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Superconducting qubit–oscillator circuit beyond
the ultrastrong-coupling regime
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The interaction between an atom and the electromagnetic field
inside a cavity1–6 has played a crucial role in developing our
understanding of light–matter interaction, and is central to var-
ious quantum technologies, including lasers and many quan-
tum computing architectures. Superconducting qubits7,8 have
allowed the realizationof strong9,10 andultrastrong11–13 coupling
between artificial atoms and cavities. If the coupling strength g
becomes as large as the atomic and cavity frequencies (∆ and
ωo, respectively), the energy eigenstates including the ground
state are predicted to be highly entangled14. There has been an
ongoingdebate15–17 overwhether it is fundamentally possible to
realize this regime in realistic physical systems. By inductively
coupling a flux qubit and an LC oscillator via Josephson
junctions, we have realized circuits with g/ωo ranging from
0.72 to 1.34 and g/∆�1. Using spectroscopy measurements,
we have observed unconventional transition spectra that are
characteristic of this new regime. Our results provide a basis
for ground-state-based entangled pair generation and open a
new direction of research on strongly correlated light–matter
states in circuit quantum electrodynamics.

We begin by describing the Hamiltonian of each component in
the qubit–oscillator circuit, which comprises a superconducting flux
qubit and an LC oscillator inductively coupled to each other by
sharing a tunable inductance Lc, as shown in the circuit diagram
in Fig. 1a.

The Hamiltonian of the flux qubit can be written in the basis of
two states with persistent currents flowing in opposite directions
around the qubit loop18, |L〉q and |R〉q, as Hq=−~(∆σx + εσz)/2,
where ~∆ and ~ε= 2Ip80(nφq−nφq0) are the tunnel splitting and
the energy bias between |L〉q and |R〉q, Ip is the maximum persistent
current, and σx ,z are Pauli matrices. Here, nφq is the normalized
flux bias through the qubit loop in units of the superconducting
flux quantum, 80 = h/2e, and nφq0 = 0.5 + kq, where kq is the
integer that minimizes |nφq−nφq0|. The macroscopic nature of the
persistent-current states enables strong coupling to other circuit
elements. Another important feature of the flux qubit is its strong
anharmonicity: the two lowest energy levels are well isolated from
the higher levels.

The Hamiltonian of the LC oscillator can be written as
Ho=~ωo(â†â+1/2), where ωo=1/

√
(L0+Lqc)C is the resonance

frequency, L0 is the inductance of the superconducting lead,
Lqc(' Lc) is the inductance across the qubit and coupler (see
Supplementary Section 2), C is the capacitance, and â (â†) is
the oscillator’s annihilation (creation) operator. Figure 1b shows a
laser microscope image of the lumped-element LC oscillator, where

L0 is designed to be as small as possible to maximize the zero-
point fluctuations in the current Izpf=

√
~ωo/2(L0+Lqc) and hence

achieve strong coupling to the flux qubit, while C is adjusted so as
to achieve a desired value of ωo. The freedom of choosing L0 for
large Izpf is one of the advantages of lumped-element LC oscillators
over coplanar-waveguide resonators for our experiment. Another
advantage is that a lumped-element LC oscillator has only one
resonant mode. Together with the strong anharmonicity of the flux
qubit, we can expect that our circuit will realize the Rabi model19–22,
which is one of the simplest possible quantum models of qubit–
oscillator systems, with no additional energy levels in the range
of interest.

The coupling Hamiltonian can be written as9 Hc=~gσz(â+ â†),
where ~g=MIpIzpf is the coupling energy andM('Lc) is themutual
inductance between the qubit and the LC oscillator. Importantly,
a Josephson-junction circuit is used as a large inductive coupler23
(Fig. 1c), which together with the large Ip and Izpf pushes the device
into the regime where g is comparable to or larger than both∆ and
ωo. This regime is sometimes referred to as deep strong coupling24.

The total Hamiltonian of the circuit is then given by

Htotal=−
~
2
(∆σx+εσz)+~ωo

(
â†â+

1
2

)
+~gσz(â+ â†) (1)

Nonlinearities in the coupler circuit lead to higher-order terms in
(â+ â†). The leading-order term can be written as CA2~g (â+ â†)2

and is known as the A2 term15 in atomic physics. Since this A2

term can be eliminated fromHtotal by a variable transformation (see
Methods), we do not explicitly keep it and instead use equation (1)
for our data analysis.

