−
ν Zν +AμW

−
μ ZνW

+
ν −W+

μ W
−
μ AνZν

]
, (29.9)

with

mW =
v

2
g (29.10)

and

mZ =
1

2 cos θw
gv =

v

2

√
g2 + g′2 =

mW

cos θw
. (29.11)

Already there is an unambiguous prediction: the W± bosons should be lighter than the Z
boson.

The Feynman rules can be read off this Lagrangian. For example, the vertex
Wμ

+(p1)W ν
−(p2)Zλ(p3) with all momenta incoming is
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↗ p2

↘ p1

p3
←−

W ν
−

Wμ
+

Zλ

= −ie cot θw
[
gμν(p1−p2)λ+gνλ(p2−p3)μ+gλμ(p3−p1)ν

]
. (29.12)

We take W− to be the particle and W+ to be its antiparticle, so we draw particle-flow
arrows in the direction of momentum for W− and opposite to the direction of momentum
for W+. The ZαZβW+μW−ν vertex is

W ν
−

Wμ
+

Zα

Zβ

= ie2 cot2θw
[
gαμgβν + gανgβμ − 2gαβgμν

]
(29.13)

and so on.
Now let us return to the field h. Even in unitary gauge (π = 0) this field, known as the

Higgs boson, is still present. Note that while H , the Higgs doublet, has charges under
the weak and hypercharge gauge groups, the Higgs boson h does not. Expanding out the
Lagrangian, we find that the terms involving the Higgs boson are

LHiggs =− 1
2
h
(
� +m2

h

)
h− g m2

h

4mW
h3 − g2

32
m2
h

m2
W

h4

+ 2
h

v

(
m2
WW

+
μ W

−
μ +

1
2
m2
ZZ

2
μ

)
+
(
h

v

)2(
m2
WW

+
μ W

−
μ +

1
2
m2
ZZμZμ

)
,

(29.14)

wheremh =
√

2m. Using v = 2mW sin θw
e , the Feynman rule for a Higgs boson interacting

with two W bosons is

W W

h

μ ν

= i
e

sin θw
mW g

μν , (29.15)

and for a Higgs boson and two Z bosons is

Z Z

h

μ ν

= i
e

sin θw
m2
Z

mW
gμν = i

e

sin θw cos2θw
mW g

μν , (29.16)

where we have used v = 2mWe sin θw to express the interactions in terms of mW . The
Higgs mass is m2

h = 2λv2 = 2m2, which is unrelated to the other three parameters
e, sin2θw and mW . Note that not every possible term you could think of is here: there are
no interactions with derivatives acting on h and no hh∂μZμ interaction.
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To summarize, we started with four parameters: m,λ, g, g′, and ended up with four:
e, θw,mh and mW . Using experimental values αe(me) = e2

4π = 1
137.036 , mZ = 91.2 GeV,

mW = 80.399 and mh = 126 GeV we find

e = 0.303, sin2 θw = 0.223, g =
e

sin θw
= 0.64, g′ =

e

cos θw
= 0.34, (29.17)

and that v = 2mW
g = 251 GeV. Keep in mind that this is just one way to define these

quantities from data. Using mZ and mW as inputs amounts to a set of renormalization
conditions. It is actually more conventional to define v from the muon decay rate, which
gives v = 247 GeV, as discussed below in Section 29.4. In Chapter 31, we will discuss
the renormalization conditions of the electroweak theory in more detail, in the context of
precision tests of the Standard Model.

29.2 Unitarity and gauge boson scattering

Before discussing fermions, we can answer one of the most important questions about
electroweak symmetry breaking: what good is the physical Higgs boson?

To see the problem that the Higgs boson solves, consider scattering of longitudinal W
bosons off longitudinal Z bosons. We would like to evaluate

σ
(
W+
L (p1)ZL(p2) →W+

L (p3)ZL(p4)
)
. (29.18)

This is a physical process since the longitudinal polarizations of the W and Z bosons
are on-shell asymptotic states. Recall that for a momentum pμ = (E, 0, 0, pz), the two
transverse polarizations are εμT1 = (0, 1, 0, 0) and εμT2 = (0, 0, 1, 0) and the longitudinal
polarization is εμL = 1

m (pz, 0, 0, E). These all satisfy εi · p = 0 and εi · ε�j = −δij . At high

energy, E =
√
p2
z +m2 → pz , and so εμL → 1

mp
μ, which will be the origin of dangerous

E2

m2 growing amplitudes. Unfortunately, setting εμL = 1
mp

μ only works at the leading order
in 1

m , since it violates εL · p = 0 and we will need to work to subleading order. We take
our longitudinal polarization vectors to be

εμ1 =
1
mW

pμ1 +
2mW

t− 2m2
W

pμ3 , εμ2 =
1
mZ

pμ2 +
2mZ

t− 2m2
Z

pμ4 ,

εμ3 =
1
mW

pμ3 +
2mW

t− 2m2
W

pμ1 , εμ4 =
1
mZ

pμ4 +
2mZ

t− 2m2
Z

pμ2 .

(29.19)

where t = (p1 − p3)2. These all satisfy εi · pi = 0. They are not normalized correctly,
εi · ε�i �= −1, but the normalizations are ugly and unnecessary to see the cancellations.

There are three diagrams: one from an s-channel W exchange, one from a u-channel W
exchange and the last from the 4-point vertex. The s-channel amplitude is

iMs

(
W+
L (p1)ZL(p2) →W+

L (p3)ZL(p4)
)

=
p1

p2 k

p3

p4

εν2

εμ1

εβ4

εα3

. (29.20)
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Plugging in the Feynman rules gives

iMs = (ie cot θw)2 εμ1 ε
ν
2ε
�α
3 ε�β4

i

s−m2
W

(
−gλκ +

1
m2
W

kλkκ
)

×
[
−gμν(p2 − p1)

λ + gνλ(p2 + k)μ − gλμ(k + p1)
ν
]

×
[
−gαβ(p4 − p3)

κ + gβκ(p4 + k)α − gκα(k + p3)
β
]
, (29.21)

where kμ = pμ1 + pμ2 = pμ3 + pμ4 . Inserting the longitudinal polarization vectors, we find

Ms =
e2 cot2θw
4m2

Wm
2
Z

×
[
2su+ s2 − 2m2

W

3su+ u2

s+ u
+ 2m2

Z

s2 − 3su− 2u2

s+ u
− m4

Z

m2
W

s+O(1)
]
,

(29.22)

where s = (p1 + p2)
2, t = (p1 − p3)

2 and we have used s+ t+ u = 2m2
W + 2m2

Z . The
O(1) indicates that terms which do not grow with energy have been dropped.

The u-channel diagram is similar:

Mu = =
e2 cot2θw
4m2

Wm
2
Z

[
2su+ u2 − 2m2

W

3su+ s2

s+ u

+ 2m2
Z

u2 − 3su− 2s2

s+ u
− m4

Z

m2
W

u+O(1)
]
. (29.23)

Finally, the 4-point graph gives

M4 = = e2 cot2θwε
μ
1 ε
ν
2ε
�α
3 ε�β4
(
gμνgαβ + gμβgνα − 2gμαgνβ

)

=
e2 cot2θw
4m2

Wm
2
Z

[
−s2 − 4su− u2 + 2

(
m2
W +m2

Z

)s2 + 6su+ u2

s+ u
+O(1)

]
. (29.24)

Thus, we have the total matrix element at high energy:

Mtot(WLZL →WLZL) = − m2
Z

4m4
W

e2 cot2θw(s+ u) +O(1) =
t

v2
+O(1), (29.25)

where we have used mW = mZ cos θw and v = 2mW
sin θw
e . Notice that the strongest

high-energy growth, theE4 behavior, canceled just by summing these three diagrams. This
is a consequence of gauge invariance, which relates the four-boson and three-boson gauge
couplings. Nevertheless, the matrix element still seems to grow with energy.

In Chapter 24 we discussed some implications of unitarity. In particular, in Sec-
tion 24.1.5 we derived the partial wave unitarity bound which says that amplitudes cannot
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be arbitrarily large. For elastic scattering, the bound was that the partial wave ampli-
tudes |aj | ≤ 1. In this case, the fact that t = − 1

2E
2
CM(1− cos θ) at high energy gives

a0 = E2
CM

32πv2 , a1 = E2
CM

96πv2 and aj = 0 for j > 1. Thus, perturbative unitarity is violated
at ECM ≈

√
32πv ≈ 2.5 TeV. Considering other channels, the bound can be tightened

to show that perturbative unitarity is violated for ECM � 800 GeV. That is, it would be
violated, if there were no Higgs boson.

To be clear, this bound does not imply that a theory without a Higgs is not unitary,
only that scattering amplitudes cannot be calculated reliably in perturbation theory. Since
M ≈ 1 at ECM ≈ 800GeV at tree-level, it is logical that loop amplitudes could be
∼1 as well. When loop and tree amplitudes are the same size, perturbation theory breaks
down. Of course, we already knew that the theory with massive vector bosons was non-
renormalizable, so that loops could become important. The unitarity bound says that loops
must become important at this scale and perturbation theory must break down.

Now, let us see how the physical Higgs boson comes to the rescue. There is only one
Higgs exchange diagram, in the t-channel. It gives

Mh = h = − e2

sin2θw cos2θw
εμ1 ε

ν
2ε
�α
3 ε�β4
(
gαμgβν

) m2
W

t−m2
h

= − e2

4m2
Z sin2 θw cos2 θw

t2
(
t− 4m2

W

)(
t− 4m2

Z

)
(t−m2

h)(t− 2m2
W )(t− 2m2

Z)

= − t

v2
+O(1). (29.26)

Now we can see clearly that the high-energy behavior of Mtot is precisely canceled,
for any mh. On the other hand, if mh is too large, then the perturbative unitarity bound
would be violated before the Higgs contributions could kick in. This is the reason that we
knew the Higgs boson (or something else serving its function) had to be found at the Large
Hadron Collider. The precise bound from partial wave unitarity, including all the relevant
channels, is

mh ≤
√

16π
3

1
v
≈ 1 TeV. (29.27)

This is called the Lee–Quigg–Thacker bound [Lee et al., 1977].

29.2.1 Goldstone boson equivalence theorem

The above calculation of longitudinal W–Z scattering was done in unitary gauge (ξ = ∞),
where there are no ghosts and the Goldstone bosons are eaten by gauge bosons. One
could also do the calculation in any gauge, and the answer would, of course, be the
same. It is illustrative in fact to consider the same calculation in Lorenz gauge (ξ = 0).
There, the longitudinal modes are given by the Goldstone bosons, which have massless
propagators. Therefore, what we want to calculate is Goldstone boson scattering. The
Goldstone boson interactions are given by replacing the gauge fields by Goldstone bosons



29.2 Unitarity and gauge boson scattering 591

via W a
μ → 1

Fπ
∂μπ

a + · · · , where Fπ = v = m
g . So, scattering Goldstone bosons should

be very similar to scattering longitudinal modes with polarization vectors εμ = pμ, which
is just what we calculated above.

To derive the interactions, we can use the linear sigma model:

L = (DμH)
(
DμH

†)− m2
h

2v2

(
H†H − v2

)2
. (29.28)

This is exactly what would result from taking g → 0 and mW → 0 holding v = 2mWg
fixed in the full Lagrangian. Indeed, since the longitudinal modes/Goldstone bosons have
a characteristic interaction strength of Fπ, while the transverse modes interact with g, this
limit will completely isolate the longitudinal components.

Next, substitute H as in Eq. (29.3):

H = exp

[
i

√
2
v

(
z√
2

w−

w+ − z√
2

)](
0
v+h√

2

)
, (29.29)

giving

L =
[
(∂μw−)(∂μw+) +

1
2
(∂μz)

2

](
1 +

2h
v

+
h2

v2

)
+

1
2
(∂μh)

2 − 1
2
m2
hh

2 + · · ·

+
1

6v2

[
w2

+(∂μw−)2 + w2
−(∂μw+)2 − 2w−w+(∂μw−)(∂μw+)

]
+ · · ·

− 1
3v2

[z (∂μw−)− w−(∂μz)] [z(∂μw+)− w+(∂μz)] + · · · . (29.30)

Here, w± and z are the longitudinal modes for W±
μ and Z.

By the way, the interactions among the Goldstone bosons here are identical to the
pion interactions in the Chiral Lagrangian. Indeed, for the Goldstone bosons, one only
needs a nonlinear sigma model, which can be derived using the CCWZ method dis-
cussed in Sections 8.7 and 28.2.4: start with the unitary gauge Lagrangian and replace
Wμ → U−1WμU + U−1DμU , where U = exp(2iπaτa/v). Then, taking g → 0 hold-
ing v fixed brings us to the nonlinear sigma model (h = 0 above). Thus, the vacuum
expectation value v = 〈h〉 plays the role that Fπ ≈ 〈q̄q〉1/3 ≈ ΛQCD plays in the Chiral
Lagrangian.

For WLZL → WLZL, all we need is the contact interaction on the last line. This

looks just like a current–current interaction in scalar QED. There are

(
4
3

)
= 6 possible

contractions, giving

M4

(
w+z → w+z

)
= − 1

3v2

[
(p1 − p2)

μ(p3 − p4)
μ + (p1 + p4)

μ(p2 + p3)
μ
]

=
t

v2
,

(29.31)

which agrees with the direct calculation of longitudinal gauge boson scattering above in
the high-energy limit.

The Higgs exchange, which occurs only in the t-channel, gives

Mh

(
w+z → w+z

)
= − 4

v2

(p1 · p3)(p2 · p4)
t−m2

h

= − t2

v2 (t−m2
h)

2 +O
(
t0
)
, (29.32)

which agrees exactly with Eq. (29.26) in the high-energy limit.
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The fact that you get the same result scattering longitudinal gauge bosons as Gold-
stone bosons at high energy is not a coincidence; it follows from a theorem, known as the
Goldstone boson equivalence theorem. The proof is just that replacing Wμ → 1

ν ∂μπ

and εμ = 1
mpμ amount to the same thing as pμ → ∞. It is obvious from the effective

Lagrangian, although the proof using current algebra is not particularly complicated. The
point is that, as we saw here, calculation of diagrams involving scalars is in general much
easier than calculating diagrams with massive vector bosons. Thus, this theorem comes in
handy for studying gauge boson scattering and unitarity violation.

29.3 Fermion sector

Next we discuss how to couple the electroweak gauge bosons to fermions. It turns out that
the theory of weak interactions is chiral and maximally parity-violating: the SU (2) gauge
bosons only couple to left-handed fermions. As we will discuss in Section 29.4, this fact
was originally deduced from observations at low energy, well before the W and Z bosons
were produced in colliders. At this point, there is unfortunately no compelling explanation
of why the weak interaction must couple this way. In this section, we simply present the
model.

In the Standard Model, the left-handed leptons (e, νe, μ, νμ, τ, ντ ) pair up to trans-
form under SU(2) in the fundamental representation, as do the left-handed quarks
(d, u, s, c, b, t). There are three generations of SU(2) doublet pairs of quarks and leptons:

Li=
(
νeL
eL

)
,

(
νμL
μL

)
,

(
ντL
τL

)
, Qi =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
. (29.33)

Here i = 1, 2, 3 indexes the generation. These all transform as left-handed Weyl spinors,
i.e. in the

(
1
2 , 0
)

representation of the Lorentz group. The right-handed fermions we index
by the first-generation label:

eiR = {eR, μR, τR} , νiR = {νeR, νμR, ντR} ,
uiR = {uR, cR, tR} , diR = {dR, sR, bR} . (29.34)

These all happen to be SU(2) singlets so they are uncharged under the weak interaction.
They transform as right-handed Weyl spinors under the Lorentz group. It is worth remark-
ing that right-handed neutrinos have not yet been observed, but we include them here in
case they do exist. Neutrinos are discussed in Section 29.3.4 below.

All fermions couple to the hypercharge gauge boson. We write YQ and YL for the left-
handed fields’ hypercharges (which happen to be the same for each generation) and Ye, Yν ,
Yu and Yd for the right-handed fields’ hypercharges (which also happen to be the same for
each generation). Putting everything together, the gauge interactions are

L = iL̄i
(
/∂ − ig /W a

τa − ig′YL /B
)
Li + iQ̄i

(
/∂ − ig /W a

τa − ig′YQ /B
)
Qi

+ iēiR
(
/∂ − ig′Ye /B

)
eiR + iν̄iR

(
/∂ − ig′Yν /B

)
νiR

+ iūiR
(
/∂ − ig′Yu /B

)
uiR + id̄iR

(
/∂ − ig′Yd /B

)
diR. (29.35)
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Table 29.1 Charges of Standard Model fields.
� indicates that the field transforms in the fundamental representation,

and − indicates that a field is uncharged.

Field L =

(
νL

eL

)
eR νR Q =

(
uL

dL

)
uR dR H

SU(3) − − − � � � −
SU(2) � − − � − − �
U(1)Y − 1

2
−1 0 1

6
2
3

− 1
3

1
2

The quarks also have charges under SU(3)QCD which are not shown.
To be clear, the R subscripts in expressions such as Eq. (29.34), or the L subscripts in

Eq. (29.33), indicate the implicit chirality of the field. Since the fermions are all left- or
right-handed Weyl spinors, it would be technically correct to replace Q̄i /∂Qi → Q†

i σ̄μ∂μQi
and ūiR /∂u

i
R → ui†Rσμ∂μu

i
R. However, since we will almost always be performing compu-

tations in the broken phase, where the left- and right-handed spinors combine into a single
Dirac representation, it is generally easier to use the Dirac-spinor notation from the start,
where L and R indicate implicit chirality projectors. That is, Q̄i /∂Qi = Q†

iγ
0γμ∂μPLQi

with PL = 1
2 (1− γ5) and ūiR /∂u

i
R = ui†Rγ

0γμ∂μPRu
i
R with PR = 1

2 (1 + γ5).
Because hypercharge is a U(1) group, the hypercharges could be arbitrary real num-

bers. To find out what the actual hypercharges are in the Standard Model, we can use
the known electric charges. First isolating the neutral gauge bosons, W 3

μ and Bμ, and
then changing to the Aμ − Zμ basis using Eq. (29.5) gives, for the electron and neutrino
couplings,

L = ēiL

(
−1

2
g /W

3 + g′YL /B
)
eiL + ν̄iL

(
1
2
g /W

3 + gYL /B

)
νiL

+ g′YeēiR /Be
i
R + g′Yν ν̄iR /Bν

i
R

= e

{(
−1

2
+ YL

)
ēiL /Ae

i
L +
(

1
2

+ YL

)
ν̄iL /Aν

i
L + Yeē

i
R /Ae

i
R + Yν ν̄

i
R /Aν

i
R

}
+ Z terms.

(29.36)

Since the electric charges are the coefficients of the coupling to the photon, we can read
off from this equation the relationship between the hypercharges and the electric charges.
Using that the electron is conventionally defined to have charge −1, we see that YL = − 1

2

and Ye = −1. This implies that νL is neutral, in agreement with nature, and for νR to
be neutral we also need Yν = 0. Similarly, using that the up quark has charge 2

3 and
the down quark has charge − 1

3 we need YQ = 1
6 , Yu = 2

3 and Yd = − 1
3 . In summary,

the quantum numbers of the lepton and quark fields in the Standard Model are shown in
Table 29.1.

An obvious question arises: If the hypercharges could have been arbitrary real num-
bers, why did they turn out to have simple rational number ratios? How do we know that
the electric charge of the up quark is not −0.666 666 5 times the electric charge of the
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electron, rather than − 2
3 times it? Even such a small deviation would have important con-

sequences for our universe, since atoms would not be exactly neutral and there are a lot
of atoms! The answer is another profound and beautiful result of quantum field theory:
electric charges must be quantized to guarantee consistency of the quantum theory. It turns
out that, given the particle content of the Standard Model, the hypercharges must satisfy
certain constraints. In particular, YL + 3YQ = 0, a result we prove in Section 30.4. This
forces the electric charge of the electron to be exactly three times the electric charge of the
down quark and exactly opposite to the charge of the proton.

29.3.1 Neutral currents

The relationship between the hypercharge and the electric charge can be written in more
general notation. A representation of SU(2)weak × U(1)Y has some matrix T 3 associ-
ated with W 3

μ and a number Y associated with Bμ. In the fundamental representation

of SU(2), T 3 = τ3 = 1
2

(
1 0
0 −1

)
, but we can allow for more general possibilities. There

are a continuously infinite number of representations of U(1)Y since ψ → eiαY ψ leaves
iψ̄
(
/∂ − iY g′ /B

)
ψ invariant for any Y ∈ R. Then, the part of the covariant derivative

involving T 3 and Y is

Dμ = ∂μ − igW 3
μT

3 − ig′BμY 1

= ∂μ − ieAμ
(
T 3 + Y 1

)
− ieZμ

(
cot θwT 3 − tan θwY 1

)
, (29.37)

where 1 is the identity matrix acting on the n-dimensional vector space on which T 3 acts
in a given representation. So Q = T 3 + Y 1 measures the electric charge. For example,

Q

(
0
eL

)
=
(
τ3 + YL12×2

)(0
eL

)
=
(

1
2 −

1
2 0

0 − 1
2 −

1
2

)(
0
eL

)
= −
(

0
eL

)
(29.38)

shows that the left-handed electron has charge −1.
It is sometimes helpful to write the neutral gauge boson interactions with general fields

ψjL and ψjR as

L = iψ̄jL (/∂ − ig /W 3
T 3 − ig′ /BY Lj )ψjL + iψ̄jR

(
/∂ − ig′ /BY Rj

)
ψjR, (29.39)

which is a generalization of Eq. (29.35). We then rewrite this in terms of neutral currents
that couple to the Z boson and photon as

L = · · ·+ e

sin θw
ZμJ

Z
μ + eAμJ

EM
μ , (29.40)

with

JZμ = cos θwJ3
μ −

sin2θw
cos θw

JYμ =
1

cos θw

(
J3
μ − sin2θwJ

EM
μ

)
. (29.41)

Assuming SU(2)weak acts only on left-handed states, the currents are

JYμ =
∑
i

Y Li ψ̄
L
i γ

μψLi +
∑
i

Y Ri ψ̄
R
i γ

μψRi = JEM
μ − J3

μ, (29.42)

J3
μ =
∑
i

ψ̄Li γ
μT 3ψLi , (29.43)
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JEM
μ =
∑
i

Qi
(
ψ̄Li γ

μψLi + ψ̄Ri γ
μψRi
)
, (29.44)

where we have used Qi = T 3 + Y with T 3 giving 0 when acting on right-handed states.

29.3.2 Fermion masses and mixing angles

Next, we have to discuss fermion masses. In fact, at this point we do not really have a left-
and a right-handed electron, but rather two separate unrelated fields that happen to have
the same electric charge. In QED, left- and right-handed fermions were connected by a
Dirac mass term. However, we now see that a mass term like ēLeR explicitly breaks SU(2)
invariance, and thus is forbidden. To write down an electron mass, we can use the Higgs
doublet. Then the masses appear only after electroweak symmetry breaking. For example,
the term

LYuk = −yL̄HeR + h.c. (29.45)

will generate a mass term −me(ēLeR + ēReL), with me = y√
2
v after H gets a vev. With

this construction, the charged leptons and the down-type quarks (d, s, b) will get masses,
and no additional breaking of SU(2) is required.

To give mass to the remaining fermions, we can use L̄σ2H
�. To see that L̄σ2H

� is SU(2)
invariant, we note that, since H and L are fundamentals under SU(2), δH = i

2θkσkH and
δL = i

2θkσkL. Thus,

δ(L̄σ2H
�) = − i

2
θkL̄σ2σ

�
kH

� − i

2
θkL̄σ

†
kσ2H

� = 0. (29.46)

In the last step we have used Eq. (10.130), σTj σ2 + σ2σj = 0, whose complex conjugate
along with σ�2 = −σ2 from Eq. (10.128) implies Eq. (29.46). Thus, we define

H̃ ≡ iσ2H
�, (29.47)

which transforms in the fundamental representation of SU(2) and has hypercharge − 1
2 .

Then we can write −yL̄H̃νR as a term that gives a mass to the neutrino (or the up-type
quarks).

We will focus on quarks first and then on leptons and neutrino masses in Section 29.3.4.
Including all three generations, indexed by i and j (so that uiR = (uR, cR, tR) and so on)
we then have

Lmass = −Y dijQ̄iHdjR − Y uij Q̄iH̃u
j
R + h.c. (29.48)

Note that each term is SU(3)× SU(2)×U(1) invariant.
In Eq. (29.48) there are two 3×3 Yukawa matrices, which contain a lot of parameters for

just a few masses. In fact, if it were not for the gauge interactions, we could just diagonalize
these matrices and the masses would be the only physical parameters. Fortunately, even
with the gauge interactions, there is still a lot of redundancy in the Yukawa couplings. For
example, the Yukawa matrices are general complex matrices, not necessarily Hermitian.
So, for one generation, it might look like we have complex masses, mq̄LqR, m ∈ C. This
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is obviously an illusion since we can always redefine our fields by a phase, for example,
qR → eiθqR, to make the masses real.

After symmetry breaking, the quark mass terms become

Lmass = − v√
2
Y dij d̄

i
Ld

j
R −

v√
2
Y uij ū

i
Lu

j
R + h.c. = − v√

2

[
d̄LYddR + ūLYuuR

]
+ h.c.,

(29.49)
where the last expression is in matrix form. To diagonalize the masses, we use that there
exist two diagonal matrices Md and Mu and two unitary matrices Ud and Uu for which

YdY
†
d = UdM

2
dU

†
d , YuY

†
u = UuM

2
uU

†
u. (29.50)

The matrix Y Y † is Hermitian and therefore has real eigenvalues. We can also generically
write

Yd = UdMdK
†
d, Yu = UuMuK

†
u (29.51)

for other unitary matrices Kd and Ku. Thus, the Yukawa couplings are

Lmass = − v√
2

[
d̄LUdMdK

†
ddR + ūLUuMuK

†
uuR

]
+ h.c. (29.52)

Now we can freely change basis for the right-handed quarks by dR → KddR and uR →
KuuR and the left-handed quarks by uL → UuuL and dL → UddL. This removes the
U and the K matrices from the Yukawa terms, leaving the diagonal mass matrices Mu

and Md. This is known as going to the mass basis. In the mass basis, the mass terms are
then just

Lmass = −md
j d̄
j
Ld

j
R −mu

j ū
j
Lu

j
R + h.c., (29.53)

where md
j and mu

j are the diagonal elements of v√
2
Md and v√

2
Mu respectively. Note that

there is still a residual U(1)6 global symmetry, with six angles αj and βj , under which

djL → eiαjdjL, djR → eiαjdjR, ujL → eiβjujL, ujR → eiβjujR. (29.54)

There is no sum on j in these transformations. This symmetry has implications for CP
violation, which we will discuss shortly.

The kinetic terms are, of course, also modified by this basis change. The gauge boson
interactions do not mix families in the original, flavor basis, where the Lagrangian is

Lflavor-basis =
(
ūL d̄L

)i[
i/∂ + γμ

(
g′

6 Bμ + g
2W

3
μ

g√
2
W+
μ

g√
2
W−
μ

g′

6 Bμ −
g
2W

3
μ

)](
uL
dL

)
i

+ ūiR

(
i/∂ + g′

2
3
/B

)
uiR + d̄iR

(
i/∂ − g′ 1

3
/B

)
diR

− v√
2

[
d̄iL

(
UdMdK

†
d

)
ij
djR + ūiL

(
UuMuK

†
u

)
ij
ujR + h.c.

]
, (29.55)

where i and j are flavor indices. When we rotate diR → Kij
d d

j
R and uiR → Kij

u u
j
R, the

matricesKu andKd drop out completely since the hypercharge interactions are generation
diagonal. When we rotate uL → UuuL and dL → UddL, the Bμ and W 3

μ couplings are
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unaffected as well, since these do not mix up- and down-type quarks. The only things that
are sensitive to the flavor rotations are the W±

μ couplings. Thus we have

Lmass-basis =
e

sin θw
ZμJ

Z
μ + eAμJ

μ
EM −md

j

(
d̄jLd

j
R + d̄jRd

j
L

)
−mu

j

(
ūjLu

j
R + ūjRu

j
L

)
+

e√
2 sin θw

[
W+
μ ū

i
Lγ

μ(V )ijdjL +W−
μ d̄

i
Lγ

μ
(
V †)ijujL] , (29.56)

where V = U†
uUd. Thus, all of the interesting mixing effects are given by a single matrix,

V ≡ U†
uUd =

⎛⎝ V11 V12 V13

V21 V22 V23

V31 V32 V33

⎞⎠ =

⎛⎝ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞⎠ , (29.57)

known as the Cabibbo–Kobayashi–Maskawa (CKM) matrix.
The CKM matrix is a complex unitary matrix, and thus has nine real degrees of freedom.

If V were real, it would be an O(3) matrix, with three degrees of freedom. These are the
three rotation angles. Thus there are three angles and six phases in V . However, we can
use the U(1)6 symmetry in Eq. (29.54), under which the masses are invariant, to set some
phases to zero. Under these transformations, V generally transforms. However, if all the
rotations are the same, αj = βj = θ, then V is unchanged. Thus we can only eliminate five
phases this way, leaving overall four degrees of freedom: three angles and one phase. If we
call the three angles θ12, θ23 and θ13, corresponding to rotations in the ij-flavor planes,
and the phase δ, the most general CKM matrix can be written as

V =

⎛⎝ 1 0 0
0 cos θ23 sin θ23
0 − sin θ23 cos θ23

⎞⎠
×

⎛⎝ cos θ13 0 sin θ13eiδ

0 1 0
− sin θ13eiδ 0 cos θ13

⎞⎠⎛⎝ cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1

⎞⎠

=

⎛⎜⎜⎝
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎟⎟⎠ , (29.58)

where cij ≡ cos θij and sij ≡ sin θij . This has become a standard parametrization. The
numerical values for the angles and phase are θ12 = 13.02◦ ± 0.04◦, θ23 = 2.36◦ ±
0.08◦, θ13 = 0.20◦ ± 0.02◦ and δ = 69◦ ± 5◦ [Particle Data Group (Beringer et al.),
2012].

Note that all the rotation angles are relatively small. Thus, the mass and flavor bases are
fairly close and the CKM matrix is nearly diagonal. To a good approximation, θ23 and θ13
are negligible, and the biggest one, θ12, gives all the flavor mixing. It is sometimes helpful
to abbreviate this fact with an approximate parametrization in terms of λ ≡ sin θ12 =
0.22 as

|V | ≈

⎛⎜⎝ 1− λ2

2 λ λ3

−λ 1− λ2

2 λ2

λ3 λ2 1

⎞⎟⎠+O
(
λ4
)
. (29.59)
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This is known as the Wolfenstein parametrization. The angle θ12 is known as the
Cabibbo angle. The Cabibbo angle is the rotation angle between the first two genera-
tions, and the only parameter relevant to hadronic physics involving light (u, d, s) quarks,
so historically it was very important.

By the way, if there are only two generations, then the counting is as follows. A unitary
2 × 2 complex matrix has four real degrees of freedom. There is one rotation angle, for
SO(2), and three phases. But there is now a U(1)4 chiral symmetry which can remove
three phases, so there is in the end only one parameter, the Cabibbo angle. In particular,
the CKM matrix can be taken real. As we will see in Section 29.5 below, if the CKM
matrix is real, there can be no CP violation. Historically, CP violation was observed in
the kaon system well before the third generation was discovered (even before charm was
discovered), and a third generation was predicted as necessary for CP violation. We discuss
this more below.

29.3.3 The unitarity triangle

In the Standard Model, the CKM matrix is unitary by construction. However, if there were
a fourth generation, the restriction of the CKM matrix to the three-generation subsector
would not be unitary. Thus, testing the CKM matrix for unitarity assuming three genera-
tions is a way to indirectly look for physics beyond the Standard Model. In practice, we try
to measure all the CKM elements separately to check whether unitarity in fact holds. The
current best measured values are [Particle Data Group (Beringer et al.), 2012]⎛⎝|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎞⎠ =

⎛⎝ 0.97± 0.0001 0.22± 0.001 0.0039± 0.0004
0.23± 0.01 1.02± 0.04 0.0041± 0.001

0.0084± 0.0006 0.039± 0.002 0.88± 0.07

⎞⎠
(29.60)

and we can see that the matrix is in fact unitary to within current uncertainties. We can also
test whether there is a single phase (see Section 29.5 below).

The CKM element magnitudes in this table represent an aggregate compiled by the
Particle Data Group. But what if we want to know how a new measurement fits in with
this picture? A convenient way to see if the CKM elements associated with a particular
measurement are consistent with the CKM matrix being unitary is to represent unitarity
graphically with something called a unitarity triangle.

Unitarity implies that the rows of the CKM matrix are orthonormal, as are the columns.
That is,

∑
i VijV

�
ik = δjk for any i and k. For example, VudV �ub +VcdV

�
cb +VtdV

�
tb = 0.

This equation says that three complex numbers add up to zero (there are five other such
equations, but this one is a standard choice). Dividing by the best measured of these
quantities, VcdV �cb, leads to

VudV
�
ub

VcdV �cb
+
VtdV

�
tb

VcdV �cb
+ 1 = 0. (29.61)
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Vud Vub
*

Vcd Vcb
*

Vtd Vtb
*

Vcd Vcb
*α

γ
β

1

The unitarity triangle gives a graphical representation of CKM elements. Different
measurements constrain its angles and side lengths.

�Fig. 29.1
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Precision flavor measurements mapped to the unitarity triangle [CKM fitter group (Charles
et al.), 2012]. Length of the bottom edge has been normalized to 1, as compared to Fig.
29.1, by dividing all edge lengths by VcdV

�
cb.

�Fig. 29.2

This unitarity constraint can be represented as a closed triangle in the complex plane, as
shown in Figure 29.1.

The lengths of the sides of the unitarity triangle measure flavor mixing and the angles
of the triangle are sensitive to CP violation. Indeed, if all the CKM elements were real,
the triangle would collapse to a line. Thus, we define a quantity J as twice the area of the
(non-rescaled) triangle:

J ≡ 2(area) = Im(VudVtbV �tdV
�
ub) = (2.96± 0.20)× 10−5, (29.62)

where J is known as the Jarlskog invariant (see Section 29.5). In practice, data are com-
bined into a global fit for the unitarity triangle. There are public numerical programs
for doing these fits, such as the CKMfitter package. A sample output from one of these
programs is shown in Figure 29.2.



600 Weak interactions

29.3.4 Neutrinos

Although neutrinos are very light, they are in fact massive. Neutrinos carry no elec-
tric charge (hence their name). If we assume that both left- and right-handed neutrinos
exist, then neutrino masses can be generated after electroweak symmetry breaking from
interactions of the form Y νij L̄

iH̃νjR (see Eq. (29.48)). Since Li and H̃ have the same
weak and hypercharge quantum numbers, νR must be uncharged under both the weak
and electromagnetic force, as in Table 29.1. We thus sometimes refer to the right-handed
neutrinos as sterile neutrinos. The most general renormalizable mass terms in the lepton
sector are

Lmass = −Y eijL̄iHejR − Y νij L̄iH̃ν
j
R − iMij

(
νiR
)c
νjR + h.c. (29.63)

The last term in Eq. (29.63) denotes Majorana masses for the neutrinos, which are not
forbidden by electroweak symmetry. In this term, νcR = νTRσ2 is the charge conjugate
Weyl spinor (see Section 11.3).

If neutrinos have any quantum numbers at all, then Majorana mass terms are forbidden.
The most natural quantum number for right-handed neutrinos to have is lepton number
(see Section 30.5.1). That is, if right-handed neutrinos carry lepton number, then Majorana
masses are forbidden and the masses must be Dirac.

With neutrinos, we often go back and forth between Dirac spinor notation and Weyl
spinor notation. Normally (as for the electron) we construct Dirac spinors out of inde-

pendent left- and right-handed Weyl spinors, ψ =
(
ψL
ψR

)
. As discussed in Section 11.3,

we can also construct Dirac spinors out of single Weyl spinors as ψR =
(
iσ2ν

�
R

νR

)
or

ψL =
(

νL
iσ2ν

�
L

)
. Then, Dirac and Majorana mass terms can be written in a uniform

notation as (focusing on one generation for simplicity)

Lν,mass = −mψ̄LψR −
M

2
ψ̄RψR. (29.64)

In this notation, ψL and ψR can mix. Thus, the mass eigenstates are linear combinations

that diagonalize the matrix

(
0 m

m M

)
. As you showed in Problem 11.9, the physical masses

are
√
m2 + 1

4M
2± 1

2M . In the limit that M � m, one mass is mheavy ≈M and the other

is mlight ≈ m2

M 
 mheavy. In particular, if one takes the Dirac masses to be electroweak
scale, m ≈ 100 GeV, and the Majorana masses to be very high, M ≈ MPl ≈ 1019 GeV,
then one finds mlight ≈ 10−6 eV. This explanation of the lightness of neutrino masses is
called the see-saw mechanism: as M goes up, m goes down.

Why should the Majorana masses Mij be so large? On the one hand, the Majorana
mass terms are dimension 3 and hence super-renormalizable. So, following the Wilsonian
RG picture (Section 25.2) one expects them to be UV sensitive. On the other hand, in the
limit that Mij = 0, the Lagrangian has a custodial symmetry, lepton number (or its non-
anomalous cousin B − L, see Section 30.5.1). Thus, radiative corrections to the Majorana
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masses will be proportional to the Majorana masses themselves. In other words, in a the-
ory with right-handed neutrinos, it is technically natural (see Box 22.1) for the Majorana
masses to be small.

To understand the largeness of the see-saw scale, an important observation is that one
does not need right-handed neutrinos at all to give neutrinos mass. If we allow non-
renormalizable terms in the Lagrangian, then neutrino masses can be produced from a
dimension-5 term:

Ldim-5 = −M̃ij (L̄iH̃)(H̃Lj)†. (29.65)

Such a term is in fact generated if we integrate out the right-handed neutrinos in Eq. (29.67)
(see Problem 29.6). If the mass-eigenstate sterile right-handed neutrinos are very heavy,
a dimension-3 mass term, like that in Eq. (29.64) is indistinguishable from a dimension-5
mass term, like that in Eq. (29.65). Since right-handed neutrinos have never been observed,
a model without them is in a sense simpler. In addition, there is no custodial symmetry
when these dimension-5 terms are turned off. Thus, one expects these terms to be generated
at least by quantum gravity at the Planck scale. In other words, in a theory without right-
handed neutrinos, the left-handed neutrinos naturally have masses parametrically smaller
than the weak scale due to the see-saw mechanism.

Regardless of whether neutrinos are Majorana or Dirac, or whether the masses come
from operators of dimension 3, 4 or 5, the only neutrinos we can ever measure are left-
handed. Since left-handed neutrinos only interact via the weak force, it is more natural to
work in the flavor basis than in the mass basis. We denote by νLe, νLμ and νLτ the left-
handed electron, muon and tauon neutrinos respectively. In the flavor basis, the couplings
to the W boson are diagonal (but the masses are not):

LνW = − g√
2

(
ēL /WνLe + μ̄L /WνLμ + τ̄L /WνLτ + h.c.

)
. (29.66)

The mass eigenstates are related to these by a unitary transformation. We write νL1, νL2

and νL3 for the mass eigenstates. Then

LνW = − g√
2
U ij
(
ēLi /WνLj + h.c.

)
, (29.67)

where νLe = Ue1νL1 + Ue2νL2 + Ue3νL3 and so on. The matrix U is called the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. It the lepton analog of the CKM
matrix. It can be written with an almost identical parametrization to Eq. (29.58):

U =

⎛⎜⎜⎝
c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎟⎟⎠
⎛⎝1 eiα12

2

ei
α31
2

⎞⎠ .
(29.68)

Note that 1, 2, 3 refer to mass eigenstates defined in terms of flavor eigenstates by this
matrix. We do not assume that m1 < m2 < m3.

As with the CKM matrix, the PNMS matrix contains three mixing angles, θ12, θ13 and
θ23 (note that although we use the same notation, these angles are different from the CKM
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mixing angles). The phase δ is the Dirac phase. If neutrino masses are Dirac, there is only
this phase. However, if there is a Majorana component to the neutrino masses, then two
additional phases, α12 and α31, are possible. You can show why exactly two extra phases
occur in Problem 29.6. Thus there are three masses, three mixing angles and one or three
phases in the neutrino sector.

It is very difficult to measure masses and mixing angles in neutrinos. Neutrino masses
were first observed indirectly using solar neutrinos (neutrinos coming from the Sun).
Practically all of the neutrinos produced by the Sun should be produced as electron (flavor
eigenstate) neutrinos. However, the number of electron neutrinos observed on Earth that
came from the Sun was found to be only around one-third of the number expected. This
was the solar neutrino problem. The resolution is that (flavor eigenstate) neutrinos oscil-
late as they propagate through space. Indeed, it is only in the mass basis that the neutrino
propagators are diagonal (see Problem 29.7). The solar neutrino problem was finally con-
vincingly resolved by the Sudbury Neutrino Observatory (SNO) in 2001, which found that
35% of the solar neutrinos were νe and 65% were νμ or ντ . This confirmed not only that
neutrinos oscillate, but that the solar models which predicted their production rate were
correct.

Atmospheric neutrinos are those produced by cosmic rays. Cosmic rays (mostly pro-
tons) hit nuclei in the atmosphere, producing pions, which decay as π− → μ−ν̄μ →
(e−νeνμ) ν̄μ. Thus, one expects a 2:1 ratio of muon to electron neutrinos coming from
the atmosphere. Deviations from this ratio constrain other neutrino mixing angles and
masses. Neutrino oscillations are also measured using reactor neutrinos (produced by
nuclear reactors; mostly νμ) and accelerator neutrinos (produced by particle accelerators;
mostly ν̄e).

Neutrino oscillations are only sensitive to differences in squares of neutrino masses.
Solar oscillations give Δm2

21 = m2
2−m2

1 = (7.50±0.20)×10−5 eV2, while atmospheric
oscillations give |Δm2

32| = |m2
3 − m2

2| = 0.002 32 ± 0.000 12 eV2. These differences
are consistent with either m3 > m2 > m1 (normal hierarchy) or m2 > m1 > m3

(inverted hierarchy). The mixing angles are sin2(2θ12) = 0.857 ± 0.024, sin2(2θ23) >
0.95 and sin2(2θ13) = 0.098 ± 0.013. The Dirac CP phase δ has not been measured
as of this writing (but may be soon), nor have the Majorana CP phases. To measure the
Majorana CP phases, one would first have to measure that neutrinos are Majorana, which
is extraodinarily challenging on its own. Majorana neutrinos would imply lepton number
violation, for example in neutrino-less double β-decay (see Problem 11.9).

29.4 The 4-Fermi theory

Well before the electroweak unification was understood, its effective low-energy descrip-
tion, the 4-Fermi theory, was proven to give a very accurate phenomenological description
of the weak interactions. Precision measurements at low energy gave indications of how
heavy the W and Z bosons should be. They also indicated that the theory should involve
vector currents (V ) such as ψ̄γμψ and axial vector currents (A) such as ψ̄γμγ5ψ. In fact,
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the structure of the electroweak theory was deduced from the V − A (pronounced “V
minus A”) structure of the 4-Fermi theory. Writing V − A = γμ − γμγ5 = 2γμPL, with
PL = 1

2

(
1− γ5
)
, we see that the V −A structure in the low-energy theory corresponds to

a chiral theory in which weak interactions involve only left-handed fermions.1

The W± couple to the left-handed currents JL±μ as L = e√
2 sin θw

(
Wμ

+J
+
μ +W−J−

μ

)
where

J+
μ = ν̄eLγ

μeL + ν̄μLγ
μμL + ν̄τLγ

μτL + Vij ū
i
Lγ

μdjL, (29.69)

J−
μ = ēLγ

μνeL + μ̄Lγ
μνμL + τ̄Lγ

μνjτL + V †
ij d̄

i
Lγ

μujL. (29.70)

To derive the 4-Fermi theory, let us start with the lepton sector treating the neutrinos
as massless (so we can ignore mixing angles). At tree-level, the interactions among the
electron, muon and their neutrinos are

=
(

ie√
2 sin θ

)
2(ēLγμνeL + μ̄Lγ

μνμL)

×
−i
(
gμν − pμpν

m2
W

)
p2 −m2

W

(ν̄eLγνeL + ν̄μLγ
νμL) . (29.71)

We call these charged-current interactions. At low energy, p2 
 m2
W , and we can

approximate these exchanges with a local 4-Fermi interaction:

L4F = −4GF√
2

(
ēγμ
(

1− γ5

2

)
νe + μ̄γμ

(
1− γ5

2

)
νμ

)
×
(
ν̄eγ

μ

(
1− γ5

2

)
e+ ν̄μγ

μ

(
1− γ5

2

)
μ

)
, (29.72)

where we have put in the γ5 matrices using PL = 1−γ5
2 so we can use Dirac spinors to

describe the fermions, and

4GF√
2
≡ e2

2m2
W sin2θw

=
g2

2m2
W

=
2
v2
. (29.73)

Using the 4-Fermi Lagrangian gives a current–current interaction amplitude that is identi-
cal to Eq. (29.72) for p2 
 m2

W . Thus, at low energy, the weak theory reduces to a set of
4-Fermi interactions among leptons (and quarks) with a universal strength given by GF .

In particular, the muon decay rate is easy to calculate from the 4-Fermi theory. In the
limit mμ � me, we find (cf. Problem 5.3)

Γ(μ→ eνν) = G2
F

m5
μ

192π3
. (29.74)

1 Actually, there were some confusing indications through the 1950s that also scalar currents (S), such as ψ̄ψ,
or tensor currents (T ), such as ψ̄σμνψ, were involved. Only the vector and axial vector currents can be easily
embedded in a spontaneously broken renormalizable gauge theory; thus, careful measurements of spin and
angular momentum in low-energy experiments were important inspirations for the electroweak theory.
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From the measured muon lifetime, τμ = 2.197µs; this lets us deduce GF = 1.166 ×
10−5 GeV−2. This determines that the electroweak vev is

v = 247 GeV, (29.75)

and constrains one combination of sin θw and mW . Note that, since αe is known and
sin θw < 1, we also know that mW = v

2
e

sin θw
> 37.4 GeV and mZ = mW

cos θw
> mW .

Thus, simply from the muon lifetime, we already knew in the 1960s that theW and Z must
be quite heavy. Having an idea where to look helped motivate the design of the Super Pro-
ton Synchrotron (SPS) at CERN, with which theW andZ bosons were discovered in 1983.

Quarks can be studied with charged-current interactions in the 4-Fermi theory, much
like leptons. The only complication is that now flavor mixing is an issue. Including the first
two generations, the weak currents are expanded to

J+
μ = · · ·+ (ūL cos θc − c̄L sin θc)γμdL + (c̄L cos θc + ūL sin θc)γμsL, (29.76)

where the · · · are the terms in Eq. (29.74), and similarly for J−
μ . These mediate processes

such as β-decay, for example n→ p+e−ν̄e. From precision measurements of radioactive
decays and from rates for kaon decay, such as K+ → π0e+νe (here, K+ = s̄u), it was
deduced that GF in these processes is consistent with the leptonic measurements, and that
sin θc = 0.22.

The neutral-current interactions, mediated by Z-boson exchange, are much harder
to measure directly in the lepton sector. The first observation was in 1973 when νμe

−

elastic scattering was observed. This was a great test of the electroweak theory, consistent
with a Z boson, but it only gave a very poor measure of mZ and θw. It was not until
the mid 1990s that θw could be measured from this process directly. We now have very
precise measurements: mW = 80GeV, mZ = 91.2GeV and sin2θw = 0.21. Moreover,
measuring these quantities in multiple ways has provided important tests of the Standard
Model and constraints on beyond-the-Standard-Model physics (see Chapter 31).

The Z boson couples to linear combinations of the J3
μ and QED currents. The

interactions are

Lint =
e√

2 sin θw

(
Wμ

+J
+
μ +W−J−

μ

)
+

e

sin θw
ZμJ

Z
μ + eAμJ

μ
EM, (29.77)

where, from Eq. (29.40),

JZμ =
1

cosθw
J3
μ−

sin2θw
cos θw

JEM
μ =
∑
i

[
1

cos θw
ψ̄iγ

μT 3ψi −
sin2θw
cos θw

Qiψ̄iγ
μψi

]
, (29.78)

with ψi including quarks and leptons and T 3 being the SU(2) generator in the appropriate
representation. Note that JZμ only couples fermions to fermions of the same flavor. The full
4-Fermi theory can then be written as

L4F = −4GF√
2

[
J+
μ J

−
μ +
(
JZμ
)2]

. (29.79)

There is no JμEMJ
μ
EM 4-Fermi interaction since the photon is massless and so, unlike the W

and Z bosons, its propagator can never be approximated by a constant.
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One immediate prediction of L4F is that, since the neutral current is flavor diagonal,
there will be no flavor-changing neutral current (FCNC) processes, such as s → ueν̄e.
This is an obvious result the way we have set things up, but it is not at all obvious without
an electroweak theory. Indeed, historically, in the 1960s it was not at all clear why there
were no FCNCs. In the 1960s the only hadrons known were made up of u, d and s quarks.
The charm quark was then predicted to exist based on the absence of neutral currents, as
we will now explain. When charm was discovered in 1974 the electroweak theory was
spectacularly confirmed.

To see why charm is required to avoid FCNCs, let us forget about leptons and consider
a theory with only two generations of quarks. Then there is only one mixing angle, θc, so
we can choose a basis so that u and c quarks are flavor and mass eigenstates, while the
left-handed d and s quarks are mixed. Then the two left-handed doublets are

Q1 =
(

uL
cos θcdL + sin θcsL

)
, Q2 =

(
cL

cos θcsL − sin θcdL

)
. (29.80)

The electromagnetic current is flavor diagonal for any number of quarks, so we will ignore
it. The neutral current coming from weak interactions is

J3
μ = ūγμu+ (cos θcd̄+ sin θcs̄)γμ(cos θcd+ sin θcs)

+ c̄γμc+
(
cos θcs̄− sin θcd̄

)
γμ(cos θcd− sin θcs)

= ūγμu+ c̄γμc+ d̄γμd+ s̄γμs, (29.81)

where we have dropped the L subscripts for readability. This current is flavor diagonal, as
expected. Now, suppose there were no charm quark. Then there would be no Q2 and the
neutral current would have a non-vanishing cross term cos θc sin θcd̄γμs, implying d̄s →
μ+μ− and K0 → μ+μ−. So Glashow, Iliopoulos and Maiani (GIM) predicted that there
must be a charm quark so that the flavor-changing process would cancel. The absence of
FCNCs works for any number of generations, and is known as the GIM mechanism. It is
a general consequence of the T 3 generator of SU(2) commuting with rotations in flavor
space, as can be seen in Eq. (29.79).

29.5 CP violation

That parity is violated in the weak theory is obvious: the left-handed fields couple differ-
ently from the right-handed fields. Parity violation is manifest in nuclear β-decay, which
always produces left-handed electrons. However, one might imagine that, while the uni-
verse is not invariant under reflection in a mirror, it might still be invariant under that
reflection accompanied by the interchange of particles and antiparticles. This is CP invari-
ance. We now know that CP invariance is violated by rare processes involving hadrons.
We call this weak CP violation. There is another possible form of CP violation, called
strong CP violation, which is expected but has not been observed. The non-observation
is known as the strong CP problem. We will now discuss both of these aspects of CP
physics.
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29.5.1 Weak CP violation

We derived how C and P act on fields and spinor bilinears in Chapter 11. Under the
combination CP , we found:

ψ̄iψj(t, �x) → +ψ̄jψi(t,−�x), ψ̄iγ
5ψj(t, �x) → −ψ̄jγ5ψi(t,−�x), (29.82)

ψ̄i /Aψj(t, �x) → +ψ̄j /Aψi(t,−�x), ψ̄i /Aγ
5ψj(t, �x) → ψ̄j /Aγ

5ψi(t,−�x), (29.83)

which we can use to check which terms in the Standard Model Lagrangian can violate CP .
We showed above that one can perform chiral rotations on the left- and right-handed

fermions of the Standard Model so that the quark masses are diagonal and the mixing is
moved to the CKM matrix V . The relevant part of the electroweak Lagrangian is

Lmix =
e√

2 sin θw

[
ūLV /W

+
dL + d̄LV

† /W−
uL

]
=

e√
2 sin θw

[
W+
μ ūV γ

μ

(
1− γ5

2

)
d +W−

μ d̄ V
†γμ
(

1− γ5

2

)
u

]
, (29.84)

where ψL/R = 1
2 (1± γ5)ψ has been used to remove the projectors on the second line.

Under CP , W+ and W− switch places since they are each other’s antiparticles. So,

CP : Lmix →
e√

2 sin θw

[
W+
μ ū (V †)T γμ

(
1− γ5

2

)
d+W−

μ d̄V
T γμ
(

1− γ5

2

)
u

]
.

(29.85)

Thus, the Standard Model Lagrangian is invariant under CP if V � = V , that is, if V is
real. Thus:

A non-zero phase in the CKM matrix implies CP violation.

There is an easier way to see that complex numbers imply CP violation. We know that
any term in any local Lagrangian must be CPT invariant, which is true with real or complex
coefficients. Since T sends i → −i in addition to whatever it does on fields, if a term is
T invariant for real coefficients, it must be T violating for imaginary coefficients. By CPT
invariance, we conclude that imaginary coefficients imply CP violation.

Recall that, in the flavor basis, all the flavor structure is in the Yukawa matrices. Consider
the up-type quark (uct) mass terms:

LYuk = − v√
2

[
ūLYuuR + ūRY

†
uuL
]

= − v

2
√

2

[
ū(Yu + Y

†
u )u+ ū

(
Yu − Y †

u

)
γ5u
]
.

(29.86)
Under CP , ūiuj → ūjui and ūiγ5uj → −ūjγ5ui (along with �x→ −�x), so

LYuk → − v

2
√

2

[
ū(Yu + Y †

u )Tu− ū
(
Yu − Y †

u

)T
γ5u
]

= − v

2
√

2

[
ū (Y �u + Y †�

u ) u+ ū
(
Y �u − Y †�

u

)
γ5u
]
. (29.87)

Thus, again we see that the Lagrangian is CP invariant if the coefficients are real.
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Whether or not a matrix is real is not a basis-invariant statement. Indeed, in the flavor
basis where theW interactions are flavor diagonal and the mass matrix is complex, V = 1,
there is still CP violation. Conversely, even if the mass matrix were diagonal, and V were
complex, there might still be noCP violation if some residual chiral rotation could remove
the phase. For example, if one of the quarks is massless, this is always true. So it would be
useful to have a basis-independent measure of CP violation.

Now recall that we relate the Yukawa couplings to the diagonal mass matrices via

Yd = UdMdK
†
d, Yu = UuMuK

†
u, (29.88)

where Md =
√

2
v diag(md,ms,mb), Mu =

√
2
v diag(mu,mc,mt) and V = U†

uUd. Thus,
if Uu = Ud, then V = 1 with no flavor or CP violation. Before, we used the freedom
to rotate right-handed fields without changing the weak interactions to remove Kd and
Ku. We could equally well have rotated dR → KdU

†
ddR and uR → KuU

†
uuR so that

Yd = UdMdU
†
d and Yu = UuMuU

†
u, which makes the Yukawa matrices Hermitian. So

let us assume Yu and Yd are Hermitian, without loss of generality. If Yu and Yd could
be simultaneously diagonalized, then V = 1 and there is no CP violation. Thus, CP
violation is all encoded in the commutator

− iC = [Yu, Yd] =
[
UuMuU

†
u, UdMdU

†
d

]
= Uu
[
Mu, V MdV

†]U†
u. (29.89)

The matrix C is traceless and Hermitian because Yu and Yd are Hermitian. Thus, it is
natural to look at its determinant as the obvious basis-invariant quantity:

detC = −16
v6

(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)J,
(29.90)

where, for any i, j, k and l,

Im
(
VijVklV

�
ilV

�
kj

)
= J
∑
m,n

εikmεjln, (29.91)

where εijk is the antisymmetric 3-index tensor. This is a fancy way of saying

J = Im(V11V22V
�
12V

�
21) = −Im(V11V32V

�
12V31) = Im(V22V33V

�
23V

�
32) = . . . , (29.92)

where these products are all equal due to the unitarity of the CKM matrix. J is known as
the Jarlskog invariant. In terms of the standard parametrization,

J = s12s23s31c12c23c
2
31 sin δ. (29.93)

J has a nice geometric interpretation as well: it is twice the area of the unitarity triangle,
as in Eq. (29.62).

The important point about the Jarlskog invariant is that it vanishes if and only if there is
no CP violation. That is,

All weak CP violation in the Standard Model is proportional to Im det[Yu, Yd].

We have already seen that if V is real there is no CP violation. If V is real then J = 0
and so det C = 0. Also, we note that if either two up-type or two down-type quarks are
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degenerate then detC = 0 as well. For degenerate masses we get an extra phase rotation
to remove the CP phase.

Note that since detC has many factors of masses mi 
 v, it is in general quite small.
Thus, even if the CP phase is large, the physical manifestations of CP violation are bound
to be small. Another way to see this is to observe that if there were only two generations,
then one could remove all the phases completely. Thus, any CP -violating effect in the
Standard Model must involve all three generations. Consider, for example, the observed
CP violation in kaon decays such as K+ → π+π−. One might imagine that, at the quark
level, this is just s → ūdu through a W exchange. However, such a Feynman diagram
only involves the first two generations, and thus cannot explain the observed CP violation.
Instead, it must be a loop-induced process. But the CKM elements coupling either of the
first two generations to the third are small, thus the amount of observed CP violation is
going to be suppressed by products of small CKM elements.

29.5.2 Measurements of weak CP violation

There are lots of ways to measure the one CP phase in the Standard Model. That all these
measurements are consistent is an important check on the CKM matrix and often provides
stringent constraints on beyond-the-Standard-Model physics. We will give only a brief
summary of these measurements.

Historically, the first measurement ofCP violation was through decays of neutral kaons.
Kaons were discovered in 1946 through cosmic rays, and were “strange” because they had
long lifetimes – they can only decay through strangeness-violating weak interactions. Their
quark content is K0 = s̄d and K̄0 = d̄s, which are flavor eigenstates, but CP conjugates
of each other. The CP eigenstates are

K1 =
K0 + K̄0

√
2

, K2 =
K0 − K̄0

√
2

, (29.94)

with K1 CP -even and K2 CP -odd. Thus, to the extent that CP is a good symmetry, only
K1 can decay to ππ, which is a CP -even final state, while K2 must decay to πππ. This
makes K2 live much longer (52 ns) than K1 (0.089 ns). What Christenson, Cronin, Fitch
and Turlay famously found in 1964 was that the long-lived kaon sometimes did decay to
ππ, about 0.2% of the time, indicating CP violation. If the Hamiltonian commuted with
CP , K1 and K2 would be the mass eigenstates, but since CP is violated, these states can
mix with each other. The mass eigenstates in the K1/K2 system can be written as

KS = K1 + εK2, KL = K2 − εK1, (29.95)

with ε = 0 if CP is conserved. Christenson et al. found that ε ∼ 2 × 10−3. The most
precise value today is |ε| = (2.228± 0.011)× 10−3.

The kaon system is actually a little more complicated, since it is also possible that the
CP eigenstate K2 could decay to ππ directly. To be more precise, if all the CP violation
were due to mixing between K1 and K2 (this is called indirect CP violation or CP
violation from mixing), then
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Γ(KL → π+π−)
Γ(KL → π0π0)

=
Γ(K1 → π+π−)
Γ(K1 → π0π0)

=
Γ(KS → π+π−)
Γ(KS → π0π0)

. (29.96)

In addition, there can be direct CP violation, also called CP violation from decay, for
which we introduce a new parameter ε′ with M(K2 → ππ) ∝ ε′. Arguments that exploit
the approximate isospin invariance of the meson system (see Chapter 28) show that

η+− ≡
M(KL → π+π−)
M(KS → π+π−)

= ε+ ε′, η00 ≡
M
(
KL → π0π0

)
M(KS → π0π0)

= ε− 2ε′. (29.97)

Experimentally, it is found that
∣∣∣η+−
η00

∣∣∣ = 0.9951 ± 0.0008 so that Re
(
ε′
ε

)
=

(1.65± 0.26) × 10−3. It is also possible to measure a third type of CP violation, from
the interference between mixing and decay, which would show up in Im(ε). Current
measurements give Im(ε) = (1.57± 0.02)× 10−3.

It is not possible to calculate theoretically ε or ε′ due to the non-perturbative QCD effects
in the required matrix elements. But it is also not hard to see if the measurements are
roughly consistent with theory. Since CP violation requires three generations, at the per-
turbative level, there must be loops involving top or bottom quarks involved in the decays.
For example, we could have a W loop and an intermediate top quark for the s → ūdu

decay. This would be suppressed by Vtd ∼ 0.084. The mixing can be estimated from box
diagrams. The result is that the sizes of ε and ε′ are apparently consistent with the CKM
paradigm.

For many years CP violation had only been measured in kaon decays and mixing
(including also additional modes, such as KL → μ+νμπ

−). The advent of B physics
opened up a whole new world of CP -violating observables and has provided important
checks on the CKM framework and strong constraints on new physics. CP violation has
been observed in decays, first in B0 → K+π− then in other modes, such as B0 → π+π−,
B0 → ηK0�, B+ → ρ0K+, and also in interference B → J/ψKS , B → η′KS , etc. So
far, to the extent that we can connect these measurements to the CKM matrix (there are
sometimes large theory uncertainties), everything seems perfectly consistent with a single
CP phase. However, beyond-the-Standard-Model physics in CP violation could be just
around the corner!

29.5.3 Strong CP violation

There is one more possible source of CP violation in the Standard Model. Sometimes
global chiral symmetries, such as ψ → eiγ5θψ, that are symmetries of a classical
Lagrangian are not symmetries of a quantum theory. When this happens we say the symme-
tries are anomalous. As we will discuss in the next chapter, anomalies can be understood
as arising in situations in which a classical action is invariant under a symmetry trans-
formation, but the path integral measure is not. For example, if we perform a chiral
transformation on a quark, we find∫

Dψ̄Dψ →
∫
Dψ̄Dψ exp

(
iθ

∫
g2

32π2
εμναβF aμνF

a
αβ

)
, (29.98)
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where F aμν is the field strength for anything under which quarks are charged, g is the corre-
sponding charge, and εμναβ is the totally antisymmetric tensor. For multiple generations,
rotating by ψiR → RijψjR and ψiL → LijψjL, the angle will be given by det(R†L) = reiθ

for some r ∈ R (see Problem 29.9). Note that θ = arg det(R†L) = 0 if the rotation is
non-chiral.

The term εμναβF aμνF
a
αβ is C-conserving but violates P , T and CP . To see this, recall

from Chapter 11 that under CP ,

Aa0(t, �x) → −Aa0(t,−�x), Aai (t, �x) → Aai (t,−�x), ∂0 → ∂0, ∂i → −∂i.
(29.99)

If CP and P are both violated, then the terms

LCPV = θQCD
g2
s

32π2
εμναβF aμνF

a
αβ + θ2

g2

32π2
εμναβW a

μνW
a
αβ + θ1

g′2

16π2
εμναβBμνBαβ

(29.100)

are allowed. Here F aμν ,W
a
μν and Bμν are the SU(3),SU(2) and U(1) field strengths,

respectively. In fact, not only are these terms allowed, but they must be included since
they may be generated through UV-divergent loop corrections and thus the θi are needed
to renormalize the divergences. On the other hand, since the θi change if we perform chiral
rotations, it is not clear whether they can have observable consequences, since observables
must be independent of our chiral phase conventions.

To see whether the θi have observable consequences, let us revisit the Yukawa matrices,
which we saw can be written as

Yd = UdMdU
†
dK

†
d, Yu = UuMuU

†
uK

†
u. (29.101)

Here, extra factors of U†
d and U†

u have been inserted, without loss of generality. Then we
can first perform chiral rotations on only the right-handed fields to remove Ku and Kd,
and then perform non-chiral rotations to remove Ud and Uu. The phase induced by the Kd

and Ku chiral rotations is given by (see Problem 29.9)

arg det(KdKu) = − arg[det(MdMu) det(YdYu)] = − arg det(YdYu), (29.102)

since det(MdMu) ∈ R. Thus, the CP violating term becomes, after this rotation,

Lθ = θ̄
g2
s

32π2
εμναβF aμνF

a
αβ , θ̄ ≡ θQCD − θF , (29.103)

where

θF ≡ arg det(YdYu). (29.104)

A chiral rotation moves the phase back and forth between θQCD and θF leaving θ̄

unchanged. Thus, θ̄ is a basis-independent measure of CP violation, and can be physi-
cal. θ̄ is known as the strong CP phase. However, if det(MdMu) = 0, that is, if any of the
quark masses vanish, then θ̄ is again unphysical.

Before discussing the strong CP phase further, we note that the SU(2) and U(1) angles
can be removed completely by chiral rotations. We saw that rotating only the right-handed
fields can make the Yukawa couplings real, but θ2 is unchanged by these rotations since
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right-handed fields are uncharged. Thus, we can rotate the left-handed fields only to put
θ2 into the Yukawa couplings then rotate the right-handed fields to remove it. Therefore,
there is no basis-independent measure of CP violation for SU(2) and θ2 is unphysical.
Similarly, since neutrinos are uncharged, we can rotate them to show that the U(1) phase
is unphysical. Thus, neither θ2 nor θ1 can have any physical consequences.

We have seen that θ̄ is basis independent, and if none of the quark masses vanish, then it
can potentially be measured. But how will it show up? Not in perturbation theory! To see
this, note that we can write

εμναβF aμνF
a
αβ = ∂μKμ, Kμ = εμναβ

(
AaνF

a
αβ −

g

3
fabcAaνA

b
αA

c
β

)
, (29.105)

showing that εμναβF aμνF
a
αβ is a total derivative.Kμ is known as a Chern–Simons current.

Total derivatives never contribute in perturbation theory – the Feynman rule would have a
factor of the sum of all momenta going into the vertex minus the momenta going out,
which gives a factor of zero. Thus, θ̄ can only have physical consequences through non-
perturbative effects.

By the way, the non-perturbative effects coming from θ̄ can be thought of as due to
configurations of gauge fields that are locally gauge equivalent to 0, but cannot be gauged
away globally due to a topological obstruction. One can find such solutions, for example
instantons. Unfortunately, instantons have not been used to give quantitative predictions
for the effects of θ̄. The problem is that integrals over instanton size are IR divergent and
must be somehow cut off by ΛQCD. That ΛQCD should be relevant is consistent with θ̄
having no effect in perturbation theory: non-perturbative effects are tiny at weak coupling
and infinitely important at large coupling.

Although we cannot calculate the effect of θ̄ directly in QCD, we can actually make pre-
cise quantitative predictions using the Chiral Lagrangian, discussed in Chapter 28. Recall
that the Chiral Lagrangian is a nonlinear sigma model in which the pions are embedded
in a composite field U(x) = exp(2iπa(x)τa/Fπ). Including the mass term, the Chiral
Lagrangian is

L =
F 2
π

4
tr
[
(DμU)

(
DμU

†)]+ V 3

2
tr
[
MU +M†U†] , (29.106)

where V 3 = 〈ūu〉 = 〈d̄d〉 and M is the quark mass matrix in QCD. As we saw in Sec-
tion 28.2.2, the second term leads to the Gell-Mann–Oakes–Renner relation, F 2

πm
2
π =

V 3(mu +md). To see the dependence on θ̄ we first use our chiral rotation to remove
the phase from the εμναβF aμνF

a
αβ term in the QCD Lagrangian completely, putting

it back in the Yukawa couplings. This leads to complex quark masses. That is, now

M =
(
mu

md

)
eiθ̄. One immediate consequence is that the vacuum energy is now

θ̄ dependent:

E(θ̄) = V 3(mu +md) cos θ̄ = F 2
πm

2
π cos θ̄. (29.107)

This equation indicates that different values of θ̄ correspond to different vacua, the θ-
vacua.
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A more important consequence is that the neutron picks up an electric dipole moment
proportional to θ̄. The calculation is not trivial, so we will only sketch it. The neutron and
the proton form an isospin doublet, so their couplings to the pion have to be of the form

LπNN = πaΨ̄
(
iγ5gπNN + ḡπNN

)
τaΨ, (29.108)

where Ψ is the proton–neutron isospin doublet. The first term is the ordinary Yukawa cou-
pling to the pseudoscalar pions, which gives rise to the Yukawa potential describing the
strong nuclear force among nucleons. The second term is CP -violating and must be pro-
portional to θ̄. Upgrading isospin to SU(3) and using baryon mass relations one can show
that [Crewther et al., 1979]

ḡπNN =
2msmumd

fπ(mu +md)
(MΞ −MN )θ̄ ≈ 0.04θ̄, (29.109)

which can be compared to gπNN = 13.4. Loops of pions such as

neutron proton neutron

π−π−

ḡπNN gπNN (29.110)

(with the CP violation coming in at the ḡπNN vertex) generate a neutron electric dipole
moment. These loops are UV divergent. Cutting off the UV divergences at mN gives

dN =
mN

4π2
gπNN ḡπNN ln

mN

mπ
=
(
5.2× 10−16e · cm

)
θ̄. (29.111)

The current bound on the neutron EDM is |dN | < |dN | < 2.9× 10−26e · cm, so that

θ̄ < 10−10. (29.112)

The smallness of θ̄ despite the large amount of CP violation in the weak sector is known
as the strong CP problem.

Possible solutions to the strong CP problem include:

• One of the quarks is massless, mu = 0. Unfortunately there is no symmetry protecting
mu = 0, since the chiral symmetry is anomalous. So mu would just have to be tuned
to be small instead of tuning θ̄ to be small. Thus, the mu = 0 solution just moves the
fine-tuning problem around.

• Axions. The idea behind axions is to add fields to the Standard Model so that there
is a new anomalous U(1) symmetry. This symmetry is known after its authors as a
Peccei–Quinn symmetry. If this U(1)PQ is spontaneously broken, it will generate a
new Goldstone boson, a. Then a chiral rotation can move the Goldstone boson into the
θ̄ parameter, modifying the energy in Eq. (29.107) to

E
(
θ̄, a
)

= F 2
πm

2
π cos
(
θ̄ − a (x)

fa

)
, (29.113)

where fa is the axion decay constant. Then 〈a〉 = θ̄ and the ground state has no effec-
tive θ̄. The excitations around this vacuum are known as axions, and additionally provide
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a viable dark-matter candidate. Expanding Eq. (29.113), one finds ma = mπfπ
fa

, so
that the axion decay constant is inversely proportional to the axion mass. Astrophys-
ical bounds (for example, axion emissions from red giants) require fa> 1010 GeV,
while cosmological bounds (too many axions would overclose the universe) require
fa < 1012 GeV. Thus, the axion should be very weakly coupled with a mass 10−4 eV <

ma < 10−2 eV. It is of course possible to evade these bounds with clever model
building.

One concern about the axion solution to the strong CP problem is that the U(1)PQ

symmetry must be very special. For example, let φ denote the field whose expectation
value breaks U(1)PQ. Since quantum gravity is non-renormalizable, we should generi-
cally include dimension n operators such as cn 1

M4−n
Pl

φn + h.c. in the Lagrangian. After

spontaneous breaking of U(1)PQ, these will contribute to the potential E(θ̄, a) terms

such as |cn| fna
Mn−4

Pl
cos(na+ arg(cn)) which make 〈a〉 �= θ̄. For θ̄ to be consistent with

current bounds on the neutron EDM requires operators with n > 10 be forbidden (or
have exponentially small coefficients). See [Kamionkowski and March-Russell, 1992]
for more information. There are of course ways to build models that forbid dangerous
operators.

• Spontaneous CP violation. Here one supposes that, at some high scale, CP is an exact
symmetry of nature, and is then spontaneously broken. When CP is a symmetry, the θ
term is forbidden. Thus, all the CP violation appears in the Yukawa matrices. One can
then connect the generation of a large weak CP phase and a small strong CP phase
to the generation of mass and mixing angles. There are many ways to do this, but no
overwhelmingly compelling model at this point.

29.5.4 Summary of CP violation

We have seen that the Standard Model contains two types of CP violation: weak and
strong. To date, only weak CP violation has been observed. In the Standard Model, one
can describe the weak CP phase in a basis-invariant way in terms of the Jarlskog invariant:

J = Im(V11V22V
�
12V

�
21) = (2.96± 0.20)× 10−5. (29.114)

As an angle, we can also write

θweak = arg det[YuYd − YdYu] . (29.115)

Or, one can identify the CP phase with the parameter δ in the CKM parametrization in
Eq. (29.58). This phase has been experimentally measured to be δ = 69◦ ± 5◦. One can
measure weak CP violation many ways: in decays, in mixing, or in interference between
decays and mixing. Historically, CP violation was measured first in the K → 2π decays,
but now has been much more thoroughly tested using B mesons.

The strong CP phase has two components. One is the θQCD angle associated with

LCP = θQCD
g2
s

32π2
εμναβF aμνF

a
αβ . (29.116)
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The other is θF = arg det [YuYd]. These two angles rotate into each other under global chi-
ral transformations of the Standard Model quarks. Only the combination θ̄ = θQCD− θF is
possibly physical. Moving θ̄ into θQCD, we see that it has no effect to any order in perturba-
tion theory, since εμναβF aμνF

a
αβ is a total derivative. But it does have an important effect

at low energy, where non-perturbative dynamics of QCD translate it into a CP -violating
coupling between pions and nucleons. This should lead to an electric dipole moment for
the neutron of order

(
5.2× 10−16

)
e · cm θ̄. Current bounds then force θ̄ ≤ 10−10.

One of the great mysteries of the Standard Model is why weak CP violation is nearly
maximal (δ ∼ π) while strong CP violation is so small

(
θ̄ 
 1
)
. Another important fact

about CP violation is that it is also necessary to explain the abundance of matter over
antimatter in the universe. It turns out that there is not enoughCP violation in the Standard
Model to explain this abundance. Thus, there is good reason to think that there is more to
be learned about CP violation.

Problems

29.1 The dominant production mechanism for Higgs bosons at LEP was e+e− → ZH .
Calculate the total cross section for this process at tree-level in the Standard Model.
How many 100 GeV Higgs bosons would there have been when LEP ran at
206 GeV?

29.2 e+ e− → hadrons in the Standard Model.
(a) Calculate the rate for the total cross section σtot(e + e− → hadrons) in the

Standard Model at tree-level including both Z-boson and photon contributions
and their interference. The contribution using photons alone was calculated in
Section 26.3.

(b) Calculate σtot at 1-loop.
(c) Plot the total cross section as a function of center-of-mass energy showing sepa-

rately the photon contribution, theZ-boson contribution, and their sum. Plot also
the sum ignoring interference between the Z-boson and photon contributions.
When can interference be ignored?

29.3 Higgs decays.
(a) Calculate the rate for H → bb̄ in the Standard Model.
(b) Calculate the rate for H → gg in the Standard Model. The dominant contribu-

tion to this comes from a triangle loop diagram involving top quarks.
(c) Calculate the rate for H → γγ in the Standard Model. Include contributions

both from top loops and from loops of W bosons.
(d) Plot the branching ratios for H → bb̄, H → gg and H → γγ as a function of

Higgs mass.
29.4 Partial wave unitarity.

(a) Calculate the matrix element for longitudinal W+
LW

−
L →W+

LW
−
L scattering in

the Standard Model.
(b) Show that the high-energy behavior of this matrix element is reproduced using

the Goldstone boson equivalence theorem.
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(c) Does this give a stronger unitarity constraint than the one using W+
L ZL →

W+
L ZL scattering?

29.5 Figure 29.2 includes a number of experimental constraints on the CKM matrix.
(a) The parameter εK is what we were calling ε in Section 29.5.2. Why do the

curves marked εK have the shape they do? That is, what combination of CKM
elements is εK sensitive to?

(b) What could you measure to produce the curves marked Δmd or |Vub|?
29.6 Show that with general Dirac and Majorana mass matrices, there are three phases in

the PNMS matrix, while if the mass matrix is purely Dirac, there is only one. How
many phases are there if the masses are purely Majorana?

29.7 Neutrino oscillations.
(a) Neutrinos are produced in the Sun predominantly through the reaction p + p +

e− → d+ νe. What is the momentum of the neutrinos produced this way?
(b) Consider a two-neutrino flavor system. The mass eigenstates evolve in time as

|ν1〉 = e−iE1t
(

cos θ|νe〉+ sin θ|νμ〉
)
, (29.117)

|ν2〉 = e−iE2t
(
− sin θ|νe〉+ cos θ|νμ〉

)
, (29.118)

where θ is the mixing angle. Show that the probability of finding a solar neutrino
as an electron neutrino after a time T is given by

P = 1− sin2(2θ) sin2 (E2 − E1)T
2

. (29.119)

(c) Take the non-relativisitic limit E � mν to show that the probability of finding a
solar neutrino with energy E as an electron neutrino at a distance L is given by

P = 1− sin2(2θ) sin2 Δm2L

4E
. (29.120)

(d) How far should you put your detector from a reactor producing ∼ 4MeV
neutrinos assuming Δm2 = 7.5× 10−5 eV2 to see the largest effect?

29.8 Show that when you integrate out the right-handed neutrinos in Eq. (29.63), a
dimension-5 operator like that in Eq. (29.65) results. What is the exact relationship
between Mij and M̃ij?

29.9 Show that when multiple generations are rotated, then the θ angle shifts by
arg det

(
R†L
)
.
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Most of the time, a symmetry of a classical theory is also a symmetry of the quantum theory
based on the same Lagrangian. When it is not, the symmetry is said to be anomalous. Since
symmetries are extremely important for determining the structure of a theory, anomalies are
also extremely important. In fact, anomalies have already been mentioned in two important
contexts: in Chapter 28 they were invoked to justify why the Chiral Lagrangian was based
on SU(2) × SU(2) → SU(2) and not U(2) × U(2), and in Chapter 29 they were used
to explain the strong CP problem. These results will be reviewed and properly justified in
Section 30.5.

Recall from Section 3.3 that continuous global symmetries imply conserved currents,
through Noether’s theorem. If a symmetry is anomalous then it is not actually a symmetry
and the associated current will not be conserved. Such a situation has dire consequences for
theories in which the current couples to a massless spin-1 particle, such as QED or Yang–
Mills theory. If the current to which a massless spin-1 particle couples is not conserved, the
Ward identity will be violated, unphysical longitudinal polarizations can be produced, and
unitarity will be violated. Thus, in a unitary quantum theory, gauged symmetries (those
with associated massless spin-1 particles) must be anomaly free. It turns out that this is a
strong requirement for a consistent quantum theory. For example, in the Standard Model,
it forces electric charge to be quantized, and the quark and lepton charges to be related, as
we will see in Section 30.4.

Anomalies of symmetries associated with gauge bosons are called gauge anomalies. If
a symmetry is not gauged, nothing goes terribly wrong if it is anomalous. That is, global
anomalies do not lead to inconsistencies (the phrase anomaly free refers to the absence of
gauge anomalies only). There are actually many global anomalies in the Standard Model.
For example, baryon number conservation, that is, the symmetry that prevents quarks from
turning into antiquarks, with associated Noether current Jμbaryon =

∑
i q̄iγ

μqi, is anoma-
lous. This anomaly is allowed because there is no massless spin-1 particle in the Standard
Model that couples to Jμbaryon. In fact, baryon number violation is a necessary condition
to explain the preponderance of matter over antimatter in the universe. Global anoma-
lies also help explain why the η′ meson is so heavy (the U(1) problem) and generate
one of the greatest mysteries of the Standard Model: the strong CP problem, discussed in
Section 29.5.3. These topics are all discussed in Section 30.5.

