
uestions regarding the quantum to classical tran-

sition (QCT) have existed since the time of Bohr

and Einstein and the inception of quantum

mechanics.  Although it is widely accepted that

a quantum mechanical description holds at the microscop-

ic level of atoms, it was not clear why macroscopic objects

that are no more than collections of atoms are described by

classical mechanics.  Whereas special relativity describes

the limit of Newtonian mechanics for objects approaching

the speed of light, classical mechanics is not as simply

connected to quantum mechanics.  In fact, the quantum

mechanical Schrödinger equation and Newton’s classical

equations of motion are quite different entities.  They pre-

dict very different behaviour, both for the states as well as

the dynamics of physical systems.  Reconciling the two

descriptions has gained new relevance in the emerging

field of quantum information science. 

The transition from microscopic quantum mechanics to

macroscopic classical mechanics is particularly difficult to

explain in nonlinear systems that exhibit chaotic classical

dynamics.  Classical chaos is characterized by exponential

sensitivity to initial conditions, quantified by a positive

Lyapunov exponent that measures the exponential rate of

divergence of neighboring trajectories in phase space [1].

Quantum mechanically, the Heisenberg uncertainty princi-

ple does not allow a description of precise trajectories in

phase space.  Due to the unitary linear evolution of state
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vectors in quantum mechanics, at first glance there

appears to be no corresponding exponential sensitivity to

initial conditions for systems described by the Schrödinger

equation.  Furthermore, even in a semi-classical regime,

Einstein pointed out that the general quantization rules

that were used to approximate eigenvalues of a quantum

system would fail for non-integrable (chaotic) systems due

the lack of enough constants of the motion [2].  These argu-

ments led to questions regarding quantum-classical corre-

spondence and the possibility of describing a transition

from the quantum to the classical regime. 

Here, we review recent studies [3-11] that show how the

QCT can be understood both qualitatively and quantita-

tively by considering open quantum systems that are

entangled with the environment or a detector.  We first

present a brief introduction to the role of decoherence in

the QCT via entanglement with the environment [3-6] and

discuss its limitations for obtaining localized classical tra-

jectories from quantum dynamics.  These limitations can

be overcome by considering the case where the environ-

ment is actually a detector making continuous weak meas-

urements of the quantum system that result in quantum

trajectories.  We briefly review the theory of quantum tra-

jectories and present an analysis of the QCT via continu-

ous measurements of position.  The QCT can be identified

by quantifying the amount of localization in phase space

and the degree of back-action resulting from the measure-

ment [7].  This approach successfully addresses the ques-

tion of recovering classical trajectories in regular as well

as chaotic systems.  Furthermore, the approach can be

generalized to the case of bipartite systems in which a sin-

gle observable is continuously measured.  We discuss an

illustrative example of a particle in a harmonic trap whose

motion is coupled to its spin [9,10].  The effect of continu-

ous measurement of the position of the particle and the

subsequent emergence of classical chaos can be simply

understood in this system.  Quantitative conditions for the

QCT can thereby be obtained.  Finally, we describe our

recent studies of entanglement between spin and motion in

this system [11].  These results provide new insight into

entanglement of bipartite systems in the classical limit. 

DECOHERENCE AND THE QUANTUM TO

CLASSICAL TRANSITION

In the early days after the initial development of quantum

theory, the problem of the QCT was resolved by resorting
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to an arbitrary division into a quantum world and a classical

world.  The relation between the two regimes and the location

of the division between them remained unclear.  A new under-

standing of the QCT developed with the realization that every

quantum mechanical system interacts with its environment,

and quantum correlations or entanglement can be generated

between the system and the environment.  A complete descrip-

tion of the system must take into account the effect of this

entanglement with the environment.  We describe in this sec-

tion how entanglement with the environment can result in

decoherence and yield a classical description of the system

dynamics. 

The dynamics of an open quantum system interacting with an

unmonitored environment is described by a master equation for

its density operator, ρ [12].  The quantum system can equiva-

lently be described in phase space by using a quasi-probability

distribution function [13].  In particular, the Wigner function is

defined as a partial Fourier transform of the density operator, 

(1)

with x and p obeying the usual commutation relation [x,p] = iS.