Spectroscopy was performed by measuring the transmission
spectrum through a coplanar transmission line that is inductively
coupled to the LC oscillator (see Supplementary Section 3). For a
systematic study of the g dependence, five flux bias points in three
circuits were used. Circuit II is designed to have larger values of
g than the other two, and circuits I and II are designed to have
smaller values of ∆ than circuit III. Figure 2a–d shows normalized
amplitudes of the transmission spectra |S21(ωp)|/|S21(ωp)|max from
circuits I and II as functions of the flux bias ε and probe frequency
ωp (see also Supplementary Fig. 5a–d). Characteristic patterns
resembling masquerade masks can be seen around ε= 0. At each
value of ε, the spectroscopy data were fitted with Lorentzians to
obtain the frequencies ωij of the transitions |i〉→ |j〉, where the
indices i and j label the energy eigenstates according to their order
in the energy-level ladder, with the index 0 denoting the ground

1National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan. 2Qatar Environment and
Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha, Qatar. 3NTT Basic Research Laboratories, NTT
Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan. †These authors contributed equally to this work. *e-mail: fumiki@nict.go.jp;
tfuse@nict.go.jp; sashhab@qf.org.qa; semba@nict.go.jp

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

© Macmillan Publishers Limited . All rights reserved

http://dx.doi.org/10.1038/nphys3906
mailto:fumiki@nict.go.jp
mailto:tfuse@nict.go.jp
mailto:sashhab@qf.org.qa
mailto:semba@nict.go.jp
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3906

C
2 μm 

GND GND

a c

b

C L0

Izpf

Lc

q
L0

Ip Φ

50 μm 

pω

Figure 1 | Superconducting qubit–oscillator circuit. a, Circuit diagram.
A superconducting flux qubit (red and black) and a superconducting LC
oscillator (blue and black) are inductively coupled to each other by sharing
a tunable inductance (black). b, Laser microscope image of the
lumped-element LC oscillator inductively coupled to a coplanar
transmission line. c, Scanning electron microscope image of the qubit and
the coupler junctions located at the red rectangle in image b. The coupler,
consisting of four parallel Josephson junctions, is tunable via the magnetic
flux bias through its loops (see Supplementary Sections 1 and 2, and
Supplementary Fig. 1).

state. Theoretical fits to ωij were obtained by diagonalizing Htotal,
treating∆, ωo and g as fitting parameters. The obtained parameters
are shown in Table 1. The calculated transition frequencies ωcal

ij are
superimposed on themeasured transmission spectra. As g increases,
the anticrossing gap between the qubit and the oscillator frequencies
at ε '±ωo becomes smaller and the signal from the |1〉→ |3〉
transition gradually transforms from aW shape to a3 shape in the
range |ε|.ωo. These features are seen in both the experimental data
and the theoretical calculations, with good agreement between the
data and the calculations. Note that ωo depends on the qubit state
and ε via Lqc, which results in the broad V shape seen in the spectra
(see Supplementary Section 2).

To capture signals from more transitions, the transmission
spectra in a wider ωp range and a smaller ε range were measured,
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Figure 2 | Transmission spectra for circuits I and II. Calculated transition
frequencies ωcal

ij are superimposed on the experimental results. As
summarized in Table 1, a shows data from circuit I at nφq=−0.5, b shows
data from circuit I at nφq=−1.5, c shows data from circuit I at nφq=2.5, and
d shows data from circuit II at nφq=−0.5. The values of g/2π are written in
the panels. The red, green, blue, and cyan lines indicate the transitions
|0〉→|1〉, |0〉→|2〉, |1〉→|3〉, and |2〉→|4〉, respectively.

as shown in Fig. 3a for circuit I at nφq =−1.5. As we approach
the symmetry point ε = 0, the signals from the |0〉 → |2〉 and
|1〉→|3〉 transitions disappear while the signals from the |0〉→|3〉
and |1〉→|2〉 transitions appear near ωcal

03 and ωcal
12 . The appearance

and disappearance of the signals are well explained by the transition
matrix elements Tij=〈i|(â+ â†)|j〉 shown in Fig. 3b: when ε→0,
|T02| = |T13|→ 0 (forbidden transitions), while |T03| and |T12| are
maximum (allowed transitions). As can be seen from the expression

Table 1 | Set of parameters obtained from fitting spectroscopy measurements.

