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Sensing the quantum limit in scanning tunnelling
spectroscopy
Christian R. Ast1, Berthold Jäck1,w, Jacob Senkpiel1, Matthias Eltschka1, Markus Etzkorn1,

Joachim Ankerhold2 & Klaus Kern1,3

The tunnelling current in scanning tunnelling spectroscopy (STS) is typically and often

implicitly modelled by a continuous and homogeneous charge flow. If the charging energy of a

single-charge quantum sufficiently exceeds the thermal energy, however, the granularity

of the current becomes non-negligible. In this quantum limit, the capacitance of the

tunnel junction mediates an interaction of the tunnelling electrons with the surrounding

electromagnetic environment and becomes a source of noise itself, which cannot be

neglected in STS. Using a scanning tunnelling microscope operating at 15 mK, we show that

we operate in this quantum limit, which determines the ultimate energy resolution in STS. The

P(E)-theory describes the probability for a tunnelling electron to exchange energy with the

environment and can be regarded as the energy resolution function. We experimentally

demonstrate this effect with a superconducting aluminium tip and a superconducting

aluminium sample, where it is most pronounced.
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S
canning tunnelling spectroscopy has evolved into one
of the most versatile tools to study the electronic structure
in real space with atomic precision1–3. The differential

conductance measured through the tunnelling contact directly
accesses the local density of states of the sample. With the
growing interest in phenomena with extremely sharp spectral
features on smaller and smaller energy scales, the demand for
higher and higher spectroscopic energy resolution increases.
Examples are the Kondo effect4, Yu–Shiba–Rusinov states5,6,
Majorana fermions7, or the Josephson effect8–11, just to name a
few. Aside from the obvious strategy of lowering the temperature
to increase the energy resolution12, superconducting tips have
successfully been conducted to circumvent the broadening
effects of the Fermi function in the tunnelling process and
greatly improve the energy resolution6,13. However, at low
temperature T, other energy scales such as the charging energy
EC of the tunnel junction may substantially exceed the thermal
energy kBT such that the granularity of the tunnelling current
becomes non-negligible. The question arises whether the
tunnelling process encompasses an intrinsic resolution limit,
however small it may be, which cannot be overcome. In the
following, we will show that the consequences of charge
quantization ultimately pose a principal limit to the achievable
energy resolution.

The principal properties of a tunnel junction can in many cases
be satisfactorily described by a tunnelling resistance14 and the
charge flow is commonly implicitly assumed to be continuous
and homogeneous. However, at very low temperatures, the
granularity of the tunnelling current resulting from charge
quantization is not necessarily negligible. In this case, the
tunnel junction also becomes a capacitor (see Fig. 1a)
mediating an interaction of the tunnelling electrons with the
surrounding electromagnetic environment15–17. This is the
quantum limit, where electric charge and magnetic flux (phase)
become dual variables (uncertainty principle) so that the charging
energy cannot be neglected anymore. As a result, a tunnelling
electron may exchange a photon with the surrounding
environment, which is accompanied by a loss or gain in energy.
This is schematically shown in Fig. 1b for a scanning tunnelling
microscope (STM), where the electron tunnels from the tip to the
sample and emits a photon to the environment. In addition, the
thermal noise of the junction capacitance becomes appreciable for
small capacitance values. These effects may be small, but they are
non-negligible at low temperatures, especially in the context of
ultimate energy resolution.

The so-called P(E)-theory quantifies the energy exchange
with the environment, where the P(E)-function describes the
probability of a tunnelling electron to emit or absorb a photon to
or from the environment16–20. The P(E)-theory has already been
successfully applied in many instances, where tunnelling electrons
interact with the surrounding environment, which is modelled as
an effective frequency-dependent electromagnetic impedance
Z(o). Examples include the Josephson effect in the charge
tunnelling regime18,21, as well as the phenomenon of Coulomb
blockade15,16,22–23. These examples refer to specific physical
situations: tunnelling of Cooper pairs and tunnelling in a high-
impedance environment (Zð0Þ � RQ, where RQ ¼ h=ð2e2Þ ¼
12:906 kO is the resistance quantum), respectively. However, the
P(E)-theory generally applies to inelastic charge transfer processes
through tunnel junctions. Accordingly, Pekola et al.24 have very
nicely described a contribution to the superconducting density of
states (that is, the Dynes parameter) by environmentally assisted
tunnelling through a normalconductor-insulator-superconductor
junction. They did not though generalize their findings to the
general properties of a tunnel junction.