The Wigner function contains the same information as the den-

sity operator.  Hence, we can examine the dynamics of the

Wigner function rather than the master equation in order to

understand the effect of decoherence due to entanglement of

the system with the environment.  For a standard decoherence

model of a quantum system coupled to a bath of harmonic

oscillators at finite temperature, evolution of the Wigner func-

tion of the quantum system in a potential V(x) can be written

as [14]

(2)

where the partial derivatives are with respect to x and p and H
refers to the system Hamiltonian alone.  This equation is

obtained by applying the Wigner transform to the evolution

equation for the density operator.  We consider the weak cou-

pling regime in which damping is negligible.  The first term is

equivalent to classical evolution described by the Poisson

bracket, the second term describes quantum corrections to the

classical evolution, and the last term is a diffusion term result-

ing from interaction with the environment.  As one might

expect, the quantum correction terms in Eq. (2) are a function

of Planck’s constant S.  Note that for the special case of a quad-

ratic potential, the form of the above equation is that of a clas-

sical Fokker-Planck equation in the limit of negligible damp-

ing.  For a more general nonlinear potential, the dynamics is

more interesting, as discussed below. 

Consider first, the case where the system is isolated from the

environment so that the third term in Eq. (2) is negligible. In

order to understand the evolution of the isolated system, we

compare the relative strengths of the remaining two terms, the

Poisson bracket and the quantum corrections.  At first glance it

might appear that in a macroscopic regime, where the charac-

teristic actions of the system are much larger than Planck’s con-

stant, the quantum correction terms, which are proportional to

powers of S, should remain small and hence the system should

evolve classically according to the Poisson bracket.  However,

a careful analysis shows that this argument can break down

when we deal with classically chaotic systems.  In fact, a

Hamiltonian chaotic system would exhibit observable nonclas-

sical dynamics on a time scale logarithmic in the size of S rel-

ative to the characteristic system actions [15,16].  This results

from the fact that in a chaotic system, exponential divergence

of neighbouring points causes a stretching of the Wigner func-

tion in phase space at a ratedetermined by the Lyapunov expo-

nent Λ.  The stretching causes the Wigner function to develop

coherence over large distances.  From Liouville’s theorem, the

momentum distribution in the conjugate direction to the

stretching is also squeezed at an exponential rate.  This causes

the quantum corrections to the Poisson bracket in Eq. (2) to

grow and become non-negligible.  At this point the quantum

dynamics will diverge from the classical predictions. 

Zurek used chaotic orbits of celestial bodies [16] to show that

even for macroscopic systems in which S is extremely small

relative to the characteristic actions of the system, quantum

corrections to classical dynamics should be observable after a

relatively short amount of time.  He estimated this break time

to be on the order of a few years for chaotic motion of a moon

of Jupiter.  This implies that S being small is not quite enough

to explain the emergence of a classical world from underlying

quantum mechanics.  Eventually, quantum corrections would

become significant and the dynamics would no longer be clas-

sical. 

A solution to this puzzle was obtained by examining the effect

of the diffusion term in Eq. (2).  This term is a result of the

entanglement of the system with the environment [14].

Decoherence results from this entanglement with the environ-

ment and can help to maintain classical evolution [5,6,16].  As
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described above, in systems with a chaotic classical limit, a

break between the predictions of quantum and classical dynam-

ics occurs due to rapid stretching of the chaotic phase space

function and exponential squeezing of the momentum.  This is

because the stretching and squeezing causes the wavefunction

to develop coherence over a large extent, so that the evolution

can no longer be described by a force that is a local gradient of

the potential as in the Poisson bracket term.  The diffusion term

in Eq. (2) acts to limit the exponential squeezing in the momen-

tum direction and thus diffuses the momentum uncertainty [5].

Momentum diffusion limits the spatial extent over which the

wavefunction remains coherent (coherence length).