Circuit nφq Figure ∆/2π (GHz) ωo/2π (GHz) g/2π (GHz) α=g/ωo 2g/
√
ωo∆

I −0.5 2a 0.505 6.336 4.57 0.72 5.1
I −1.5 2b and 3a 0.430 6.306 4.92 0.78 6.0
I 2.5 2c 0.299 6.233 5.79 0.93 8.5
II −0.5 2d 0.441 5.711 7.63 1.34 9.6
III 0.5 SI6 3.84 5.588 5.63 1.01 2.4

The parameters are obtained from five sets of spectroscopy data in three circuits. The column ‘Figure’ shows the corresponding figures. ‘SI’ stands for Supplementary Information.
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Figure 3 | Selection rules and transmission spectrum around the symmetry
point. a, Transmission spectrum for circuit I at nφq=−1.5 plotted as a
function of flux bias ε. The transition frequencies ωcal

ij are superimposed on
the experimental result in a. b, Matrix elements |Tij| calculated using the
parameters shown in Table 1, that is,∆/2π=0.430GHz,
ωo/2π=6.306GHz, and g/2π=4.92GHz. c,d, Calculated transition
frequencies around ωo (c) and from the ground state (d) are plotted as
functions of g at ε=0. The red, green, black, magenta, and blue lines in all
four panels indicate the transitions |0〉→|1〉, |0〉→|2〉, |0〉→|3〉, |1〉→|2〉,
and |1〉→|3〉, respectively. Solid (dashed) lines in c and d indicate that the
corresponding matrix elements Tij are nonzero (zero). Allowed and
forbidden transitions cross at g/2π'ωo/4π=3.15GHz (ref. 25), where
there is an energy-level crossing and the energy eigenstates |2〉 and |3〉
exchange their physical states. The black dotted line is at the coupling
strength in circuit I at nφq=−1.5, g/2π=4.92GHz.

for Tij, these features are directly related to the form of the
energy eigenstates and can therefore serve as indicators of the
symmetry properties of the energy eigenstates, similarly to how
atomic forbidden transitions are related to the symmetry of atomic
wavefunctions. The weakness of the signals from the |0〉 → |3〉
and |1〉→ |2〉 transitions is probably due to dephasing caused by
flux fluctuations. No signals from the |0〉 → |3〉 and |1〉 → |2〉
transitions were observed in circuit I at nφq=2.5 and in circuit II.
The broad dips at ωp/2π= 6.2, 6.38 and 6.45GHz are the result
of a background frequency dependence of the transmission line’s
transmission amplitude, and these features can be ignored here.
The feature at 6.2GHz also contains a narrow signal from another
qubit–oscillator circuit that is coupled to the transmission line (see
Supplementary Section 3).

To conclude this analysis of the observed transmission spectra,
the fact that the frequencies of the spectral lines and the points
where they become forbidden follow, respectively,ωcal

ij and |Tij| lends
strong support to the conclusion thatHtotal accurately describes our
circuits. Importantly, in circuits II and III, g is larger than both ωo
and∆, emphasizing that the circuits are in the deep strong coupling
regime [g &max(ωo,

√
∆ωo/2)] (ref. 25). The fact that at ε = 0

the two forbidden transitions are located between the two allowed
transitions is a further sign that g >ωo/2 (see Fig. 3c). In contrast,
the highest coupling strengths achieved in previous experiments12,13
give g/ωo=0.12 and 0.1, respectively. From the spectrum in Fig. 3a,
we find that ω01(ε= 0)/∆= 0.13 GHz/0.43 GHz= 0.30, meaning
that the Lamb shift26 is 70% of the bare qubit frequency. The

Table2 |Theenergyeigenstatesof thequbit–oscillator system.