Here, we show that the photon exchange of tunnelling
electrons with the surrounding environment in conjunction with
the capacitative junction noise represents a principal limit of the
energy resolution DE in spectroscopic measurements using tunnel
junctions (in our case leading to DE in the low meV-range). In this
regard, the P(E)-function represents the resolution function of a
particular tunnel junction. Using an STM operating at 15 mK (ref.
25), we independently characterize the P(E)-function of a
superconductor-vacuum–superconductor-tunnel junction through
its direct relation with the Josephson effect. Subsequently, we
demonstrate the impact of the P(E)-function on the tunnelling
process by measuring the superconducting quasiparticle density
of states of the same tunnel junction. We find excellent
quantitative agreement of our spectra from different tunnel
junctions with the model calculations including P(E)-theory. This
leads us to conclude that the P(E)-function plays a ubiquitous role
as a resolution function in the tunnelling process, in particular for
energy scales at or below 1 meV.

Results
Theoretical modelling. To consider the effects of charge
quantization in the tunnelling Hamiltonian, a charge transfer
operator has to be included16. A detailed derivation can be found

in ref. 19. The resulting tunnelling probability G
-
ðVÞ from tip to

sample as a function of applied bias voltage is given by refs 16,26:

G
-
ðVÞ ¼ 1

e2RT

Z1

�1

Z1

�1

dEdE0ntðEÞnsðE0 þ eVÞf ðEÞ½1� f ðE0 þ eVÞ�PðE� E0Þ:

ð1Þ
Here, RT is the tunnelling resistance, f ðEÞ ¼ 1=ð1þ expðE=kBTÞÞ
is the Fermi function, and nt, ns are the densities of states of tip
and sample, respectively. By exchanging electrons and holes in

equation (1), the other tunnelling direction G
’

(V) from sample to
tip can be obtained. Equation (1) differs from the standard
expression of the tunnelling probability by the convolution with
the P(E)-function12,27. If we set P(E)¼ d(E), which means that
there is no energy exchange with the environment and no
capacitative noise, the standard expression for the tunnelling
current is recovered28. It can be clearly seen that the convolution
with the P(E)-function results in a broadening of the spectral
features in the density of states. The current I(V), which is
measured through the tunnel junction as a function of applied
bias voltage V, is the difference of the tunnelling probabilities in

the forward G
-
ðVÞ and the backward direction G

’
(V). The
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Figure 1 | Schematic of the tunnelling process. (a) Schematic drawing of

an STM tunnel junction consisting of tip and sample. The equivalent circuit

diagram is represented by a tunnelling resistor RT and the junction

capacitance CJ. (b) Schematic energy diagram showing the energy loss of

an electron tunnelling in an STM from the tip to the sample. Interacting with

the surrounding environment, the electron loses energy according to the

probability given by the P(E)-function. The FWHM is indicated with the

values found in this work.
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tunnelling current I(V) is then:

IðVÞ ¼ e G
-
ðVÞ� G

’
ðVÞ

� �
: ð2Þ

The effect of the capacitance in the tunnel junction and the
interaction of the tunnelling electrons with the surrounding
environmental impedance has been modelled within the
framework of P(E)-theory, where the P(E)-function describes
the probability for a tunnelling electron to exchange energy with
the environment. It is commonly defined through the equilibrium
phase correlation function J(t) as the Fourier transform of
exp[J(t)] (refs 18,19). To account for the different dissipation
channels, we define J(t)¼ J0(t)þ JN(t), where J0(t) describes the
phase correlation of the environmental impedance and JN(t)
captures the low frequency capacitative thermal noise in the
junction. This allows us to calculate the P0(E)-function for
the environmental impedance and the PN(E)-function for the
capacitative noise separately. They can be combined to the total
P(E)-function through a convolution (see ‘Methods’ section).