Mathematically speaking, what this means is that the momen-

tum diffusion causes the off-diagonal matrix elements of the

density operator +x*ρ*xN, to exponentially decay in time.

Quantum corrections to classical dynamics generated by the

Poisson bracket can be neglected if the density operator has

spatial coherence much less than the characteristic distance

ΔxNL in which the potential is nonlinear, thereby recovering

classical dynamics.  Decoherence thus ensures classical evolu-

tion of the Wigner function in phase space when the diffusion

limits the coherence length to be less than ΔxNL. 

In recent years, a vast amount of theoretical research [17,18] has

been performed to understand decoherence in more detail.

Furthermore, groundbreaking experiments were conducted to

demonstrate and study decoherence in physical systems [19].

New experimental studies are currently underway using a vari-

ety of systems including atoms and ions [20], photons [21],

superconductors [22], and solid state systems [23].  These studies

show that although the initial arguments are generally applica-

ble, every system is different and the specific system parame-

ters and model of the environment can greatly affect the deco-

herence rate.  In particular, in chaotic systems, the effect of

decoherence on the QCT is quite complex [24] and further

research is required to gain a complete picture of the QCT via

decoherence.  A deep understanding of decoherence is critical

for current applications in quantum information processing in

order to design large-scale, error-free quantum information

devices.

QUANTUM TRAJECTORIES

Decoherence addresses the question of the QCT for the evolu-

tion of phase space distributions [6].  However, it does not

address the problem of obtaining localized trajectories from

quantum dynamics.  A slightly different perspective on deco-

herence can help to approach this problem.  Decoherence can

be thought of as a continuous measurement of the system by

the environment, with the measurement record being discard-

ed, leading to a corresponding loss of information.  If instead,

the environment is a detector that is perfectly monitored, the

system’s state remains pure, evolving according to a stochastic

Schrödinger equation that accounts for both Hamiltonian evo-

lution and random evolution conditioned on the measurements.

Hence such a description corresponds to an “unravelling of the

master equation” [25] describing decoherence, and yields a

‘quantum trajectory’.  Quantum trajectories are crucial for

quantifying the existence of chaos both theoretically and in

experiments through the quantitative measure of the Lyapunov

exponents.  Furthermore, in recent years, as current experi-

ments [26-30] are reaching the point where a quantum system

can be continuously monitored, quantum trajectories also pro-

vide a way of theoretically studying and interpreting the evolu-

tion observed in these experiments . 

In order to analyze the QCT via continuous measurements, we

must first describe the evolution of the quantum system condi-

tioned on weak measurements.  In the theory of projective

measurements, a measurement of a system is described by a

projection operator acting on the state of the system [31].

However, most physical measurements do not actually corre-

spond to direct projective measurements on the system.

Rather, the system of interest is entangled with a detector that

subsequently undergoes a projective measurement to gain

information about the system.  The evolution of an initial prod-

uct state of the system ρS and the meter  is ρM

(3)

If a measurement of the meter in some basis results in outcome

m, then the state of the system after the measurement is 

(4)

ρm is the unnormalized state of the system after the measure-

ment.  The probability for getting outcome m is

Pm = Tr[ΩH
mΩmρS (0)].  The measurement operators, Ωm form

a Positive Operator Valued Measure (POVM) and satisfy the

condition 3mΩH
mΩm = 1, but are not in general restricted to

being projection operators. 

If the system were measured but the outcome not known, then

the state after the measurement, would be a mixture of all pos-

sible final states.  Thus, over an infinitesimal time , the non-

selective evolution is 

(5)

Consider a measurement with two measurement outcomes

described by the operators, 

(6)

Substituting these operators into Eq (5), we obtain a master

equation in standard Lindblad form [32]