Energy eigenbasis |qubit〉⊗|oscillator〉basis
g< ωo

2 g> ωo
2 Arbitrary g g=0

|0〉 |0〉 (|L〉q⊗|−α〉o+|R〉q⊗|α〉o)/
√

2 |g〉q⊗|0〉o
|1〉 |1〉 (|L〉q⊗|−α〉o−|R〉q⊗|α〉o)/

√
2 |e〉q⊗|0〉o

|2〉 |3〉 (|L〉q⊗ D̂(−α)|1〉o+|R〉q⊗ D̂(α)|1〉o)/
√

2 |g〉q⊗|1〉o
|3〉 |2〉 (|L〉q⊗ D̂(−α)|1〉o−|R〉q⊗ D̂(α)|1〉o)/

√
2 |e〉q⊗|1〉o

The left two columns are written in the energy eigenbasis while the right two columns are
written in the tensor product basis of qubit and oscillator states. At g'ωo/2, there is an
energy-level crossing and the energy eigenstates |2〉 and |3〉 exchange their physical states.
|L〉q and |R〉q are the persistent-current states of the qubit, |g〉q and |e〉q are the energy
eigenstates of the qubit, |±α〉o= D̂(±α)|0〉o are coherent states of the oscillator, D̂(α) is a
displacement operator, and |n〉o is a Fock state of the bare oscillator. At g=0 and hence α=0,
the energy eigenstates are product states, as shown in the rightmost column. For arbitrary g,
the energy eigenstates of the qubit–oscillator system are entangled states.

same value (0.30) is obtained from theoretical calculations for
g/ωo=0.78.

Using our experimental results, we can make a statement
regarding theA2 term and the superradiance no-go theorem15 in our
set-up. A direct consequence of the no-go theorem is that, provided
that the condition of the theorem (CA2>g/∆) is satisfied, the system
parameters will be renormalized such that the experimentally
measured parameters will satisfy the inequality 2g/

√
∆ωo<1 (see

Methods). However, in all five cases in our experiment, we find that
2g/
√
∆ωo>1, with the ratio on the left-hand side ranging from 2.4

to 9.6 (see Table 1). These results demonstrate that the A2 term in
our set-up does not satisfy the condition of the no-go theorem and
therefore does not preclude a superradiant state. In fact, we expect
that CA2�1 as shown in Methods.

The energy eigenstates of the qubit–oscillator system can be un-
derstood in the followingway. In the absence of coupling, the energy
eigenstates are product states where the oscillator is described by
a Fock state |n〉o with n plasmons. Because of the coupling to the
qubit, the state of the oscillator is displaced in one of two opposite
directions depending on the persistent-current state of the qubit25:
|L〉q⊗|n〉o→|L〉q⊗ D̂(−α)|n〉o and |R〉q⊗|n〉o→|R〉q⊗ D̂(α)|n〉o.
Here, D̂(α)=exp(αâ†

−α∗â) is the displacement operator, and α is
the displacement. The amount of the displacement is approximately
±g/ωo. As the energy eigenstates of an isolated qubit at ε=0 are su-
perpositions of the persistent-current states, |g〉q=(|L〉q+|R〉q)/

√
2

and |e〉q = (|L〉q − |R〉q)/
√
2, the energy eigenstates of the qubit–

oscillator system at ε= 0 are well described by Schrödinger-cat-
like entangled states between persistent-current states of the qubit
and displaced Fock states of the oscillator D̂(±α)|n〉o, as shown in
Table 2. Note that the displaced vacuum state D̂(α)|0〉o is the coher-
ent state |α〉o=exp(−|α|2/2)

∑
∞

n=0α
n/
√
n!|n〉o. Although the above

picture works best when ωo�∆, theoretical calculations show
that it also gives a rather accurate description for circuit III (with
ωo/∆= 1.44) (see Methods). The vanishing of the spectral lines
corresponding to the |0〉→|2〉 and |1〉→|3〉 transitions at ε=0 is a
consequence of the symmetric form of the energy eigenstates. This
symmetry is expected from the current-inversion symmetry in the
HamiltonianHtotal, and it supports the theoretical prediction that the
energy eigenstates at that point are qubit–oscillator entangled states.