Because the correlation function is difficult to calculate directly,
we choose an implicit definition for P0(E)20:

P0ðEÞ ¼ IðEÞþ
Z1

�1

doKðE;oÞP0ðE� ‘oÞ; ð3Þ

where the two functions I(E) and K(E,o) are defined in the
‘Methods’ section. The P0(E)-function is parameterized by the
temperature T, as well as the junction capacitance CJ, and
the surrounding impedance Z(o), which together form the total
impedance:

ZTðoÞ ¼
1

ioCJþZ� 1ðoÞ : ð4Þ

In our STM, the tip acts as a monopole antenna, whose
impedance can be modelled in analogy to an infinite
transmission line impedance11,18. The fit parameters are the
principal resonance frequency o0 and a damping factor a. The
d.c. resistance Z(0) is fixed at the vacuum impedance value of
376.73O. The PN(E)-function is modelled by a normalized
Gaussian of width s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ECkBT
p

to account for the thermal
voltage noise on the junction capacitor. Because both tip
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Figure 2 | Josephson current–voltage characteristics. I(V)-characteristics of the Josephson effect for two different Al tips on an Al(100) sample. The

tunnel junctions in (a) and (b) have a capacitance of 3.5 fF and 7 fF, respectively, which means that the tunnel junction in (a) is more sensitive to the

surrounding environment. Therefore, the principal impedance resonance o0 is visible in (a) and not in (b). The fit using P(E)-theory (black lines) is in

excellent agreement with the data. The P(E)-functions extracted from the fits in (a) and (b) are shown on a linear scale in (c) and on a logarithmic scale in

(d). The asymmetry of the P(E)-function is clearly visible.
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and sample are superconducting, we define the charging energy
EC¼Q2/2CJ using the charge of a Cooper pair (Q¼ 2e)18,
which makes it four times higher than the charging energy for a
singly charged quasiparticle. Including the capacitative noise
has proven essential in previous descriptions of the tunnelling
current as well11.

Josephson tunnelling in the dynamical Coulomb blockade regime.
The experiments were carried out in an STM operating at a base
temperature of 15 mK (ref. 25). We use an Al tip and an Al(100)
sample29,30, which is superconducting at 15 mK (transition
temperature TC¼ 1.1 K). Aluminium has been shown to exhibit
minimal intrinsic broadening due to depairing resulting in sharp
coherence peaks31, which is why it is an excellent material for
demonstrating the broadening effects in a tunnel junction, as we
will show in the following. We used two different tip wires with
diameters of 0.25 and 1 mm (tip 1 and tip 2, respectively)
expecting different junction capacitances CJ.

To demonstrate the influence of the P(E)-function on density
of states measurements, we have to independently determine the
P(E)-function from a separate measurement. Since every tip in an
STM is slightly different, we have to determine the P(E)-function
for every tip separately. As both tip and sample are super-
conducting at 15 mK, the most straightforward way to experi-
mentally determine the P(E)-function is through the Josephson
effect. We have to use the P(E)-theory to describe the Josephson
effect rather than the Ivanchenko–Zil’berman (IZ) model, which
has been used in STM measurements before, because the IZ
model is only valid in the classical phase diffusion limit
(EC � kBT)18,32. In the case of a simple ohmic impedance
(and only then), a capacitative element renormalizes the
Josephson energy, so that the IZ model can still be used33,34.
This is clearly not the case here. Furthermore, as has been
shown before, the environmental impedance in our experiment
exhibits resonances and cannot be approximated by the generic
impedance in the IZ model11,35. In the sequential charge
tunnelling regime, where the charging energy EC is larger than
the Josephson energy EJ (which is commonly the case in a
standard STM setup), the current–voltage characteristics is given
by ref. 18:

IðVÞ ¼
peE2

J

‘
Pð2eVÞ� Pð� 2eVÞ½ �: ð5Þ

The Josephson energy EJ, can be regarded as a scaling parameter
here36. In this sense, the I(V) measurement of the Josephson
effect is a direct measure of the P(E)-function18,19.

We have measured the I(V)-characteristics of the Josephson
effect for two different aluminium tips, which are shown in Fig. 2.
The tunnelling conditions were such that for both tips the current
setpoint was 5 nA at a voltage of 1 and 2 meV for tip 1 and 2,
respectively. For better comparison, the current was divided by
peE2

J =‘ . The general features of the Josephson effect in the
sequential charge tunnelling regime are visible, however, the peak
in Fig. 2b is somewhat higher and sharper than in panel (a). In
addition, the spectrum in panel (a) shows a broad peak of the
principal antenna resonance o0. The fits using equation (5) are
shown as black lines (see Supplementary Note 1). They agree well
with the measured data. The most significant difference between
the two tunnel junctions is that the junction in the Fig. 2a has a
capacitance of CJ¼ 3.5±0.2 fF, while in Fig. 2b the capacitance is
CJ¼ 7.0±0.1 fF, which can be traced back to the different wire
diameters (see ‘Methods’ section). The lower the junction
capacitance value CJ is, the more sensitive the junction will be
to the environment Z(o) (cf. equation (8)).