(7)

with D being the Lindblad superoperator, D[a]ρ = aρaH
– (aHaρ+ρaHa) /2.  Thus each Lindblad superoperator in a mas-
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ter equation for Markovian evolution can be described by a

measurement process corresponding to a measurement opera-

tor.  The operators in Eq. (6) for example, can be used in quan-

tum optics to describe photodetection of light emitted from a

damped cavity [25].  In this case the operator Ω1 describes a

jump occurring when a photon is detected, while Ω0 corre-

sponds to the evolution in between jumps when no photon is

detected.  Note that we can unitarily transform the measure-

ment operators in Eq. (6) into a different set of measurement

operators corresponding to a different measurement process,

without changing the non-selective evolution of Eq. (7).  An

example of interest is the transformation leading to 

(8)

This corresponds to the transformation a 6 a + γ and 

.  In quantum optics, for +aHa, << |γ|2,

this describes homodyne detection where the output field is

first mixed with a coherent laser field before it is measured.

When the outcomes of the measurements are averaged over,

these different kinds of measurements will lead to the same

master equation, Eq. (7). 

Each set of measurement operators thus corresponds to a par-

ticular type of measurement and gives a different unravelling

of the master equation when the outcomes are retained.  A par-

ticular unravelling of the master equation for a given set of

measurement operators can be described using a stochastic

Schrödinger equation.  Consider a measurement process

described by the measurement operators in Eq. (8).  Over a

given time interval, d t either outcome 0 occurs or outcome

1 occurs, depending on the probability Pm of each outcome.  At

each time step, the quantum state is thus acted on either by ΩN1
or ΩN0 .  The  state  after  the  measurement  is

where m = 0 or 1.  At each step we can randomly pick the oper-

ator corresponding to outcome 0 or 1 using the correct proba-

bilities for each outcome.  For an initially pure state, this con-

ditioned evolution of the system can thus be described by a sto-

chastic equation [33]

(9)

Here, dN(t) is a stochastic process that is equal to 1 if outcome

1 occurs or 0 otherwise.  When |γ| 64 such that the number of

detections in the time interval d t is very large, but the evolu-

tion of the system is infinitesimal, then the Poisson process

dN(t) can be approximated by a Gaussian or Wiener process,

dW [33], leading to a stochastic Schrödinger equation (SSE) of

the form 

(10)

The SSE thus describes the evolution of a quantum system

undergoing continuous weak measurements, where the meas-

urement record at each time step conditions the evolution.

Note that if we average over all possible measurement records,

then the dW term disappears and we would recover the non-

selective evolution described by the master equation of Eq. (7).  

The theory of quantum trajectories presented here has been

developed independently by various researchers in different

contexts and for numerous purposes over several decades.  In

particular, quantum trajectories provide a very efficient way to

simulate non-selective evolution due to a given master equa-

tion, since the master equation dynamics are recovered by aver-

aging over many quantum trajectories.  Although not a compre-

hensive list, we refer the reader to [Refs. 25, 34-40] for more

details.  Here we describe how this description can be used to

analyze and quantify the conditions for the quantum to classi-

cal transition.  In the following section, we discuss a continu-

ous measurement of position and present a set of inequalities

that define the QCT. 

THE QUANTUM TO CLASSICAL TRANSITION

VIA POSITION MEASUREMENTS

The SSE derived above can be applied to the case of continu-

ous measurements of the position z of a system.  The corre-

sponding equation for the density operator           is [25,41]

(11)

Here, k is the measurement strength or resolution.  We assume

perfect measurements such that no information is lost and the

overall state remains pure.  The evolution of the mean of an

observable corresponding to an operator O is given by

d+O, = Tr[Odρ].  Hence, to order dt, the evolution of the mean

position and momentum is 

(12)

where F(z) = -MzV is the derivative of the potential with respect

to z, and Cab = (+ab, + +ba,)/2 - +a,+b, are the symmetrized

covariances.  The position measurement results in Gaussian

noise (terms proportional to dW) in the evolution of both the

mean position and momentum. 