Using Htotal and the parameters shown in Table 1, we can
calculate the qubit–oscillator ground-state entanglement Egs (see
Supplementary Section 5). In all cases, Egs & 90%, and for circuit
II in particular Egs = 99.88%. In comparison, the ground-state
entanglement for the parameters of refs 12 and 13 is 6% and 4%,
respectively. It should be noted here that in all five cases in our
experiment there will be a significant population in the state |1〉 in
thermal equilibrium, and the thermal-equilibrium qubit–oscillator
entanglement will be reduced to below 8% for circuits I and II, and
25% for circuit III (see Supplementary Table 1).
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In conclusion, we have experimentally achieved deep strong
coupling between a superconducting flux qubit and an LC oscillator.
Our results are consistent with the theoretical prediction that the en-
ergy eigenstates are Schrödinger-cat-like entangled states between
persistent-current states of the qubit and displaced Fock states of the
oscillator. We have also observed a huge Lamb shift, 70% of the bare
qubit frequency. The tiny Lamb shift in natural atoms, which arises
from weak vacuum fluctuations, was one of the earliest phenomena
to stimulate the study of quantum electrodynamics. Now we can
design artificial systems with light–matter interaction so strong that
instead of speaking of vacuum fluctuations we speak of a strongly
correlated light–matter ground state, defining a new state of matter
and opening prospects for applications in quantum technologies.

Note added in proof: After acceptance of our paper, we became
aware of a related manuscript27 taking a different approach to the
same theme.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Laser microscope image. The laser microscope image in Fig. 1b was obtained
by a Keyence VK-9710 Color 3D Laser Scanning Microscope. The magnification
of the objective lens is 10. The application ‘VK Viewer’ was used for
image acquisition.

Scanning electron microscope image. The scanning electron microscope
image in Fig. 1c was obtained by a JEOL JIB-4601F. The acceleration voltage
was 10 kV, the magnification was 6,500, and the working distance
was 8.7mm.

Nonlinearity ofM and the A2 term of the total Hamiltonian.We now consider
the nonlinearity of the mutual inductanceM between the flux qubit and the LC
oscillator. As discussed in the Supplementary Information,M is almost the
same as Lc in Fig. 1a, which depends on the current flowing through the Josephson
junction Ib as Lc(Ib)=80/(2π

√
(acIc)2− I 2b ), where acIc≡ IcM is the critical

current of the Josephson junction. We thus assume thatM can similarly be
written as

M(Ib)=
80

2π
√

I 2cM− I 2b
(2)

The nonlinearity ofM(Ib) up to second order in δIb can be written as

M(Ib+δIb)=M(Ib)+δIb
∂M(Ib)
∂Ib

+
δI 2b
2
∂2M(Ib)
∂I 2b

=M(Ib)
(
1+

IbδIb
I 2cM− I 2b

+
I 2cM+2I 2b

2(I 2cM− I 2b )2
δI 2b

)
(3)

The coupling Hamiltonian can be written as
Hc=M(Îq+ Îo)Îq Îo=M(Îq+ Îo)Ipσz Izpf(â+ â†), where Îq= Ipσz is the
persistent-current operator of the qubit, Îo= Izpf(â+ â†) is the current operator of
the oscillator, and the current Îq+ Îo flows through the mutual inductance.
Typically, Ip� Izpf. Taking into account the nonlinearity ofM(Îq+ Îo), the coupling
Hamiltonian is written as

Hc=M(Îq+ Îo)Îq Îo

=M(Îq)

(
1+

Îq Îo
I 2cM− Î 2q

+
I 2cM+2Î 2q

2(I 2cM− Î 2q )2
Î 2o

)
Îq Îo

=M(Ip)

[
IpIzpfσz (â+ â†)+

I 2p I 2zpf
I 2cM− I 2p

(â+ â†)2+
(I 2cM+2I 2p )IpI 3zpf
2(I 2cM− I 2p )2

σz (â+ â†)3

]

=~g [σz (â+ â†)+CA2(â+ â†)2+CA3σz (â+ â†)3] (4)

where

~g=M(Ip)IpIzpf (5)

CA2=
IpIzpf

I 2cM− I 2p
(6)

and

CA3=
(I 2cM+2I 2p )I 2zpf
2(I 2cM− I 2p )2

(7)

Here, we considered terms up to second order in Izpf/Ip. We find that 1�CA2�CA3

considering the following relation, IcM(=acIc)> Ip(.a3Ic)� Izpf(� Ic), where
ac&1, 0.4.a3.0.8, Ic is several hundred nanoamperes, and Izpf is several tens of
nanoamperes (see Supplementary Section 2). Since the term CA3 is very small, we
ignore the third term in equation (4).

The total Hamiltonian of the circuit considering the nonlinearity ofM up to
first order in Izpf/Ip is given by

Htotal=−
~
2
(∆σx+εσz )+~ωo

(
â†â+

1
2

)
+~gσz (â+ â†)+CA2~g (â+ â†)2 (8)

where the first term is the Hamiltonian of the flux qubit, the second term is the
Hamiltonian of the LC oscillator, and the third term is the coupling Hamiltonian.