An important fact about anomalies is that they are infrared effects, from having mass-
less particles in the spectrum. This leads to the idea of anomaly matching: the spectrum
of massless particles in a theory below a phase transition is strongly constrained by
the spectrum above the transition. For example, we will show in Section 30.6 that
anomaly matching implies that the SU(3)L × SU(3)R flavor symmetry of QCD must be
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spontaneously broken, a fact that we had to assume in our study of the Chiral Lagrangian
in Chapter 28. Anomaly matching provides strong constraints on the spectrum of bound
states in strongly coupled theories.

Another type of anomaly, one we have already seen, is that of scale invariance. QCD (in
the absence of quark masses) is scale invariant as a classical theory, but the quantum theory
is certainly not scale invariant. In this case, the anomaly is called the trace anomaly and is
proportional to the β-function. Conformal field theories are trace-anomaly free. The study
of conformal field theories is a fascinating subject, but beyond our scope. In this chapter
we will focus entirely on chiral anomalies, that is, anomalies which arise in theories that
treat left-handed and right-handed fermions differently.

As in previous chapters we use the abbreviation 〈· · · 〉 ≡ 〈Ω |T {· · · }|Ω〉.

30.1 Pseudoscalars decaying to photons

The way anomalies were first understood was through Feynman diagrams. This is not the
easiest way to understand them, but it is important to show that they can be understood
using methods you already know. We will start with the case in which a massive fermion
runs around the loop. This avoids the ambiguities associated with massless fermions, which
are discussed in Section 30.2. It also lets us calculate the rate for the decay π0 → γγ,
which, as we will see, provides an important way to measure the number of colors of
quarks.

30.1.1 Triangle diagrams for massive fermions

To begin, forget about symmetries and just consider the QED Lagrangian with a Yukawa
coupling between a fermion ψ and a pseudoscalar π:

L = −1
4
F 2
μν −

1
2
φ(� +m2

π)π + ψ̄(i/∂ − e /A−m)ψ + iλπψ̄γ5ψ. (30.1)

You can think of π as the neutral pion, ψ as the proton, and the Yukawa coupling as λ = mp
Fπ

if you want (identifications we justify below), but the calculation we will do applies for any
π, ψ and λ.

There are two 1-loop diagrams that contribute to π → γγ:

iM =
p

k

q2

q1

π0

ε2�ν

ε1�μ

k −
q1

k + q2

+
p

k

q1

q2

π0

ε2�ν

ε1�μ

k −
q2

k + q1

(30.2)
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The sum of these diagrams is

iM = −1(−λ)(−ie)2 ε1�μ ε2�ν Mμν(q1, q2) , (30.3)

where

Mμν =
∫

d4k

(2π)4
Tr

[
γμ

i

/k −mγν
i

/k + /q2 −m
γ5 i

/k − /q1 −m

+γν
i

/k −mγμ
i

/k + /q1 −m
γ5 i

/k − /q2 −m

]
. (30.4)

Although superficially Mμν ∼
∫
d4k
k3 looks linearly divergent, it is easy to see that the

result must be UV finite. By Lorentz invariance and symmetry under exchanging 1 ↔ 2
and μ ↔ ν (by bosonic statistics), the only two possibilities are that Mμν ∼ qμ2 q

ν
1 or

Mμν ∼ εμναβq1αq
2
β . Either way, by dimensional analysis, we could have, at worst,Mμν ∼

q2
∫
d4k
k5 , which is convergent in the UV.

First, we move all the γ-matrices to the numerator to find

Mμν = −i
∫

d4k

(2π)4
Tr

⎡⎣ γμ(/k +m) γν
(
/k + /q2 +m

)
γ5
(
/k − /q1 +m

)[
(k − q1)2 −m2

][
(k + q2)

2 −m2
]
[k2 −m2]

+
(
μ↔ ν

1 ↔ 2

)⎤⎦ .
(30.5)

Then we use

Tr
(
γμγνγαγβγ5

)
= −4iεμναβ (30.6)

to simplify the numerator as

Tr
[
γμ
(
/k +m
)
γν
(
/k + /q2 +m

)
γ5
(
/k − /q1 +m

)]
= 4imεμναβqα1 q

β
2 . (30.7)

Since this is symmetric under 1 ↔ 2 with μ↔ ν, the integral reduces to

Mμν = 8mεμναβq1αq
2
β

∫
d4k

(2π)4
1[

(k − q1)2 −m2
][

(k + q2)
2 −m2

]
[k2 −m2]

. (30.8)

This can be evaluated using Feynman parameters in the usual way. The result is

Mμν = 8mεμναβq1αq
2
β

×
(
−i

16π2

)∫ 1

0

dx

∫ 1−x

0

dy
1

m2 − x(1− x) q21 − y(1− y) q22 − xy(s− q21 − q22)
,

(30.9)

where s = (q1 + q2)
2. We can next set q21 = q22 = 0 and s = m2

π since the photons and
pion are on-shell. For the purposes of the π0 → γγ decay with the proton in the loop, we
take mπ 
 mp = m. Then the double integral gives 1

2m2 . Combining with Eq. (30.3) we
get

M = λ
e2

4π2m
εμναβε1�μ ε

2�
ν q

α
1 q

β
2 (30.10)
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and therefore

Γ(π → γγ) =
α2
e

64π3
λ2m

3
π

m2
. (30.11)

Thus, if we know λ and m we can calculate the decay rate to photons. We next discuss
how we know λ and m for π0 → γγ and the physical implications of this calculation.

30.1.2 π0 → γγ

To relate the result above to the physical pion decay rate, we need to know how the pion
couples to charged fermions. These couplings can be extracted by recalling that the pions
are Goldstone bosons corresponding to the spontaneously chiral symmetry of QCD. This
interpretation of the pion was explained in Chapter 28, but we will review it here for clarity.

Recall the QCD Lagrangian with two effectively massless flavors (mu,md 
 ΛQCD):

LQCD = iψ̄u /Dψu + iψ̄d /Dψd. (30.12)

This Lagrangian is invariant not only under the global SU(2) symmetry (isospin) under
which ψu and ψd transform as a doublet, but under a larger SU(2)L × SU(2)R symmetry
under which the left-handed and right-handed quark doublets transform separately. Strong
dynamics of QCD induces condensates, 〈ψ̄uψu〉 ≈ 〈ψ̄dψd〉 ≈ Λ3

QCD, which spontaneously
break SU(2)L × SU(2)R down to SU(2)isospin. Thus, in the low-energy theory, particles
only form multiplets of SU(2)isospin. For example, the proton and neutron form an isospin
doublet Ψ = (ψp, ψn). Under elements gL×gR of the chiral symmetry group, this doublet,
which can be written as Ψ = ΨL+ΨR, transforms as ΨL → gLΨL and ΨR → gRΨR. The
nucleon mass term, mN Ψ̄Ψ = mN Ψ̄LΨR +mN Ψ̄RΨL, is only invariant when gL = gR,
that is, under SU(2)isospin. Since mN ∼ 1GeV is large, in the theory with just the proton
and neutron there is little evidence of the original chiral symmetry.

A useful trick is to restore the full chiral symmetry by introducing a triplet of pions, πa.
These transform in the adjoint representation of isospin and nonlinearly under the broken
generators of SU(2)L × SU(2)R. The transformation properties are efficiently encoded by
embedding the pions in a field U = exp(2iπaτa/Fπ) transforming as U → gLUg

†
R. This

lets us write down a Lagrangian invariant under SU(2)L × SU(2)R:

L =
F 2
π

4
tr
[
(∂μU)(∂μU)†

]
+ Ψ̄Li/∂ΨL + Ψ̄Ri/∂ΨR −mN

(
Ψ̄LUΨR + Ψ̄RU

†ΨL

)
=
(
− 1

2
πa�πa + · · ·

)
+ Ψ̄
(
i/∂ −mN

)
Ψ + i

2mN

Fπ
πa
(
Ψ̄γ5τaΨ + · · ·

)
. (30.13)

To connect to charge-eigenstate fields, recall that the charged pions are π± =
1√
2

(
π1 ± iπ2

)
and the neutral pion is π0 = π3. The proton and neutron form an isospin

doublet. Using τ3 = diag
(

1
2 ,−

1
2

)
, the interaction involving the π0 and the proton is then

imNFπ π
0
(
ψ̄pγ

5ψp
)

with ψp the proton. In this way, the coupling of the neutral pion to a
charged fermion (the proton) is determined. Thus, we can use Eq. (30.11) with λ = mN

fπ
and m = mN to calculate the π0 → γγ decay rate. We find

Γ(π0 → γγ) =
α2
e

64π3

m3
π

F 2
π

= 7.77 eV, (30.14)
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independent of mN . The current experimental value is 7.73 ± 0.16 eV. So this is
remarkably good!

Although the π0 → γγ rate was originally calculated (correctly) through a proton loop
[Steinberger, 1949], as we have done, it was not done using the Chiral Lagrangian. All that
is in fact needed is that the neutral pion is one of the Goldstone bosons associated with
the spontaneous breaking of SU(2)L × SU(2)R → SU(2). That is, one just needs to iden-
tify 〈Ω|J5a

μ (x)|πa(p)〉 = ieipxFπpμ (as discussed in Chapter 28) and to take a = 3 for
the neutral pion. In QCD, J5a

μ = q̄τaγμγ
5q with τa the isospin generators. Although the

pions are elementary particles in the Chiral Lagrangian but composite particles in QCD,
the current-algebra relation does not care: 〈Ω|J5a

μ (x)|πa(p)〉 = ieipxFπpμ holds in either
theory. Normally, we cannot calculate anything about pions in perturbative QCD. The
decay π0 → γγ is perhaps the unique exception to this rule: it does not get corrections
from QCD beyond 1-loop. Although it is not at all obvious at this point, in the limit in
which the pion is massless (so it is a Goldstone boson not a pesudo-Goldstone boson), the
pion decay rate is exact at 1-loop. Moreover, since the final result is independent of the
mass of the particle going around the loop, we do not need to know the quark masses. In
other words, we can take Ψ to be either the proton (which is part of an isospin doublet with
the neutron) or the up and down quarks (which form an isospin doublet with each other).

When Ψ is the (u, d) quark doublet instead of the (p+, n) doublet, the factor of e2 in
the amplitude is multiplied by a factor of Q2

i , where Qi is the charge of the quark. Using
τ3 = diag

(
1
2 ,−

1
2

)
again, we see that the up quark gets the same isospin factor 1

2 as the
proton, but the down quark gets − 1

2 . In addition, we must sum over the number of colors
N . Putting these factors together, the rate in Eq. (30.14) is multiplied by

N

[(
2
3

)2

−
(

1
3

)2
]

=
N

3
. (30.15)

Since the rate in Eq. (30.14) is already close to the known experimental value, we conclude
that N = 3. Historically, this was one of first constraints on QCD [Adler, 1969], and it
remains one of the easiest ways to measure the number of colors.1

30.1.3 Currents and symmetries

So far, we have just calculated the rate for a pseudoscalar to decay into two photons. We
have not yet explained what this has to do with anomalous symmetries. In fact, the connec-
tion is not obvious. Indeed, the π0 → γγ rate calculation has a tumultuous history: getting
the rate right was one thing, understanding the calculation was another. In the 1940s, when
π0 → γγ was of particular interest, neither quantum field theory nor the profound impor-
tance of symmetries were well understood. Early attempts at this decay rate were producing
non-gauge invariant amplitudes. A gauge-invariant result was finally achieved by Stein-
berger in 1949, using the recently proposed Pauli-Villars regularization scheme. However,
Steinberger’s result seemed to depend on the way in which the calculation was done. The

1 We have shamelessly glossed over the fact that the π0 is massive and its mass is not less than the quark
masses (at least the masses defined through the Gell-Mann–Oakes–Renner relation Eq. (28.37), m2

π =
V 3

F2
π

(mu +md)). A proper treatment of quark masses gives small corrections to our calculation. Details can

be found in [Adler, 1969], [Cheng and Li, 1985] or [Donoghue et al., 1992].
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puzzle was solved by Schwinger in 1951 who calculated a gauge-invariant rate that was
apparently free of ambiguities. (Schwinger’s calculation, and his gauge-invariant proper-
time formalism, are described in Chapter 33.) The calculation then rested for 20 years, until
quantum field theory had matured. It was not until 1969, through the work of Alder, Bell
and Jackiw, that the subtleties in the π0 → γγ calculation, and the connection to anoma-
lous symmetries, were finally understood. A discussion of the history of anomalies can be
found in [Bastianelli and van Nieuwenhuizen, 2006, Section 5.4].

The relevant symmetries to be considered are present in the QED Lagrangian:

L = ψ̄
(
i/∂ − e /A−m

)
ψ

= ψ̄L
(
i/∂ − e /A

)
ψL + ψ̄R

(
i/∂ − e /A

)
ψR −mψ̄LψR −mψ̄RψL, (30.16)

where the right- and left-handed fields are ψR/L = 1
2 (1± γ5)ψ as usual. In the limit

m→ 0, this Lagrangian is invariant under two independent global symmetries:

ψ → eiαψ, ψ → eiβγ5ψ, (30.17)

or equivalently,

ψL → ei(α−β)ψL, ψR → ei(α+β)ψR. (30.18)

The symmetries under which the left- and right-handed fields transform the same way are
called vector symmetries, and the symmetries under which they transform with oppo-
site charge are called chiral symmetries. The Noether currents associated with these
symmetries are

Jμ = ψ̄γμψ, Jμ5 = ψ̄γμγ5ψ, (30.19)

which are called the vector current and axial current respectively. The equations of
motion imply

∂μJ
μ = 0, ∂μJ

μ5 = 2imψ̄γ5ψ. (30.20)

Thus, classically the vector symmetry is exactly conserved, which is important since it is
the one that couples to QED, while the chiral symmetry is only conserved in the massless
limit.

To connect to the π0 → γγ calculation, we first recall that the result of the loop diagram,
Eq. (30.10), was thatM = λ e2

4π2mε
μναβε1�μ ε

2�
ν q

α
1 q

β
2 . This loop can be interpreted as saying

that the composite operator to which the pion couples, namely ψ̄γ5ψ, has a non-zero value
in the presence of a background electromagnetic field. More precisely,〈

A
∣∣ψ̄γ5ψ
∣∣A〉 = i

e2

32π2

1
m
εμναβFμνFαβ . (30.21)

This equation will be derived rigorously in Chapter 33 for constant Fμν . It is consistent
with Eq. (30.20) only if, in the presence of a constant background field Fμν , the axial
current is not conserved:

〈
A
∣∣∂μJμ5

∣∣A〉 = − e2

16π2
εμναβFμνFαβ . (30.22)

We will derive this result an alternative way in Section 30.3.
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An important point is that Eq. (30.22) is independent of the mass m of whatever goes
around the loop in the limit when that mass becomes small. Thus, it seems that if m = 0
exactly we should still have ∂μJ5

μ �= 0. On the other hand, if m = 0 the axial current
is (classically) exactly conserved: ∂μJμ5 = 0. These two statements are only consistent
if the symmetry violation arises due to quantum effects, that is, if the chiral symmetry is
anomalous. To clarify the situation we will next attempt to calculate ∂μJ5

μ directly in the
quantum theory with m = 0 from the start.

30.2 Triangle diagrams with massless fermions

It is not hard to see that the massless limit of the 1-loop calculation we just did is not going
to be smooth: the numerator trace in Eq. (30.7) vanishes as m→ 0, since it is proportional
to m, and the final result in Eq. (30.10) blows up, since it is proportional to 1

m . Since
what we are really interested in is the symmetry violation, it makes sense to recast the
calculation as matrix elements of currents instead of matrix elements of the Goldstone
bosons that these currents create from the vacuum.

30.2.1 Current matrix elements

We would like to see if the conservation laws ∂μJμ = ∂μJ
μ5 = 0, which hold in the

classical theory with massless fermions, also hold in the quantum theory. Recall from Sec-
tion 7.1 and Section 14.7 that the difference between classical and quantum theories
is encoded in the Schwinger–Dyson equations. These equations describe how the clas-
sical equations of motion are modified for quantum fields inside correlation functions.
Thus, we consider the correlation function

〈
Jα5(x)Jμ(y)Jν(z)

〉
, which is closely related

to the triangle diagrams computed in the previous section. We would like to know if
∂
∂xμ

〈
Jα5(x)Jμ(y)Jν(z)

〉
= 0. In this section, we calculate the relevant Feynman dia-

grams in perturbation theory. In Section 30.3, we use the path integral to rederive and
reinterpret our perturbative result with the Schwinger–Dyson equations.

In momentum space, we want to calculate

iMαμν
5 (p, q1, q2) (2π)4δ4(p− q1 − q2)

=
∫
d4x d4y d4z e−ipxeiq1yeiq2z

〈
Jα5(x)Jμ(y)Jν(z)

〉
=
∫
d4x d4y d4z e−ipxeiq1yeiq2z

〈[
ψ̄(x)γαγ5ψ(x)

][
ψ̄(y)γμψ(y)

][
ψ̄(z)γνψ (z

)]〉
.

(30.23)

Here, the brackets indicate that the spinor indices inside are contracted. This looks like an
S-matrix element without the LSZ projection factors putting the external states on-shell.
We can evaluate it just as we would any other Green’s function, but with the positions of
some fields taken at the same point. Indeed, it is not hard to see that the leading diagrams
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that contribute are the two in Eq. (30.2) without the external pion or photon lines, and
without the coupling constants. Thus, at 1-loop the correlation function is

iMαμν
5 = −

∫
d4k

(2π)4
Tr
[
γμ

i

/k
γν

i

/k + /q2
γαγ5 i

/k − /q1
+ γν

i

/k
γμ

i

/k + /q1
γαγ5 i

/k − /q2

]
.

(30.24)

Rather than evaluating Mαμν
5 and then contracting it variously with pα, qμ1 or qν2 , it is

simpler to perform the contractions before evaluating the integrals.
Contracting the axial current with its momentum pα gives

pαM
αμν
5 =

∫
d4k

(2π)4

[
Tr
[
γμ/kγν(/k + /q2)/pγ5(/k − /q1)

]
k2(k + q2)

2(k − q1)2
+
(
μ↔ ν

1 ↔ 2

)]
. (30.25)

In this case, the integral is superficially linearly divergent as in the massive case. To
simplify the integral, we can use

{
γ5, γμ
}

= 0 and pμ = qμ1 + qμ2 so that

/pγ
5 = (/q1 + /q2)γ5 = γ5(/k − /q1) + (/k + /q2)γ5. (30.26)

Then,

pαM
αμν
5 =

∫
d4k

(2π)4

[
Tr
[
γμ/kγν(/k + /q2)γ5

]
k2 (k + q2)

2

+
Tr
[
γμ/kγνγ5(/k − /q1)

]
k2 (k − q1)2

+
(
μ↔ ν

1 ↔ 2

)]

= 4iεμνρσ
∫

d4k

(2π)4

[
kρqσ2

k2(k + q2)
2 +

kρqσ1

k2(k − q1)2

]
+
(
μ↔ ν

1 ↔ 2

)
. (30.27)

Each term in this expression has only one type of momentum in it (q1 or q2), so by Lorentz
invariance the integral of each term has to give either qρ1q

σ
1 or qρ2q

σ
2 , both of which vanish

when contracted with εμνρσ . Thus, pαM
αμν
5 appears to vanish, in contradiction to our

expectations.
Before we make any rash conclusions, let us try to evaluate q1μM

αμν
5 , which should be

zero by the Ward identity of QED. We find

q1μM
αμν
5 =

∫
d4k

(2π)4

[
Tr
[
/q1/kγ

ν(/k + /q2)γαγ5(/k − /q1)
]

k2(k + q2)2(k − q1)2

+
Tr
[
γν/k /q1(/k + /q1)γαγ5(/k − /q2)

]
k2 (k + q1)

2(k − q2)2

]
. (30.28)

We can simplify these terms by writing /q1 = /k −
(
/k − /q1
)

in the first term and /q1 =(
/k + /q1
)
− /k in the second term, to remove terms in the denominator:
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q1μM
αμν
5 =

∫
d4k

(2π)4

[
Tr
[
γν(/k + /q2)γαγ5(/k − /q1)

]
(k − q1)2(k + q2)2

−
Tr
[
/kγν(/k + /q2)γαγ5

]
k2(k + q2)

2

+
Tr
[
γν/kγαγ5(/k − /q2)

]
k2(k − q2)2

−
Tr
[
γν(/k + /q1)γαγ5

(
/k − /q2
)]

(k + q1)
2(k − q2)2

]
. (30.29)

Evaluating the traces then gives

q1μM
αμν
5 = −4iεανρσ

∫
d4k

(2π)4

[
(k − q1)ρ(k + q2)

σ

(k − q1)2 (k + q2)
2 −

(k − q2)ρ(k + q1)
σ

(k − q2)2(k + q1)
2

]
. (30.30)

Now, if we were cavalier about the divergent integral, we would just shift k → k + q1 in
the first integrand and k → k+ q2 in the second integrand to get something that identically
vanishes. Unfortunately, this is incorrect.

The mistake is to try to shift a linearly divergent integral. This is a very subtle point that
confused many people for a long time. In fact, one of the reasons Schwinger set up his man-
ifestly gauge-invariant proper-time formalism (Chapter 33) was to resolve confusions in the
literature about this type of integral. The most obvious way to make a divergent integral
well-defined is to introduce a regulator. Unfortunately, none of our favorite regulators will
work. For example, dimensional regularization has trouble with γ5 since chiral fermions
are a feature of four dimensions. One can use dimensional regularization, but it is very
subtle. Pauli–Villars, which would introduce a heavy fermion, will not work either, since
the fermion mass explicitly breaks the chiral symmetry we are trying to verify. Instead, we
proceed by trying to make sense of the linearly divergent integrals directly.

30.2.2 Linearly divergent integrals

Consider the one-dimensional integral

Δ(a) =
∫ ∞

−∞
dx[f(x+ a)− f(x)] , (30.31)

where the function f(x) goes to a constant at x = +∞ and a different constant at x = −∞.
Then each term is linearly divergent, and we would like to know if the difference is finite
or infinite. If we are allowed to shift x → x− a on just the first term, then Δ(a) vanishes
at the level of the integrand. On the other hand, if we Taylor expand around a = 0 we find

Δ(a) =
∫ ∞

−∞
dx

[
af ′(x) +

a2

2
f ′′(x) + · · ·

]
= a [f(∞)− f(−∞)] , (30.32)

where the higher-derivative terms do not contribute since f(±∞) = const. Thus, the dif-
ference between a linearly divergent integral and its shifted value has a linear dependence
on the shift.

In four dimensions, we can do the same thing. In this case, we will need to evaluate
integrals such as

Δα(aμ) =
∫

d4k

(2π)4
(Fα[k + a]− Fα[k]) . (30.33)
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Wick rotating, this is

Δα(aμ) = i

∫
d4kE

(2π)4
(Fα[kE + a]− Fα[kE ]) . (30.34)

Taylor expanding the integrand around a = 0, as in the one-dimensional case, we get

Δα(aμ) = i

∫
d4kE

(2π)4

[
aμ

∂

∂kμE
(Fα[kE ]) +

1
2
aμaν

∂

∂kμE

∂

∂kνE
(Fα[kE ]) + · · ·

]
. (30.35)

These derivative terms can then be integrated using Gauss’s theorem. Since the integral is
supposed to be linearly divergent, at large kE our function must scale as

lim
kE→∞

Fα(kE) = A
kαE
k4
E

. (30.36)

Therefore, everything but the term with one derivative vanishes too fast at infinity to
contribute. To evaluate the one-derivative term, we write it as a surface integral:

Δα(aμ) = iaμ
∫

d4kE

(2π)4
∂

∂kμE
(Fα[kE ]) = iaμ

∫
d3Sμ

(2π)4
Fα[kE ]. (30.37)

The surface element d3Sμ is normal to the surface of a 4-sphere at |kE | =∞. So it can be
written as d3Sμ = k2kμdΩ4, where we drop the E subscript for clarity. Thus,

Δα(aμ) = iaμ lim
|k|→∞

∫
dΩ4

(2π)4
A
kμkα

k2
. (30.38)

Finally, we use kαkμ = 1
4k

2δμα and Ω4 = 2π2 to get

Δα(aμ) =
i

32π2
Aaα. (30.39)

This is a general result: linearly divergent integrals that would vanish if we could shift are
finite, with the result proportional to the necessary shift.

30.2.3 Vector current conservation, continued

We can now evaluate the integral in Eq. (30.30):

q1μM
αμν
5 = −4iεανρσ

∫
d4k

(2π)4

[
(k − q1)ρ (k + q2)σ

(k − q1)2 (k + q2)2
− (k − q2)ρ(k + q1)σ

(k − q2)2(k + q1)2

]
.

(30.40)
Part of this integrand is quadratically divergent, but vanishes because εανρσkρkσ = 0.
Thus, we have a linear divergence. The first term has k shifted from the second by aσ =
qσ2 − qσ1 . The linear divergence in the second term has the form

F ρ(k) = −4iεανρσ
(qρ1 + qρ2)kσ

(k + q1)2(k − q2)2
k→∞−−−−→ −4iεανρσ(qρ1 + qρ2)

kσ

k4
. (30.41)

So we get

q1μM
αμν
5 =

1
4π2

εανρσqρ1q
σ
2 �= 0. (30.42)
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Thus, it seems the Ward identity is violated for the vector current, but not the axial current.
The resolution to this mystery is that, although the integral was finite, it depended on the

shift of k between the two integrals. But the choice of k as a loop momentum was arbitrary
to begin with. The only constraint is that once we pick a choice for k, we have to evaluate
Mαμν

5 once and for all – we cannot change our convention if we want to contract Mαμν
5

with a different momentum. So let us take the most general possibility. We change k to

kμ → kμ + b1q
μ
1 + b2q

μ
2 (30.43)

in the first gr.aph. Since we want to maintain Bose symmetry for the photons, we should
take kμ → kμ + b2q

μ
1 + b1q

μ
2 in the second graph. This will change the result to

q1μM
αμν
5 =

1
8π2

εανρσ(qρ1 + qρ2)(1− b1 + b2)(qσ2 − qσ1 )

=
1

4π2
εανρσqρ1q

σ
2(1− b1 + b2). (30.44)

Similarly, we find

pαM
αμν
5 =

1
4π2

εμνρσqρ1q
σ
2 (b1 − b2). (30.45)

Thus, if we take b1 = b2 then

pαM
αμν
5 = 0, q1μM

αμν
5 =

1
4π2

εανρσqρ1q
σ
2 , (30.46)

so that the axial current is conserved but the vector is not conserved. Alternatively, we can
take b1 − b2 = 1, in which case

pαM
αμν
5 =

1
4π2

εμνρσqρ1q
σ
2 , q1μM

αμν
5 = 0, (30.47)

so that the vector current is conserved but the axial current is not. This second choice agrees
with what we found in the massive case. When the electron has a mass, there is no longer
an ambiguity – the chiral symmetry is already broken, so only the vector symmetry could
possibly be conserved.

30.2.4 Discussion

We have found that the choice of momentum routing in the loops can affect the symmetry
properties of the final result. You can think of this as a choice of regulator, although it
is not really a regulator but rather a different type of ambiguity inherent in divergences
of individual Feynman diagrams. If one insists on preserving gauge invariance, then for
QED with a single Dirac fermion, we showed that ∂μ

〈
Jα5JμJν

〉
= ∂ν
〈
Jα5JμJν

〉
= 0

so that the Ward identity is satisfied, but ∂α
〈
Jα5JμJν

〉
�= 0 so that the axial current is

not conserved in the quantum theory. Moreover, only this choice of momentum routing is
consistent with the massless limit of having a massive Dirac fermion in the loop.

Is it always possible to choose a momentum routing that preserves gauge invariance? In
QED with any number of Dirac fermions the answer is yes. There, the photon couples to
the vector current Jμ =

∑
iQiψ̄iγ

μψi. Let us denote the matrix element corresponding to
the 3-point function 〈JαJμJν〉 as Mαμν

V . Then Mαμν
V vanishes when contracted with any
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momentum. You can check this yourself, but it follows simply from charge-conjugation
invariance of QED (a special case of Furry’s theorem, see Problem 14.2).

If we had only a Weyl fermion, however, there would be a problem. Then the
Lagrangian is

L = −1
4
F 2
μν + ψ̄

(
i/∂ − e /A

)
PLψ, (30.48)

where PL = 1
2 (1− γ5) as usual. Here, we have explicitly broken charge-conjugation

invariance, so Furry’s theorem does not apply. In this case, the photon couples to a current
JμL = ψ̄γμPLψ. Let us denote the matrix element for 〈JαLJ

μ
LJ

ν
L〉 as Mμνα

L . Then,

Mαμν
L =

∫
d4k

(2π)4

[
Tr
[
γμPL/kγ

νPL(/k + /q2)γαPL(/k − /q1)
]

k2(k + q2)
2(k − q1)2

+
(
μ↔ ν

1 ↔ 2

)]
, (30.49)

as in Eq. (30.25) with a slightly different numerator. We can move the factors of PL past
various γ-matrices so that there is only one PL left. Then we expand PL = 1

2 (1 − γ5)
into two terms. The term without γ5 is just Mαμν

V , corresponding to the 3-point function
with all vector currents 〈JαJμJν〉. The other has a single γ5, which gives the quantity〈
Jα5JμJν

〉
∼Mαμν we calculated above. Thus

Mαμν
L =

1
2
(Mαμν

V −Mαμν
5 ) . (30.50)

We showed above that either pαM
αμν
5 �= 0 or q1αM

αμν
5 �= 0. Since pαM

αμν
V =

q1μM
αμν
V = 0, we must therefore have that either pαM

αμν
L �= 0 or q1αM

αμν
L �= 0. In other

words, either ∂α〈JαLJ
μ
LJ

ν
L〉 �= 0 or ∂μ〈JαLJ

μ
LJ

ν
L〉 �= 0. Thus, the Ward identity cannot be

satisfied. The same conclusion obviously holds for a theory with only a single right-handed
fermion. In either case, the Ward identity must be violated and

QED with a single Weyl fermion is inconsistent.

What if we had left- and a right-handed fermions with different charges QL and QR?

L = −1
4
F 2
μν + ψ̄

(
i/∂ +QLe /A

)
PLψ + ψ̄

(
i/∂ +QRe /A

)
PRψ. (30.51)

In this case, the gauge boson Aμ couples to

Jμmix = QLψ̄γ
μPLψ +QRψ̄γ

μPRψ. (30.52)

In this case, there is a contribution to 〈JαmixJ
μ
mixJ

ν
mix〉 with either fermion in the loop.

There is no source of mixing between left- and right-handed fermions, thus

Mαμν
mix = Q3

LM
αμν
L +Q3

RM
αμν
R =

1
2
(
Q3
R −Q3

L

)
Mαμν

5 . (30.53)

Therefore, the only way a theory with a gauge boson that couples to a single left-handed
and a single right-handed fermion can be consistent is if QL = QR, as in QED.
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This leaves us with an obvious follow-up question: Are the weak interactions anoma-
lous? Since the SU(2)weak gauge group of the Standard Model only couples to left-handed
fields, it seems very dangerous. To answer this question, we need the generalization of the
above results to non-Abelian currents. But first we repeat the chiral anomaly calculation
using a different technique.

30.3 Chiral anomaly from the integral measure

In the previous section, we calculated the chiral anomaly through Feynman diagrams. In
the massless case, this calculation was very subtle and involved a careful choice of momen-
tum in a loop integral. A more direct connection between the anomaly and the violation
of a symmetry uses the path integral. The intuitive idea, due to Kazuo Fujikawa, is that
anomalies arise when there are symmetries of the action that are not symmetries of the
functional measure in the path integral.

To begin, we quickly review the path-integral proof of current conservation in the
quantum theory from Section 14.5. We start with

〈O(x1, . . . , xn)〉 =
1

Z[0]

∫
Dψ̄Dψ exp

[
i

∫
d4x iψ̄ /∂ψ

]
O(x1, . . . , xn), (30.54)

where O(x1, . . . , xn) is some gauge-invariant operator. For example, you can think of
O = Jμ(y)Jν(z). This action is invariant under the global symmetries ψ → eiαψ

and ψ → eiβγ5ψ. To derive current conservation for the vector symmetry, we redefine
ψ(x) → eiα(x)ψ(x), with α now a function of x. The measure is invariant under this
change of variables (we will confirm this in a moment) andO(x1, . . . , xn) is invariant, but
ψ̄ /∂ψ → ψ̄ /∂ψ+ i ψ̄γμψ∂μα. Since the path integral integrates over all field configurations,
it is invariant under any field redefinition, thus the remaining term proportional to α must
vanish. Expanding to first order in α and integrating by parts, we find

0 =
1

Z[0]

∫
d4z α(z)

∫
Dψ̄Dψ exp

[
i

∫
d4x iψ̄ /∂ψ

]
∂

∂zμ

[
ψ̄(z)γμψ(z)

]
O(x1, . . . , xn) .

(30.55)
Since this holds for all α(z), we must have

∂μ〈Jμ(x)O(x1, . . . , xn)〉 = 0. (30.56)

The only part of the above derivation that changes when we consider an axial rotation
ψ → eiβ(x)γ5ψ is that the path integral measure is no longer invariant.

To see how the measure changes, consider a general linear transformation ψ(x) →
Δ(x)ψ(x) and ψ̄(x) → Δ†(x)ψ(x) which generates a Jacobian factor:

Dψ̄Dψ → |J |−2Dψ̄Dψ. (30.57)

The Jacobian J = det Δ appears to a negative power because the transformed variables
are fermionic (see Section 14.6). To make sense out of J we write

J = det Δ = exp tr ln Δ, (30.58)
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where the trace sums over the eigenvalues of ln Δ. For example, consider a non-chiral
transformation Δ(x) = eiα(x). In this case, we can write tr ln Δ = i

∫
d4xα(x) and

J = exp
(
i

∫
d4xα(x)

)
. (30.59)

Thus, |J |2 = 1 and the measure is invariant. For a chiral transformation, Δ(x) = eiβ(x)γ5
.

In this case,

J = exp
(
i

∫
d4xβ(x)Tr [γ5]

)
, (30.60)

which appears to vanish, and therefore the measure becomes singular.
To find a sensible answer for this Jacobian, one approach is to work in QED. Thus, we

consider the QED path integral∫
Dψ̄DψDA exp

[
i

∫
d4x

(
−1

4
F 2
μν + iψ̄ /Dψ

)]
. (30.61)

The action is still invariant under the global symmetries ψ → eiαψ and ψ → eiβγ5ψ with
Aμ unchanged. Under the local axial transformation, Aμ is invariant, so its transformation
does not contribute to the Jacobian.

To regulate the divergence, it is helpful first to introduce a one-particle Hilbert space
{|x〉} so that Δ(x) = 〈x|Δ(x̂)|x〉. Then,

J = exp
(
i

∫
d4xTr[〈x|β(x̂)γ5|x〉]

)
, (30.62)

with Tr a Dirac trace.2 Now, we regulate the divergence in a gauge-invariant manner by

introducing an exponential regulator of the form exp(− /̂Π
2
/Λ2), where /̂Π = /̂p − e /A(x̂),

Λ is some UV cutoff and p̂ is the operator conjugate to x̂ in the one-particle Hilbert space.
The relation /D

2 = D2
μ + e

2Fμνσ
μν , from Eq. (10.106), implies

/̂Π2 = Π̂2 − e

2
σμνF

μν (x̂) , (30.63)

so that

Tr[〈x|β(x̂)γ5|x〉] = lim
Λ→∞

Tr
[
〈x|β (x̂) γ5e /̂Π

2/Λ2 |x〉
]

= lim
Λ→∞

β(x)〈x|Tr

[
γ5 exp

(
(p̂− eA(x̂))2 − e

2σμνF
μν

Λ2

)]
|x〉.

(30.64)

Now, the trace of a product of γ-matrices with one γ5 vanishes unless there are at least
four γ-matrices in the product. Thus, the leading term in the expansion of the exponential

2 To interpret this expression, we do not need a physical interpretation of the one-particle Hilbert space – we just
want to use the mathematical tricks we learned in quantum mechanics to write the function β(x) in a suggestive
form. There is in fact a beautiful interpretation of one-particle Hilbert spaces like this in quantum field theory,
to which much of Chapter 33 is devoted.
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is of order 1
Λ4 . Using the identity 1

2

{
σμν , σαβ

}
= gμαgνβ1−gναgμβ1+iγ5εμναβ , where

1 is the identity matrix with Dirac indices, we can derive that

(σμνFμν)
2 = 2F 2

μν1 + iγ5εμναβFμνFαβ , (30.65)

which leads to

Tr[
〈
x|iβ(x̂)γ5|x

〉
]

=
e2

2
β(x)εμναβFμν(x)Fαβ(x) lim

Λ→∞

[
1
Λ4
〈x|e(p̂−eA)2/Λ2 |x〉+O

(
1
Λ5

)]
. (30.66)

To extract the contribution leading in e, we can set A = 0 in the exponent. Next insert
1 =
∫
d4k|k〉〈k| with p̂|k〉 = k|k〉 to get

1
Λ4
〈x|ep̂2/Λ2 |x〉 =

1
Λ4

∫
d4k

(2π)4
ek

2/Λ2
=

i

Λ4

∫
d4kE
(2π)4

e−k
2
E/Λ

2
=

i

16π2
. (30.67)

Thus, we find a finite answer as Λ →∞:

J = exp
[
−i
∫
d4x

(
β(x)

e2

32π2
εμναβFμν(x)Fαβ(x)

)]
. (30.68)

Note that, if we had used e−p̂
2/Λ2

or e−Π2/Λ2
, the singularity would not have been

regulated – we still would have found J = 0.
The result is that under an axial transformation∫
Dψ̄DψDA exp

[
i

∫
d4xLQED

]
→
∫
Dψ̄DψDA exp

[
i

∫
d4x

(
LQED − J5

μ∂μβ + β
e2

16π2
εμναβFμνFαβ

)]
. (30.69)

Thus, the Schwinger–Dyson equation in Eq. (30.56) becomes

∂μ〈J5μ(x)O(x1, . . . , xn)〉 = − e2

16π2
〈εμναβFμν(x)Fαβ(x)O(x1, . . . , xn)〉. (30.70)

We often abbreviate this with

∂μJ
5
μ = − e2

16π2
εμναβFμνFαβ , (30.71)

which agrees with Eq. (30.22). This equation confirms the interpretation of the chiral
anomaly as due to non-invariance of the path integral measure.

Since this derivation did not appear to use perturbation theory, it seems to imply that the
anomaly equation, Eq. (30.71), is exact. Indeed, the conclusion is correct:

The chiral anomaly is 1-loop exact.

But the logic is flawed. In fact, the path integral transformation amounts to a 1-loop com-
putation, as can be seen from Eq. (30.67) or by restoring factors of � (the correspondence
between functional determinants and loops will be explored in Chapters 33 and 34). Thus,
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a more accurate statement is because the anomaly is exact at 1-loop, the measure trans-
formation gives the correct answer. The 1-loop exactness of the chiral anomaly was first
proposed by Adler and Bell using diagrammatic arguments. Its most satisfying proof uses
topological arguments (see for example [Nakahara, 2003] or [Weinberg, 1996] for details).

30.4 Gauge anomalies in the Standard Model

In this section, we will check that the currents associated with the SU(3)QCD×SU(2)weak×
U(1)Y gauge symmetries of the Standard Model are non-anomalous. If we write these three
currents as JQCD

μ , Jweak
μ and JYμ , then we have to show that ∂μ〈JjμJkαJ lν〉 = 0 for j, k, l any

of the forces. This is easiest to do by reading charges or anomaly coefficients from the
triangle diagrams.

When all the three currents involved are associated with U(1)Y , we call the puta-
tive anomaly the U(1)3Y anomaly. It is easy to check that this vanishes. As we saw in
Eq. (30.53), left-handed Weyl fermions and right-handed Weyl fermions contribute to the
anomaly with opposite signs. Therefore, we have

∂μJ
μ
Y =

⎛⎝∑
left

Y 3
l −
∑
right

Y 3
r

⎞⎠ g′2

32π2
εμναβBμνBαβ , (30.72)

where Bμν is the field strength for U(1)Y . The vanishing of the U(1)3Y anomaly requires

0 =
(
2Y 3

L − Y 3
e − Y 3

ν

)
+ 3
(
2Y 3

Q − Y 3
u − Y 3

d

)
. (30.73)

Here, YL, Ye, Yν , YQ, Yu and Yd are the hypercharges for the left-handed leptons, the right-
handed electrons (or muon or tauon), the right-handed neutrinos (assuming they exist),
the left-handed quarks, the right-handed up-type quarks and the right-handed down-type
quarks, respectively. As derived in Chapter 29, these charges are (see Table 29.1)

YL = −1
2
, Ye = −1, Yν = 0, YQ =

1
6
, Yu =

2
3
, Yd = −1

3
. (30.74)

Plugging in to Eq. (30.73), we find that the anomaly in fact vanishes. Note that the anomaly
would vanish for any number of generations, but that it does not vanish for the quarks or
leptons alone.

By the way, one can also trivially check that the U(1)3EM anomaly vanishes in QED. In
QED, all the left- and right-handed charged particles are Dirac, and hence have the same
charges (QED is non-chiral). Thus, in QED,

∑
leftQ

3
L =
∑

rightQ
3
R. That the U(1)3EM

anomaly vanishes also follows from the vanishing of anomalies in the electroweak theory,
which we have nearly shown.

For non-Abelian gauge theories, the currents associated with the gauge fields are of the
form

Jaμ =
∑
ψ

ψ̄iT
a
ijγ

μψj , (30.75)
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where T aij are the group generators which could be in an arbitrary representation. The
triangle diagrams then pick up factors of T a at the vertices. The two momentum
routings give

iM = tr
[
T aT bT c

]
× + tr

[
T aT cT b

]
× . (30.76)

Now, we can always write the group trace as a sum of symmetric and antisymmetric tensors
as (see Eq. (25.20))

tr
[
T aT bT c

]
=

1
2
tr
[[
T a, T b
]
T c
]
+

1
2
tr
[{
T a, T b
}
T c
]

= i
1
2
TRf

abc +
1
4
dabcR . (30.77)

The contribution proportional to the fabc gives the difference between the two loops. This
difference is UV divergent. However, since it is proportional to fabc, it can be removed
through renormalization without violating gauge invariance. Indeed, it contributes to the
renormalization of the fabcAaμA

b
ν∂μA

c
ν vertex in the Yang–Mills Lagrangian.

The contribution proportional to dabcR is what we are after; dabcR is a totally a symmetric
tensor given by

dabcR = 2tr
[
T aR
{
T bR, T

c
R

}]
. (30.78)

As mentioned in Section 25.1, for SU(N) there is a unique totally symmetric three-index
tensor up to a constant. Thus for any representation,

tr
[
T aR{T bR, T cR}

]
= A(R) tr

[
T a
{
T b, T c
}]
≡ A(R)dabc, (30.79)

with A(R) the anomaly coefficient and dabc (without a subscript) defined using the
fundamental representation. Thus, A(fund) = 1.

The contribution proportional to the anomaly constant dabc sums the two triangle dia-
grams. It is therefore proportional to the result from summing the diagrams in the U(1)
case. We thus find

∂αJ
a
α(x) =

⎛⎝∑
left

A(Rl)−
∑
right

A(Rr)

⎞⎠ g2

128π2
dabcεμναβF bμνF

c
αβ , (30.80)

where the “left” sum is over left-handed particles, with A(Rl) the anomaly coefficients
associated with their representations Rl, and similarly for the “right” sum. We can check
the normalization using the U(1)3Y anomaly. For a U(1), T a = 1, dabc = 4 and so
Eq. (30.80) reduces to Eq. (30.72). Note that Eq. (30.80) can vanish either if the anomaly
coefficients cancel in the sum, or if dabc = 0.

Now we would like check whether anomalies cancel in the Standard Model. For SU(2),
we can use {τa, τ b} = 1

2δ
ab1. Then dabc = δbctr{τa} = 0. Thus, there can never be

SU(2)3 anomalies in any theory. There could in principle be an SU(3)3 anomaly in some
theory, but since QCD is non-chiral, there are no SU(3)3QCD anomalies in the Standard
Model. Next, consider mixed anomalies. An SU(N)U(1)2 anomaly would be proportional
to 2tr[T a{1, 1}] = 4tr[T a] = 0. Hence SU(N)U(1)2 anomalies always vanish. In the
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Table 30.1 Anomaly constraints on the hypercharges of
Standard Model particles.

Anomaly Constraint

U(1)3Y (2Y 3
L − Y 3

e − Y 3
ν ) + 3(2Y 3

Q − Y 3
u − Y 3

d ) = 0
SU(3)2U(1)Y 2YQ − Yu − Yd = 0
SU(2)2U(1)Y YL + 3YQ = 0
grav2U(1)Y (2YL − Ye − Yν) + 3(2YQ − Yu − Yd) = 0

same way, any anomaly with exactly one factor of SU(2) or SU(3) vanishes. The only
possible anomalies are therefore SU(3)2U(1) and SU(2)2U(1).

The SU(3)2QCDU(1) anomaly gets contributions only from quarks. Using tr{T aT b} =
1
2δ
ab, which holds for any SU(N), we find that this anomaly is proportional to

2tr[T a{T b, Y }] = 2δab

⎛⎜⎝ ∑
left

colored

Yl −
∑
right

colored

Yr

⎞⎟⎠ = 2δab(6YQ − 3Yu − 3Yd). (30.81)

Plugging in the values in Eq. (30.74), this vanishes. The SU(2)2U(1) anomaly only gets
contributions from left-handed fields, and so

2tr[τa{τ b, Y }] = 2δab
∑
left

Yi = 2δab(2YL + 6YQ). (30.82)

For this anomaly to cancel, left-handed leptons must have−3 times the hypercharge of left-
handed quarks, as they do. Thus, all possible anomalies associated with the SU(3)QCD ×
SU(2)weak ×U(1)Y of the Standard Model exactly vanish.

There is one more type of gauge boson in the Standard Model whose anomalies must
cancel: the graviton. The calculation of the anomaly with one gauge boson and two external
gravitons produces

∂αJ
a
α(x) ∝ Tr [T aR] εμναβRμνγδRαβγδ, (30.83)

where Rμναβ is the Riemann tensor. Since the SU(N) generators are traceless, there
are no grav2SU(2) or grav2SU(3) anomalies. The only thing we have to worry about is
grav2U(1)Y . Since all fermions couple to gravity, we must have

0 =
∑
left

Yl −
∑
right

Yr = (2YL − Ye − Yν) + 3(2YQ − Yu − Yd). (30.84)

This also holds in the Standard Model.
The four nonlinear equations that the six hypercharges must satisfy are summarized in

Table 30.1. The general solution to these equations (up to redefining uR ↔ dR or eR ↔ νR
which the hypercharge constraints do not care about) is either

YL = −a
2
− b, Ye = −a− b, Yν = −b, YQ =

a

6
+
b

3
, Yu =

2a
3

+
b

3
, Yd = −a

3
+
b

3
(30.85)
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for any a and b, or

YQ = YL = 0, Yu = c, , Yd = −c, Ye = d, Yν = −d (30.86)

for any c and d. The Standard Model hypercharge assignments satisfy Eq. (30.85) with
a = 1 and b = 0. Note that we can always rescale the hypercharges (or equivalently
redefine the coupling g′), thus these are two one-parameter families of solutions. Suppose
we also know that the right-handed neutrino has Yν = 0, either because it does not exist,
because it is Majorana (in which case it is its own antiparticle and cannot have any quantum
numbers, including hypercharge), or for some other reason. That implies, if we take the first
solution, that b = 0. Then we can set a = 1 by rescaling g′, and so the Standard Model
hypercharges are uniquely determined. The second solution, Eq. (30.86), is not realized in
nature.

Notice that any solution of Eq. (30.85) or Eq. (30.86) has YL + 3YQ = 0 exactly.
As a consequence, the electron must have exactly the same electric charge as the proton.
Without anomaly considerations, one might have imagined that the electron could have had
say 3.0001 times the quark charge, giving a small residual charge to the atom. Anomaly
cancellation says this cannot be true. Charge is quantized!

Another question we can ask is: Can there be another U(1) force acting on the Standard
Model particles that we do not know about? Let us call this force U(1)′Y and the charges
under this new group Y ′

i . For anomalies to cancel, all the conditions in Table 30.1 must
hold with Yi → Y ′

i . In addition, U(1)2Y U(1)Y ′ and U(1)Y U(1)2Y ′ anomalies must cancel.
As you can easily check, the only possibility is that Y ′

i satisfy Eq. (30.85) with Yi → Y ′
i .

Taking a = 1 and b = 0 sets Y ′
i equal to the Standard Model hypercharges. The orthogonal

possibility is a = 0, b = 1, which gives

Y ′
L = Y ′

e = Y ′
ν = −1, Y ′

Q = Y ′
u = Y ′

d =
1
3
. (30.87)

These charges are −1 for the leptons and 1
3 for quarks, or equivalently +1 for baryons. We

call this new group U(1)B−L and will discuss it more in the next section.

30.5 Global anomalies in the Standard Model

We have argued that anomalies must vanish for symmetries associated with gauge fields. If
this were not true, the Ward identity would be violated and we could no longer guarantee
that only the two physical polarizations of a massless spin-1 particle would propagate. On
the other hand, if the symmetry is a global symmetry not associated with a gauge field, it
can be anomalous. For example, the π0 → γγ decay is due to an anomalous axial current
as we discussed in Section 30.1. If G is a global symmetry, then G3 anomalies have no
physical effect. The simplest way to see this is that, for a global symmetry, there is no
associated εμναβFμνFμν term for a current to diverge to. Thus, the global anomalies of
interest are the GH2 anomalies, where H is one of the Standard Model gauge groups.
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30.5.1 Baryogenesis

An important example of a global symmetry of the Standard Model Lagrangian is baryon
number, for which all quarks have B = 1

3 and leptons have B = 0. That is u →
ei

1
3αu, d → ei

1
3αd, e → e, νe → νe, etc. Another example is lepton number, for which

quarks have L = 0 and leptons have L = 1. Substituting these quantum numbers into the
anomaly constraints in Table 30.1 we see that all of the mixed anomalies vanish except for
SU(2)2U(1)B and SU(2)2U(1)L. For these,

∂μJ
B
μ = ∂μJ

L
μ = ng

g2

32π2
εμναβW a

μνW
a
αβ , (30.88)

where W a
μν is the SU(2) field strength and ng is the number of generations (ng = 3 in the

Standard Model). So B and L are anomalous.
On the other hand, this equation implies that the global symmetry B − L, where quarks

have B − L = 1
3 and leptons have B − L = −1, is non-anomalous (as we saw in

Eq. (30.87)). Thus, while it is not possible to have a gauge boson associated with B or
L, it is possible to have one associated withB−L. In fact, such gauge bosons are common
in grand unified theories. If such a gauge boson exists, it would mediate processes that vio-
lateB- and L-number conservation but preserveB−L, such as proton decay: p+ → π0e+.
There are very strong bounds on the proton lifetime (τ > 1033 years), so this hypothetical
B − L gauge boson should be very heavy (�1016 GeV).

Returning to the Standard Model, it is natural to ask what physical effect the anomaly
∂μJ

B
μ �= 0 can have. Recall from Eq. (29.105) that the anomaly term is a total deriva-

tive, εμναβW a
μνW

a
αβ = ∂μK

μ, so it cannot contribute at any order in perturbation theory
(any Feynman diagram with this vertex would have a factor of

∑
pμ = 0). However, it

could possibly contribute to the path integral through field configurations that are locally
gauge equivalent to 0, but are topologically stable. A class of such configurations is the
sphalerons, which violate B and L but preserve B − L. Sphalerons can mediate baryon
number violation into leptons.

Sphalerons are static configurations of the SU(2) gauge fields that can be locally
gauged away. For these configurations,

∫
d4x εμναβW a

μνW
a
αβ ∼ 3

(
16π2
)
�= 0. The

results of sphaleron calculations imply that the rate per unit volume for the transfer
from baryon number to lepton number violation at zero temperature should be roughly

Γ/V ∼ m4
W exp
(
− 8π2

g2

)
∼ m4

W 10−180, which is exceedingly tiny. At temperatures of

order mW , the rate can actually be much higher.
One of the reasons baryon number violation is interesting is because of the preponder-

ance of matter over antimatter in the universe. In order to establish such an asymmetry,
Andrei Sakharov showed in 1967 that three conditions must be met [Sakharov, 1967]:

Sakharov conditions to produce a matter–antimatter asymmetry Box 30.1

1. Baryon number must be violated.
2. C and CP must be violated.
3. There must have been some departure from thermal equilibrium.
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If any of these do not hold, the matter–antimatter asymmetry would have been washed out
by thermal fluctuations. For example, by CPT invariance, the rate for any conversion of
matter into antimatter must be the same as the rate for conversion of antimatter into matter,
hence the need for non-equilibrium dynamics. Intriguingly, all of these conditions are in
fact satisfied in the Standard Model: baryon number is violated by the anomaly, CP is
violated because there are three generations and hence a phase in the CKM matrix, and as
the universe cools it is out of equilibrium. In particular, as it cools through the electroweak
phase transition, a matter–antimatter asymmetry can be produced. Unfortunately, to explain
the matter–antimatter asymmetry quantitatively, we need more baryon number violation,
more CP violation, and a phase transition that is not as smooth as in the Standard Model
(it should be strongly first order). That baryogenesis cannot be explained in the Standard
Model remains an important motivation for beyond-the-Standard-Model physics.

30.5.2 The U(1) and strong CP problems

Another important application of global anomalies is to the strong CP problem. This was
discussed in Section 29.5. There, we started from the Standard Model with Yukawa cou-
plings to the Higgs doublet, spontaneously broke electroweak symmetry, then performed
chiral rotations on the left-handed and right-handed quarks to move all CP violation into
the CKM matrix. The CKM matrix could be taken real up to a single phase, known as the
weak CP phase. However, in doing the chiral rotations, since the measure is not invariant,
we generate a term

L = θQCD
g2
s

32π2
εμναβF aμνF

a
αβ , (30.89)

where F a is the QCD field strength (one also generates εμναβF aμνF
a
αβ terms for the weak

and electromagnetic fields this way, but those phases can be removed with additional
rotations of just the right-handed fields). There was therefore an additional chiral-rotation-
invariant phase, called the strong CP phase, given by θ̄ = θQCD + arg det(YdYu). We
argued that the neutron picks up an electric dipole moment proportional to θ̄, and current
experimental bounds require θ̄ < 10−12. The strong CP problem is: Why is this phase so
small? Possible solutions were discussed in Chapter 29.

Another example of a global anomaly is the chiral symmetry of QCD. Consider QCD
in the limit that the three lightest quark flavors (up, down and strange) can be treated as
massless. Then the Lagrangian is just

L = −1
4
(
F aμν
)2 + iq̄jL /Dq

j
L + iq̄jR /Dq

j
R, (30.90)

where L and R refer to the left- and right-handed quarks. This Lagrangian has a global
U(3)L × U(3)R symmetry. The QCD vacuum has 〈q̄LqR〉 ≈ V 3 ≈ Λ3

QCD �= 0, spon-
taneously breaking U(3)L × U(3)R → U(3)diagonal. Thus there should be nine massless
Goldstone bosons, conveniently written as a matrix when multiplying the SU(3) generators
(see Eq. (28.38)):
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πaT a =
1√
2

⎛⎜⎜⎝
1√
2
π0 + 1√

6
η0 + 1√

3
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η0 + 1√

3
η′ K0

K̄− K̄0 −
√

2
3η

0 + 1√
3
η′

⎞⎟⎟⎠ .
(30.91)

In reality, quarks do have masses, and so the pseudoscalar mesons (the Goldstone bosons)
pick up mass (becoming pseudo-Goldstone bosons) according to the Gell-Mann–Oakes–
Renner relation, Eq. (28.37): m2

πF
2
π ≈ V 3mq.

Now, consider neutral mesons. Experimentally, the lightest two neutral mesons are the
π0 (135 MeV) and the η (549 MeV). After that, the next lightest has mass 957 MeV, which
we would like to identify with the η′. Unfortunately, if you work out the group theory
factors for the Goldstone masses, you find that this is impossible. The mass of the diagonal
Goldstone boson, the η′, must satisfy mη′ <

√
3mπ0 [Weinberg, 1975]. Why the η′ is

so heavy is known as the U(1) problem. It is called that because the Goldstone boson
corresponding to the axial diagonal U(1) is apparently missing.

The solution to the U(1) problem should now be apparent: the symmetry of the QCD
Lagrangian is not in fact U(3)L×U(3)R = U(1)L×U(1)R×SU(3)L×SU(3)R because
the U(1)A under which qL → eiθqL and qR → e−iθqR is anomalous. Under this U(1)A all
quarks have charge 1, so the anomaly corresponds to SU(3)2QCDU(1)A triangle diagrams.
Since the symmetry is anomalous, it is not a symmetry. If there is no symmetry, it cannot
be spontaneously broken and there can be no Goldstone boson. Note that the SU(3)L and
SU(3)R do not have an SU(3)2color × SU(3)L anomaly, since the SU(3) generators are
traceless.

The U(1) problem and the strong CP problem are actually closely related. The same
chiral rotations that move the CP phase between the quark mass matrix and θQCD

are those corresponding to the anomalous U(1)A. In both cases, the anomaly is from
SU(3)2QCDU(1)A. Under the U(1)A rotation, the measure changes and the Lagrangian
shifts to

L → L+ θQCD
g2
s

32π
εμναβF aμνF

a
αβ . (30.92)

Thus, the physics of the anomaly for both the strong CP and U(1) problems must come
from topologically non-trivial gauge configurations. One might have tried to define the
path integral excluding these configurations to solve the strong CP problem. But then
the U(1) problem would not be solved. Thus, the heavy η′ tells us that non-perturbative
configurations must be important.

It is challenging to calculate the η′ mass in QCD, since non-perturbative methods are
needed. One such method is the lattice, which has in fact been able to calculate the η′ mass
purely within QCD to within around 10%. Analytically, one can approach the problem by
summing over topological configurations, in this case instantons, but the result is only an
order of magnitude estimate. Another approach is the large N limit of QCD, which relates
the η′ mass to the topological susceptibility, defined by

χt ≡
1
4
〈
(
εμναβF aμνFαβ

)(
ερσκλF aρσFκλ

)
〉. (30.93)
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The Witten–Veneziano relation is χt = F 2
π

12

(
m2
η +m2

η′ − 2m2
K

)
. So if εμναβF aμνF

a
αβ

had no effect then χt = 0 and the η′ mass would be small. Solving the Witten–Veneziano
relation for χt gives χt = (171MeV)4 ≈ Λ4

QCD, which is roughly what one would expect
by dimensional analysis [Witten, 1979; Veneziano, 1979].

30.6 Anomaly matching

An important use of anomalies is in anomaly matching, which relates the spectrum of
a theory above and below a phase transition [’t Hooft et al., 1980]. Consider QCD with
three flavors and its global G = SU(3)L×SU(3)R×U(1)V symmetry. In pure QCD, this
symmetry is not anomalous, or more precisely there are no SU(3)2QCDG anomalies. There
are however G3 anomalies, but these have no physical effect since there is no associated
εμναβFμνFμν .

Now let us gauge the whole symmetry group G by introducing gauge bosons, but take
their gauge couplings arbitrarily small so that the gauge bosons do not affect the physics.
The anomalies, such as an SU(3)3L anomaly, will have physical effects. However, we can
cancel these anomalies by introducing a bunch of left- or right-handed spectator fermions.
It is not hard to choose their quantum numbers so that all the anomalies cancel, and in fact
there are many solutions. Since the gauge couplings are infinitesimal, these fermions will
also not affect the physics.

Now consider the low-energy theory where the quarks are confined. Then the spectrum
comprises not quarks but mesons and baryons which are all color singlets. We have not
proven confinement, but it is apparently true, so let us just assume it happens. Indeed it is
helpful at this point to have in the back of your mind a more general theory with N colors
and nf flavors, where we do not know if confinement happens or not. In the general case,
mesons are still q̄q pairs, but baryons are bound states of N quarks or N antiquarks, which
are fermions for N odd.

Since anomalies are determined by massless particles, they are long-distance effects.
Thus, they cannot change by a phase transition that happens at a finite scale, such as ΛQCD.
This implies that, since the theory above the phase transition was anomaly free, the theory
below the transition must also be anomaly free. Another way to see this is that a gauge
anomaly would imply an inconsistency of the gauge theory, such as unitarity violation.
Such a drastic change from a consistent field theory to an inconsistent one cannot happen
just due to a phase transition. But below the transition the massless quarks are no longer
around to cancel the anomalies of the spectators, so how can this happen? There must
be other massless particles in the spectrum. There are two possibilities: a symmetry can
be spontaneously broken, in which case there will be massless Goldstone bosons, or else
there might be massless baryons.

Consider first the real world, where SU(3)L×SU(3)R is spontaneously broken, generat-
ing a triplet of pions, πa. Let us focus on the π0. This π0 is associated with a particular axial
U(1) symmetry under which u → eiθγ5u and d → e−iθγ5d. Let us call this U(1)π0 . Note
that this is a different U(1)A from the one associated with the η′. That one had qi → eiθγ5qi
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and was anomalous to begin with, even without our fictitious gauge bosons. Before symme-
try breaking, the theory was anomaly free. But after symmetry breaking, when the quarks
are confined, it seems there is a U(1)2QEDU(1)π0 anomaly. This must somehow be com-
pensated for by the only relevant massless particle, the π0. To see how, recall that the pion
transforms under the broken symmetry as a shift π0 → π0 + θ (this shift is what for-
bids a mass term for the pion, among other things). Therefore, we can compensate for the
anomaly that rotates the coefficient of εμναβFμνFαβ by adding a term

L = N
e2

16π2
π0εμναβFμνFαβ (30.94)

to the Chiral Lagrangian. In fact, this is the unique term whose chiral rotation π0 → π0 +θ

can exactly compensate the chiral rotation of the spectators. The factor of N comes from
theN spectators that compensate for theN colors of quarks in the high-energy theory. It is
in this way that the π0 → γγ rate is completely fixed by the anomaly and can be computed
in perturbation theory, despite the fact that pions are composite objects. In fact, this was
one of the early ways in which the number of colors N was cleanly measured.

Now let us suppose instead that SU(3)L×SU(3)R were not spontaneously broken. Then
there would be no Goldstone bosons whose transformations could compensate the anomaly
of the spectator. Consider the SU(3)3L anomalies. These cancel if and only if the sum of the
anomaly coefficients

∑
iA(Ri) = 0, where the sum is over all left-handed fermions in the

theory. In QCD the quarks transform in the fundamental representation with A(fund) = 1.
Including the three colors, the anomaly coefficient in QCD is then 3, thus the spectators
contribute −3, by construction.

For the anomalies to be the same in the confined phase, color singlet fermions con-
structed out of quarks must be able to provide

∑
iA(Ri) = 3 to cancel the spectators.

Since QCD has N = 3, color singlet fermions must be baryons comprising three quarks.
To see what the contributions of the baryons could be, we have to decompose the tensor
product of three fundamental representations of SU(3)L into irreducible representations of
SU(3)L. The decomposition is [Georgi, 1982]

3⊗ 3⊗ 3 =
(
6⊕ 3
)
⊗ 3 = (6⊗ 3)⊕ (3̄⊗ 3) = 10⊕ 8⊕ 8⊕ 1. (30.95)

These are the decuplet, two octets and one singlet. (These are the same decuplet and octet
that were shown in Section 28.2.3 in the context of Gell-Mann’s eightfold way.) Of these,
the 8 and 1 are real representations so they giveA(Ri) = 0. To findA(10) we use the iden-
tities A(R1 ⊕R2) = A(R1) +A(R2) and A(R1 ⊗R2) = A(R1) d(R2) + d(R1)A(R2),
which you proved in Problem 25.4. First, we find

A(6) = A(3⊗ 3)−A
(
3
)

= 3A(3) + 3A(3)−A
(
3
)

= 7. (30.96)

Then we find

A(10) = A(6⊗ 3)−A(8) = 3A(6) + 6A(3)−A(8) = 27. (30.97)

If there are n decuplets of baryons, they will contribute 27n, which cannot possibly cancel
the −3 from the spectators (we would need n = 1

9 decuplets!). We conclude that the
chiral symmetry SU(3)L × SU(3)R of QCD must be spontaneously broken. Note that this
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argument does not work for SU(2)L × SU(2)R since dabc = 0 for SU(2), so there can
never be any SU(2)3 anomalies.

Another application of anomaly matching is in Seiberg dualities in supersymmetric
gauge theories. The starting point is a supersymmetric gauge theory with N colors and
nf flavors. In the regime 3

2N > nf > N , this theory seems to flow towards a conformal
fixed point in the infrared, but becomes strongly coupled. The duality postulates that this
conformal fixed point is the same as one coming from a theory with nf −N colors and nf
flavors. Away from the fixed point, the two theories have very different particle content.
Yet, if the theories agree at the fixed point, the spectators one adds to cancel anomalies at
the fixed point should also cancel the anomalies in the two theories separately. As a highly
non-trivial check on this duality, the anomalies associated with the global SU (nf )L ×
SU(nf )R, U(1)baryon and an additional U(1)R symmetry all agree. That the anomalies
are identical in the two theories, despite their radically different particle content, is strong
evidence for the conjectured duality. See [Terning, 2006] for a more in-depth discussion.
Anomaly matching is one the few tools we have for making concrete statements about
non-perturbative theories.

Problems

30.1 Baryon number has an anomaly so that ∂μJBμ �= 0 as in Eq. (30.88). Since the right-
hand side of Eq. (30.88) has more than two gauge fields, it implies that diagrams
such as

with the indicating JBμ (x), should also give non-zero answers when contracted
with ∂μ. Evaluate this diagram and any other that contributes at the same order to
show that the W 3 terms in Eq. (30.88) are correctly reproduced.

30.2 For which types of neutrino masses (Majorana, Dirac or both) is lepton number
anomalous? For which types of masses is B − L anomalous?

30.3 Suppose that QCD were based on the gauge group SU(5). Let us assume that the
proton still exists as a five-quark bound state with charge +1, so that quarks now have
five colors and electric charges in Z/5. What values for the SU(5) × SU(2)weak ×
SU(1)Y quantum numbers of the Standard Model fields would make this universe
anomaly free?

30.4 Can anomaly matching arguments determine if SU(4)L × SU(4)R is spontaneously
broken in QCD?



Precision tests of the
Standard Model 31

We now have discussed the complete Standard Model of particle physics. The model is
based on the gauge group SU(3)QCD×SU(2)weak×U(1)hypercharge, which is spontaneously
broken down to SU(3)QCD × U(1)EM at a scale v = 247 GeV. Assuming Dirac neu-
trino masses, the Standard Model has 27 parameters: three coupling constants g, g′ and
gs; six quark, three charged lepton, and three neutrino masses; three mixing angles and
one phase among quarks; three mixing angles and one phase among leptons; the Higgs
mass mh and vev v; the QCD vacuum angle θ̄; and the cosmological constant Λ. While
27 parameters might seem like a lot, there are an infinite number of measurements that
could conceivably be done. Since the Standard Model is renormalizable, the result of any
of these infinite number of measurements can, in principle, be expressed as a function of
these 27 parameters. Thus, the Standard Model is an overconstrained system – we can test
it by making enough measurements with enough precision. In this chapter, we discuss two
ways in which quantum field theory at loop level is required to connect measurements to
the parameters of the Standard Model.

First we will discuss constraints on the gauge sector of the electroweak theory. At tree-
level, many observables depend only on the three parameters g, g′ and v (or equivalently
αe, sin2θw and the Fermi constant GF ). The dominant radiative corrections to many of
these observables are from virtual top-quark- and Higgs-boson-loop contributions to the
W -boson, Z-boson and photon propagators. Corrections to the gauge boson propagators
are called oblique corrections. Oblique corrections provided important indirect informa-
tion about the mass of the top quark and Higgs boson before these particles were seen
directly, and they continue to provide important constraints on beyond-the-Standard-Model
physics. Electroweak precision constraints are often expressed in terms of the S, T, U and
ρ parameters, which will be defined and discussed in Section 31.2.

Another area where loops play an important role in connecting observables to parameters
of the Standard Model is in the arena of flavor physics. Recall from Chapter 29 that the
CKM matrix is unitary in the Standard Model. If enough CKM elements are measured, this
unitarity can be directly tested. The sensitivity of such tests to beyond-the-Standard-Model
physics is only limited by the level of precision with which theory and experiment can be
compared. In Section 31.3, we discuss important loop corrections from QCD. In particular,
we will show how virtual gluons modify the relation between CKM elements extracted at
low energy (such as Vcb, which can be measured from B+ → D̄0π+ decays) and CKM
elements at the weak scale. The calculation we perform involves renormalization group
evolution with operator mixing, a beautiful subject in its own right.

641
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31.1 Electroweak precision tests

In this section we discuss precision electroweak physics, which is concerned (mainly)
with observables constructed out of leptons and electroweak gauge bosons. We discuss
quark-based observables in Section 31.3 and in Chapters 32, 35 and 36.

There are a few quantities that are basically only sensitive to electroweak physics and
have been measured extremely well. We will focus on five of them:

1. The electron magnetic dipole moment 1
2ge = 1.001 159 652 180 73± 2.8× 10−13.

2. The lifetime of the muon: τμ = (2.196 981 1± 0.000 002 2) × 10−6s. In GeV, the
decay rate is τ−1

μ = Γ (μ− → νμe
−ν̄e) = 2.995 98× 10−19 GeV.

3. The Z-boson pole mass: mZ,pole = 91.1876± 0.0021 GeV.
4. The W -boson pole mass: mW,pole = 80.385± 0.015 GeV.
5. The polarization asymmetry in Z-boson production:

Ae =
σL − σR
σL + σR

=
σ
(
e−Le

+
L → Z

)
− σ
(
e−Re

+
R → Z

)
σ
(
e−Le

+
L → Z

)
+ σ
(
e−Re

+
R → Z

) = 0.1515± 0.0019. (31.1)

This asymmetry, which can be measured using polarized electron beams, would vanish in
a non-chiral theory. Another important observable is the decay rate of the Z boson into
electrons Γ (Z → e+e−), which you can explore in Problem 31.2.

In the Standard Model, at leading order in perturbation theory, each one of these five
observables depends only on three electroweak parameters: the strength of the QED
coupling e (or equivalently the fine-structure constant αe ≡ e2

4π ), the Higgs vev v (or
equivalently the Fermi constant GF ≡ 1√

2v2
) and the weak mixing angle s = sin θw.

The tree-level dependences of the Z and W masses on e, v and s are

mZ =
ev

2sc
, mW =

ev

2s
, (31.2)

where c ≡ cos θw =
√

1− s2. The muon decay rate involves a virtual W boson. Including
the full me and mμ dependence, the rate computed at tree-level is

τ−1
μ = Γ

(
μ− → νμe

−ν̄e
)

= G2
F

m5
μ

192π3

(
1− 8r + 8r3 − r4 − 12r2 ln r

)
, r =

m2
e

m2
μ

.

(31.3)

The polarization asymmetry Ae is non-zero because the Z boson has different couplings
to left- and right-handed fermions. Recalling from Chapter 29 that the Z-boson couplings
to the electron can be written as

LZ = − e

sc
Zμ

[(
1
2
− s2
)
ēLγ

μeL − s2ēRγμeR
]
, (31.4)

we find that

Ae =
σL − σR
σL + σR

=

(
1
2 − s2
)2 − s4(

1
2 − s2
)2 + s4

. (31.5)
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Now we would like to know whether all the measured values for these observables are
consistent with the Standard Model.

To begin, we have to come up with a clean definition of the three parameters e, GF
and sin2θw based on experiments. That is, we need to define renormalization conditions
for them. We will denote the values of these couplings extracted from the first three
measurements above with a circumflex, as ĜF , ê and ŝ2. We also define

m̂Z ≡ mZ,pole. (31.6)

Any other quantity related to these three by tree-level algebraic relations will also be

denoted with a circumflex. For example, v̂ =
√

1√
2ĜF

or

m̂W =
êv̂

2ŝ
. (31.7)

This m̂W is not equal to mW,pole. We compute the difference in this chapter.
Since ge is known extremely well, we use it to define ê. We worked out that ge − 2 =

αe
π at 1-loop in Chapter 17, but actually the calculation is known to very high orders,

competing with the experimental precision. This high-order calculation and the precise ge
measurement give

α̂e(0) = (137.035 999 074± 0.000 000 044)−1
, (31.8)

with α̂e = ê2

4π . The 0 argument of α̂e refers to this being a long-distance (p2 ≈ 0) measure-
ment. That is, this value of the fine-structure constant corresponds to the on-shell coupling
ê defined through the 3-point function in Section 19.3. For precision electroweak physics, it
is more useful to work with α̂e(mZ) which is [Particle Data Group (Beringer et al.), 2012]

α̂e(mZ)−1 = 127.944± 0.014. (31.9)

The running of αe has been discussed elsewhere (Chapters 16 and 23), thus we simply take
this value as input.

By the way, we will always evaluate running couplings and running masses with μ set
equal to an MS mass. Technically, α̂e(mZ) and α̂e(m̂Z) differ by corrections that begin
at 2-loop and beyond, so which scale we choose is beyond the order we are working in
this chapter. However, since the RGEs are calculated in the MS scheme, it makes sense to
choose μ to be an MS mass. An example where the choice of scale is important is for the
top mass, as discussed around Eq. (31.62) below.

Next, since τμ is extremely well measured, we use it to define ĜF = 1√
2v̂2

. Using
the measured values mμ = 105.658 371 5 MeV and me = 0.510 998 910 MeV in our
tree-level decay formula we get

ĜF = 1.163 93× 10−5 GeV−2, (31.10)

which gives v̂ =
√

1√
2ĜF

= 246.48 GeV.

Finally, for sin2θw, there are many reasonable definitions. For example, one could define

sin2θw ≡ 1 − m2
W

m2
Z

, or one could define it from Ae. In the MS scheme, one could define

it from the renormalized coupling constants as tan θw ≡ g′R
gR

. For precision tests, a logical
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choice is to base it on the next-best-measured quantity in this list, m̂Z = mZ,pole. We call
this value ŝ. It satisfies the relation

ŝ2(1− ŝ2) ≡ πα̂e(mZ)√
2ĜF m̂2

Z

. (31.11)

Plugging in the numbers (and using that ŝ2 ≈ 1− m2
W

m2
Z

to determine which root) we find

ŝ2 = 0.234 289. (31.12)

This is one possible definition of sin2θw.
Plugging these numbers in to Eqs. (31.2) and (31.5) predicts (at tree-level)

m
(tree)
W,pole = m̂W ≡ êv̂

2ŝ
= 79.794GeV, (31.13)

A(tree)
e = Âe ≡

(
1
2 − ŝ2
)2 − ŝ4(

1
2 − ŝ2
)2 + ŝ4

= 0.1252. (31.14)

These are well outside the experimental bounds – by nearly 40 standard deviations in the
mW case! This does not mean we have a contradiction within the Standard Model. We
cannot make such a conclusion until we include loop corrections and carefully renormalize.

31.1.1 Oblique corrections

In order to test the electroweak sector, we will proceed in four steps:

1. Express our fiducial quantities α̂e, ĜF and m̂Z in terms of MS Lagrangian parameters
e,mZ and sin2θw.

2. Solve for the Lagrangian parameters in terms of the fiducial quantities.
3. Express any other quantity we want to compute (mW,pole andAe) in terms of Lagrangian

parameters.
4. Substitute in the measured quantities to get our predictions.

To be clear, in the notation we use for this chapter e and mZ mean the MS renormalized
electric charge and Z-boson MS mass, which are in general different from the charge ê and
pole mass m̂Z in the on-shell scheme. Quantities with circumflexes (such as ŝ, ĉ and m̂W )
are related to the fiducial quantities α̂e(m̂Z), m̂Z and ĜF by tree-level relations.

There are many loops that can contribute to radiative corrections of the observables listed
above. However, since the observables are given at tree-level by gauge boson exchange, the
largest contributions will come from loops affecting the gauge boson propagators. For his-
torical reasons, these are called oblique corrections. An advantage of these observables
is that, since the Standard Model would have the same structure with any number of gen-
erations, the oblique corrections from each generation will be gauge invariant and finite.
We will therefore focus on the largest corrections, which come from loops of the third
generation quarks (t, b) and from the Higgs boson.
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In the MS scheme, the tree-level propagators are determined from renormalized values
of the masses in the Lagrangian. TheZ-boson 2-point function in the free theory is given by

iGμνZ(tree)(p) = iΠμν
Z (p) =

−i
(
gμν − pμpν

m2
Z

)
p2 −m2

Z

, (31.15)

withmZ the renormalized MS mass parameter in the Lagrangian. Here, we use a shorthand
notation defined by

〈Ω|T{Zμ(x)Zν(y)} |Ω〉 ≡
∫

d4p

(2π)4
eip(x−y)iGμνZ (p), (31.16)

and similarly for other 2-point functions.
The Z-boson propagator gets radiative corrections from loops, which correct both the

gμν and pμpν terms. By Lorentz invariance, we must find

p p
= iΠZZg

μν + iΠpp
ZZp

μpν . (31.17)

However, since all the observables in which we are interested have the gauge bosons cou-
pling to essentially massless fermions (which provide conserved currents), the pμpν terms
will not contribute. Thus, we can simply write that the corrections will give

iGμνZ (p) =
−igμν
p2 −m2

Z

(
1 + iΠZZ

−i
p2 −m2

Z

+ · · ·
)

+ pμpν terms. (31.18)

Summing all the one-particle-irreducible contributions ΠZZ leads to

iGμνZ (p) =
−igμν

p2 −m2
Z −ΠZZ(p2)

+ pμpν terms, (31.19)

so that the pole mass will be related to the renormalized Lagrangian mass at 1-loop as

m̂2
Z = m2

Z,pole = m2
Z + Re

[
ΠZZ

(
m2
Z

)]
. (31.20)

The real part of ΠZZ is taken in Eq. (31.20) because the Z boson is unstable.1 Note that
if we use ΠZZ to 1-loop order, it does not matter which m2

Z is used in the argument of
ΠZZ – the difference is higher order. This is our first equation relating an observable (m̂Z)
to an MS quantity (mZ).

1 Recall from Section 24.1.4 that 2-point functions for unstable particles have imaginary parts proportional to
their decay widths. Since the width of the Z boson (ΓZ = 2.5 GeV) is much less than its mass (mZ = 91.2
GeV), the relation Im [ΠZZ ] = −mZ,poleΓZ applies. For p2 near m2

Z , the 2-point function then becomes

iGμν
Z (p) =

−i
(
gμν − pμpν

m2
Z

)
p2 −m2

Z,pole + imZ,poleΓZ
. (31.21)

This generates a Breit–Wigner line shape which is fit to data to determine the real pole mass mZ,pole and ΓZ

from data.
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Similarly, for the W mass

m2
W,pole = m2

W + Re
[
ΠWW

(
m2
W

)]
. (31.22)

For the remainder of this chapter, we will not write Re [ ] explicitly. We will simply evaluate
the real part of the various self-energy functions at the end of the calculation.