One can derive the conditions [7] under which these equations

remain close to Newton’s equations for the classical variables

z and p given by 

(13)

The quantum equations will approach these classical equations

when (i) the quantum noise terms proportional to dW in

Eq. (12) remain small and (ii) the state remains localized such

that the force term can be expanded around the mean position,

+F(z), = F+z, + small corrections terms.  It follows from the
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expansion of the force term that the strong localization condi-

tion (ii) is satisfied when [8]

(14)

Since k is the measurement strength, the larger the value of k,

the stronger the localization.  Condition (ii) thus places a lower

bound on k.  In the limit of infinite k, the measurement becomes

projective.  However, this would violate condition (i) of weak

disturbance, since the measurement would project the wave

function into a position eigenstate.  Hence condition (i) puts an

upper bound on the value of k.  This can be quantified by exam-

ining the noise terms proportional to dW, which depend on the

covariances Cab.  Evolution of the covariances depends on the

third moments, which in turn depend on the fourth moments

and so on in an infinite hierarchy of equations.  When the state

remains close to Gaussian, we can truncate the hierarchy at the

level of second moments.  From the equations of motion for the

covariances, one finds that the covariances remain small rela-

tive to the total phase space and the weak noise condition is sat-

isfied when [7,8]

(15)

where s is the typical value of the systems action in units of S.

As s becomes larger the inequality holds for a larger window

of k. 

The above inequalities provide a quantitative means of deter-

mining the QCT.  In systems where the characteristic system

action is too small relative to S (for example a spin-1/2 system),

one cannot find a window of measurement strengths that can

satisfy the inequality and the system dynamics typically will

not resemble classical dynamics.  On the other hand, in the

limit of the characteristic actions becoming large relative to S
the inequalities can be satisfied and a transition to classical

dynamics can be observed.  The key point is that the size of S
relative to the characteristic actions is not the only parameter in

the inequalities and hence is not sufficient by itself to identify

the QCT.  Indeed, for chaotic systems we have seen, in the

Section on Decoherence and the Quantum to Classical

Transition, that quantum and classical dynamics can quickly

diverge even when S is small relative to the system actions.

Equations (14) and (15) show that the strength of the measure-

ment relative to s and S plays an important part in defining the

QCT.  As shown in [7], even chaotic classical dynamics can be

recovered when these inequalities are satisfied.  This analysis

thus provides a means of quantitatively identifying the ‘bound-

ary’ between quantum and classical dynamics as well as the

process of strong localization together with weak measurement

noise by which the QCT occurs. 

THE QUANTUM TO CLASSICAL TRANSITION

IN BIPARTITE SYSTEMS

The studies of the QCT presented in the previous section

focused on driven systems with one motional degree of free-

dom, e.g. the Duffing oscillator.  This discussion can be extend-

ed to bipartite quantum systems.  In this section we describe

recent studies, performed with our collaborators, of a bipar-

tite system consisting of a spin coupled to a harmonic oscilla-

tor [9-11].  When the position of the coupled system is continu-

ously measured, regular as well as chaotic classical dynamics

can emerge from the measured quantum trajectories in the limit

of large actions of the position and spin relative to S.  In this

limit, the classical Lyapunov exponent can be obtained from

the quantum trajectories, providing a quantitative correspon-

dence to the classical chaotic dynamics.  Furthermore, the con-

ditions for the QCT can be quantified by placing bounds on the

covariance matrix. 

A key property of bipartite quantum systems, that was not stud-

ied in previous work, is entanglement generated between the

coupled subsystems.  We can explore the relationship between

entanglement and the QCT using the spin-oscillator system.

Entanglement is thought to be a highly nonclassical and nonlo-

cal property, and hence we would expect entanglement to be

negligible in the classical limit.  If the correlation functions

between the degrees of freedom of the bipartite system all fac-

torize in the classical limit, then this would ensure that the

entanglement disappears.  Although this is sufficient, we will

show that it is not in fact a necessary condition for the QCT as

defined here.  Quantum trajectories can closely follow classical

dynamics even when there is a large amount of entanglement

between the subsystems.  These results demonstrate the com-

plexity of defining classical behaviour in coupled systems. 