The fourth term proportional to (â+ â†)2 is known as the A2 term in atomic
physics. This term can be eliminated by a variable transformation as

Htotal=−
~
2
(∆σx+εσz )+~ωo

(
â†â+

1
2

)
+CA2~g (â+ â†)2+~gσz (â+ â†)

=−
~
2
(∆σx+εσz )+

(
~ωo

4
+CA2~g

)
(â+ â†)2−

~ωo

4
(â− â†)2+~gσz (â+ â†)

=−
~
2
(∆σx+εσz )+

~ω′o
4
(b̂+ b̂†)2−

~ω′o
4
(b̂− b̂†)2+~g ′σz (b̂+ b̂†)

=−
~
2
(∆σx+εσz )+~ω′o

(
b̂†b̂+

1
2

)
+~g ′σz (b̂+ b̂†) (9)

where

ω′o=
√
ω2

o+4CA2gωo (10)

g ′=
√
ωo

ω′o
g (11)

and the new field operators,

b̂+ b̂†
=

√
ω′o

ωo
(â+ â†) (12)

and

b̂− b̂†
=

√
ωo

ω′o
(â− â†) (13)

are used. The form of the Hamiltonian in equation (9) is exactly the same as the
one where the coupling term is linear in (â+ â†), which is given by

Hlinear
total =−

~
2
(∆σx+εσz )+~ωo

(
â†â+

1
2

)
+~gσz (â+ â†) (14)

Note that the transformation described by equations (12) and (13) is a
Hopfield–Bogoliubov transformation28. It guarantees that [b̂, b̂†

]=[â, â†
]=1. In

other words, both the â operators and the b̂ operators obey the harmonic oscillator
commutation relations. The two sets of operators are related to each other by
quadrature squeezing operations. The most natural choice among these two and all
other quadrature-squeezed variants is the one that leads to the standard form of the
harmonic oscillator Hamiltonian, usually expressed as ~ωoâ†â. As such, the b̂
operators are the most natural oscillator operators for our circuits. The â operators
were defined based on an incomplete description of the circuit, considering the
properties of the LC circuit and ignoring the qubit and coupler parts of the circuit.
In particular, the A2 term in our circuits describes an additional contribution to the
inductive energy of the oscillator that arises in the presence of the qubit and
coupler circuits. Similarly, the expression given in the main text for the current
zero-point fluctuations must be modified in order to correctly describe the
fluctuations in the full circuit.

Condition for superradiant phase transition. In cases where one expects a sharp
transition from a normal to a superradiant state, for example, when∆�ωo or
when the single qubit is replaced by a large ensemble of N qubits (and g is defined
to include the ensemble enhancement factor

√
N ), the phase transition condition

(without the A2 term) is:

4g 2
=∆×ωo (15)

After taking into account the renormalization of ωo and g caused by the A2 term as
described above, the condition for the phase transition becomes

4g 2
√

ωo

ωo+4CA2g
=∆×ωo×

√
ωo+4CA2g

ωo
(16)

or in other words

4g 2
=∆×

(
ωo+4CA2g

)
(17)

If the parameters are constrained to satisfy the relation CA2>g/∆, the right-hand
side increases whenever we increase the left-hand side, and no matter how large g
becomes it will never be strong enough to satisfy the phase transition condition.
This can indeed be the case with atomic qubits, and it leads to the no-go theorem in
those systems15.
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Fidelities of qubit–oscillator entangled states for circuit III. The fidelity between
two pure states |φ〉 and |ψ〉 is given by F(|φ〉, |ψ〉)=|〈φ|ψ〉|2. For circuit III, the
fidelities between the four lowest energy eigenstates given in Table 2 |iTII〉 and the
corresponding exact energy eigenstates ofHtotal|iexact〉 (i=0, 1, 2, 3) are calculated
to be F(|0TII〉, |0exact〉)=0.981, F(|1TII〉, |1exact〉)=0.985, F(|2TII〉, |2exact〉)=0.975, and
F(|3TII〉, |3exact〉)=0.967. All the other data sets give significantly higher fidelities. In
particular, for circuit II F(|0TII〉, |0exact〉)=0.99994.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon request.
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