For corrections to the photon propagator, recall that the photon is massless to all orders
in perturbation theory, since its mass is forbidden by gauge invariance. Thus we have

iGμνγ (p) =
−igμν

p2 −Πγγ(p2)
+ pμpν terms, (31.23)

where Πγγ are the 1PI vacuum polarization graphs. Comparing to the notation Π
(
p2
)

from
Section 19.2, we find Πγγ = −p2Π

(
p2
)
.

Now, let us relate the renormalized electric charge e (the MS parameter in the
Lagrangian) to the value ê2(mZ) = 4πα̂e(mZ) in Eq. (31.9) (which comes from a physical
measurement). One way to define ê2(Q) is as the value of the effective charge relevant for
s-channel photon exchange at a scale Q. Then, the total cross section for e+e− → μ+μ−

at s = m2
Z from photon exchange is

σtot =
ê4(mZ)
12πm2

Z

. (31.24)

As explained in Section 20.3.1, the running coupling is defined so that the large logarithms
in the vacuum polarization graphs are included in a tree-level graph using ê4(mZ) instead
of ê4(0). To compare to the MS parameter in the Lagrangian, we note that, had we used
the full vacuum polarization contributions, we would have found

σtot =
e4

12πm2
Z

(
m2
Z

m2
Z −Πγγ(m2

Z)

)2

, (31.25)

where the factor in brackets comes from replacing p2 by p2 + Πγγ

(
p2
)

in the photon
propagator and evaluating at p2 = m2

Z . Thus,

ê2(mZ) = e2
1

1− 1
m2
Z

Πγγ(m2
Z)

= e2

[
1 +

Πγγ

(
m2
Z

)
m2
Z

+ · · ·
]
. (31.26)

This equation relates the value of ê2(mZ) extracted from g − 2 and evolved to mZ in
Eq. (31.9) to the renormalized MS parameters e and mZ in the Lagrangian.

Finally, we want to relate the muon lifetime τ̂μ (or equivalently ĜF ) to the renormalized
parameter s2 = sin2θw in the MS Lagrangian. Since muon decay proceeds through a
charged-current interaction, the oblique corrections to the decay rate come from ΠWW . As
ĜF comes from the low-energy limit of the tree-level W propagator, we have

ĜF√
2

= −g
2

8
1

p2 −m2
W −ΠWW (p2)

∣∣∣∣
p2=0

=
e2

8s2c2m2
Z

(
1− ΠWW (0)

m2
W

+ · · ·
)
,

(31.27)

where we have replaced g2

8m2
W
→ 1

2v2 →
e2

8s2c2m2
Z

(note that mZ and not m̂Z appears in
this expression, since ΠZZ does not contribute to a correction to the muon decay rate at this
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order). ĜF on the left-hand side is the measured value, extracted from the muon lifetime
in Eq. (31.10), while all the quantities on the right-hand side are MS quantities.

The final observable, the Z-boson production asymmetry Ae, is determined by how the
Z boson couples to electrons. In the MS Lagrangian the Z and photon couplings are

LγZ = − e

sc
Zμ

[(
1
2
− s2
)
ēLγ

μeL − s2ēRγμeR
]
− eAμ[ēLγμeL + ēRγ

μeR] , (31.28)

where c =
√

1− s2. Here, s = sin θw is the renormalized MS value for the sine of the

weak mixing angle. At tree-level, this Lagrangian givesAe = ( 1
2−s2)

2−s4

( 1
2−s2)

2
+s4

, as in Eq. (31.5).

At 1-loop, there is a contribution to Z-boson production from ΠZZ vacuum polarization
graphs and from vacuum polarization graphs that mix the Z boson with the photon:

Z Z
ΠZZ and γ Z

ΠγZ . (31.29)

The first graph tells us that we should use the corrected propagator with a pole at mZ,pole

rather than atmZ . Since we evaluate these graphs with momentum p2 = m2
Z going through

the boson lines, we can account for the ΠZZ correction at 1-loop by simply replacing mZ

by m̂Z in the tree-level result. Since the tree-level result for Ae has no mZ dependence,
the effect of ΠZZ is higher order.

The second graph gives a factor of
ΠγZ(p2)

p2 with p2 = m2
Z and the photon charge rather

than the Z boson charge. That is, it says the effective Z-boson couplings are

Leff
Z = − e

sc
Zμ

[(
1
2
− s2
)
ēLγ

μeL − s2ēRγμeR
]
− e

ΠγZ

(
m2
Z

)
m2
Z

Zμ[ēLγμeL + ēRγ
μeR]

=
e

sc
Zμ

[(
1
2
− s2eff

)
ēLγ

μeL − s2effēRγ
μeR

]
, (31.30)

where

s2eff ≡ s2 − sc
ΠγZ

(
m2
Z

)
m2
Z

. (31.31)

This leads to a simple formula for the asymmetry,

Ae =

(
1
2 − s2eff

)2 − s4eff(
1
2 − s2eff

)2 + s4eff

, (31.32)

which is valid at 1-loop.
Now let us turn to our four advertised steps from the introduction to this section. Step 1

is to express the three fiducial measured quantities in terms of Lagrangian parameters e,
mZ and s:



648 Precision tests of the Standard Model

ê2(mZ) = e2

[
1 +

Πγγ

(
m2
Z

)
m2
Z

]
, (31.33)

ĜF =
√

2
e2

8s2c2m2
Z

(
1− ΠWW (0)

m2
W

)
, (31.34)

m̂2
Z = m2

Z + ΠZZ

(
m2
Z

)
, (31.35)

with the real part of ΠZZ implicit in the last equation. The left-hand sides of these three
equations are the measured values while the right-hand sides are formal expressions in
terms of renormalized MS Lagrangian parameters.

Step 2 is to invert these equations (to leading order in α̂e) giving e, mZ and s in terms
of ê, m̂Z and ĜF :

e2 = ê2

[
1−

Πγγ

(
m̂2
Z

)
m̂2
Z

]
, (31.36)

m2
Z = m̂2

Z

[
1−

ΠZZ

(
m̂2
Z

)
m̂2
Z

]
, (31.37)

and

s2c2 =
√

2
ê2

8ĜF m̂2
Z

(1 + ΠR) , (31.38)

where

ΠR ≡ −
Πγγ

(
m̂2
Z

)
m̂2
Z

+
ΠZZ

(
m̂2
Z

)
m̂2
Z

− ΠWW (0)
m̂2
W

. (31.39)

Since these vacuum polarization graphs are already 1-loop, we can use either m̂Z and m̂W

or mZ and mW as the arguments of these vacuum polarization graphs. The difference is
formally beyond the order we are working.

It is not hard to get an expression for s2 instead of s2c2 using trigonometric identities.
In terms of ŝ2, defined in Eq. (31.11) as the value of sin2θw extracted directly from our
fiducial observables, we find

s2 = ŝ2
(

1 +
ĉ2

ĉ2 − ŝ2 ΠR

)
, c2 = ĉ2

(
1− ŝ2

ĉ2 − ŝ2 ΠR

)
. (31.40)

Step 3 is to express the other observables first in terms of Lagrangian parameters. For
Ae we have already done this in Eq. (31.32). FormW , usingm2

W = c2m2
Z and Eq. (31.22)

we get

m2
W,pole = c2m2

Z + ΠWW

(
m2
W

)
. (31.41)

Then, Step 4, we express mW,pole and Ae in terms of the measured quantities

m2
W,pole = ĉ2m̂2

Z

(
1− ŝ2

ĉ2 − ŝ2 ΠR −
ΠZZ

(
m̂2
Z

)
m̂2
Z

+
ΠWW

(
m̂2
W

)
ĉ2m̂2

Z

)
. (31.42)
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Similarly, Eq. (31.32) is Ae = ( 1
2−ŝ2eff)

2−ŝ4eff

( 1
2−ŝ2eff)

2
+ŝ4eff

, which gives an expression for Ae in terms of

seff and is defined in Eqs. (31.31) in terms of MS quantities. Writing seff instead in terms
of observables, using Eq. (31.40) gives

s2eff = ŝ2 +
ŝ2ĉ2

ĉ2 − ŝ2 ΠR − ŝĉ
ΠγZ

(
m̂2
Z

)
m̂2
Z

. (31.43)

Next, we need to evaluate the various vacuum polarization amplitudes, which we can then
plug in to get our experimental predictions.

31.1.2 Electroweak vacuum polarization loops

Now let us evaluate all the vacuum polarization graphs. We will focus on the contributions

from the top quark, which gives the largest effect
(

proportional to m2
t

m2
Z

)
, and from the

bottom quark, which is required by SU(2) invariance. The Higgs boson contributions are
also important, but we leave their computation as an exercise (Problem 31.3). To compute
Πij , we need to perform loops with left- or right-handed insertions. We will do this for
general masses and couplings and then insert the appropriate masses and couplings for the
appropriate self-energy function.

The fermion contributions to the vacuum polarization functions come from loops such as

iΠμν =
p

p;m1

p

p+ q;m2

, (31.44)

where the two masses m1 and m2 can be different (for example in ΠWW ). The LL or RR
amplitudes at 1-loop are

iΠμν
LL = iΠμν

RR = (−1)e2μ4−d
∫

ddk

(2π)d
Tr
[
(iγμ)PLi(/k +m1)(iγν)PLi

(
/k + /p+m2

)]
[k2 −m2

1]
[
(k + p)2 −m2

2

]
= igμν

e2

(4π)d/2
μ4−d
∫ 1

0

dx
Γ
(
2− d

2

)
Δ2−d/2

[
2xm2

2 + 2(1− x)m2
1 − 4x(1− x)p2

]
+pμpν terms,

(31.45)

where

Δ = xm2
2 + (1− x)m2

1 − x(1− x)p2. (31.46)

There is also a pμpν term, which we will just drop from now on since it does not contribute
to the observables due to Ward identities. Stripping off the igμν as in Eq. (31.17) and
expanding with d = 4− ε we get

ΠLL = ΠRR =
e2

4π2

{
m2

1 +m2
2 − 2

3p
2

2ε
− 1

2

∫ 1

0

dx
[
x(1− x)p2 −Δ

]
ln
μ̃2

Δ

}
. (31.47)
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The LR integral requires a mass insertion to turnR↔ L so it must be odd in the masses.
By dimensional analysis we therefore expect it will be proportional to m1m2. The exact
result is

iΠμν
LR = iΠμν

RL = (−1)e2μ4−d
∫

ddk

(2π)d
Tr
[
(iγμ)PLi(/k +m1)(iγν)PRi

(
/k + /p+m2

)]
[k2 −m2

1]
[
(k + p)2 −m2

2

]
= −igμν e2

(4π)d/2
μ4−d
∫ 1

0

dx
Γ
(
2− d

2

)
Δ2−d/2 2m1m2 + pμpν terms, (31.48)

so that

ΠLR + ΠRL = − e2

4π2
m1m2

{
1
ε

+
1
2

∫ 1

0

dx ln
μ̃2

Δ

}
. (31.49)

As a check, the above calculation withm1 = m2 = me should reproduce the QED vacuum
polarization amplitude (vector–vector or ΠV V ). We find

ΠV V = ΠLL + ΠLR + ΠRL + ΠRR

= − e2

(4π)d/2
μ4−dp2

∫ 1

0

dx
Γ
(
2− d

2

)
[m2

e − p2x(1− x)]2−d/2
8x(1− x)

= − e2

2π2
p2

[
1
3ε

+
∫ 1

0

dxx(1− x) ln
(

μ̃2

m2
e − p2x(1− x)

)]
. (31.50)

This is proportional to p2 and agrees with the result for the vacuum polarization graph in
Eq. (16.45), since Πμν

2 = gμνΠV V .
With these amplitudes, it is straightforward to plug in the charges and work out the

vacuum polarization amplitudes for the γ/W/Z fields. ΠWW is proportional to ΠLL, since
it only involves left-handed fields, and Πγγ is proportional to ΠV V . For ΠZZ and ΠZγ we
can use that the Z boson couples to T 3 − s2Q with strength − e

sc (see Eq. (31.4)) to write
everything in terms of vector and left-handed amplitudes. For a single (t, b) doublet, we get

Πγγ(p2) = N
∑
i=t,b

Q2
iΠV V (Δii), (31.51)

ΠγZ(p2) =
1
sc
N
∑
i=t,b

(
T 3
i Qi

1
2
ΠV V (Δii)− s2Q2

iΠV V (Δii)
)
, (31.52)

ΠWW

(
p2
)

= |Vtb|2
1
s2
N

1
2
ΠLL(Δtb), (31.53)

ΠZZ

(
p2
)

=
1
s2c2

N
∑
i=t,b

((
T 3
i

)2
ΠLL(Δii)− 2s2T 3

i Qi
1
2
ΠV V (Δii) + s4Q2

iΠV V (Δii)
)
.

(31.54)

Here Δij means Δ with m1 = mi and m2 = mj . The factor of N = 3 comes from
the three colors of quarks; the 1

2 in ΠWW from the normalization of the W± generators;
the 1

2ΠV V comes from the T 3/hypercharge mixing, Π3Y ∝ ΠLR + ΠRR = 1
2ΠV V . Note
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that, since the Πij start at 1-loop, it does not matter which definitions of s and e we use in
these expressions. One can easily substitute the charges Qt = 2

3 , Qb = − 1
3 , T 3

t = 1
2 and

T 3
b = − 1

2 to simplify these formulas, but the more general formulas help illustrate where
some cancellations come from.

With these results, we can now evaluate how the top and bottom quarks affect our
predictions. For example, expanding out Eq. (31.43) gives

s2eff = ŝ2+
ŝ2ĉ2

ĉ2 − ŝ2

(
−

Πγγ

(
m̂2
Z

)
m̂2
Z

+
ΠZZ

(
m̂2
Z

)
m̂2
Z

− ΠWW (0)
m̂2
W

)
−ŝĉ

ΠγZ

(
m̂2
Z

)
m̂2
Z

. (31.55)

Let us first check that the divergent parts (and hence also the μ-dependent parts) of this and
m2
W,pole in Eq. (31.42) are zero. Noting that

ΠLL(Δij) = e2
m2
i +m2

j − 2
3p

2

8π2ε
+O
(
ε0
)
, ΠV V (Δii) = −e2 p2

6π2ε
+O
(
ε0
)
,

(31.56)
the divergent parts are

Πγγ

(
m2
Z

)
= −e

2m2
Z

2π2ε

(
Q2
t +Q2

b

)
, (31.57)

ΠWW

(
m2
W

)
= |Vtb|2

3e2

16π2s2ε

(
m2
b +m2

t −
2
3
m2
W

)
, (31.58)

ΠγZ

(
m2
Z

)
=

e2m2
Z

8π2scε

(
Qb −Qt + 4s2

(
Q2
t +Q2

b

))
, (31.59)

ΠZZ

(
m2
Z

)
=

e2

16s2c2π2ε

[
3m2

b + 3m2
t − 2m2

Z

(
1 + 2(Qb −Qt)s2 + 4

(
Q2
b +Q2

t

)
s4
)]
.

(31.60)

Using only Qt − Qb = 1 = |QW± | we find that s2eff and m2
W,pole would be finite if

|Vtb|2 = 1. For |Vtb| �= 1, one must include all the other quark loops to see the finiteness.
Doing so, we would find the divergent part of ΠWW is

ΠWW

(
m2
W

)
=

3e2

16π2s2ε

[(
|Vtb|2 + |Vts|2 + |Vtd|2

)
m2
t

+
(
|Vtb|2 + |Vcb|2 + |Vub|2

)
m2
b + · · ·

]
=

3e2

16π2s2ε

[
m2
t +m2

b +m2
c +m2

s +m2
u +m2

d − 4m2
W

]
, (31.61)

where unitarity of the CKM matrix has been used. Thus, the CKM matrix elements drop
out of the divergent parts of the vacuum polarization graphs. Since the finite parts of loops
involving light quarks are proportional to the light-quark masses, we can neglect their cor-
rections. Including the m2

t contributions from the top-bottom, top-strange and top-down
graphs is therefore equivalent to including just the m2

t contribution from one of these
graphs with Vtb = 1. Thus, we set Vtb = 1 and include just the top-bottom loop.

Since the divergent contributions to our predictions for m2
W,pole and s2eff (and hence Ae)

cancel, we can now evaluate the 1-loop corrections to these observables. To do so, the only
remaining issue is what value to take for the electric charge and top mass.
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For the electric charge, we must first convert the on-shell value from Eq. (31.8) to the
MS scheme at μ = 0 and then run up to mZ . The leading-order vacuum polarization dia-
gram Πγγ determines the leading-order running coupling. Since we have to run over a large
range of energy to get an accurate value of e(mZ) we should include all charged particles
and subleading-loop running. The running has in fact been calculated up to 4-loops, and
the current best MS value of the fine-structure constant at mZ is given in Eq. (31.9). We
will simply use that value, since renormalization group evolution has already been covered
in Chapter 23.

The current experimental value of the top mass is mt,pole = 173.5±1.0 GeV. This is the
value of a parameter in Monte-Carlo simulations which produce distributions with the best
fit to the observed line shape. Since this shape is approximately Breit–Wigner, we conclude
that this value corresponds most closely to the real pole mass defined in Section 24.1.4. Of
course, working only at 1-loop, it does not matter whether we use the top-quark pole mass
or the MS mass in the oblique corrections, since differences are higher order. However,
because of the strong (quadratic) dependence of the oblique corrections on the top mass,
subleading (2-loop and higher) effects can be large. Large logarithms in these higher-order
amplitudes can be minimized by using the scale-dependent top-quark mass mt(μ) in the
MS scheme rather than the pole mass mt,pole. Converting to the MS mass using 3-loop
QCD corrections gives [Melnikov and van Ritbergen, 2000]

mt(mt) = mt,pole

[
1− 4

3
αs(mt)
π

− 9.125
(
αs(mt)
π

)2

− 80.405
(
αs(mt)
π

)3
]

= 163.0 GeV, (31.62)

where αs(mt) = 0.1088 has been used. Note that there is a 10.5 GeV difference between
the pole and the MS top-quark masses, so this is a fairly large effect. The W -boson
and Z-boson masses should technically also be used in the MS scheme. However, since
these particles are colorless, the scheme dependence is small and the difference can be
neglected.2

Now we can compute the 1-loop corrections to Ae and mW,pole. Using the values
discussed above, mt(mt) = 163.0 GeV, αe(mZ) = 0.007816, m̂Z = 91.1876 GeV,
mb = 4.18 GeV and ŝ2 = 0.234 289, we get

mW,pole = 80.368GeV. (31.63)

Comparing to the experimental value mexp
W = 80.399 ± 0.023GeV we now find good

agreement. We also get s2eff = 0.2313, giving a prediction

Ae = 0.1491 (31.64)

to be compared to the experimental value Aexp
e = 0.1514 ± 0.0019. Both of these predic-

tions are now within uncertainties of the data. In case you are curious, if we had used the top
pole mass instead of MS mass, the 1-loop values would have been mW,pole = 80.440GeV
and Ae = 0.1522.

2 Actually, as discussed in Section 22.6.1, for the Higgs mass, mh(mh)2 −m2
h,pole is actually quadratically

sensitive to the top mass. This sensitivity is related to mh = 0 not being technically natural and the hierarchy
problem. In the Standard Model, it turns out that mh,pole = 125 GeV gives mh(mh) = 124 GeV, so the
difference happens to be numerically small.
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Table 31.1 Standard Model predictions for electroweak observables.
Inputs are α̂e(mZ) = 0.007 757 5, τ̂μ = 2.196 981 1× 10−6 s,

mZ,pole = 91.1876 GeV and mt,pole = 173.5 GeV.
The rightmost column includes a 125 GeV Higgs.

Observable Exp. value Tree-level 1-loop (t, b) 1-loop (t, b, h)

mW (GeV) 80.399 ± 0.023 79.794 80.368 80.333
Ae 0.1514 ± 0.0019 0.1252 0.1491 0.1470

Sometimes it is helpful to have approximate analytic formulas for the oblique correc-
tions. For example, taking mb → 0 then mZ 
 mt we get, from Eq. (31.42),

m2
W,pole ≈ ĉ2m̂2

Z

[
1 +

3α̂e
16πŝ2(ĉ2 − ŝ2)

m2
t

m̂2
Z

]
, (31.65)

and from Eq. (31.55),

s2eff≈ ŝ2
[
1− 3α̂e

16πŝ2(ĉ2 − ŝ2)
m̂2
t

m̂2
Z

]
. (31.66)

These approximations give mW,pole = 80.285 and s2eff = 0.2314, which leads to Ae =
0.1480, in close agreement with the exact 1-loop results listed above.

In addition to the top/bottom contribution, the other reasonably sized correction is from
the Higgs boson. We use the value

mH,pole = 125GeV (31.67)

Calculating the appropriate vacuum polarization graphs, the leading mh dependence shifts
the predictions for s2eff and m2

W,pole as (see Problem 31.3)

m2
W,pole → m2

W,pole −
5αe
24π

ĉ2m̂2
Z

ĉ2 − ŝ2 ln
m2
h

m2
W

(31.68)

and

s2eff → s2eff +
αe
(
1 + 9ŝ2

)
48π(ĉ2 − ŝ2) ln

m2
h

m2
W

. (31.69)

Note that the oblique corrections depend quadratically on the top-quark mass but only loga-
rithmically on the Higgs mass. Takingmh = 125 GeV this leads tomW,pole = 80.351 GeV
and s2eff = 0.2314, which gives Ae = 0.1477. These values are summarized in Table 31.1.

31.2 Custodial SU(2), ρ, S, T and U

In the Standard Model, the W -boson and Z-boson masses have a ratio determined by the
relative strengths of the weak and electromagnetic gauge couplings. That is,

m2
W

m2
Z

=
g2

g2 + g′2
= cos2θw. (31.70)



654 Precision tests of the Standard Model

This is a consequence of the way the SU(2) × U(1) symmetry is spontaneously broken
through the Higgs mechanism with a single SU(2) doublet. If the Higgs sector were more
complicated, there might be deviations from this, even at tree-level. It is therefore useful to
define something called the ρ-parameter, defined as

ρ ≡ m2
W

m2
Z cos2θw

. (31.71)

Denoting the tree-level value of ρ as ρ0, we see that ρ0 = 1 in the Standard Model.
Since the W -boson and Z-boson masses and the gauge couplings g and g′ have nothing

to do with the linear-sigma-model field h (the Higgs), it is natural to wonder what exactly
guarantees that ρ0 = 1. That is, can we see that ρ0 = 1 purely from the low-energy
effective theory, the nonlinear sigma model? The answer is yes; ρ0 = 1 is guaranteed by a
symmetry. To see this symmetry, recall that our original Higgs doublet H transformed as a

doublet under SU(2). Writing H = 1√
2

(
h3 + ih4

h1 + ih2

)
, we see that the potential

V (H) = λ

(
H†H − v2

2

)2

=
λ

2
(
h2

1 + h2
2 + h2

3 + h2
4 − v2
)2

(31.72)

is actually invariant under a larger SO(4) symmetry, under which the quadruplet
(h1, h2, h3, h4) transforms in the fundamental representation. Note that SO(4) has six gen-
erators, which is twice as many as SU(2). When H gets a vev (such as with h1 = v and
h2 = h3 = h4 = 0) the SO(4) symmetry is broken down to SO(3). Thus there are actually
three unbroken (global) symmetry directions in the Higgs sector of the Standard Model.
In other words, there is a residual global SU(2) symmetry after electroweak symmetry
breaking. This is known as custodial isospin or custodial SU(2).

Despite the fact that we have introduced this symmetry as acting on H , it is not hard
to see that it actually just acts on the Goldstone bosons. Thus, it should be present in the
low-energy theory. In fact, it is even present in the 4-Fermi theory. The charged-current and
neutral-current 4-Fermi interactions, coming from W and Z exchange respectively, are

L = −
(e
s

)2(
J1
μ + iJ2

μ

) gμν
m2
W

(
J1
ν − iJ2

ν

)
−
( e
sc

)2(
J3
μ − s2JEM

μ

) gμν
m2
Z

(
J3
ν − s2JEM

ν

)
.

(31.73)
We conventionally define GF =

√
2e2

8s2m2
W

so that this can be rewritten as

L = − 8√
2
GF

[∣∣J1
μ + iJ2

μ

∣∣2 + ρ
(
J3
μ + s2JEM

μ

)2]
. (31.74)

So we see that the custodial symmetry forcing ρ0 = 1 is just the symmetry that relates
the strength of the weak part of the neutral-current interactions to the strength of the
charged-current interaction. (If we restore the SU(2)L symmetry with Goldstone bosons,
this equality of coupling strengths would translate to the equality F 3

π = F 1,2
π , which is

guaranteed by the custodial SU(2).)
As an example, consider electroweak symmetry breaking by QCD. Recall that even if

we did not have a Higgs sector at all, we would still have SU(2) × U(1) → U(1) by the
QCD 〈q̄q〉 condensate. If this were the only source of electroweak symmetry breaking,
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would we still find ρ0 = 1? The answer is yes, because QCD does have a custodial
SU(2) symmetry. In the massless quark limit, QCD has a full SU(2)L × SU(2)R sym-
metry, since the strong interactions treat the left- and right-handed fields identically. After
symmetry breaking, since only SU(2)L has associated gauge bosons, the breaking would
be SU(2)L × SU(2)R → SU(2)V , where this SU(2)V symmetry is precisely the custo-
dial symmetry that relates the W -boson and Z-boson masses to the gauge charges. That
chiral symmetry is broken in QCD is non-trivial but can be proved (at least in the 3-flavor
case) using anomaly-matching arguments discussed in Section 30.6. There are many the-
ories without custodial SU(2). For example, a theory with Higgs triplets instead of Higgs
doublets generically does not have the symmetry.

The custodial SU(2) symmetry relates SU(2)weak partners, such as the up and down
quarks, or top and bottom quarks. The Yukawa couplings in the Standard Model generally
do not respect custodial SU(2). Mostly, the breaking is a small effect, since most of the
Yukawa couplings are small. The exception is the top quark, whose Yukawa coupling is
close to 1. Thus, the dominant contribution to Δρ = ρ − 1 in the Standard Model is from
the top quarks.

To see how the top quark affects the ρ parameter, we first need a better definition;
Eq. (31.71) depends on which version of sin2θw we use. Traditionally, ρ is defined to mea-
sure the difference between the charged-current and neutral-current interaction strengths.
The charged-current strength G charged

F can be measured from muon decay. The neutral-
current strength can, in principle, be measured from pure neutrino–neutrino scattering.
Following Eq. (31.27), the neutral current strength is

Gneutral
F√

2
=

e2

8s2m2
Z

(
1− ΠZZ(0)

m2
Z

+ · · ·
)

(31.75)

so that using Eq. (31.27)

Δρ ≡ Gneutral
F

G charged
F

− 1 =
ΠWW(0)
m2
W

− ΠZZ(0)
m2
Z

. (31.76)

One of the most straightforward ways to measure Δρ is by scattering neutrinos off hadrons,
in which case there is an extra term 2 sc

ΠZγ(0)

m2
Z

in Δρ. For an SU(2) doublet with massesm1

and m2 (such as the top/bottom quark doublets for which ΠWW and ΠZZ were calculated
above) we find the contribution to Δρ is

Δρ = N
αe

16πs2c2m2
Z

(
m2

1 +m2
2 −

2m2
1m

2
2

m2
1 −m2

2

ln
m2

1

m2
2

)
. (31.77)

Note that this vanishes in the limit m1 → m2. For the top quark, where mt � mb, this
simplifies to

Δρt =
3αe

16πs2c2
m2
t

m2
Z

= 0.008. (31.78)

It is convenient to absorb corrections like this, from Standard Model particles, into the

definition of ρ. We can do this by defining ρ in terms of MS parameters as ρ ≡ m2
W

m2
Zc

2 . This
combination is by definition 1 in the Standard Model. The current experimental value is
ρ = 1.0004.
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In the same way that looking for deviations of ρ from 1 can tell us about custodial-
SU(2)-violating interactions, it is useful to have some additional ways to constrain and
characterize new physics. To this end, the Peskin–Takeuchi parameters S, T and U are
often used [Peskin and Takeuchi, 1992]. These are defined as

T ≡ 1
αe

(
Π new
WW (0)
m2
W

− Πnew
ZZ(0)
m2
Z

)
=
ρ− 1
αe

, (31.79)

S ≡ 4c2s2

αe

[
Πnew
ZZ(m2

Z)−Πnew
ZZ(0)

m2
Z

− c2 − s2
cs

Πnew
Zγ

(
m2
Z

)
m2
Z

−
Πnew
γγ

(
m2
Z

)
m2
Z

]
, (31.80)

U ≡ 4s2

αe

[
Πnew
WW

(
m2
W

)
−Πnew

WW (0)
m2
W

− c

s

Πnew
Zγ

(
m2
Z

)
m2
Z

−
Πnew
γγ

(
m2
Z

)
m2
Z

]
− S, (31.81)

where αe is αe(mZ). Here new means that S, T and U are normalized by subtracting off
the Standard Model prediction. S = T = U = 0 is defined withmt = 173 GeV andmh =
126 GeV. Current experimental measurements give S = 0.03±0.10, T = 0.05±0.12 and
U = 0.03 ± 0.10. The actual allowed region is an ellipse, as shown in Figure 31.1. Thus,
if you propose a model of physics beyond the Standard Model, you can calculate S and T
as a shortcut to comparing with electroweak precision data.

In practice, S and T tend to give stronger constraints on beyond-the-Standard-Model
physics than U. T measures custodial isospin violation, since it is equivalent to ρ. S
would get a contribution, for example, from a new generation of fermions, even if custodial
isospin were preserved. For a new doublet, we would have
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S =
N

6π

∑
i

[
1− Yi ln

m2
1

m2
2

]
, (31.82)

T =
N

16πs2c2m2
Z

(
m2

1 +m2
2 −

2m2
1m

2
2

m2
1 −m2

2

ln
m2

1

m2
2

)
, (31.83)

wherem1,2 are the fermion masses and Yi are the hypercharges. The mass splitting violates
isospin and is strongly constrained by T . Even for one new multiplet with degenerate
masses S is in conflict with experiment.

An important application is that S strongly constrains models of new physics that replace
the Higgs with QCD-like dynamics. As long as custodial isospin is preserved in these
technicolor theories, T will be OK, but S will in general get contributions proportional to
the number of techniquarks. For a single doublet, with NC = 4 for technicolor, we might
find S = 4

3π = 0.45, which is severely ruled out.
It is also often useful to think about S and T as coming from higher-dimension operators.

For example, suppose the Standard Model were augmented with the following operators:

OS = H†σiHW i
μνB

μν , OT =
∣∣H†DμH

∣∣2 . (31.84)

At tree-level, we would get contributions to S and T proportional to the Wilson coefficients
for these operators. In practice, one can take one’s favorite model of new physics, for exam-
ple supersymmetry, integrate out the new particles before breaking electroweak symmetry,
and then look at the coefficients CS and CT of the operatorsOS andOT that are generated
by integrating out the new particles. Then S = 4sc

α v2CS and T = − 1
2αv

2CT . It is often
easier to use this shortcut than to compute the contributions of new physics to the vacuum
polarization graphs and electroweak precision observables directly.

31.3 Large logarithms in flavor physics

So far in this chapter we have studied electroweak precision tests. These exploit the fact
that the renormalizability of the Standard Model overconstrained the gauge sector. The
Standard Model is also overconstrained in the flavor sector. As we saw in Chapter 29, the
CKM matrix, based on three generations of quarks, must be unitary. Unitarity constrains
various combinations of the CKM elements, such as

VudV
�
ub + VcdV

�
cb + VtdV

�
tb = 0. (31.85)

One way to visualize this constraint is the unitarity triangle, discussed in Section 29.3.3.
To test if Eq. (31.85) is satisfied, we must be able to extract the CKM elements from data.
To do so at high accuracy requires precision experimental and theoretical physics.

Consider, for example, the extraction of the CKM elements Vcb. This element char-
acterizes the strength of the c̄ /Wb coupling in the Standard Model Lagrangian. Thus, it
shows up in quark-level b → c transitions. Of course, quarks are not directly observed, so
one can only measure this transition rate indirectly through the decay rates of the various
hadrons. An important class of measurements from which CKM elements are extracted are
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the B → D decays, where B is a meson containing a bottom quark and D is a meson
containing a charm quark. For example, the process B̄0 → D+π−, where B̄0 = d̄b and
D+ = d̄c and π− = ūd, is driven by the quark-level transition b → cūd which proceeds
through a highly off-shell W boson. The rate for B̄0 → D+π− is directly proportional
to |Vcb|2. Hadronic B → D decays are also important for measuring CP violation and
constraining the angles in the unitarity triangle.

Unfortunately, the process B̄0 → D+π− is in fact much more complicated than the
underlying quark-level process b → cūd. Due to poorly known non-perturbative hadronic
matrix elements, there is a huge uncertainty in the prediction for the meson decay even
with an accurate calculation of the quark decay rate (one approach to constraining the
non-perturbative part using perturbative physics in the heavy-quark limit is discussed in
Chapter 35). To understand the contribution from perturbative Standard Model physics,
the subject of this chapter, let us for simplicity assume that the relationship between the
B̄0 → D+π− decay rate and Vcb is known.

What we will consider here is how radiative corrections from QCD affect the relationship
between Vcb at the scale of the mass of the B hadron (∼5 GeV) and Vcb at the scale of
electroweak symmetry breaking (∼100GeV), where unitarity of the CKM matrix should
hold. As you can easily imagine, the b→ cūd decay rate when calculated to 1-loop in QCD
will give a large logarithmic correction of the form αs ln mW

mb
. This logarithm is large and

can have an important effect on the decay rate and hence on the extraction of the correct
Vcb. The goal of this section is to calculate this large logarithm and similar logarithms to
all orders in αs.

31.3.1 Matching to the 4-Fermi theory

The b → cūd decay is well-described by the 4-Fermi theory. We formally introduced the
4-Fermi theory in Chapter 29, where we observed that the W - and Z-boson propagators
can be effectively replaced by igμν

m2
W

and igμν

m2
Z

when the typical energies are much lower than
mW and mZ . Thus, the Lagrangian with the full weak interactions would be equivalent to
a simpler Lagrangian with just current–current interactions among the fermions. We will
now make this correspondence precise beyond leading order.

What we want to have is some non-renormalizable effective Lagrangian with no W or
Z which reproduces all the physics of the full electroweak theory, up to corrections that
are suppressed by powers of E/mW . We expect our Lagrangian to be

L = −1
4
F 2
μν −

1
4
(
Gaμν
)2 +
∑
q

ψ̄q
(
i /D −mq

)
ψq −
∑
n

CnOn(x), (31.86)

with Fμν the QED field strength, Gaμν the QCD field strength and On(x) a set of com-
posite local operators constructed out of fermions, covariant derivatives, and QED or QCD
field strengths. The Wilson coefficients Cn are numbers. They can depend on the renor-
malization group scale μ and on constants such as mW , but not on momenta. Momentum
factors should appear as derivatives in the operators On. In the case of the electroweak
theory, the only scale that can appear in Cn is mW ∼ mZ . So, by dimensional analysis,
the higher the dimension of the operator, the more the matrix elements of that operator will
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be suppressed at energiesE 
 mW . The great thing about an effective Lagrangian such as
Eq. (31.86) is that you can compute the Wilson coefficients by matching to the full theory
for one process and then use them to compute amplitudes for other processes. That is, the
Wilson coefficients are independent of the external state. Although we have not yet proved
it, this fact is the essential content of Wilson’s operator product expansion (to be discussed
in more detail in Chapter 32).

The amplitude for the transition b→ cūd in the Standard Model is given at tree-level by
W− exchange:

M = b ū

c

W−

d

=
(

ie√
2 sin θw

)2 (
Vcbc̄

i
Lγ

μbiL
) −igμν
p2 −m2

W

(
V �udd̄

j
Lγ

μujL

)
,

(31.87)

where i and j are color indices and qL ≡ 1−γ5
2 q. For p2 
 m2

W , this same amplitude is
reproduced by a Lagrangian term −C1O1 with

O1(x) =
[
c̄iL(x)γμbiL(x)

] [
d̄jL(x)γμujL(x)

]
, (31.88)

and

C1 = G ≡ 4GF√
2
VcbV

�
ud, (31.89)

where GF√
2

= e2

8m2
W sin2 θw

. This is the tree-level matching result. Note that we are employ-
ing an efficient abbreviation: the same notation is used for the quark fields in Eq. (31.88)
and for the external spinors in Eq. (31.87).

31.3.2 One-loop matching

Since αs ∼ 0.1 � αe ∼ 0.01, electroweak corrections at 1-loop are typically comparable
in strength to 2-loop QCD corrections (for processes involving quarks). Thus, we will
work to 1-loop in αs and ignore electroweak effects. To perform the matching, we need
to demand that matrix elements of the quarks be the same in both theories to order αs.
If the theories are matched properly, this equivalence should hold for any final state. An
obvious choice is to pick on-shell initial and final states, relevant for the b → cūd decay.
An alternative approach is to match by considering c̄b → ūd, with the external momenta
all set to zero. This will give an off-shell matrix element involving fewer scales at the
cost of possibly introducing IR divergences. Since we will be working in dimensional
regularization, having fewer scales makes the calculation much easier than it would be
with on-shell external states.
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The tree-level diagrams for c̄b → ūd in the full weak theory and in the effective
theory are

b ū

c̄

W−
d

and
b ū

c̄ d
, (31.90)

which gives C1 = G as we have just shown. At order αs there are six 1-loop diagrams and
two counterterm diagrams in the full theory:

b ū

c̄

W−

d

b ū

c̄
W− d

b
ū

c̄
W− d

b
ū

c̄
W− d

a b c d

(31.91)

b ū

c̄
W−

d

b ū

c̄
W−

d

e f

b
ū

c̄

W− d

b ū

c̄
W−

d

g h

(31.92)

In the effective theory there are six 1-loop diagrams and one counterterm diagram

b ū

c̄ d

b ū

c̄ d

b

ū

c̄ d

b

ū

c̄

d

A B C D

(31.93)

b ū

c̄ d

b ū

c̄ d

E F

b ū

c̄ d

G

(31.94)

Diagram a gives (with all external momenta set to zero)

iMa =
(
m2
WG
)
g2
sμ

4−d
∫

ddk

(2π)d
−i
k2

−i
k2 −m2

W

(
c̄Lγ

νT a
i/k

k2
γμbL

)(
d̄Lγ

νT a
i/k

k2
γμuL

)
.

(31.95)
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Here we suppress the color indices and group colored objects together to indicate the

color contractions implicitly. For example, (c̄b)
(
d̄u
)

=
(
c̄ibi
)
(d
j
uj). Since the inte-

grand must be Lorentz invariant, we can replace two /k terms with a Lorentz contraction
/kΓ/k → 1

dk
2γμΓγμ. This leaves

Ma = −i
(
m2
WG
)g2
s

d
μ4−d
∫

ddk

(2π)d
1

k4 (k2 −m2
W )

(c̄LγνT aγαγμbL)
(
d̄Lγ

νT aγαγμuL
)
.

(31.96)

This integral is IR divergent but UV finite. Thus, the answer is unambiguous in dimensional
regularization:

Ma =
Gg2

s

32π2

(
1
εIR

+
3
4

+
1
2

ln
μ̃2

m2
W

)
(c̄LγνT aγαγμbL)

(
d̄Lγ

νT aγαγμuL
)
. (31.97)

To simplify the spinor part we use the color identity from Eq. (25.34),∑
a

T aijT
a
kl =

1
2

(
δilδjk −

1
N
δijδkl

)
, (31.98)

which leads to

Ma = G
αs
16π

(
1
εIR

+
1
2

ln
μ̃2

m2
W

+
3
4

)
×
[(
c̄iLγ

νγαγμbjL

)(
d̄jLγ

νγαγμuiL

)
− 1
N

(
c̄iLγ

νγαγμdiL

)(
d̄jLγ

νγαγμujL

)]
,

(31.99)

where i and j are color indices. To simplify these spinor products and match the
spinor contractions up with the color contractions, we use Fierz identities such as (see
Problem 11.8)(

ψ̄1Lγ
νγαγμψ2L

)(
ψ̄3Lγ

νγαγμψ4L

)
= 16
(
ψ̄1Lγ

μψ2L

)(
ψ̄3Lγ

μψ4L

)
, (31.100)(

ψ̄1Lγ
μψ2L

)(
ψ̄3Lγ

μψ4L

)
=
(
ψ̄1Lγ

μψ4L

)(
ψ̄3Lγ

μψ2L

)
, (31.101)(

ψ̄1Lγ
νγαγμψ2L

) (
ψ̄3Lγ

μγαγνψ4L

)
= 4
(
ψ̄1Lγ

μψ2L

)(
ψ̄3Lγ

μψ4L

)
. (31.102)

After rearrangement, we find

Ma = G
αs
π

(
1
εIR

+
1
2

ln
μ̃2

m2
W

+
3
4

)[
(c̄LγμuL)

(
d̄Lγ

μbL
)
− 1
N

(c̄LγμbL)
(
d̄Lγ

μuL
)]
,

(31.103)

where now our notation indicates that the color contractions are within parentheses (the
same as the spinor contractions).

Diagrams b, c and d can be computed similarly (the Fierz identity in Eq. (31.102) is
required for diagrams c and d), giving a total result

Ma +Mb +Mc +Md = G
3αs
2π

(
1
εIR

+
1
2

ln
μ̃2

m2
W

+
3
4

)
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×
[
(c̄LγμuL)

(
d̄Lγ

μbL
)
− 1
N

(c̄LγμbL)
(
d̄Lγ

μuL
)]
. (31.104)

Diagrams e and f just give scaleless integrals which identically vanish in dimensional
regularization. Nevertheless, it is helpful to separate out the UV and IR divergences, which
gives (see Appendix B)

Me =Mf = −GCF
αs
2π

(
1
εIR

− 1
εUV

)
(c̄LγμbL)

(
d̄Lγ

μuL
)
. (31.105)

The UV divergences must be exactly canceled by the MS counterterms in graphs g and h.
Thus we must have

Mg =Mh = −GCF
αs
2π

(
1
εUV

)
(c̄LγμbL)

(
d̄Lγ

μuL
)
, (31.106)

which can easily be confirmed by direct calculation.
The total result in the full theory, up to one loop with N = 3, is then

M full =M tree +Ma + · · ·+Mf

= −G
[
1− αs

2π

(
11
3

1
εIR

+
1
2

ln
μ̃2

m2
W

+
3
4

)]
(c̄LγμbL)

(
d̄Lγ

μuL
)

−G3αs
2π

(
1
εIR

+
1
2

ln
μ̃2

m2
W

+
3
4

)
(c̄LγμuL)

(
d̄Lγ

μbL
)
. (31.107)

Before going on, we note that the IR divergences are an artifact of setting all external
momenta to zero. If we wanted to just calculate the b → cūd rate at 1-loop, we would put
all the momenta on-shell, which would make the integrals IR finite. Then there would be
no 1

εIR
term and ln μ̃2

m2
W

would be replaced by ln p2

m2
W

or some other relevant scale. These are
the physical large logarithms we are trying to understand through effective field theory.

To match onto the full theory with the effective theory, it is clear from Eq. (31.107) that
we are going to need two operators

O1 = (c̄LγμbL)(d̄LγμuL), O2 = (c̄LγμuL)(d̄LγμbL). (31.108)

Even with these operators, we cannot just set C1 = G
[
1− αs

2π

(
11
3

1
εIR

+ 1
2 ln μ̃2

m2
W

+ 3
4

)]
,

since this is a divergent quantity. Even if we replaced the divergence with a physical scale,
we could not set C1 = G−Gαs

4π
11
6 ln p2

m2
W

since then C1 would be momentum-dependent
and our effective Lagrangian would be non-local. To properly do the matching, we have to
now compute the 1-loop corrections in the effective theory.

In the 4-Fermi theory, the 1-loop graphs have no W propagator at all, and we get
the leading coefficient C1 = G in front of the whole diagram. Without the W propagator,
the diagrams are now UV divergent. For each diagram MA through MG, there are
contributions from both O1 and O2. For example,

iMA =C1
g2
s

d
μ4−d
∫

ddk

(2π)d
1
k4

(c̄LγνT aγαγμbL)
(
d̄Lγ

νT aγαγμuL
)

+ C2
g2
s

d
μ4−d
∫

ddk

(2π)d
1
k4

(c̄LγνT aγαγμuL)
(
d̄Lγ

νT aγαγμbL
)
. (31.109)
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All the diagrams are scaleless integrals which vanish in dimensional regularization. It is
helpful nevertheless to separate out the UV and IR divergences. This leads to

MA =
αs
π

(
1
εUV

− 1
εIR

)
C1

[
(c̄LγμuL)

(
d̄Lγ

μbL
)
− 1

3
(c̄LγμbL)

(
d̄Lγ

μuL
)]

+
αs
2π

(
1
εUV

− 1
εIR

)
C2

[
(c̄LγμbL)

(
d̄Lγ

μuL
)
− 1

3
(c̄LγμuL)

(
d̄Lγ

μbL
)]
.

(31.110)

Summing all the diagrams gives

MA + · · ·+MF =
αs
2π

(
1
εUV

− 1
εIR

)(
3C2 −

11
3
C1

)
(c̄LγμbL)

(
d̄Lγ

μuL
)

+
αs
2π

(
1
εUV

− 1
εIR

)(
3C1 −

11
3
C2

)
(c̄LγμuL)

(
d̄Lγ

μbL
)
.

(31.111)

The UV divergences in the effective theory will be removed by counterterms, leaving only
the 1

εIR
and finite terms. Explicitly, the counterterms must give

MG = −αs
2π

1
εUV

[(
3C2 −

11
3
C1

)
(c̄LγμbL)

(
d̄Lγ

μuL
)

+
(

3C1 −
11
3
C2

)
(c̄LγμuL)

(
d̄Lγ

μbL
)]
. (31.112)

The first spinor product can come from renormalization of O1, and the second from
renormalization of O2. We will discuss renormalization more after we finish with
matching.

Adding all the contributions in the effective theory up to order αs then gives

MEFT = −
[
C1 +

αs
2π

1
εIR

(
3C2 −

11
3
C1

)]
(c̄LγμbL)

(
d̄Lγ

μuL
)

−
[
C2 +

αs
2π

1
εIR

(
3C1 −

11
3
C2

)]
(c̄LγμuL)

(
d̄Lγ

μbL
)
. (31.113)

Comparing with M full in Eq. (31.107) we see that the full theory amplitude can be
reproduced up to order αs if we choose

C1 = G

[
1− αs

2π

(
1
2

ln
μ̃2

m2
W

+
3
4

)]
, C2 = G

[
3αs
2π

(
1
2

ln
μ̃2

m2
W

+
3
4

)]
. (31.114)

Here μ̃ is the matching scale, which we clearly want to choose to be near mW to not have
large logarithms in the matching coefficients.

Note that these Wilson coefficients are IR finite (they do not depend on εIR). In other
words, the IR-divergent terms from loops in the full theory have been reproduced by loops
in the effective theory. The cancellation of IR divergences is a self-consistency check. As
long as we are only integrating out heavy particles, such as the W , IR divergences should
cancel in the matching. If they did not, it would mean the infrared degrees of freedom are
different in the two theories and we have not just integrated out short-distance physics.
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31.3.3 Running

At this point, all we have done is construct a theory that agrees with the full weak theory
at 1-loop up to corrections of order E

mW
. We found that a large logarithm of the form

αs
4π ln μ̃2

m2
W

appears in both theories. In a physical process, the scale μ̃ should be replaced by
a physical scale, such as the B mass. If this were all we could do with the effective theory,
it would not be very useful – we might as well use the full theory which gets the E/mW

behavior right too. The real power of the effective theory is that we can now solve the
RGEs to resum these logarithms. We saw how this works in Chapter 23. This is a practical
application of those methods.

To calculate the RGE, we need the anomalous dimensions of O1 and O2. These are
determined by the operator renormalizations. We can write our general Lagrangian with
these operators as

L = L kin − C1Z1O1 − C2Z2O2, (31.115)

where Oi are renormalized operators depending on renormalized fields. From the
counterterms above, Eq. (31.112), we see that

Z1 = 1 +
αs
2π

1
ε

(
3
C2

C1
− 11

3

)
, Z2 = 1 +

αs
2π

1
ε

(
3
C1

C2
− 11

3

)
. (31.116)

These two counterterms cancel all of the 1-loop UV divergences in the effective theory.
The RG evolution is obtained by demanding that the bare Lagrangian be independent of

the arbitrary scale μ. First, we write out the operators in terms of bare fields:

O1 = (c̄LγμbL)
(
d̄Lγ

μuL
)

=
1
Z2

2ψ

(
c̄
(0)
L γμb

(0)
L

)(
d̄
(0)
L γμu

(0)
L

)
, (31.117)

where Z2ψ (normally called Z2) is the quark field strength renormalization we computed
in Chapter 26. In Feynman gauge, from Eq. (26.62),

Z2ψ = 1− 1
ε

2αs
3π

. (31.118)

Using the MS conventions, where all the μ dependence stems from the β-function, with

μ
d

dμ
αs = β(αs) = −εαs − 2αs

(αs
4π

)
β0, β0 =

11
3
CA −

4
3
TFnf , (31.119)

the RGE μ d
dμ

(
C1

Z1
Z2

2ψ

)
= 0 implies, to order αs,

μ
d

dμ
C1 =

αs
2π

(−C1 + 3C2) , μ
d

dμ
C2 =

αs
2π

(3C1 − C2) . (31.120)

That is, the anomalous dimension is a matrix:

μ
d

dμ
Ci = γijCj =

αs
2π

(
−1 3
3 −1

)
ij

Cj . (31.121)
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To solve the RGE, we simply diagonalize the matrix. The eigenoperators are

O0 =
1
2
(O1 +O2), O3 =

1
2
(O1 −O2). (31.122)

The new subscripts reflect a type of isospin quantum number. SinceO0 is symmetric under
d ↔ c it is a singlet while O3, which is antisymmetric, is a triplet. The symmetry is of
course broken by quark masses, but the UV divergences of the theory are independent of
these masses. So the matching at μ = mW gives

C0(mW ) = G

[
1 +

3
4π
αs(mW )

]
, C3(mW ) = G

[
1− 3

2π
αs(mW )

]
, (31.123)

and these run with

γ0 =
αs
π
, γ3 = −2

αs
π
. (31.124)

The RGEs can be easily integrated in the diagonal basis using

Ci(μ) = Ci(mW ) exp

(∫ αs(μ)

αs(mW )

γi(α′)
β(α′)

dα′
)
. (31.125)

Using the 1-loop anomalous dimension and β0 with nf = 5 (there are five active flavors
between mW and mb) this gives

C0(mb) = C0(mW )
(
αs(mW )
αs(mb)

)6/23
, C3(mb) = C3(mW )

(
αs(mW )
αs(mb)

)−12/23

.

(31.126)

Starting with αs(mZ) = 0.1184, we run αs at 1-loop to find αs(mW ) = 0.121 and
αs(mb) = 0.213. Plugging in these numbers leads to

C0(mb) = 0.888G, C3(mb) = 1.27G, (31.127)

which implies

C1(mb) = 1.08G, C2(mb) = −0.189G. (31.128)

The root-mean-square value of these, which is relevant for the b → cdū decay rate, is√
C2

1 (mb) + C2
2 (mb) = 1.09G, which is 9% higher than the tree-level value, and 11%

higher than the 1-loop value
√
C2

1 (mW ) + C2
2 (mW ) = 0.98G.

Now recall that G ≡ 4GF√
2
VcbV

�
ud. Suppose we had an accurate way to relate the

4-Fermi theory at the scale mb to the hadronic B → Dπ decay rate (for example if
hadronic matrix elements were known from the lattice). We could then use the measured
rate Γ(B → Dπ) ∝ |Vcb|2 to extract Vcb. If one did not include the loop corrections, since
the rate is quadratically sensitive to Vcb, the extracted value would come out 18% too low.
This could falsely indicate that the CKM matrix is not unitary and give incorrect indications
of beyond-the-Standard-Model physics.

Conveniently, we do not have to calculate the running from mW down to the GeV
scale on our own for every possible calculation. Instead, we can just integrate out new
physics at mW , match onto a standard set of operators, and use precomputed results.
There is a standard basis, including O1 and O2 up to O9, and additional operators such
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asO7γ = e
8π2mbs̄iσ

μν(1+γ5)biFμν that mediate FCNC processes such as b→ sγ. More
information can be found in [Buchalla et al., 1996].

Problems

31.1 Calculate the rate for μ− → e−ν̄eνμ at tree-level in the 4-Fermi theory and verify
Eq. (31.3).

31.2 Another well-measured quantity is the decay rate of the Z boson into leptons,
Γe+e− ≡ Γ (Z → e+e−). At tree-level,

Γ(Z → e+e−) =
v

96π
e3

s3c3

[
1
4

+
(

2s2 − 1
2

)2]
. (31.129)

The current experimental value is Γe+e− ≡ Γ(Z → e+e−) = 83.99± 0.18MeV.
(a) Evaluate the tree-level prediction for Γe+e− . How many standard deviations is

the result off from the experimental value?
(b) Derive an expression for Γe+e− at 1-loop in terms of MS Lagrangian parameters.
(c) Derive an expression for Γe+e− in terms of vacuum polarization graphs.
(d) Evaluate Γe+e− numerically at 1-loop. How does your answer compare to the

experimental value?
31.3 Calculate the Higgs boson contributions to the various vacuum polarization graphs

exactly. Verify the leading behavior in Eqs. (31.68) and (31.69).
31.4 Flavor-changing b decays:

(a) Calculate the rate for b → sγ in the Standard Model. The relevant graphs have
the photon coming off a W -boson loop.

(b) Match to an effective theory at tree-level so that the b→ sγ rate is reproduced.
(c) Evaluate the order αs corrections to the effective theory.
(d) Evolve the operator from mW to mb. How big are the radiative corrections to

this decay rate from QCD?



Quantum chromodynamics and the
parton model 32

One of the most remarkable results in all of physics is that the existence and properties
of the proton can be explained by a local quantum field theory based on the gauge group
SU(3). This result is additionally remarkable because, although we know QCD predicts
the proton, we cannot prove it. Despite the powerful tools we have developed for doing
perturbative calculations, we only know how to apply QCD to particles that are colored,
not color-neutral particles such as hadrons. In this chapter, we will explore the connection
between perturbative QCD and hadron physics.

We have discussed two methods for studying hadrons so far. The first, chiral pertur-
bation theory (Section 28.2), takes from QCD only its symmetries. These symmetries
are very powerful, and constrain the possible interactions that hadrons (especially the
light mesons) can have, allowing for quantitative quantum predictions. Unfortunately, the
Chiral Lagrangian is non-renormalizable, so one would need an infinite number of mea-
surements to make an infinite number of predictions. Since the Chiral Lagrangian cannot
be matched systematically to QCD within a perturbative framework (in contrast to, say,
how the 4-Fermi theory is matched to the electroweak theory), there are some questions it
simply cannot answer. The other method is lattice QCD (Section 25.5). Lattice QCD lets
us calculate any desired hadronic property, at least in principle. From a practical perspec-
tive, lattice calculations are still extremely computationally expensive. Moreover, there are
some quantities, in particular scattering amplitudes, that are not well suited to lattice cal-
culations at all. To calculate what happens when we collide two protons, neither of these
methods are adequate.

Intuitively, it seems reasonable that perturbative QCD should have some predictive
power for high-energy proton scattering. Although hadrons are strongly interacting, the
strong force is scale dependent and becomes weak at very short distances (Section 26.6).
Thus, one expects a collision between hadrons at very high energy to be dominated by inter-
actions among essentially free quarks or gluons, and perturbative QCD to be applicable.
What is not obvious is whether perturbative calculations can be connected to experimen-
tal observations. In fact they can, due to the power of tools such as the operator product
expansion and effective field theory. These tools allow us to make precise the factorization
of short-distance from long-distance physics.

QCD is an extremely rich subject. It is obviously impossible to cover all the important
topics in one chapter. Instead, we will focus here on some aspects of perhaps the most
important process in QCD: e−p+ scattering. We will begin with a historically oriented
discussion of how the proton was understood by experiments that bombarded electrons at
protons at very high energies. This will lead to the parton model, which was a precursor to
QCD. We will then discuss the field theory version of the parton model and the DGLAP

667
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evolution equations. This will lead into a discussion of factorization. Another approach to
factorization is discussed in Chapter 36 using Soft-Collinear Effective Theory.

As you will see, there are a lot of variables floating around in this chapter. Most of our
definitions are standard. Unfortunately, there are different conventions used in the literature
for the form factors W1 and W2. Our convention is convenient for the QCD analysis. For
future reference, the letter q will confusingly refer to both quarks and to a momentum
transfer qμ = kμ − k′μ, with kμ and k′μ the incoming and outgoing electron momenta.
Pμ will be the proton momentum and pμi a parton momentum. We define x ≡ Q2

2P ·q and

z ≡ Q2

2pi·q , which are kinematic variables, and use ξ, defined by pμi ≡ ξPμ, as a momentum

fraction. Other kinematic variables are ω ≡ 1
x , y ≡ P ·q

P ·k and ν ≡ P ·q
mp

. In the context of

final-state radiation (Section 32.3), z will refer not to Q2

2pi·q but to the ratio of daughter-to-

mother energies in a collinear emission, z = Edaughter

Emother
.

32.1 Electron–proton scattering

Electron–proton scattering is one of the best ways to study hadrons: it uses an essentially
pointlike structureless probe (the electron) to make precision measurements of the pro-
ton. This is not dissimilar to the way Rutherford and collaborators discovered the atomic
nucleus by slamming α-particles into thin metal sheets. From the resulting distributions,
not only were they able to conclude that atoms had a hard center, but they also got a rough
estimate of the size of the nucleus.

32.1.1 Rutherford’s experiment

Rutherford and his team (Geiger and Marsden) produced α-particles (helium nuclei) from
the decay of radon atoms. These α-particles have velocities around 2 × 107 m/s, giving
them a kinetic energy of around 8 MeV. When shooting these “bullets” at a very thin sheet
(a few atoms thick) of foil they sometimes found scattering angles greater than 90◦. This
was totally unexpected, considering the currently popular Thomson model (where the neg-
atively charged electrons are embedded in a positively charged medium, like plums in a
pudding). Rutherford famously said, “It was quite the most incredible event that ever hap-
pened to me in my life. It was almost as incredible as if you had fired a 15-inch shell at a
piece of tissue paper and it came back and hit you.” [Andrade, 1964, p.111].

To calculate the expected distribution, Rutherford used a classical model (of course he
did, this was 1911!). Assuming a central Coulomb potential, the scattering angle θ is fixed
by the energy E and impact parameter b of the collision to be

b =
1
2π

Ze2

mv2
cot

θ

2
, (32.1)

where Z is the charge of the target nucleus. Averaging over impact parameters, this leads
to a cross section
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dσ

dΩ
=
(

Ze2

4πmv2

)2 1
sin4 θ

2

. (32.2)

Rutherford’s group found a distribution consistent with this formula.
Actually, Rutherford was hoping to find deviations from his scattering formula, which

would have indicated new interactions of the electron with the nucleus. That he did not
find any indicated to him that the α-particles must stop before they hit the nucleus. Using
conservation of energy at zero impact parameter, an upper bound rmax on the size of the
nucleus is then given by 1

2mv
2 = 2Ze2

4πrmax
. Using this formula, Rutherford found rmax =

4.8 × 10−15 m [Rutherford, 1911], which was his estimate for the maximal size of the
nucleus. Incidentally, his best estimate came not from his famous gold foil but from lighter
aluminum foil, a much less exotic material. To improve on this, one would like to take
the smallest nucleus possible (a proton), the smallest probe possible (an electron), and the
highest energy possible. This leads to high-energy e−p+ collisions. But it was not until 50
years after Rutherford that the nucleus could be unraveled this way.

32.1.2 Elastic e− p+ scattering

Suppose the proton were structureless too, like the muon. Then we would expect e−p+

scattering to look like e−μ+ scattering. In fact, it does, at least at low energy. The leading
Feynman diagram is just the t-channel photon exchange diagram, which we have studied
many times:

P

k

q ↓

k′

(32.3)

We call this Coulomb scattering. That the proton is composite is only relevant for pho-
tons that have enough energy to see its compositeness – at low energy, the proton is
indistinguishable from an elementary fermion such as the muon.

The relativistic cross section for Coulomb scattering of two spin- 1
2 particles was

calculated in Eq. (13.103) of Chapter 13:(
dσ

dΩ

)
lab

=
α2
e

4E2 sin4 θ
2

E′

E

(
cos2

θ

2
− q2

2m2
p

sin2 θ

2

)
, (32.4)

where E and E′ are the electron’s initial and final energies and qμ = kμ − k′μ is the
momentum transfer; θ is the angle between the outgoing and incoming electrons, so
θ = 0 is forward scattering. These quantities are related by

q2 = −2k · k′ = −
(

4E′E sin2 θ

2

)
lab

. (32.5)

This formula applies in the lab frame, where the proton is initially at rest. Another use-
ful relation is that in the lab frame q2 = 2mp(E′ − E). The derivation of Eq. (32.4)



670 Quantum chromodynamics and the parton model

used me = 0, so one cannot take the non-relativistic limit directly. Nevertheless, the non-
relativistic limit of e−p+ scattering in QED does reduce to the Rutherford formula, as
explained in Section 13.4.

Equation (32.4) is carefully written in terms of only quantities that can be measured
from the initial and final state electron. This is very important, since the early e−p+

scattering experiments, such as Hofstadter’s famous experiments at Stanford in the mid
1950s, collided electron beams with hydrogen gas, and only the outgoing electrons could
be measured. The first 4π detector, that is, one that measures all of the final-state particles,
including the proton remnants, was not built until 1973 (the MARK I detector at SLAC). As
we will see, a tremendous amount can be and was learned about protons by just studying
the outgoing electrons.

If we did not know about QCD (as in the 1950s) we might have expected Eq. (32.4) to
hold up to arbitrarily small distances. For example, a similar formula does appear to hold
up to arbitrarily small distances for electron–muon scattering, which proceeds primarily
through QED. Even in QED, Eq. (32.4) gets quantum corrections, as we saw for e+μ−

scattering in Chapter 20. To study these corrections, it is helpful to remove the electron
from the problem and think of an off-shell photon with spacelike momentum qμ as scatter-
ing off the proton, as in Chapter 20. In Chapter 17 and Section 19.3, we parametrized the
most general type of interaction between an off-shell photon and a spin- 1

2 particle in terms
of two form factors F1 and F2. This parametrization did not assume anything about the
interactions, and must hold in QCD (or any theory). In this case, as in the QED case, the
general vertex can be written as ū(p′) (ieΓμ)u(p), with ū(p′) the outgoing proton spinor
and u(p) the incoming proton spinor, both of which we assume to be on-shell. Then the
decomposition of Γμ into form factors is

Γμ(q) = F1(q2)γμ +
iσμν

2mp
qνF2(q2). (32.6)

Recall that in QED F1(q2) gets divergent contributions, and must be renormalized, while
F2(q2) is finite. The on-shell renormalization condition F1(0) = 1 in this case normalizes
the proton charge to Q = +1 at large distances. At 1-loop in QED F2(0) = αe

2π , which
gives the correction to the electron magnetic moment, usually expressed as its g-factor
ge = 2 + αe

π + · · · .
For the proton, we know its magnetic moment corresponds to a g-factor of gp = 5.58,

which is not close to 2. This suggests that the proton is not just a point particle like the
electron. (The neutron’s g-factor is gn = −3.82, which also seems very strange in pertur-
bation theory, considering that the neutron is neutral.) Repeating the tree-level Coulomb
scattering calculation using the ieūΓμu vertex (which is not hard, since q2 is fixed), we get(

dσ

dΩ

)
lab

=
α2
e

4E2 sin4 θ
2

E′

E

{(
F 2

1 −
q2

4m2
p

F 2
2

)
cos2

θ

2
− q2

2m2
p

(
F1 + F2

)2
sin2 θ

2

}
.

(32.7)
This is known as the Rosenbluth formula.

If the proton had only interacted through QED, F1(q2)and F2(q2) would be calculable
and could be compared to data. For example, consider e−τ+ scattering. The tauon is a
lepton whose mass 1.7 GeV is close to the proton mass. For e−τ+ scattering, F1(q2)
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and F2(q2) were calculated in QED at 1-loop in Sections 19.3 and 17.2 respectively. For
|q2| � m2

τ , F2 → 0 and F1 has logarithmic energy dependence. Comparing F1(q2) at two
scales, q1 and q2, the calculation from Section 19.3 gives

F1(q21)− F1(q22) ≈ − e2

16π2
ln
q21
q22
, |q21 |, |q22 | � m2

τ , (32.8)

which agrees with what is measured. For the proton, very different behavior was observed
in the classic scattering experiments from the 1960s. The form factors were found to be
well fit by the expressions [Albrecht et al., 1966]

F1(q2) ∼
1(

1− q2

0.71 GeV2

)2 . (32.9)

Here a definite scale 0.71 GeV2 appears, even in differences such as F1(q21)− F1(q22).
Form factors are particularly useful because they correspond to the Fourier transforms of

scattering potentials, through the Born approximation (see Section 5.2). Indeed, up to some
kinematic factors and normalization, F1(q2) =

∫
d3x ei�q·�xV (x), which leads to V (r) =

m3

4π e
−mr in this case. Thus, the form of the proton is characterized by an exponential shape

ρ(r) ∼ e−r/r0 , with characteristic size r0 ∼ (0.84GeV)−1 ∼ 1 fm.
The conclusion is that the proton has a characteristic size of order 1 fm. The value of this

size is not surprising, since it is of the order of the proton’s Compton wavelength. What
is surprising is that there is a scale at all! In scattering electrons off tauons, all we would
ever see is a form factor with logarithmic dependence on energy. The tauon’s size is not of
order m−1

τ ; if it has a finite size at all, it is much, much smaller than m−1
τ .

To learn more about the proton, experiments had to go to higher energy. At energies
|q2| > 1GeV2, you might expect e−p+ to elucidate an even more complicated charge dis-
tribution with more and more scales. Instead, somewhat shockingly (from an experimental
point of view), they simplify back to the point scattering case. That is, very high energy
e−p+ scattering reveals pointlike constituents within the proton, now known as quarks. We
will next explain how to see this simplification.

32.1.3 Inelastic e−p+ scattering

Up until now we have discussed elastic scattering: e−p+ → e−p+. At center-of-mass ener-
gies above mp, the proton can start to break apart. For example, at high enough energies,
the reaction e−p+ → e−p+π0 can occur. At very high energies, the proton breaks apart
completely, as shown in Figure 32.1. Remarkably, the physics simplifies in this deeply
inelastic regime, and we will be able to make precise theoretical predictions.

In deriving the parametrization of the cross section in terms of F1(q2) and F2(q2),
we needed to use the reduction of the photon–proton interactions to terms of the form
ū(p′)γμu(p) or ū(p′)σμνqμu(p). When the proton breaks apart, as in deep inelastic scat-
tering (DIS), this parametrization will no longer do. Instead, we need to parametrize
photon–proton–X interactions, where X is anything the proton can break up into. Thus,
it makes sense to parametrize the cross section (instead of the vertex) in terms of the
momentum transfer qμ and the proton momentum Pμ.
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P

k

q ↓

k′

P

k

q ↓

k′

P

k

q ↓

k′

�Fig. 32.1 As energy is increased, e−p+ scattering goes from elastic to slightly inelastic, with e−p+π0

in the final state, to deeply inelastic, where the proton breaks apart completely.

In the lab frame, the kinematics are shown in Figure 32.1. We define E and E′ as the
energies of the incoming and outgoing electron. We also define θ as the angle between �k
and �k′, so θ = 0 is forward scattering. The cross section can be written as(

dσ

dΩ dE′

)
lab

=
α2
e

4πmpq4
E′

E
LμνWμν , (32.10)

where Lμν is the leptonic tensor, which encodes polarization information for the elec-
tron or, equivalently, the off-shell photon. We already used a parametrization like this in
Chapter 20 while discussing IR divergences. There the e+e− → μ+μ−(+γ) cross section
simplified using the same lepton tensor. For unpolarized scattering, the lepton tensor is

Lμν =
1
2
Tr
[
/k′γμ/kγν

]
= 2(k′μkν + k′νkμ − k · k′gμν) , (32.11)

where k and k′ are the electron’s initial and final momentum. The factor of 1
2 comes from

averaging over the initial electron’s spin. Note that Lμν = Lνμ.
The hadronic tensorWμν includes an integral over all the phase space for all final state

particles (as did Xμν in Eq. (20.30)). It gives the rate for γ�p+ → anything:

e2εμε
�
νW

μν =
1
2

∑
X,spins

∫
dΠX(2π)4δ4(q + P − pX)

∣∣M (γ�p+ → X
)∣∣2 , (32.12)

where εμ is the polarization of the off-shell photon. Since final states are integrated over,
Wμν can depend on Pμ and qμ only. In unpolarized scattering, it must be symmetric,
Wμν = W νμ. It also should satisfy qμWμν = 0 by the Ward identity (see Chapter 14),
since the interaction is only through a photon. Thus, the most general parametrization is1

Wμν = W1

(
−gμν +

qμqν

q2

)
+W2

(
Pμ − P · q

q2
qμ
)(

P ν − P · q
q2

qν
)
. (32.13)

The Lorentz scalars on which W1 and W2 can depend are P 2 = m2
p, q2 and P · q. Natural

variables to use are Q ≡
√
−q2 > 0, which is the energy scale of the collision, and

ν ≡ P · q
mp

= (E − E′)lab , (32.14)

1 A word of caution: there are a number of different conventions for the normalization of W1 and W2 in the
literature. Ours is convenient for the Q/mp → ∞ limit.
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where ν is a Lorentz-invariant quantity which, in the proton rest frame, reduces to the
energy lost by the electron. An alternative to ν is the dimensionless ratio

x ≡ Q2

2P · q , (32.15)

which is known as Bjorken x and will play an important role in what follows.
Without too much work, one can contract Lμν with Wμν and use Eq. (32.10) to express

the result in terms of the scattering angle θ:(
dσ

dΩ dE′

)
lab

=
α2
e

8πE2 sin4 θ
2

[
mp

2
W2(x,Q) cos2

θ

2
+

1
mp

W1(x,Q) sin2 θ

2

]
. (32.16)

As in the elastic case, we have set everything up so we only have to know the incoming and
outgoing electron momenta, not anything about the final hadronic state X . That is, W1 and
W2 can be completely determined by measuring only the energy and angular dependence
of the outgoing electron.

The defining assumption of the parton model, originally due to Feynman, is that some
objects called partons within the proton are essentially free. When we connect to QCD,
we will see that parton refers to not only quarks, but also the gluons and antiquarks in a
hadron (and photons and, at least formally, every other particle in the Standard Model too).
For now, let us just assume that there exist partons within the proton, some of which are
charged. To test the parton model, we need to determine what the form factors W1 and W2

would look like if the electron were scattering elastically off partons of mass mq inside the
proton. An elastic parton scattering diagram is

P

k k′

q

(32.17)

where the circle represents the proton and the three lines coming in and three lines going
out represent partons within the proton, only one of which participates in the interaction
with the electron.

This diagram is not that different from the one for electron–muon scattering. To evaluate
it, call the scattered parton’s initial momentum pμi and its final momentum pμf , so that
pμi + qμ = pμf by momentum conservation. Squaring both sides gives

m2
q + 2pi · q + q2 = m2

q ⇒ Q2

2pi · q
= 1. (32.18)

Unfortunately, the parton momentum is not directly measurable. However, let us just
assume it has some fraction ξ of the proton’s momentum, pμi = ξPμ. Then x = ξQ2

2pi·q = ξ.
In particular, if the parton model were valid, then by measuring x we would be measuring
the fraction of the proton’s momentum involved in the parton-level scattering.

Now let us additionally suppose that the partons are weakly interacting. Then we should
be able to calculate e−q → e−q elastic scattering in perturbation theory. In particular,
we expect the form factors to have only weak, logarithmic dependence on Q2 (just as for
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e−μ− → e−μ− scattering) when the initial partonic momentum is fixed, that is, at fixed
x. The cross section’s (approximate) independence of Q2 at fixed x is known as Bjorken
scaling. We will make this precise in a moment, but you might want to glance ahead at
Figure 32.2, which shows Bjorken scaling beautifully confirmed by data.

Another ingredient in the parton model is the classical probabilities fi(ξ)dξ of the pho-
ton hitting parton species iwhich has a fraction ξ of the proton momentum. These fi(ξ) are
known as parton distribution functions (PDFs). The physical justification of PDFs is that
the momentum sloshes around among proton constituents at time scales ∼Λ−1

QCD∼m−1
p .

These time scales are much slower than the time scales ∼Q−1 that the photon probes. The
separation of scales Q � ΛQCD allows us to treat the parton wavefunctions within the
proton as being decoherent, giving the probabilistic interpretation. To actually prove that
this decoherence occurs amounts to a proof of factorization. Factorization is discussed in
Section 32.4 below.

With PDFs we can be more precise about the predictions of a theory with weakly inter-
acting partons. The parton model assumption is that the cross section for e−P+ → e−X
scattering is given by e−pi → e−X , where pi is a parton with momentum pμi = ξPμ,
integrated over ξ. In equations:

σ
(
e−P+ → e−X

)
=
∑
i

∫ 1

0

dξ fi(ξ)σ̂
(
e−pi → e−X

)
. (32.19)

Here we initiate the standard convention that partonic quantities are given circumflexes,
for example σ̂.

Assuming the partons are free except for their QED interactions, the electron can only
scatter off the charged particles in the proton which we are calling quarks. For a given quark
momentum pi, the e−q → e−q partonic cross section is just like any pointlike scattering
cross section in QED. It is given by the Rosenbluth formula, Eq. (32.7), with F1 = 1 and
F2 = 0. Before integrating over final electron energy E′, the cross section is(

dσ̂(e−q → e−q)
dΩ dE′

)
lab

=
α2
eQ

2
i

4E2 sin4 θ
2

[
cos2

θ

2
+

Q2

2m2
q

sin2 θ

2

]
δ

(
E − E′ − Q2

2mq

)
,

(32.20)

where Qi is the charge of the quark. You can check that Eq. (32.7) with F1 = 1 and
F2 = 0 is reproduced from this if we integrate over the δ-function in light of the constraint
in Eq. (32.5). Note that if we did not assume free quarks, there could have been generic
form factorsG1(Q) and G2(Q) in front of the sin2 θ

2 and cos2 θ2 terms, as there are for low-
energy e−p+ elastic scattering as in Eq. (32.7). Such form factors would violate Bjorken
scaling, and their absence is essentially the content of the parton-model prediction for DIS.

In order to get the DIS cross section from this, we have to integrate over the incoming
quark momentum. Since pμi = ξPμ and in the lab frame the proton is at rest, this implies

mq = ξmp. We can also use that E − E′ = ν = Q2

2mpx
from Eqs. (32.14) and (32.15) and

therefore

δ

(
E − E′ − Q2

2mq

)
= δ

(
Q2

2mpx
− Q2

2mpξ

)
=

2mp

Q2
x2δ(ξ − x) . (32.21)
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�Fig. 32.2

And so, using Eq. (32.19), we get(
dσ(e−P → e−X)

dΩ dE′

)
lab

=
∑
i

fi(x)
α2
eQ

2
i

4E2 sin4 θ
2

[
2mp

Q2
x2 cos2

θ

2
+

1
mp

sin2 θ

2

]
.

(32.22)
Comparing to Eq. (32.16) we can read off that

W1(x,Q) = 2π
∑
i

Q2
i fi(x), (32.23)

W2(x,Q) = 8π
x2

Q2

∑
i

Q2
i fi(x). (32.24)

Now we have a concrete prediction for Bjorken scaling. The quantities W1(x,Q) and
Q2W2(x,Q) should be independent of Q at fixed x. Remember, although quarks are not

observable, the quantity x is, since x = Q2

2mp(E−E′) , where E and E′ are the initial and
final electron energies in the lab frame. Some early measurements, and some later more
accurate ones, demonstrating Bjorken scaling are shown in Figure 32.2.

Another result of the parton model is that W1(x,Q) = Q2

4x2W2(x,Q) for Q � mp,
which also follows from Eq. (32.24). This is known as the Callan–Gross relation. The
proportionality can be traced back to the Q2

2m2
q

= Q2

2x2m2
p

factor in the e−q → e−q scattering

amplitude, which is in turn due to the quarks being free Dirac fermions. Thus the Callan–
Gross relation tests that quarks have spin- 1

2 .
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For completeness, we point out that the Callan–Gross relation is often given in other
forms. We can write it in a Lorentz-invariant way by changing variables to y = P ·q

P ·k = ν
E

so that dE′dΩ = 2mpE
E′ πy dx dy and then (treating the electron and proton as massless)

dσ(e−P → e−X)
dx dy

=
2πα2

Q4
s
(
1 + (1− y)2

)∑
i

Q2
ixfi(x), (32.25)

with s = E2
CM. This characteristic 1+(1− y)2 behavior is often identified with the Callan–

Gross relation.
Sometimes also dimensionless structure functions are used:

F1(x) ≡
1
4π
W1(x), F2(x) ≡

Q2

8πx
W2(x), (32.26)

so that the Callan–Gross relation becomes F1(x) = 1
2xF2(x) = 1

2

∑
iQ

2
i fi(x). These Fi

should not be confused with the Fi in the original proton form factor, despite their alpha-
betical similarity. We will follow the standard convention and use these Fi form factors in
the QCD analysis in Section 32.4.

32.1.4 Sum rules

For PDFs to be probabilities, they must satisfy some constraints. For example, if the proton
had exactly one down quark, then the down quark must have some momentum, and so∫
dξ fd(ξ) = 1. In reality, one can have virtual down–antidown quark pairs within the

proton, so there can be more than one down quark. However, since down-quark number is
conserved (in QED and QCD) we have∫

dξ [fd(ξ)− fd̄(ξ)] = 1, (32.27)

where fd̄(ξ) is the down-antiquark PDF. Similarly, because the proton has up-quark
number of 2 and zero strange-quark number:∫

dξ [fu(ξ)− fū(ξ)] = 2, and
∫
dξ [fs(ξ)− fs̄(ξ)] = 0. (32.28)

The strange-quark sum rule also applies for bottom-quark and charm-quark PDFs. There
is no conserved gluon number, so fg has no associated sum rule. In addition,∑

j

∫
dξ [ξfj(ξ)] = 1. (32.29)

This sum rule follows from momentum conservation (see Problem 32.2). Each of these
sum rules corresponds to a classically conserved current (up, down, strange number or
momentum). Numerically, it turns out that

∫
dξξ(fu(ξ)+fd(ξ)) ≈ 0.38. Thus, only around

38% of the proton momentum is contained in the valence quarks (u and d). The gluon
content of the proton, given by

∫
dξ ξfg(ξ), ranges from 35% to 50% depending on the

scale (scale dependence of the PDFs will be discussed shortly). The remainder of the proton
momentum is in sea quarks (meaning s, c or b quarks and d̄, ū, c̄, s̄ or b̄ antiquarks).
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�Fig. 32.3

In practice, the PDFs are determined not just from DIS, but from many other high-energy
processes, such as pp̄ and pp collisions. There are a number of different groups that perform
global fits to PDFs. The fits differ by the way they weight different contributions, the order
in αs at which the associated perturbative calculations are performed, and how the PDFs
are parametrized. Example parton distributions are shown in Figure 32.3.