The spin-oscillator system is described by the Hamiltonian 

(16)

This corresponds to a particle of mass m and angular momen-

tum J moving in a harmonic potential with frequency ω.  The

particle is subject to a constant magnetic field in the x-direction

and a position dependent magnetic field in the z-direction.  The

motion and spin of the particle are coupled via this magnetic

field and constitute the two subsystems of interest.  This ubiq-

uitous Hamiltonian appears in many areas of physics including
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condensed matter physics [42], quantum optics [43], and atomic

physics [44].  A classical analog corresponds to a particle of

mass m and magnetic moment F moving in the same harmonic

potential and subject to the same magnetic field.  The classical

system is nonintegrable with the strength of the magnetic field

in the x-direction being the chaoticity parameter [45,46]. 

The evolution of the system conditioned on a continuous meas-

urement of the position can be modelled using Eq. (11), with

initial states chosen to be a product of minimum uncertainty

coherent states of translational motion and spin: 

(17)

The motional coherent states |α, are displacements in phase

space of the harmonic oscillator ground state |0, by an amount

α = z + ip [47], 

(18)

with a and aH being the creation and annihilation operators.

The spin coherent states are rotations of the state |J, m = J, [48], 

(19)

System parameters are chosen such that when b = c = 0, the
motion of the particle in the oscillator alone satisfies the condi-
tions for the QCT defined in the Section on the The Quantum
to Classical Transition via Position Measurements.  This allows
us to study how entanglement with the spin subsystem affects
the dynamics.  Figure 1 shows the measured evolution of the
system when the particle is coupled via the magnetic field to a
spin-1/2 subsystem.  The quantum trajectories do not agree
with the dynamics predicted by classical equations of motion.
On the other hand, when the magnitude of the spin subsystem
is increased to J = 200S, the quantum trajectories approach the
classical dynamics in both regular and chaotic regimes
(Figure 2).   

The advantage of the spin-oscillator system is that we can eas-

ily visualize the effect of the measurement on the system and

hence exactly understand the process by which the system

makes the quantum to classical transition.  The dynamics of the

spin-1/2 system can be understood by considering the evolu-

tion in the basis of adiabatic eigenstates as shown in Fig. 1(b).

The two adiabatic potentials and corresponding eigenstates are

obtained by diagonalizing the potential at each position.  The

initial state, which is localized in position, is in a superposition

of the two adiabatic eigenstates.  The two components of the

superposition move along two different potentials (dashed lines

in Fig. 1(b)) and hence the wavefunction becomes spatially

delocalized into two components.  The position measurement

acts to localize the wavefunction and hence eventual projects

the state into one of the two eigenstate components.  At this

point the quantum and classical dynamics diverge, since the

classical dynamics predicts motion on an average of the quan-

tum adiabatic potentials rather than one or the other potential.

The coupling to the quantum spin-1/2 system thus causes the

weak position measurement to become a strong projective

measurement. Hence the weak measurement condition is vio-

lated and classical dynamics is not recovered.   

When the magnitude J of the angular momentum subsystem

becomes large, the quantum trajectories match the classical tra-

jectories (Fig. 2).  For a large spin J, the initial wavefunction is

in a superposition of 2J + 1 adiabatic eigenstates that move

2J + 1 along  potentials.  Most of the components move along

potentials close to the local direction of the classical magnetic

moment and the overall spread of the wavefunction is small.

The position measurement acts only to damp the tails of the

distribution and does not project the system into a single adia-

batic state.  Hence the QCT conditions of strong localization

and weak backaction can simultaneously be satisfied for both

Fig. 1 (a) In the spin 1/2 system the mean position of the measured

particle (solid) differs from the classical prediction (dotted).

Outer solid curves show the variance of the wave function.

See [Ref. 10] for details of the system parameters and initial

conditions. (b) The two spinor components of the wave func-

tion move along different adiabatic potentials (dashed) until

the measurement collapses the wave function into the upper

or lower potential. The solid curve shows the resulting meas-

ured quantum trajectory. The classical motion is along the

dashed-dotted potential. ©American Physical Society Fig. 2 The mixed classical phase space of regular and chaotic clas-

sical trajectories (a,b) are well approximated by the quantum

trajectories (c,d) with J=200S. For details of the system

parameters and initial conditions see [Ref. 10]. ©American

Physical Society

| 〉 =| 〉 | , 〉.ψ α θ φ( )0
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e
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the position and the spin.  Furthermore, the classical Lyapunov

exponent can be recovered from the quantum trajectories in the

large spin limit [10], confirming the quantitative transition to

classical chaos. 

The conditions for the QCT numerically obtained above can be

analytically derived by considering the evolution of the mean

position, momentum and spin of the measured quantum system

as derived from Eq (11), 

(20)

with B = -(cex + bzez) / γ and the symmetrized covariances Cab
defined as (+ab, + +ba,) /2 - +a,+b,.  As described in this sec-

tion, for systems with one degree of freedom, the measurement

must be strong enough to localize the state in phase space so

that it resembles a classical point, but weak enough to cause

minimal measurement noise or backaction.  These two condi-

tions lead to the requirement that the covariance matrix of all

the second cumulants must remain small at all times [10].  If the

conditioned state remains almost Gaussian in the large action

limit, the third and higher cumulants can be neglected and the

evolution of the second cumulants can be written in terms of a

matrix Ricatti equation, 

(21)

where the matrices U and V depend on the measurement

stength and W depends on the system parameters.  Numerical

studies of the Ricatti equation showed that the covariance

matrix remains small relative to the phase space of the motion

in the large spin regime where classical trajectories are recov-

ered as expected [10]. 

ENTANGLEMENT AND THE QUANTUM TO

CLASSICAL TRANSITION

We now discuss our recent studies [11] of the behavior of entan-

glement between spin and motion in the large action limit

where classical trajectories are recovered.  Since the overall

state remains pure, the entropy of either subsystem quantifies

the entanglement.  For simplicity, we use the linear entropy

S = 1 - Tr(ρ2) rather than the von Neumann entropy as our

measure of entanglement.  For the reduced spin subsystem with

spin J, the maximum value of S is Smax = 1 - 1/(2J + 1). 

Figure 3 shows the surprising result that as the system is moved

further into the classical regime by making the angular momen-

tum larger, the average normalized entanglement +S,/Smax
between spin and motion increases.  This implies that in a

regime where classical dynamics is obtained from the meas-

ured quantum trajectories, the states remain highly non-classi-

cal with large entanglement. 

The behaviour of the entanglement can be simply explained in

our test system of spin and motion.  The entanglement depends

on the overlap between the different spinor components of the

total wave function.  The system is maximally entangled when

there is no overlap between these different components.

However, even if the different wavepacket components are

spatially distinguishable (i.e., the state is near maximally

entangled), a weak measurement may not be able to resolve all

the different states and thus ‘detect’ this entanglement

(Fig. 3(b)).  Such a measurement may nevertheless be strong

enough to satisfy the dual conditions

for the QCT. For a constant measure-

ment strength k, as the actions

increase, more non-overlapping spinor

components are unresolved by the

measurement, and hence the steady

state entanglement increases.

Therefore, one can simultaneously sat-

isfy the QCT conditions (covariance

matrix remains bounded), thereby

acquiring a trajectory predicted by

classical Hamiltonian equations, and

yet obtain an evolution that results in a

highly entangled quantum state. 

The above results can be further

understood by examining the SSE in

Eq. (11) applied to the evolution of a

general bipartite system.  From this,

the evolution of the reduced state ρA of

the measured subsystem can be

obtained by tracing over the other sub-

system: 

d d dz
p
m

t kC Wzz= + ,8

d d d dp m z t b J t kC Wz zp= − − + ,ω2 8

d d d dJ J B
J B J

= × ( ) + + ,× ( )γ γz t C t kC Wz z8

�C t U C t VC t WC t C t W T( ) ( ) ( ) ( ) ( )= + + + ,

Fig. 3 (a) The normalized average linear entropy of 100 quantum trajectories increases

as J is increased. System parameters and initial conditions are given in [Ref. 11].

(b) As the spin increases, more non-overlapping wave packets remain unresolved

by the measurement leading to a larger amount of steady state entanglement.