32.2 DGLAP equations

We have seen that qualitatively correct features of DIS, such as Bjorken scaling and the
Callan–Gross relation, follow from the parton model. However, one can see already in Fig-
ure 32.2 that Bjorken scaling does not quite hold – there is some weak (logarithmic) Q2

dependence visible in the structure function. In this section, we will show how the loga-
rithmicQ2 dependence can be calculated by combining the parton model with perturbative
QCD. Thus, for now, we will continue to assume the parton model holds, so that the e−p+

cross section is given by a sum of parton-scattering rates, with the initial parton’s energy
given by classical probability functions fi(ξ). In the next section, we will discuss to what
extent the parton model itself can be proven within QCD.

In Eq. (32.10) we wrote the e−p+ → e−X cross section in terms of the lep-
tonic tensor Lμν and the hadronic tensor Wμν(x,Q), with the hadronic tensor given by
|M(γ�p+ → X)|2 integrated over final states, as in Eq. (32.12). Let us write Ŵμν(z,Q)
as the partonic version of Wμν(x,Q), given by |M(γ�q → X)|2 integrated over final
states. Here z is the partonic version of x:

z ≡ Q2

2pi · q
. (32.30)

Now we use the parton model assumption that the probability of finding pμi = ξPμ for
some 0 ≤ ξ ≤ 1 is given by a PDF fi(ξ). Thus, x = zξ and we have to integrate over ξ.
This leads to
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Wμν(x,Q) =
∑
i

∫ 1

0

dz

∫ 1

0

dξfi(ξ)Ŵμν(z,Q) δ(x− zξ)

=
∑
i

∫ 1

x

dξ

ξ
fi(ξ)Ŵμν

(
x

ξ
,Q

)
. (32.31)

Let us check this at leading-order QCD. At order O
(
α0
s

)
, the only partonic process that

contributes to Wμν is γ�q → q. Then, with pμi and pμf = pμi + qμ the initial and final
quark momenta, we have

Ŵμν(z,Q) =
Q2
i

2

∫
d3�pf

(2π)3
1

2Ef
Tr
[
γμ /piγ

ν
/pf

]
(2π)4 δ4(pi + q − pf )

= 2πQ2
i

[(
−gμν +

qμqν

q2

)
+

4z
Q2

(
pμi −

pi · q
q2

qμ
)(

pνi −
pi · q
q2

qν
)]

δ(1− z).

(32.32)

We find Ŵ1 = 2πQ2
i δ(1 − z) = Q2

4z Ŵ2, confirming the Callan–Gross relation at leading
order. Plugging this leading-order Ŵμν(z,Q) into Eq. (32.31) reproduces Eq. (32.24),
confirming the normalization.

For simplicity, let us consider the form factor W0 ≡ −gμνWμν . For the hadronic tensor,

W0(x,Q) ≡ −gμνWμν = 3W1(x,Q)−W2 (x,Q)
(
m2
p +

Q2

4x2

)
. (32.33)

For Q� mp, this simplifies to W0 = 3W1 − Q2

4x2W2 so that W0 = 2W1 at leading order.
In particular,

W0(x,Q) = 4π
∑
i

Q2
i fi(x). (32.34)

This equation motivates using W0 as a definition of PDFs, valid beyond leading order.
Defining the PDFs in this way lets us calculate the Q dependence of the PDFs, as we will
now see. In particular, we can now forget about all those confusing structure functions and
focus on W0, which is basically just the unpolarized cross section for γ�p+ → X .

At the parton level, at leading order, Ŵ LO
0 = 4πQ2

i δ(1− z). At next-to-leading order in
the parton model in QCD there is a virtual γ�q → q graph and s- and t-channel γ�q → qg

graphs:

pi

q

γ�

pf

pi

q pf

pg

γ�

pi

q pf

pg

γ�

(32.35)

These diagrams are essentially just crossings of the γ� → μ+μ−(+γ) diagrams in Chap-
ter 20. We will assume the reader is thoroughly familiar with the calculations in Chapter 20,
so that we can just present and discuss the relevant results without repeating similar
calculational details.

Using the same techniques described in Chapter 20, we can compute the virtual contri-
butions at NLO (see Eq. (20.A.101). The interference between the leading-order graph and
the loop in Eq. (32.35) in d = 4− ε dimensions gives
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ŴV
0 = 4πQ2

i

αs
2π
CF

(
4πμ2

Q2

)ε
2 Γ
(
1− ε

2

)
Γ (1− ε)

(
− 8
ε2
− 6
ε
− 8− π2

3

)
δ(1− z) (32.36)

up to terms that will not contribute when ε→ 0. In this expression, the UV divergence has
already been removed with the counterterm, so these ε are all εIR. For the real emission
graphs, the calculation is a bit more strenuous, but also can be done using techniques from
Chapter 20. The result is [Altarelli et al., 1979]

ŴR
0 = 4πQ2

i

αs
2π
CF

(
4πμ2

Q2

)ε
2 Γ
(
1− ε

2

)
Γ(1− ε)

×
{

3z + z
ε
2 (1− z)−

ε
2

(
−2
ε

1 + z2

1− z + 3− z − 3
2

1
1− z −

7
4

ε

1− z

)}
. (32.37)

Looking at these results, it appears that ŴV
0 has a 1

ε2 double pole but ŴR
0 does not,

so that the poles will not cancel. However, there is in fact a 1
ε2 pole in ŴR

0 , coming from

the 1
1−z (1− z)

− ε
2 terms. To see this, we need to use the fact that (1− z)−1−ε expanded

around ε = 0 gives a distribution. The relevant identity is

1
(1− z)1+ε

= −1
ε
δ (1− z)+

1
[1− z]+

− ε
[
ln(1− z)

1− z

]
+

+
∞∑
n=2

(−ε)n

n!

[
lnn(1− z)

1− z

]
+

,

(32.38)
which you can derive in Problem 32.3. Here the plus function is defined so that∫ 1

0

dz
f(z)

[1− z]+
≡
∫ 1

0

dz
f(z)− f(1)

1− z (32.39)

and so that 1
[1−z]+ = 1

1−z for z �= 1. These two conditions uniquely define the distribution

for any limits of integration. The other plus functions are defined similarly:∫ 1

0

dz f(z)
[
lnn(1− z)

1− z

]
+

≡
∫ 1

0

dz(f(z)− f(1))
lnn(1− z)

1− z , (32.40)

with
[

lnn(1−z)
1−z
]
+

= lnn(1−z)
1−z for z �= 1. Then we find

ŴR
0 = 4πQ2

i

αs
2π
CF

(
4πμ2

Q2

)ε
2 Γ
(
1− ε

2

)
Γ(1− ε) ×

{
3 + 2z − 1 + z2

1− z ln z

+
(

8
ε2

+
3
ε

+
7
2

)
δ(1− z) −

(
2
1 + z2

ε
+

3
2

)[
1

1− z

]
+

+
(
1 + z2
)[ ln(1− z)

1− z

]
+

}
,

(32.41)

and therefore, up to next-to-leading order,

Ŵ0 = Ŵ LO
0 + ŴV

0 + ŴR
0 = 4πQ2

i

{[
δ(1− z)− 1

ε

αs
π
Pqq(z)
(

4πμ2

Q2

)ε
2 Γ
(
1− ε

2

)
Γ(1− ε)

]

+
αs
2π
CF

[(
1 + z2
)[ ln (1− z)

1− z

]
+

− 3
2

[
1

1− z

]
+

−1 + z2

1− z ln z + 3 + 2z −
(

9
2

+
1
3
π2

)
δ(1− z)

]}
, (32.42)
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where

Pqq(z) = CF

[(
1 + z2
)[ 1

1− z

]
+

+
3
2
δ(1− z)

]
. (32.43)

This distribution, Pqq(z), is known as a DGLAP splitting function, after Dokshitzer,
Gribov, Lipatov, Altarelli and Parisi.

At this point, all the double poles have canceled, but there is still a single 1
ε pole in the

cross section whose residue is proportional to Pqq(z). Having a pole in a parton-level cross
section is not a problem, as long as it drops out of physical predictions. Focusing on this
pole, we can insert Ŵ0 into Eq. (32.31) to get

W0(x,Q) = 4π
∑
i

Q2
i

∫ 1

x

dξ

ξ
fi(ξ)
[
δ

(
1− x

ξ

)
− αs

2π
Pqq

(
x

ξ

)(
2
ε

+ ln
μ̃2

Q2

)
+ finite

]
.

(32.44)

Now, using the definition of plus functions, we find that the splitting function in Eq. (32.43)
satisfies ∫ 1

0

Pqq(z)dz = 0. (32.45)

Thus, if we integrate W0(x,Q) over x, to get the total DIS cross section at a given Q, the
1
ε pole exactly vanishes.

At fixed x the 1
ε pole does not cancel and W0(x,Q) is divergent. However, as in many

other examples (see Chapter 16), we need to take differences of cross sections to find finite
answers. The difference in W0(x,Q) at the same x but different scales Q and Q0 is

W0(x,Q)−W0(x,Q0) = 4π
∑
i

Q2
i

∫ 1

x

dξ

ξ
fi(ξ)
[
αs
2π
Pqq

(
x

ξ

)
ln
Q2

Q2
0

]
. (32.46)

This difference is a finite integral. The finite parts of Eq. (32.42) drop out of such dif-
ferences, but the 1

ε pole in the parton-level cross section leads to a physical quantum
prediction for the logarithmic Q dependence of the hadronic cross section. (The finite
parts of Eq. (32.42) do show up in differences of structure functions [Altarelli et al., 1979;
Sterman, 1993].)

Why should we have to calculate differences? Should W0(x,Q) not be observable and
hence finite without any new renormalization, since QCD is renormalizable? There are two
answers. First, if we did the calculation in full QCD, the IR divergence would be cut off
by some physical scale such as a quark mass mq or ΛQCD. Indeed, the same divergence
occurs in Compton scattering in QED, and is cut off by the electron mass. However, this
misses the point. Doing the calculation with massive quarks would replace the logarithm
by lnmqQ , which for Q� mq would be very large. Thus, the second answer is simply that
the difference between W0(x,Q) at two scales is a more practical quantity to calculate:
we can get a testable answer in perturbation theory. Indeed, the logarithm in Eq. (32.46)
exactly explains the violation of Bjorken scaling seen in Figure 32.2.

As we have seen many times, renormalization lets us replace the calculation of differ-
ences with the calculation of observables in terms of renormalized quantities. In this case,
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we need to define renormalized PDFs. We could do this by saying W0 is given exactly
by Eq. (32.34) at some reference scale Q0. Since Q0 is arbitrary, the independence of the
cross section of Q0 should lead to a renormalization group equation. In anticipation of a
connection to the RG, we define

W0(x,Q) ≡ 4π
∑
i

Q2
i fi(x, μ = Q) (32.47)

for every scale Q. For this equation to be consistent with Eq. (32.46) we need

fi(x, μ1) = fi(x, μ) +
αs
2π

∫ 1

x

dξ

ξ
fi(ξ, μ1)Pqq

(
x

ξ

)
ln
μ2

1

μ2
, (32.48)

which implies

μ
d

dμ
fi(x, μ) =

αs
π

∫ 1

x

dξ

ξ
fi(ξ, μ)Pqq

(
x

ξ

)
. (32.49)

This is known as a DGLAP evolution equation. It allows us to resum large logarithms in
structure functions.

We can do a quick check on the self-consistency of our results. For fq(x) to have a
probabilistic interpretation, sum rules such as Eq. (32.27) should hold for any μ. Integrating
over x in Eq. (32.48) and using Eq. (32.45) we see that

∫
fi(x, μ) is indeed μ independent.

In fact, if we assume Eq. (32.27), one can derive the singular part of Pqq(z) uniquely by

knowing that for z > 1 it behaves as 1+z2

1−z . This is a shortcut to deriving the splitting
functions, discussed more in the next section.

So far we have only considered partonic processes relevant for e−p+ → e−X , such
as γ�q → q and γ�q → qg, which have quarks in the initial state. At next-to-leading
order there are also processes such as γ�g → qq̄ with initial state gluons. Since there is
a probability of finding antiquarks and gluons in the proton, there are PDFs fq̄ and fg for
these partons as well. All of these PDFs mix under RG group evolution. Thus, DGLAP is
really a set of coupled integro-differential equations. For quarks and gluons, these can be
written in the form

μ
d

dμ

(
fi(x, μ)
fg(x, μ)

)
=
∑
j

αs
π

∫ 1

x

dξ

ξ

(
Pqiqj (

x
ξ ) Pqig(

x
ξ )

Pgqj (
x
ξ ) Pgg(xξ )

)(
fj(ξ, μ)
fg(ξ, μ)

)
. (32.50)

The various splitting functions can be derived from cross sections for processes such as
g → gg or g → q̄q as we did for q → qg above. At leading order, they are

Pqq(z) = CF

[
1 + z2

[1− z]+
+

3
2
δ(1− z)

]
, (32.51)

Pqg(z) = TF
[
z2 + (1− z)2

]
, (32.52)

Pgq(z) = CF

[
1 + (1− z)2

z

]
, (32.53)
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Pgg(z) = 2CA

[
z

[1− z]+
+

1− z
z

+ z(1− z)
]

+
β0

2
δ(1− z), (32.54)

where β0 = 11
3 CA −

4
3TFnf . Derivations of these other splitting functions can be found

in numerous references, for example [Peskin and Schroeder, 1995] or [Ellis et al., 1996].

32.3 Parton showers

In the previous section we derived the next-to-leading order prediction for deep inelastic
scattering in the parton model. The key result was that the cross section for γ�q → qg

was IR divergent, but that this divergence could be absorbed in renormalized PDFs. In this
section, we will trace the origin of the IR divergence, discuss its universality, and show
how that universality can be exploited in an important semi-classical approximation called
the parton shower.

While regulating divergences in d = 4 − ε dimensions is efficient mathematically, it
obscures some of the physics. So let us return to the γ�q → qg cross section and see what
it looks like in four dimensions. Summing over final state spins and colors and averaging
over initial state spins and colors, the real emission diagrams in Eq. (32.35) give

|M|2 = 2e2Q2
iCF g

2
s

(
− t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

)
, (32.55)

where

ŝ = (q + pi)
2 = Q2 1− z

z
, t̂ = (pg − pi)2 , û = (pi − pf )2 (32.56)

satisfy ŝ+ t̂+ û = −Q2. The physical region has Q2 = −q2 > 0, ŝ > 0 and t̂, û < 0. As
usual, we are putting hats on the partonic quantities.

Now, |M|2 is singular at ŝ = 0 and at t̂ = 0. At fixed incoming partonic momenta
(fixed z and Q2), ŝ is non-zero; thus, the only relevant singularity for calculating σ̂ =
σ̂(γ�q → qg) is the t̂ = 0 one. Defining θ as the angle between the gluon and the incoming
quark in the partonic center-of-mass frame, we find

0 = t̂ = (pg − pi)2 = −2pg · pi = −4EgEi sin2 θ

2
, (32.57)

so that the singularity occurs when θ → 0. That is, it is a collinear singularity. This same
collinear singularity occurs in Compton scattering in QED, as discussed in Sections 13.5.4
and 20.3.2.

In the partonic center-of-mass frame, the transverse momentum of the outgoing gluon
with respect to the incoming quark can be written as p2

T = ŝt̂û
(ŝ+Q2)2

. The collinear t̂ = 0

singularity implies pT → 0. At small pT , dΩ ∼ 4π
ŝ dp

2
T , and the partonic cross section can

be written in terms of p2
T at fixed z as

dσ̂(γ�q → qg)
dp2
T

= σ̂0
1
p2
T

[
αs
2π
CF

1 + z2

1− z +O
(
p2
T

Q2

)]
, (32.58)
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where σ̂0 = π2αe
ŝ Q2

i . Here we recognize the non-singular part of the splitting function
Pqq(z) from Eq. (32.43), although in this case the singularity at z = 1 is unregulated since
we have worked in four dimensions. The dimensionally regularized calculation shows that
the residue of the pole at p2

T = 0 is the full distribution Pqq(z). A neat trick to derive the
δ-function and distribution part of Pqq(z) from the z < 1 part is to exploit sum rules such
as Eq. (32.27), which, to be consistent with Eq. (32.48), imply that Eq. (32.45) must hold
(as discussed in the previous section). The equivalences in this paragraph all require a fair
bit of calculation, which we leave to Problem 32.10.

A remarkable fact about QCD is that the residue of 1
p2T

as pT → 0 is always given by

Pqq(z) for any process in which a final state gluon goes collinear to a quark. This is true
both when the quark is in the initial state and when it is in the final state. For example,
consider the decay rate of a massive vector boson γ� → q̄qg with γ� having mass Q. The
diagrams

q

pq̄

pq

pg + q

pq̄

pq

pg (32.59)

were computed in Chapter 20. In four dimensions, the result we found (see Eq. (20.44)) was

dΓ(γ� → q̄qg)
dx1dx2

= Γ0
αs
2π
CF

x2
1 + x2

2

(1− x1) (1− x2)
, (32.60)

where Γ0 = Qαe, x1 = 2Eq
Q , x2 = 2Eq̄

Q and xg = 2−x1−x2 = 2Eg
Q . Changing variables

to z = Eq
Eg+Eq

= x1
2−x2

and m2 = t = (pq + pg)
2 = Q2(1− x2), which is the invariant

mass of the q−g pair, we find

dΓ(γ� → q̄qg)
dm2dz

= Q2Γ0
1
m2

[
αs
2π
CF

1 + z2

1− z +O
(
m2

Q2

)]
. (32.61)

Thus, the residue of 1
m2 for this final state radiation case is proportional to the splitting

function. In this case z is, by definition, the ratio of the energy carried by the final state
quark to the energy of the mother parton, that is, the off-shell quark that splits into a
quark and gluon. Alternatively, we could write the rate in terms of z and the transverse
momentum of the quark with respect to its mother p2

T = Q2

x2
1
(1− x1)(1− xg)(1− x2). In

that case, we would also find that the residue of 1
p2T

is proportional to Pqq(z).
The general result, for any process in the region of phase space where a gluon is nearly

collinear to a quark or antiquark, is that

dσ(X → Y + g) = dσ(X → Y )dt dz
1
t

[
αs
2π
CF

1 + z2

1− z +O
(
t

Q2

)]
, (32.62)

where t is any variable, such as m2 or p2
T or the splitting angle θ, that becomes singular

in the collinear limit, and Q is any hard scale, that is, any function of momenta that does
not vanish in the collinear limit. The variable z is always the fraction of the mother quark’s
energy carried by the daughter quark. We will prove this in Section 36.4.
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One important use of the universality of the collinear limit is that it leads to an efficient
semi-classical approximation used in Monte Carlo simulations. One can interpret the split-
ting functions as probabilities for off-shell partons to branch. These probabilities grow as
1
t and are largest for very collinear emissions. Since very collinear emissions are often not
measurable, the simulations work by first picking a momentum for the hardest gluon to
be emitted, then picking the next hardest and so on, evolving as a Markov process in a
virtuality scale t. One can think of evolution in t as evolution in time from the moment of
the collision, or evolution in distance from the collision point.

To be more specific, let us integrate over z = Edaughter

Emother
. At fixed small t, in which the

collinear approximation is valid, z can be small, but not zero. The lower and upper bounds
on z depend on the variable chosen for t (m2, p2

T or θQ2), but since these all go to zero
in the strict collinear limit, the lower bound is z � c t

Q2 for some constant c. Thus, for
t
 Q2, the probability of finding any gluon at the scale t is approximately

R(t) =
αs
2π
CF

1
t

∫ zmax(t,Q)

zmin(t,Q)

dz
1 + z2

1− z ≈
αs
2π
CF

1
t

(
ln
Q2

t
+O(1)

)
. (32.63)

Here, zmin and zmax are the minimum and maximum energies the gluon can have at fixed t.

For t = p2
T , zmin(t,Q) = 1− zmax(t,Q) =

√
t
Q2 as you can check in Problem 32.6.

We then define the Sudakov factor Δ(t0, t) as the probability of finding no gluons
between the scales t and t0. To calculate Δ, note that for small shifts,

Δ(t0, t+ δt) = Δ(t0, t)(1−
∫ t+δt
t

dt′R(t′)) = Δ(t0, t)−R(t) δΔ(t0, t). (32.64)

This should be consistent with the Taylor expansion Δ(t0, t+δt) = Δ(t0, t)+δt ddtΔ(t0, t).
Therefore

d

dt
Δ(t0, t) = −R(t)Δ(t0, t). (32.65)

The solution to this differential equation with t0 = Q2 is

Δ(Q, t) = exp

(
−
∫ Q2

t

R(t′)dt′
)
≈ exp
(
−αs

4π
CF ln2 Q

2

t

)
. (32.66)

The ln2 Q2

t in this expression is the same Sudakov double logarithm characterizing soft-
collinear IR divergences we have encountered before (cf. Eq. (20.23)).

And so the cross section for the hardest gluon starting from a scale Q is

dσ

dt dz
= Δ(Q, t)

1
t

αs
2π
Pqq(z) ≈ exp

(
−αs

4π
CF ln2 Q

2

t
+ · · ·
)

1
t

αs
2π
CF

1 + z2

1− z , (32.67)

with the · · · subleading at small t. This Sudakov factor is equivalent to performing resum-
mation in QCD at the first non-trivial order (leading logarithmic resummation). It has the
important qualitative effect of sending the cross section for producing a gluon at t = 0
from σ = ∞ to σ = 0: a quark must branch (probability is 1) before it evolves down to
t = 0. If we take t = m2, then this formula tells us that the rate for the largest invariant
mass of a branching, which well approximates the invariant mass of a jet, should not be too
small, and not be too large. In other words, Sudakov factors explain the existence of jets.
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More details about parton showers can be found in [Sjostrand et al., 2006, Section 10] and
[Ellis et al., 1996, Section 5.2].

32.4 Factorization and the parton model
from QCD

For practical purposes, the parton model is all one needs to perform perturbative QCD
calculations relevant for high-energy scattering involving hadrons. This phenomenological
approach assumes factorization: that PDFs are universal objects, and any scattering pro-
cess involving protons can be computed using the same PDFs with a different perturbative
calculation. It is remarkable that this procedure works so well, and it is therefore desirable
to have a precise derivation of factorization.

Unfortunately, factorization has only been proven in a couple of examples: inclusive
deep inelastic scattering (where one measures only the outgoing electron) and the Drell–
Yan process (lepton pair production from pp or pp̄ collisions). Even in these cases, the
proofs are incredibly complicated, with subtlety after subtlety confounding the intuitive
picture. The rigorous proofs involve characterizing the infrared singular regions of Feyn-
man diagrams (through pinch surfaces and Landau equations) and are beyond the scope
of this text. We will discuss only the classic factorization proof for inclusive deep inelastic
scattering using the operator product expansion. This leads to the identification of moments
of the PDFs with operator matrix elements. In the next section, an alternative and more
generally useful view of the PDFs as lightcone quark matrix elements is given.

The first step to proving factorization is to define what exactly we mean by it. Intuitively,
factorization says that the same universal non-perturbative objects (the PDFs), representing
the long-distance physics, can be combined with many short-distance calculations in QCD.
Roughly, σ = f ⊗H , where f are the PDFs, H is the perturbative hard calculation, and ⊗
denotes a convolution. Such a separation cannot be exactly true: the exact σ must depend
on all the brown muck inside the proton. Factorization really means that the calculation

done this way is correct up to something small: σ = f ⊗ H + O
(

ΛQCD
Q

)
, where Q is

some characteristic high-energy scale in the process. Already, you can see why proofs in
cases that are not completely inclusive are so challenging: if there are many measured final
states, there can be many scales Q and it is hard to make sure they are all always large in

all regions of phase space. For inclusive DIS, we know what Q is, Q =
√
− (k − k′)2,

which we take large while holding x = Q2

2P ·q fixed. Thus, there is some hope that we can
derive a factorization theorem.

Our approach will first relate the DIS cross section to a product of currents Jμ(x)Jν(y).
We then rewrite this product of currents in terms of local operators, Jμ(x)Jν(y) =∑
nCn(x− y)On(x). The DIS limit Q2 → ∞ at fixed Bjorken x will correspond to

xμ − yμ → 0 so that we can Taylor expand the Wilson coefficients Cn(x − y) around
xμ = yμ, keeping only the leading term. Then, matrix elements of these operators in
proton states will give us a definition of the PDFs: f ∼ 〈P |O|P 〉.
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32.4.1 The operator product expansion

The operator product expansion is the position-space version of the low-energy expan-
sion used to derive effective Lagrangians. The operators in an effective Lagrangian are
composite operators, where fields are taken at the same point. For example, recall how the
4-Fermi theory approximates the theory of weak interactions (see Chapters 22, 29 and 31).
If we integrate out the W boson at tree-level we end up with a non-local Lagrangian:

LW ∼ g2

∫
d4x d4y ψ̄(x)γμψ(x)Dμν(x, y) ψ̄(y)γνψ(y), (32.68)

where

Dμν(x, y) =
∫

d4p

(2π)4
−gμν

p2 −m2
W

eip(x−y) =
gμν

�x +m2
W

∫
d4p

(2π)4
eip(x−y) (32.69)

is the W -boson propagator. For � ∼ p2 
 m2
W we expand

g2

� +m2
W

= GF

(
1− �

m2
W

+
(

�
m2
W

)2

+ · · ·
)

(32.70)

with GF ∼ g2

m2
W

, so that

LW ∼ GF

∫
d4x

[
ψ̄γμψψ̄γμψ − ψ̄γμψ �

m2
W

ψ̄γμψ + ψ̄γμψ
�2

m4
W

ψ̄γμψ + · · ·
]
,

(32.71)
with all fields at the same point ψ(x). This effective Lagrangian is now local.

The operator product expansion (OPE) writes products of local operators evaluated at
different points, in the limit that the points approach each other, as a sum over composite
local operators. Let all possible operators in the theory be denoted by On. Then the OPE
says that

lim
x→y

O1(x)O2(y) =
∑
n

Cn(x− y)On(x) (32.72)

for any two operatorsO1 andO2. The reason the OPE is powerful is because the expansion
holds at the level of operators. That is, the Wilson coefficients Cn are just numbers, inde-
pendent of the external state. Thus, theCn can be computed once and for all in perturbation
theory and can then be used for any process. Moreover, to compute the Cn one just needs
to evaluate any matrix element sensitive to them, then one determines the Cn relevant for
all matrix elements.

For example, the 4-Fermi theory comes from the expansion of two weak currents
Jμ(x) = ψ̄(x)γμψ(x) and Jμ(y) = ψ̄(y)γμψ(y) approaching each other. We performed
the 1-loop OPE through matching to the 4-Fermi theory in Section 31.3. In the 4-Fermi
case, as in other perturbative effective field theories, only a finite number of operators are
relevant for a given precision. In the case of DIS, we will see that an infinite number of
operators are important (the twist-2 operators, defined below) but the OPE will still be
useful.
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Intuitively, the existence of an OPE makes perfect sense: long-distance physics should
be independent of short-distance physics. This is resoundingly true in many other contexts:
Newton’s laws are independent of quantum mechanics, chemistry is independent of nuclear
physics, etc. That is, the OPE should work for the same reason effective field theories work:
physics naturally compartmentalizes itself so that all irrelevant scales can be taken to be
either 0 or ∞ without strongly affecting the physics in which we are interested. Despite
the fact that the OPE is physically sensible, a rigorous mathematical proof is still lacking.

A practical form of the OPE is∫
d4x eiqxO(x)O(0) =

∑
n

Cn(q)On(0), (32.73)

with the Wilson coefficients in momentum space and the operators in position space. We
usually calculate the OPE by evaluating Cn(q).

32.4.2 Products of currents

To apply the OPE to DIS we first want to express Wμν in terms of matrix elements of the
electromagnetic current constructed from quarks. Treating the quark charge as Q = 1 for
simplicity, this current is Jμ(x) = ψ̄(x)γμψ(x), with ψ(x) the quark field. You may recall
from Eq. (14.152) that S-matrix elements for photons, which have the photon propagator
amputated by LSZ, are equal to matrix elements of the current Jμ to which the photon
couples. This equivalence follows because in pure quark states with spinors u1(p) and
u2(p′) with momentum p and p′, the current has matrix element

〈p′|Jμ(x)|p〉 = ū2(p′)γμu1(p)ei(p
′−p)x. (32.74)

To check this equation, simply plug in the expression for Jμ(x) as a product of the quantum
quark fields in terms of creation and annihilation operators. Thus, a shorthand for the spinor
product ū2(p′)γμu1(p) coming out of a Feynman diagram matrix element calculation is
just the current matrix element at x = 0: 〈p′|Jμ(0)|p〉.

For DIS, γ�p+ → X , we need the matrix element of this current (since that is what the
photon couples to) at x = 0 between an initial proton state |P 〉 and an arbitrary hadronic
final state 〈X|. That is, we need

M
(
γ�p+ → X

)
= e εμ〈X|Jμ(0) |P 〉 . (32.75)

Comparing to Eq. (32.12) we see that

Wμν(ω,Q) =
∑
X

∫
dΠX〈P |Jμ(0)|X〉 〈X|Jν(0)|P 〉(2π)4 δ4(qμ + Pμ − pμX)

=
∑
X

∫
dΠX

∫
d4x ei(q+P−pX)x〈P |Jμ(0)|X〉〈X|Jν(0)|P 〉. (32.76)

Here we write Wμν as a function of the Lorentz invariants ω = 1
x = 2P ·q

Q2 > 1 and Q2

(using ω instead of Bjorken x avoids confusion with position). There is an implicit average
over proton spins in Wμν .
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We next simplify this using

〈P |Jμ(0)|X〉 = 〈P |e−iP̂·xJμ(x)eiP̂·x|X〉 = e−i(P−pX)·x〈P |Jμ(x)|X〉, (32.77)

where P̂ is the momentum operator that generates translations. This gives

Wμν(ω,Q) =
∑
X

∫
dΠX

∫
d4x eiq·x〈P |Jμ(x)|X〉〈X|Jν(0)|P 〉

=
∫
d4x eiq·x〈P |Jμ(x)Jν(0)|P 〉. (32.78)

Having performed the sum over |X〉, we no longer have to think explicitly about what the
final states are. Now we can focus on the product of two current operators.

We would now like to use the Q→∞ limit (at fixed ω) to expand the operator product
Jμ(x)Jν(0) around xμ = 0. Unfortunately, there are two problems with such an expansion.
The first problem is that, while we know how to calculate matrix elements of time-ordered
products of fields at different points using Feynman rules, we do not know how to calculate
products that are not time ordered. The second problem is that large Q2 implies xμxμ →
0 (see Problem 32.7), but it does not imply that xμ → 0. In fact, the currents can be
separated very far on the lightcone at largeQ2. In momentum space, the problem is that we
would like to Taylor expand in Q−2. Since ω = 2P ·q

Q2 this limit implies ω → 0. However,

kinematically P · q > 1
2Q

2, implying ω > 1 (i.e. Bjorken x < 1), so a naive large
Q2 expansion will take us out of the physical region. To solve this problem, we need to
rearrange things so we can Taylor expand around ω = 0.

To solve the first problem, we use the optical theorem to turn the product of currents into
a time-ordered product. The optical theorem says that the total rate for γ�p+ → X is given
by the imaginary part of the forward scattering rate γ�p+ → γ�p+. Using Eqs. (32.12)
and (24.11), we can write

Wμν = 2ImTμν , (32.79)

where

e2εμε
�
νT

μν(ω,Q) =M(γ�p→ γ�p). (32.80)

Tμν is called the forward Compton amplitude. It is a forward amplitude since the (off-
shell) photon and proton have the same momentum in the initial and final states. In terms
of currents, we can write Tμν as

Tμν(ω,Q) = i

∫
d4x eiq·x〈P |T{Jμ(x)Jν(0)}|P 〉 . (32.81)

We have expressed a matrix element squared Wμν ∼ |M(γ�p → X)|2 ∼ |〈T{J}〉|2 as
the imaginary part of a matrix element Tμν ∼ M(γ�p→ γ�p) ∼ 〈T{JJ}〉.

It is conventional to expand Tμν in terms of its own structure functions, as in (32.13),
with a slightly different normalization:

Tμν(ω,Q) = T1

(
−gμν +

qμqν

q2

)
+

T2

P · q

(
Pμ − P · q

q2
qμ
)(

P ν − P · q
q2

qν
)
. (32.82)

The DIS structure functions are then W1 = 2ImT1 and W2 = 4Im 1
ωQ2T2. It is also

conventional to use the form factors F1,2 in Eq. (32.26) for the factorization analysis in
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which F1,2 = 1
2π Im(T1,2). Thus, we expect ImT2 = 2π

∑
iQ

2
ixfi(x) at leading order,

which will allow us to match to the parton model, once T2 is calculated.
Writing the hadronic tensor in terms of a time-ordered product solves the first problem

since it lets us use Feynman rules to calculate the operator product. But it does not change
the fact that Q2 → ∞ does not imply xμ → 0, and thus we cannot justify a small xμ

expansion. Fortunately, although we cannot justify a small xμ expansion in general, we
will be able to justify it in certain cases. In particular, we will be able to justify it when we
integrate over ω.

To see how an integration over ω works, recall first, from Section 24.1.2, that the imagi-
nary part of Tμν can only come from on-shell intermediate states |X〉 (these are, of course,
the same physical states contributing to Wμν). Since ω is real and greater than 1 in the
physical region, it is helpful to analytically continue to the complex ω plane at fixed Q2.
At fixed Q2 > 0, Tμν is an analytic function of ω except for when (P ± q)2 = Q2(1± ω)
is the mass of a physical on-shell state |X〉.2 Therefore Tμν(ω,Q) has branch cuts on the
real ω axis, with ω > 1 (the physical region) or ω < −1 (an unphysical region3). Then we
can use that the imaginary part of a function with a cut is given by the discontinuity across
the cut:

Wμν(ω,Q) = 2ImTμν(ω,Q) = −iTμν(ω + iε,Q) + iTμν(ω − iε,Q) = Disc(−iTμν),
(32.83)

with Disc standing for discontinuity (see Section 24.1.2). You should check this equation
yourself (Problem 32.8). Wμν is sometimes called the absorptive part of Tμν .

Now, suppose we integrate over 1 ≤ ω <∞, which corresponds to integrating Bjorken
x from 0 to 1. Such an integral according to Eq. (32.83) can be performed in the complex
plane above and below the cut. Since Tμν is analytic away from the real axis, we can
deform this contour to be around ω = 0, as shown in Figure 32.4. Thus, we only need
to know Tμν(ω,Q) near ω = 0 and we can justify Taylor expanding at small ω. In other
words, we can justify using the OPE of Jμ(x)Jν(0) as xμ → 0 to derive results about
Wμν as long as we integrate over all ω.

32.4.3 Operator product expansion for DIS

Now let us apply the OPE to DIS. We want to write

T{Jμ(x)Jν(y)} =
∑
n

Cn(x− y)Oμνn (x). (32.84)

What we will do is first calculate the OPE for quark external states. Then, since the OPE
applies at the level of operators, independent of external states, we will apply the OPE in
proton external states to get a definition of the PDFs.

2 While it is true that Tμν is analytic away from the real axis, it is not easy to show. The proof uses that
Tμv is a two-point function in an essential way [Sterman, 1993]. One difficulty in proving factorization for
processes where the final state is not inclusive over all hadrons is that the analytic structure of general scattering
amplitudes can be incredibly complicated.

3 The on-shell states for −∞ < ω < 1 cut are not physical for DIS. Since ω → −ω corresponds to P → −P ,
this cut corresponds to deep inelastic scattering of electrons off antiprotons.
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�Fig. 32.4 The hadronic tensor Wμν is determined by regions of the forward Compton tensor Tμν

along the contours on the left. Integrating over all ω lets us deform the contour and justifies
using an operator product expansion derived around ω = 0.

The current–current matrix element in a quark state is the same as the forward scat-
tering matrix element for Compton scattering γ�q → γ�q with the photon off-shell
and photon polarizations removed. At leading order in perturbation theory, the result is
then

i

∫
d4x eiqx〈p|T{Jμ(x)Jν(0)}|p〉

= −ū (p)
γμ(/p+ /q)γν

(p+ q)2 + iε
u(p)− ū(p)

γν(/p− /q)γμ
(p− q)2 + iε

u(p). (32.85)

Note that this is a forward scattering amplitude, so the quark has the same momentum pμ

in both the initial and the final state.
Let us first concentrate on the p + q term. To calculate the OPE coefficients, at leading

order, we expand the denominator in Eq. (32.85) for Q2 � p2. (This is the equivalent of
expanding 1

p2−m2
W

for m2
W � p2 to generate the 4-Fermi theory.) The expansion of the

denominator gives

1
(p+ q)2

=
1

−Q2 + 2q · p+ p2
= − 1

Q2

∞∑
n=0

(
2p · q + p2

Q2

)n
. (32.86)

So,

i

∫
d4x eiqx〈p|T{Jμ(x)Jν(0)}|p〉 =

1
Q2

ū(p)γμ(/p+/q)γνu(p)
∞∑
n=0

(
2p · q + p2

Q2

)n
+· · ·,

(32.87)
with the · · · representing the second term in Eq. (32.85).

Whenever we have such a momentum-space expansion, we can read off the Wilson
coefficients and operators in the OPE. For the OPE to make sense, all factors of pμ should
come from factors of i∂μ in the operators evaluated on external states (which depend on
pμ). On the other hand, all dependence on the short-distance scale qμ (and Q2 = −q2)
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must be in the Wilson coefficients. For example, a term
(
p2

Q2

)n
in such an expansion would

come from an operatorOn = ψ̄�nψ with Wilson coefficientCn = 1
Q2n . A term

(
2p·q
Q2

)3
p2

Q2

would come from On = ψ̄∂μ1∂μ2∂μ3�ψ with a Wilson coefficient Cn = 8
Q8 q

μ1qμ2qμ3 ,
and so on. For Eq. (32.87), the Wilson operators are messy, and so we will simplify before
reading off the OPE.

So far, we have not made any approximations. We want to evaluate the OPE in proton
external states, using the operators and Wilson coefficients calculated in quark external
states. In the DIS limit, Q → ∞ at fixed ω, we can drop terms in the operators that will
give contributions proportional to powers of ΛQCD

Q . In the proton, pμ is replaced by some
component of the proton momentum pμ = ξPμ, so that p2 = ξ2P 2 = ξ2m2

p � Λ2
QCD.

We do not need to know exactly what pμ is, but we do need to know that it has no access
to Q. Terms such as �/Q2 in operators give factors of p2/Q2 that are small. Thus, we can
take the p2/Q2 → 0 limit in Eq. (32.87) to extract simplified operators. On the other hand,
terms such as ∂μ/Q in operators then give factors of q · p/Q2 ∼ ω that are not small (we
will be integrating over ω). Thus we only need to keep terms with ∂μ.

We can also simplify the Dirac structure in Eq. (32.87). Since the final result must be
symmetric in μ↔ ν, we can symmetrize and use the relation

γμ
(
/p+ /q
)
γν + γν

(
/p+ /q
)
γμ = 2γμ(pν + qν) + 2γν(pμ + qμ) − 2gμν

(
/p+ /q
)
.

(32.88)
The /p term acting on quark states gives mq = 0. Acting on proton states using /p = ξ /P it
gives ξmp 
 Q, so it can be dropped there as well.

The second term in Eq. (32.85) gives the same OPE as the first with q → −q. Therefore,
we can drop terms odd in q and double the ones even in q. Thus we can write

i

∫
d4x eiqx〈p|T{Jμ(x)Jν(0)}|p〉 =

2
Q2

ū(p)(pμγν +γμpν)
∞∑

n=0,2,···

(
2q · p
Q2

)n
u(p)

+
2
Q2

ū(p)
(
γμqν + qμγν − gμν/q

) ∞∑
n=1,3,···

(
2q · p
Q2

)n
u(p) (32.89)

up to terms that give ΛQCD
Q -suppressed contributions in proton external states. Note that all

of the terms in the series have one γ-matrix in them. All pμ terms should come from deriva-
tives in operators in the OPE (through the replacement pμ → i∂μ) and all qμ terms should
be in the Wilson coefficients. For example, the first line in Eq. (32.89) is reproduced by

Oμνμ1···μn
n+2 = ψ̄q(x)(iγμ∂ν + iγνi∂μ) i∂μ1 · · · i∂μnψq(x) (32.90)

with Wilson coefficients

Cμ1···μn
n+2 (q) =

2
Q2

2n

Q2n
qμ1 · · · qμn . (32.91)

The second line in Eq. (32.91) decomposes similarly.
It is standard to work in a basis of gauge-invariant operators that transform in irreducible

representations of the Lorentz group. An operator of spin s will be a symmetric, traceless
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tensor of rank s. For example, for spin 2,

Ôμν2,0 = ψ̄q

(
iγμ∂ν + iγν∂μ − 1

2
igμν /∂

)
ψq. (32.92)

This has gμνÔμν2,0 = 0. It differs from the Ôμν2 in Eq. (32.90) by a scalar operator ψ̄ /∂ψ.
That is,

Oμν2 = Ôμν2,0 +
1
2
igμνψ̄q /∂ψq. (32.93)

The basis of spin-s operators is

Ôμ1···μs
s,r = ψ̄γμ1i∂μ2 · · · i∂μs(−�)rψ + symmetrizations of μi − traces. (32.94)

These operators have mass dimension d = 2 + s + 2r. Knowing the dimension and the
spin fixes t ≡ 2 + 2r = d− s. This quantity t is known as the twist of an operator. That is,
twist = dimension− spin. Since the operators with extra � factors are suppressed, the OPE
will be dominated by operators with the lowest twist. These are operators such as Ôμν2,0 in
Eq. (32.92), which is dimension 4 and spin 2 and hence has twist 2. In general, promoting
the derivatives to covariant derivatives and adding a label for the quark flavor, we define

Ôμ1···μn
q (x) = ψ̄q(x)γμ1iDμ2 · · · iDμnψq(x) + symmetrizations of μi− traces. (32.95)

This is the canonical basis of gauge-invariant twist-2 quark operators.
There are no gauge-invariant operators in QCD with twist less than 2. To see that, first

note that gauge-invariant operators must have at least two quark fields or two gluon field
strengths Fμν . Adding more fields adds to the dimension and hence to the twist. Without
derivatives, two quarks have dimension 3 and can only have spin 0 or 1; hence quark
operators have at least twist 2. Derivatives add 1 to the dimension and at most 1 to the spin
and hence cannot lower twist below 2. For gluons, F 2

μν has dimension 4 and spin at most
2. Thus, gluonic operators also have t ≥ 2. Explicitly, the twist-2 gluon operators are

Ôμ1···μn
g = Fμ1νiDμ2 · · · iDμn−1Fμnν + symmetrizations of μi − traces. (32.96)

The Wilson coefficients for these operators are zero at leading order.
All gauge-invariant operators in QCD with twist higher than 2 are generically called

higher twist. It is common to think of twist-2 operators as synonymous with the large Q2,
fixed x limit, and higher twist operators as providing power corrections.

In summary, after a bit of algebra and restoring quark charges, the OPE can be written
in terms of twist-2 operators as (see [Manohar, 2003, Section 1.8])

i

∫
d4x eiq·xT {Jμ(x)Jν(0)}

=
∑
q

Q2
q

{ ∞∑
n=2,4,···

(2qμ1) · · · (2qμn)
Q2n

(
−gμν +

qμqν

q2

)
Ôμ1···μn
q

+ 4
∞∑

n=2,4,···

(2qμ3) · · · (2qμn)
Q2n−2

(
gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
Ôμ1···μn
q

}
. (32.97)

This OPE is valid to leading power in
Λ2

QCD
Q2 and at leading order in αs.
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To use the OPE to calculate the time-ordered hadronic tensor Tμν for DIS, we need to
take the matrix element of this OPE in a proton state. By Lorentz invariance, all we can get
after summing over proton spins is∑

spins

〈P |Ôμ1···μn
q |P 〉 = AnqPμ1 · · ·Pμn − traces, (32.98)

with Anq functions of Q. This expression is automatically symmetric. The traces give fac-
tors of P 2 = m2

p 
 Q2 which are subleading compared to contractions of Pμi with qμ

from the Wilson coefficients, which give factors of q · P = 1
2ωQ

2. Thus, we can drop the
traces at leading power and we find

Tμν =
∑
q

Q2
q

{(
−gμν +

qμqν

q2

) ∞∑
n=2,4,···

ωnAnq

+
4

Q2ω2

(
Pμ − P · q

q2
qμ
)(

P ν − P · q
q2

qν
) ∞∑
n=2,4,···

ωnAnq

}
. (32.99)

Comparing to Eq. (32.82) we conclude that

T1 =
ω

2
T2 =
∑
q

Q2
q

[ ∑
n=2,4,···

ωnAnq

]
. (32.100)

In particular, since F1 = 1
2π ImT1 and F2 = 1

2π ImT2 we reproduce the Callan–Gross
relation F1 = ω

2F2. More importantly, since F1 = 1
2

∑
q Q

2
qf1(x) in the parton model, we

find

fq(x) =
1
π

∑
n=2,4,···

x−nImAnq . (32.101)

This gives an operator definition of the PDFs in QCD.
One consequence of this way of defining the PDFs is that it lets us calculate the PDF

evolution from the RG evolution of the twist-2 operators. Beyond leading order, amplitudes
An are divergent and thus the operatorsOn must be renormalized. The RG evolution of the
operators is compensated for by RG evolution of the Wilson coefficients, as discussed in
Chapter 23. It is a straightforward exercise to work out the anomalous dimensions for the
quark and gluon twist-2 operators. As in the example in Section 31.3, there will be oper-
ator mixing. The result of the calculation is that the μ dependence of the PDFs defined
through operator matrix elements exactly agrees with the Altarelli–Parisi evolution, as
derived in the parton model. The details of the calculation are clearly explained in [Peskin
and Schroeder, 1995, Chapter 18].
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32.4.4 Moments of the PDFs

With an operator definition of the PDFs, we can now check that the PDFs satisfy the
sum rules from Section 32.1.4 that we deduced with physical arguments. For example,∫
dxfq(x) should give the total number of valence quarks of a particular species.
The sum rules are generally of the form of integrals of xm times the PDFs:

Cmq =
∫ 1

0

dxxm−1fq(x). (32.102)

This is known as a Mellin moment. Plugging in Eq. (32.101) we find

Cmq = Im
1
π

∫ ∞

1

dω
∑
n

ωn−m−1Anq . (32.103)

Writing the imaginary part as a discontinuity and deforming the contour to a small circle
around the origin, as in Figure 32.4, we have

Cmq =
∑
n

1
2πi

∫
dω

ωm−1
ωn−2Anq = Amq . (32.104)

Thus, the An are precisely the Mellin moments of the PDFs. It is these moments that are
rigorously defined by the OPE in DIS.

Two important special cases are m = 2 and m = 1. For m = 2, the relevant twist-2
operator is

Ôμνq = ψ̄q(γμDν + γνDμ)ψq. (32.105)

This is a symmetrized version of the canonical energy-momentum tensor for a quark, which
we derived in Eq. (12.62). The full energy-momentum tensor in QCD is a sum over the
quark (and gluon) energy-momentum tensors. Thus, we can evaluate this sum in a proton
state to get twice the proton’s energy-momentum:∑

j

〈P |Ôμνj |P 〉 = PμP ν , (32.106)

where the sum is over all partons (not just quarks). Using Eq. (32.102) with m = 2 and
Eq. (32.98) we then find ∑

j

∫ 1

0

dxxfj(x) = 1. (32.107)

The operator analysis therefore gives a justification to the interpretation that
∫
dxxfj(x) =

〈x〉j is the average fraction of momentum carried by species j. Moreover, since the energy-
momentum tensor is conserved, this sum rule is independent of μ. Intriguingly, 〈x〉up ≈ 0.3
and 〈x〉down ≈ 0.1 and therefore 60% of the proton momentum is carried by gluons and
sea quarks. You can explore the m = 1 case in Problem 32.9.
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32.4.5 Summary

In this section we have given a field theory definition of the parton distribution functions.
We wrote the hadronic tensor Wμν for deep inelastic scattering in terms of expectation
values of twist-2 operators:An ∼ 〈P |On|P 〉. Matching to the parton-model picture, these
An can be identified with Mellin moments of the PDFs. This approach allows us to prove
certain features of PDFs, such as their sum rules, that can only be justified semi-classically
using the parton model. Although the An are non-perturbative, their scale dependence can
be calculated in perturbation theory. Thus, one can predict logarithmic Q2 dependence
of the DIS structure functions and calculable corrections to Bjorken scaling. The scaling
violation is the same as we found with the DGLAP equations, but with this method, we did
not have to assume the parton model.

Although we have defined the PDFs for DIS non-perturbatively in terms of Wμν , this
definition is not tremendously useful for processes other than DIS. What we would like to
do is show that any process involving high-energy scattering of protons can be written as
σ = H⊗f , withH a calculable hard function and f the same universal PDFs. For the DIS
case, we simply defined f in terms of the non-perturbative hadronic form factorWμν . This
is called the DIS PDF scheme. In this scheme, H is defined to be 1 to all orders, and the
only prediction one can make is the scale dependence of the PDFs (or differences between
form factors). In global PDF fits, this scheme is not used; instead theMS scheme is used,
where only the 1

ε poles are absorbed into the PDFs. Changing schemes of course does not
make our calculations any more predictive for DIS.

32.5 Lightcone coordinates

The proof of factorization above using the OPE relied on being able to perform a Taylor
expansion at large Q2 in which we could drop subleading terms. There is another way to
set up the DIS calculation so that subleading terms can be dropped, which leads to an alter-
native way to think about PDFs: as lightcone projections of proton matrix elements. This
approach, while somewhat less rigorous than the OPE, is more friendly to more general
factorization arguments.

In the parton model, the PDFs f(ξ) are interpreted as the probability to find a parton
inside the proton with momentum pμ = ξPμ (we use ξ instead of x to avoid confusion
with xμ). We know what probabilities are in quantum mechanics (or quantum field theory):
they are matrix elements squared. Thus, we should be able to write

f(ξ) =
∑
X

|〈X|ψ|P 〉|2 δ(ξPμ − pμ) = 〈P
∣∣ψ†ψ
∣∣P 〉δ(ξPμ − pμ) , (32.108)

with pμ the quark momentum as before. This is almost right, since ψ†ψ = ψ̄γ0ψ is the
quark-number density (the zero component of the quark-number current Jμ = ψ̄γμψ).
However, it is not quite right, since the parton’s momentum does not have to be exactly
proportional to the proton momentum. The momenta only have to be proportional up to
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some small transverse fluctuations. That is, we expect the component of pμ in the proton’s
direction to be ξPμ, and the other components are small, ∼mP

Q . Obviously, the proton’s
direction has no meaning in the proton rest frame. The natural frame for this discussion is
rather the center-of-mass frame. At hadron–hadron colliders, such as the LHC, the center-
of-mass frame is the lab frame, but for fixed target experiments (such as typical e−p+

experiments), it is not. So we will first change frames for DIS, then return to Eq. (32.108).
The center-of-mass frame for γ�p→ X is known as the Breit frame. In this frame, the

photon and proton momenta are

qμ = (0, 0, 0, Q) , Pμ = (Q, 0, 0,−Q) . (32.109)

Since qμ = kμ − k′μ, the incoming and outgoing electron momenta must be

k =
(
Q

2
, 0, 0,

Q

2

)
, k′ =

(
Q

2
, 0, 0,−Q

2

)
, (32.110)

so that the electron bounces right off the proton, as if it hit a brick wall. Hence, the Breit
frame is sometimes referred to with the mnemonic brick wall frame.

Now consider some parton in the proton with momentum pμ. Its momentum should be
collinear with the proton’s momentum, pμ = ξPμ, up to some transverse component pT .
When we boost from the proton rest frame to the Breit frame, pT does not change, thus
we expect pT ∼ mp 
 Q. A clean way to think about which momentum components are
small at large Q is using lightcone coordinates. Let nμ be any lightlike 4-vector, that is,
n2 = 0, and normalized such that nμ = (1, �n). For DIS, we can take nμ = (1, 0, 0, 1),
which is backwards to the proton direction. Define the backwards direction to nμ as n̄μ =
(1,−�n), so that n · n̄ = 2. For DIS in the Breit frame, n̄μ = (1, 0, 0,−1) is the proton’s
direction. In general, any momentum kμ can be decomposed as

kμ ≡ 1
2
(n̄ · k)nμ +

1
2
(n · k) n̄μ + kμT (32.111)

with kT · n = kT · n̄ = 0. kμT is the part of kμ in the transverse (x and y) directions. This
can be checked by contracting with nμ or n̄μ. We also find

k2 = (n · k)(n̄ · k) + k2
T . (32.112)

With this notation, we can interpret the momentum fraction ξ of the parton inside the proton
to be the component of the momentum in the n direction. That is, n · p = ξ (n · P ). The
n̄ · p and pT components of the parton momentum are much smaller. That is, /̄nψ ≈ 0.

Now that we are in a frame where the proton is very energetic, we can make Eq. (32.108)
precise. We write

f(ξ) =
∑
X

∫
dΠX |〈X|ψ|P 〉|2δ(ξn · P − n · p) . (32.113)

This is the probability of finding a quark within a proton with a given momentum fraction.
To be clear, in this equation, there is no scattering. Rather, it describes how the proton
momentum splits up into Pμ = pμ+pμX , where pμ is the momentum of the parton and pμX
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is the momentum of everything else in the proton. Inserting a factor of
∫
d4p δ4(P−p−pX)

we find

f(ξ) =
∫

d4pi
(2π)4
∑
X

∫
dΠX(2π)4δ4(Pμ − pμ − pμX)δ(ξn · P − n · p)|〈X|ψ(0)|P 〉|2

=
∫ ∞

−∞

dt

2π

∑
X

∫
dΠXe

−itn·(ξP−P+pX)|〈X|ψ(0)|P 〉|2

=
∫ ∞

−∞

dt

2π

∑
X

∫
dΠXe

−iξtn·P 〈P |ei(n·P̂))tψ†(0)e−i(n·P̂)t|X〉〈X|ψ(0)|P 〉

=
∫ ∞

−∞

dt

2π
e−itξ(n·P )〈P |ψ̄(tnμ)γ0ψ(0)|P 〉. (32.114)

We can simplify this further by noting that since the quark is going mostly in the n̄μ

direction /̄nψ ≈ 0. This implies γ0ψ = −(�n · �γ)ψ and so 2γ0ψ = /nψ. Then,

f(ξ) =
∫ ∞

−∞

dt

4π
e−itξ(n·P )〈P |ψ̄(tnμ)/nψ(0)|P 〉. (32.115)

To make this gauge invariant, we can insert a Wilson line (see Section 25.2) stretching
between the points x = 0 and xμ = tnμ where the quark fields are evaluated:

Wn = P exp
{
igsnν

∫ t
0

dsAν(snμ)
}
. (32.116)

Thus, we arrive at

fq(ξ) =
∫ ∞

−∞

dt

2π
e−itξ(n·P )〈P |ψ̄q(tnμ)

/n

2
Wnψq(0)|P 〉. (32.117)

To be clear, nμ = (1, �n) is a lightlike 4-vector pointing opposite to the direction of the
proton’s momentum. You can check in Problem 32.11 that moments of the PDFs defined
this way reproduce matrix elements of twist-2 operators from Section 32.4.4.

The advantage of an expression such as Eq. (32.117) is that it appears generically in
high-energy processes in a frame where the proton is ultra-relativistic, such as the lab frame
in hadron–hadron collisions. Similar analyses can therefore be done for other processes,
such as Drell–Yan, direct photon production (pp → γ + X), dijet production, etc. Each
of these has a scale Q (the invariant mass of the lepton pair in Drell–Yan, the transverse
momentum of the photon, or the invariant mass of the dijet system). When Q � mp, by
considering how the relevant momenta scale with Q (such as Pμ, pμ and qμ for DIS) one
can often write down factorization formulas for cross sections using lightcone PDFs. If
one is content with scaling arguments as a proof of these factorization formulas, then it is
possible to have a tremendous amount of predictive power without an OPE.
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Problems

32.1 Derive an expression for the mean charge radius 〈r2〉 =
∫
d3x r2ρ(x) in terms of

a form factor F
(
q2
)

by expanding F
(
q2
)

=
∫
d3x ei�q·�xV (x) around x = 0. What

is the mean charge radius of the proton from Eq. (32.9)?
32.2 Show that the PDFs, as classical probabilities, should satisfy

∑
j

∫
dxxfj(x) = 1,

as in Eq. (32.29). [Hint: consider the average momentum for each parton.]
32.3 Derive the expansion in Eq. (32.38). One way to do this is to write∫ 1

0

dxx−1+εf(x) =
∫ 1

0

dxx−1+εf(0)+
∫ 1

0

dxx−1+ε [f(x)− f(0)] (32.118)

and to evaluate the first term and Taylor expand the second term.
32.4 Evaluate the relationship between W1 and W2 that would result instead of the

Callan–Gross relation if quarks were scalars. How could you test this prediction?
32.5 Calculate the g → gg splitting function by taking the collinear limit of gg → gg

scattering. You can use the cross section calculated in Chapter 27.
32.6 Find the limits of integration on z for t = p2

T in the process γ� → qq̄g discussed
in Section 32.3. Then calculate P (t) and the Sudakov factor Δ(Q, t) explicitly.
Repeat the exercise for t = m2 and t = θ. Which part of the Sudakov factor is
universal?

32.7 In this problem, you will show thatQ→∞ at fixed ω = 2P ·q
Q2 or equivalently fixed

χ ≡ 2mp
ω implies that J(xμ)J(0) is dominated by the lightcone, where x2

μ → 0.
(a) In the proton rest frame, show that

qμxμ =
ωQ2

2mp
(x0 − r)− mp

ω
r +O
(

1
Q2

)
, (32.119)

where r ≡ �q·�x
|�q| .

(b) Use the method of stationary phase to show that at fixed ω, Wμν , in the form
of Eq. (32.78), is dominated by

∣∣x0 − r
∣∣ ≤ c1

Q2 and r ≤ c1 for two constants
c1 and c2 as Q→∞.

(c) Show that x2 ≤ const
Q2 and therefore that J(xμ)J(0) is dominated by lightlike

separations in the DIS limit.
32.8 Relating imaginary parts to discontinuities. The goal of this problem is to verify

Eq. (32.83).
(a) By expanding the time ordering in terms of θ(t) and θ(−t) show that Tμν as

in Eq. (32.81) can be written as

Tμν(ω,Q) =
∑
X

(2π)3δ3(�pX − �q − �P )
p0
X − p0 − q0 − iε 〈p+|Jμ(0)|X〉〈X|Jν(0)|p+〉

+
∑
X

(2π)3δ3(�pX + �q − �P )
p0
X − p0 + q0 − iε 〈p+|Jμ(0)|X〉〈X|Jν(0)|p+〉.

(32.120)

You may want to use θ(t) = 1
2πi

∫∞
−∞

ds
s−iεe

ist.
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(b) Use part (a) to show that one of the terms above does not contribute to the
discontinuity in the physical region and that Wμν = −iDiscTμν .

32.9 Show that current conservation implies a sum rule for each flavor in QCD using
spin-1 operators in the OPE, as we did for spin 2 in Section 32.4.4.

32.10 Show that p2
T = ŝt̂û

(ŝ+Q2)2
and verify Eq. (32.58).

32.11 Relate the lightcone PDF definition from Eq. (32.117) to the Mellin moments
from Section 32.4.4.
(a) Compute the m = 1 moment of the lightcone PDF definition to show that you

get the matrix element of the spin-1 operator Ôμq = ψ̄γμψ. Be careful with the
limits of integration.

(b) Show that you can reproduce the matrix elements of the twist-2 spin-m
operators by taking moments.

(c) Can you construct the lightcone PDF definition from the Mellin moments?
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Effective actions and Schwinger
proper time 33

We have mentioned effective actions a few times already. For example, the effective action
for the 4-Fermi theory is derived from the Standard Model by integrating out the W and Z
bosons. It is an effective action since it is valid only in some regime, in this case for energies
less than mW . More generally, an effective action is one that gives the same results as a
given action but has different degrees of freedom. For the 4-Fermi theory, the effective
action does not have theW and Z bosons. In this chapter we will develop powerful tools to
calculate effective actions more generally. We will discuss three ways to calculate effective
actions: through matching (or the operator product expansion), through field-dependent
expectation values using Schwinger proper time, and with functional determinants coming
from Feynman path integrals.

The first step is to define what we mean by an effective action. The term effective action,
denoted by Γ, generally refers to a functional of fields (like any action) defined to give the
same Green’s functions and S-matrix elements as a given action S, which is often called the
action for the full theory. We write Γ =

∫
d4xLeff(x), where Leff is called the effective

Lagrangian. Differences between Γ and S include that Γ often has fewer fields, is non-
renormalizable, and only has a limited range of validity. When a field is in the full theory
but not in the effective action, we say it has been integrated out.

The advantage of using effective actions over full theory actions is that by focusing only
on the relevant degrees of freedom for a given problem calculations are often easier. For
example, in Section 31.3 we saw that in the 4-Fermi theory large logarithmic corrections
to b → cd̄u decays of the form αns lnnmWmb could be summed to all orders in perturbation
theory. The analogous calculation in the full Standard Model would have been a nightmare.

The effective action we will focus on for the majority of this chapter is the one arising
from integrating out a fermion of mass m in QED. We can define this effective action
Γ[Aμ] by

∫
DA exp(iΓ[Aμ]) ≡

∫
DADψ̄Dψ exp

[
i

∫
d4x

(
−1

4
Fμν + ψ̄

(
i /D −m

)
ψ

)]
.

(33.1)

When Aμ corresponds to a constant electromagnetic field, Leff [A] is called the Euler–
Heisenberg Lagrangian. The Euler–Heisenberg Lagrangian is amazing: it gives us the
QED β-function, Schwinger pair creation, scalar and pseudoscalar decay rates, the chiral
anomaly, and the low-energy limit for scattering n photons, including the light-by-
light scattering cross section. As we will see, the Euler–Heisenberg Lagrangian can be
calculated to all orders in αe using techniques from non-relativistic quantum mechanics.
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33.1 Effective actions from matching

So far, we have only discussed how effective actions can be calculated through matching.
This approach requires that matrix elements of states agree in the full and effective theories.
For example, in the 4-Fermi theory, we asked that

〈Ω|T
{
ψ̄ψψ̄ψ
}
|Ω〉S = 〈Ω|T

{
ψ̄ψψ̄ψ
}
|Ω〉Γ, (33.2)

where the subscript on the correlation function indicates the action used to calculate it.
Writing the effective Lagrangian as a sum over operators Leff(x) =

∑
CiOi(x) we were

able to determine the Wilson coefficients Ci by asking that Eq. (33.2) hold order-by-order
in perturbation theory. One-loop matching in the 4-Fermi theory was discussed in Sec-
tion 31.3. Other examples of matching that we considered include the Chiral Lagrangian
(Section 28.2.2) and deep inelastic scattering (Section 32.4).

In the 4-Fermi theory and for deep inelastic scattering, we matched by expanding prop-
agators 1

p2−m2
W

or 1
p2+Q2 respectively (see Eqs. (32.70) and (32.71)). The reason one can

expand propagators to derive an effective Lagrangian is because when a scale such as mW

or Q is taken large, the propagator can only propagate over a small distance. In terms of
Feynman diagrams, we expand an exchange graph in a set of local interactions:

ψ1

ψ4ψ2

ψ3

→
ψ1

ψ4ψ2

ψ3

. (33.3)

To see how this works in position space, consider matching a Yukawa theory with a massive
scalar,

LY = iψ̄ /∂ψ − 1
2
φ(� +m2)φ+ λφψ̄ψ, (33.4)

to an effective Lagrangian Leff which lacks that scalar and is useful for energies much
less than m. For large m, fluctuations of φ around its classical configuration are highly
suppressed. Thus, to leading order we can assume φ satisfies its classical equations of
motion, φ = λ

�+m2 ψ̄ψ, and that loops of φ are small corrections. Plugging the classical
solution back into the Lagrangian gives

Leff = iψ̄ /∂ψ +
λ2

2
ψ̄ψ

1
� +m2

ψ̄ψ. (33.5)

In this way Leff is guaranteed to give the same correlation functions as LY but has no φ
field in it. As long asm is larger than typical momentum scales, we can also Taylor expand
this non-local effective Lagrangian in a series of local operators:

Leff = iψ̄ /∂ψ +
λ2

2m2
ψ̄ψψ̄ψ − λ2

2m4
ψ̄ψ�ψ̄ψ + · · · . (33.6)

If φ were the W and Z, this would give the 4-Fermi theory supplemented by additional
operators that have effects suppressed by powers of E2

m2
W

at low energy.
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Setting φ to its classical equations of motion amounts to taking the steepest descent
approximation in the path integral. To integrate out φ to all orders, we have to perform the
path integral exactly. Thus, we can define the effective action as∫

Dψ̄Dψ exp
(
i

∫
d4xLeff [ψ, ψ̄]

)
=
∫
DφDψ̄Dψ exp

(
i

∫
d4xLY[φ, ψ, ψ̄]

)
,

(33.7)
which connects back to the definition given in Eq. (33.1).

33.2 Effective actions from Schwinger
proper time

The next method we discuss for computing effective actions is through Schwinger proper
time. The idea here is to evaluate the propagator for the particle we want to integrate out
as a functional of the other fields. Pictorially, we can write this as

GA(x, y) = + + + · · · . (33.8)

Then, when we integrate out the field, we will generate an infinite set of interactions among
the other fields.

The key to Schwinger’s proper-time formalism is the mathematical identity

i

A+ iε
=
∫ ∞

0

ds eis(A+iε), (33.9)

which holds for A ∈ R and ε > 0 (see Appendix B). This lets us write the Feynman
propagator for a scalar as

DF (x, y) =
∫

d4p

(2π)4
eip(x−y)

i

p2 −m2 + iε

=
∫

d4p

(2π)4
eip(x−y)

∫ ∞

0

ds eis (p2−m2+iε). (33.10)

The integral over d4p is Gaussian and can be done exactly using Eq. (14.7) with A =
−2isgμν , giving

DF (x, y) =
−i

16π2

∫ ∞

0

ds

s2
e
−i
[

(x−y)2
4s +sm2−iεs

]
, (33.11)

which is an occasionally useful representation of the propagator. For m = 0 it provides a
shortcut to the position-space Feynman propagator DF (x, y) = − 1

4π2
1

(x−y)2−iε .
An alternative to performing the integral over p directly is first to introduce a one-particle

Hilbert space spanned by |x〉, as in non-relativistic quantum mechanics. This lets us write
〈p|x〉 = eipx. Then, from Eq. (33.10) we get
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DF (x, y) =
∫

d4p

(2π)4
〈y|p〉
∫ ∞

0

ds eis(p
2−m2+iε)〈p|x〉. (33.12)

The analogy with quantum mechanics can be taken even further. Introduce momentum
operators p̂μ with p̂μ|p〉 = pμ|p〉 and define Ĥ = −p̂2. Then eisp

2〈p|x〉 = 〈p|e−isĤ |x〉.
This lets us use (2π)−4 ∫

d4p |p〉〈p| = 1 in Eq. (33.12) to get

DF (x, y) =
∫ ∞

0

ds e−sεe−ism
2〈y|e−isĤ |x〉 ≡

∫ ∞

0

ds e−sεe−ism
2〈y; 0|x; s〉, (33.13)

where |x; s〉 ≡ e−isĤ |x〉. In the second step, we have interpreted Ĥ as a Hamiltonian and
s as a time variable known as Schwinger proper time.1 Schwinger proper time gives an
intuitive interpretation of a propagator:

A propagator is the amplitude for a particle to propagate from x to y in proper time s,
integrated over s.

One has to be careful interpreting Ĥ however, since it conventionally includes only the p
dependence and not the m dependence (as Ĥ = m2 − p̂2 would).

We can go even further into quantum mechanics by defining the Green’s function as an
operator matrix element. Define the Green’s function operator for a massive scalar as

Ĝ ≡ i

p̂2 −m2 + iε
. (33.14)

Then the Feynman propagator is

DF (x, y) =
∫

d4p

(2π)4
eip(x−y)

i

p2 −m2 + iε
=
∫

d4p

(2π)4
〈y|p〉〈p| i

p̂2 −m2 + iε
|x〉

= 〈y|Ĝ|x〉. (33.15)

Or we can go directly to proper time, without ever introducing the p integral, through
Eq. (33.9):

DF (x, y) = 〈y|Ĝ|x〉 =
∫ ∞

0

ds e−sεe−ism
2〈y|e−iĤs|x〉, (33.16)

where Ĥ = −p̂2 as before.
By the way, when you have two propagators, as in a loop, the relevant identity is

1
AB

= −
∫ ∞

0

ds

∫ ∞

0

dt eisA+itB (33.17)

(the iε factors are implicit). If we then write s = xτ and t = (1− x)τ , so that s and t are
the fractions x and (1− x) of the total proper time τ , this becomes

1
AB

= −
∫ 1

0

dx

∫ ∞

0

τ dτ eiτ(xA+(1−x)B) =
∫ 1

0

dx
1

[Ax+B (1− x)]2 , (33.18)

1 To understand why s is called a proper time, recall from relativity that proper time s is defined by the differ-
ential ds2 = gμνdxμdxν . Since Ĥ = −gμν p̂μp̂ν , it naturally generates translations in proper time through
gμν ∂

∂xμ
∂

∂xν
.
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which is a Feynman parameter integral. Thus, in a loop, each particle has its own proper
time, s or t, which denote how long each particle has taken to get around its part of the
loop. Then the Feynman parameter x = s

s+t is how far one particle is behind the other one.

33.2.1 Background fields

Now suppose a field φ interacts with a photon field, through the usual scalar QED
Lagrangian:

L = −1
4
F 2
μν − φ�

(
D2 +m2

)
φ, (33.19)

with Dμ = ∂μ + ieAμ. As a step towards calculating the Euler–Heisenberg Lagrangian,
we will need the scalar propagator in the presence of a fixed external Aμ field. We write
〈A| · · · |A〉 instead of 〈Ω| · · · |Ω〉 when matrix elements are taken in the presence of an
external field rather than the vacuum. Thus, the propagator in the presence of an external
field Aμ is written as

GA(x, y) = 〈A|T{φ(y)φ�(x)}|A〉. (33.20)

Using operator notation, we use ∂μ → −ip̂μ to define

ĜA =
i

(p̂− eA(x̂))2 −m2 + iε
. (33.21)

This equation illustrates an advantage of the quantum mechanics operator formalism over
Feynman diagrams: we can work in position and momentum space at the same time,
through operators such as p̂− eA(x̂).

Then, as in Eq. (33.15), we have

GA(x, y) = 〈y|ĜA|x〉 = 〈y| i

(p̂− eA(x̂))2 −m2 + iε
|x〉 =
∫
ds e−sεe−ism

2〈y|e−iĤs|x〉,
(33.22)

where now

Ĥ = −(p̂− eA(x̂))2. (33.23)

So we get the same formula as for the free theory, but with a different Hamiltonian. The
interpretation of Eq. (33.22) is that GA(x, y) describes the evolution of φ from x to y in
time s, including all possible interactions with a field Aμ over all possible times s. This is
shown diagrammatically in Eq. (33.8).

For a spinor, we want to evaluate

GA(x, y) = 〈A|T{ψ(y)ψ̄(x)}|A〉. (33.24)

First, recall from Eq. (10.106) that

/D
2 = D2

μ +
e

2
Fμνσ

μν . (33.25)

We used this identity in Chapter 10 to show that Dirac spinors satisfy the Klein–Gordon
equation with an additional magnetic moment term. Here, the Fμνσμν term will again
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produce the differences between the scalar and Dirac spinor cases of quantities we
calculated. Then, in momentum space, we have

(/̂p− e /A(x̂))2 = (p̂− eA(x̂))2 − e

2
Fμν(x̂)σμν . (33.26)

This identity lets us write the spinor Green’s function operator as

ĜA =
i

/̂p− e /A(x̂)−m+ iε

=
(
/̂p− e /A(x̂) +m

) i

(p̂− eA(x̂))2 − e
2Fμν(x̂)σ

μν −m2 + iε
, (33.27)

and so the Dirac propagator is

GA(x, y) = 〈y| i

/̂p− e /A−m+ iε
|x〉 =
∫ ∞

0

ds e−sεe−ism
2〈y|(/̂p− e /A(x̂) +m)e−iĤs|x〉

(33.28)
as before, but now with

Ĥ = −(p̂μ − eAμ(x̂))2 +
e

2
Fμν(x̂)σμν . (33.29)

Note that there is no Dirac trace here, since the Green’s function is a matrix in spinor space.

33.2.2 Field-dependent expectation values

To connect to effective actions, recall from Section 33.1 that to integrate out a field at tree-
level we set it equal to its equations of motion. Another way to phrase this procedure is that
we set the field equal to a configuration for which the Lagrangian has a minimum. Now,
classically, we can always expect to find the field at the minimum. So the minimum can be
thought of as a classical expectation. The generalization to the quantum theory is to replace
a field by its quantum vacuum expectation value:

φ→ 〈Ω|φ|Ω〉 . (33.30)

The classical and quantum expectation values agree at tree-level, but can be different when
loops or non-perturbative effects are included. We will consider how the vacuum can be
destabilized by quantum effects in Chapter 34. Our focus here is not on the expecta-
tion value in the vacuum, but in the presence of a fixed electromagnetic field. Thus, in
a background field, we can integrate out φ by replacing φ→ 〈A|φ|A〉.

Let us go straight to the fermion case. The Lagrangian is

L = −1
4
F 2
μν + ψ̄(i/∂ −m)ψ − eAμψ̄γμψ. (33.31)

We now want to replace this by the effective Lagrangian where the current that Aμ cou-
ples to is replaced by its expectation value in the given fixed configuration, which we are
denoting as Aμ:

Leff = −1
4
F 2
μν − eAμJμA, (33.32)
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where

JμA ≡ 〈A|ψ̄(x)γμψ(x)|A〉. (33.33)

This is not a vacuum matrix element, but a matrix element in the presence of a given state
|A〉.

Now we can calculate JμA using Schwinger proper time. First note that A = 0 is the
vacuum, so Jμ0 should reduce to the propagator G(x, y) with x = y when the field is
turned off. Indeed, being explicit about the spin indices

Jμ0 (x) = 〈Ω|ψ̄α̇(x)γμα̇αψα(x)|Ω〉 = −Tr
[
〈Ω|ψα(x)ψ̄α̇(x)γμα̇β |Ω〉

]
≡ −Tr〈x|Ĝγμ|x〉.

(33.34)

The third form is meant to indicate that the trace of the matrix
[
ψψ̄γμ
]
αβ

is being taken.
In the presence of a non-zero A field, we just have to replace this by the propagator in the
Aμ background:

JμA(x) = −Tr〈x|ĜAγμ|x〉, (33.35)

where ĜA is the Green’s function in Eq. (33.27). So,

JμA = −Tr
[∫ ∞

0

ds e−sεe−ism
2〈x|γμ(/p− e /A+m)e−iĤs|x〉

]
= −
∫ ∞

0

ds e−sεe−ism
2〈x|Tr
[
γμ(/p− e /A)ei((p−eA)2− e

2σμνF
μν)s
]
|x〉, (33.36)

where we have used that Tr of an odd number of γ-matrices is zero. Next, note that the
current is itself a variation:

JμA = − i

2e
∂

∂Aμ

∫ ∞

0

ds

s
e−sεe−ism

2
Tr
[
〈x|e−iĤs|x〉

]
. (33.37)

Integrating both sides with respect to Aμ and using Eq. (33.32) gives

Leff(x) = −1
4
F 2
μν(x) +

i

2

∫ ∞

0

ds

s
e−sεe−ism

2
Tr
[
〈x|e−iĤs|x〉

]
, (33.38)

which is only a function of the background fieldAμ. For a spinor, Ĥ is given in Eq. (33.29).
For a complex scalar, the effective Lagrangian has a similar form:

Leff(x) = −1
4
F 2
μν(x)− i

∫ ∞

0

ds

s
e−sεe−ism

2〈x|e−iĤs|x〉, (33.39)

with Ĥ = −(p̂ − eA(x̂))2 as in Eq. (33.23). The scalar case is actually more difficult
to derive than the spinor case using Schwinger’s method because of the A2

μφ
�φ term in

the scalar QED Lagrangian. We produce this Lagrangian using Feynman path integrals in
Eq. (33.52) below.
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33.2.3 Interpretation and cross check

Up to an extra factor of 1
s , the proper-time integral in Eq. (33.38) looks just like 〈x|ĜA|y〉

in Eq. (33.22) with x = y. This is easy to understand: the effective action sums closed
loops, where the particle propagates back to where it started after some proper time s.
That is, it is an integral over 〈x; 0|x; s〉. In terms of Feynman diagrams, the effective action
includes all diagrams with any number of external photons and one closed fermion loop:

Leff = −1
4
F 2
μν + + + + + · · · .

(33.40)
The physical interpretation of the expectation value 〈x|e−iĤs|x〉 = 〈x; 0|x; s〉 in
Eq. (33.38) is therefore that it is the amplitude for a particle to go around a loop in proper
time s based on evolution with the Hamiltonian Ĥ .

Note that the first diagram in Eq. (33.40) does not involve any photons at all, thus it
should represent the vacuum energy of the system. This provides a nice consistency check.
Setting A = 0, to get just the first diagram, the effective action becomes (in the complex
scalar case)

Γ[0] = −i
∫
d4x

∫ ∞

0

ds

s
e−sεe−ism

2〈x|eip̂2s|x〉. (33.41)

Inserting 1 =
∫

d4k
(2π)4

|k〉〈k| we find

Γ[0] = −iV T
∫ ∞

0

ds

s

∫
d4k

(2π)4
exp
[
i(k2

0 − �k2 −m2 + iε)s
]
, (33.42)

where V T is the volume of space-time. It is convenient to remove this factor by writing
Γ[0] = −(V T )Veff with V eff an effective potential energy density, which in this case is just
a constant.

The integral over proper time is divergent from the s ∼ 0 region, corresponding to where
the loop has zero proper length. However, Schwinger proper time conveniently gives us a
Lorentz-invariant and gauge-invariant way to regulate such divergences: cut off the integral
for s > s0. To evaluate V eff, we Wick rotate k0 → ik0 and can integrate over the imaginary
axis. This gives

V eff = −
∫ ∞

s0

ds

s

∫
d3k

(2π)3

∫
dk0

2π
exp
[
−i(k2

0 + �k2 +m2)s
]

= − 1
2
√
π

∫
d3k

(2π)3

∫ ∞

s0

ds

s3/2
exp
[
−(�k2 +m2)s

]
, (33.43)

where we have replaced s→ −is in the second step. Then we find

V eff =
∫

d3k

(2π)3

(
− 1√

πs0
+
√
�k2 +m2 +O(

√
s0)
)
. (33.44)
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The− 1√
πs0

is a divergent constant, corresponding to an extrinsic cutoff-dependent vacuum
energy. This can be removed with a vacuum energy counterterm. The important term is in

the integral over
√
�k2 +m2 = ωk, which counts the ground-state energies of the modes.