©American Physical Society

Oct07-to-trigraphic.qxp  1/17/2008  1:05 PM  Page 179



... QUANTUM TO CLASSICAL TRANSITION (S. GHOSE)

180 C PHYSICS IN CANADA / VOL. 63, NO. 4 ( Oct.-Dec. 2007 )

(22)

The evolution for the marginal linear entropy S obeys

dS = - 2TrA (ρA dρA) - TrA [(dρA )2].  From Eq. (22) (and only

retaining terms to O(dt)), the evolution of the entanglement for

a given measurement strength k is 

(23)

with dS0 the term corresponding to measurement-free (k = 0)

evolution. 

In the regime of the QCT, the measurement terms, which can

be written in terms of the covariances, must become small, and

hence the effect of the measurement on the entanglement

decreases.  Thus in the classical limit, especially in chaotic sys-

tems, the measurement-free evolution term S0 can become

large, with negligible effect from the measurement terms.

Hence in the QCT regime in which the condition for the covari-

ances to be small is satisfied, the entanglement can neverthe-

less be large.  The reason that this can occur is because two dif-

ferent scales are involved.  The covariances can be small rela-

tive to the total phase space of the dynamics, thereby satisfying

the conditions for the QCT.  On the other hand, assuming the

states remain Gaussian in the classical regime, the entangle-

ment is related to the covariances by 

(24)

Thus at the same time that the covariances are small relative to

the total phase space, if they are large relative to the scale of S,

then entanglement may be large. 

Our analysis of entanglement in continuously measured bipar-

tite systems sheds new light on the quantum classical transition

as well as on the standard formalism of von Neumann measure-

ments [49].  It points out that one must be careful about labeling

a system as classical when multiple coupled systems are

involved.  Further studies are required to understand multipar-

tite entanglement and the QCT in more detail. 

CONCLUSION

We have come a long way in our understanding of quantum-

classical correspondence and the transition from the quantum

to the classical world.  Here we have presented a summary of

our current understanding of the QCT, which is based on the

recognition that all systems interact with an environment.

When the environment is a detector whose results are moni-

tored, one can obtain quantum trajectories that can be com-

pared to classical trajectories in phase space.  Quantitative con-

ditions under which the quantum and classical trajectories will

agree can be obtained by using a stochastic Schrödinger equa-

tion to describe the measured quantum system and imposing

the dual conditions of strong localization and weak measure-

ment noise.  This analysis answers the long-standing questions

of whether there is a boundary between the quantum and clas-

sical world, where this boundary lies and what is the process by

which one makes a transition across the boundary. 

We have also summarized here recent detailed studies of the

QCT in a continuously measured bipartite system of a spin and

an oscillator.  Classically integrable as well as chaotic motion

can be recovered in the measurement record when both the spin

and motional actions of the system are large relative to S.  This

generalizes the previous results for systems with a single

degree of freedom and shows that in the large spin limit, the

two conditions for classicality, namely strong localization and

weak measurement noise can be simultaneously satisfied.  The

conditions for recovering classical dynamics can be quantified

by bounding the evolution of the covariance matrix which is

described by a matrix Riccati equation. 

Our recent studies of the entanglement in continuously meas-

ured bipartite system produced intriguing results.  We showed

that even when there is substantial entanglement between cou-

pled subsystems, classical trajectories can be recovered as long

as the measurement is weak and therefore unable to destroy the

entanglement.  Previous studies of NMR quantum computing

have pointed out that the states during a quantum computation

can be described classically, but the evolution is difficult to

reproduce with classical gates due to signal loss [50].  Our

results demonstrate the opposite case - the measured dynamics

can be described classically but the states may not. The results

highlight the fact that the different notions of classicality of the

state vs. the dynamics, are not always compatible.  Although

we have made significant progress in our understanding of the

QCT, the journey is far from over.  As more experiments in

which good quantum control can be achieved come online, and

more theoretical models are developed, we will gain further

insights into the surprising world of quantum mechanics and its

connection to classical mechanics. 
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