It was this sum, not the constant, that led to the Casimir force discussed in Chapter 15.
Note that we get ωk instead of 1

2ωk since this is the effective action for a complex scalar
that has twice the energy of a real scalar. For a Dirac fermion, the calculation is identical,
since Ĥ = −p̂2 in both cases when A = 0. The only difference is that the Dirac trace and
− 1

2 in Eq. (33.38) give a factor of 4(− 1
2 ) = −2 compared to the scalar case in Eq. (33.39).

The minus sign is consistent with a fermion loop and the factor of 2 is consistent with a
Dirac spinor having twice the number of degrees of freedom of a complex scalar. These
are the same results we found in Section 12.5 by computing the energy density from the
energy-momentum tensor. One consequence is that in a theory with a Weyl fermion and
a complex scalar of the same mass, such as in theories with supersymmetry, the vacuum
energy is zero.

33.3 Effective actions from Feynman
path integrals

An alternative approach to calculating the effective action is based on the Feynman path
integral. Here we want to integrate over some fields by performing the path integral. For
scalar QED, integrating out the scalar means∫

DA exp(iΓ[A]) =
∫
DADφDφ� exp

[
i

∫
d4x

(
−1

4
F 2
μν − φ�(D2 +m2)φ

)]
.

(33.45)

In this case, since the original action is quadratic in φ, we can evaluate the path integral
exactly. We will ignore the iε in this section for simplicity.

Recall the general formula from Problem 14.1:∫
Dφ�Dφ exp

[
i

∫
d4x(φ�Mφ+ JM)

]
= N 1

detM
exp(iJM−1J), (33.46)

where N is some (infinite) normalization constant. Thus, for the scalar QED Lagrangian
we find∫

DA exp(iΓ[A]) = N
∫
DA exp

[
i

∫
d4x

(
−1

4
F 2
μν

)]
1

det(−D2 −m2)
. (33.47)

This equation will be satisfied if

exp
[
iΓ[A] + i

∫
d4x

1
4
F 2
μν

]
= N 1

det(−D2 −m2)
. (33.48)
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To make this notation somewhat less opaque, we can turn this mysterious determinant into
a sum by noting that

iΓ[A] + i

∫
d4x

1
4
F 2
μν − lnN = − ln

[
det(−D2 −m2)

]
= −tr
[
ln(−D2 −m2)

]
.

(33.49)

The trace is a sum over eigenvalues, in this case, eigenvalues of − ln
(
−D2 −m2

)
. One

can either evaluate this trace in momentum space, as will be discussed in Chapter 34, or
in position space, as we discuss here. The beautiful thing about a trace is that it is basis
independent. So we can just evaluate the sum on position eigenstates. That is, using the
quantum mechanics notation from Section 33.2 we have

iΓ[A] =
∫
d4x

[
− i

4
F 2
μν − 〈x| ln(−D2 −m2)|x〉

]
+ lnN . (33.50)

To connect to Schwinger proper time, take a derivative with respect to m2 and introduce a
Schwinger parameter. Then,

d

dm2
〈x| ln(−D2 −m2)|x〉 = −〈x| 1

−D2 −m2
|x〉 = i

∫ ∞

0

ds e−ism
2〈x|e−iĤs|x〉,

(33.51)

with Ĥ = − (p̂− eA(x̂))2 as in Eq. (33.23). Integrating over m2 and restoring the iε,
which we have been ignoring in this section, gives

Leff(x) = −1
4
F 2
μν − i
∫ ∞

0

ds

s
e−sεe−ism

2〈x|e−iĤs|x〉+ const, (33.52)

where the integration constant and lnN have been combined. Physics is unaffected by
these constants, and indeed we will exploit the fact that Leff can be shifted by a constant to
remove infinities when Leff is renormalized.

33.3.1 Fermions

For fermions, we need to evaluate∫
DψDψ̄ exp

(
i

∫
d4x ψ̄
(
i /D −m

)
ψ

)
= N det(i /D −m). (33.53)

Thus,

iΓ[A] = i

∫
d4x

(
−1

4
Fμν

)
+ Tr
[
tr(ln(i /D −m))

]
+ const, (33.54)

where Tr indicates a Dirac trace and tr is the normal integral over xμ or pμ. The effective
Lagrangian is then

Leff(x) = −1
4
F 2
μν − iTr

[
〈x| ln
(
i /D −m

)
|x
〉]

+ const. (33.55)



33.4 Euler–Heisenberg Lagrangian 713

As before, we take a derivative with respect to m2:

d

dm2
Leff(x) =

i

2m
Tr〈x| i /D +m

− /D
2 −m2

|x〉 =
i

2
Tr

[
〈x| 1

− /D
2 −m2

|x〉
]

=
1
2

∫ ∞

0

ds e−ism
2
Tr
[
〈x|e−i /D

2s|x〉
]
, (33.56)

where we have used in the second step that the trace of an odd number of γ-matrices is 0.
Integrating over m2 gives

Leff(x) = −1
4
F 2
μν +

i

2

∫ ∞

0

ds

s
e−ism

2
Tr
[
〈x|e−i /D

2s|x〉
]

+ const. (33.57)

Using Eq. (33.25), we then get

Leff(x) = −1
4
F 2
μν +

i

2

∫ ∞

0

ds

s
e−ism

2
Tr
[
〈x|ei[(p̂−eA(x̂))2− e

2Fμνσ
μν ]s|x〉
]

+ const,

(33.58)
which agrees with Eq. (33.38).

Another way to obtain this result is to observe that

Tr〈x| ln
(
i /D −m

)
|x〉 = Tr〈x| ln(−i /D −m) |x〉 . (33.59)

So averaging the two gives

Tr〈x| ln(i /D − m) |x〉 =
1
2
Tr〈x| ln(− /D

2 − m2
)
|x〉. (33.60)

We can write this in terms of Schwinger parameters using the identity∫ ∞

s0

ds

s
eisA = − ln(A)− ln s0 + finite, (33.61)

which holds as s0 → 0. This lets us write Eq. (33.54) with Eq. (33.60) as Eq. (33.58).

33.4 Euler–Heisenberg Lagrangian

Now we are ready to do some physics! We will calculate the effective action for the case of
a constant background electromagnetic field Fμν (which is not the same as constant Aμ).

From Eq. (33.38) we need to evaluate 〈x|e−iĤs|x〉, where Ĥ = −(p̂−eA(x̂))2+ 1
2σμνF

μν

in the spinor case and Ĥ = − (p̂+ eA(x̂))2 for scalars. There are a number of ways to
evaluate this trace. The quickest way is to work in basis |ψn〉 of eigenstates of Ĥ . Then we
can use ∫

d4x〈x|e−iĤs|x〉 =
∫
d4x
∑
n

〈x|ψn〉〈ψn|e−iĤs|x〉

=
∫
d4x
∑
n

|ψn(x)|2 e−iEns =
∑
n

e−iEns. (33.62)
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Thus, we just have to sum e−iEns over all the eigenvalues En of Ĥ . In this way, we
reduce the problem to non-relativistic quantum mechanics. An alternative, somewhat more
general, approach is discussed in Appendix 33.A.

We are interested in constant Fμν . For a constant magnetic field in the ẑ direction, we
can take Ay = Bx̂ and so the Hamiltonian becomes

Ĥ = −p̂2
t + p̂2

x + p̂2
z + (p̂y − eBx̂)2 − eBσz, (33.63)

with the eBσz term being the spin–magnetic moment interaction coming from σμνF
μν .

Ĥ has eigenstates for any values of pt, py and pz . Writing

ψpt,py,pzn = χn

(
x− py

eB

)
eiptt−ipyy−ipzz (33.64)

reduces the problem to finding the eigenstates of p̂2
x + (eBx̂)2, which is just the non-

relativistic harmonic oscillator Hamiltonian. The result is that χn are the harmonic
oscillator wavefunctions and n takes discrete values, corresponding to the Landau levels
of a non-relativistic electron in a magnetic field. The energies are therefore

Ept,py,pz,λn = −p2
t + p2

z + eB(2n+ 1)− 2eBλ, (33.65)

where λ = ± 1
2 comes from spin being up or down in the z direction.

Thus we need to evaluate∫
d4x〈x|e−iĤs|x〉 =

∑
n

ei(p
2
t−p2z)se−ies(2n+1)Be2ieBλs, (33.66)

where
∑
n refers also to a sum over λ and an integral over the continuous eigenvalues

pt, py and pz . Unless the ψn form a complete orthonormal set, the insertion of |ψn〉〈ψn| in
Eg. (33.62) is not correct. If we just had harmonic oscillator wavefunctions, χn(x), then∑
n |ψn〉〈ψn| = 1 and the dx integral would just give a factor of L. Putting the system in

a Euclidean box of size L, we see that for plane waves the density of orthogonal states is
2π
L . Thus, we get a factor of

(
L
2π

)2
from the pt and pz integrals. For py , we need to know

when shifted harmonic oscillator wavefunctions χn
(
x+ py

eB

)
are orthogonal. Since these

wavefunctions decay as χn(x) ∼ exp(−xeB), we should have 2π
eBL modes in the box, and

thus we get a factor of eBL2π from the sum over py . The result is∫
d4x〈x|e−iĤs|x〉 =

∑
λ=± 1

2

e2iseBλ
eBL3

(2π)3
L

∫ ∞

−∞
dpzdpte

i(p2t−p2z)s
∞∑
n=0

e−ies(2n+1)B

= −2iL4 eB

8π2

1
s

cos(esB)
sin(esB)

. (33.67)

This has no position dependence, since B is constant. It corresponds to an effective
Lagrangian as in Eq. (33.38) of the form

LEH = −1
4
F 2
μν +

eB

8π2

∫ ∞

0

ds

s
e−sεe−ism

2 1
s

cos(esB)
sin(esB)

. (33.68)
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The calculation for a constant electric field is the same, but with �B → i �E. The general
Lorentz-invariant expression for the effective Lagrangian for any constant Fμν can be
written as

LEH = −1
4
F 2
μν −

e2

32π2

∫ ∞

0

ds

s
e−sεe−ism

2 Re cos(esX)
Im cos(esX)

FμνF̃μν , (33.69)

where X is a scalar function of the electric and magnetic fields defined by

X ≡
√

1
2
F 2
μν +

i

2
FμνF̃μν , (33.70)

with F̃μν = 1
2ε
μναβFαβ . You are encouraged to check the constant �E and general

expression in Problem 33.1. Taking s→ −is we find

LEH = −1
4
F 2
μν −

e2

32π2

∫ ∞

0

ds

s
eisεe−sm

2 Re cosh(esX)
Im cosh(esX)

FμνF̃μν . (33.71)

In this form, the Lagrangian is more obviously real (except possibly near singularities as
discussed in Section 33.4.3).

Finally, the Lagrangian should be renormalized. We use minimal subtraction. Expanding
the integrand perturbatively in e, we find

Re cosh(esX)
Im cosh(esX)

FμνF̃μν =
4

e2s2
+

2
3
F 2
μν−

e2s2

45

[
(F 2
μν)

2 +
7
4
(FμνF̃μν)2

]
+· · · . (33.72)

The leading two terms result in a UV divergence from the small proper-time region of the
ds integral. These divergences can be regulated in a Lorentz-invariant and gauge-invariant
way by simply cutting off s > s0. The required counterterms are a constant and a renormal-
ization of the leading F 2

μν term. Thus, we remove the infinities with minimal subtraction,
giving

LEH = −1
4
F 2
μν−

e2

32π2

∫ ∞

0

ds

s
eisεe−sm

2
[
Re cosh(esX)
Im cosh(esX)

FμνF̃μν −
4

e2s2
− 2

3
F 2
μν

]
.

(33.73)

This is the Euler–Heisenberg Lagrangian. It is the renormalized effective action aris-
ing from integrating out a massive fermion for constant Fμν . It is worth emphasizing that
this effective Lagrangian is non-perturbative in e. It encodes an infinite number of 1-loop
diagrams, as in Eq. (33.40), and a tremendous amount of physics. We will go through a
number of applications below.

In Appendix 33.A, we derive this Lagrangian more slowly, using Schwinger’s original
method. The basic idea is to calculate 〈y|e−iĤs|x〉 = 〈y; 0|x; s〉 by solving the differential
equation

i∂s〈y; 0|x; s〉 = i∂s 〈y; 0|e−iĤs|x; 0〉 = 〈y; 0|Ĥ|x; s〉. (33.74)

The Heisenberg equations of motion d
ds x̂

μ = i [Ĥ, x̂μ] and d
ds p̂

μ = i [Ĥ, p̂μ] are used to
get an explicit form for x̂μ(s) and p̂μ(s) and therefore Ĥ(s). This method of calculation
produces the full Green’s function G(x, y) = 〈y; 0|x; s〉 , which is more generally useful
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than the effective action alone. For x = y, which is relevant for the effective action, the
differential equation reduces to (cf. Eq. (33.A.149)):

− i∂s〈x; 0|x; s〉 = tr
[
i

2
eF coth(esF) +

e

2
σF
]
〈x; 0|x; s〉 , (33.75)

where F = Fμν and σ = σμν are matrices. The solution with appropriate boundary
conditions is

〈x; 0|x; s〉 =
−i

16π2

1
s2

exp
(

1
2
tr ln
[
sinhFs
esF

]
+ i

es

2
σμνF

μν

)
=

i

64π2

(es)2FμνF̃μν
Im cosh(esX)

exp
(
i
es

2
σμνF

μν
)
. (33.76)

Again, this can be checked by differentiation. For a constant magnetic field, this is
equivalent to Eq. (33.67).

The Euler–Heisenberg Lagrangian was first calculated by Heisenberg and his student
Hans Euler by finding exact solutions to the Dirac equation in a constant Fμν background
[Euler and Heisenberg, 1936]. Our derivation of it, particularly the one in Appendix 33.A,
is due to Schwinger [Schwinger, 1951].

33.4.1 Vacuum polarization

Expanding the unrenormalized Euler–Heisenberg Lagrangian, as in Eq. (33.72), we found
two divergent terms which were removed with counterterms in Eq. (33.73). If we do not
include these counterterms, the expansion gives

LEH = −1
4
F 2
μν −

e2

8π2

∫ ∞

0

ds

s
eisεe−sm

2
[

1
e2s2

+
1
6
F 2
μν

]
+ finite. (33.77)

The first term in brackets is constant. It gives the vacuum energy density, as discussed in
Section 33.2.3. The second term looks just like the tree-level QED kinetic term, − 1

4F
2
μν .

Keeping only this term (before renormalization), we have

LEH = −1
4
F 2
μν −

1
6
F 2
μν

e2

8π2

∫ ∞

0

ds

s
eisεe−sm

2
. (33.78)

This is UV divergent, from the s ∼ 0 region. Regulating with a Lorentz-invariant UV
cutoff s0, we find

LEH = −1
4
F 2
μν

(
1 +

e2

12π2

∫ ∞

s0

ds

s
eisεe−sm

2
)

= −1
4
F 2
μν

(
1− e2

12π2
ln
(
s0m

2
)

+ const

)
. (33.79)

This logarithmic dependence on the cutoff is exactly what we found from computing the
full vacuum polarization graph in QED. As discussed in Chapter 23, UV divergences deter-
mine RGEs, and this one determines the leading order β-function coefficient. We can read
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off from the coefficient of the logarithm in Eq. (33.79) (as discussed in Chapter 23), that
the β-function in QED at 1-loop is

β(e) =
e3

12π2
, (33.80)

which agrees with Eq. (16.73) (or Eq. (23.29)).

33.4.2 Light-by-light scattering

The original motivation of Heisenberg and Euler was to calculate the rate for photons to
scatter off other photons. This problem was suggested to them by Otto Halpern and is
sometimes called Halpern scattering. The relevant Feynman diagram is

iM =

p3

p1

p2

p4

. (33.81)

This is a difficult loop to compute directly, even with today’s technology, much less with
what Euler and Heisenberg knew in 1936. We can get the answer (in the limit of low-
frequency light ω 
 m) directly from the Euler–Heisenberg Lagrangian. The relevant

term is the one to fourth order in e, which has the form α2

90
1
m4

[
(F 2)2 + 7

4 (FF̃ )2
]
. This

term was computed first in a paper by Euler and Kockel [Euler and Kockel, 1935]. Using
it for light-by-light scattering corresponds to a tree-level Feynman diagram of the form

iM =

p3

p1

p2

p4

. (33.82)

Note that our effective Lagrangian is only valid when ∂μFαβ = 0; thus we will only get

the result to leading order in p2

m2 . From the experimental point of view, this is enough, since
light-by-light scattering of real on-shell photons has not yet been experimentally observed,
at any frequency.

The matrix element is

M =
α2

90
1
m4

{
(p1
με

1
ν − p1

νε
1
μ)(p

2
με

2
ν − p2

νε
2
μ)(p

3
αε

3�
β − p3

βε
3�
α )(p4

αε
4�
β − p4

βε
4�
α )

+
7
16
[
εμναβ(p1

με
1
ν − p1

νε
1
μ)(p

2
αε

2
β − p2

βε
2
α)
]
×
[
εμναβ(p3

με
3�
ν − p3

νε
3�
μ )(p4

αε
4�
β − p4

βε
4�
α )
]

+permutations
}
.

(33.83)
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Summing over final polarizations and averaging over initial polarizations, the result is

1
4

∑
pols.

M2 =
1
4
α4

902

1
m8

2224(s2t2 + s2u2 + t2u2), (33.84)

which leads to a cross section

σ tot =
973

10125π
α4 ω

6

m8
. (33.85)

This is the correct low-energy limit of the exact light-by-light scattering diagram. The exact
result from the 1-loop graphs can be found in [Berestetsky et al., 1982].

33.4.3 Schwinger pair production

Notice that the effective Lagrangian in Eq. (33.73) has singularities for certain values of
the electromagnetic field. To see where the singularities are, we first consider the case with
�B and �E parallel. Then,

F 2
μν = 2( �B2 − �E2) = 2

(
B2 − E2

)
, (33.86)

where E = | �E| and B = | �B|, and

FμνF̃μν = 4 �E · �B = 4EB, (33.87)

and then, from Eq. (33.70),

X2 =
1
2
(F 2
μν + iFμνF̃μν) = (B + iE)2 . (33.88)

Then the Euler–Heisenberg Lagrangian in Eq. (33.73) simplifies to

LEH =
1
2
(
E2 −B2

)
− e2

8π2

∫ ∞

0

ds

s
eiεse−m

2s

[
EB cot(esE) coth(esB)− 1

e2s2
− B2 − E2

3

]
.

(33.89)

Since coth(x) has no poles for x > 0, the singularities are all associated with constant
electric fields. Thus, we take the limit B → 0, in which case the fact that we took �E and
�B parallel is immaterial. From Eq. (33.89) we find

LEH =
1
2
E2 − 1

8π2

∫ ∞

0

ds

s3
eiεse−sm

2
[
eEs cot(eEs)− 1 +

1
3
(esE)2

]
. (33.90)

In this form, we can see that the Euler–Heisenberg Lagrangian has poles for real E when
s is equal to sn = nπ

eE for n = 1, 2, . . . As we will now see, these poles indicate that
strong electric fields can create electron–positron pairs, a process known as Schwinger
pair production (although it was predicted first by Euler and Heisenberg).

How can electrons and positrons be produced from the Euler–Heisenberg Lagrangian,
which has no electron field in it? They cannot. However, in a unitary quantum field theory,
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forward scattering rates are related to the sum over real production rates via the optical
theorem. Recall from Section 24.1 that by the optical theorem (see Eq. (24.11))

ImM(A→ A) =
1
2

∑
X

dΠX
LIPS|M(A→ X)|2. (33.91)

We can apply this theorem to QED in the situation where |A〉 corresponds to a coherent
collection of photons describing a large electric field. In QED, the sum over states |X〉
includes states with on-shell electrons and positrons. Since QED is unitary, the optical
theorem holds. In the Euler–Heisenberg Lagrangian the states |A〉 are the same states as
in QED. Thus, if the calculation of LEH has been done correctly, the left-hand side of
Eq. (33.91) should be unchanged, as one would expect from a matching calculation. The
right-hand side of Eq. (33.91), on the other hand, cannot be the same as in full QED, since
QED has electrons in it and the Euler–Heisenberg theory does not. Thus, what would be a
unitary process in full QED now appears as a non-unitary process in the effective theory.
Unfortunately, it is not easy to use Eq. (33.91) to calculate the pair-production rate, since
one would have to sum over an infinite number of multi-particle states.

There is a nice shortcut, due to Schwinger, for evaluating the total pair-production rate.
If there were no pair production, then the electric field state |A〉 would be constant in time.
Thus 〈A|S|A〉 = 1 where S is the S-matrix. Since in this case the action is constant, S =
eiΓ. Therefore, |〈A| eiΓ |A〉|2 =

∣∣eiΓ∣∣2 measures the probability for something other than

A to be produced. In other words,
∣∣eiΓ∣∣2 gives the probability that no pairs are produced

over the time T and volume V of the experiment. We then have∣∣eiΓ∣∣2 = eiΓe−iΓ
�

= ei(Γ−Γ�) = e−2Im[Γ] = e−2V T ImLEH , (33.92)

where in the last step we use that, for given background fields, the Euler–Heisenberg
Lagrangian is just a number. Thus 2ImLEH is the probability, per unit time and volume,
that any number of pairs are created. This is the continuum field version of the optical
theorem relation ImM(A → A) = mAΓ tot, where Γ tot is the total decay rate of a single
particle of mass mA.

In order to calculate ImLEH we note that the integrand in Eq. (33.89) has poles at
sn = π

eEn. There is no pole at s = 0, as can be seen from expanding the integrand at
small s. The imaginary part of this expression can be calculated using contour integration
(Problem 33.3). The result is that2

2Im(Leff) =
1
4π

∞∑
n=1

1
s2n
e−m

2sn =
αE2

2π2

∞∑
n=1

1
n2

exp
(
−nπm2

eE

)
. (33.93)

Performing this sum, we find

Γ
(
E → e+e− pairs

)
=
αE2

2π2
Li2
(
e−

πm2
eE

)
, (33.94)

with Li2(x) the dilogarithm function. This is the rate for Schwinger pair production in an
external electric field.

2 This sum also has an interpretation as a sum over instantons (see for example [Kim and Page, 2002]).
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The rate for pair production is negligible until E � E critical = m2
e

e ≈ 1018 volts/meter,
which is an enormous field. As of this writing, Schwinger pair production in QED has still
not been observed, since it is extremely difficult to get such fields in the lab. One might
imagine, however, that such strong fields might be produced close to a particle with a very
large charge, such as an atomic nucleus. The field around a nucleus is E ∼ e

4πr2Z. Now,
the Euler–Heisenberg Lagrangian is only valid for fields that have wavelengths greater
than 1

me
, so the best we can say is that pair production would begin for Z large enough that

E critical ∼ e

4π(m−2
e )Z, which gives Z = 4π2

e2 = 1
α ∼ 137. This result is sometimes invoked

to explain why the periodic table has less than 137 elements!3

33.4.4 Connection to perturbation theory

It is informative to consider which of the predictions we have derived from LEH are
equivalent to perturbative calculations in QED, and which are not.

We found that the Schwinger pair-production rate depended on exp(−πm2

eE ). This depen-
dence on e indicates that pair production is a non-perturbative effect – you would never see
pair production from constant electric fields at any fixed order in perturbative QED. Of
course, you can get pair production in perturbation theory. But this would involve pho-
ton modes of frequencies larger than m. More precisely, one can show that [Itzykson and
Zuber, 1980]

Γ
(
E → e+e−

)
=
α

3

∫
d4qθ
(
q2 − 4m

)(
�E(q)2
)2√

1− 4m2

q2

(
1 +

2m2

q2

)
, (33.95)

which vanishes when �E is constant. The Schwinger pair-production rate is one of the
very few analytic non-perturbative calculations in quantum field theory that give physical
predictions.

Other results, such as the rate for light-by-light scattering, could be calculated in per-
turbative QED. Nevertheless, the Euler–Heisenberg Lagrangian efficiently encodes the
result of many loop calculations all at once. It is worth discussing exactly what graphs
are included in the Euler–Heisenberg Lagrangian, since this understanding will apply to
similar effective actions in other contexts.

Recall our expression for the effective Lagrangian where the fermion is integrated out,
Eq. (33.38),

Leff [A] = −1
4
F 2
μν +

i

2

∫
ds

s
e−ism

2〈x|e−i /D
2s|x〉. (33.96)

We have not assumed Fμν is constant at this point, and in fact this effective action is exact.
That is, since the Lagrangian was quadratic in ψ, this is a formal expression for the result
of evaluating the path integral of ψ completely. It does, however, correspond to only 1-loop

3 This result actually follows more simply from dimensional analysis. The ground state of a hydrogen-like atom
has energy E0 ∼ −Z2α2me. To get pair production, a nucleus has to be able to capture an electron from the
vacuum, emitting a positron into the continuum, so E0 � −me giving Z � 1

α
, up to order 1 factors, which

we cannot get by dimensional analysis.
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graphs, those in Eq. (33.40), since there is only a single propagator going from x back to x
in proper time s. But how can this expression be exact if it does not include higher loops?
Are graphs such as

or (33.97)

which have internal photon and/or fermion loops, included or not?
To answer this question, first recall that in the calculation of the effective action, and in

the formal exact expression Eq. (33.38), the photon propagator plays no role. In fact, if we
dropped the photon kinetic term from the original action, the only change in the effective
action would be that the − 1

4F
2
μν term would be missing. Thus, neither of the graphs above

are included in the effective action calculation, since both involve the photon propagator.
On the other hand, since nothing is thrown out (assuming the effective action Γ[A] is known
exactly), any physical effect associated with these graphs must be reproducible within the
effective theory. For example, these graphs in full QED contribute to the QED β-function,
which has physical effects. The way the effective theory reproduces the physics of these
loops is with its own loops involving effective vertices. Basically, the fermion loops are
computed first, treating the photon lines as external, which generates new vertices. Then
the photon lines coming off these vertices are sewn together in a loop amplitude using the
photon propagator in the effective theory.

For example, to reproduce the physics of the first graph in Eq. (33.97), the relevant
effective vertex can be determined by cutting through the intermediate photon and then
contracting the fermion loop to a point:

−→ . (33.98)

The second graph in Eq. (33.97) involves this vertex, associated with the inner fermion
loop, and a 6-point vertex associated with the outer fermion loop. The physics of the
diagrams in Eq. (33.97) are then reproduced by connecting the legs in these effective
vertices:

and . (33.99)

These graphs would reproduce the complete result from the graphs in Eq. (33.97), but we
need the full Leff[A] to compute them.
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In the Euler–Heisenberg Lagrangian, we took Fμν constant. Thus, the full physics of the
loops in Eq. (33.97) is not reproduced by the Euler–Heisenberg Lagrangian alone. Only if
we had the full effective Lagrangian, by evaluating Γ[A] exactly, which would supplement
the Euler–Heisenberg Lagrangian with additional terms depending on ∂μFαβ (and give
corrections at higher order in α to the terms without derivatives), would the full theory be
reproduced. This exact Γ[A] is not known.

Even at energies above me, the exact effective Lagrangian can be used. The electron
still shows up as a pole in the scattering amplitude, as is clear already from Schwinger
pair production in the constant Fμν approximation. Thus, one can treat the electron like a
bound state and calculate S-matrix elements for it. Of course, this is a terribly inefficient
way to calculate electron production and scattering, since we already know the full theory.
It is more efficient to use the UV completion of Γ, namely QED, which has a Lagrangian
that is local and real.

33.5 Coupling to other currents

The effective action from integrating out ψ can be generalized to the case where ψ couples
to other things besides Aμ. In this way, we can calculate things such as the π0 → γγ rate,
where π0 is the neutral pion from QCD (see Chapter 28).

When ψ couples to things other than Aμ, the effective Lagrangian has more terms. Say
we had

L = ψ̄(i/∂ −m)ψ − 1
2
φ(� +m2

φ)φ−
1
2
π(� +m2

π)π − eAμψ̄γμψ + λφψ̄ψ + gπψ̄γ5ψ,

(33.100)
which has a scalar φ and a pseudoscalar π in addition to the external field Aμ. When we
integrate out ψ, the effective Lagrangian (without ψ) will just contain the other fields cou-
pled to the expectation value of the various ψ bilinears in the background electromagnetic
field, as in Section 33.2.2. That is,

Leff [A,φ, π] = −1
2
φ(� +m2

φ)φ−
1
2
π(� +m2

π)π− eAμJμA +λφJφ + gπJπ, (33.101)

where

JμA = 〈A|ψ̄γμψ|A〉, Jφ = 〈A|ψ̄ψ|A〉, Jπ = 〈A|ψ̄γ5ψ|A〉. (33.102)

We sometimes call these field-dependent expectation values classical currents, since they
are just classical functionals of background Aμ(x) fields. The calculation of these classical
currents corresponds to the evaluation of Feynman diagrams such as

Jφ = + + + + · · · . (33.103)
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Here, the⊗ refers to insertions of the external current in the original theory, corresponding
to an interaction with the scalar. The photon lines are the background electromagnetic
fields.

For the scalar current,

Jφ = 〈A|ψ̄(x)ψ(x)|A〉 = Tr
[
〈x|ĜA|x〉

]
= Tr
[∫ ∞

0

ds e−ism
2〈x|(/̂p− e /A+m)ei(/̂p−e /A)2s|x〉

]
= 4m
∫ ∞

0

ds e−ism
2〈x|e−iĤs|x〉. (33.104)

You may notice that Jφ = ∂
∂mLeff [A], with Leff [A] in Eq. (33.38), a result that is useful

and not surprising, since the φψ̄ψ interaction and the mass term mψ̄ψ have the same form.
For the pseudoscalar current,

Jπ = 〈A|ψ̄(x)γ5ψ(x)|A〉 = −Tr
[
〈x|GAγ5|x〉

]
= −Tr
[∫ ∞

0

ds e−ism
2〈x|(/p− e /A+m)γ5e

i(/p−e /A)2s|x〉
]

= −m
∫ ∞

0

ds e−ism
2
Tr
[
〈x|γ5e

−iĤs|x〉
]
. (33.105)

This current does not have a simple relation to Leff [A], but as we will see, is not hard to
compute.

33.5.1 Currents at low energy

Since the scalar current is Jφ = ∂
∂mLeff [A], for the case of constant electromagnetic

fields, we can read the answer from the Euler–Heisenberg Lagrangian, although additional
counterterms may be required. We find (hiding the counterterms)

Jφ = − e2

32π2

∂

∂m

∫ ∞

0

ds

s
e−m

2sRe cosh(esX)
Im cosh(esX)

FμνF̃μν

= − e2

8π2

∂

∂m

∫ ∞

0

ds

s
e−m

2s

[
1

e2s2
+

1
6
F 2
μν + · · ·

]
=

e2

4π2
m

∫ ∞

0

dse−m
2s

[
1

e2s2
+

1
6
F 2
μν + · · ·

]
. (33.106)

The first term is infinite and can be removed with a renormalization of the bare term Λ3φ

in the Lagrangian. The second term is finite and gives

Jφ =
α

6π
1
m
φ
(
F 2
μν + · · ·

)
, (33.107)

where the · · · are higher order in e.
For the pseudoscalar, we need

Jπ = −m
∫ ∞

0

ds e−ism
2
Tr[γ5〈x|e−iĤs|x〉]. (33.108)
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Now, from Eq. (33.76),

〈x|e−iĤs|x〉 = 〈x; 0|x; s〉 =
i

64π2
ei
e
2σμνF

μνs (es)2FμνF̃μν
Im

cosh(esX) (33.109)

and so

Jπ =
i

64π2
m

∫ ∞

0

ds e−ism
2 (es)2FμνF̃μν
Im cosh(esX)

Tr[γ5e
i e2σμνF

μνs]. (33.110)

Since Tr[γ5] = Tr[σμνγ5] = 0, only terms with σμν to an even power will survive. Using
(σμνFμν)2 = 2F 2

μν + 2iγ5FμνF̃μν we get

Tr[γ5e
i e2σFs] = −4iIm cosh(esX). (33.111)

And thus,

Jπ =
ie2

16π2
m

∫ ∞

0

ds e−ism
2
FμνF̃μν = i

α

4πm
FμνF̃μν . (33.112)

Plugging Jφ and Jπ and the Euler–Heisenberg Lagrangian into Eq. (33.101) gives

Leff [A,φ, π] = LEH[A]− 1
2
φ(� +m2

φ)φ+
λ

m
φ
( α

6π
F 2
μν + · · ·

)
− 1

2
π(� +m2

π)π + i
α

4π
g

m
πFμνF̃μν . (33.113)

Note that the π coupling has just one term. The decay rates predicted from this effective
Lagrangian are

Γ(φ→ γγ) =
α2

144π3
λ2
m3
φ

m2
, (33.114)

Γ(π → γγ) =
α2

64π3
g2m

3
π

m2
. (33.115)

Not surprisingly, the pseudoscalar rate agrees exactly with Eq. (30.11). In this method of
calculation, however, we gain additional insight into the associated anomaly.

33.5.2 Chiral anomaly

Connecting the π → γγ rate to an anomalous symmetry is straightforward in the effective
action language. Recall that the QED Lagrangian,

L = ψ̄
(
i/∂ − ie /A

)
ψ +mψ̄ψ, (33.116)

is invariant under a vector symmetry, ψ → eiαψ, and, in the limit m → 0, under a chiral
symmetry, ψ → eiγ5ψ. The associated Noether currents are Jμ = ψ̄γμψ and Jμ5 =
ψ̄γμγ5ψ. By the equations of motion, the axial current satisfies

∂μJ
μ5 = 2imψ̄γ5ψ. (33.117)

So the amount by which the axial current is not conserved is proportional to the fermion
mass.



33.6 Semi-classical and non-relativistic limits 725

Now, we already calculated the expectation value of ψ̄γ5ψ in the background electro-
magnetic field. In Eq. (33.111) we found

〈
A
∣∣ψ̄γ5ψ
∣∣A〉 = i α

4πmFμνF̃μν . This is consistent
with Eq. (33.116) only if 〈

A
∣∣∂μJμ5

∣∣A〉 = − α

2π
FμνF̃μν , (33.118)

which agrees with Eq. (30.22).

33.6 Semi-classical and non-relativistic limits

The Schwinger proper-time method is not only useful for calculating loops using quantum
mechanics, it also gives a new perspective on the semi-classical and non-relativistic limits
of quantum field theory. In particular, it illustrates where the particles are hiding in the
path integral. As we will see, Schwinger proper time lets us derive one-particle quantum
mechanics as the low-energy limit of quantum field theory.

To begin, we return to the expression for the Green’s function we derived above for a
scalar particle in a background electromagnetic field, Eq. (33.22):

GA(x, y) = 〈A|T{φ(x)φ(y)}|A〉 =
∫ ∞

0

ds e−ism
2〈y|e−iĤs|x〉, (33.119)

with Ĥ = −(p̂ − eA(x̂))2. This operator Ĥ is the Hamiltonian in a one-particle quantum
mechanical system that generates translations in Schwinger proper time s. The func-
tion GA(x, y) is computed for constant electromagnetic fields in Appendix 33.A. In this
section, we rewrite GA(x, y) in terms of a quantum mechanical path integral.

In quantum mechanics, the path integral gives the amplitude for a particle to propagate
from xμ to yμ in time s (see Section 14.2.2):

〈y|e−iĤs|x〉 =
∫ z(s)=y
z(0)=x

Dz(τ) exp(i
∫
dτ L(z, ż)), (33.120)

where L = p̂ ˙̂x− Ĥ is the Legendre transform of the Hamiltonian. We would like to work
out this Lagrangian in the case of a scalar in an electromagnetic field.

To simplify things, we first write Ĥ = −Π̂2, where Π̂μ = p̂μ−eAμ(x̂). The Heisenberg
equations of motion for translation in s are

˙̂xμ ≡ dx̂μ

ds
= i[Ĥ, x̂μ] = i[−Π̂2, x̂μ] = 2Π̂μ, (33.121)

where [Π̂μ, x̂ν ] = [p̂μ, x̂ν ] = igμν has been used in the last step. So,

L = p̂μ
∂Ĥ

∂pμ
− Ĥ = −Π̂2 − 2eAμΠμ = −

(
dx̂μ

2ds

)2
− eAμ dx̂

μ

ds
, (33.122)

giving

〈y|e−iĤs|x〉 =
∫ z(s)=y
z(0)=x

Dz(τ) exp

(
−i
∫ s

0

dτ

(
dzμ

2dτ

)2

− ie
∫
Aμ(z)dzμ

)
, (33.123)
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with the integral over Aμ a line integral along the path z(s). So the Green’s function is

GA(x, y) =
∫ ∞

0

ds e−ism
2
∫ z(s)=y
z(0)=x

Dz(τ) exp

(
−i
∫ s

0

dτ

(
dzμ

2dτ

)2

− ie
∫
Aμ(z)dzμ

)
.

(33.124)

This is an exact formal expression, only useful to the extent that we can solve for z(τ).
This world-line formulation was derived by a different method by Feynman [Feynman,

1950], although it had little application for many years. Interest in this approach was
revived by Polyakov [Polyakov, 1981] in the context of string theory, and by Bern and
Kosower [Bern and Kosower, 1992] who used it to develop an efficient way to compute
loop diagrams in QCD.

33.6.1 Semi-classical limit

In the limit that a particle is very massive, loops involving that particle are suppressed.
Thus, it should be possible to treat a massive particle classically and the radiation it
produces quantum mechanically.

To take the large mass limit, we first rescale s→ s
m2 and τ → τ

m2 . This gives

GA(x, y) =
1
m2

∫ ∞

0

ds e−is
∫ z( s

m2 )=y

z(0)=x

Dz(τ)

× exp

(
−i
∫ s

0

dτ

[
m2

(
dzμ

2dτ

)2]
− ie
∫
Aμ(z)dzμ

)
. (33.125)

Now we see that, for large m, the m2(dz
μ

2dτ )2 term completely dominates the path integral.
Moreover, as m → ∞, the action is dominated by the point of stationary phase, which is
also the classical free-particle solution:

zμ(τ) = xμ + vμτ, (33.126)

where vμ = yμ−xμ
s is the particle’s velocity. So we get, rescaling s → sm2 back again,

and plugging in the stationary phase solution,

GA(x, y) =
∫ ∞

0

ds exp
(
−i
[
sm2 +

(y − x)2
4s

+ evμ
∫ s

0

dτAμ(z(τ))
])

. (33.127)

The first two terms in the exponent are independent of e and represent propagation of
a free particle, similar to Eq. (33.11). The next term is equivalent to adding a term to the
Lagrangian L = −eAμJμc , where Jμc is the source current from a classical massive particle
moving at constant velocity:

Jμc(x) = vμδ(x− vτ). (33.128)

In words, a heavy particle produces a gauge potential Aμ as if it is moving at a constant
velocity.
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This is the semi-classical limit. When a particle is heavy, the quantum field theory can
be approximated by treating that particle as a classical source, but treating everything else
quantum mechanically. You can study the fermion case in Problem 33.4.

33.6.2 Non-relativistic limit

In the non-relativistic limit, not only is the particle’s mass assumed to be larger than the
energy of typical photons, but the particle’s velocity is also assumed to be much less than
the speed of light. Define Δt = y0−x0 and Δx = |�y − �x|. A particle moving slowly from
xμ to yμ has Δt� Δx.

Separating out the time component, the 2-point function in Eq. (33.123) becomes

GA(x, y) =
∫ ∞

0

ds

∫ z(s)=y
z(0)=x

Dz0(τ)D�z(τ)

× exp

(
−i
∫ s

0

dτ

[(
dz0

2dτ

)2
−
(
d�z

2dτ

)2
+m2

]
− ie
∫
Aμ(z)dzμ

)
.

(33.129)

The classical path that minimizes the action, from the large m limit, has

z0(τ) = x0 +
Δt
s
τ. (33.130)

We want to treat this time evolution classically, and leave the rest of the field fluctuations
quantum mechanical. However, we can see that since both ( dz

0

2dτ )2 and m2 are large, the
stationary phase will have Δt

2s ∼ m and so s ∼ Δt
2m . That is, the integral is dominated by

the region near z0 = x0 + 2mτ and s = Δt
2m . To leading order in the expansion of s and

z0 around their stationary-phase points, we then find

GA(x, y) =
∫ z( Δt

2m )=y

z(0)=x

D�z(τ) exp

(
i

∫ Δt
2m

0

dτ

[(
d�z

2dτ

)2

− 2m2

]
− ie
∫
Aμ(z)dzμ

)
.

(33.131)

Now we change variables to τ = t
2m to find

GA(x, y) =
∫ z(Δt)=y
z(0)=x

D�z(t) exp

(
i

∫ Δt

0

dt

[
1
2
m

(
d�z

dt

)2

−m
]
− ie
∫
Aμ(z)dzμ

)
.

(33.132)

This result is exactly the path integral expression in non-relativistic, first-quantized quan-
tum mechanics with a potential V = m. We have just derived that the non-relativistic limit
of quantum field theory is quantum mechanics!
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33.A Schwinger’s method

In this appendix, we explicitly calculate the 1-loop effective action for constant background
electromagnetic fields Fμν using Schwinger’s original method [Schwinger, 1951]. This is
an alternative way to calculate the Euler–Heisenberg Lagrangian than the sum over Landau
levels method discussed in Section 33.4. This method, although a bit longer, is appealing
because it avoids having to regulate the system in a box. It also produces a general expres-
sion for the propagator GA(x, y) of a particle in a constant background electromagnetic
field.

Our starting point is the formula for the effective action in Eq. (33.38):

Leff(x) = −1
4
F 2
μν(x) +

i

2

∫ ∞

0

ds

s
e−ism

2
Tr
[
〈x|e−iĤs|x〉

]
, (33.A.133)

with Ĥ = −(p̂μ − eAμ(x̂))2 + e
2Fμν(x̂)σ

μν . We have dropped the ε term, since we will
not need it with this method. Here Aμ(x̂) is to be thought of as a classical gauge field
configuration with position replaced by the operator x̂. We would like to calculate Leff(x)
when Fμν(x̂) = (∂μAν − ∂νAμ)(x̂) is constant. We begin by calculating 〈y|e−iĤs|x〉.
Once this is known, we will set y = x and integrate over s to get Leff .

33.A.1 Proper-time propagation

States such as |x〉 are eigenstates of an operator x̂μ in a first-quantized Hilbert space. The
operators x̂μ are Schrödinger-picture operators. They are related to Heisenberg-picture
operators by x̂μ(s) = eiĤsx̂μe−iĤs. Using the definition |x; s〉 ≡ e−iĤs|x〉 we find

i∂s〈y; 0|x; s〉 = i∂s〈y|e−iĤs|x〉 = 〈y|e−iĤsĤ|x〉. (33.A.134)

Now,

〈y|e−iĤsx̂μ(s) = 〈y|x̂μe−iĤs = yμ〈y|e−iĤs, (33.A.135)

and

x̂μ(0)|x; 0〉 = x̂μ|x; 0〉 = xμ|x; 0〉. (33.A.136)

Thus, if we can write Ĥ in terms of x̂(0) and x̂(s) we can turn Eq. (33.133) into an ordinary
differential equation whose solution gives 〈y; 0|x; s〉.

In quantum mechanics, the position and momentum operators satisfy [x̂, p̂] = i. In our
4D first-quantized setup we generalize this to

[x̂μ(x), p̂ν(s)] = −igμν , (33.A.137)

with the commutation applying at the same proper time s. To simplify the form of the
Hamiltonian, we introduce the operator Π̂μ = p̂μ − eAμ(x̂). Then, assuming Fμν is
constant, we get [

x̂μ(s), Π̂ν(s)
]

= −igμν , (33.A.138)



33.A Schwinger’s method 729

[Π̂μ(s), Π̂ν(s)] = −ieFμν . (33.A.139)

In terms of Π̂μ, the Hamiltonian is

Ĥ(s) = − /̂Π2 = −Π̂μ(s)Π̂μ(s) +
e

2
Fμνσ

μν . (33.A.140)

For simplicity, we will drop circumflexes on operators from now on. As a notational con-
venience, we will also replace μ and ν indices with boldface type. So the vectors xμ and
Πμ are written as x and Π, respectively, and the matrices Fμν and σμν are written as F
and σ respectively. Then tr(σF) = −σμνFμν , with tr(· · · ) referring to a trace over μ and
ν indices in this context.

In this notation, the evolution of Πμ(s) generated by the Hamiltonian H(s) through the
Heisenberg equations of motion becomes

dΠ
ds

= i[Ĥ,Π] = 2eF ·Π, (33.A.141)

where we have used that since F is constant it commutes with all operators, including Π.
This equation is solved by Π(s) = e2esFΠ(0). Similarly,

dx
ds

= i[Ĥ,x] = 2Π, (33.A.142)

which gives

x(s) = x(0) + 2seesF
sinh(esF)
seF

·Π(0). (33.A.143)

This solution is easy to check by differentiating. In the limit A → 0, Π → p and this
becomes x(s) = x(0) + 2sp(0), which is consistent with the eigenstates of x(s) being
those which evolve into position xμ after a time s.

Thus we have

Π(0) = e−esF
eF

2 sinh(esF)
· [x(s)− x(0)] , (33.A.144)

Π(s) = eesF
eF

2 sinh(esF)
· [x(s)− x(0)] . (33.A.145)

The Hamiltonian then becomes

Ĥ = −Π(s) ·Π(s)− e

2
tr(σF) = − [x(s)− x(0)]K[x(s)− x(0)]− e

2
tr(σF),

(33.A.146)
with K ≡ e2F2

4 sinh2(eFs)
. Note that Kμν = Kνμ.

To evaluate 〈y|e−iĤsĤ|x〉 in Eq. (33.133) using Ĥ , it is helpful first to rewrite Ĥ so
that x(s) is on the left and x(0) is on the right. This is not hard:

Π(s)·Π(s) = x(s)Kx(s)−2x(s)Kx(0)+x(0)Kx(0)+Kμν [xμ(s), xν(0)]. (33.A.147)

Now,

Kμν [xμ(0), xν(s)] = −tr
{
K
[
x(0),x(0) + 2eesF

sinh(esF)
eF

·Π(0)
]}

= − i
2
tr[eF + eF coth(esF)]. (33.A.148)
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So, since tr[F] = 0, we have

Ĥ = −x(s)Kx(s) + 2x(s)Kx(0)− x(0)Kx(0)− i

2
tr[eF coth(esF)]− e

2
tr(σF) .
(33.A.149)

In this canonical form, Ĥ can be evaluated in position eigenstates.
Equation (33.A.134) becomes

−i∂s〈y; 0|x; s〉 =−
{

(y − x)
e2F2

4 sinh2(esF)
(y − x)

+
i

2
tr[eF coth(esF)] +

e

2
tr(σF)

}
〈y; 0|x; s〉, (33.A.150)

where x = xμ and y = yμ are position vectors, not operators anymore. This is just a
differential equation. The general solution is

〈y; 0|x; s〉 = C(x, y) exp
{
−i(y − x)

eF
4

coth(esF)(y − x)

+
1
2
tr ln
[
sinh(esF)

eF

]
− i e

2
tr(σF)s

}
(33.A.151)

This can be checked by differentiation and holds for any C(x, y).
To determine C(x, y), we use the additional information that(

−i ∂
∂x
− eA
)
〈y; 0|x; s〉 = 〈y; 0|e−iĤsΠ(0)|x; s〉

= e−esF
eF

2 sinh(esF)
(y − x)〈y; 0|x; s〉, (33.A.152)

and similarly(
i
∂

∂y
− eA
)
〈y; 0|x; s〉 = eesF

eF
2 sinh(esF)

(y − x) 〈y; 0|x; s〉 . (33.A.153)

Plugging in our general solution, we find[
−i ∂
∂x
− eA− e

2
F(x− y)

]
C(x, y) = 0, (33.A.154)

and [
i
∂

∂y
− eA− e

2
F(x− y)

]
C(x, y) = 0. (33.A.155)

The solution is

C(x, y) = C exp
[
ie

∫ y
x

dzμ
(
Aμ(z) +

1
2
Fμν(zν − yν)

)]
. (33.A.156)

This line integral is independent of path since the integrand has zero curl. The constant C
can be fixed by demanding that the result reduce to the free theory as A → 0. The final
result is
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〈y; 0|x; s〉 =
−i

16π2s2
exp
[
ie

∫ y
x

dzμ
(
Aμ(z) +

1
2
Fμν(zν − yν)

)]
× exp
[
−i(y − x)

eF
4

coth(esF)(y − x)− ies
2

tr(σF) +
1
2
tr ln
[
sinh(esF)

eF

]]
,

(33.A.157)

which is manifestly gauge invariant. TakingA→ 0 reproduces Eq. (33.11), which confirms
the normalization.

Equation (33.A.157) is more generally useful than just for the calculation of the Euler–
Heisenberg Lagrangian. The special case when x = y is quoted in Eq. (33.76) and used
for the calculation of the π0 → γγ rate in Section 33.5.1.

33.A.2 Effective Lagrangian

Now that we have the proper-time Hamiltonian, we are a small step away from the Euler–
Heisenberg Lagrangian. We need to calculate

LEH(x) = −1
4
F 2
μν(x) +

i

2

∫ ∞

0

ds

s
e−ism

2
tr
{
〈x|e−iĤs|x〉

}
= −1

4
F 2
μν(x)−

1
32π2

tr
{∫ ∞

0

ds
1
s3

exp
[
−ism2 − ies

2
tr(σF) +

1
2
tr ln
[
sinh(esF)
seF

]]}
,

(33.A.158)

where Tr is the Dirac trace and tr contracts μ and ν as above.
Now, recall from Eq. (30.65) that

tr(σF)2 = −2Tr
(
F2
)
− 2iγ5tr

(
FF̃
)

= 8(F − iγ5G), (33.A.159)

where F̃μν ≡ 1
2ε
μναβFμν and

F ≡ 1
4
F 2
μν =

1
2
( �B2 − �E2), (33.A.160)

G ≡ −1
4
FμνF̃μν = �E · �B. (33.A.161)

Then, since γ5 has eigenvalues ±1, the Dirac eigenvalues of Tr(σF) are

λσF
i = ±

√
8(F ± iG), (33.A.162)

with all four sign combinations possible. So,

Tr
[
ei
es
2 Tr(σF)

]
= 2 cos

[
es
√

2(F + iG)
]

+ 2 cos
[
es
√

2(F − iG)
]

= 4Re cos[esX] , (33.A.163)

where

X ≡
√

1
2
F 2
μν +

i

2
FμνF̃μν =

√
2 (F + iG) =

√
( �B + i �E)2. (33.A.164)
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Next we need
1
2
tr ln
[
sinh(eFs)
esF

]
= ln
√
λ1λ2λ3λ4, (33.A.165)

where λi are the four eigenvalues of sinh(eFs)
esF . These eigenvalues are determined from the

eigenvalues of a constant Fμν , which are (see Problem 33.5)

λF
i = ± i√

2

[√
F + iG ±

√
F − iG

]
, (33.A.166)

with all four possible sign choices. After some simplification the result is

1
2
tr ln
[
sinh(eFs)
esF

]
=

(es)2G
Im cos(esX)

. (33.A.167)

Putting everything together, we find

LEH(x) = −1
4
F 2
μν −

e2

32π2

∫ ∞

0

ds
1
s
e−im

2sRe cos(esX)
Im cos(esX)

FμνF̃μν , (33.A.168)

which is the final answer for the unrenormalized Euler–Heisenberg effective Lagrangian,
in agreement with Eq. (33.71).

Problems

33.1 Complete the calculation of the Euler–Heisenberg Lagrangian using Landau levels
in an arbitrary Fμν . Show that for an electric field B → iE is justified. Also show
that the result for a general electromagnetic field is given by Eq. (33.71).

33.2 Calculate light-by-light scattering using helicity spinors.
33.3 Calculate the contour integral to derive the pair-production rate Eq. (33.94) from

Eq. (33.93). It is helpful to first expand the integration limits to
∫∞
−∞ ds, then deform

the contour to pick up the poles.
33.4 Repeat the analysis in Section 33.6.1 for a fermion. Show that in the non-relativistic

limit, the spin is irrelevant.
33.5 Show that the eigenvalues of Fμν are given by Eq. (33.A.166).
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In Chapter 33, we explored how fields could be integrated out exactly leaving an effective
action. The concrete example we considered was integrating out the electron from QED.
Then we defined the effective action Γ[A] =

∫
d4xLeff by the relation∫

DA exp
(
i

∫
d4xLeff [A]

)
=
∫
DADψ̄Dψ exp

(
i

∫
d4xL[A,ψ, ψ̄]

)
. (34.1)

In the special case where we are not concerned with the dynamics of Aμ we can treat Aμ
as a classical background and drop the

∫
DA on both sides. For example, in Chapter 33

we were able to do the integral over the electron field ψ̄ and ψ exactly if we assumed
that Fμν was a space-time-independent classical background field, leading to the Euler–
Heisenberg effective Lagrangian. The Euler–Heisenberg Lagrangian differs from the exact
Leff [A] in that it does not contain terms with derivatives acting onFμν such as 1

m2
e
(∂αFμν)

2

(since these terms vanish for constant Fμν). For predictions at low energy, terms with extra

derivatives have effects suppressed by factors of E2

m2
e

, and we can ignore them to a first
approximation.

A fantastic feature of the Euler–Heisenberg example was that all the work was done in
calculating Leff [A]. Once Leff was known, it was used to make a number of quantitative
physical predictions with little additional effort: Schwinger pair production, light-by-
light scattering, the chiral anomaly, etc. These predictions were made by using Leff as
a classical Lagrangian generating only tree-level Feynman diagrams. Of course, for the
Euler–Heisenberg case, this was only an approximation since we were just ignoring the
dynamics of Aμ. But imagine how powerful the effective action would be if it were exact.
An action Γ[Aμ, ψ̄, ψ] which when used classically (at tree-level) reproduces all of the
physics of a full quantum theory is called a 1PI effective action (for reasons that will soon
become clear). The only difference between 1PI effective actions and effective actions
like those discussed in Chapter 33 is that those actions had only some subset of the fields
integrated out; for a 1PI effective action, all the fields are integrated out.

One can compute a 1PI effective action by matching, that is by evaluating loops in the
full theory and demanding that the effective action, when used at tree-level, agrees order-
by-order in perturbation theory with the full theory. As we show in Section 34.1.1, terms in
the effective Lagrangian computed in this way are easily seen to correspond to one-particle
irreducible diagrams in the full theory. An alternative approach (Section 34.1.2) is to iden-
tify the effective action as a Legendre transform of the generating functional of connected
diagrams W [J ]. (W [J ] is related to the generating functional Z[J ] from Section 14.3 as
W [J ] = −i lnZ[J ].) This lets us identify the minimum of Γ[φ] as the expectation of φ in
the vacuum: Γ′[〈φ〉] = 0. As we will see, the Legendre transform approach also leads to

733
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an alternative way to compute the effective action by shifting fields (Section 34.1.4): write
S[φb + φ] and integrate out φ leading to Γ[φb]. In this approach, called the background-
field method, φ represents the quantum fluctuations around a classical background φb. If
we assume the background field φb is constant then the 1PI effective action can be written
as Γ[φb] = −V TVeff(φb) with Veff(φb) known as the effective potential.

An example where the details of the effective potential are very important is in the case of
spontaneous symmetry breaking. Consider the case of a single scalar field with Lagrangian

L = −1
2
φ�φ− 1

2
m2φ2 − λ

4!
φ4. (34.2)

As we saw in Chapter 28, if m2 > 0, the system is stable, but if m2 < 0 the system is
unstable and spontaneous symmetry breaking occurs. But what happens if m = 0? To find
out if the system withm = 0 is stable or not, we need to include quantum corrections. More
generally, we would like to know how big the quantum corrections are, since they could
conceivably flip the sign of the mass term. Quantum corrections are efficiently encoded
in the effective potential. In this case, the effective potential is known as the Coleman–
Weinberg potential. Its minimum tells us the true quantum value of φ. This potential has
important implications for the Higgs potential in the Standard Model, as we discuss in
Section 34.2.3.

Another important application of the background-field method is in non-Abelian gauge
theories. If we replace Aaμ → Ãaμ + Aaμ and integrate out Aaμ, we get a 1PI effective

action Γ[Ãaμ]. We can integrate out Aaμ order-by-order in perturbation theory by computing

Feynman diagrams with fixed background fields Ãaμ. An advantage of this approach over
ordinary perturbation theory is that since only the quantum field Aaμ propagates, only it
has to be gauge-fixed. Thus, one can choose a gauge-fixing functional that respects an
exact gauge invariance associated with the background field Ãaμ. In this background-field
gauge, which really is a family of gauges parametrized by a number ξ̃ , the 1PI effective
action is guaranteed to be gauge invariant. This is in contrast to the approach in Chapter 26,
where in covariant Rξ gauges, the gauge-fixing parameter ξ appeared all over the place:
in Green’s functions, in counterterms, etc. In background-field gauge, the renormalization
constants will be ξ̃ independent. This will provide a quick way to produce the QCD β-
function, requiring only 1-loop corrections to the gluon 2-point function be computed, not
any 3-point functions (in the ordinary method, we had to compute some 1-loop 3-point
graphs).

In general, the 1PI effective action is not guaranteed to be gauge invariant, although
physical predictions coming from it must be. Two examples of how this works are dis-
cussed: the effective potential in scalar QED is discussed in Section 34.2.4 and the Γ [Ãaμ]
in non-covariant gauges are discussed in Section 34.3.3.

Here, we leave time ordering and the vacuum implicit, so 〈· · · 〉 ≡ 〈Ω|T{· · · }|Ω〉. Also
〈J |· · · |J〉 ≡ 〈Ω|T{· · · }|Ω〉J refers to Green’s functions evaluated in the presence of
a given classical background configuration J(x) in a Lagrangian with terms such as Jφ
added (as in Chapter 33). We will also commonly refer to the 1PI effective action as simply
the effective action.
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34.1 1PI effective action

In this section we discuss how to compute a 1PI effective action, by matching (Sec-
tion 34.1.1), through a Legendre transform (Section 34.1.2), or through a background-field
calculation (Section 34.1.4).

34.1.1 Matching

Our goal is to compute a 1PI effective action Γ defined so that if used classically (at tree-
level), it reproduces Green’s functions in the full quantum theory. For example, in QED, we
saw in Chapter 18 that the 2-point Green’s function for the electron, including all quantum
corrections, could be written as

G(x, y) = 〈ψ(x)ψ̄(y)〉 =
∫

d4p

(2π)4
e−ip(x−y)

i

/p−m+ Σ(/p)
, (34.3)

where Σ(/p) is the sum of all 1PI contributions to the electron self-energy graph. For this to
come out of a tree-level calculation, we must take the kinetic terms for ψ in the effective
Lagrangian to have the form Lkin

eff = ψ̄[i/∂ −m+ Σ(i/∂)]ψ.
In fact, in QED we already know what a number of the terms should look like:

Γ =
∫
d4x
{
ψ̄[i/∂ −m+ Σ(i/∂)]ψ

− eψ̄Γμ(i/∂)Aμψ −
1
2
Aμ(∂μ∂ν −�gμν)(1 + Π(−�))Aν + · · ·

}
, (34.4)

where Σ(/p) is the sum of all 1PI contributions to the electron self-energy graph, −eΓμ(/p)
is the sum of all 1PI vertex corrections (with on-shell spinors), and Π(p2) is the 1PI contri-
butions to the vacuum polarization function. Each of these was computed at 1-loop in Part
III (see Chapter 29). The · · · represent higher-dimension operators, such as (F 2

μν)
2, which

should generically be present. To compute these terms, one would need the set of 1PI con-
tributions to 4-point and higher-point functions. For example, an additional set of terms
(those with no derivatives acting on Fμν) was computed at 1-loop in the Euler–Heisenberg
Lagrangian. In general, each term in the effective action contains all the 1PI contributions
to the n-point function with the fields in that term. That is why we call Γ the 1PI effective
action. (For the kinetic term, we conventionally define Σ(i/∂) to be all the 1PI graphs except
for the free propagator.)

Taking derivatives of the effective Lagrangian with respect to the fields generates 1PI
Green’s functions. Two derivatives give the inverse of the 1PI 2-point function:

〈ψ(x)ψ̄(y)〉1PI =
{

∂

∂ψ(x)
∂

∂ψ̄(y)
(−i)Γ
[
ψ̄, ψ,A

]}−1

ψ=ψ̄=A=0

. (34.5)

Applying Eq. (34.5) to Eq. (34.4) reproduces Eq. (34.3). This should be reminiscent of how
Green’s functions come from derivatives of the generating functional Z[J ], a connection
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that will be exploited in Section 34.1.2. In the same way, the 1PI contributions to the
3-point function are

〈ψ(x)Aμ(z)ψ̄(y)〉1PI =
∂

∂ψ(x)
∂

∂ψ̄(y)
∂

∂Aμ(z)
iΓ
[
ψ̄, ψ,A

]∣∣∣∣
ψ=ψ̄=A=0

. (34.6)

For 4-point functions we find

〈ψ(x1) ψ̄(x2)ψ(x3) ψ̄(x4)〉1PI =
∂

∂ψ(x1)
∂

∂ψ̄(x2)
∂

∂ψ(x3)
∂

∂ψ̄(x4)
iΓ
[
ψ̄, ψ,A

]∣∣∣∣
ψ=ψ̄=A=0

.

(34.7)
and so on.

To compute complete Green’s functions, we can string together 1PI diagrams. For the
2-point function,

= 1PI + 1PI 1PI + · · · .
(34.8)

The 4-point function gets tree-level contributions from the effective action from its 1PI
vertex as well as connected contributions to lower-point amplitudes:

= 1PI + 1PI1PI + crossings.

(34.9)

The 4-point function also gets a contribution from disconnected diagrams given by the
product of two connected 2-point functions. Although disconnected diagrams can be com-
puted with the effective action, they are not of much interest since they do not contribute
to S-matrix elements. Proceeding in this way, Green’s functions in the full quantum theory
can be constructed from tree-level diagrams using the 1PI effective action.

By the way, you might be wondering, if we can get the results of the full quantum
theory with classical physics, why bother with loops at all? That is, why not just start from
the effective action? The answer is that effective actions are in general highly non-local
and hopelessly unconstrained. We have written Γ =

∫
d4xLeff for notational simplicity,

but not all effective actions can be written this way. For example, we might have found

a contribution to a ψ̄(q1)ψ(q2)ψ(q3)ψ̄(q4) 1PI diagram of the form (q2+q3)
2

(q1+q2)
2 . This could

come from a term in an effective action such as

Γ =
∫
d4x1 d

4x2 d
4x3 d

4x4
(∂2 + ∂3)

2

(∂1 + ∂2)
2 ψ̄(x1)ψ(x2)ψ(x3)ψ̄(x4) , (34.10)

which is very manifestly non-local. If we start with a local classical action and then perform
the loops, things such as locality, Lorentz invariance and causality are easier to check and
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confirm. Since the effective action contains basically the same information as the full S-
matrix, a construction of an effective action from first principles (unitarity, analyticity etc.)
is essentially equivalent to the S-matrix program of the 1950s and 1960s. This approach
may eventually prove predictive, but at this point only effective actions derived from local
classical Lagrangians are known to be consistent.

On the other hand, if one expands the effective action at energies well below some
physical scale, one should be able to write it as a series of local terms. In fact, this is
the approach to most effective field theories, such as the 4-Fermi theory or the Chiral
Lagrangian (although in these cases one leaves some fields as dynamical). In a low-energy
limit, thinking of the effective action as being a series of terms can be useful. Since the
effective action should obey the same symmetries as the classical action, the effective
action should contain all terms consistent with those symmetries. Thus, a quick-and-dirty
approach is to write down an effective action with all possible terms respecting the sym-
metries of the classical action, with coefficients (representing all the 1PI graphs) estimated
by dimensional analysis. We usually assume that anything that can happen from such an
effective action will happen – if something does not happen, there should be a symme-
try reason for it. This approach is particularly useful in strongly coupled theories, such as
low-energy QCD, and explains the success of the Chiral Lagrangian.

34.1.2 Legendre transform

At this point, we have defined a 1PI effective action so that the vertices correspond to the
sum of all 1PI contributions to Green’s functions. Although one can compute these vertices
by simply evaluating the 1PI graphs, one can also compute the effective action through a
Legendre transform. This method is very powerful and gives us new intuition for how to
think about the effective action, for example, showing that Γ′[〈φ〉] = 0. It also lets us
justify the background-field method, which is the subject of most of this chapter.

The key result, which we will now derive, is that Γ[φ] is the Legendre transform of a
functional W [J ] ≡ −i lnZ[J ]:

Γ[φ] = W [Jφ]−
∫
d4xJφ(x)φ(x). (34.11)

In this equation, Jφ is an implicit functional of φ defined as the solution to

∂W [J ]
∂J(x)

∣∣∣∣
J=Jφ

= φ(x). (34.12)

These are the analogs of the Hamiltonian being the Legendre transform of the Lagrangian:

H[π] = L[ẋπ] − ẋππ with ẋπ an implicit function of π defined so that ∂L[ẋ]
∂ẋ

∣∣∣
ẋ=ẋπ

= π.

The conjugate relation comes from varying Eq. (34.11) with respect to φ:

∂Γ[φ]
∂φ(x)

=
∫
d4y

[
∂Jφ(y)
∂φ(x)

∂W [Jφ]
∂Jφ(y)

− ∂Jφ(y)
∂φ(x)

φ(y)
]
− Jφ(x) = −Jφ(x). (34.13)
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This lets us define φJ as an implicit functional of J satisfying

∂Γ[φ]
∂φ

∣∣∣∣
φ=φJ

= −J, (34.14)

which gives the inverse Legendre transform

W [J ] = Γ[φJ ] +
∫
d4xJ(x)φJ(x). (34.15)

Equations (34.14) and (34.15) are the analogs of L[ẋ] = H[π] + πẋẋ with πẋ an implicit

function of ẋ defined so that ∂H[π]
∂π

∣∣∣
π=πẋ

= −ẋ. Varying Eq. (34.15) with respect to J

gives

∂W [J ]
∂J(x)

=
∫
d4y

[
∂φJ(y)
∂J(x)

∂Γ[φJ ]
∂φJ(y)

+ J(y)
∂φJ(y)
∂J(x)

]
+ φJ(x) = φJ(x). (34.16)

and brings us full circle back to Eq. (34.12). We will now take Eq. (34.11) as a new defi-
nition of Γ[φ] and show that it agrees with our previous definition, as the functional whose
vertices are the sums of 1PI graphs.

The first task is to get to know W [J ]. It is defined by

e
i
�
W [J] = Z[J ] =

∫
Dφ exp

{
i

�

[
S[φ] +

∫
d4xJφ

]}
, (34.17)

where the � factors are restored here for later reference. Now, recall from Section 14.3 that
Z[J ] generates Green’s functions via

〈J |φ(x1) · · ·φ(xn)|J〉 = (−i�)n
1

Z[J ]
∂nZ

∂J(x1) · · · ∂J(xn)
. (34.18)

Usually, we set J = 0 after taking the derivatives, turning the left-hand side of this equation
into a vacuum matrix element. With J �= 0, Z[J ] generates Green’s functions for φ in a
background given by a classical current J(x) (see Chapter 33 for an example). A helpful
way to think about W [J ] is that it generates all connected diagrams:

(−i�)n
∂nW [J ]

∂J(x1) · · · ∂J(xn)
= −i�〈J |φ(x1) · · ·φ(xn)|J〉connected . (34.19)

For example, taking n = 2 we find using W [J ] = −i� lnZ[J ] that

(−i�)2
∂2W

∂J1 ∂J2
= (−i�)3

∂

∂J1

(
1
Z

∂Z

∂J2

)
= (−i�)3

1
Z

∂2Z

∂J1∂J2
− (−i�)3

(
1
Z

∂Z

∂J1

)(
1
Z

∂Z

∂J2

)
= −i�
[
〈J |φ(x1)φ(x2)|J〉 − 〈J |φ(x1)|J〉〈J |φ(x2)|J〉

]
, (34.20)

where Ji = J(xi) is the same shorthand used in Section 14.3.2. The first term on the
second line is the full Green’s function, in the presence of the source, including connected
and disconnected pieces. The second term is the disconnected pieces, which are subtracted
off. You can try other examples and prove this interpretation of W [J ] in Problem 34.1.



34.1 1PI effective action 739

Table 34.1 Scaling with � of some representative Feynman diagrams.
Connected tree-level diagrams scale as �−1 and connected loops

as �#loops−1. Disconnected diagrams violate these rules.
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1

�

1

�

1

�

tree loop disconnected tree disconnected loop
�−1 �0 �−2 �−1

For a 1-point function (which is always connected), we find

∂W [J ]
∂J(x)

= −i� 1
Z

∂Z[J ]
∂J(x)

= 〈J |φ(x)|J〉. (34.21)

This gives us a physical interpretation of the Legendre relation in Eq. (34.12): for a given
(classical) field configuration φc(x), the current Jφc(x) is precisely the current in whose
presence the expectation value of φ is φc: 〈Jφc |φ|Jφc〉 = φc. Conversely, since φJ =
∂W [J]
∂J(x) , from Eq. (34.16) we see that φJ can be identified as the expectation value of φ in
the presence of a given current J : φJ = 〈J |φ|J〉. Thus, φJφ = φ and JφJ = J , as one
would expect.

Now we are ready to show that Γ[φ] in Eq. (34.11) is the same effective action whose
vertices contain all the 1PI graphs. Such an effective action, when used at tree-level, should
give the same Green’s functions as the action S[φ] would, including loops. Since tree-level
contributions are classical, we only need to isolate the leading contribution as � → 0. Since
each term in 1

�
S[φ] has a factor of 1

�
, vertices and external states come with factors of 1

�

while propagators come with factors of �. The overall scaling of some sample diagrams is
shown in Table 34.1. We see that connected tree-level diagrams scale as �−1, and each loop
adds a factor of �. Disconnected diagrams can violate this scaling, but do not contribute to
the S-matrix (see Problem 34.1).

Now we can relate the effective action to W [J ]. Since all connected diagrams can either
be computed with W [J ] = −i� lnZ[J ] using S[φ] to all orders in �, or they can be com-
puted with the equivalent of W [J ] constructed using Γ[φ] instead of S[φ] in the � → 0
limit, we must have

W [J ] = lim
�→0

(−i�) ln
[∫

Dφ exp
{
i

�

[
Γ[φ] +

∫
d4xJφ

]}]
. (34.22)

Taking � → 0 isolates exactly the tree-level diagrams computed using Γ[φ]. Taking � → 0
also forces the field configurations contributing to the path integral to be exactly those that
extremize the action. Thus, the φ integral just replaces φ by φJ defined by ∂Γ[φJ ]

∂φJ
= −J

as in Eq. (34.14). This leads to

W [J ] = Γ[φJ ] +
∫
d4xJ(x)φJ(x), (34.23)

which is the (inverse) Legendre transform in Eq. (34.15).
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In conclusion, the functional Γ[φ], defined as the Legendre transform ofW [J ], is the 1PI
effective action Γ[φ] described in Section 34.1.1, whose vertices are sums of 1PI diagrams
in the full quantum theory.

34.1.3 Cross checks

To make the Legendre transform less abstract, let us try some examples. First, we will
calculate the effective action for a free scalar field. We start with the Lagrangian L =
− 1

2φ(� +m2)φ. Then W [J ] is calculated by performing a Gaussian path integral:

W [J ] = −i ln
∫
Dφ exp

{
i

∫
d4x

[
−1

2
φ
(
� +m2

)
φ+ Jφ

]}
=
∫
d4x

1
2
J

1
� +m2

J + const. (34.24)

To Legendre transform, we need Jφ, which is defined to solve

φ(x) =
∂W [J ]
∂J(x)

∣∣∣∣
J=Jφ

=
1

� +m2
Jφ(x). (34.25)

Thus, we find Jφ = (� +m2)φ and

Γ[φ] = W [Jφ]−
∫
d4xJφ(x)φ(x) =

∫
d4x

[
−1

2
φ(� +m2)φ

]
+ const. (34.26)

So, the effective action is identical to the classical action for a free-field theory (up to a
constant), as we should expect.

As another check, let us verify that, in an interacting theory, derivatives of Γ[φ] with
respect to φ do generate full 1PI Green’s functions, as in Section 34.1.1. First, we take one
derivative and reproduce Eq. (34.13):

∂Γ[φ]
∂φ

= −Jφ. (34.27)

This equation implies that the field configuration φ0 that satisfies this equation for Jφ = 0
satisfies the classical equations of motion using the action Γ[φ]. The same field configura-

tion also has φ0 = ∂W [J]
∂J

∣∣∣
J=0

= 〈φ〉 by Eq. (34.21). In other words, the effective action is

minimized by the field configuration given by the expectation value of the quantum field φ
in the true vacuum of the theory.

Taking two derivatives should give the inverse of the 2-point function, as in Eq. (34.5).
To check this, we note that

G(x, y) = 〈φ(x)φ(y)〉 = −i ∂2W

∂J(x) ∂J(y)

∣∣∣∣
J=0

= −i ∂φJ(y)
∂J(x)

∣∣∣∣
J=0

, (34.28)

where ∂W [J]
∂J(x) = φJ(x) from Eq. (34.16) has been used. Thus we find

∂2Γ[φ]
∂φ(x)∂φ(y)

∣∣∣∣
φ=φ0

= − ∂J(y)
∂φ(x)

∣∣∣∣
J=0

= iG(x, y)−1
, (34.29)

where Eq. (34.27) has been used. This agrees with the equivalent of Eq. (34.5) for a scalar
theory, except instead of evaluating φ = 0 we must evaluate φ on its expectation value
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φ0 = 〈φ〉 (in QED, these are the same since ψ, ψ̄ and Aμ have vanishing expectation
values).

34.1.4 Background fields

At this point we have discussed some properties of the functional Γ[φ]:

• It can be used at tree-level to generate Green’s functions of φ.
• Its vertices correspond to the sum of 1PI contributions to Green’s functions with a given

number of external states.
• It is formally given by the Legendre transform of W [J ] = −i lnZ[J ].
• Its minimum is at the value φ0 = 〈φ〉 in the true vacuum of the theory.

We can calculate Γ[φ] by matching – each term is just the 1PI Green’s function for certain
external states, as in Eq. (34.4). We also know how to calculate an approximation to Γ[φ]
by integrating out other fields besides φ, as in Eq. (34.1). What we would like to show next
is how to include fluctuations of φ itself in the computation of Γ[φ].

To begin, suppose we have an action S[φ]. From S[φ] we can compute its 1PI
effective action Γ[φ] through a Legendre transform. Now shift φ → φb + φ for a
non-dynamical, but arbitrary, background-field configuration φb(x). Non-dynamical in
this context means that φb is not integrated over in the path integral. For example, if
S[φ] =

∫
d4x
(
− 1

2φ�φ+ g
3!φ

3
)

we would find

Sb[φb, φ] = S[φ+ φb] =
∫
d4x

(
−1

2
φ�φ− φ�φb −

1
2
φb�φb

+
g

3!
φ3 +

g

2
φ2φb +

g

2
φ2
bφ+

g

3!
φ3
b

)
(34.30)

This new action Sb[φb, φ] leads to a new effective action Γb[φb, φ] which depends on φb.
We can compute Γb[φb, φ] by matching, designing it so that its vertices reproduce the

1PI graphs with external φ fields. In doing this, we need to use the new vertices such
as g

2φ
2φb, which give new interactions. For example, the 2-point function might get

contributions from

Gb(x, y) =

{
−i∂Γb[φb, φ]
∂φ(x) ∂φ(y)

∣∣∣∣
φ=0

}−1

= + + + · · · , (34.31)

where the single lines represent φ fields and the grounded lines represent φb fields. Terms
such as 1

2φb�φb or g
3!φ

3
b with no φ fields can be pulled right out of the path integral,

since φb is not dynamical. Also terms such as g
2φ

2
bφ can be ignored, since they will never

contribute to a 1PI graph. Thus, the computation is equivalent to one performed with

Strunc[φb, φ] ≡ S[φ+ φb]− S′[φb]φ. (34.32)

Reducing the Lagrangian in this way is not necessary, but simplifies some computations.
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What we will show next is that Γb[φb, 0] = Γb[0, φb] = Γ[φb], where Γ[φ] is the effective
action containing the 1PI graphs in S[φ]. To prove this, start by defining

exp(iWb[φb, J ]) =
∫
Dφ exp

{
iS[φb + φ] + i

∫
d4xJφ

}
. (34.33)

The analog of Eq. (34.16) is then ∂Wb[φb,J]
∂J = φJ;b. Now shift φ → φ − φb in the path

integral to give

Wb[φb, J ] = W [J ]−
∫
d4xJφb. (34.34)

Differentiating with respect to J gives ∂Wb[φb,J]
∂J = ∂W [J]

∂J − φb, which implies

φJ;b = φJ − φb. (34.35)

This is quite a natural relation. It says that when we replace φ→ φb+φ in the path integral,
the expectation value φ of a field in a given current shifts by −φb.

Now, Γb[φb, φ] can be computed through the Legendre transform, as in Eq. (34.12) but
with additional dependence on the background field:

Γb[φb, φ] = Wb[φb, Jφ;b]−
∫
d4xJφ;bφ. (34.36)

Then using Eq. (34.34), we find

Γb[φb, φ] = W [Jφ;b]−
∫
d4xJφ;b(φb + φ) . (34.37)

Now we take φ = φJ;b, use Eq. (34.35), and that JφJ = J to get

Γb[φb, φJ;b] = W [J ]−
∫
d4xJφJ = Γ[φJ ] = Γ[φJ;b + φb] . (34.38)

Since this holds for any J , we find Γb[φb, φ] = Γ[φ+ φb] and therefore Γ[φb] = Γb[φb, 0]
as desired. It is also true that Γ[φ] = Γb[0, φ], but setting φb = 0 does not get us
anywhere.

Computing Γ[φ] with the relation Γ[φb] = Γb[φb, 0] means computing graphs with no
φb particles in loops and no external φ fields from S[φ+ φb]. At zeroth order, Γ[φb] =
S[φb]. The leading-order contribution comes from vacuum bubbles (0-point functions) in
a constant background field:

Γb[φb, 0] = S[φb] + + + + +· · · . (34.39)

Calculating the effective action this way is known as the background-field method.
An occasionally useful shorthand for Γ[φb] = Γb[φb, 0] is

eiΓ[φb] =
∫

restr.
Dφ eiS[φ+φb], (34.40)



34.2 Background scalar fields 743

where the subscript “restr.” means that only a restricted set of field configurations can be
integrated over. Without some kind of restriction, we could just shift φ→ φ−φb and Γ[φb]
would be independent of φb. In perturbation theory, this restricted set is the 1PI diagrams.
More generally, whatever field configurations are necessary to produce the effective action
must be included.

34.1.5 Summary

In Chapter 33, we discussed effective actions coming from integrating out a subset of fields,
such as Leff[A] from integrating out ψ̄ and ψ in QED. In this chapter, we have introduced
1PI effective actions Γ[φ] (or Γ

[
A, ψ̄, ψ

]
for QED), in which quantum fluctuations of all

fields have been integrated out. The vertices in this action correspond to 1PI diagrams.
Thus, the 1PI effective action can be used at tree-level to give Green’s functions including
all quantum corrections. In general, the 1PI effective action is highly non-local.

We then saw that the 1PI effective action could be written concisely as a Legendre trans-
form Γ[φ] = W [Jφ] −

∫
d4xφJφ, where Jφ is an implicit functional of φ defined so that

Γ′[φ] = −Jφ and W [J ] = −i lnZ[J ]. This leads to a physical picture of the effective
action: the minimum of Γ[φ] is at φc = 〈φ〉, the expectation value of φ in the true vacuum
of the theory. The value of Γ[φ] away from its minimum corresponds to the action for the
quantum system in the presence of an external current Jφ. Conversely, with a non-zero
current J , the minimum of the action shifts to 〈J |φ|J〉. Thus, the effective action maps
out how the minimum moves when the theory is modified. To repeat: only the true ground
state, with J = 0, describes the solution to the quantum theory with a given classical action
S[φ]. Values of Γ[φ] for φ �= 〈φ〉 correspond to solutions to a different quantum theory,
one where an external current is present.

Finally, we found a convenient relation: that Γ[φb] could be computed by evaluating 1PI
graphs in a theory using S[φ + φb] instead of S[φ]. Since only 1PI graphs contribute, we
can equally well use S[φ+ φb] − S′[φb]φ, which removes all the tadpole terms from the
Lagrangian. It is worth emphasizing that removing the tadpoles is very important – it is the
main reason we had to go through this whole rigmarole with the Legendre transform. Away
from the true minimum of Γ[φ] there is a non-zero current Jφ. For example, suppose the
action S[φ] has a minimum at φ = 0 but the effective action Γ[φ] does not; then J0 �= 0.
In computing the effective action, we really want to integrate out fluctuations about the
true minimum, not around φ = 0. That is where the current comes in: the Jφ term exactly
compensates the tadpole for any value of φ. Thus, we can do the Γ[φ] calculation for a
general Jφ and then simply set J = 0 to find the true minimum.

34.2 Background scalar fields

In this section we give some examples of effective action calculations with background
scalar fields. We begin with a simple φ4 theory, where one can ask the interesting question
of whether spontaneous symmetry breaking occurs for L = − 1

2φ�φ− λ
4!φ

4. The effective
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potential in this case is called the Coleman–Weinberg potential. The Coleman–Weinberg
potential has important implications for the Standard Model: it can tell us whether very
large values of the Higgs field, h � v, can give a lower-energy state than h = v. We
also discuss the contribution of gauge fields to an effective action, through a scalar QED
example. Although the effective potential becomes gauge dependent when gauge fields are
included, physical predictions will be gauge independent. We give an example of such a
physical prediction.

34.2.1 The Coleman–Weinberg potential

Consider a general theory of a single scalar field φ, with Lagrangian

L = −1
2
φ�φ− V [φ], (34.41)

where V [φ] is some potential. For example, V = 1
2m

2φ2 + 1
4!λφ

4. With these signs, the
classical minimum is at φ = 0, which preserves the Z2 symmetry under φ → −φ of
this Lagrangian. A natural question is whether quantum corrections change this. In other
words, is 〈φ〉 = 0 in the full theory? If not, the Z2 symmetry under φ → −φ of the
classical Lagrangian is spontaneously broken. The question is particularly intriguing in
the case when m2 = 0, where an infinitesimal shift that makes m2 < 0 would destabilize
the system. The 1PI effective action is exactly what we need to find out what happens at the
quantum level: since Γ′[〈φ〉] = 0, we just need to see if Γ′[0] = 0.

Following the general method outlined in the previous section, we shift φ→ φb+φ and
drop the tadpoles to get

eiΓ[φb] = ei
∫
d4x (− 1

2φb�φb−V [φb])
∫

restr.
Dφ ei

∫
d4x(− 1

2φ�φ− 1
2φ

2V ′′(φb)− 1
3!φ

3V ′′′(φb)+··· )

(34.42)

For a general potential, we will never be able to evaluate this path integral. However, we
can easily evaluate it at 1-loop order. 1-loop means one φ-loop (since φb does not propa-
gate) with an arbitrary number of external φb fields, as in Eq. (34.39). In the language of
Chapter 33, we want to compute the φ propagator in terms of a background φb and close
the ends of the propagator together to form a loop.

Technically, 1-loop means next-to-leading order in an expansion in �. Since � = 1, this
loop expansion generically makes no sense. However, when there is a small coupling, then
2-loop graphs will be suppressed by some coupling compared to 1-loop graphs with the
same number of external φb legs. Thus, the loop expansion in background-field calculations
is not any less justified than in ordinary perturbation theory. Nevertheless, we will have to
check for self-consistency to see that the quantum corrections are not large.

Since none of the φ3 or higher vertices can contribute at 1-loop, we can truncate to
quadratic order in φ giving

eiΓ[φb] = ei
∫
d4x(− 1

2φb�φb−V [φb])
∫
Dφ exp

[
i

∫
d4 x

(
−1

2
φ�φ− 1

2
φ2V ′′(φb)

)]
,

(34.43)
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where the “restr.” subscript has been dropped since the only diagrams left have one closed
loop and are 1PI. Now we have reduced our problem to a Gaussian integral, which we can
do exactly:

eiΓ[φb] = const.× ei
∫
d4x(− 1

2φb�φb−V [φb]) 1√
det(� + V ′′[φb])

. (34.44)

So the calculation is reduced to evaluating this functional determinant. Using the standard
tricks (see Chapter 33), we have Γ[φ] =

∫
d4x
(
− 1

2φb�φb − V [φb]
)

+ ΔΓ[φb], where

iΔΓ[φb] = ln
1√

det(� + V ′′(φb))
+ const. = −1

2
tr ln(� + V ′′(φb)) + const. (34.45)

Pulling out a φb-independent integral over ln � we can make the logarithm dimensionless.
Then, writing the trace as a d4x integral (see Chapters 30 or 33), we have

iΔΓ[φb] = −1
2

∫
d4x〈x| ln

(
1 +

V ′′[φb]
�

)
|x〉+ const. (34.46)

Unfortunately, unless φb is constant, this integral is very hard to evaluate. So let us
assume φb is constant. Then V ′′(φb) becomes just a function rather than a functional. For
example, if V (φ) = 1

2m
2φ2 + λ

4!φ
4 then V ′′(φb) = m2 + λ

2φ
2
b . This motivates us to think

of V ′′(φb) as an effective mass-squared, and thus we define m2
eff(φb) ≡ V ′′(φb), often

leaving the dependence of meff on φb implicit.
Inserting a complete set of momentum states, we find

iΔΓ[φb] = −1
2

∫
d4x

∫
d4k

(2π)4
ln
(

1− m2
eff

k2

)
+ const. (34.47)

The
∫
d4x just gives V T , which allows us to write ΔΓ [φb] = −V TΔVeff(φb), with

Veff(φb) what we call the effective potential. The d4k integral is very badly divergent.
Since this is just a scalar field theory, nothing goes wrong if we Wick rotate k2 → −k2

E

and impose a hard cutoff kE < Λ. Then we get

ΔΓ[φb] = −V T 2π2

2(2π)4

∫ Λ

0

dkE k
3
E ln
(

1 +
m2

eff

k2
E

)
+ const.

= − V T

128π2

(
2m2

effΛ
2 + 2m4

eff ln
m2

eff

Λ2
+ const.

)
. (34.48)

In the second line, Λ � meff has been used to replace ln(1 + Λ2

m2
eff

) by − ln m2
eff

Λ2 . The full

effective potential defined by Γ[φb] = −V TVeff(φb) with φb assumed constant is then

Veff(φb) = V (φb) + c1 + c2m
2
eff(φb) +

1
64π2

m4
eff ln

m2
eff(φb)
c3

, (34.49)

with c1, c2 and c3 some uninteresting, regulator-dependent but φb-independent, divergent
constants (e.g. c2 = 1

64π2 Λ2 with the hard cutoff used above).
As usual, the various divergences can be removed through renormalization with the

physics content residing in the logarithmic term. Adding counterterms in the usual way
lets us write

V (φ) =
1
2
m2
R (1 + δm)φ2 +

λR
4!

(1 + δλ)φ4 + ΛR(1 + δΛ), (34.50)
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with δm, δΛ and δλ assumed to start at O(λ2
R). Then m2

eff(φ) = V ′′(φ) = m2
R + λR

2 φ
2 +

O(λ2
R) and the effective action is

Veff(φ) = ΛR(1 + δΛ) +
1
2
m2
R(1 + δm)φ2 +

λR
4!

(1 + δλ)φ4

+ c1 + c2(m2
R +

λR
2
φ2) +

(
m2
R + λR

2 φ
2
)2

64π2
ln
m2
R + λR

2 φ
2

c3
. (34.51)

Now we need renormalization conditions to fix δΛ, δm and δλ.
To address the question of whether the Z2 symmetry of the classical Lagrangian is spon-

taneously broken for mR = 0 we need to define mR = 0 carefully. Normally we might
define mR as the mass of φ. Such a definition is problematic in the current case since it
presupposes that φ is a physical degree of freedom with positive m2

R, which is what we
are trying to check. For a classical potential, V (φ) = Λ + m2

2 φ
2 + λ

4!φ
4, the mass can

be determined by m2 = V ′′(0). Thus, an alternative to asking that a mass vanish is that
V ′′

eff(0) = 0. We therefore take m2
R = V ′′

eff(0) = 0 as one renormalization condition. Sim-
ilarly, Λ = 0 classically can be written as V (0) = 0, so we set ΛR = Veff(0) = 0, which
sets a second renormalization condition. For λR, the analogous renormalization condition
V ′′′′

eff (0) = λR does not work, since the effective potential is singular at φ = 0 (when
mR = 0). Instead, we can set V ′′′′

eff (φR) = λR for some fixed (but arbitrary) scale φR.
Usingm2

R = V ′′
eff(0) = ΛR = Veff(0) and V ′′′′

eff (φR) = λR, solving for the counterterms,
and plugging in gives

Veff(φ) =
1
4!
φ4

{
λR +

3λ2
R

32π2

[
ln
(
φ2

φ2
R

)
− 25

6

]}
, (34.52)

which is known as the Coleman–Weinberg potential [Coleman and Weinberg, 1973].
Now let us return to our original question: Is 〈φ〉 = 0 or not? It seems from Eq. (34.52)

that the minimum is now not at zero, but V ′(〈φ〉) = 0 when

λR ln
〈φ〉2
φ2
R

=
11
3
λR −

32
3
π2. (34.53)

Unfortunately, since 32
3 π

2 ≈ 105 this is a large logarithm:
∣∣∣λR ln 〈φ〉2

φ2
R

∣∣∣ � 1. Thus, one

expects higher-order terms in the background-field calculation (such as a φ4λ3
R ln2 φ2

φ2
R

cor-

rection to V (φ)) to be at least as important as the term we calculated. We cannot proceed
further without resumming these large logarithms.

34.2.2 Resummation of large logarithms

In order to resum the large logarithms in the effective potential, it is useful to think about
other equivalent ways that the potential can be calculated. First, it is possible, and almost as
easy, to compute the effective potential by summing the relevant Feynman diagrams. For
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simplicity, let us specialize to the massless theory with L = − 1
2φ�φ− λR

4! φ
4. Since a con-

stant background field carries zero momentum, a 1-loop diagram with n background fields
is the same as a scalar loop with no external fields multiplied by a factor of

(
− i

2λRφ
2
b

)n
.

For example, with 10 external φb, the loop is

=
∫

d4k

(2π)4
1
10

( 1
2λφ

2
b

k2 + iε

)5
, (34.54)

with the 1
10 a symmetry factor (rotation and reflection). This diagram is badly IR divergent;

and diagrams with more external fields are even more IR divergent. However, summing all
the diagrams at the integrand level, we find

iΔΓ = V T

∫
d4k

(2π)4

∞∑
n=1

1
2n

( 1
2λφ

2
b

k2 + iε

)n
= −V T 1

2

∫
d4k

(2π)4
ln
(

1 +
λφ2

b

2(−k2 − iε)

)
,

(34.55)
which is now IR finite. Rotating to Euclidean space and integrating up to kE < Λ as before,

ΔΓ = −V T 2π2

2(2π)4

∫ Λ

0

dkE k
3
E ln
(

1 +
λφ2

b

2k2
E

)
, (34.56)

we reproduce Eq. (34.48) with m2
eff = λ

2φ
2
b . This approach, which is how Coleman and

Weinberg originally calculated their potential, illustrates that φb acts as an IR cutoff on
diagrams such as Eq. (34.54).

Next we observe that the entire logarithmic term in the Coleman–Weinberg potential
could have been extracted from the 4-point interaction alone. If we calculate the 4-point
amplitude for non-zero external momenta, we find

iM4 = + + + +

= −iλR + i
3λ2

R

32π2

(
2
ε

+ ln
μ2

(stu)1/3
+ · · ·
)
− iδλ +O

(
λ3
R

)
, (34.57)

where the · · · are non-logarithmic terms which are subdominant when the logarithm is
large and which we will ignore. In MS, δλ is chosen to remove the 1

ε pole and μ is taken

to be some scale near Q ≡(stu)1/6 to minimize the logarithms. Then,

M4(Q) = −
[
λR +

3λ2
R

32π2
ln
Q2

μ2

]
+O
(
λ3
R

)
, (34.58)
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with M4(μ) = −λR. Comparing to Eq. (34.52), we see that the large logs are
reproduced by

Veff(φ) = −φ
4

4!
M4(φ), (34.59)

with φR replacing μ. This implies that we can resum the large logarithms in Veff(φ)
by resumming the large logs of μ in M4, which we can do by running λ with the
renormalization group.

As discussed in Chapter 23, the renormalization group works by making the scale μ at
which λR is defined arbitrary. Thus, we replace λR → λ(μ) to get

M4(Q) = −λ(μ)− 3λ(μ)2

32π2
ln
Q2

μ2
+O
(
λ3
)
. (34.60)

SinceM4(Q) is independent of μ, we have

β(λ) ≡ μ
d

dμ
λ(μ) =

3
16π2

λ2 +O
(
λ3
)
, (34.61)

which is the 1-loop RGE for λ. We can solve this equation to find a result much like the
1-loop running electric charge (see Chapters 16 and 23):

λ(μ) =
λR

1− 3λR
32π2 ln μ2

μ2
R

= λR +
3λ2

R

32π2
ln
μ2

μ2
R

+O(λ3
R). (34.62)

This implies that the resummed Coleman–Weinberg potential in the leading-log approxi-
mation is

Veff(φ) =
1
4!
φ4λ(φ) =

1
4!
φ4 λR

1− 3λR
32π2 ln φ2

φ2
R

. (34.63)

Expanding out to order λ2
R reproduces the large logarithm of Eq. (34.52).

Note that more generally we would also need to include the wavefunction renormal-
ization factor γ in the running of λ(μ). The Callan–Symanzik equation, Eq. (23.76),
implies (

μ
∂

∂μ
+ β

∂

∂λ
+ 2γ
)
M4 = 0. (34.64)

For L = − 1
2φ�φ − λ

4!φ
4 we find γ = O

(
λ4
)
, and so Eq. (34.64) with Eq. (34.57) gives

Eq. (34.61) up to terms of higher order in λ. At 2-loops and higher in this theory, the
resummed effective potential is given by Veff(φ) = 1

4!φ(μ)4λ(μ) with μ = φ, where the
running of φ must be included as well.

34.2.3 Higgs effective potential

An important application of the Coleman–Weinberg approach is to the effective potential
for the Standard Model Higgs boson. It will let us answer the very important question:
Is the Standard Model vacuum stable? If not, there must be physics beyond the standard
model coming in to make it stable.
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The most important contribution to the Higgs effective potential is from the top quark,
since its Yukawa coupling is close to one. Including just the Higgs and the top quark, the
relevant part of the electroweak Lagrangian from Chapter 29 is

L = |DμH|2 +m2|H|2λ |H|4 + iQ̄/∂Q+ it̄R /∂tR + (YtQ̄H̃tR + h.c.), (34.65)

where H is the Higgs doublet, Q is the lefthanded top/bottom quark doublet, and tR is

the righthanded top quark. Expanding H =
1√
2

(
0

v + h

)
with v = m√

λ
= 247 GeV

generates a canonically normalized physical Higgs scalar h with mass mh =
√

2m. In this
normalization we can read off that Yt =

√
2mtv ≈ 0.93.

You can show in Problem 34.2 that the contribution to the effective potential from a Dirac
fermion with Yukawa coupling Y φψ̄ψ is ΔVeff(φ) = − 1

16π2Y
4φ4 ln φ2

φ2
R

. More generally,
a useful formula for general contributions is

Veff(φ) = V (φ) +
∑
i

(−1)2si
nid

64π2
m4
i,eff(φ) ln

m2
i,eff(φ)
φ2
R

, (34.66)

where (−1)2si is −1 for a fermion and 1 for a boson, nid is the number of degrees of
freedom (e.g. 12 for a colored Dirac spinor and 1 for a neutral scalar) and mi,eff(φ) is the
φ-dependent mass, e.g. mi,eff = Y φ for a fermion or m2

i,eff = V ′′(φ) for the scalar itself.
You can prove this general formula in Problem 34.2.

Using Eq. (34.66) for the top-quark contribution to the effective potential, the effective
mass is mt,eff = 1√

2
Yth, while for the Higgs, m2

h,eff = −m2 + 3λh2. Therefore,

Veff(h) = −m2h2 +
λ

4
h4

+
1

64π2

(
−m2 + 3λh2

)2
ln
−m2 + 3λh2

v2
− 12

64π2

(
1
2
Y 2
t h

2

)2

ln
1
2Y

2
t h

2

v2
. (34.67)

The factor of 12 in the top contribution comes from the 3 colors times 4 components of
a Dirac spinor. We have chosen hR = v since this is the scale where we know the Higgs
potential should be well approximated by its classical form.

Now let us explore some of the physics of this potential. As long as h ∼ v ∼ m the
logarithmic terms have little effect. However, at large values of h, the coefficient of h4 in
the potential can get significant corrections. Taking the h� v limit, we get

Veff(h) =
λ

4
h4 +
(

9
64π2

λ2 − 3
64π2

Y 4
t

)
h4 ln

h2

v2
. (34.68)

For our vacuum to be absolutely stable, this potential should be positive for all h, which

means the coefficient of the logarithm should be positive. Using λ = m2
h

2v2 , Yt =
√

2mtv
and the MS mass for the top quark, mt = 163 GeV, we find absolute stability holds if
mh > 247.7 GeV. This bound assumes the potential can be trusted for all h; however,
for mh = 247.7 GeV, the potential only goes negative at a value well above the Planck
scale where quantum gravity becomes strong. Asking that the potential be positive up to
MPl ≈ 1019 GeV gives a weaker bound, mh > 221 GeV. For h � MPl, we do not have
to worry about quantum gravity; however, we do have to worry about large logarithms.
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Indeed, 1
64π2 ln M2

Pl
v2 = 0.12, which is comparable to λ

4 ≈ 0.10 (for mh ≈ 221 GeV) and
so we cannot trust our bound without resumming the effective potential.

To get a more accurate instability bound, one should also include contributions from
gauge bosons, which are smaller than the top contribution, but not unimportant. Including
the full 2-loop effective potential in the Standard Model and performing resummation at
3-loop order, the absolute stability bound becomes [Degrassi et al., 2012]

mh > 129.4 GeV ± 1.8 GeV. (34.69)

In other words, if mh < 125.8 GeV we are 95% confident that our patch of the universe
will eventually tunnel into a more stable vacuum. To refine this bound, one can ask not
that our vacuum be absolutely stable, but that it be stable only for a Hubble time (≈ 1010
years). This weakens the bound by a few GeV. That the real Higgs boson mass is close to
the bound of instability is an intriguing and unexplained fact.

34.2.4 Scalar QED

As a final example with background scalar fields, consider the effective potential in scalar
QED. In this case we will find that the effective potential is not gauge invariant although
some simple physical predictions coming from it are.

We start with the Lagrangian

L = −1
4
F 2
μν −

1
2ξ

(∂μAμ)
2 +

1
2
|Dμφ|2 −

1
2
m2|φ|2 − λ

4!
|φ|4, (34.70)

with Dμφ = ∂μφ + ieAμφ. For m2 < 0, this is the Abelian Higgs model, studied
in Section 28.3.1. Note that we have chosen normalization conventions so that expanding
φ = φ1 + iφ2 provides canonical normalization for the real fields φ1 and φ2. In this way,
the effective potential which is only a function of φ =

√
φ2

1 + φ2
2 will have the canonical

normalization for a real scalar field.
Now, we want to ask whether mR = 0, meaning V ′′

eff(0) = 0, leads to 〈φ〉 �= 0 in the
quantum theory. We leave most of the details of the calculation in this case to Problem 34.3.
The result of 1-loop graphs involving φ or Aμ is an effective potential

Veff(φ) =
1
4!
φ4

{
λR +

1
8π2

(
5λ2

R

6
+ 9e4R − ξe2RλR

)[
ln
(
φ2

φ2
R

)
− 25

6

]}
. (34.71)

Here we have chosen the same renormalization conditions as in Section 34.2.1: V (0) = 0,
V ′′(0) = 0 and V ′′′′(φR) = λR (how eR is defined is irrelevant at this order).

The first important thing to notice is that the potential in this case is not gauge invariant.
One way to see why this is so is to recall that only 1PI graphs are included in an effective
potential. Thus, wavefunction renormalization graphs such as

(34.72)
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which would be included in an S-matrix calculation are simply discarded [Jackiw, 1974].
Another way to see the origin of the gauge dependence is to recall that through the
Legendre-transform derivation of the effective action, we learned that the effective poten-
tial away from φ = 〈φ〉 is the potential in the presence of a non-zero external current.
However, if this current J(x) is gauge invariant, then the interaction −J(x)φ(x) used to
perform the Legendre transform is not gauge invariant, since φ transforms. Despite the
gauge dependence of the effective potential, we expect physical quantities computed from
Veff should be gauge invariant. We will now see how this can happen.

The vacuum expectation value of φ, given by V ′(〈φ〉) = 0, is where

ln
〈φ〉2
φ2
R

=
11
3
− 48π2λR

5λ2
R + 54e4R − 6e2RλRξ

. (34.73)

The second term on the right looks generically like a large number. However, in the
situation where e4R ≈ λR 
 1 we find simply

ln
〈φ〉2
φ2
R

≈ 11
3
− 8π2λR

9e4R
. (34.74)

In particular, if we choose φR = 〈φ〉, meaning we define λR ≡ V ′′′′(〈φ〉), then λR =
33
8π2 e

4
R. Therefore, our assumption e4R ≈ λR 
 1 is proven self-consistent and there are

no large logarithms. With the choice λR = 33
8π2 e

4
R we find

Veff(φ) =
3e4R
64π2

φ4

(
ln

φ2

〈φ〉2 −
1
2

)
. (34.75)

By the way, in defining λR in terms of 〈φ〉 we are trading a dimensionless parameter
for a dimensionful one. In fact, the term dimensional transmutation, which we have used
to describe running couplings in Chapter 23, originated from the paper of Coleman and
Weinberg where the relation λR = 33

8π2 e
4
R was first derived [Coleman and Weinberg, 1973].

Although we have shown that our calculation is self-consistent, we have yet to make any
physical predictions. To do so, consider the spectrum in the spontaneously broken theory.
When 〈φ〉 �= 0, the U(1) of the classical Lagrangian is broken. As in the Abelian Higgs
model from Section 28.3.1, one of the real components of φ remains in the spectrum, with

mass m2
S = V ′′(〈φ〉) = 3e4R

8π2 〈φ〉2. The other component of φ is eaten by the photon. The
photon’s mass is given by the relation m2

V = e2R〈φ〉2 as in Eq. (28.45). Thus, we find a
prediction

m2
S

m2
V

=
3e2R
8π2

(34.76)

independent of the only dimensionful scale 〈φ〉 (or equivalently, independent of λR).
This scalar to vector mass ratio is a gauge-invariant prediction, despite the gauge depen-

dence of the effective potential. In the regime where predictions can be trusted, the
ξ-dependent part of the potential only had effects at higher order in perturbation theory.
More specifically, since λR = 33

8π2 e
4
R, the ξe2RλR term in Eq. (34.71) could be canceled by

something such as ξe6R appearing at 2-loops. The 2-loop calculation has been done [Kang,
1974]. Indeed, terms such as ξe6R do appear and the appropriate cancellations do happen
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to leave physical quantities gauge invariant. For example, the scalar-to-vector mass ratio

at 2-loops is m2
S

m2
V

= 3e2R
8π2 − 61e4R

768π2 , independent of ξ.
The lesson is that, although the effective potential itself is gauge dependent, physical pre-

dictions made using the 1PI effective action formalism should still be gauge independent.
We will see another example of how this can happen in Section 34.3.3 below.

34.3 Background gauge fields

An important application of effective actions and background fields is to non-Abelian
gauge theories. In this case, we want to integrate out the fluctuations Aaμ for a fixed back-

ground field Ãaμ (we put a tilde on the background field rather than a b subscript as above
to avoid confusion with SU(N) indices). In this case, we will not assume the background
field is constant, so that the vertices in Γ[Abμ] will represent the full 1PI graphs. To be able
to calculate anything, we will have to work to fixed order in the coupling constant g (in
contrast to the Coleman–Weinberg calculation, which assumed constant background fields
and was valid to all orders in coupling constants but to fixed order in �). Effectively, we will
just be doing normal perturbation theory in a new language. As we will see, this approach
makes some calculations simpler, such as the calculation of the QCD β-function.

Substituting Aaμ → Ãaμ +Aaμ in the Yang–Mills field strength leads to

F aμν → ∂μA
a
ν − ∂νAaμ + ∂μÃ

a
ν − ∂νÃaμ + gfabc

(
AbμA

c
ν + ÃbμA

c
ν +AbμÃ

c
ν + ÃbμÃ

c
ν

)
= F̃ aμν + D̃μA

a
ν − D̃νA

a
μ + gfabcAbμA

c
ν , (34.77)

where F̃ aμν = ∂μÃ
a
ν − ∂νÃ

a
μ + gfabcÃbμÃ

c
ν is the field strength for the background field

and

D̃μA
a
ν = ∂μA

a
ν + gfabcÃbμA

c
ν (34.78)

is a derivative that is covariant with respect to the background-field gauge transformations.
Then the Lagrangian

LBF = −1
4

(
F̃ aμν + D̃μA

a
ν − D̃νA

a
μ + gfabcAbμA

c
ν

)2
(34.79)

is invariant under

Ãaμ → Ãaμ +
1
g
∂μα

a − fabcαbÃcμ, Aaμ → Aaμ − fabcαbAcμ. (34.80)

Since LBF is symmetric in Aaμ↔ Ãaμ, it is also invariant under

Aaμ → Aaμ +
1
g
∂μβ

a − fabcβbAcμ, Ãaμ → Ãaμ − fabcβbÃcμ. (34.81)

Unfortunately, we cannot keep both symmetries manifest at the same time. The advantage
of keeping gauge invariance with respect to the background field manifest is that, since Ãμ
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is not dynamical, we do not need its propagator and do not have to gauge-fix. That is, we
can keep background-field gauge invariance manifest throughout the calculation.

Now let us gauge-fix Aμ through the Faddeev–Popov procedure. We can of course go to
the usual one-parameter family of covariant gauges by adding

Lfix = − 1
2ξ
(
∂μA

a
μ

)2 + (∂μc̄a)(∂μca) + gfabc(∂μc̄a)Abμc
c (34.82)

to LBF. This set of gauges is not ideal for background-field calculations, since it breaks all
of the gauge symmetry. Instead, we will choose a different family of gauges corresponding
to the condition D̃μAμ = 0 (instead of ∂μAμ = 0). Such a gauge-fixing breaks gauge
invariance for the propagating Aμ, but keeps manifest the gauge symmetry with respect to
Ãμ. Working out the Faddeev–Popov procedure, as in Section 25.4, the result is what one
would expect, Eq. (34.82) with ∂μ → D̃μ. The Lagrangian is

LBFG = LBF −
1

2 ξ̃
(D̃μA

a
μ)

2 + (D̃μc̄
a)(D̃μc

a) + gfabc(D̃μc̄
a)Abμc

c. (34.83)

Here the ghosts ca, anti-ghosts c̄a and Acμ all transform as adjoints under the gauge sym-

metry with respect to Ãμ and so the background gauge invariance is still exact. This type of
gauge-fixing is called background-field gauge. It is really a family of gauges parametrized
by ξ̃ . Other choices of gauge are possible, as we discuss in Section 34.3.3.

34.3.1 Renormalization

A compelling virtue of the background-field method is that renormalization is drastically
simpler than in regular non-Abelian gauge theories. For example, since the quantum fields
Aμ and c only appear in loops, it is useless to renormalize them: their renormalization fac-
tors would always cancel between vertices and propagators. We do need to renormalize
the background gauge field Ãμ, which we do with Ãμ =

√
Z3Ã

R
μ , and also its self-

interactions. Another way to see why only the background fields need renormalization
is that the divergences from loops of Aμ will appear as divergences in the effective action,
which is a functional of only the background fields. Thus, these divergences can only be
removed by renormalizing the background fields and their interactions.

Renormalization is simplest in background-field gauge where the gauge invariance
associated with the background field is unbroken. Thus, if the regulator respects gauge
invariance, the effective action must be gauge invariant as well, and there are even fewer
counterterms required. For example, at tree-level, Leff [Ã] = − 1

4 (F̃ aμν)
2. At 1-loop, pos-

sible divergences can only be removed by renormalizing fields in the tree-level effective
Lagrangian. Since

(F̃ aμν)
2 = Z̃3

[
(∂μAaν − ∂νAaμ)2 + 4

Z̃A3

Z̃3

gRf
abc(∂μAaν)A

b
μA

c
ν

+ g2
R

Z̃A4

Z̃3

(feabAaμA
b
ν)(f

ecdAcμA
d
ν)
]
, (34.84)



754 Background fields

the only way for gauge invariance to be preserved is if Z̃A3 = Z̃3 and Z̃A4 = Z̃3. This
is in contrast to the ordinary renormalization of non-Abelian gauge theories discussed in

Chapter 26, where we could only show that Z̃A3/Z̃3 =
√
Z̃A4/Z̃3. Indeed, this ratio was

not 1, but equal to 1− 1
ε
g2R

32π2CA(ξ + 3) at 1-loop.

To see why Z̃A3 = Z̃3 and Z̃A4 = Z̃3 in another way, consider that at 1-loop in
dimensional regularization the bare 1-loop effective Lagrangian must have the form

Leff [Ã] = −1
4
(F̃ aμν)

2 +
c

ε
(F̃ aμν)

2 +O(ε0) (34.85)

for some number c. If divergences appeared in any other form, the theory would not be
gauge invariant or not be renormalizable. Therefore, we must be able to remove the diver-
gence by renormalizing F̃ aμν through the renormalization of Ãμ only and there cannot be

any divergence in Z̃A3/Z̃3 or Z̃A4/Z̃3.
So in background-field gauge, δ̃3 ≡ Z̃3 − 1 must equal δ̃A3 = Z̃A3 − 1. Thus, the

formula for the 1-loop β-function from Eq. (26.94) simplifies to

β(gR) =
ε

2
g2
R

∂

∂gR

(
δA3 − 3

2
δ3

)
=
ε

2
g2
R

∂

∂gR

(
δ̃A3 − 3

2
δ̃3

)
=
ε

2
g2
R

∂

∂gR

(
−1

2
δ̃3

)
.

(34.86)

We can therefore extract the β-function from the gluon 2-point function alone – we
will not have to compute any 3-point loops. Moreover, since the result should be the
same β-function as we computed in Chapter 26, δ̃3 cannot be ξ̃ dependent. Recall from
Section 26.5.3 that δ3 = 1

ε (
g2

16π2 )(13
3 − ξ)CA and δA3 = 1

ε (
g2

16π2 )(17
6 − 3

2ξ)CA. In

background-field gauge, we therefore expect δ̃3 = 1
ε (

g2

16π2 )(22
3 )CA. In particular, δ̃3 must

itself be independent of the parameter ξ̃ of the background-field gauges. We will now
verify this explicitly.

34.3.2 Background-field Feynman graphs

One approach to performing background-field calculations is using path integrals and func-
tional determinants. This method was discussed in Section 34.2.1. To see how it works
for background-gauge fields, see [Peskin and Schroeder, 1995, Section 16.6]. For the β-
function calculation, it is perhaps more enlightening to see how the relevant 1-loop graphs
differ from what we computed in Chapter 26. Thus, we proceed following [Abbott, 1982],
deriving the Feynman rules and computing the loops explicitly.

The Feynman rules are derived from Eq. (34.83). The quantum-field propagator to zeroth
order in the background field is just the ordinary Rξ gauge propagator with ξ̃ replacing ξ:

p

ν; b μ; a = i
−gμν + (1− ξ̃ )p

μpν

p2

p2 + iε
δab. (34.87)

The vertices involving quantum fields are all identical to those in non-Abelian gauge
theories (see Section 26.1). The new vertices all have background fields. The important
ones for the β-function include the ÃAA vertex:
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μ; a

ν; b

ρ; c

k

p
q

= gfabc
[
gμν
(
k − p+

1
ξ̃
q

)ρ
+gνρ
(
p− q − 1

ξ̃
k

)μ
+gρμ(q−k)ν

]
.

(34.88)
Except for the ξ̃ term, this is identical to the gauge theory vertex in Eq. (26.9). The c̄cÃ
vertex is

q pcc c̄a

μ; b

= −gfabc(pμ + qμ) . (34.89)

This also differs from the gauge theory vertex, which would be just −gfabcpμ. The other
new vertices are

c d

μ; a ν; b

= −ig2fadefecbgμν , (34.90)

c d

μ; a ν; b

= −ig2
(
facefedb + fadefecb

)
gμν (34.91)

and
ν; bμ; a

ρ; c
σ; d

= −ig2×
[
fabefcde(gμρgνσ − gμσgνρ − 1

ξ̃
gμνgρσ)

+facef bde(gμνgρσ − gμσgνρ − 1
ξ̃
gμρgνσ)

+fadef bce(gμνgρσ − gμρgνσ)
]
.

(34.92)

The only other new vertex has one background gluon, but this is identical to the 4-gluon
vertex in ordinary non-Abelian gauge theories:

ν; bμ; a

ρ; c σ; d

= −ig2×
[
fabefcde(gμρgνσ − gμσgνρ)

+facef bde(gμνgρσ − gμσgνρ)
+fadef bce(gμνgρσ − gμρgνσ)

] =

ν; bμ; a

ρ; c σ; d
(34.93)
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Vertices with one regular gauge field and two or three background gauge fields cannot
contribute to 1PI diagrams, so they can be ignored.

To extract the QCD β-function, we will only need the divergent parts of the 1-loop
graphs. The ghost loop is gauge invariant by itself, and very similar to the graph in
Eq. (26.48) with a slightly different numerator:

iMabμν
A =

p p
k

k − p

= g2CAδ
abμ4−d

∫
ddk

(2π)d
i(2k − p)μ

(p− k)2 + iε

i(2k − p)ν

k2 + iε
.

(34.94)
This graph is quadratically divergent. As in the QED vacuum polarization graph, there is
also a diagram with the 4-point vertex:

iMabμν
B =

p p

k

= 2g2CAδ
abμ4−d

∫
ddk

(2π)d
gμν

k2 + iε
. (34.95)

The sum of these two graphs has only logarithmic UV divergences. Evaluating the graphs
and expanding in d = 4− ε we find

Mabμν
A +Mabμν

B =
g2

16π2

CA
3

(
2
ε
− ln

p2

μ̃2

)
δab
(
gμνp2 − pμpν

)
+O
(
ε0
)
. (34.96)

Note that this is different from the equivalent ghost loop in full QCD.
The vacuum polarization graphs with virtual gluons are

iMabμν
C =

p p

k

k − p

=
g2

2
CAδ

abμ4−d
∫

ddk

(2π)d
−i

k2 + iε

−i
(k − p)2 + iε

Nμν
C

(34.97)
with

Nμν
C =
[
gμα
(
p+ k +

p− k
ξ̃

)ρ
+ gαρ(p− 2k)μ + gρμ

(
k − 2p− k

ξ̃

)α]
×
[
gρσ + (1− ξ̃ )

(p− k)ρ(p− k)σ
(p− k)2

] [
gαβ + (1− ξ̃ )

kαkβ

k2

]
×
[
−gνβ
(
p+ k +

p− k
ξ̃

)σ
+ gβσ(2k − p)ν + gσν

(
2p− k +

k

ξ̃

)β]
(34.98)

and

iMabμν
D =

p p

k

=
g2

2
δabCAμ

4−d
∫

d4k

(2π)4
1

k2 + iε
Nμν
D , (34.99)
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where

Nμν
D =
[(

1− 1
ξ̃

)
gμρgνσ +

(
1− 1

ξ̃

)
gμνgρσ − 2gμσgνρ

] [
gρν − (1− ξ̃ )

kρkν

k2

]
.

(34.100)

After a straightforward calculation, we find that the quadratic divergence in these two loops
also exactly cancels. The divergent part of these graphs gives

Mabμν
C +Mabμν

D =
g2

16π2

10CA
3

(
2
ε
− ln

p2

μ̃2

)
δab
(
gμνp2 − pμpν

)
+O
(
ε0
)
. (34.101)

The ξ̃ dependence from the modified interactions has exactly canceled the ξ̃ dependence
from the propagators and the coefficient of the 1

ε pole is gauge invariant. We leave the
O
(
ε0
)

parts of these graphs to Problem 34.8.
We have found that the UV divergences coming from both the ghost and gauge boson

contributions are separately gauge invariant. Adding the result of all four graphs, we find
that the bare effective Lagrangian at 1-loop,

LBFG
eff = −1

4
(F̃ aμν)

2

[
1 +

g2

16π2

22CA
3

(
2
ε
− ln

p2

μ̃2

)
+O
(
ε0
)]
, (34.102)

is canceled with a 1-loop MS counterterm δ̃3 = g2

16π2CA
22
3ε . Using Eq. (34.86), this leads

to the 1-loop QCD β-function:

β(g) =
ε

2
g2 ∂

∂g

(
− 1

2
δ̃3
)

= − g2

16π2

11
3
CA, (34.103)

in agreement with what we found in Chapter 26 (the CA term in Eq. (26.93)).

34.3.3 Gauge dependence

The calculation of the QCD β-function using the background-field method is clearly easier
than the calculation we did in Chapter 26 since it involves fewer diagrams. In the traditional
way of doing the calculation, we needed not just the vacuum polarization graphs, but also
corrections to a vertex. For example, in Chapter 26, we used δ2, δ3 and δ1 (from the quark
and gluon field strength renormalizations and the q̄ /Aq vertex), or we could have used δ3 and
δA3 , with δA3 coming from gluon 3-point function (or we could have used the ghost vertex
or the 4-point QCD vertex). Since 3- and 4-point Feynman diagrams are more complicated
than 2-point diagrams, not only does the background-field method require fewer graphs,
but the most complicated graphs are avoided.

While the background-field advantage may not seem so important for the 1-loop β-
function, consider the 2-loop or 3-loop β-function. There, reducing the number and
complexity of the graphs required is enormously beneficial. Or consider a more com-
plicated theory, such as quantum gravity. In perturbative quantum gravity, there are an
enormous number of interactions and graphs that need to be considered even for the
1-loop running of GN . The background-field method, which keeps a copy of general coor-
dinate invariance manifest, makes the study of the renormalization in this theory much
simpler [’t Hooft and Veltman, 1974].
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The background-field method is important for conceptual reasons as well. One important
application is to renormalizability. To show non-Abelian gauge theories are renormaliz-
able, we need to show that all the infinities can be reabsorbed into coupling and field
strength renormalizations of terms present in the original action. The reason the proof is
difficult is because gauge invariance has to be broken to compute the propagator, and there-
fore non-gauge-invariant divergences cannot be forbidden on gauge-symmetry grounds
alone (one needs tools such as BRST invariance for the proof). For example, a term such
as
(
fabcAbμA

c
ν

)2
is not forbidden. With the background-field method, since background-

field gauge invariance is manifest at every step, and since the regulator respects gauge
invariance, it is impossible for a non-gauge-invariant term to be generated in the effective
action.

Background-field gauge is a natural gauge to pick since it preserves background gauge
invariance. However, physical predictions should come out the same even if we choose
a less natural gauge for which background-field gauge invariance is explicitly broken. It
is instructive to see how this actually happens. Recall that background-field gauge corre-
sponds to using a gauge-fixing term of the form LBFG

fix = − 1
2 ξ̃

(D̃μA
a
μ)

2 + ghosts, as in
Eq. (34.83). From this, we found the 1-loop effective Lagrangian in Eq. (34.102). What
would happen if we used Lfix = (∂μAaμ)

2 + ghosts as in Eq. (34.82) instead? This gauge-

fixing is independent of Ãμ and explicitly breaks background gauge invariance. In this
case, the divergent part of the 1-loop effective action is [Grisaru et al., 1975]

Leff = −1
4
(F̃ aμν)

2 +
g2

16π2
CA

2
ε

[
10
3

(F̃ aμν)
2 − 4gfabcF̃ aμνÃ

b
μÃ

c
ν

]
. (34.104)

At first glance, this seems troubling, since the coupling must now be renormalized differ-
ently in the 4-point vertex and 3-point vertices to cancel the 1

ε poles. To see in what way this
effective Lagrangian is equivalent to Eq. (34.102), recall that the effective action is only
to be used for classical computations. In particular, for S-matrix elements, the background
field states are on-shell. Then, substituting the identity

− gfabcF̃ aμνÃbμÃcν =(F̃ aμν)
2 + 2ÃaνDμF̃

a
μν − 2∂μ(Ãaν F̃

a
μν) (34.105)

into Eq. (34.104), dropping the total derivative term and the term that vanishes on-shell
(using the equations of motion D̃μF

a
μν = 0), Eq. (34.102) is reproduced. This conclusion

reinforces what we found in Section 34.2.4: although the effective action itself is gauge
dependent and unphysical, physical predictions coming from the effective action can still
be gauge invariant.

Problems

34.1 W [J ] as the generating functional of connected diagrams.
(a) Take the third variational derivative of W [J ] to show that it gives only the

connected contributions to the 3-point function.
(b) Show that W [J ] does generate all the connected diagrams for any n-point

function.
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34.2 General scalar effective potential.
(a) Calculate the contribution of a fermion to the scalar potential starting with the

Lagrangian L = − 1
2φ�φ− V (φ) + iψ̄ /∂ψ − Y φψ̄ψ.

(b) Show that the general 1-loop effective potential is given by

Veff(φ) = V (φ) +
∑
i

(−1)2si
nid

64π2
m4
i (φ) ln

m2
i (φ)
φ2
R

, (34.106)

as in Eq. (34.66), where si is the spin and nid is the real number of degrees of
freedom on-shell for a given particle.

34.3 Calculate the Coleman–Weinberg potential in scalar QED and verify Eq. (34.71).
34.4 Calculate the W - and Z-boson contributions to the Higgs effective potential.
34.5 Improve the Higgs stability bound in the Standard Model.

(a) Show that including the SU(2)×U(1) gauge fields, you get

Veff(h) = −m2h2 +
λ

4
h4

+
(

9
64π2

λ2 − 3
64π2

Y 4
t +

3
8
g4 +

3
16

(g2 + g′2)
)
h4 ln

h2

v2
. (34.107)

(b) Plug in the Standard Model values for g and g′ and see how the lower bound on
the Higgs mass changes.

(c) Calculate βλ = μ d
dμλ and γ2 = μ d

dμh including top and Higgs correction in the
Standard Model.

(d) Solve the RGEs from the previous part to get an RG-improved effective
potential.

(e) What is the lower bound on the Higgs mass for absolute stability using this
RG-improved potential?

34.6 Calculate the coefficient of the A4 vertex in the 1PI effective action using the
background-field method.

34.7 Calculate the fermion contributions to the QCD β-function using the background-
field method.

34.8 Background-field effective action.
(a) Calculate the finite parts of the vacuum polarization loops from Section 34.3.2

in background-field gauge. You should find that the finite parts are in fact ξ̃

dependent. For example, the contribution at order ξ̃
2

comes only from the graph
in Eq. (34.97)

(b) Why is it OK for the finite parts to have ξ̃ dependence, but not the divergent
parts?



35 Heavy-quark physics

There are only six quarks. Three of them (up, down and strange) are light with masses
mq � ΛQCD. Hadrons containing these quarks only, for example the pions and kaons, can
be studied by expanding around the mq = 0 limit. Expanding around mq = 0 leads to the
Chiral Lagrangian (Chapter 28), which is a low-energy effective theory, perturbative when
E

4πFπ
and mq

4πFπ
are small, with E a typical energy scale and 4πFπ ∼ 1200MeV. The

heaviest quark, the top, does not hadronize. Since mt � ΛQCD, one can make accurate
predictions about top physics using perturbation theory in αs (which is small at scales
μ ∼ mt). The remaining two quarks, the charm and bottom, with massesmc ∼ 1275 MeV
and mb ∼ 4180 MeV, are unstable but do form metastable hadrons (such as the D and B
mesons). Is there any way to study charm and bottom physics in perturbation theory? Yes,
by expanding in ΛQCD

mb
or ΛQCD

mc
.

The heavy-quark limit presents a picture of heavy mesons qualitatively similar to the
hydrogen atom. Consider, for example, a B meson that comprises a heavy b quark and a
light valence antiquark (ū or d̄). This is similar to how a hydrogen atom comprises a heavy
proton and a light electron. Just as the proton is a static source of Coulomb potential in the
Schrödinger equation, the b quark acts as a static source for gluons. Unfortunately, because
QCD is strongly coupled at low energies, the Coulomb potential is a bad approximation
to full QCD. Thus, we cannot just solve the Schrödinger equation to study the spectrum
of the bū system. Nevertheless, as we will see, the b quark acts as a classical source to
leading order in 1

mb
, which gives us a handle to perform some useful calculations. A useful

qualitative picture is to think of a B meson as being like a proton but with the electron
cloud replaced by non-perturbative brown muck: |B〉 = |b; muck〉.1

For example, the spin states of a heavy–light meson, such as a bū bound state, are 1
2 ⊗

1
2 = 0 ⊕ 1, with the spin-0 state called the B meson and the spin-1 triplet called the B∗.
The mass difference between these is analogous to the energy splitting between the S and
P states of the hydrogen atom: it is 0 at leading order. In the hydrogen atom, the splitting
between S and P is due to magnetic moment interactions. If the proton is at rest (as it is in
themp →∞ limit), it only produces an electric field. Therefore, the S/P splitting must be
suppressed by at least a factor of E/mp with E ∼ 10 eV the binding energy. To leading
order in ΛQCD/mb the dynamics of a B meson is similarly independent of spin, which
is why B and B∗ are degenerate to leading order. This is known as heavy-quark spin
symmetry. In more detail, the splitting should come from the μ�S · �B interaction between
the spin �S and the magnetic field �B, where μ is the magnetic moment of the heavy quark

1 We owe the delightful phase “brown muck” to Nathan Isgur.
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which scales as m−1
b by dimensional analysis. Thus we can write

mB = mb + Λ̄− λ1

2mb
− c1

λ2

2mb
+O
(
m−2
b

)
, (35.1)

mB∗ = mb + Λ̄− λ1

2mb
− c3

λ2

2mb
+O
(
m−2
b

)
, (35.2)

where Λ̄ ∼ ΛQCD, λ1 ∼ Λ2
QCD, λ2 ∼ Λ2

QCD, and c1 and c3 are coefficients related to the
spin, which we explain in Section 35.4. So we expect (using ΛQCD ≈ 300 MeV) that

mB∗ −mB =
λ2

2mb
(c1 − c3) ∼

Λ2
QCD

mb
∼ 20 MeV. (35.3)

Experimentally, m∗
B = 5325 MeV and mB = 5279 MeV and their difference 44 MeV is

consistent with this expectation.
In addition to the spin symmetry, bottom and charm quark physics also simplifies due

to a flavor symmetry. This is the analog of the fact that the nucleus of a hydrogen atom or
a deuteron look the same to the electron. In the rest frame of the heavy quark, the hadron
can be thought of as just the quark, sitting there. If mQ = ∞ the quark cannot move.
In fact, in this limit, the quark just acts as a source for gluons. This leads to a heavy-
quark flavor symmetry: the dynamics is independent of the flavor of the quark, to leading
order in m−1

Q . This symmetry provides very strong constraints on the physics of heavy
hadrons. For example, the D mesons should satisfy the same parametrization as in Eqs.
(35.1) and (35.2) with mb → mc:

mD = mc + Λ̄− λ1

2mc
− c1

λ2

mc
+O
(
m−2
c

)
, (35.4)

mD∗ = mc + Λ̄− λ1

2mc
− c3

λ2

mc
+O
(
m−2
c

)
. (35.5)

This implies that

m2
B∗ −m2

B = m2
D∗ −m2

D +O
(

Λ3
QCD

mQ

)
. (35.6)

So now we get a prediction for the masses-squared that is accurate up to m−1
Q corrections,

a stronger result than that in Eq. (35.3). In particular, using mB , mB∗ and mD = 1869
MeV, this equation predicts that mD∗ = 1993 MeV. The experimental value is m∗

D =
2010MeV, so the heavy-quark limit prediction is off by only 0.8%.

The momentum of a hadron containing a heavy quark can be written as

pμ = mQv
μ + kμ, (35.7)

where vμ is the hadron’s 4-velocity, normalized to v2 = 1, and kμ 
 mQ. The key to
understanding the heavy-quark flavor symmetry is that the brown muck has energies of
order ΛQCD. Therefore, fluctuations in the muck do not have enough energy to reorient
the heavy-quark velocity vμ – the muck can only change kμ. In this chapter, we discuss an
effective theory for heavy quarks in which vμ is promoted to a conserved quantum number
of the heavy-quark field. This leads to Heavy-Quark Effective Theory (HQET), a beautiful
and predictive framework for studying bottom and charmed hadrons. Before introducing
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HQET, we will describe some more consequences of the heavy flavor and spin symmetries,
which can be understood without even introducing the effective Lagrangian. Our presen-
tation here will be somewhat brief, emphasizing important results and conceptual points.
More details can be found in the classic review [Georgi, 1990] and the texts [Manohar and
Wise, 2000] and [Grozin, 2004].

35.1 Heavy-meson decays

In this section we discuss how heavy-quark flavor and spin symmetries constrain decay
rates of heavy mesons. We use the notation mQ to refer the mass of a heavy quark (b or c)
and mq to refer to the mass of a light quark (u, d or s).

35.1.1 Leptonic decays

First, consider the weak decays of the pseudoscalar mesons B− = (ūb) → τ−ν̄ and
D+ = (ūc) → μ+ν. As with pions, we define decay constants fB and fD through the
matrix element of an axial current (see Chapter 28):

〈0|ūγμγ5b
∣∣B−〉 = −ifBpμ, 〈0|c̄γμγ5u|D〉 = −ifDpμ. (35.8)

These definitions correspond to the conventional relativistic normalization, in which

〈B(p′)|B(p)〉 = 2p0(2π)3 δ3(�p− �p′) = 〈D(p′)|D(p)〉 , (35.9)

and lead to the decay rate

Γ
(
B− → τ−ν̄

)
=
G2
F |Vub|

2

8π
f2
Bm

2
τmB

(
1− m2

τ

m2
B

)2
, (35.10)

and similarly for other leptonic modes. Since mτ = 1776MeV � mμ = 105MeV, the
branching ratio to tauons dominates. The formula for leptonic D+ decays is identical, with
mB replaced by mD. For D+ decays, the branching ratio to μ+ν dominates due to the
limited phase space for D+ → τ+ν.

The relativistic normalization is not useful to extract scaling behavior asmQ →∞ since
p0 →∞. Instead, we should use non-relativistic normalization, with

nr〈B(p′)|B(p)〉 nr =(2π)3 δ3(�p− �p′) = nr〈D(p′)|D(p)〉 nr. (35.11)

You can think of the B or D decay as the b or c quark within the meson annihilating with
the brown muck, which has the quantum numbers of the light quark. The important point is
that, in the heavy-quark limit, the muck has no knowledge of the heavy-quark mass. Thus,
the matrix elements should be mass independent in the heavy-quark limit. Therefore we
should have

− iavμ = 〈0|ūγμγ5b
∣∣B−〉

nr
=

1√
2mB

〈0|ūγμγ5b
∣∣B−〉 = −ifBmBv

μ

√
2mB

, (35.12)
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where a is some constant related to the brown muck, and vμ is the velocity. Similarly,

− iavμ = 〈0|c̄γμγ5u|D〉 nr =
1√

2mD
〈0|c̄γμγ5u|D〉 =

−ifDmDv
μ

√
2mD

(35.13)

with the same a. Therefore, we predict that

fB
fD

=
√
mD

mB
(35.14)

up to ΛQCD
mQ

∼ 10% corrections.

Is Eq. (35.14) actually satisfied to 10%? We can use the measured rate Γ(D+ → μ+ν)
= 2.42 × 10−13 MeV to predict the B → τν rate. Using the masses mB− = 5279 MeV
and mD+ = 1869 MeV, Eq. (35.14) predicts Γ(B− → τ−ν̄) = 1.55 × 10−14 MeV. The
current best-measured value is (6.7±1.7)×10−14 MeV. Thus Eq. (35.14) is off by a factor
of 3! So there is not fantastic agreement with current data, to say the least. Another way to
phrase this is that the values of the decay constants extracted from the decay rates are fD =
202MeV and fB = 253MeV. Their ratio is 1.25, compared to

√
mD
mB

= 0.595, so again

the heavy-quark-limit prediction is off by a large factor. This indicates that there must be an
unusually large power correction; that is, the ΛQCD

mD
term must have a coefficient of order 10

or so. Intriguingly, lattice calculations give fD = 197MeV and fB = 193MeV [Particle
Data Group (Beringer et al.), 2012], whose ratio is only a factor of 2 off from the heavy-
quark limit prediction. The lattice also seems to confirm that there is a large 1

mQ
correction

to the decay constants.

35.1.2 Exclusive semi-leptonic decays

We can develop a more general view of how the brown muck wavefunctions factorize out of
the heavy-quark wavefunctions. Let us continue using the decomposition pμ = mQv

μ+kμ

with kμ ∼ ΛQCD. Then the brown muck in the B or D meson (recall |B〉 = |b; muck〉),
with its fluctuations of order ΛQCD, cannot affect the velocity vμ or the spin sQ of the
heavy quark. Thus, a general heavy-meson state, for example for a B, can be written as

|B〉 = |BvsQsq〉 = |b; vsb〉| muck; vsq〉, (35.15)

where sb is the b quark spin, and sq is the spin of the light quark. Note that the light-quark
spin is a good quantum number because the B and heavy-quark spins are good quantum
numbers. Although the muck cannot change vμ, the muck wavefunction can depend on vμ.

This factorization has immediate and important implications, such as the leptonic decay
rates of B+ and D− discussed above. More generally, to measure properties of heavy
mesons, we look at their current matrix elements, as we did above for weak decays. We
are generally interested in couplings to the W bosons, through JμL = QγμPLq, with PL =
1
2 (1− γ5), or to photons, which interact through JμV = QγμQ. We are interested in these
quark currents, since the interaction strength of the W -boson and photon to these currents
is related to the interaction strength of the equivalent leptonic currents by electroweak
symmetry. By writing hadronic matrix elements in terms of currents we can factorize off
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the calculable electroweak part of the decay and effectively exploit the above factorization.
For example, an interaction of a B meson with a photon would be determined by

〈B′|JμV |B〉 = 〈b; v′s′b|b̄γμb|b; vsb〉 〈muck; v′s′q|muck; s′qv〉. (35.16)

In particular, in the limit that B and B′ are both at rest with the same spins, then the vector
current, which is conserved, just picks up the number of b quarks and we get

〈B′|JμV|B〉 = 2mBv
μ, (35.17)

with the 2mB coming from the relativistic normalization.
When the velocities are not the same, we need to be able to evaluate

〈 muck; v′s′q| muck; sqv〉. We can always write

〈 muck; v′s′q| muck; sqv〉 = ξsqs′q (v, v
′) . (35.18)

First of all, there are only two possible spins for the pseudoscalar meson matrix elements,
so sq, s′q = ± 1

2 , and the amplitudes must be the same for both by parity. More importantly,
by Lorentz invariance, ξ can only depend on the combination w = v · v. Quite generally,
since the muck is independent of the spin, we have

〈B|b̄Γc|D〉 = 〈b; v′s′b|b̄Γc|c; vsc〉ξ(w), (35.19)

where Γ can be any tensor structure. The function ξ(w) is known as an Isgur–Wise func-
tion and is a universal non-perturbative object. Since the Isgur–Wise function just depends
on the muck wavefunctions, it is the same if we swap out one heavy quark for another and
if we change the current. In particular, using the non-relativistic normalization, Eq. (35.11),
and the vector current matrix element (35.17) we find the boundary condition ξ(1) = 1.

As an application, consider the extraction of the CKM element Vcb from data. There are
a number of ways of measuring Vcb but one of the cleanest is from exclusive decays, such
as B → D∗lν. The rate for such decays can be measured as a function of the velocities v
and v′ or the B and D∗ mesons. Working out all the phase space factors, the result is

Γ
(
B̄ → D∗eν̄

)
=
G2
F |Vcb|

2
m2
B

48π3

×
√
w2 − 1(w + 1)2 r3(1− r)2

[
1 +

4w
w + 1

1− 2wr + r2

(1− r)2

]
FD∗(w)2 ,

(35.20)

with r = mD∗
mB

and FD∗(w) a form factor. The prediction at leading order in the heavy-
quark limit is that FD∗(w), and the analogous form factor FD(w) for B̄ → Deν̄, should be
a universal Isgur–Wise function FD(w) = FD∗(w) = ξ(w). Since ξ(1) = 1 in the heavy-
quark limit, all one has to do to extract Vcb is to measure the decay rate at zero recoil, that
is, where w = v · v′ = 1. An example of the extrapolation to w = 1 from data is shown in
Figure 35.1.

In reality, FD(1) �= FD∗(1) �= 1, due to both perturbative and non-perturbative cor-
rections. Since ξ(1) = 1 exactly in the heavy-quark limit, the perturbative corrections can
only come from differences between αs(mb) and αs(mc). We give an example of how such
corrections can be computed using heavy-quark effective theory in the next section. Up to
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order α2
s , these give FD∗(1) ≈ 0.96 [Manohar and Wise, 2000]. The non-perturbative cor-

rections could, a priori, give a correction of order ΛQCD
mQ

≈ 0.21. However, as it turns out,

the leading power correction to FD∗ actually starts at order m−2
Q , due to a general result

known as Luke’s theorem. Since
Λ2

QCD

m2
Q
≈ 0.04, we then expect that FD∗(1) � 0.92 or so.

Estimates from the lattice give FD∗(1) ≈ 0.9 [Bailey et al., 2010], which is reasonably
close to the value predicted in the heavy-quark limit. The resulting value of |Vcb| extracted
from exclusive semi-leptonic B → D decays combined with other measurements is

|Vcb| =(40.9± 1.1)× 10−3. (35.21)

35.2 Heavy-quark effective theory

We have seen a number of leading-order predictions from the heavy-quark limit. To make
systematic improvements on these predictions, it is helpful to have an effective field theory
where the heavy-quark symmetries are exact.

To derive this effective theory, we begin with the decomposition as in Eq. (35.7):

pμ = mQv
μ + kμ. (35.22)

Here vμ is the 4-velocity with v2 = 1 and the components of kμ are assumed to be much
smaller thanmQ. This decomposition is not unique, since we can shift kμ → kμ+Δkμ by
a small amount and vμ → vμ−Δkμ/mQ. However, to leading order in m−1

Q , vμ is unique
and this decomposition is well defined. In a hadron, the light quarks and gluons can have
momenta kμ ∼ ΛQCD, but not much larger, so interactions can only change v by ΛQCD

mQ
.

Thus, to order m−1
Q , vμ is a good quantum number of the heavy quark. Thus, we want to

have an effective theory where quarks carry this quantum number, and the conservation of
heavy-quark velocity is apparent at the level of the Lagrangian.

Recall from Section 5.2 that to take the non-relativistic limit of a scalar field the-
ory, we rescale the fields by φ → 1√

2m
e−imtφ nr. The e−imt factor is a plane wave

solution for a particle at rest. For moving particles, we generalize this to the replacement
φ→ 1√

2mQ
e−imQv·xχv . This change of variables induces
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L = |Dμφ|2 −m2
Q|φ|2 → χ�viv

μDμχv +
1

2mQ
|Dμχv|2. (35.23)

The 1
2mQ

term is subleading as mQ → ∞ and can be dropped. Thus, the Heavy-Scalar
Effective Theory Lagrangian at leading power is simply

L HSET = χ�viv
μDμχv. (35.24)

To see how to generalize to the spinor case, let us take the heavy-scalar limit a dif-
ferent way. Just as e−imQv·x is the plane wave solution for a particle, eimQv·x is the
plane wave solution for an antiparticle. In the heavy-scalar limit, pair production is sup-
pressed and we should be able to integrate the antiparticle out. To do this, we write
φ = 1√

2mQ
e−imQv·x(χv + χ̃v), where

χv = eimQv·x
1√
2mQ

(iv ·D +mQ)φ, (35.25)

χ̃v = eimQv·x
1√
2mQ

(−iv ·D +mQ)φ. (35.26)

Then,

L = |Dμφ|2 −m2
Q|φ|2 = χ�viv ·Dχv − χ̃v(iv ·D + 2mQ)χ̃v +O

(
1
mQ

)
. (35.27)

Thus, in deriving Eq. (35.24) we are removing the antiparticle field from the Lagrangian.
For the spinor case, note that when pμ = mQv

μ exactly, the Dirac equation for a heavy
quark, /pψ = mQψ, implies

(1− /v)ψ = 0. (35.28)

Thus, we decompose the spinor field as

ψ (x) = ψv(x) + ψ̃v (x), (35.29)

where

ψv(x) =
1 + /v

2
ψ(x), ψ̃v(x) =

1− /v

2
ψ(x). (35.30)

In the heavy-quark limit ψ̃v(x) ≈ 0 since Eq. (35.28) holds. Thus, heavy-quark effective
theory is defined by integrating the components ψ̃v of ψ out of the theory. This can be done
systematically in powers of m−1

Q .

Setting ψ̃ν = 0 gives the HQET Lagrangian at leading power. It amounts to replacing

ψ(x)→ e−imQv·x
1 + /v

2
Qv(x) (35.31)

in analogy with φ → e−imQv·xχv in the scalar case. Inserting this replacement into the
QCD Lagrangian gives

ψ̄
(
i /D −mQ

)
ψ → Qv

1 + /v

2
(
i /D +mQ/v −mQ

)1 + /v

2
Qv = Qv

1 + /v

2
i /D

1 + /v

2
Qv.

(35.32)
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We can then anticommute the Dirac matrices to get

ψ̄
(
i /D −mQ

)
ψ → iQvv ·D

1 + /v

2
Qv, (35.33)

which is independent of mQ as expected. Including the gluon and light quarks, the full
leading-order HQET Lagrangian is then

L HQET = −1
4
(
F aμν
)2 + q̄
(
i /D −mq

)
q+
∑
v

iQvv
μDμ

1 + /v

2
Qv+O

(
1
mQ

)
, (35.34)

where q are light quarks and F aμν is the gluon field strength. The HQET Lagrangian at
subleading power is discussed in Section 35.4.

Note that the field Qv has a label v, which is the velocity of the heavy quark. This
velocity is an exactly conserved quantum number in the effective theory, although it is
only approximately conserved in full QCD. The sum over velocities can be thought of as
a division of the momentum space for the heavy quark into blocks of size ΛQCD. Using
pμ = mQv

μ+kμ, every heavy quark then lives in one of the blocks whose center ismQv
μ.

It is not necessary to indicate precisely how division into blocks is done or to worry about
the block boundaries. In fact, the sum over v in L HQET is just formal. In practice, one fixes
the velocity v based on the observable, such as the cross section for Bv → Dv′ lν at a
given v and v′, which is measured. Then only two values of v are relevant and we can
avoid giving a precise definition to what the sum actually means.

From the HQET Lagrangian, we can read off that the propagator for the heavy quark is

k

=
i

v · k + iε

1 + /v

2
. (35.35)

This is just the heavy-quark limit of the propagator in QCD:

i
/p+mQ

p2 −m2
Q + iε

= i
mQ(1 + /v) + /k

2mQ(v · k) + p2 + iε
∼ i

k · v + iε

1 + /v

2
, (35.36)

where k 
 mQ has been used in the last step. The HQET vertex is

j i

μ; a

= igvμT aij
1 + /v

2
. (35.37)

The vμ factor can be understood as following from the 1+/v
2 factors in the propagators,

since

1 + /v

2
γμ

1 + /v

2
= vμ

1 + /v

2
. (35.38)

Finally, the Feynman rules for gluon self-interactions and gluon interactions with light
quarks are the same as in full QCD.
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35.3 Loops in HQET

Now let us turn to an application of HQET: calculating radiative corrections to leading-

order heavy-quark prediction, fBfD =
√

mD
mB

, or equivalently, for the relative decay rates,

Γ(B → τν)/Γ(D → μν). We would like in include loop corrections involving virtual
gluons in these rates.

The first step is to match to the effective theory. The B meson states in the full theory
have momentum pμ and relativistic normalization, as in Eq. (35.9):

〈B(p′)|B(p)〉 = 2p0(2π)3δ3(�k − �k′). (35.39)

In HQET, states have velocities vμ and residual momenta kμ, with non-relativistic
normalization, as in Eq. (35.11):

nr〈B(v′, k′)|B(v, k)〉 nr = δvv′(2π)3δ3(�p− �p′). (35.40)

The relevant current in the full theory is Jμ = b̄Γμu for some tensor Γμ (in the electroweak
theory, Γμ = 1

2 (1− γ5)γμ, but the heavy-quark system does not care what Γμ is). At
leading order, this current matches directly onto the equivalent current constructed out of
HQET fields:

OμΓ = Qv(x)Γ
μq(x), (35.41)

withQv the heavy-quark field for the b, and q representing the light-quark field. The matrix
element relevant for the leptonic decay is then

〈Ω|QvΓμq|B(v)〉 = −iavμ (35.42)

for some constant a determined by the brown muck. This is the same as Eq. (35.12), but
written with HQET fields. vμ is the only vector that can appear in this equation. Note
that we have taken the residual momentum kμ = 0 in B(v, k), which corresponds to
defining vμ through the momentum of the B hadron as pμ = mBv

μ exactly. The formula
fB
fD

=
√

mD
mB

then follows, as in Section 35.1.1.

Now that we have an effective theory which reproduces fB
fD

=
√

mD
mB

at leading order,

we can consider perturbative corrections to this prediction. The dominant corrections in
the limit where mb � mc � ΛQCD are large logarithms of the form (αs lnmbmc )

n. These
corrections can be resummed in HQET through the renormalization group evolution of
Oμ. In particular, for B decays, this operator should be evaluated at mB , while for the D
decays it should be evaluated at mD. Note that the equivalent current in full QCD does not
run, because it is conserved. So one needs HQET to calculate this radiative effect through
the renormalization group.
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35.3.1 Renormalization of HQET

To resum large logarithms through the running of Oμ we follow the same approach used
to resum large logarithms in the 4-Fermi theory in Section 31.3 (see also Chapter 23). The
first step is to renormalize the HQET Lagrangian.

The renormalized fields are related to the bare fields as usual:

Aμ =
1√
Z3

A0
μ, q =

1√
Z2

q0, gs =
Z2

√
Z3

Z1
μ
d−4
2 g0, Qv =

1√
Zh

Q0
v. (35.43)

In general, the light-quark field strength renormalization Z2, which is the same as in QCD,
could be different from the field strength renormalization Zh for the heavy quark. Inter-
preting the original Lagrangian as comprising bare fields, the renormalized Lagrangian is
then (ignoring the light-quark masses)

L = −1
4
Z3F

2
μν + Z2q̄

(
i/∂ +

Z1

Z2
μ

4−d
2 gs /A

a
T a
)
q

+ ZhQvv
μ

(
i∂μ +

Z1

Zh
μ

4−d
2 gsA

a
μT

a

)
Qv. (35.44)

To order αs, Z2 is the same as in pure QCD, since the light-quark–gluon graphs are the
same.

It turns out that Z3 is also the same as in pure QCD. The only possible difference could
come from vacuum polarization diagrams involving heavy quarks; however, these vanish.
The technical reason is that the heavy-quark propagators give i

v·k+iε
i

v·(p−k)+iε , with k the

loop momentum. This has only two poles in k0 (in contrast to the vacuum polarization
graph in full QCD, which would have four), both of which are below the real k0 axis.
Thus, the integral over k0 can be closed in the upper half plane and the loop integral is
zero. A more physical explanation is that in the heavy-quark limit, heavy particles and
antiparticles are completely different species: one is a fundamental and the other an anti-
fundamental of SU(3)QCD. Thus, the fieldQv that annihilates a heavy quark does not create
the corresponding antiquark – this is why there is only a single pole in i

v·k+iε instead of the
usual two. The simplest but most boring explanation is that virtualQQpairs are suppressed
and in fact do not contribute at all in the mQ →∞ limit.

The remaining quantity to be computed in the HQET Lagrangian is Zh, which comes
from the heavy-quark self-energy graph. Expanding Zh = 1 + δh, the contribution of the
counterterm will be

= iδh(v · k)
1 + /v

2
. (35.45)

Thus, we expect the loop graph to have a 1
ε (v · p) divergence.
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Using the HQET Feynman rules, the loop is

iM =
p p− k

k

p

= −CF g2
sμ

4−d
∫

ddk

(2π)d
1

k2v · (p− k)
1 + /v

2
. (35.46)

This graph is IR divergent, as was the electron self-energy graph we computed in Chap-
ter 18. Since we only want the UV divergence, to extract the anomalous dimension, we
will simply use the same trick we have used in many places (e.g. Section 26.4) to extract
the pole from a scaleless integral in dimensional regularization (cf. Eq. (B.49)). Since the
graph has mass dimension 1, the UV divergence can only be 1

εv · p
1+/v
2 , as expected from

the form of the counterterm, and all we need is the coefficient of this term.
Taking the derivative with respect to v · p and then setting p = 0 (since the divergence is

now p independent) gives

dM
d(v · p) = −iCF g2

sμ
4−d
∫

ddk

(2π)d
1

k2(v · k)2
1 + /v

2
. (35.47)

The denominators in this graph (and in HQET graphs in general) are not of the form
(k +X)2 and therefore it will not help to combine them using Feynman parameters.
Instead, we use Schwinger parameters through the identity

1
AB2

= 8
∫ ∞

0

ds
s

(A+ 2sB)3
, (35.48)

with A = k2 and B = v · k, so that

dM
d(v · p) = −1 + /v

2
8iCF g2

sμ
4−d
∫ ∞

0

ds

∫
ddk

(2π)d
s

( k2 + 2sv · k)3
. (35.49)

Now shift k → k − sv, use v2 = 1 and rescale k → k
s , giving

dM
d(v · p) = −1 + /v

2
8iCF g2

sμ
4−d
∫

ddk

(2π)d

∫ ∞

0

ds
s

(k2 − s2)3

=
1 + /v

2
2iCF g2

sμ
4−d
∫

ddk

(2π)d
1
k4
. (35.50)

This is the ordinary scaleless, UV- and IR-divergent dimensionally regularized integral we
have seen many times before. We can extract the UV divergence using Eq. (B.49). Writing
d = 4− ε we find

M = −CF
g2
s

4π2

1
ε UV

(v · p) 1 + /v

2
+ · · · . (35.51)

For this divergence to be canceled by the counterterm contribution from Zh, we must take

Zh = 1 +
1
ε
CF

αs
π
. (35.52)

Note that the heavy-quark renormalization is different from the light-quark renormaliza-
tion, which was Z2 = 1− 1

εCF
α
2π in Feynman gauge.
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35.3.2 Running of OμΓ

Now that we have the complete 1-loop renormalization factors for the HQET Lagrangian,
we can turn to the renormalization of the heavy–light current, which we wrote as
OμΓ = QvΓμq. This is a composite operator and must be renormalized separately from

its constituent fields. The bare operator OμΓ, bare = Q
0
vΓ

μq0 is related to the renormalized
operator by OμΓ, bare = ZOΓ, so that

OμΓ =
1
ZO
OμΓ, bare =

1
ZO

Q
0
vΓ

μq0 =

√
ZhZq

ZO
QvΓ

μq. (35.53)

To find ZO, we can evaluate the correlation function 〈Q|OμΓ|q〉 at 0-momentum (any
momentum would do, since we are interested in the UV divergence).

Writing ZO = 1 + δO, the counterterms give(
1
2
δ2 +

1
2
δh − δO

)
iΓμ =
(
CF

α

4π
1
ε
− δO
)

Γμ. (35.54)

The 1-loop graph is

iM =
kk

k

= CF (igs)2μ4−d
∫

ddk

(2π)d
iγν

i/k

k2
Γμ

i

v · k iv
ρ−igρν

k2

= −iCF g2
sμ

4−d
∫

ddk

(2π)d
/v/k

k4v · kΓμ. (35.55)

We can simplify this by inserting a Schwinger parameter, through Eq. (35.48), as for the
self-energy graph. The result is the exact same integral as (35.50):

iM = iCF g
2
sμ

4−d
∫

ddk

(2π)d

∫ ∞

0

ds
s

(k2 − s2)3
Γμ = CF

g2
s

8π2

1
ε
Γμ + finite. (35.56)

The total divergent contribution is therefore(
CF

αs
4π

1
ε

+ CF
αs
2π

1
ε
− δO
)

Γμ , (35.57)

and therefore

ZO = 1 + CF
3αs
4π

1
ε
. (35.58)

The RGE comes from μ independence of the bare operator O0. That is,

0 = μ
d

dμ

(
O0
)

= μ
d

dμ
(ZOO) (35.59)

so that

γO = − μ

ZO
d

dμ
ZO = − 1

ZO
∂ZO
∂αs

β(αs) . (35.60)
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Plugging in ZO and β(α) from Eq. (26.96), we then find

γO = CF
3
4π

1
ε

(
−εαs −

α2
s

2π
β0 +O(α3

s)
)

= −CF
3αs
4π

+ · · · O(α2
s). (35.61)

This is the anomalous dimension for the heavy–light quark operator in HQET at 1-loop.
We are interested in the evolution of the Wilson coefficient C for this operator. We

matched C = 1 at tree-level. Using d
dμ (CO) = 0, the Wilson coefficient evolves with

−γO. Then, the RGE is solved with

C(μ) = C(μ0) exp

[
−
∫ α(μ)

α(μ0)

γO(α)
β(α)

dα

]

= C(μ0) exp
[ 3

4CF
1
2β0

ln
α(μ)
α(μ0)

]

= C(μ0)
(
α(μ)
α(μ0)

)3
2CF β

−1
0

. (35.62)

For the fB/fD comparison, we are interested in the renormalization group effects
between mM and mD. Including four flavors, β0 = 11

3 CA −
4
3TFnf = 25

3 and so, with
μ0 = mb, μ = mc, αs(mb) = 0.22 and αs(mc) = 0.35 we get

fB
√
mB

fD
√
mD

=
[
αs(mb)
αs(mc)

]− 6
25

= 1.12. (35.63)

So there is a 12% correction from this calculation. This does not explain the factor∼200%
by which the ratio is off in the real world. This large correction could be explained by power
corrections proportional to ΛQCD

mD
, which happens to have a numerically large coefficient.

This is unfortunate. On the other hand, it is not the effective theory’s fault that the charm
quark is so light!

35.4 Power corrections

Much of the predictive power of heavy-quark effective theory comes from the way the
expansion of corrections in inverse powers of the heavy-quark mass is organized. At
each order in m−1

Q there will only be a finite number of operators that can contribute.
These operators have matrix elements that although unknown are universal, such as the
〈 muck; v′s′q

∣∣ muck; s′qv
〉

matrix elements involved in the leading-order predictions. In
some cases m−1

Q corrections vanish and therefore we can make predictions accurate to
the small percentage level.

To derive the subleading HQET Lagrangian we have to integrate out the small compo-
nent of the heavy-quark field (as opposed to just setting it to zero as we did in Section 35.2).
To begin, we project out the large and small components of the heavy-quark field (cf. Eq.
(35.31)):

ψ (x) = e−imQv·x
[
1 + /v

2
Qv(x) +

1− /v

2
Q̃v(x)
]
, (35.64)
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where 1+/v
2 Qv = Qv and 1−/v

2 Q̃v = Q̃v . We then find

L = ψ̄(i /D−mQ)ψ = iQvv·DQv+Q̃v(−iv·D−2mQ)Q̃v+iQv /DQ̃v+iQ̃v /DQv, (35.65)

with the 1±/v
2 projectors left implicit. It is helpful to simplify this using

Dμ
⊥ ≡ Dμ − vμ(v ·D) . (35.66)

Note that if vμ = (1,�0) then Dμ
⊥ = (0, �D) is just the spatial derivatives. Hence,

Qv /DQ̃v = Qv
1 + /v

2
[
/D⊥ + /v(v ·D)

] 1− /v

2
Q̃v = Qv /D⊥Q̃v, (35.67)

so we can write

L = ψ̄(i /D−mQ)ψ = iQvv ·DQv +Q̃v(−iv ·D− 2mQ)Q̃v + iQv /D⊥Q̃v + iQ̃v /D⊥Qv.
(35.68)

The field Qv can be thought of as describing fluctuations in components of the heavy-
quark momentum that leave its velocity fixed. These are massless excitations. The field Q̃v
apparently has mass 2mQ. It describes processes in which heavy-quark–heavy-antiquark
pairs are created.

Since Q̃v is heavy, it can be integrated out of the Lagrangian. The easiest way to integrate
out a field at tree-level is to set it equal to its equations of motion. These are

(iv ·D + 2mQ)Q̃v = i /D⊥Qv, (35.69)

so that

L = iQvv ·DQv + Qvi /D⊥
1

2mQ + iv ·Di
/D⊥Qv (35.70)

= iQvv ·DQv +
1

2mQ

∞∑
n=0

Qvi /D⊥

(
− iv ·D

2mQ

)n
i /D⊥Qv.

The first new term, of order m−1
Q , can be simplified by using the relation (see Eq. 10.106)

Qv /D
2
⊥Qv = Q

[
D2

⊥ +
gs
2
σμνFμν

]
Qv, (35.71)

so that, including the gluon field strength and light-quark fields,

L HQET = −1
4
(F aμν)

2 + q̄(i /D −mq)q + iQvv ·DQv

− Qv
D2

⊥
2mQ

Qv −
gs

4mQ
QvσμνQvF

μν +
( 1
m2
Q

)
. (35.72)

The Qv
D2

⊥
2mQ

Qv term is a covariant version of the non-relativistic kinetic energy �p2

2m of the
heavy-quark field. Because of the D⊥, it contains only spatial components perpendicular
to v. The gsQvσμνQvF

μν term is the chromomagnetic-moment interaction.
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One can use the subleading HQET Lagrangian to prove a number of powerful results
about hadronic matrix elements. One example is Luke’s theorem, mentioned in Sec-
tion 35.1.2, that the power corrections to certain form factors at zero recoil do not receive
m−1
Q corrections. A discussion of this theorem and its proof can be found in [Manohar

and Wise, 2000]. Here we discuss only a simpler application: the parametrization of power
corrections to meson masses.

35.4.1 Hadron masses

With the subleading-power HQET Lagrangian we can now parametrize the m−1
Q correc-

tions to hadron masses. To calculate masses we can take the expectation value of the HQET
Hamiltonian. Let us write

H = H−1 +H0 +H1 + · · · (35.73)

with Hi ∼ m−i
Q . In the mQ → ∞ limit, the Hamiltonian is just the heavy-quark rest

mass, thus H−1 = mQ. The leading-order HQET Lagrangian, Eq. (35.34), leads to a
Hamiltonian (cf. Eq. (12.63))

H0 = E QCD
0 + q̄(iγi∂i +mq)q + Qvi�v · �DQv, (35.74)

where (using Eq. (8.26)) E QCD
0 = 1

2( �E
2 + �B2) + · · · is the energy density of the gluons,

whose precise form we do not need. The m−1
Q HQET Lagrangian has no time derivatives,

so the m−1
Q Hamiltonian is just the negative of the m−1

Q Lagrangian:

H1 = Qv
D2

⊥
2mQ

Qv +
gs

4mQ
QvσμνQvF

μν . (35.75)

Note that all of the quark-mass dependence is explicit in the mQ factors; thus, the matrix
elements of these operators are heavy-quark-flavor independent.

For example, consider meson states |H �J 〉 in the same flavor multiplet, where �J is the

spin. As in Eq. (35.15), we write |H �J 〉 = |�SQ〉 |muck; �Sq〉 where |�SQ〉 refers to the heavy-

quark state with a given spin �S and | muck; �Sq〉 refers to the gluons and light quarks, with
�Sq the light-quark spin. We can evaluate the masses in the heavy-quark rest frame, where
v = (1,�0). Then,

〈H �J |H0|H �J 〉 = Λ̄, (35.76)

where Λ̄ ∼ ΛQCD is a non-perturbative matrix element coming from the light quarks and
gluons. The prediction for the masses up to order m0

Q is then that the B and B∗ masses are
degenerate, as are the D and D∗ masses. The splitting comes at order m−1

Q .

The m−1
Q corrections contain a kinetic energy term, which is spin independent:

1
2mb

〈H �J |QvD
2
⊥Qv|H �J 〉 = −λ1

1
2mQ

. (35.77)

Here, λ1 ∼ Λ2
QCD is some new non-perturbative parameter. We expect this matrix element

to be negative (so λ1 > 0) since the kinetic energy p2

2mQ
should be positive.
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Matrix elements of the other m−1
Q term, QvσμνQvF

μν , depend on spin. We have

2
mQ

〈H �J |
gs
8
QvσμνQvF

μν |H �J 〉 =
1
mQ

〈�SQ|QvσμνQv|�SQ〉〈muck; �Sq|
gs
4
Fμν |muck; �Sq〉

=
λ2

mQ
2�SQ · �Sq, (35.78)

where λ2 ∼ Λ2
QCD is some new flavor- and spin-independent non-perturbative parameter.

That the muck matrix element is proportional to the light-quark spin follows from the
Wigner–Eckhart theorem: �Aq is the only vector available. Now, 2�SQ · �Sq = �J2− �S2

Q− �Sq,

so that 2�SQ · �Sq = − 3
2 for the spin-0 mesons and 2�SQ · �Sq = 1

2 for the spin-1 mesons.
Putting these results together, we get

mB = mb + Λ̄− λ1

2mb
− 3λ2

4mb
, (35.79)

mB∗ = mb + Λ̄− λ1

2mb
+

λ2

2mb
. (35.80)

An important result from these equations is that the difference between the squares
of meson masses in the same multiplet begins at order m−1

Q and is flavor indepen-
dent: m2

B∗ −m2
B = m2

D∗ −m2
D +O
(
m−1
c

)
. This led to the accurate prediction for mD∗

mentioned in the introduction to this chapter.
Although two new non-perturbative quantities, λ1 and λ2, have appeared at sublead-

ing power, only two quantities have appeared. These same quantities contribute to other
masses, form factors and inclusive decay rates. Thus, one can measure λ1 and λ2 and use
those values, along with the computable corrections perturbative in αs(mQ), to make many
quantitive predictions in HQET.

Problems

35.1 Reparametrization invariance.
(a) Show that the HQET Lagrangian including the leading m−1

Q corrections, Eq.
(35.72), is invariant under

vμ → vμ +
1
mQ

kμ, Qν → eik·x
(

1 +
/k

2mQ

)
Qv, (35.81)

with v·k = 0 and k 
 mQ. This transformation is known as reparametrization
invariance. It corresponds to the arbitrariness in the choice of vμ.

(b) Use reparametrization invariance to show that the Qv
D2

2mQ
Qv term in the HQET

Lagrangian cannot be renormalized separately from the Qvv ·DQv term.
(c) Confirm through a direct 1-loop calculation that these two terms are indeed

renormalized in the same way.
35.2 Calculate the anomalous dimension of the HQET operator g

4mQ
QvσμνQvF

μν at
1-loop.



36 Jets and effective field theory

Almost every event of interest at high-energy colliders contains collimated collections of
particles known as jets. An example event with jets is shown in Figure 36.1. The intuitive
picture of how jets form is the semi-classical parton shower discussed in Section 32.3: a
hard parton (quark or gluon) is produced at short distance. As the parton moves out from
the collision point it radiates gluons; gluons in the radiation field then split into other gluons
and quark–antiquark pairs. When the collection has spread out over length scales of order
Λ−1

QCD, the quarks and gluons hadronize into color-neutral objects. These hadrons then
decay into stable or metastable particles (mostly pions), which the experiments attempt to
measure. Since the radiation is dominantly in the direction of the original hard parton, it
can be added together to form a jet 4-momentum pμJ =

∑
i∈jet p

μ
i , which approximates

the 4-momentum of the hard parton originally produced. For example, if the two jets are
produced from the decay of a W boson (W → q̄q at parton level), the dijet invariant mass
should be close to the W -boson mass (pJ1 + pJ2)

2 ≈ m2
W . Thus, jets provide a window

into short-distance physics. Jets are useful both in Standard Model studies and in searches
for physics beyond the Standard Model.

The distribution of jets is described quite accurately by perturbative QCD. For exam-
ple, the gg → gg cross section (computed in Chapter 27), when convolved with PDFs
(discussed in Chapter 32), gives a contribution to the distribution of dijet events at hadron
colliders. When all parton channels are included, the theoretical calculations are in excel-
lent agreement with data over a wide range of energies and production angles. The
theoretical tools necessary for computing the distribution of jets in perturbative QCD have
been explained in Chapters 25, 26, 27 and 32.

�Fig. 36.1 Event display for a dijet event at the LHC as observed by the ATLAS experiment.
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Comparison of thrust data from four experiments at LEP to the calculation in perturbative
QCD at up to next-to-next-to-leading order in αs. The fixed-order calculation has good
agreement for 1 − T � 0.15, but fails to describe the peak region even qualitatively.

�Fig. 36.2

On the other hand, some properties of jets, such as their mass, are not described well
at any fixed order in αs. For example, Figure 36.2 shows the distribution of thrust at LEP
compared to the perturbative calculation at order αs, α2

s and α3
s. Thrust, which is defined

and discussed in Section 36.1, is one way to characterize how dijet-like an event is. Events
that produce values of thrust near 1 (the left side of the figure) appear to have two very
collimated jets. In fact, near T = 1, one can show 1 − T ≈ 1

Q2

(
m2
J1

+m2
J2

)
, where

mJ1 and mJ2 are the masses of the two jets and Q the center-of-mass energy. Clearly,
the thrust distribution near T ∼ 1 is not described well in perturbation theory. In fact, the
cross section computed in perturbative QCD blows up as T → 1 at any finite order in αs.
One goal of this chapter is to understand the origin of these (unphysical) singularities. To
reproduce the experimental fact that the distribution goes to zero as T → 1 requires the
resummation of contributions to all orders in αs. This resummation will generate distribu-
tions that turn over, qualitatively reproducing the Sudakov peak (the turnover in the data in
Figure 36.2), and quantitatively improving the agreement between theory and experiment
(cf. Figure 36.3).

The singular terms in observables, such as the thrust distribution, are qualitatively similar
to the large logarithms we have resummed with the renormalization group in previous chap-
ters (see Chapters 16, 23, 26, 31 and 35). In previous applications of the renormalization
group, the singular terms were of the form (α lnx)n with one additional logarithm at each
subsequent order in α. With jets, there are often two logarithms. For example, in the cumu-
lant thrust distribution, R(T ) = 1

σtot

∫ 1
T

dσ
dT ′ dT

′ ≈ 1−CF αsπ ln2(1−T ) + · · · , we can see
the double logs explicitly. In Section 32.3, we saw how such Sudakov double logarithms



778 Jets and effective field theory

could be resummed semi-classically with Sudakov factors. Here we will be more system-
atic about the resummation by developing an effective field theory, called Soft-Collinear
Effective Theory. This theory will let us resum the double logarithms systematically using
the renormalization group.

36.1 Event shapes

Many applications of jet physics require exclusive jet definitions which isolate the radi-
ation going into jets from the rest of the event. On the other hand, certain properties of
events with jets in them can be studied efficiently through inclusive observables called
event shapes. Event shapes are, by definition, global observables (meaning that all final-
state particles contribute) with no free parameters. They have predominantly been useful
at e+e− colliders.1

The most widely studied event shape is called thrust. It is defined as

T ≡ max
�n

∑
j |�pj · �n|∑
j |�pj |

, (36.1)

where the sum is over the 3-momenta �pj of all particles in the event, and the maximum is
taken over all 3-vectors �n with |�n| = 1. The direction that maximizes thrust is called the
thrust axis. Data for thrust from various experiments at LEP are shown in Figure 36.2.

To develop intuition for thrust, consider the final state of an e+e− → hadrons event
in which two very narrow jets are produced. Such pencil-like jets will have T ∼ 1 since
|pj · �n| ∼ |�pj | if �n points along the direction of the pencil. For such events, the thrust
axis will be close to the jet axis, independently of the jet definition. If an event has par-
ticles distributed evenly in all directions then there is no preferred �n and (very roughly)
|�pj · �n| ∼ |cos θ�pj | ∼ 1

2 |�pj |. Thus, T ∼ 1
2 indicates a spherical event. In this way, thrust

is a quantitative measure of how pencil-like or spherical an event is. In the following we
will use

τ ≡ 1− T, (36.2)

which goes to 0 in the dijet configuration and goes to 1
2 for spherical events.

Although thrust is measured on metastable particles coming out of e+e− collisions
(mostly pions), it can also be computed in perturbation theory using quarks and gluons.
Let Q = ECM be the center-of-mass energy. For Q� ΛQCD one expects the shape of the
event to be frozen-in on time scales much shorter than the hadronization time. Thus, pertur-
bative QCD should provide a reasonable description of thrust up to corrections suppressed
by some power of ΛQCD

Q .
Two event shapes closely related to thrust are heavy jet mass and light jet mass. To

compute them, first find the thrust axis for a particular event using Eq. (36.1). Then partition
the particles in the event into two hemispheres by the sign of �p · �n. Call the sum of the

1 At hadron colliders, the beam remnant makes it impractical to include all final-state radiation in an observable.
While there are generalizations of e+e− event shapes to hadronic event shapes, we will not discuss them.
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4-momenta in one hemisphere pμ1 and the rest pμ2 . Then, heavy jet mass ρH and light jet
mass ρL are defined by

ρH ≡
1
Q2

max
(
p2
1, p

2
2

)
, ρL ≡

1
Q2

min
(
p2
1, p

2
2

)
. (36.3)

Thus, ρH and ρL are really masses-squared. We also define

τ1 ≡
1
Q2

(
p2
1 + p2

2

)
= ρL + ρH . (36.4)

Other event shapes include jet broadening, sphericity, spherocity, Y23 and the C-parameter
(see [Ellis et al., 1996] for their definitions and some discussion).

36.1.1 Thrust in perturbative QCD

Now we will compute thrust at leading order in perturbation theory in QCD. At zeroth
order, the final state consists of two quarks (e+e− → qq̄). These quarks have massless
back-to-back 4-vectors, and hence τ = 0. Thus, the zeroth-order distribution is dσ

dτ =

σ0δ(τ), where σ0 = 4πα2
e

3E2
CM
Rhad and Rhad =

∑
colors

∑b
q=uQ

2
q = 3.67 from Eq. (26.24).

For theO(αs) thrust distribution, conventionally called leading order (LO), the partonic
process is e+e− → q̄qg. The total cross section at order αs was calculated in Section 26.3
using the results from the analogous process in QED computed in Chapter 20. There we
found that σtot = σ0

(
1 + 3

4πCFαs
)
. To compute thrust at LO define s = (pg + pq)

2,

t = (pg + pq̄)
2 and u =(pq + pq̄)

2. Since we treat the quarks as massless, s+ t+u = Q2.
From now on, we set Q = 1 for simplicity, so s+ t+ u = 1. The differential cross section
at order αs is (see Section 20.1.2)

1
σ0

dσ

ds dt
= CF

αs
2π

s2 + t2 + 2u
st

. (36.5)

The maximization in the definition of thrust is a minimization over τ . For three massless
partons, τ = min(s, t, u) ≤ 1

3 . The thrust distribution is then

1
σ0

dσ

dτ
=

1
σ0

∫
ds dt

dσ

ds dt

[
δ(τ − s) θ(t− s) θ(u− s)

+ δ(τ − t) θ(s− t) θ(u− t) + δ(τ − u) θ(t− u) θ(s− u)
]

=
2
σ0

∫ 1−2τ

τ

ds

∫
dt

dσ

ds dt
δ(τ − t) +

∫ 1−2τ

τ

ds

∫
dt

dσ

ds dt
δ(τ − u)

= CF
αs
2π

{
3(1 + τ)(3τ − 1)

τ
+

[4 + 6τ(τ − 1)] ln 1−2τ
τ

τ(1− τ)

}
, (36.6)

where u = 1 − s − t and the symmetry under s↔ t have been used. This result is valid
for τ > 0, and shown as the leading-order (LO) curve in Figure 36.2.

At τ = 0 there is an IR divergence. This is canceled by the IR divergence in the virtual
contributions, from the 1-loop correction to e+e− → q̄q. The sum of the two is IR finite
since thrust is an infrared-safe observable. To see the cancellation one must regulate the
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virtual graph and the real emission graphs with an IR regulator such as a gluon mass or
dimensional regularization (see Chapter 20) and then combine them. Fortunately, we can
extract the combined answer from Eq. (36.6) using a trick: the regulated answer must be a
distribution whose integral gives the total cross section σT = σ0

(
1 + CF

3αs
4π

)
. Since the

virtual graph must be proportional to δ(τ) we can deduce that

1
σ0

dσ

dτ
= δ(τ) + CF

αs
2π

{
δ(τ)
(
π2

3
− 1
)

+
[
3(1 + τ)(3τ − 1) +

[4 + 6τ(τ − 1)] ln(1− 2τ)
1− τ

][
1
τ

]
+

− 4 + 6τ(τ − 1)
1− τ

[
ln τ
τ

]
+

}
.

(36.7)

Recall that the plus distribution,
[

lnk τ
τ

]
+

, defined in Section 32.2, has the property that∫ 1
0

[
lnk τ
τ

]
+
g(τ) =

∫ 1
0
dτ lnk τ

τ [g(τ)− g(0)] and
[

lnk τ
τ

]
+

= lnk τ
τ for τ > 0. The singular

terms in this expression at small τ are(
1
σ0

dσ

dτ

)
sing

= δ(τ) + CF
αs
2π

{
δ(τ)
(
π2

3
− 1
)
− 3
[

1
τ

]
+

− 4
[
ln τ
τ

]
+

}
. (36.8)

It is these singular terms that are the main focus of this chapter.
In the region where τ 
 1, so that the event has pencil-like dijet kinematics, then τ ∼ τ1.

You can prove this in Problem 36.1. An easy check is that at leading order τ = min(s, t, u)
and s, t and u are the invariant masses of pairs of partons so τ = τ1 = ρH and ρL = 0. We
will use the equivalence between τ and τ1 in the singular limit in Sections 36.5.2 and 36.6.

36.2 Power counting

Our first task is to understand the origin of the singularities in the distribution of jet mass
and related jet properties. To calculate jet mass in QCD, or to measure it, one needs a jet
definition (for example, Sterman–Weinberg jets, discussed in Section 20.2). For any given
jet definition, the distribution of the jet mass can be written in the form

dσ

dm2
=
(
dσ

dm2

)
sing

+
(
dσ

dm2

)
non-sing

, (36.9)

where “sing” refers to the part of the distribution that is singular as m2 → 0. The part
labeled “non-sing” is regular as m2 → 0. For example, the singular part of the thrust dis-
tribution at leading order is shown in Eq. (36.8). The singular terms dominate the behavior
of the distribution at small m2 (or small τ in the thrust case). Our approach will be to
calculate these terms to all orders in αs using effective field theory methods. We can add
in the non-singular part to the resummed singular distribution by matching to perturbative
QCD order-by-order in αs.
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To calculate the singular part of dσ
dm2 we need an expansion paramater λ (the analog of

F−1
π in the Chiral Lagrangian, m−1

Q in HQET or m−1
W in the4-Fermi theory). A natural

choice is the ratio of the jet mass m to scale Q, λ = m
Q . In practice, it is often easier

to use an expansion parameter that is inclusive, meaning that it gets a contribution from
every observed hadronic particle in an event, rather than exclusive, like a jet mass, where
only particles within the jet contribute. Examples of observables and inclusive expansion
parameters are

• Event shapes at e+e− collisions (see Section 36.1). We can take λ = τ = 1 − T for
thrust λ = ρH for heavy jet mass.

• Deep inelastic scattering: e−p+ → e−X . Recall from Chapter 32 that deep inelastic
scattering can be thought of as an off-shell photon with spacelike momentum qμ scat-
tering off a proton with momentum Pμ into a hadronic final state with momentum Xμ.
The inclusive observables Q2 = −q2 and x = Q2

2P ·q can be measured from the outgoing
electron only. The interesting kinematical region for jet physics is when the mass of the
entire hadronic final state becomes small. The jet mass is m2

J = p2
X = (q + P )2 =

Q2 1−x
x + m2

P . Neglecting the proton mass, this is m2
J = Q2 1−x

x . Thus, mJ → 0 as
x → 1 and the λ = mJ

Q =
√

1− x can be used as an expansion parameter to describe
the jet-like limit.

• Heavy-to-light B meson decays. Consider the decay B → Xsγ, where Xs is any
hadronic final state with strangeness s = 1. At the parton level this is |b; muck〉 →
|s; muck〉| γ〉 (see Chapter 35). In this case, the energy of the outgoing photon Eγ pro-
vides a clean inclusive observable. In the limit that Eγ → mB

2 , Xs must be massless,

and hence jet-like. Thus λ = 1− 2Eγ
mB

is an inclusive expansion parameter.

Let us take B → Xsγ for concreteness, where λ = 1 − Eγ
2mB

. In this case the jet
is defined to include all hadrons in the final state. Of course, in a typical event, this jet
definition does not look jet-like (it can be a single kaon). However, events that have small
values of λ are jet-like, in the sense that the invariant mass of the hadronic final state
is small. In perturbative QCD, we compute the final-state distribution in terms of quarks
and gluons, ignoring hadronization to a first approximation. What collection of final-state
quarks and gluons can have a small invariant mass? By momentum conservation, in the
B meson rest frame the jet points backwards to the photon �pJ = −�pγ . Near λ = 0,
|�pJ | = |�pγ | = Eγ ∼ mB

2 , so the jet must have large energy and small invariant mass.
Since p2

J = (
∑
i p
μ
i )

2, for any two particles in the jet with momenta pμi and pμj , we have
p2
J > 2pi · pj = 2EiEj(1− cos θij), where θij is the angle between �pi and �pj . So, if any

two particles have energies Ei and Ej that are a substantial fraction of Eγ then they must
have cos θij ∼ 1; that is, they must point in nearly the same direction. Such particles are
said to be collinear. Alternatively, a particle can have small energy, in which case we say
the particle is soft.

They key to understanding jet properties in the λ → 0 limit is that QCD simplifies in
soft and collinear limits. As we will see, the soft radiation depends only on the directions of
the various jets or incoming hadrons in the event and their colors; it is independent of how
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the collinear radiation is distributed within each jet and of the spins of the collinear parti-
cles. The collinear radiation, on the other hand, can be computed for each jet separately,
independently of the distribution and colors of the other jets in the event.

To be precise about soft and collinear limits, lightcone coordinates are useful (see Sec-
tion 32.5). Suppose we have a jet with 4-momentum pμJ , energy Q and invariant mass m.
By assumption, λ = m

Q 
 1. If the jet were a single parton, as it is at leading order
in perturbation theory, then (neglecting quark masses) its momentum would be simply
pμJ,LO = Qnμ, where nμ is a lightlike 4-vector, n2 = 0. We conventionally normalize
n0 = 1 so that nμ = (1, �n). Any 4-vector can be written in lightcone coordinates as

pμ ≡ 1
2
(n̄ · p)nμ +

1
2
(n · p) n̄μ + pμ⊥, (36.10)

where n̄μ =(1,−�n), which satisfies n · n̄ = 2 and p⊥ ·n = p⊥ · n̄ = 0. pμ⊥ is the part of pμ

in the transverse directions. In coordinates where nμ =(1, 0, 0, 1) then n̄μ =(1, 0, 0− 1)
and pμ⊥ =(0, px, py, 0).

The invariant mass of a 4-vector in lightcone coordinates is

p2 =(n · p)(n̄ · p) + p2
⊥. (36.11)

Up to terms subleading in λ, the large component of the jet is its energy 1
2 n̄ · p = Q.

Thus, we must have n · p ∼ λ2Q so that m2 = (n · p)(n̄ · p) + p2
⊥ = Q2λ2 has the right

scaling. The transverse components can scale at most as λQ. Thus, the jet momentum can
be written as

pμJ ={n̄ · p, n · p, p⊥} ∼ Q
{
λ2, 1, λ

}
, (36.12)

where ∼ indicates λ scaling. This is called collinear scaling.
A jet is not a single particle. In perturbation theory, we calculate the cross section for

jet production by computing the cross section for producing a bunch of particles with
momenta pμi and writing pμJ =

∑
i p
μ
i . In order for p2

J ∼ Q2λ2, all the pμi in the jet
must have collinear or softer scaling in all their components. Thus, the particle could have
pμi = Q

(
λ2, 1, λ

)
like the jet itself, or

pμi ∼{n̄ · p, n · p, p⊥} ∼ Q
{
λ2, λ2, λ2

}
, (36.13)

which is known as ultrasoft scaling. We cannot have pμi ∼ Q{1, 1, 1} (hard scaling) or
pμi = Q(λ, λ, λ) (soft scaling).2 Since soft and ultrasoft modes will not both be relevant
for a single calculation, we will use the terms soft and ultrasoft interchangeably.

36.3 Soft interactions

In this section we discuss how cross sections for producing gluons simplify when that
radiation has (ultra)soft scaling. The physical argument for simplifications in the soft limit

2 Another possibility is pμ
i ∼ Q

(
λ2, λ, λ

)
(Glauber scaling); however, then p2i = λ3 − λ2, which cannot

vanish. Thus, these Glauber modes are purely virtual. Glauber modes play an important role in the rigorous
proof of factorization for Drell–Yan production but can be safely ignored in the applications we consider here.
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is similar to the argument that justifies the use of Gauss’s law in classical electrodynamics.
At large distance from a collection of charges, the electromagnetic field is determined
almost completely by the net charge. One can include corrections through a multipole
expansion (the dipole moment of the charge distribution gives the first subleading effect),
but the leading effect at large distances is determined by Gauss’s law. The soft limit of
QCD is equivalent to a large-distance limit, where only the net color charge of the various
jets is relevant, not the detailed distribution of colored particles within the jets. Leading
power in λ in the soft limit corresponds to the leading order in the multipole expansion for
a charge distribution.

We saw the usefulness of the soft limit back in Section 9.5, where we used it to connect
charge conservation to Lorentz invariance of massless spin-1 particles. In this section, we
generalize aspects of that discussion and introduce an efficient way to describe soft radia-
tion patterns using Wilson lines. We begin with the discussion in an Abelian theory, where
we show spin independence and the connection to Wilson lines, and then we discuss how
things change in QCD. In this section, we work at tree-level and drop all iε factors. We
also assume photon polarizations are real, so that we can write εi instead of ε�i .

36.3.1 Soft photon emission

Suppose we have some process involving n external states with momenta pμi (which can
be incoming or outgoing) and charges Qi. In this discussion, Qi will refer to the charge
of the particle state 〈pi| not the field ψi(x), so electrons have Q = −1 and positrons have
Q = +1. We are interested in the case where these pμi are all hard and well separated, so
that they establish the jet directions. We will then consider how the matrix element in the
state of just the particles with momenta pμi is related to a matrix element in a state with
additional soft photons. Let us write the matrix element M(pi) for the process with just
the pμi as

〈p1 · · · |ψ̄1(0) · · ·ψn(0)| · · · pn〉 = iM(pi). (36.14)

In this and the next section, we will abbreviate ψj ≡ ψj(0), since all fields in matrix
elements like this will be evaluated at the same point, which we can take to be x = 0.3 We
would like to know how the matrix element changes when m photons with momenta kμi
are added to the final state in the limit that all the kμi are soft, meaning kμ 
 pμi for all i.
That is, we would like to know how 〈p1 · · · ; k1 · · · km|ψ̄1 · · ·ψn| · · · pn〉 relates toM(pi).

Let us first recall the result in scalar QED derived in Section 9.5. There we showed that
for the emission of a soft photon with momentum kμ and polarization εμ from an outgoing

3 For a physical process, such as e+e− → μ+μ−, the matrix element should of course be calculated with
the fields at different points, with those points integrated over as in the LSZ formula. However, since we are
interested in the case where these pi are all hard and well separated, we can expand the product of fields at
different points in terms of local operators (through the operator product expansion). In momentum space, the
difference between a matrix element for e+e− → μ+μ− and a matrix element of ψ̄ψψ̄ψ is some calculable
function c(pi). This c(pi) is a Wilson coefficient for matching onto the local operators that we focus on here.
Since c(pi) is independent of additional soft and collinear radiation, we set it to 1 for simplicity.
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electron, the matrix element is modified as

M(pi) = pi −→
pi + k

pi

k

= e
pi · ε
pi · k

M(pi) . (36.15)

Emission from incoming positrons gives the same e pi·εpi·k factor, while outgoing positrons
or incoming electrons give −e pi·εpi·k . The full matrix element for soft gluon emission is the
sum over these eikonal factors ∓eQi pi·εpi·k for all charged particles.

The calculation in spinor QED is similar. Pulling off the spinor for an outgoing electron,
we writeM = ū(pi)M̃(pi) and then find

ū(pi)M̃(pi) → −ieū(pi)/ε
i
[
( /pi + /k) +m

]
(pi + k)2 −m2

M̃(pi + k) ∼= eū(pi)/ε
/pi +m

2pi · k
M̃(pi).

(36.16)
Using ū(p)/ε/p = ū(p)(−m/ε + 2ε · p) we then have

M(pi) → e
pi · ε
pi · k

M(pi). (36.17)

So the same e pi·εpi·k factor appears in the scalar and the spinor case.
We can understand why the scalar and spinor give the same factor in a different way.

The spinor propagator can be written as

/p+m

p2 −m2
=
∑
s′

us′(p)ūs′(p)
p2 −m2

. (36.18)

Thus, when a photon adds to an external spinor, it produces the shift

ūs(pi)M̃(pi) →
∑
s′
εμūs(pi)γμus′(pi + k)

e

(pi + k)2 −m2
ūs′(pi + k)M̃(pi + k)

∼=
∑
s′
εμūs(pi)γμus′(pi)

e

2pi · k
ūs′(pi)M̃(pi), (36.19)

where we have taken the soft limit on the second line. We can then use the identity (see
Problem 11.2)

ūs(p)γμus′(p) = 2δss′pμ (36.20)

to see that Eq. (36.17) again results.
That the soft photon interaction is independent of the spin follows from general argu-

ments about Lorentz invariance. The denominator pi · q follows from there being a pole
associated with the emitting particle. By dimensional analysis and the fact that the only
4-vectors available are εμ and pμi , the form pi·ε

pi·q is unique up to a possible factor that might
depend on the incoming particle’s helicity. However, if the photon were to flip the helicity,
then there is no way the Ward identity could be satisfied: the modified amplitude is not
even proportional to the original one. In fact, it is obvious physically that soft photons can-
not go around flipping helicities of particles, otherwise helicity would not be a very useful
concept. More simply, we know charge must be conserved even when charged particles
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of different spin are scattered. For this to follow from the Ward identity, the form of the
interaction in the soft limit must always be e p·εp·q δhh′ , where h is the helicity of the particle
before the emission and h′ its helicity afterwards. For a rigorous proof, see [Weinberg,
1964].

An important point is that the eikonal factors Qie
pi·ε
pi·k are independent of the energy of

the charged-particle emitting photons. Writing pμ = Evμ with vμ the 4-velocity normal-
ized to v0 = 1, the eikonal factor becomes Qie

vi·ε
vi·k . For massless particles, we usually

write pμi = Enμi with n2 = 0 and n0 = 1; then the eikonal factor is Qie
ni·ε
ni·k . So the

amplitude for emitting a soft photon depends on the directions that the charged particles
are going and their charges, but not their energy.

Now suppose we have two soft photon emissions in QED. If these both come from the
same outgoing electron, then an amplitude is modified as

M(pi) = pi −→

k2

k1

pip
i + k

1 +
k
2

p
i + k

1

+

k2

k1

pip
i + k

1 + k
2

p
i + k

2

= e2
[
pi · ε1
pi · k1

pi · ε2
pi ·(k1 + k2)

+
pi · ε1

pi ·(k1 + k2)
pi · ε2
pi · k2

]
M

= e2
[

(pi · ε1)(pi · ε2)
(pi · k1)(pi · k2)

]
M, (36.21)

where the second step is just algebra. Actually, this simple algebraic step even has a name;
it is called the eikonal identity. The result is that the amplitude for two soft photons is
given by the square of the one-photon emission amplitude.

If there are multiple charged particles involved, then there are also diagrams where
different particles emit the two photons. For these diagrams, the eikonal factors simply
multiply. The result is that the sum of all the two-photon emission diagrams gives

M(pi) →

⎡⎣ n∑
j=1

eηjQj
pj · ε1
pj · k1

⎤⎦⎡⎣ n∑
j=1

eηjQj
pj · ε2
pj · k2

⎤⎦M(pi) , (36.22)

where ηj = −1 for an outgoing particle and ηj = 1 for an incoming particle. One corollary
is that if we have two massless particles going in the same direction with momenta pμ1 =
E1n

μ and pμ2 = E2n
μ the sum of the emissions from those particles is (Q1 +Q2) n·εn·k . In

other words, the rate for emitting soft photons depends only on the total charge for particles
in each direction. This is the reason that soft emissions factorize from collinear emissions:
soft radiation is only sensitive to the net charge going in each collinear direction.

The generalization to multiple emissions is straightforward. The amplitude for m pho-
ton emissions from the same particle simplifies using the eikonal identity to the product
of m one-photon emission amplitudes. For different particles, the eikonal factors simply
multiply. Writing pμj = Ejn

μ
j , in the notation of Eq. (36.14) the result is that
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〈p1 · · · ; k1 · · · km|ψ̄1 · · ·ψn| · · · pn〉

ki�pi−−−−→
m∏
k=1

⎡⎣ n∑
j=1

eηjQj
nj · εk
nj · kk

⎤⎦ 〈p1 · · · |ψ̄1 · · ·ψn| · · · pn〉. (36.23)

This equation says that in the soft limit any of the m photons can come from any of the n
charged particles. For each emission, the amplitude is corrected by an eikonal factor inde-
pendent of any other emission. As we will now see, this same amplitude can be reproduced
by Wilson lines.

36.3.2 Soft Wilson lines

Recall from Section 25.2 that a Wilson line in QED is the exponential of a line integral
over the gauge field. In this case, we want to integrate over the path of the charged particle.
Writing nμ = 1

E p
μ as the direction of a particle with momentum pμ, the relevant Wilson

line is

Y †
n (x) = exp

(
ieQnn

μ

∫ ∞

0

dsAμ(xν + snν) e−εs
)
, (36.24)

which goes from the point x out to ∞ along the nμ direction. We have inserted a conver-
gence factor e−εs to the expression in Eq. (25.47) to ensure that the photon field decouples
at t = ∞. Such decoupling is required for S-matrix calculations that involve asymptotic
states (the e−εs factor is similar to the one derived in Section 14.4). We write this Wilson
line as Y † instead of Y since the particle is in the final state. For a final-state antiparticle,
we would use Y . Qn can be either the charge of a single particle or the net charge of all
particles in the nμ direction. Indeed, a product of Wilson lines in the same direction is
equivalent to a single Wilson line with the sum of the charges.

Now consider the matrix element of this Wilson line in states with photons of momenta
ki: 〈k1 · · · km|Y †

n |Ω〉. If there is one photon, we need only expand Y †
n to order e. A photon

field at position y will annihilate a photon with momentum k and polarization ε(k) in the
external state:

〈k|Aμ(y)|Ω〉 = eik·yεμ(k) (36.25)

We then have

〈k
∣∣Y †
n (0)
∣∣Ω〉 = ieQnn

μ〈k|
∫ ∞

0

dsAμ(snν) e−εs|Ω 〉

= ieQn(n · ε(k))
∫ ∞

0

ds ei(k·n+iε)s

= −eQn
n · ε

n · k + iε
. (36.26)

This matches the leading-order eikonal interaction for an outgoing particle of charge Qn.
For incoming charged particles, the appropriate Wilson line is

Y (x) = exp
(
ieQnn

μ

∫ 0

−∞
dsAμ(xν + snν) eεs

)
, (36.27)
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which leads to

〈k|Y (0)|0〉 = eQn
n · ε

n · k − iε , (36.28)

which also agrees with the soft limit (you can check that the iε comes with the correct
sign). We will drop these iε factors unless they are relevant from now on.

Higher-order terms in the expansion of the Wilson line can be contracted with other
external states. The 1

n! from the expansion of the Wilson line is exactly what is needed to
avoid any extra symmetry factor in the Feynman rules (see Chapter 7). Thus,

〈k1 · · · km|Y †
1 (0)|Ω〉 =

m∏
k=1

[
−eQn

n · εk
n · kk

]
. (36.29)

Now consider the matrix element 〈k1 · · · km
∣∣∣Y †

1 (0) · · · Ȳn(0)
∣∣∣Ω〉 with multiple Wilson

lines in directions nj with corresponding charges Qj . Each photon can be contracted with
the field from any line. The combinatorics works out perfectly (as you can check) so that

〈k1 · · · km|Y †
1 (0) · · ·Y n(0)|Ω〉 =

m∏
k=1

⎡⎣ n∑
j=1

eηjQj
nj · εk
nj · kk

⎤⎦ , (36.30)

where ηj is −1 for Y †
j factors (which correspond to outgoing charged particles) and ηj =

+1 for Ȳj factors (which correspond to incoming charged particles).
The identity in Eq. (36.30) holds independently of any interactions in the Lagrangian.

Indeed, it would hold even with a free U(1) gauge theory with no matter. When we include
matter, comparing to Eq. (36.23), we find the tree-level relation

〈p1 · · · ; k1 · · · km|ψ̄1 · · ·ψn| · · · pn〉LQED

ki soft−−−→ 〈p1 · · · ; k1 · · · km|ψ̄1Y
†
1 · · ·Y nψn| · · · pn〉Lfree , (36.31)

where all the fields are to be evaluated at x = 0. Here, LQED means the matrix element
is to be calculated using the interactions in the QED Lagrangian, while Lfree implies that
the interactions in the Lagrangian are to be set to zero. We have to use the free Lagrangian
on the right-hand side to avoid double-counting. In fact, having moved all the photons into
the operator rather than the Lagrangian, we now have a simple factorized form for the
amplitude:〈

p1 · · · ; k1 · · · km|ψ̄1 · · ·ψn| · · · pn
〉
LQED

kisoft−−−→ 〈p1 · · · |ψ̄1 · · ·ψn| · · · pn〉〈k1 · · · km|Y †
1 · · ·Y n|Ω〉. (36.32)

In this form, we no longer need to write Lfree since the states 〈p1 · · · | and | · · · pn〉 have no
photons and the state |k1 · · · km〉 has no charged particles.

That the interactions of soft gluons with energetic charged particles can be described
completely through Wilson lines; which are pure phase, is reminiscent of the description
of interference patterns in geometric optics through the evolution of phase factors called
eikonals. This is the reason that the e n·εn·k factors are called eikonal factors and the soft
limit is sometimes called the eikonal limit. (Wilson lines are also sometimes called eikonal
factors as well.)
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Keep in mind that there is no restriction on the photon field Aμ appearing in the soft
Wilson line; it is the same as a photon field in full QED. The only place the soft approxi-
mation is used in the whole derivation above is in saying that the momenta pμi entering the
amplitudeM(pi) are the same before and after the soft photon emission. This is equivalent
to the Wilson line Y (x) and the field ψ(x) being evaluated at the same space-time point.
In other words, the soft emissions leave the collinear momentum precisely unchanged, to
leading power. The position-space language is very natural for soft emissions: a particle
just moves along its classical trajectory, casually emitting soft photons. In fact, we already
showed in Section 33.6.1 that Wilson lines naturally describe the semi-classical limit of a
propagating charged particle.

36.3.3 Soft gluon emission

The above arguments for QED generalize in a straightforward way to QCD. We start with
the matrix element for the process just involving quarks:

〈p1 · · · |ψ̄1(x) · · ·ψn(x)| · · · pn〉 = iMeix(p1+···+pn). (36.33)

You can think of the subscript on the quark fields as a flavor index. We include to make it
clear which field corresponds to which state.

To see what happens when a soft gluon is emitted from a quark, we write M =
ūi(p)M̃i. Abusing notation slightly, i now denotes the quark color index, and we leave
the momentum label implicit. The kinematical factors are the same for emitting a gluon as
for emitting a photon, so all that changes is a group factor T aij gets added:

ūiM̃i = pi −→
pi + k

pi

k

= −gsūiT aij
p · ε
p · kM̃j(p).

(36.34)
The eikonal factor is now −gT aij p·εp·k . As in QED, this factor is independent of the spin of
the colored particle.

Now consider a final state with two soft gluons, one with momentum k1, polarization
ε1 and color a, and the other with k2, ε2 and b. If these gluons both come from the same
quark, there are three graphs:

k2

k1

pi

A

+
k2

k1

pi

B

+
k2

k1

pi

C
(36.35)

Graphs A and B modify the matrix element as

ūiM̃i →(−gs)2 ūi
[
T aijT

b
jk

p · ε1
p · k1

p · ε2
p ·(k1 + k2)

+ T bijT
a
jk

p · ε1
p ·(k1 + k2)

p · ε2
p · k2

]
M̃k.

(36.36)

In the Abelian case, the two-photon emission amplitude simplified with the eikonal identity
to a form that was manifestly equal to what came out of the expansion of a Wilson line.
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In the non-Abelian case, the eikonal identity does not produce an obvious simplification,
since
[
T a, T b
]
�= 0. Nevertheless, this amplitude is reproduced from a Wilson line.

Recall from Section 25.2 that the Wilson line in a non-Abelian theory is path ordered:

Y †
n (x) = P

{
exp
[
igsT

a
ijn

μ

∫ ∞

0

dsAaμ(x
ν + snν)e−εs

]}
. (36.37)

Path ordering refers to ordering of the T a matrices such that the ones associated with the
gluons closer to s = 0 are moved to the right. For an incoming particle, the Wilson line is

Y n(x) = P

{
exp
[
igsT

a
ijn

μ

∫ 0

−∞
dsAaμ(x

ν + snν)eεs
]}

. (36.38)

As in the QED case, emissions from outgoing and incoming antiquarks will be reproduced

using Yn and Y
†
n respectively.

We can expand to order g2
s to get

〈k1ak2b|Y †
n (0)|Ω〉 =(igs)

2
T cT d
∫ ∞

0

ds

∫ s
0

dt〈k1ak2b

∣∣n ·Ac(tnμ)n ·Ad(snν)∣∣Ω〉.
(36.39)

We can contract either gluon field with either gluon canceling the factor of 2 in front. These
integrals are easy to evaluate, as in Eq. (36.26), with the result

〈k1ak2b|Y †
n (0)|Ω〉 =(−gs)2

[
T aT b

p · ε1
p · k1

p · ε2
p ·(k1 + k2)

+ T bT a
p · ε1

p ·(k1 + k2)
p · ε2
p · k2

]
,

(36.40)

in agreement with Eq. (36.36) coming from graphs A and B in Eq. (36.35). In the Abelian
case, T a = 1 and the two factors can be combined with the eikonal identity to reproduce
the QED result.

The result is that factorization works in QCD just as in QED:

〈p1 · · · ; k1 · · · km|ψ̄1 · · ·ψn| · · · pn〉 kisoft−−−→
〈p1 · · · |ψ̄1 · · ·ψn| · · · pn〉〈k1 · · · km|Y †

1 · · · Ȳn|Ω〉. (36.41)

Note that the Yi just account for emissions from the hard colored particles. Other graphs,
such as graphC in Eq. (36.35), which come from a vertex in the Lagrangian among gluons,
are not accounted for in either Eq. (36.36) or Eq. (36.40). Indeed, the three-gluon vertex
does not simplify in the soft limit, since when soft gluons interact among themselves, there
is no separation of scales to produce a simplification. Thus, once the gluons leave the
hard colored particles, they propagate and interact as in full QCD. Therefore, the gluon
Lagrangian on the right- and left-hand sides of Eq. (36.41) should be the same as the full
QCD Lagrangian: L = − 1

4 (F aμν)
2.

The matrices in the Wilson lines can be in any representation. There is a different Yn for
antiquarks, or gluons. For example, for quarks Yn =(Yn)ij where i and j are fundamental
color indices. The gluon Wilson line is often denoted Yn and the antiquark Wilson line by
Y †
n . An often helpful relation is that Y T aY † = YabT b or more explicitly

(Y )ij(T a)jk(Y †)kl = (Y)ab(T b)il, (36.42)
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where a and b are adjoint indices and i, j, k and l are fundamental indices. Thus, the soft
matrix element (the final term in Eq. (36.41)) for any process with quark, antiquark or
gluon jets, can always be written entirely in terms of fundamental Wilson lines Yn and
their adjoints, Y †

n .

36.4 Collinear interactions

In this section we will show why QCD cross sections factorize into matrix elements of
jet fields in the limit that all radiation is in some number of collinear directions. To be
concrete, consider dijet projection in e+e− collisions. At leading order in perturbation
theory, the final state consists of two quarks. Let us write the amplitude for this process
when the quarks have momenta p1 and p2 as 〈p1p2

∣∣ψ̄γμψ∣∣Ω〉. Now add to the final state
gluons with momenta qa1 · · · qb1 collinear to p1 and momenta qa2 · · · qb2 collinear to p2.
Then, the matrix element factorizes as

〈p1p2; qa1 · · · qb2 |ψ̄γμψ|Ω〉 = γμαβ〈p1; qa1 · · · qb1 |χ̄αn1
|Ω〉〈p2; qa2 · · · qb2 |χβn3

|Ω〉,
(36.43)

where α and β are spinor indices. In this expression, the fields χn are quark jet fields,
defined as

χn(x) ≡W †
tn(x)ψ(x), (36.44)

where nμ is the direction of the jet and where Wtn is a path-ordered QCD Wilson line
pointing in some lightlike direction tμn:

W †
tn(x) = P

{
exp
(
igsT

atμn

∫ ∞

0

dsAaμ(x
ν + stνn)e

−εs
)
. (36.45)

It is common to take tμn = n̄μ, but in fact the only restriction on tμn is that it is not
collinear to the jet direction nμ. For incoming collinear particles one should use W tn ,
defined analogously to Yn in Eq. (36.38).

As in Section 36.3, we will demonstrate the equivalence of Eq. (36.43) for scalar QED,
where all of the essential features of the simplifications can be seen. Adding color and
spin is then straightforward. For collinear emissions, gauge invariance plays a much more
important role than for soft emissions. In order to understand the gauge dependence effi-
ciently, we will employ the spinor-helicity formalism from Chapter 27. The reader who
needs motivation to learn about helicity spinors is encouraged to check Eq. (36.43) using
polarization vectors.

36.4.1 Collinear photon emission

Let us begin, as in the soft emission case, with the matrix element for producing some set
of charged particles with momenta pμi in scalar QED:

〈p1 · · · pn|φ�1 · · ·φn|Ω〉 = iM(pi). (36.46)
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As in the previous section, all fields are implicitly evaluated at x = 0. The fields φi create
the states with momentum pi and charges Qi. As in the soft case, the Qi for particles and
antiparticles have opposite sign. If the particle is an antiparticle, we use φi instead of φ�i .
Any combination of φ and φ� fields is possible as long as the operator is gauge invariant.
We simply write φ�1 · · ·φn to avoid cumbersome indices. We also take all the particles to
be outgoing, for simplicity. Now we would like to see howM changes for a final state with
additional photons, when each of those photons becomes collinear to one of the pi.

First, consider one photon with momentum q that is nearly collinear to one of the pi that
which we denote simply as p1. Let us write nμ = 1

E p
μ
1 as the normalized lightlike 4-vector

in the p1 direction. In lightcone coordinates, both q and p1 scale as

(n · p1, n̄ · p1, p1⊥) ∼(n · q, n̄ · q, q⊥) ∼
(
λ2, 1, λ

)
. (36.47)

Thus, q · p1 ∼ λ2 and q · pi ∼ 1 for i �= 1. We want to extract the most dominant term in
λ−1 in 〈p1 · · · pn; q|φ�1 · · ·φn|Ω〉.

The photon with momentum q can be emitted from any of the pi. Working only at tree-
level, but without making any other approximations yet, the scalar QED Feynman rules
imply that

M(pi, q) =
∑
i

−eQi
pi · ε
pi · q

M(pi + q) . (36.48)

The notation M(pi + q) means the M(pi) matrix element with pi changed to pi + q

holding the other momentum fixed. If the pi ·ε terms in the numerator scale uniformly with
λ then, since p1 · q ∼ λ2, and pi · q ∼ 1 for i �= 1, the term with i = 1 will dominate
this sum. That is, only the diagram where the photon is emitted from the leg to which it is
collinear needs to be included at leading power. The i = 1 term does in fact dominate in
a generic (non-collinear) gauge, as we will shortly see. However, one can choose a gauge
where p1 · ε = 0 exactly (this is an axial gauge with pμ1∂μA(x) = 0), in which case the
i = 1 term vanishes. Thus, to extract the behavior of M(pi, q) in the collinear limit we
have to be careful with the gauge dependence.

An advantage of helicity spinors (see Chapter 27) is that one can easily choose differ-
ent gauges for polarizations in different collinear sectors. Gauge dependence for helicity
spinors amounts to dependence on the choice of reference vector rμ to which the polariza-
tions are orthogonal. Recall from Chapter 27 that polarizations satisfy ε(q)·r = ε(q)·q = 0
and the only restriction on rμ is that it cannot be proportional to qμ.

In the one-photon case, let us take the photon to have negative helicity, so that
[ε−(r)]αα̇ =

√
2 q〉[r[qr] . Then each term in the sum in Eq. (36.48) becomes

pi · ε
pi · q

=
√

2
[ri]〈iq〉
〈iq〉[qi][qr] =

√
2

[ri]
[qi][qr]

. (36.49)

Since 〈ij〉 =[ji] up to a phase for real momenta and p1 ·q = 1
2〈1q〉[q1] ∼ λ2 we must have

[q1] ∼ 〈q1〉 ∼ λ. Similarly, since pi · q ∼ λ0 for i > 1 we must have [qi] ∼ 〈qi〉 ∼ λ0. In a
generic gauge, where r �= pi for any i, then [ri] ∼ λ0. The term with i = 1 in Eq. (36.49)
then scales as [r1]

[q1][qr] ∼
λ0

λλ0 ∼ λ−1. The other terms scale as [ri]
[qi][qr] ∼

λ0

λ0λ0 ∼ λ0. Thus,
in a non-collinear gauge, the diagram where the photon is emitted from the leg to which it
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is collinear does in fact dominate. In a collinear gauge where r = p1 then the i = 1 term
vanishes exactly. However, each of the other terms now scales as [1i]

[qi][q1] ∼
λ0

λ0λ ∼ λ−1.
Thus, in a collinear gauge, the diagram with the photon coming from the collinear leg is
zero and all the other diagrams get enhanced. Moreover, since the amplitude in scalar QED
is gauge invariant, the sum of the i �= 1 diagrams in collinear gauge must exactly reproduce
the i = 1 diagram in the collinear limit.

Now, consider multiple photon emissions. Say we want the amplitude for a final state
in which all photons are collinear to some charged particle. Say momenta qa1 · · · qb1 are
collinear to p1, momenta qa2 · · · qb2 are collinear to p2 and so on. In a generic gauge, the
matrix element is enhanced by a factor of 1

λ for each photon only for diagrams in which that
photon connects directly to the charged particle collinear to it. Thus, in a generic gauge,

〈p1 · · · pn; qa1 · · · qbn |φ�1 · · ·φn|Ω〉 ∼= 〈p1; qa1 · · · qb1 |φ�1|Ω〉 · · · 〈p1; qan · · · qbn |φn|Ω〉.
(36.50)

Note that while the left-hand side is gauge invariant (assuming
∑
Qi = 0), the right-hand

side is not. A gauge-invariant generalization of Eq. (36.50) is

〈p1 · · · pn; qa1 · · · qbn|φ�1 · · ·φn|Ω〉
∼= 〈p1; qa1 · · · qb1|φ�1W1|Ω〉 · · · 〈p1; qan · · · qbn|W †

nφn|Ω〉, (36.51)

where Wi is a Wilson line pointing in some direction tμi that is not collinear to pμi :

Wi(x) = exp
(
ieQit

μ
i

∫ ∞

0

dsAiμ(x
ν + stνi )

)
. (36.52)

These are the same Wilson lines as in Eq. (36.24) but now pointing in the tμi direction
instead of the nμ direction.

As a first check on Eq. (36.51), note that in a generic gauge the Wilson line gives a factor
of t·ε

t·q = [rt]
[qt][qr] . Since tμ and rμ are not collinear to qμ, these factors are subdominant to

the λ−1 contributions coming from Eq. (36.50). Thus, in a generic gauge the Wilson lines
give only a power-suppressed contributions to matrix elements and so Eq. (36.51) reduces
to Eq. (36.50).

To verify Eq. (36.51) in scalar QED, first consider amplitudes with one photon of
momentum qμ going in the pμ1 direction. Then the right-hand side of Eq. (36.51) contributes

〈p1; q/φ�1W1|Ω〉 =
√

2eQ1

(
[r1]

[rq][q1]
− [rt]

[rq][qt]

)
=
√

2eQ1
[1t]

[1q][tq]
, (36.53)

where tμ = tμ1 is the direction of the Wilson line and rμ can be collinear to pμ1 or not. The
[r1]

[rq][q1] term in the middle expression comes from the emission from φ1 while the [rt]
[rq][qt]

term comes from W †
1 . The final form, which is manifestly gauge invariant, can be derived

with the Schouten identity, Eq. (27.27) (or more simply by substituting [r = [rt]
[1t] [1+ [r1]

[1t] [t,
which is possible since spinors are two-dimensional).

The amplitude for one emission in full scalar QED gets contributions from all lines:

〈p1 · · · pn; q|φ�1 · · ·φn|Ω〉 =
∑
i

eQi
pi · ε
pi · q

=
√

2
∑
i

eQi
[ri]

[rq][qi]
. (36.54)
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We can separate out the r-dependence and the i-dependence using

[ri]
[rq][qi]

=
[rt]

[rq][qt]
+

[it]
[iq][tq]

. (36.55)

Since
∑
Qi = 0 the [rt]

[rq][qt] terms do not contribute. We then have

〈p1 · · · pn; q|φ�1 · · ·φn|Ω〉 =
√

2
∑
i

eQi
[it]

[iq][tq]
. (36.56)

The terms in this remaining sum are all of order λ0 unless i = 1. We thus find

〈p1 · · · pn; q|φ�1 · · ·φn|Ω〉 ∼=
√

2eQ1
[1t]

[1q][tq]
, (36.57)

in agreement with Eq. (36.53). Thus Eq. (36.51) holds for one emission. For multiple
emissions, the proof is almost as simple and we leave it to Problem 36.2.

Collinear factorization in QED is almost identical to scalar QED, although the checks
are messier. The equivalent of Eq. (36.51) in QED is

〈p1 · · · pn; qa1 · · · qbn|ψ̄1 · · ·ψn|Ω〉
∼= 〈p1; qa1 · · · qb1|ψ̄1W1|Ω〉 · · · 〈p1; qan · · · qbn|Wnψ

†
n|Ω〉. (36.58)

Both sides of this equation are gauge invariant, so it is enough to check this factorization
in a generic gauge. Consider again a one-photon emission in the pμ1 direction. If this comes
off the particle in the 1 direction, it gives

− eQ1ū(p1) /ε
/p1 + /q

2p1 · q
M = −eQ1ū(p1)

(
p1 · ε
p1 · q

+
/ε/q

2p1 · q

)
M. (36.59)

In a generic gauge, pi ·ε �= 0 and so this is enhanced by λ−1, as in the scalar case (indepen-
dently of the /q/ε

2p1·q term, which could only make it more enhanced). This is the dominant
contribution and has identical form coming from both sides of Eq. (36.58). On the left-hand
side of Eq. (36.58), an emission can also come from particles in the i direction. These give

− eQiū(pi) /ε
/pi + /q

2pi · q
M. (36.60)

In a generic gauge, there is no reason anything in this expression should be enhanced as qμ

becomes collinear to pμ1 . Thus, these i �= 1 emissions scale as λ0 in a generic gauge and
can be ignored compared to the λ−1 enhanced emissions in Eq. (36.59). On the right-hand
side, emissions from the Wilson lines give the same thing as in the scalar QED case, which
also scale as λ0. Thus, the two sides of Eq. (36.58) agree at leading power in a generic
gauge. Since they are both gauge invariant, they therefore agree in any gauge.

Collinear factorization in QCD is almost identical to QED. For example, the factoriza-
tion formula for a process involving a quark jet and an antiquark jet is given in Eq. (36.43).
We can perform the same check on Eq. (36.43) as we did in QED on Eq. (36.58). In a
generic gauge, the only diagrams that contribute at leading power in QCD are those in
which gluons are emitted from colored particles to which they are collinear. These dia-
grams are identical when coming from the factorized expression. In the factorized form,
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the Wilson lines only give power-suppressed contributions in generic gauges. Thus, the
two sides agree at leading power. When multiple gluons are emitted, one must also con-
sider contributions in which a collinear gluon splits due to the A3 or A4 vertex in the
QCD Lagrangian. Although not obvious, these again agree in a generic gauge. You are
encouraged to check the equivalence in Problem 36.2.

36.4.2 Splitting functions

One consequence of collinear factorization is the universality of the Altarelli–Parisi
splitting functions. Since the amplitude for emitting a collinear gluon from a quark is
proportional to 〈Ω|ψ̄W |p; q〉, we can calculate the splitting function by squaring this
amplitude. The amplitude is

〈
p, q
∣∣ψ̄W ∣∣Ω〉M(p+ q) = −gsūi(p)

[
/ε
(
/q + /p
)

2p · q +
t · ε
t · q

]
T aijMj(p+ q) , (36.61)

where the first term in brackets comes from ψ̄ and the other from W . Choosing the spinor
to be left-handed, so ūi(p) = 〈p, we find for a negative-helicity gluon,

M− = −
√

2gsT a

[pq]

(
〈qM〉+

[pr]
[qr]

〈pM〉+
[rt][pq]
[qr][qt]

〈pM〉
)
, (36.62)

and for a positive-helicity gluon,

M+ = −
√

2gsT a

〈qp〉

(
〈pr〉
〈qr〉 +

〈tr〉〈qp〉
〈rq〉〈qt〉

)
〈pM〉. (36.63)

These amplitudes are both gauge invariant. So let us choose rμ = tμ, in which case the
final terms in both amplitudes vanish.

Now let us write Pμ = pμ + qμ. Since pμ and qμ are nearly collinear, pμ = zPμ and
qμ = (1− z)Pμ at leading power, so [p =

√
z[P and [q =

√
1− z [P up to a phase that

will drop out of the cross section. We then find

M− = −
√

2gsT a

[pq]

(√
1− z +

z√
1− z

)
〈PM〉 (36.64)

and

M+ = −
√

2gsT a

〈qp〉

(
2

z√
1− z

)
〈PM〉, (36.65)

both of which are independent of the Wilson line direction tμ. Squaring the amplitudes and
summing over polarizations and colors gives∑

colors

|M+|2 = g2
sCF

1
P 2

1 + z2

1− z [MP ]〈PM〉, (36.66)

which we recognize as the DGLAP splitting function. Since we have already proven that
collinear emissions for any process are given by matrix elements 〈p, q|ψ̄W |Ω〉, we have
hereby proven the universality of the DGLAP splitting functions. You can calculate the
gluon splitting function in a similar manner in Problem 36.3.
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36.5 Soft-Collinear Effective Theory

In the previous sections, we have seen how matrix elements in QCD factorize for pro-
cesses involving soft or collinear radiation at tree-level. We also saw how soft radiation
is only sensitive to the total (color) charge going in each direction, a result familiar from
the multipole expansion in classical electromagnetism. It should therefore not surprise you
that processes with soft and collinear radiation factorize (see also Problem 36.4). That is,
at leading power,

〈X1; · · · ;Xm;Xs|ψ̄1 · · ·ψm|Ω〉
∼= 〈X1|ψ̄1W1|Ω〉 · · · 〈Xm|W †

mψm|Ω〉〈Xsx|Y1 · · ·Y †
m|Ω〉, (36.67)

where Xj contains gluons going in the direction collinear to the jth jet and Xs contains
the soft gluons. As before, all fields are evaluated at x = 0 and the subscripts on ψ denote
the quark flavor. We showed that this factorized expression holds, at tree-level, if all the
final-state particles have momenta that fall into one of these sectors.

The fact that the only relevant interactions at leading power are among particles going
in the same direction or among soft gluons is a kind of superselection rule which can be
imposed at the level of the Lagrangian. With this insight, we can write Eq. (36.67) as

〈X1; · · · ;Xm;Xs|ψ̄1 · · ·ψm|Ω〉LQCD

∼= C(Q)〈X1; · · · ;Xm;Xs|ψ̄1W1Y
†
1 · · ·YmW †

mψm|Ω〉LSCET , (36.68)

where LSCET is a Lagrangian in which all the sectors have been decoupled and C(Q) = 1
(at tree-level). More explicitly, let us assign a new quantum number j = 1 . . .m or “soft”
to the states in Xj and Xs respectively. We also introduce fields ψj and Aj for each sector
that can create and annihilate only particles with those quantum numbers. Then

LSCET = L1 + · · ·+ Lm + Lsoft, (36.69)

where Lj contains quarks and gluons in the jth collinear sector and Lsoft contains the soft
quarks and gluons. Each of these Li and Lsoft are identical to LQCD. The Lagrangian LSCET

is the Lagrangian for Soft-Collinear Effective Theory (SCET).4

We have only demonstrated Eq. (36.68) at tree-level where C(Q) = 1. Loop contribu-
tions to the matrix elements on both sides of this equation will generically be both UV and
IR divergent. However, since the soft and collinear tree-level matrix elements on both sides
agree, the IR divergences in the loops should agree as well. After all, the IR divergences
in loops must be able to cancel the IR divergences in phase space integrals over tree-level
graphs (see Section 20.3).5 The UV divergences may be different, but they can be removed
with counterterms that also can be different on the two sides. Thus, the difference between

4 There are actually a number of different formulations of SCET, all of which are equivalent at leading power,
and equivalent to the formulation we have described. A discussion of power corrections is beyond our scope.

5 Technically, the IR divergences only agree if the overlapping region between soft and collinear momenta is not
double-counted in SCET. Conveniently, for the application discussed in this chapter, this zero bin gives zero in
dimensional regularization, so we will ignore it.
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the two sides of Eq. (36.68) should not depend on the IR scales or the UV cutoff. We there-
fore expect to be able to absorb the differences into the short-distance Wilson coefficient
C(Q), which may depend on hard scales Q but not on soft or collinear scales. We will not
prove this assertion, but we will verify it in explicit examples below.

One of the important applications of SCET is to simplify derivations of factorization
formulas. In the traditional approach to factorization, derivations are done using Feynman
diagrams. Derivations in SCET are done at the level of fields. Working with fields has
the great advantage of making universality manifest: the same objects appear in different
factorization theorems. The simplest processes for which factorization can be analyzed
are e+e− → hadrons (which is e+e− → q̄q at tree-level) or its crossings: deep inelastic
scattering (e−P → e−X) and Drell–Yan (PP → e+e−). Deep inelastic scattering was
studied using full QCD in Chapter 32. Here we discuss Drell–Yan and e+e− → hadrons.

36.5.1 The Drell-Yan process

The Drell–Yan process refers to the creation of a pair of leptons in the collision of two
hadrons, such as in PP → μ+μ− +X [Drell and Yan, 1970]. Let us denote the incoming
hadron momenta as Pμ1 and Pμ2 , the outgoing lepton momenta as kμ1 and kμ2 , and the
hadronic final-state momentum as pμX . Let us also write qμ = kμ1 + kμ2 as the momentum
of the off-shell photon decaying to leptons (we ignore the weak interactions for simplicity).
Thus Pμ1 + Pμ2 = qμ + pμX and q2 > 0.

A rigorous factorization theorem exists for inclusive Drell–Yan, meaning only the final
state leptons are measured [Collins et al., 1988]. This theorem states that the cross section is
given by a convolution among parton distribution functions and a perturbative hard process,
up to corrections suppressed by factors of ΛQCD

M whereM is the invariant mass of the lepton
pair. Since everything we have shown in this chapter so far is based on tree-level matrix
elements, we are in no position to derive a rigorous factorization theorem in SCET. On
the other hand, while the rigorous factorization theorem justifies performing perturbative
calculations, it does not indicate a way to perform these calculations more efficiently than
we would if we simply assumed factorization holds. Thus, we will simply assume that
our tree-level results hold to all orders in perturbation theory and apply the effective field
theory technology to resum large logarithms.

We will focus on the threshold region, where the invariant mass of the lepton pair

M ≡
√
q2 approaches the center-of-mass energy

√
s =
√

(P1 + P2)
2 of the hadronic

collision. The key property of this kinematic region is that the scattering is almost elastic.
In the center-of-mass frame, the energy EX of the hadronic final state must be small. That
is, the hadronic final state is soft. Therefore, the process near threshold involves incoming
protons (which can be described with collinear fields) and outgoing soft radiation. To be
clear, there are two small scales in this problem: λ = 1 − M2

s 
 1 and ΛQCD
M 
 1. We

are not interested in resumming logs of ΛQCD
M (beyond what is encoded in αs). We will

treat scales of order ΛQCD (such as the proton mass) as being exactly zero and focus on
logarithms of λ.
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The setup for the factorization begins by pulling out the leptonic tensor Lμν , as in
Chapters 20 and 32. The Drell–Yan cross section can be written as

dσ =
2e4

M4s
WμνLμνdΠ

1,2
LIPS, (36.70)

where the leptonic tensor Lμν = Tr[ /k1γ
μ /k2γ

ν ] is the same as for DIS, Eq. (32.11) (up
to a factor of 2 from the spin averaging), and dΠ1,2

LIPS refers to the leptonic phase space
(the hadronic phase space is included in Wμν). Ignoring the weak interactions, and using
just one quark flavor for simplicity, the lepton pair is produced through a neutral current
Jμ = ψ̄γμψ. The hadronic tensor can be expressed in terms of this current (see Chapters 20
and 32) as

Wμν = Q2
q

∑
X

(2π)4δ4(P1 + P2 − q − pX)〈PP |Jμ(0)|X〉〈X|Jν(0)|PP 〉

= Q2
q

∫
d4x e−iqx〈P1P2|Jμ(x)Jν(0)|P1P2〉 , (36.71)

where Qq is the quark charge. The second line is derived by inserting factors of eiP̂x with
P̂μ the translation operator, just as in Eq. (32.77). We can sum over lepton spins (cf. Eq.
(20.29)) remaining differential in the qμ to get

dσ

dM2
= −

2α2Q2
q

3M2s

∫
d3q

(2π)3 2q0

∫
d4x e−iqx〈P1P2|Jμ(x)Jμ(0)|P1P2〉, (36.72)

with q0 =
√
�q 2 +M2. So far, everything is exact and applies in any kinematical regime.

Now let us exploit the observation that asM → √
s the only relevant partonic states have

either collinear scaling (with respect to the incoming hadrons) or soft scaling if they are in
the hadronic final state. Let nμ = 1

E1
Pμ1 . In the center-of-mass frame, n̄μ = 1

E2
Pμ2 points

backwards to nμ. The effective field theory operator we need to match onto at leading order
is therefore

Oμ = ψ̄W 1Y
†
nγ

μY n̄W
†
2ψ =
(
ψ̄αW 1

)
i
γμαβ

(
W

†
2ψβ

)
j

(
Y

†
nY n̄

)
ij
, (36.73)

where Y n and Y n̄ are as in Eq. (36.38) and W̄1 and W̄2 are as in Eq. (36.45), pointing in
directions tμ1 and tμ2 , with the integrals going from −∞ to 0 (as the protons are incoming).
The only restriction on tμ1 is that it is not collinear to nμ, thus we can take tμ1 = n̄μ.
Similarly, we can take tμ2 = nμ. The second form in Eq. (36.73) makes the color and spin
indices explicit.

Writing χn = W
†
nψ to simplify the notation, we then have

〈
P1P2

∣∣O†μ(x)Oμ(0)
∣∣P1P2

〉
= −〈Ω|

[
Y

†
n̄Y n(x)

]
ij

[
Y

†
nY n̄(0)

]
kl
|Ω〉

× γμασ〈P1|χ̄α1k(0)χβ1j(x)|P1〉 × γμρβ〈P2|χ̄ρ2i(x)χσ2l(0)|P2〉, (36.74)

where i, j, k, l are color indices and α, β, ρ, σ are spinor indices. The factor of −1 comes
from anticommuting the spinors to get them into this form.
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Since the proton is a color-neutral object, the collinear matrix elements must be diagonal
in color space. Thus, we can average over colors to write

〈P2|χ̄ρ2i(x)χσ2l(0)|P2〉 =
δil
N
〈P2|χ̄ρ2(x)χσ2 (0)|P2〉. (36.75)

The matrix element on the right has the usual implicit color sum. These δil factors induce
a color trace on the soft Wilson lines. The color-averaged soft matrix element is called a
soft function. The Drell–Yan soft function is defined by

WDY (x) ≡ 1
N

tr〈Ω|Y †
n̄Y n(x)Y

†
nY n̄(0)|Ω〉, (36.76)

with tr denoting a color trace.
The collinear matrix elements are closely related to parton distribution functions. To

make the connection precise, we first multipole expand the collinear field:

〈P2|χ̄2(x) = 〈P2|
[
1 +

1
2
(n̄ · x)(n · ∂) +

1
2
(n · x)(n̄ · ∂) + x⊥ · ∂⊥ + · · ·

]
χ̄2(0).

(36.77)
The derivatives can then act as momentum operators on the proton state, pulling out factors
of the proton momentum. Now, the proton momentum is Pμ2 = E2n̄

μ +O(ΛQCD). Thus,
at leading power in ΛQCD

E , the n̄ · ∂ and ∂⊥ terms in this expansion can be dropped. Then
the series is resummed into

〈P2|χ̄2(x) ∼ 〈P2|χ̄1(x−), (36.78)

where xμ− ≡ 1
2 (n̄ · x)nμ. Moreover, we must have∫

dx−e−iq+x−〈P2|χ̄ρ2(x−)χσ2 (0)|P2〉 ∝ /̄n
σρ
, (36.79)

where dx− = 1√
2
d(n̄ ·x) and qμ+ = 1

2 (n · q)n̄μ. This proportionality follows from Lorentz
invariance, since the matrix element can only be proportional to the two 4-vectors around:
Pμ2 and qμ+, which are both proportional to n̄μ. To find the proportionality constant, we can
contract both sides with /nρσ. This gives∫

dx−e−iq+x−〈P2|χ̄ρ2(x−)χσ2 (0)|P2〉 =
/̄n
σρ

4

∫
dx−e−iq+x−〈P2|χ̄2(x−)

/n

2
χ2(0)|P2〉.

(36.80)
Finally, taking the inverse Fourier transform we can connect to the PDFs:

〈P2|χ̄2(x−)
/n

2
χ2(0)|P2〉 = (n · P2)

∫
dξ fq(ξ)ei

ξ
2(n̄·x)(n·P2), (36.81)

where fq coincides with the lightcone definition of the PDFs from Eq. (32.117):

fq(ξ) =
∫ ∞

−∞

dt

2π
e−itξ(n·P2)〈P2|ψ̄(tnμ)Wn(tnμ)

/n

2
W

†
n(0)ψ(0)|P2〉. (36.82)

Now we can put everything together. The γ-matrices combine into a Dirac trace:
Tr[γμ /̄nγμ/n] = −16. We also use n̄ · P1 = n · P2 =

√
s to find
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dσ

dM2
=

2α2Q2
q

3M2N
|C|2
∫

d3q

(2π)3 2q0

∫
dξ1 dξ2 fq(ξ1) fq(ξ2)

×
∫
d4x ei[

1
2 ξ1(n̄·P1)n

μ+ 1
2 ξ2(n·P2)n̄

μ−q]·xWDY(x). (36.83)

Here, C is the Wilson coefficient from matching between Jμ in QCD to Oμ in SCET. Our
normalization is such that C = 1 at leading order. You can calculate C and WDY(x) at
1-loop in Problem 36.6.

36.5.2 e+e− → dijets

Next we will discuss the factorization formula for e+e− → dijets. This is a crossing of
Drell–Yan, so up to some kinematic factors, the starting point is the same. Let kμ1 and kμ2
be the electron momenta, and qμ = kμ1 + kμ2 the total momentum. In the center-of-mass
frame, qμ =(Q, 0, 0, 0) with Q > 0. The cross section averaged over the incoming e+e−

spins is first written in terms of the current Jμ = ψ̄γμψ as (cf. Eq. (20.34))

σ = σ0
−2π
NQ2

∑
X

∫
dΠX(2π)4 δ4(q − pX) 〈Ω|Jμ(0)|X〉〈X|Jμ(0)|Ω〉, (36.84)

where σ0 = N
4πα2

e

3E2
CM

∑
q Q

2
q is the tree-level e+e− → hadrons cross section.

Again, we are ignoring the weak interactions for simplicity. The sum over
states includes a color and spin sum. To check the normalization, at tree-level
〈Ω|Jμ(0)|X〉〈X|Jμ(0)|Ω〉 = NTr[ /p1γ

μ /p2γ
μ] = −4NQ2, where pμ1 and pμ2 are the

momenta of the two outgoing quarks. Also, the inclusive integral over two-body phase
space is

∫
dΠX(2π)4 δ4(q − pX) = 1

8π (see Eqs. (5.29) or (20.A.85)). Thus we find
σ = σ0 at tree-level.

For dijet production, only certain hadronic final states |X〉 can contribute to this sum. To
be concrete, we consider the cross section when thrust is close to 1, so τ = 1−T 
 1. Let
nμ denote the thrust axis. As discussed in Section 36.1, in order to have τ 
 1, all of the
final state particles must either be collinear to nμ, collinear to n̄μ or soft. We denote states
in these regions of phase space as |X1〉, |X2〉 and |Xs〉 respectively. As shown at tree-level
in Sections 36.3 and 36.4, matrix elements with final states in this kinematical regime agree
with those from an effective theory with collinear sectors in the nμ and n̄μ directions and a
soft sector. The different sectors are completely decoupled from each other. In the effective
theory, the cross section is given by

σ = σ0
−2π
NQ2

∑
X

(2π)4 δ4(q − pX) 〈Ω|C�O†μ(0)|X〉〈X|COμ(0)|Ω〉, (36.85)

with the same operator as in Drell–Yan, given in Eq. (36.73) and C its Wilson coef-
ficient. In terms of the jet fields χn = W †

nψn defined in Eq. (36.44), the operator is
Oμ = χ̄1Y

†
nγ

μYn̄χ2.
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Since |X〉 = |X1;X2;Xs〉, the matrix elements factorize:

∑
X

〈Ω|O†μ|X〉〈X|Oμ|Ω〉 = Tr
[
γμ
/̄n

8
γμ
/n

8

] ∑
XsX1X2

tr
{
〈Ω|Y †

n̄Yn|Xs〉〈Xs|Y †
nYn̄|Ω〉

}
× 1
N

Tr{〈Ω|/̄nχ1|X1〉〈X1|χ̄1|Ω〉} ×
1
N

Tr{〈Ω|χ̄2|X2〉〈X2|/nχ2|Ω〉} , (36.86)

where Tr is a Dirac trace. To arrive at this form, simplifications have been applied following
the Drell–Yan example above: The collinear matrix elements are color diagonal, so we have
averaged over color. Also, the collinear scaling of the states |X1〉 and |X2〉 allowed us to
insert the /n and /̄n factors. Note that we did not need to talk about the scaling of x in this
case, since all the operators are evaluated at x = 0.

To further simplify the cross section, we use that qμ = pμX1
+ pμX2

+ pμXs . Since q ∼ λ0

is the hard scale, it fixes the only λ0 components, which are the large components of the
collinear fields: n̄ ·pX1 = n ·pX2 = Q. The⊥ components of the collinear momenta scale
as λ1. Thus, we must also have p⊥X1

= −p⊥X2
. Therefore, overall momentum conservation

amounts to

δ4(q − pX) = 2δ(Q− n̄ · pX1) δ(Q− n · pX2) δ
2
(
�p⊥X1

+ �p⊥X2

)
. (36.87)

Since the initial states are averaged over, the cross section cannot depend on the dijet
axis �n. Let us therefore choose �n to be at θ = φ = 0. We then compensate for omitting an
angular integral by adding a factor of 4πδ(θ)δ(φ) = πQ2δ2

(
p⊥X1

)
, where the Q2

4 comes
from |�pX1 | = Q

2 . Thus, with fixed �n, we substitute

δ4(q − pX) → 2πQ2δ(Q− n̄ · pX1) δ(Q− n · pX2) δ
2
(
�p⊥X1

)
δ2
(
�p⊥X2

)
. (36.88)

Next, we insert

1 =
∫
dr1n dr2n̄ δ(r1n − n · pX1) δ(r2n̄ − n̄ · pX2) (36.89)

to get

(2π)4 δ4(q − pX) → 2πQ2

(2π)4

∫
dr1n dr2n̄(2π)4

1
2
δ4(r1 − pX1)(2π)4

1
2
δ4(r2 − pX2) ,

(36.90)
where

rμ1 ≡
Q

2
nμ +

1
2
r1nn̄

μ and rμ2 ≡
1
2
Qn̄μ +

1
2
r2n̄n

μ. (36.91)

Noting that dr21 =(n̄ · r1)dr1n and dr22 =(n · r2) dr2n̄, we thus have

σ =σ0
1
16
H

∫
dr21 dr

2
2

∑
Xs

1
N

tr{〈Ω|Y †
n̄Yn|Xs〉〈Xs|Y †

nYn̄|Ω〉}

× 1
N

1
2π(n̄ · r1)

∫
d4x ei(r1−pX1)x tr{〈Ω|/̄nχ1|X1〉〈X1|χ̄1|Ω〉}

× 1
N

1
2π(n · r2)

∫
d4yei (r2−pX2)y tr{〈Ω|χ̄2|X2〉〈X2|/nχ2|Ω〉} , (36.92)



36.5 Soft-Collinear Effective Theory 801

with rμ1 and rμ2 the 4-vectors given in Eq. (36.91). H ≡|C|2 in this expression is called the
hard function.

To progress, we specialize to the calculation of thrust. As discussed in Section 36.1, if
τ = 1 − T 
 1, then τ ∼ τ1 where τ1 ≡ 1

Q2

(
p2
1 + p2

2

)
, with pμ1 and pμ2 defined as the

sums of the momenta of all particles going into the two hemispheres defined by the thrust
axis. All particles in |X1〉 go into hemisphere 1, all particles in |X2〉 go into hemisphere 2,
and soft particles in |Xs〉 can go either way. Let us write kμX1

s
for the sum of soft momenta

that go into hemisphere 1. From the power-counting discussion in Section 36.2, with λ =
1
Q2 p

2
X1
∼ τ in this case, the collinear and soft momenta scale as(

n · pX1 , n̄ · pX1 , p
⊥
X1

)
∼ Q
(
λ2, 1, λ

)
,
(
n · kX1

s
, n̄ · kX1

s
, k⊥X1

s

)
∼ Q
(
λ2, λ2, λ2

)
,

(36.93)

so that p2
X1
∼ λ2 and k2

1 ∼ λ4. Also pX1 · kX1
s
∼ 1

2 (n̄ · pX1)
(
n · kX1

s

)
∼ λ2. Thus, the

hemisphere-1 mass at leading power is

p2
X1

= (pμX1
+ kμX1

s
)2 ∼ p2

X1
+Q
(
n · kX1

s

)
= r21 +Q

(
n · kX1

s

)
. (36.94)

We have used that ri = pXi from the δ-functions in Eq. (36.90). Therefore,

Q2τ ∼ p2
X1

+ p2
X2
∼ r21 + r22 +Q

(
n · kX1

s

)
+Q
(
n̄ · kX2

s

)
. (36.95)

This equation implies that the observable of interest, τ , when small, reduces to a sum of
a contribution from each collinear sector plus a contribution from the soft sector, with no
interference.

To calculate the thrust distribution we insert two more integrals and two more
δ-functions into our cross section to get

dσ

dτ
= σ0H

∫
dr21 dr

2
2 dk1n dk2n̄δ

(
Q2τ − r21 − r22 −Qk1n −Qk2n̄

)
×
∑
Xs

1
N

tr
{
〈Ω
∣∣∣Y †
n̄Yn|Xs〉〈Xs|Y †

nYn̄

∣∣∣Ω〉} δ(k1n − n · kX1
s

)
δ
(
k2n̄ − n̄ · kX2

s

)
× 1
N

1
8π(n̄ · r1)

∫
d4x ei(r1−pX1)xtr{〈Ω‖/̄nχ1|X1〉〈X1|χ̄1|Ω〉}

× 1
N

1
8π(n · r2)

∫
d4y ei(r2−pX2)ytr{〈Ω|χ̄2|X2〉〈X2|/nχ2|Ω〉} . (36.96)

Now, when τ1 
 1, r1n and r2n must be small. Therefore rμ1 and rμ2 , as defined in
Eq. (36.91), must have collinear scaling. Thus, we can extend the sum over collinear states
|X1〉〈X1| and |X2〉〈X2| to sums over all states. This lets us write the cross section in terms
of a universal object called a jet function. The jet function in the nμ direction is defined as

J(pμ) ≡ 1
8πN(n · p)

∑
X

∫
d4 x eipxTr[〈Ω|χ̄n(x)|X〉〈X|/̄nχn(0)|Ω〉] . (36.97)

Here, Tr is a Dirac trace and the sum over colors is implicit. The normalization is set so
that J(pμ) = δ

(
p2
)

at leading order, as we show below. Since the sum over |X〉 in the jet
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function is complete, it can be written as the discontinuity (twice the imaginary part) of a
forward matrix element (see Section 24.1.2):

J(p2) =
1

8πNn · pDisc
{

Tr i
∫
d4x eipx〈Ω|T{χ̄n(x)/̄nχn(0)}|Ω〉

}
. (36.98)

By Lorentz invariance and invariance under rescaling of n̄, the jet function can only depend
on p2, as we have written. Physically, the jet function gives something close to the prob-
ability of finding a jet with invariant mass p2 (it is not exactly this probability since soft
radiation also contributes to jet masses). This same jet function appears in the factorization
formulas for many processes (for example, B → Xsγ, deep inelastic scattering and direct
photon production). Note that the jet function is only useful when evaluated at values of
p2 
 Q2 for some hard scale Q. Otherwise, extending the sum from collinear states to all
states induces uncontrolled subleading power contributions.

We also define the hemisphere soft function as

Shemi(k1n, k2n̄) ≡
∑
Xs

1
N

tr
{
〈Ω|Y †

n̄Yn|Xs〉〈Xs|Y †
nYn̄|Ω〉

}
× δ(k1n − n · kX1

s
)δ(k2n̄ − n̄ · kX2

s
) (36.99)

As with the collinear radiation, the scale at which the soft function is to be evaluated is
determined by the factorization formula. For τ1 
 1 it implies k1n 
 1 and k2n̄ 
 1.
Thus, we will extend the sum to include all rather than just soft states. The soft function
for thrust is related to the hemisphere soft function by

ST (k) =
∫ ∞

0

dk1n dk2n̄ Shemi(k1n, k2n̄) δ(k − k1n − k2n̄) . (36.100)

Putting everything together, the singular part of the thrust distribution can be calculated
in SCET by

1
σ0

(
d2σ

dτ

)
sing

= H

∫
dr21 dr

2
1 dk J(r21)J(r22)ST (k) δ(Q2τ−r21−r22−Qk). (36.101)

We will next compute the hard, jet and soft functions to order αs in perturbation theory
using SCET and check that the singular behavior of thrust is reproduced.

36.6 Thrust in SCET

Having set up the factorization formula for thrust in the dijet limit, we can now compute
the hard, jet and soft functions in perturbation theory. We will work to order αs, which
allows for leading-log resummation. All our calculations will be done in Feynman gauge.
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36.6.1 Hard function

The hard function is defined as H(Q) = |C(Q)|2. We compute C by matching Jμ to Oμ,
which can be done independently of the dijet observable we are interested in. The hard
function for dijet production is the same as for Drell–Yan and related to the hard function
for deep inelastic scattering by analytic continuation.

An example of matching was worked out in Section 31.3 for the 4-Fermi theory.
The procedure here is identical. The Wilson coefficient is computed from the difference
between radiative corrections to the current Jμ in QCD and to Oμ in SCET. We did
the hard work for this loop in Chapter 20 and applied it to QCD in Chapter 26. From
Eq. (20.A.101), replacing eR → −gs and adding the QCD color factor (see Section 26.3.1),
we have

MQCD = = CF
g2
s

2π2

(
4πe−γEμ2

Q2

)4−d
2
(
− 1
ε2
−

3
4 + iπ

2

ε
+

7π2

48
− 1− 3πi

8

)
.

(36.102)

There are also the wavefunction renormalization graphs and counterterm graphs which do
not have to be calculated, as we explain shortly.

In SCET, the loops are the virtual corrections to Oμ = ψ̄W1Ynγ
μY †

n̄W
†
2ψ in a

Lagrangian with decoupled fields LSCET = Lsoft + Ln + Ln̄. The virtual diagrams at
order αs have one of the following topologies:

H1 H2 H3 H4 H5 H6
(36.103)

In diagrams H2, H3 and H4, gluons with an endpoint on the operator vertex correspond
to terms coming from the expansion of the Wilson line. For example, expanding Yn and
Yn̄ gives factors of gs n·An·k and gs n̄·An̄·k respectively; these gluon fields can then be contracted
with a propagator from Lsoft generating diagram H4. Diagrams H5 and H6 are identical
to the wavefunction graphs in pure QCD. Thus they will cancel in the matching, which is
why we could ignore them inMQCD.

Since Ln and Ln̄ are completely decoupled, diagram H1 does not actually exist. In
diagram H2, the gluon must be an n̄-collinear gluon, and in diagram H3, the gluon
must be n-collinear. In diagram H4, each Wilson line (soft or collinear) gives a factor
of gs t·At·k for some lightlike 4-vector tμ. Since t · t = 0 the loop vanishes if the same
Wilson line produces both gluons. Since collinear sectors are decoupled, the only contri-
bution to H4 can therefore be from soft gluons, with one vertex from Yn̄ and the other
from Y †

n . Thus we need to compute H2 and H3 for collinear gluons and H4 for soft
gluons.
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Diagram H2 gives

iMH2 = = 2ig2
sCFμ

4−d
∫

ddk

(2π)d
n̄ ·(p− k)
(p− k)2

1
n̄ · k

1
k2

= 0. (36.104)

The integrand has to produce a Lorentz-invariant quantity of mass dimension d − 4. The
only Lorentz invariants around are p2, which is zero, and n̄ ·p. However, the integral is also
invariant under n̄μ → λn̄μ for any λ, thus it cannot be (n̄ · p)d−4. Thus it must vanish.

The soft graph is

iMH4 = = −ig2
sCFμ

4−d
∫

ddk

(2π)d
n · n̄

(n̄ · k)(n · k) k2
= 0. (36.105)

Now there is simply no quantity with any mass dimension on which the graph could
depend. Thus it also must vanish in dimension regularization.

The result is that all of the purely virtual graphs completely vanish in SCET in dimen-
sional regularization. This is a feature of SCET that is incredibly useful. The virtual graphs
can also be thought of as converting 1

εIR
poles into 1

εUV
poles. Since the IR singularities of

QCD are identical to those in SCET, the 1
εIR

poles must drop out of the matching.6 The 1
εUV

poles in both SCET and QCD are removed with counterterms in the respective theories.
Thus, in dimensional regularization with MS, we simply drop all virtual graphs and all 1

ε

poles of any sort. Thus, the Wilson coefficient can be read off from the virtual graph in
QCD. From Eq. (36.102) we find

C = 1 +
αs
4π
CF

(
−8 +

7π2

6
− 3πi− ln2Q

2

μ2
+(3 + 2πi) ln

Q2

μ2

)
+O
(
α2
s

)
(36.106)

and

H(Q,μ) = |C|2 = 1+
αs
4π
CF

(
−16 +

7π2

3
− 2 ln2Q

2

μ2
+ 6 ln

Q2

μ2

)
+ O
(
α2
s

)
. (36.107)

36.6.2 Jet function

The jet function is defined in Eq. (36.98). Pulling the /̄n out of the integral, it can be written
as

J
(
p2
)

=
1

8πNn̄ · pDisc
{
iTr
[
/̄nαβ

∫
d4x eipx〈Ω|T{χβ(0)χ̄α(x)} |Ω〉

]}
. (36.108)

The matrix element in this expression is the quark propagator. At leading order,

J
(
p2
)

= −
Tr
[
/̄n/p
]

8n̄ · p
1
π

{
2Im
[

1
p2 + iε

]}
= δ(p2), (36.109)

6 An important check on SCET is provided by using an IR regulator other than dimensional regularization. Then
one can see explicitly that the IR divergences of SCET and QCD match up. See for example [Manohar, 2003].
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where Eq. (24.25) has been used on the last step.
At order αs the jet function is easiest to compute with cut diagrams using the optical

theorem. There are eight possible cuts. Four cut the gluon and a quark:

J1 J2 J3 J4

and four cut just a quark

J5 J6 J7 J8

These last four diagrams put the massless quark on shell, so they give scaleless integrals
and vanish in dimensional regularization.

One fairly easy way to calculate the jet function is in lightcone gauge, n̄ · A = 0. In
lightcone gauge, the collinear Wilson line is W = 1 and so diagrams J1, J2 and J3
vanish. J4 is just the self-energy graph in QCD. Thus, the jet function is just the imaginary
part of the quark propagator in lightcone gauge. We leave this approach to the calculation
to Problem 36.5.

We will instead evaluate the graphs in Feynman gauge. In Feynman gauge, diagram J1
is proportional to n̄ · n̄ and hence vanishes. Diagram J2 (before the cut) gives

iMJ2 = = CF g
2
sμ

ε

∫
ddk

(2π)d
n̄μ

n̄ · k
−i

k2 + iε

i
(
/p− /k
)

(p− k)2 + iε
iγμ

i/p

p2 + iε
.

(36.110)

Following the cutting rules in Section 24.1.2, we compute the discontinuity by replacing
1

p2+iε → (−2πi)δ(p2) for the cut lines and summing over spins. After some algebra, this
results in

Disc{iMJ2} =
αs
2
CF (n̄ · p) 1

p2

(
4πμ2

p2

)ε Γ(2− ε) Γ(−ε)
Γ(1− ε) Γ(2− 2ε)

. (36.111)

Diagram J3 gives the same answer with n↔ n̄. Graph J4 is computed similarly, giving

Disc{iMJ4} =
αs
2
CF(n̄ · p)

1
p2

(
4πμ2

p2

)ε
(1− ε) Γ(2− ε)

Γ(3− 2ε)
. (36.112)

Summing diagrams J1 to J4 and the leading order result gives

Jn(p) = δ
(
p2
)

+
αs
2π
CF

1
p2

(
4πμ2

p2

)ε[
2

Γ(2− ε) Γ(−ε)
Γ(1− ε) Γ(2− 2ε)

+(1− ε) Γ(2− ε)
Γ(3− 2ε)

]
.

(36.113)
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To expand this in ε we can use the identity(
μ2
)ε

(p2)1+ε
= −1

ε
δ
(
p2
)

+
[

1
p2

]
�

− ε

⎡⎣ ln p2

μ2

p2

⎤⎦
�

+ · · · , (36.114)

where the �-distribution is a generalization of a +-distribution for dimensional variables.
�-distributions satisfy∫ μ2

0

dp2
[
f
(
p2
)]
�
g
(
p2
)

=
∫ μ2

0

dp2f
(
p2
)[
g
(
p2
)
− g(0)
]

(36.115)

and
[
f
(
p2
)]
�

= f
(
p2
)

for p2 > 0. We then find

J
(
p2
)

= δ
(
p2
)

+ CF
αs
4π

⎧⎨⎩δ(p2
)( 4

ε2
+

3
ε

+ 7− π2

)
−
[

3
p2

]
�

− 4

⎡⎣ 1
ε − ln p2

μ2

p2

⎤⎦
�

⎫⎬⎭ .
(36.116)

Since the jet function is an inclusive cross section at fixed p2, it should be IR finite. Thus,
the 1

ε and 1
ε2 IR divergences in Eq. (36.116) must be exactly canceled by the virtual graphs.

We have not computed the virtual graphs (diagrams J5 through J8), since they vanish
exactly in dimensional regularization. If one were to separate the UV from IR singularities,
these virtual graphs would have to give 1

ε2IR
− 1
ε2UV

terms with coefficients to precisely cancel

the IR divergences in Eq. (36.116). Thus, adding the virtual graphs simply converts all 1
ε

and 1
ε2 divergences to UV divergences. These UV divergences are then removed with MS

counterterms, just as in the hard function calculation. The result is that

J
(
p2
)

= δ
(
p2
)

+ CF
αs
4π

⎧⎨⎩δ(p2
)(

7− π2
)

+

⎡⎣−3 + 4 ln p2

μ2

p2

⎤⎦
�

⎫⎬⎭+O
(
α2
s

)
. (36.117)

36.6.3 Soft function

The soft function is S(k1, k2) = δ(k1) δ(k2) at zeroth order. This is simply because no
radiation is emitted so the total soft momentum going into each hemisphere is zero. At
next-to-leading order, the soft function is an integral over real emission graphs summed
over gluon polarizations. We write

Shemi(k1, k2) ∼
∫
dΠk

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
2

. (36.118)

The diagrams are meant to indicate emissions from the Yn and Yn̄ Wilson lines (as dia-
grams H2,H3 and H4 in Eq. (36.103)). To distinguish which Wilson line the gluons are
coming from, we draw the diagrams as we would in full QCD. Using Wilson lines instead
of the full QCD Feynman rules is equivalent to taking the soft limit before the diagrams
are evaluated.
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There is only one sector of soft gluons, thus either emission in Eq. (36.118) can go into
either hemisphere. In Feynman gauge the terms that come from the square of one diagram
are proportional to n · n = 0 or n̄ · n̄ = 0. Thus, we only need to evaluate the cross term.
We find

Shemi(k1, k2) = −g2
sCFμ

4−d
∫

dd−1k

(2π)d−1

n̄ · n
(n · k)(n̄ · k)

×[δ(k1 − n · k) θ(n̄ · k − n · k) +(k2 − n̄ · k) θ(n · k − n̄ · k)]

= CF
αs
π

μ2ε

εΓ(1− ε)

[
θ(k2)
k1+2ε
2

δ(k1) +
θ(k1)
k1+2ε
1

δ(k2)
]
. (36.119)

We then expand near ε = 0 using Eq. (36.114). Including the leading-order result, the
hemisphere soft function to order αs is

Shemi(k1, k2) = δ(k1) δ(k2)
[
1 + CF

αs
4π

(
π2

3

)]
− 8CF

αs
4π

{[
ln k1

μ

k1

]
�

δ(k2) +

[
ln k2

μ

k2

]
�

δ(k1)

}
. (36.120)

The thrust soft function is then

ST (k) =
∫ ∞

0

dk′Shemi(k′, k − k′)

= δ(k)
[
1 + CF

αs
4π

(
π2

3

)]
− 16CF

αs
4π

[
ln k

μ

k

]
�

+O
(
α2
s

)
. (36.121)

36.6.4 Singular part of thrust

Now let us put everything together to show that SCET reproduces the singular terms in
the thrust distribution as τ → 0. Plugging Eqs. (36.107), (36.117) and (36.121) into Eq.
(36.101) we get

1
σ0

(
dσ

dτ

)
sing

= δ(τ) + CF
αs
2π

{
δ(τ)
(
π2

3
− 1
)
− 3
[

1
τ

]
+

− 4
[
ln τ
τ

]
+

}
, (36.122)

in perfect agreement with Eq. (36.8). Note that the μ dependence exactly drops out of this
expression.

36.6.5 Resummed thrust

To resum the singular parts of the thrust distribution, we need to calculate and solve the
renormalization group equations for the hard jet and soft functions. These RGEs are easiest
to derive by differentiating the fixed-order expressions with respect to μ. Taking the μ-
derivative of the hard function in Eq. (36.107) gives

μ
dH

dμ
=
αs(μ)

4π
CF

(
8 ln

Q2

μ2
− 12
)
H +O

(
α2
s

)
. (36.123)
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The solution to this RGE is

H(Q,μ) = H(Q,μh) exp
(

4S(μh, μ)− 2AH(μh, μ)− 2AΓ(μh, μ) ln
Q2

μ2
h

)
, (36.124)

where

AH(ν, μ) = −
∫ αs(μ)

αs(ν)

dα
γH(α)
β(α)

(36.125)

and

S(ν, μ) = −CF
∫ αs(μ)

αs(ν)

dα
γcusp(α)
β(α)

∫ α
αs(ν)

dα′

β(α′)
, (36.126)

with γH(α) = −6CF α
4π +O

(
α2
)

and γcusp (α) = α
π . AΓ(ν, μ) is defined as AH(ν, μ) but

with CF γcusp(α) replacing γH(α). You can verify that Eq. (36.124) solves Eq. (36.123)
and work out closed-form expressions for S[(ν, μ) and AH(ν, μ) in Problem 36.8.

The RGEs for the jet and soft functions are non-local, like the RGEs for parton
distribution functions. The jet function RGE is

μ
dJ
(
p2, μ
)

dμ
=
αs(μ)

4π
CF

[(
−8 ln

p2

μ2
+ 6
)
J
(
p2, μ
)

+ 8
∫ p2

0

dq2
J
(
p2, μ
)
− J
(
q2, μ
)

p2 − q2

]
.

(36.127)

One can check by direct substitution that the O(αs) jet function in Eq. (36.117) satisfies
this RGE. The RGE can be solved through the Laplace transform, as you can explore in
Problem 36.7. The result is

J(Q,μ) = e−4S(μj ,μ)+2AJ(μj ,μ)j̃(∂η, μj)
1
p2

(
p2

μ2
j

)η
e−γEη

Γ(η)

∣∣∣∣∣
η→2AΓ(μj ,μ)

, (36.128)

where

j̃(∂η, μj) = 1 + CF
αs(μ)

4π

(
2∂2
η − 3∂η + 7− 2π2

3

)
+O
(
α2
s

)
(36.129)

and AJ is defined as in Eq. (36.125) but with γJ(α) = −3CF α
4π +O

(
α2
)

replacing γH .
The thrust soft function satisfies

μ
dST (k, μ)

dμ
=
αs(μ)

4π
16CF

[
ln
k

μ
S(k, μ)−

∫ k
0

dk′
ST (k, μ)− ST (k′, μ)

k − k′

]
, (36.130)

with solution

ST (k, μ) = e4S(μs,μ)+2AS(μs,μ)s̃T (∂η, μs)
1
k

(
k

μs

)η
e−γEη

Γ(η)

∣∣∣∣
η=−4AΓ(μs,μ)

, (36.131)

where

s̃T (∂η, μ) = 1 + CF
αs(μ)

4π
(
−8∂2

η − π2
)

+O
(
α2
s

)
. (36.132)
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The thrust distribution resummed with SCET compared to data from LEP at Q = 91.2 GeV.
Here NNNLL+NNLO means the resummation is performed at the
next-to-next-to-next-to-leading logarithmic level and the non-singular distribution is
calculated exactly at next-to-next-to-leading order, O(α3

s

)
, in perturbative QCD. The

agreement with data is excellent for 1 − T > 0.1 or so. For lower values of 1 − T ,
hadronization effects become important.

�Fig. 36.3

The resummed hard, jet and soft functions can be combined and simplified to

1
σ0

dσ

dτ
=

1
τ

exp[4S(μh, μj) + 4S(μs, μj)− 2AH(μh, μs) + 4AJ(μj , μs)]

×
(
Q2

μ2
h

)−2AΓ(μh,μj)

H
(
Q2, μh
)

×
[
j̃

(
ln
μsQ

μ2
j

+ ∂η, μj

)]2
s̃T (∂η, μs)

[(
τQ

μs

)η
e−γEη

Γ(η)

]
η=4AΓ(μj ,μs)

.

(36.133)

This final expression is manifestly independent of μ. Instead, it depends on μh, μj and μs.
These three scales should be chosen as the characteristic scales associated with hard, jet
and soft degrees of freedom. More precisely, one can see from the various combinations
appearing in this expression that μh = Q, μs = τQ, and μj =

√
μsQ =

√
τQ are natural

choices. Choosing these scales gives

1
σ0

dσ

dτ
=

1
τ

exp
[
4S
(
Q,
√
τQ
)

+ 4S(τQ,
√
τQ)− 2AH(Q, τQ) + 4AJ (

√
τQ, τQ)

]
×H(Q2, Q2)

[
j̃
(
∂η,
√
τQ
)]2

s̃T (∂η, τQ)
e−γEη

Γ(η)

∣∣∣∣
η=4AΓ(√τQ,τQ)

. (36.134)
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To compare to data, one should add to this distribution the non-singular part of the thrust
distribution computed at fixed order in perturbative QCD. The non-singular distribution is
currently known at O(α4

s), called NNLO.
Plots of the thrust distribution computed in SCET, resummed, and supplemented with

the non-singular distribution from perturbative QCD are shown in Figure 36.3. The resum-
mation is critical to providing qualitative agreement with the data. For small values of τ
the soft scale becomes comparable to hadron masses and then hadronization can no longer
be ignored. Since μs = τQ this happens for τ � mp

Q ∼ 0.1. One can see the importance
of these hadronization corrections directly in Figure 36.3. For values of τ � 0.1 the quan-
titative agreement with data is excellent. While power corrections can also be treated with
effective field theory, they are beyond our scope.

Problems

36.1 Show that in the dijet region τ ≈ τ1. In particular, show that the singular terms in
dσ
dτ are the same as the singular terms in dσ

dτ!
for any number of particles.

36.2 Collinear factorization.
(a) Show that the collinear factorization in Eq. (36.51) holds for multiple emissions

in scalar QED.
(b) Show that the collinear factorization in Eq. (36.43) holds for multiple emissions

in QCD.
36.3 Calculate the g → gg splitting function from the matrix element of gluon jet fields

following the approach in Section 36.4.2. Average over azimuthal angle, you should

find Pgg = 2CA
[

z
1−z + 1−z

z + z(1− z)
]
, as in Eq. (32.54).

36.4 Show soft-collinear factorization at leading power for two emissions in scalar QED.
That is, show that

〈Ω|φ�1φ2|p1p2; q; k〉 ∼ 〈Ω|φ�1W1|p1; q〉〈Ω|W †
2φ2|p2〉〈Ω|Y1Y

†
2 |k〉, (36.135)

where pμ1 and pμ2 are the momenta of the scalars, kμ is the momentum of a soft
photon and q is the momentum of a photon collinear to p1.

36.5 Calculate the quark self-energy graph at 1-loop in lightcone gauge. Show that the
imaginary part gives the same jet function as computed in Section 36.6.2.

36.6 Threshold Drell–Yan.
(a) Show that near partonic threshold, the Drell–Yan cross section can be written as

dσ

dM2
=

4πα2Q2
q

3NM2
√
s
|C|2
∫
dξ1
ξ1

dξ2
ξ2
f(ξ1) f(ξ2) ŴDY

(√
s(1− z)

)
, (36.136)

where

ŴDY(ω) =
∫

dt

4π
e
i
2ωx

0
WDY

(
x0,�0
)
. (36.137)

(b) Compute the Wilson coefficient C for Oμ in Eq. (36.73) at order αs.
(c) Calculate WDY(x) and ŴDY(ω) to 1-loop.
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36.7 Laplace transforms are extremely useful for solving RGEs in SCET. We define the
Laplace transform of a function f(τ) as

f̃(ν) ≡
∫ ∞

0

dτe−ντf(τ). (36.138)

(a) Show that the cross section in Eq. (36.101) simplifies to

σ̃(ν) = Hj̃(ν)2s̃T (ν) (36.139)

in Laplace space.
(b) Show that the RGE for the jet function in Eq. (36.127) simplifies to

μ
d

dμ
j̃(ν, μ) = αs(μ)

[
−2ΓJ ln

Q2

eγEνμ2
− 2γJ

]
j̃(ν, μ) . (36.140)

What are ΓJ and γJ? Find a similar RGE for the Laplace-transformed soft
function.

(c) Solve the RGE for the jet function in Laplace space and show that the result, in
position space, is as in Eq. (36.128).

36.8 Sukakov RGEs.
(a) Verify that Eq. (36.124) solves Eq. (36.123).
(b) Show that the function S(ν, μ) in Eq. (36.126) has the expansion

S(ν, μ) =
πCF

β2
0αs(ν)

{
1− αs(μ)

αs(ν)
− ln

αs(μ)
αs(ν)

+O(αs)
}
. (36.141)

(c) Find a similar expansion for AH(ν, μ).
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Appendix A Conventions A

A.1 Dimensional analysis

In relativistic quantum field theory, it is standard to set

c = 2.998× 108meters/second = 1, (A.1)

which turns meters into seconds and

� =
h

2π
= 1.054 572× 10−34 joules · seconds = 1, (A.2)

which turns joules into inverse seconds. This gives all quantities dimensions of energy
(or mass, using E = mc2) to some power. Quantities with positive mass dimension (e.g.
momentum p) can be thought of as energies, and quantities with negative mass dimension
(e.g. position x) can be thought of as lengths.

Sometimes we write the mass dimension of a quantity with brackets, as in
[p] =
[

1
x

]
= 1, meaning these quantities have mass dimension 1. Other examples are

[dx] = [x] = [t] = −1, (A.3)

[∂μ] = [pμ] = 1, (A.4)

[velocity] =
[x
t

]
= [x]− [t] = 0. (A.5)

Thus,

[d4x] = −4. (A.6)

The action should be a dimensionless quantity:

[S] =
[∫

d4xL
]

= 0. (A.7)

So Lagrangians (really, Lagrangian densities) have dimension 4:

[L] = 4. (A.8)

For example, a free scalar field has Lagrangian L = 1
2 (∂μφ)(∂μφ) so

[φ] = 1, (A.9)

and so on. In general, bosons (whose kinetic terms have two derivatives) have mass dimen-
sion 1 and fermions (whose kinetic terms have one derivative) have mass dimension 3

2 .
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You can always put the � and c factors back by dimensional analysis. For example, a
cross section has units of area, which might be measured in picobarns (pb):1

1 picobarn = 10−40 meters2. (A.10)

A quantum field theory calculation might produce σ = 1
m2
P
∼ 1

GeV2 , where

1 gigaelectronvolt = 1.602× 10−10 joules. (A.11)

So we need a combination of � and c that converts GeV−2 into area. The unique answer is
�2c2 = 9.996× 10−52 joules2 ·meters2. Thus,

1
GeV2 �2c2 = 3.894× 10−32 meters2 = 3.894× 108 picobarns, (A.12)

which is a useful conversion factor.

A.1.1 Factors of 2π

Keeping the factors of 2π straight is important. The origin of all the 2π’s is the relation

δ(x) =
∫ ∞

−∞
dp e±2πipx. (A.13)

This identity holds with either sign; our sign convention for quantum fields is discussed
below. To remove the 2π from the exponent, we can rescale either x or p. We rescale p.
Then ∫ ∞

−∞
dp e±ipx = 2π δ(x). (A.14)

Our convention for the Fourier transform is

f(x) =
∫

d4p

(2π)4
f̃(p)e−ipx ↔ f̃(p) =

∫
d4x f(x)eipx. (A.15)

In general, momentum space integrals will have 1
2π factors while position space integrals

have no 2π factors. Thus, you should get used to writing d4p
(2π)4 in momentum space inte-

grals. Although physical quantities do not care about our 2π convention, the factors of 2π
have important physical effects. Our Fourier transform convention is consistent with

pμ ↔ i∂μ, (A.16)

which has spatial components �p↔ −i�∇, as in quantum mechanics.

1 The origin of the term barn comes from the fact that inducing nuclear fission by hitting 235U with neutrons is
as easy as hitting the broad side of a barn. The inelastic neutron–235U scattering cross section is around 1 barn
= 10−28m2 at E ∼ 1 MeV.
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A.2 Signs

Although the meat of most calculations is independent of the signs, physical results are
very dependent on getting the sign right. Here we tabulate some of the signs in important
equations.

First, we will never use curved-space backgrounds, so the metric gμν and the Minkowski
metric ημν are interchangeable. The metric we use has sign convention

gμν = ημν =

⎛⎜⎜⎝
1
−1

−1
−1

⎞⎟⎟⎠ . (A.17)

This convention makes p2 = p 2
0 − �p 2 = m2 > 0. The alternative, g = diag(−1, 1, 1, 1) ,

makes p2 < 0.
The signs of kinetic terms in Lagrangians are set so that the total energy is positive

(see Sections 8.2 and 12.5). It is easiest to remember the signs by writing the Lagrangian
as L = Lkin − V , where V is the potential energy, which should be positive in a stable
system. For example, for a scalar field, the mass term 1

2m
2φ2 should give positive energy,

so V = 1
2m

2φ2 and L = − 1
2m

2φ2. The kinetic term sign can then be recalled from
p2 → −� = −∂2

μ in Fourier space and p2 = m2 on-shell, so that the equations of motion
should be

(
� +m2

)
φ = 0. Therefore, we have

L = −1
2
φ
(
� +m2

)
φ =

1
2
(∂μφ)(∂μφ)− 1

2
m2φ2. (A.18)

The factor of 1
2 makes the kinetic term contribute

(
� +m2

)
φ to the equations of motion

(instead of 2
(
� +m2

)
φ). For a complex scalar, the Lagrangian is

L = −φ�
(
� +m2

)
φ =(∂μφ�)(∂μφ)−m2φ�φ (A.19)

without the 1
2 , since now variation with respect to φ� will give

(
� +m2

)
φ.

For gauge bosons, the Lagrangian is

L = −1
4
F 2
μν = −1

2
∂μAν∂μAν +

1
2
∂μAν∂νAμ =

1
2
Aν�Aν −

1
2
Aμ(∂μ∂ν)Aν , (A.20)

where Fμν = ∂μAν − ∂νAμ. In this equation and many others we employ the modern
summation convention under which contracted indices can be raised or lowered with-
out ambiguity: x · p = xμpμ = xμp

μ = xμpμ. All of these contractions are equal to
gμνxμpν = gμνx

μpν . The sign and normalization of the − 1
4 factor in Eq. (A.20) can be

understood as follows. In Lorenz gauge ∂μAμ = 0 the Lagrangian is just L = 1
2Aν�Aν =

1
2A0�A0− 1

2
�A� �A. This gives the three spatial components �A, which actually contain the

propagating transverse degrees of freedom, the same kinetic terms as for scalars. (That the
scalar component A0 with the wrong sign is not problematic is explained in Section 8.2.)

Dirac fermions are normalized so that

L = ψ̄
(
i/∂ − e /A−m

)
ψ, (A.21)
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where /∂ = γμ∂μ and /A = γμAμ. As in the scalar case, the −mψ̄ψ is fixed so that the
corresponding energy density is positive.

The covariant derivative in a non-Abelian gauge theory is

Dμ = ∂μ − igT aRAaμ, (A.22)

with T aR the generators in the appropriate representation. Normalization conventions for
these generators are discussed in Section 25.1. We write tr for a sum over group genera-
tors or a sum over states, while Tr is used exclusively to denote a Dirac trace. For QED,
Dμ = ∂μ − ieQAμ, where e is the strength of the electromagnetic force (e = 0.303 in
dimensionless units) and Q is a particle’s electric charge (its U(1) quantum number). The
electron is defined to have Q = −1, which leads to

Dμψe = (∂μ + ieAμ)ψe. (A.23)

We use this simple form of the covariant derivative throughout Parts II and III.
The Feynman propagators in our conventions are

〈0|T{φ(x)φ(y)}|0〉 =
∫

d4p

(2π)4
eip(x−y)

i

p2 −m2 + iε
(A.24)

for a real scalar and

〈0|T{Aμ(x)Aν(y)}|0〉 =
∫

d4p

(2π)4
eip(x−y)

−i(gμν − (1− ξ)p
μpν

p2 )

p2 + iε
(A.25)

for a massless spin-1 field in covariant gauges. The −i in the photon propagator versus the
+i in the scalar propagator is the same sign difference as in L = − 1

2φ�φ + 1
2Aν�Aν .

The Dirac fermion propagator is

〈0|T
{
ψ(x)ψ̄(y)

}
|0〉 =
∫

d4p

(2π)4
e−ip(x−y)

i

/p−m+ iε
=
∫

d4p

(2π)4
e−ip(x−y)

i(/p+m)
p2 −m2 + iε

.

(A.26)

It is conventional to write ψ(x)ψ̄(y) = ψ(x)αψ̄(y)β instead of ψ̄(x)ψ(y) so one is not
tempted to mistake the spinors as being contracted. ψ(x)ψ̄(y) is a matrix in spinor space,
just as �v �wT is a matrix.

When we expand fields in terms of creation and annihilation operators, we write for a
single real scalar field

φ(x) =
∫

d3p

(2π)3
1√
2ωp

[
ap(t)ei�p�x + a†p(t)e

−i�p�x] , (A.27)

where ωp ≡
√
�p 2 +m2. Including the free-field time dependence and generalizing to the

complex case, this becomes

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(
ape

−ipx + b†pe
ipx
)
, (A.28)

φ�(x) =
∫

d3p

(2π)3
1√
2ωp

(
a†pe

ipx + bpe
−ipx) . (A.29)
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Similarly, we take

ψ(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
aspu

s
pe

−ipx + bs†p v
s
pe
ipx
)
, (A.30)

ψ̄(x) =
∑
s

∫
d3p

(2π)3
1√
2ωp

(
as†p ū

s
pe
ipx + bspv̄

s
pe

−ipx) . (A.31)

The sign of the phases follows from a(t) = e−iωta(0) for annihilation operators by
Heisenberg’s equations of motion in any simple harmonic oscillator.

A.3 Feynman rules

The conventions for the Feynman rules follow from the sign conventions above. How the
rules are derived is described in Chapter 7. The Feynman rules for various theories covered
in the text are given in the appropriate chapter.

For scalar QED, the Feynman rules can be found in Section 9.2, for QED in Section 13.1,
for QCD in Section 26.1, for the electroweak theory in Section 29.1, for background fields
in Section 34.3.2 and for heavy-quark effective theory in Section 35.2. The notation for
various symbols appearing in diagrams throughout the book is shown in Table A.1.

Table A.1 Symbols appearing in Feynman diagrams.

Symbol Meaning Symbol Meaning
generic particle fermion

scalar charged scalar

photon or Z boson ghost

gluon W boson

graviton heavy quark

background field counterterm

operator or current generic amplitude

1PI all one-particle irreducible
contributions

alternative generic amplitude
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A.4 Dirac algebra

The Dirac matrices satsify {γμ, γν} = 2gμν . We define

γ5 ≡ iγ0γ1γ2γ3, (A.32)

which leads to
{
γ5, γμ
}

= 0. We also define

σμν =
i

2
[γμ, γν ] . (A.33)

Some useful identities are

gμνgμν = 4, (A.34)

γμγμ = 4, (A.35)

γμγνγμ = −2γν , (A.36)

γμγνγργμ = 4gνρ, (A.37)

γμγνγργσγμ = −2γσγργν . (A.38)

Some useful trace identities are

Tr[γ5] = Tr[γμ] = Tr[γμγαγν ] = Tr[odd # of γ-matrices] = 0, (A.39)

and

Tr[γμγν ] = 4gμν , (A.40)

Tr[γαγμγβγν ] = 4(gαμgβν − gαβgμν + gανgμβ), (A.41)

Tr
[
γμγνγργσγ5

]
= −4iεμναβ . (A.42)

The projectors are

PL =
1− γ5

2
, PR =

1 + γ5

2
, (A.43)

so that left-handed fields satisfy γ5ψL = −ψL and right-handed fields satisfy γ5ψR = ψR.
A Dirac spinor in the

(
1
2 , 0
)
⊕
(
0, 1

2

)
representation is written with the left-handed spinor

on top:

ψ =
(
ψL
ψR

)
. (A.44)

Spinor sums are, for particles,

2∑
s=1

us(p)ūs(p) = /p+m (A.45)

and for antiparticles,
2∑
s=1

vs(p)v̄s(p) = /p−m. (A.46)
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Also,

ūσ(p)γμuσ′(p) = 2δσσ′pμ (A.47)

is occasionally useful. Left- and right-handed photon polarizations (circularly polarized
light) are

εμL =
1√
2
(0, 1,−i, 0), εμR =

1√
2
(0, 1, i, 0). (A.48)

These polarization vectors are consistent with Eq. (A.43) and the representations of the
Lorentz group discussed in Chapter 17.

Some other useful identities are

/D
2 = D2

μ +
e

2
Fμνσ

μν (A.49)

and

(σμνFμν)2 = 2F 2
μν + 2iγ5FμνF̃μν , (A.50)

where

F̃μν ≡ 1
2
εμναβFαβ . (A.51)

Problems

A.1 Dimensional analysis.
(a) A photon coupled to a complex scalar field in d dimensions has action

S =
∫
ddx

[
−1

4
F 2
μν − φ��φ+ gAμφ

�∂μφ+ λφ3 + · · ·
]
, (A.52)

whereFμν=(∂μAν−∂νAμ) and � = ∂μ∂μ as always, but now μ = 0, 1, · · · , d−1.
What are the mass dimensions of Aμ, φ, g and λ (as functions of d)?

(b) An interaction is said to be renormalizable if its coupling constant is dimension-
less. In what dimension d is the electromagnetic interaction renormalizable? How
about the φ3 interaction?
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B.1 Integration parameters

To evaluate loop integrals in quantum field theory, it is often helpful to introduce Feynman
or Schwinger parameters.

B.1.1 Feynman parameters

Feynman parameters are based on a number of easily verifiable mathematical identities.
The simplest is

1
AB

=
∫ 1

0

dx
1

[A+ (B −A)x]2
=
∫ 1

0

dx dy δ(x+ y − 1)
1

[xA+ yB]2
. (B.1)

Other useful identities are

1
ABn

=
∫ 1

0

dx dy δ(x+ y − 1)
nyn−1

[xA+ yB]n+1
, (B.2)

1
ABC

=
∫ 1

0

dx dy dz δ(x+ y + z − 1)
2

[xA+ yB + zC]3
. (B.3)

These are useful because they let us complete the square in the denominator. For example,∫
d4k

(2π)4
1
k2

1
(k − p)2 =

∫
d4k

(2π)4

∫ 1

0

dx
1

[k2 + x((k − p)2 − k2)]2

=
∫ 1

0

dx

∫
d4k

(2π)4
1

[(k − xp)2 −Δ]2
, (B.4)

where Δ = −p2x(1 − x). Then we can shift k → k + xp leaving an integral that only
depends on k2.

B.1.2 Schwinger parameters

Another useful set of integration parameters are called Schwinger parameters. They are
based on the following mathematical identities, which hold when Im(A) > 0:

i

A
=
∫ ∞

0

ds eisA, (B.5)
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[
i

A

]2
=
∫ ∞

0

s ds eisA. (B.6)

You can derive further identities by taking additional derivatives with respect to A. Also,
Eq. (B.5) implies

1
AB

= −
∫ ∞

0

ds

∫ ∞

0

dt eisA+itB (B.7)

when Im(A) > 0 and Im(B) > 0 (i.e. with Feynman propagators). These Schwinger
parameters s and t have a nice physical interpretation: s and t are the proper times of the
particles as they travel along their paths in the Feynman graph. This Schwinger proper-time
interpretation is discussed in Chapter 32.

Note that writing s+t = τ and x = t
s+t , or t = xτ and s = (1−x)τ , Eq.(B.7) becomes

1
AB

= −
∫ ∞

0

τ dτ

∫ 1

0

dx eiτ(A+(B−A)x)

=
∫ 1

0

dx
1

[A+ (B −A)x]2
. (B.8)

So the Feynman parameter x also has an interpretation, as the relative proper time s
s+t of

the two particles in the loop.
Other useful related identities are

1
AnBm

=
Γ(n+m)
Γ(n) Γ(m)

∫ ∞

0

ds
sm−1

(A+Bs)n+m , (B.9)

1
AB

=
∫ ∞

0

ds
1

(A+Bs)2
. (B.10)

Schwinger parameters are used in Chapters 34 and 35.

B.2 Wick rotations

After introducing Feynman parameters and completing the square, one is often left with an
integral over a loop momentum kμ in Minkowski space. Once the iε factors are put in for
Feynman propagators, 1-loop integrals often appear as∫

d4k

(2π)4
1

(k2 −Δ + iε)n
. (B.11)

Assuming Δ > 0 (you can check that Wick rotation still works for Δ < 0 in Problem B.1),

this integral has poles at k0 =
√
�k2 + Δ−iε and k0 = −

√
�k2 + Δ+iε, as shown in Figure

B.1. Since the poles are in the top-left and bottom-right quadrants of the k0 complex plane,
the integral over the figure-eight contour shown vanishes. Thus, the integrals over the real
axis and the imaginary axis are equal and opposite. Therefore, we can substitute k0 → ik0

so that k2 → −k2
0 − �k2 = −k2

E , where k2
E = k2

0 + �k2 is the Euclidean momentum. This



824 Regularization

k0

Re(k0)

Im(k0)

√
�k2 + Δ − iε

−
√
�k2 + Δ + iε

�Fig. B.1 Wick rotations. Poles in integrations over Feynman propagators often have poles at at

k0 = ±
√
�k2 + Δ ∓ iε. Integrating over the real axis is then equivalent to integrating over

the imaginary axis.

is known as a Wick rotation. After the Wick rotation, the iε will no longer play a role and
we can just set ε = 0.

Once Wick-rotated, the integrals are evaluated in a straightforward way. We will need
the formula for the surface area of the Euclidean 4-sphere:

∫
dΩ4 = 2π2. Using this, we

find ∫
d4kE
(2π)4

f(k2
E) =

1
16π4

∫
dΩ4

∫ ∞

0

k3
E dkE f(k2

E) =
1

8π2

∫ ∞

0

k3
E dkE f(k2

E).

(B.12)
Then, for example, Eq. (B.11) with n = 3 is evaluated as∫

d4k

(2π)4
1

(k2 −Δ + iε)3
= i

∫
d4kE
(2π)4

1
(−k2

E −Δ)3

= (−1)3
i

8π2

∫ ∞

0

dkE
k3
E

(k2
E + Δ)3

=
−i

32π2Δ
. (B.13)

Other useful formulas following from Wick rotations are∫
d4k

(2π)4
k2

(k2 −Δ + iε)4
=

−i
48π2

1
Δ
, (B.14)∫

d4k

(2π)4
1

(k2 −Δ + iε)r
= i

(−1)r

(4π)2
1

(r − 1)(r − 2)
1

Δ(r−2)
, r > 2, (B.15)∫

d4k

(2π)4
k2

(k2 −Δ + iε)r
= i

(−1)r−1

(4π)2
2

(r − 1)(r − 2)(r − 3)
1

Δ(r−3)
, r > 3, (B.16)

and so on.
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Keep in mind that the Wick rotation is just a trick for evaluating integrals. There is
nothing physical about it. In addition, note that the Wick rotation can only be justified if
there are no new poles that invalidate the contour rotation. This caveat is only relevant for
2-loop and higher integrals, which we will not encounter.

B.3 Dimensional regularization

The most important regularization scheme for modern applications is dimensional regular-
ization [’t Hooft and Veltman, 1972]. The key observation is that an integral such as∫

ddk

(2π)d
1

(k2 −Δ + iε)2
(B.17)

is divergent only if d ≥ 4. If d < 4, then it will converge. If it is convergent we can
Wick rotate, and the answer comes from analytically continuing all our formulas above to
d dimensions.

B.3.1 Spinor algebra

In d dimensions, the metric is

gμν = diag(1,−1,−1, · · · ,−1) , (B.18)

which means that there is exactly one timelike dimension in even non-integer d. This metric
satisfies

gμνgμν = d. (B.19)

The Lorentz-invariant phase space is

dΠLIPS ≡ (2π)d
∏

final states j

dd−1pj
(2π)d−1

1
2Epj

δd(Σp). (B.20)

We can define spinor algebra to work the same way in d = 4 − ε dimensions as in
d = 4. More precisely, we assume there are d four-dimensional γ-matrices satisfying
{γμ, γν} = 2gμν . The identity matrix in spinor space satisfies Tr1αβ = 4 as in four
dimensions. In theories that involve γ5 we also assume such a matrix exists satisfying

{γ5, γμ} = 0. (B.21)

Theories with anomalies are the only places in which there can be subtleties with such a
definition (see Chapter 30). An excellent discussion of spinors in various dimensions can
be found in [Polchinski, 1998, Appendix B].
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B.3.2 Scalar integrals

We will manipulate the expressions so that they are only functions of the magnitude of k.
Then we will use ∫

ddk =
∫
dΩd
∫
kd−1dk, (B.22)

where dΩd denotes the differential solid angle of the d-dimensional unit sphere. Explicitly,

dΩd = sind−2(φd−1) sind−3(φd−2) · · · sin(φ2) dφ1 · · · dφd−1, (B.23)

where φi is the angle to the i th axis, with 0 ≤ φ1 < 2π and 0 ≤ φi < π for i > 1. For
example, dΩ2 = dφ. For d = 3, we normally write φ1 = φ and φ2 = θ giving

dΩ3 = d cos θ dφ, (B.24)

which is the usual volume element of a two-dimensional surface. Remember, d is the
dimension of the solid volume, not the surface, which has dimension d − 1. The (d− 1)-
dimensional surface areas of a ball of radius 1 in integer dimensions are

Ω2 =
∫
dΩ2 = 2π (circle),

∫
dΩ3 =4π (sphere),

∫
dΩ4 = 2π2 (three-sphere), · · · ,

(B.25)
The equivalent volumes are

Vd = Ωd
∫ R

0

dr rd−1 = Ωd
1
d
Rd, (B.26)

which are V2 = πR2, V3 = 4
3πR

3, V4 = 1
2π

2R4, etc.
For non-integer dimensions, the surface area formula can be derived using the same trick

used for Gaussian integrals in Section 14.2.1:

(
√
π)d =
(∫ ∞

−∞
dx e−x

2
)d

=
∫
dΩd
∫ ∞

0

dr rd−1e−r
2

=
1
2
Γ
(
d

2

)∫
dΩd, (B.27)

so that

Ωd =
∫
dΩd =

2πd/2

Γ
(
d
2

) . (B.28)

Alternatively, one can just integrate Eq. (B.23):

Ωd = 2π
d−1∏
n=2

(∫ π
0

dφn sinn−1φn

)
= 2π

d−1∏
n=2

√
π

(
Γ
(
n
2

)
Γ
(
n+1

2

))

= 2πd/2
Γ
(

2
2

)
Γ
(

3
2

) Γ( 32)
Γ
(

4
2

) · · ·Γ(d−1
2

)
Γ
(
d
2

) = 2πd/2
Γ(1)
Γ
(
d
2

) . (B.29)

Using Γ(1) = 1, this reproduces Eq. (B.28).
In these expressions, Γ(x) is the Gamma function, which is the analytic continuation

of the factorial. For integer arguments, it evaluates to

Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(x) =(x− 1)! (B.30)
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Γ(z) has simple poles at 0 and all the negative integers. We will often need to expand Γ(x)
around the pole at x = 0:

Γ(ε) =
1
ε
− γE +O(ε) + · · · , (B.31)

where γE is the Euler–Mascheroni constant, γE ≈ 0.577. Sometimes relations such as

sin(πx) =
π(1− x)

Γ(x)Γ(2− x) , cos(πx) =
(

1− 2x
2x

)
Γ(1− x)Γ(1 + x)
Γ(2− 2x)Γ(2x)

, (B.32)

or the Euler β-function

β(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0

dx(1− x)a−1xb−1 (B.33)

allow us to simplify expressions.
The integrals over Euclidean kE are straightforward:∫

dkE
kaE

(k2
E + Δ)b

= Δ
a+1
2 −bΓ
(
a+1
2

)
Γ
(
b− a+1

2

)
2Γ(b)

. (B.34)

Equations (B.22), (B.28) and (B.34) can be combined into a general formula:∫
ddk

(2π)d
k2a

(k2 −Δ)b
= i(−1)a−b

1

(4π)d/2
1

Δb−a− d
2

Γ
(
a+ d

2

)
Γ
(
b− a− d

2

)
Γ(b)Γ(d2 )

. (B.35)

Special cases used in the text are∫
ddk

(2π)d
1

(k2 −Δ + iε)2
=

i

(4π)d/2
1

Δ2− d
2
Γ
(

4− d
2

)
, (B.36)∫

ddk

(2π)d
k2

(k2 −Δ + iε)2
= −d

2
i

(4π)d/2
1

Δ1− d
2
Γ
(

2− d
2

)
, (B.37)

∫
ddk

(2π)d
k2

(k2 −Δ + iε)3
=
d

4
i

(4π)d/2
1

Δ2− d
2
Γ
(

4− d
2

)
, (B.38)∫

ddk

(2π)d
1

(k2 −Δ + iε)3
=

−i
2(4π)d/2

1

Δ3− d
2
Γ
(

6− d
2

)
. (B.39)

This last integral is convergent in d = 4; however, the d-dimensional form is important for
loops with IR divergences (see Chapter 20).

All dimensionally regulated versions of divergent integrals will have poles at d = 4.
Therefore, we often expand d = 4 − ε and drop terms of order ε. Another common con-
vention is d = 4 − 2ε. If you are ever off by a factor of 2 in comparing to someone else’s
result, check the convention!

B.3.3 Field dimensions

Next, we should calculate the dimensions of all the fields and couplings in the Lagrangian.
For the action to be dimensionless, the Lagrangian density should have mass dimension d.
For example, in QED, the Lagrangian is
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L QED = −1
4
(∂μAν − ∂νAμ)2 + ψ̄(iγμ∂μ −m)ψ − eψ̄γμψAμ, (B.40)

which implies the mass dimensions

[Aν ] =
d− 2

2
, [ψ] =

d− 1
2

, [m] = 1, (B.41)

and also [e] = 4−d
2 . However, rather than have a non-integer dimensional coupling, it is

conventional to take

e→ μ
4−d
2 e, (B.42)

where μ is an arbitrary parameter of mass dimension 1. Then e remains dimensionless.
One usually only makes this change for the factors of e (or other gauge couplings)

directly participating in a loop. If a loop graph is not one-particle irreducible, there may
be other factors of e for which it is often simpler to leave four-dimensional. This is just a
convention. If all factors of e are modified as in Eq. (B.42), the answer will still be cor-
rect, but may contain awkward logarithms of dimensionful scales when expanded around
d = 4. These awkward logarithms drop out of physical quantities, of course, but they can
be avoided at intermediate steps as well by only adding factors of μ to coupling constants
participating in the loop.

The factors of μ coming from Eq. (B.42) modify loop integrals as∫
d4k

(2π)4
e2

(k2 −Δ + iε)2
→ μ4−d

∫
ddk

(2π)d
e2

(k2 −Δ + iε)2
. (B.43)

Keep in mind that μ is not a large scale. It is not a UV cutoff. The dimensional regular-
ization is removed when d → 4, not when μ → ∞. Thus, μ is not like the Pauli–Villars
mass M or a generic UV scale Λ. In fact, we will often use μ as a proxy for a physi-
cal infrared scale associated with a renormalization group point. Nevertheless, there are
two unphysical parameters in dimensional regularization, ε and μ; both must drop out of
physical predictions.

Including this factor of μ, the logarithmically divergent integral becomes∫
d4k

(2π)4
e2

(k2 −Δ + iε)2
→ μ4−d ie2

(4π)d/2
Γ
(

4− d
2

)(
1
Δ

)2− d
2

. (B.44)

Now letting d = 4− ε we expand this around ε = 0 and get

μ4−d ie2

(4π)d/2
Γ
(

4− d
2

)(
1
Δ

)2− d
2

=
ie2

16π2

[
2
ε

+
(
−γE + ln 4π + lnμ2 − ln Δ

)
+O(ε)

]
=

ie2

16π2

[
2
ε

+ ln
4πe−γEμ2

Δ
+O(ε)

]
. (B.45)

The γE comes from the integral
∫
ddk
k4 , the 4π comes from the phase space 1

(2π)d
and the

μ comes from the μ4−d. This combination, 4πe−γEμ2, shows up frequently, so we give it
a symbol

μ̃2 ≡ 4πe−γEμ2 (B.46)

leading to ∫
d4k

(2π)4
e2

(k2 −Δ + iε)2
→ ie2

16π2

[
2
ε

+ ln
μ̃2

Δ
+O(ε)

]
. (B.47)
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Sometimes we will omit the tilde and just write μ for μ̃. Note that there is still a divergence
in this expression as ε→ 0.

Dimensional regularization characterizes the degree to which integrals diverge at high
energy through analytic properties of regulated results, rather than through powers of a
cutoff scale. For example, the integral

∫
d4k

(k2−Δ)2 is logarithmically divergent. In d dimen-

sions, the equivalent integral
∫

ddk
(k2−Δ)2 ∼ Γ( 4−d

2 ) has a simple pole at d = 4, and

no other poles for d < 4. A quadratically divergent integral, such as
∫

d4k
k2−Δ , becomes∫

ddk
k2−Δ ∼ Γ( 2−d

2 ) in d dimensions. Expanding this result around d = 4 gives a 1
ε pole as

did the expansion of the logarithmically divergent integral. However, this does not mean
that power divergences are absent with dimensional regularization. Rather they are hidden,
as poles in integer d < 4. For example, the quadratic divergence translates to a pole in
Γ( 2−d

2 ) at d = 2. Thus, dimensional regularization translates the degree of divergence into
the singularity structure of amplitudes in d dimensions.

Dimensional regularization can also be used to regulate IR-divergent integrals. For
example,

∫
ddk 1

(k2−m2)k4 is IR divergent for d < 4. We can evaluate this integral in
d = 4 − ε dimensions with ε < 0 instead of ε > 0. A nice feature of dimensional
regularization as an IR regulator is that it can be used for both virtual graphs and phase
space integrals.

Occasionally when using dimensional regularization we encounter an integral that is
both UV and IR divergent; for example, the scaleless integral

∫
ddk
k4 . This integral is not

convergent for any d. Nevertheless, it is useful to be able to do such integrals. To progress,
we can introduce an arbitrary scale Λ to divide the UV and IR regions of Euclidean
momenta:

∫
ddkE
k4
E

= Ωd
∫ Λ

0

dkEk
d−5
E + Ωd

∫ ∞

Λ

dkE k
d−5
E

= Ωd

(
ln Λ− 1

ε IR

)
+ Ωd

(
1
ε UV

− ln Λ
)
, (B.48)

where we have written d = 4 − ε IR for the first integral, assuming ε IR < 0, and d =
4 − ε UV for the second integral, assuming ε UV > 0. Rather than doing this split for
every scaleless integral, since we know ε IR and ε UV must vanish from physical quantities,
we often just set ε IR = ε UV = ε. When this is done, the integral is just 0. A simpler
justification is that since there is no available quantity with non-zero mass dimension,
scaleless integrals such as

∫
d4k
k4 must vanish in d dimensions.

Often we are interested in just the UV divergence of an integral, which can be extracted
from a scaleless integral as

[∫
ddk

(2π)d
1
k4

]
UV-div

= i
Ωd

(2π)d
1
ε UV

= i
2

(2π)d
πd/2

Γ(d/2)
1
ε UV

=
i

8π2

1
ε UV

. (B.49)

This is a very useful shortcut to extracting the UV divergence.



830 Regularization

B.3.4 kμ integrals

We will often have integrals with factors of momenta, such as kμkν , in the numerator:

Fμν(Δ) =
∫

d4k

(2π)4
kμkν

(k2 −Δ)n
. (B.50)

These can be simplified using a trick. Since the integral is a tensor under Lorentz transfor-
mations but only depends on the scalar Δ, it must be proportional to the only tensor around,
gμν . Then, just by dimensional analysis, we must get the same thing as in an integral with
kμkν replaced by ck2gμν for some number c. Contracting with gμν , we see that c = 1

4 or
more generally c = 1

d . Therefore,∫
ddk

(2π)d
kμkν

(k2 −Δ)n
=

1
d
gμν
∫

ddk

(2π)d
k2

(k2 −Δ)n
. (B.51)

If there is just one factor of kμ in the numerator, for example in

F (p2) =
∫

d4k

(2π)4
k · p

(k2 − p2)4
, (B.52)

then the integrand is antisymmetric under k → −k. Since we are integrating over all k,
the integral must vanish. So we will only need to keep terms with even powers of k in the
numerator.

B.4 Other regularization schemes

While dimensional regularization has a number of important advantages (it respects gauge
invariance, it can regulate IR or UV divergences, no new fields are needed, etc.), it has
the disadvantage of being unphysical. That is, one cannot think of analytical continuation
into 4 − ε dimensions as representing some sort of short-distance deformation. A number
of regulators that do have short-distance interpretations, such as the hard cutoff regulator
or heat-kernel regulator, are discussed in Chapter 15 in the context of the Casimir effect.
Those regulators are unfortunately not useful for general field theory calculations. Here
we discuss two regulation schemes that do have widespread applicability, the derivative
method and Pauli–Villars regularization, and briefly mention a few more.

B.4.1 Derivative method

A quick way to extract the UV divergence of an integral is by taking derivatives. Consider
a logarithmically divergent integral, such as

I(Δ) =
∫

d4k

(2π)4
1

(k2 −Δ + iε)2
=∞. (B.53)
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If we take the derivative, the integral can be done:

d

dΔ
I(Δ) =

∫
d4k

(2π)4
2

(k2 −Δ + iε)3
= − i

16π2Δ
. (B.54)

So,

I(Δ) = − i

16π2
ln

Δ
Λ2
, (B.55)

where Λ is an integration constant representing the UV cutoff and is formally infinite.
Similarly, for a quadratically divergent integral, one could take the second derivative and
then integrate twice to give∫

d4k

(2π)4
k2

(k2 −Δ + iε)2
= 6
∫
dΔ
∫
dΔ
(
−i

48π2

1
Δ

)
= − i

8π2

(
Δln

Δ
Λ2

1

+ Λ2
2

)
(B.56)

for two integration constants Λ1 and Λ2.
The derivative method is not an ideal regulator. Since the cutoff Λ appears as a constant

of integration, there is no way to relate Λ from one integral to Λ from another. In particular,
cancellations that we expect due to constraints such as gauge invariance are not guaranteed
to hold. Nevertheless, the derivative method is a quick way to check the coefficient of the
logarithms appearing in any particular integral.

B.4.2 Pauli–Villars regularization

Pauli–Villars regularization requires that for each particle of mass m a new unphysical
ghost particle of mass Λ be added with either the wrong statistics or the wrong-sign
kinetic term. These new particles are designed to cancel exactly loop amplitudes with phys-
ical particles at asymptotically large loop momentum. For example, one can write down a
Pauli–Villars Lagrangian for QED, which works at the 1-loop level, as

LPV = −1
4
F 2
μν+ψ̄(i/∂−e /A−e /̃A−m)ψ+

1
4
F̃ 2
μν−

1
2
Λ2Ã2

μ+ψ̃(i/∂−e /A−e /̃A−Λ)ψ̃, (B.57)

with Ãμ the ghost photon and ψ̃ the ghost electron and F̃μν = ∂μÃν − ∂νÃμ. We assume
that both the ghost photon and ghost electron have bosonic statistics; the ghost photon has
a wrong-sign kinetic term.

For example, LPV leads to a Feynman-gauge ghost-photon propagator of the form

〈0|T{Ãμ(x)Ãν(y)}|0〉 =
∫

d4p

(2π)4
eip(xy)

igμν

p2Λ2 + iε
. (B.58)

Since this has the opposite sign from the photon propagator, it will cancel the photon’s
contribution, for example, to the electron self-energy loop for loop momenta kμ � Λ (see
Chapter 18). The sign of the residue of the propagator is normally dictated by unitarity – a
particle whose propagator has the sign in Eq.(B.58) has negative norm, and would generate
probabilities greater than 1. So, Ãμ cannot create or destroy physical on-shell particles.
Thus, fields such as Ãμ are said to be associated with Pauli–Villars ghosts. The ghost
electron propagator is the same as the regular electron propagator; however, ghost electron
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loops do not get a factor of−1 (since they are bosonic) and therefore cancel regular electron
loops when kμ � Λ.

In more detail, an amplitude with Pauli–Villars regularization will sum over the real
particle, with mass m, and the ghost particle, with fixed large mass Λ � m:∫

d4k

(2π)4
1

(k2 −m2 + iε)2
→
∫

d4k

(2π)4

[
1

(k2 −m2 + iε)2
− 1

(k2 − Λ2 + iε)2

]
.

(B.59)

For k � Λ,m both terms in the new integrand scale as 1
k4 and so the integrand vanishes

at least as 1
k6 making the integral convergent. We can now perform this integral by Wick

rotation∫
d4k

(2π)4

[
1

(k2 −m2 + iε)2
− 1

(k2 − Λ2 + iε)2

]
=

i

8π2
(−1)2
∫ ∞

0

dkE

[
k3
E

(k2
E −m2)2

− k3
E

(k2
E − Λ2)2

]
= − i

16π2
ln
m2

Λ2
(B.60)

so that ∫
d4k

(2π)4
1

(k2 −m2 + iε)2
→ i

16π2
ln

Λ2

m2
. (B.61)

Note that the coefficient of the logarithm is consistent with what we found using the
derivative method, in Eq. (B.55) and with derivational regularization in Eq. (B.47).

When using Pauli–Villars regularization, the identity

1
k2 −m2

− 1
k2 − Λ2

=
∫ Λ2

m2

−1
(k2 − Ξ)2

dΞ (B.62)

is often useful. It allows us to evaluate divergent integrals by squaring the propagator and
adding an integration parameter Ξ. In fact, due to the identity∫

dm2 d

dm2

[
1

k2 −m2

]
=
∫
dm2 1

(k2 −m2)2
, (B.63)

Pauli–Villars can be viewed as a systematic implementation of the derivative method.
Pauli–Villars was historically important and serves a useful pedagogical function.

Indeed, the introduction of Pauli–Villars ghosts is much more clearly a deformation in
the UV, relevant at energy scales of order the Pauli–Villars mass or larger, than analyti-
cally continuing to 4 − ε dimensions. However, in modern applications, Pauli–Villars is
only occasionally useful. The problem is that complicated multi-loop diagrams necessitate
many fictitious particles (one for each real particle will not do it; the Lagrangian L PV only
works at 1-loop). Thus, Pauli–Villars quickly becomes impractical. In addition, it is not
useful in non-Abelian gauge theories, since a massive gauge boson breaks gauge invari-
ance. (Pauli–Villars does work in an Abelian theory, at least at 1-loop, as long as the gauge
boson couples to a conserved current.)



Problems 833

B.4.3 Other regulators

There are several other regulators that are sometimes used:

• Hard cutoff: kE < Λ. This breaks Lorentz invariance, and usually every symmetry in
the theory, but is perhaps the most intuitive regularization procedure.

• Point splitting. Divergences at k →∞ correspond to two fields approaching each other
x1 → x2. Point splitting puts a lower bound on this, |xμ1 − x

μ
2 | > |εμ|. This also breaks

translation invariance and is impractical for gauge theories, but is useful in theories with
composite operators.

• Lattice regularization. Although a lattice breaks both translation invariance and Lorentz
invariance, it is possible to construct a lattice such that translation and Lorentz invariance
are restored in the continuum limit (see Section 25.5).

Problems

B.1 Show that the Wick rotation still works if Δ < 0.
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forward, 119
from Poincaré group, 111
graviton, 135–138, 153–155
in photon scattering, 238
in quantized fields, 123–128
in scattering, 231–234
linear, 119
longitudinal, 117, 118, 582
massive spin-1, 116–118
photon, 9, 44, 65–67, 118–120, 133–135, 145–146,

151–153, 225, 316, 360, 383, 672, 782–794,
821

spinor-helicity representation, 539, 791–794
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sum over, 138–139, 191, 221–222, 239–243, 361,
459–461

timelike, 124, 582
transverse, 117, 119–120, 151, 482, 502
unphysical, canceling with ghosts, 498

Polchinski, Joseph, 418
potential

between quarks, 512–513
Coleman–Weinberg, 744–752
Coulomb, 39, 301–303, 309–310
effective, 314, 392, 419
in QCD, 529–533
Uehling, 311

Powell, Cecil, 401
precision electroweak, 641–657
principle

cluster decomposition, 96, 208, 466
Huygens, 251

problem
U(1), 636, 638
hierarchy, 411
strong CP , 636–638

Proca (massive vector) theory, 116
propagator, 37, 41

advanced and retarded, 49–50, 75, 77
dressed, 305
Feynman, 75–77
gluon, 495–503
photon, 128–130
position space, 77

quantum
chromodynamics (QCD), 508–558, 657–697,

760–810
electrodynamics (QED), 224–247
field theory (QFT), 7–832
mechanics, 23–24

quark, 481–811
heavy, 760–775
in electroweak theory, 592–598
masses and charges, 514
sea, 676
valence, 676

Rξ gauge, 129–130, 495–502, 580–583, 754–758
radiation

final-state, 364–366
initial-state, 369–372

radiative return, 372
rank (of a tensor), 14
rapidity, 13
recursion, on-shell, 555–558
reflection positivity, 266–267
Regge behavior, 533
regularization

dimensional, 307–309, 326–327, 349–350,
373–380, 517–527, 678–689, 769–772,
802–807, 825–830

Gaussian, 293
hard cutoff, 289–291, 833
heat-kernel, 292
independence, 294–295
Pauli–Villars, 302–303, 326–327, 332, 343, 348,

831–832
point splitting, 833
ζ-function, 293

relativity
general, see gravity
special, 10–20

renormalizability, 342, 381–393, 449
renormalization, 300–309

charge, 340
condition, 304, 337

QED, 349–350
field strength, 340
group, 314, 336, 417–450

continuum, 417, 419–442
exact, 445
flow, 439
in 4-Fermi theory, 664–666
Wilson–Polchinski, 444–448
Wilsonian, 417, 442–450

HQET, 769–772
mass, 322–336, 338, 340
scale, 422
SCET, 807–810

renormalized field, 328
renormalized perturbation theory, 331, 339–353
reparametrization invariance, 775
representation, 159, 484–488

adjoint, 486–487
anti-fundamental, 485
faithful, 159
fundamental, 484
index of, 487
induced, 120
irreducible, 110
Majorana (of γ-matrices), 170
Poincaré group, 109–120
projective, 176–178
unitary, 110
Weyl (of γ-matrices), 169

resummation, 420
event shape, 807–810

retarded propagator, 49
ρ parameter, 654
Rosenbluth formula, 670
rotations, 11–12
running coupling, 313, 419–423, 526–528
Rutherford scattering, 67
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s, t, u (Mandelstam variables), 98–99
S, T, U (Peskin–Takeuchi parameters), 655–657
S-matrix, 56, 69–74

Lorentz invariance of, 212–215
off-shell, 279
unitarity of, 452–477

Sakharov conditions, 635
scalar, 13

mass, renormalization group flow of, 435–442
scalar QED, 121, 140–153
scaling

collinear, 782
Glauber, 782
hard, 782
soft, 782
ultrasoft, 782

scattering
Bhabha, 246
Compton, 4, 27, 155, 156, 238–246, 370, 559, 680,

682
light-by-light, 246, 717–718
Møller, 246, 248
Rutherford , 234–238
Thompson, 243

SCET (Soft-Collinear Effective Theory), 795–810
Schouten identity, 539
Schrödinger equation, 395–396
Schrödinger picture, 23, 56, 85–87, 256, 453, 728
Schur’s lemma, 486
Schwinger

pair production, 718–720
parameter, 822–823
proper time, 703–732
term, 283, 284

Schwinger, Julian, 247, 320, 338
Schwinger–Dyson equations, 80–82, 272–277
seagull vertex, 145
second quantization, 20
see-saw mechanism, 203, 600
Seiberg duality, 640
Shelter Island conference, 247
simple harmonic oscillator, 7, 17–18
soft function

Drell–Yan, 798
hemisphere, 802

soft interaction, 782–790
soft photon theorem, 150–153
spacelike, 16
spectral decomposition, 466–475
spectral density, 467
sphaleron, 635
spin, 65–67, 187

higher, 132–138, 155, 222–223
one, 109–132
two, 135–138, 153–155
versus helicity, 185–188

spin-statistics theorem, 205–223
spinor

Dirac, 167–174
helicity, 536–537
helicity formalism, 534–791, 794
inner product, 191
left-handed Weyl, 185
outer product, 191
quantization, 211–212
right-handed Weyl, 185
Weyl, 164–165, 178–181

splitting functions, 680, 794
spontaneous symmetry breaking, 324, 561–583, 734,

743–746, 751–752
spurion, 571
stability, 215–219
Stark effect, 53
state, asymptotic, 56, 69–74
stationary phase, method of, 259
steepest descent, method of, 259
string theory, 295
structure constant, 483–488
Stueckelberg, Ernst, 133, 145, 418
subtraction point, 335, 350
subtraction scheme, 329
Sudakov

double logarithm, 359, 777
factor, 682–685
peak, 777

super-renormalizable theory, 388, 414–416
superconductivity, 577–578
superficial degree of divergence, 382
supersymmetry, 640
symmetry

chiral, 567–575, 621
continuous, 33
crossing, 236
custodial, 413, 600–601, 653–657
global, 122
heavy-quark flavor, 761
heavy-quark spin, 760
local, see gauge, invariance
of a Lagrangian, 32
Peccei–Quinn, 612
vector, 621

symmetry breaking
chiral, 638–640
electroweak, 584–587

symplectic group, 484

tachyon, 562
tadpole (Feynman diagram), 324, 414–415
technicolor, 657
tensor, 14

energy-momentum, 34–36
canonical, 36
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hadronic, 672
leptonic, 672
Levi-Civita, 160, 482
totally antisymmetric, 160

term
kinetic, 30
mass, 31

theorem
Kinoshita–Lee–Nauenberg (KLN), 372
Bloch-Nordsieck, 372
equipartition, 3
Feynman tree, 459
Goldstone boson equivalence, 576, 590–592
Goldstone’s, 564
Noether’s, 32–34
optical, 453–456
soft photon, 150–153
Weinberg–Witten, 494

theory
Banks–Zaks, 442
4-Fermi, 396–400, 426–429, 602–605, 657–666
full, 703
Heavy-Quark Effective, 765–775
non-Abelian gauge, 481–533
Soft-Collinear Effective, 795–810
Yang–Mills, 481–533

θ-vacuum, 611
threshold region, 796
thrust, 778–780, 799–810
time ordering, 72, 78–92, 259–261, 264–266
time reversal, 16, 198–201
timelike, 16
Tomonaga, Sin-Itiro, 320, 338
T-matrix (transfer matrix), 48, 60
transform, Legendre, 29, 30, 737–740
transformation, general coordinate, 403
twist, 691–692

Uehling, 311
Uehling potential, 311
ultraviolet

catastrophe, 4
completion, 396
sensitivitiy, 410

unification
electroweak, 584–614
grand, 579, 583

unit-step function, 62
unitarity

bound, partial wave, 463–466
implications of, 452–477, 552–555, 588–590
triangle, 598–599

universal cover, 163
unstable particles, 105, 461–463

vacuum
expectation value, 323, 563
polarization, 300–314

electroweak, 644–653
from Euler–Heisenberg Lagrangian, 716–717
in scattering, 367
QCD, 517–521

vector
contravariant, 15
covariant, 15

W boson, 584–588
Ward identity, 123–128
Ward–Takahashi identity, 277–283
weak interactions, 584–614
Weinberg, Steven, 150, 584
Weizsäcker–Williams approximation, 371
Weyl ordering, 258
Weyl, Hermann, 132
Wick rotation, 823–825
Wick’s theorem, 90, 100–103
width, 105
Wilson

coefficient, 657–666
line, 488–493
loop, 490, 531–533

Wilson, Kenneth, 418, 503
Wilson–Fisher fixed point, 438–442
Witten–Veneziano relation, 638
Wolfenstein parametrization, 598

Yang–Mills theory, 481–533
uniqueness of, 156, 552–555

Yukawa, Hideki, 400

Z1 = Z2, 350–353, 528–529
Z boson, 584–588
zero-point energy, 52, 288


	Cover
	Half-title page
	Title page
	Copyright page
	Dedication
	Contents
	Preface
	Part I Field theory
	1 Microscopic theory of radiation 
	1.1 Blackbody radiation
	1.2 Einstein coefficients
	1.3 Quantum field theory

	2 Lorentz invariance and second quantization 
	2.1 Lorentz invariance 
	2.2 Classical plane waves as oscillators
	2.3 Second quantization
	 Problems

	3 Classical field theory 
	3.1 Hamiltonians and Lagrangians
	3.2 The Euler–Lagrange equations
	3.3 Noether's theorem
	3.4 Coulomb's law
	3.5 Green's functions
	 Problems

	4 Old-fashioned perturbation theory 
	4.1 Lippmann–Schwinger equation
	4.2 Early infinities
	 Problems

	5 Cross sections and decay rates 
	5.1 Cross sections
	5.2 Non-relativistic limit
	5.3 e[sup(+)]e[sup(-)]→μ[sup(+)]μ[sup(-)] with spin
	 Problems

	6 The S-matrix and time-ordered products
	6.1 The LSZ reduction formula
	6.2 The Feynman propagator
	 Problems

	7 Feynman rules
	7.1 Lagrangian derivation
	7.2 Hamiltonian derivation
	7.3 Momentum-space Feynman rules
	7.4 Examples
	7.A Normal ordering and Wick's theorem
	 Problems


	Part II Quantum electrodynamics
	8 Spin 1 and gauge invariance
	8.1 Unitary representations of the Poincaré group
	8.2 Embedding particles into fields 
	8.3 Covariant derivatives
	8.4 Quantization and the Ward identity
	8.5 The photon propagator 
	8.6 Is gauge invariance real?
	8.7 Higher-spin fields
	 Problems

	9 Scalar quantum electrodynamics 
	9.1 Quantizing complex scalar fields
	9.2 Feynman rules for scalar QED 
	9.3 Scattering in scalar QED
	9.4 Ward identity and gauge invariance 
	9.5 Lorentz invariance and charge conservation
	 Problems

	10 Spinors 
	10.1 Representations of the Lorentz group
	10.2 Spinor representations
	10.3 Dirac matrices
	10.4 Coupling to the photon
	10.5 What does spin ½ mean?
	10.6 Majorana and Weyl fermions
	 Problems

	11 Spinor solutions and CPT 
	11.1 Chirality, helicity and spin
	11.2 Solving the Dirac equation
	11.3 Majorana spinors
	11.4 Charge conjugation
	11.5 Parity
	11.6 Time reversal
	 Problems

	12 Spin and statistics 
	12.1 Identical particles
	12.2 Spin-statistics from path dependence
	12.3 Quantizing spinors
	12.4 Lorentz invariance of the S-matrix
	12.5 Stability
	12.6 Causality
	 Problems

	13 Quantum electrodynamics 
	13.1 QED Feynman rules
	13.2 γ-matrix identities
	13.3 e[sup(+)]e[sup(-)]→-μ[sup(+)]μ[sup(-)] 
	13.4 Rutherford scattering e[sup(-)]p[sup(+)]→e[sup(-)]p[sup(+)] 
	13.5 Compton scattering 
	13.6 Historical note
	 Problems

	14 Path integrals
	14.1 Introduction
	14.2 The path integral
	14.3 Generating functionals 
	14.4 Where is the iε?
	14.5 Gauge invariance 
	14.6 Fermionic path integral 
	14.7 Schwinger–Dyson equations 
	14.8 Ward–Takahashi identity 
	 Problems


	Part III Renormalization
	15 The Casimir effect 
	15.1 Casimir effect
	15.2 Hard cutoff
	15.3 Regulator independence
	15.4 Scalar field theory example 
	 Problems

	16 Vacuum polarization
	16.1 Scalar ф[sup(3)] theory
	16.2 Vacuum polarization in QED
	16.3 Physics of vacuum polarization
	 Problems

	17 The anomalous magnetic moment
	17.1 Extracting the moment
	17.2 Evaluating the graphs
	 Problems

	18 Mass renormalization
	18.1 Vacuum expectation values
	18.2 Electron self-energy
	18.3 Pole mass
	18.4 Minimal subtraction
	18.5 Summary and discussion
	 Problems

	19 Renormalized perturbation theory
	19.1 Counterterms
	19.2 Two-point functions
	19.3 Three-point functions
	19.4 Renormalization conditions in QED
	19.5  Z[sub(1)]=Z[sub(2)]: implications and proof
	 Problems

	20 Infrared divergences 
	20.1 e[sup(+)]e[sup(-)]→μ[sup(+)]μ[sup(-)] (+γ)
	20.2 Jets
	20.3 Other loops
	20.A Dimensional regularization
	 Problems

	21 Renormalizability
	21.1 Renormalizability of QED
	21.2 Non-renormalizable field theories 
	 Problems

	22 Non-renormalizable theories 
	22.1 The Schrödinger equation
	22.2 The 4-Fermi theory
	22.3 Theory of mesons
	22.4 Quantum gravity
	22.5 Summary of non-renormalizable theories
	22.6 Mass terms and naturalness
	22.7 Super-renormalizable theories
	 Problems

	23 The renormalization group 
	23.1 Running couplings
	23.2 Renormalization group from counterterms
	23.3 Renormalization group equation for the 4-Fermi theory 
	23.4 Renormalization group equation for general interactions
	23.5 Scalar masses and renormalization group flows
	23.6 Wilsonian renormalization group equation
	 Problems

	24 Implications of unitarity 
	24.1 The optical theorem
	24.2 Spectral decomposition
	24.3 Polology
	24.4 Locality
	 Problems


	Part IV The Standard Model
	25 Yang–Mills theory 
	25.1 Lie groups
	25.2 Gauge invariance and Wilson lines
	25.3 Conserved currents
	25.4 Gluon propagator
	25.5 Lattice gauge theories
	 Problems

	26 Quantum Yang–Mills theory 
	26.1 Feynman rules
	26.2 Attractive and repulsive potentials
	26.3 e[sup(+)]e[sup(-)]→hadrons and α[sub(s)]
	26.4 Vacuum polarization
	26.5 Renormalization at 1-loop
	26.6 Running coupling
	26.7 Defining the charge
	 Problems

	27 Gluon scattering and the spinor-helicity formalism 
	27.1 Spinor-helicity formalism
	27.2 Gluon scattering amplitudes
	27.3 gg→gg
	27.4 Color ordering
	27.5 Complex momenta 
	27.6 On-shell recursion
	27.7 Outlook
	 Problems

	28 Spontaneous symmetry breaking 
	28.1 Spontaneous breaking of discrete symmetries
	28.2 Spontaneous breaking of continuous global symmetries
	28.3 The Higgs mechanism
	28.4 Quantization of spontaneously broken gauge theories
	 Problems

	29 Weak interactions 
	29.1 Electroweak symmetry breaking 
	29.2 Unitarity and gauge boson scattering 
	29.3 Fermion sector
	29.4 The 4-Fermi theory
	29.5 CP violation
	 Problems

	30 Anomalies 
	30.1 Pseudoscalars decaying to photons
	30.2 Triangle diagrams with massless fermions
	30.3 Chiral anomaly from the integral measure
	30.4 Gauge anomalies in the Standard Model
	30.5 Global anomalies in the Standard Model
	30.6 Anomaly matching
	 Problems

	31 Precision tests of the Standard Model
	31.1 Electroweak precision tests
	31.2 Custodial SU(2), ρ, S, T and U
	31.3 Large logarithms in flavor physics
	 Problems

	32 Quantum chromodynamics and the parton model 
	32.1 Electron–proton scattering
	32.2 DGLAP equations
	32.3 Parton showers
	32.4 Factorization and the parton model from QCD
	32.5 Lightcone coordinates
	 Problems


	Part V Advanced topics
	33 Effective actions and Schwinger proper time
	33.1 Effective actions from matching
	33.2 Effective actions from Schwinger proper time
	33.3 Effective actions from Feynman path integrals
	33.4 Euler–Heisenberg Lagrangian
	33.5 Coupling to other currents
	33.6 Semi-classical and non-relativistic limits
	33.A Schwinger's method
	 Problems

	34 Background fields 
	34.1 1PI effective action
	34.2 Background scalar fields
	34.3 Background gauge fields
	 Problems

	35 Heavy-quark physics 
	35.1 Heavy-meson decays
	35.2 Heavy-quark effective theory
	35.3 Loops in HQET
	35.4 Power corrections
	 Problems

	36 Jets and effective field theory 
	36.1 Event shapes
	36.2 Power counting
	36.3 Soft interactions
	36.4 Collinear interactions
	36.5 Soft-Collinear Effective Theory
	36.6 Thrust in SCET
	 Problems


	Appendices
	Appendix A Conventions 
	A.1 Dimensional analysis
	A.2 Signs
	A.3 Feynman rules
	A.4 Dirac algebra 
	 Problems

	Appendix B Regularization
	B.1 Integration parameters
	B.2 Wick rotations
	B.3 Dimensional regularization
	B.4 Other regularization schemes
	 Problems


	References
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