The actual shape of the P(E)-function for the two tips is
shown in Fig. 2c and on a semi-log scale in (d). The full-width
at half maximum (FWHM) for tip 1 and 2 is 77.2 meV
and 65.4 meV, respectively, which will have a non-negligible
effect on the superconducting density of states. In addition,
the P0(E)-function obeys the detailed balance symmetry20,
PðEÞ ¼ expðE=kBTÞPð� EÞ, which makes the function
inherently asymmetric as can be clearly seen in Fig. 2d even
after the convolution with the capacitative noise. With the
well-defined P(E)-function, we can look at its impact on the
details of a quasiparticle spectrum.

Charge quantization effects in quasiparticle spectra. The
differential conductance dI/dV spectra measured with the two
tips as a function of bias voltage V are shown in Fig. 3. The
lock-in modulation for the spectra was 10 meV (peak-to-peak) at
724 Hz. Because both the tip and the sample are superconducting,
the apparent gap in the spectrum has a width of 2(DtþDs). The
tip gap Dt can be slightly smaller than the bulk value of 180meV.
The most noticeable difference between the two spectra is the
height of the coherence peaks. We fit the two spectra with the
differential conductance model obtained from the derivative
of equation (2) in combination with equation (1). For the
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Figure 3 | Quasiparticle spectra. Differential conductance spectra of the superconducting densities of states for the two different Al tips on an Al(100)

sample (the tip wire diameters are 0.25 mm in (a) and 1 mm in (b)). To suppress subgap features, we have measured at low transmission (stabilization at

2 meV and 50 pA). The fits are shown as black lines with excellent agreement. The superconducting density of states of both tip and sample was modeled

by the simple Bardee–Cooper–Schrieffer (BCS)-model without any additional broadening parameters.
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superconducting density of states in tip nt and sample ns, we use
the simple BCS model37, explicitly neglecting any intrinsic
broadening (for example, Dynes parameter G (ref. 38)):

nt;sðEÞ ¼ n0<
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2�D2
t;s

q
2
4

3
5: ð6Þ

For the P(E)-function we use the same values that have been
obtained from the fit to the data in Fig. 2, which means that the
number of fit parameters is reduced to the value of the
superconducting gap D and an overall scaling factor including
the tunnelling resistance RT. We find excellent agreement for both
spectra using the corresponding P(E)-function and with gap
values of Dt¼ 160±2 meV for tip 1 and Dt¼ 180±2 meV for
tip 2. The sample gap is set to the bulk value Ds¼ 180meV. In
both cases, the height and the shape of the coherence peaks are
quantitatively well reproduced.

By contrast, disregarding the P(E)-function and fitting the
spectra in Fig. 3 with the Dynes equation38 to account for
the broadening, does not give a satisfactory fit at all
(see Supplementary Note 2 and Supplementary Figure 1). The
height reduction in the coherence peaks has to be absorbed into
the empirical broadening parameter G. This leads to the
accumulation of quasiparticle spectral weight inside the gap,
which is not observed experimentally. In fact, as outlined in the
‘Methods’ section, the Coulomb dip found in the normal
conducting state of tip and sample strongly supports our
P(E)-analysis. Since it is well described by the same
P(E)-function as for the quasiparticle spectrum and the
Josephson spectrum, we attribute the reduction of the
singularities to sharp peaks to the P(E)-function broadening.

Discussion
According to the P(E)-theory, the exchange of energy with the
environment during the tunnelling process should be an
ubiquitous phenomenon16. In the majority of cases, it has been
discussed in the context of dynamical Coulomb blockade
(DCB)15,16,22–23 as well as the Josephson effect in the sequential
charge tunnelling regime17,18,21. While in these cases, the role of
the P(E)-theory is obvious, its role as a resolution function in

every tunnelling spectrum is more subtle, but non-negligible, as
we will show in the following. Neglecting the asymmetric shape
for a moment and looking at the general broadening effect of the
P(E)-function, we find that the FWHM of the P(E)-function is
dominated by the capacitative noise and is essentially determined
by the junction capacitance CJ as well as the temperature T
(see also Supplementary Note 3).

The FWHM of the P(E)-function for typical low temperatures
(0.01–5 K) and capacitances (1–50 fF) is shown in Fig. 4. For
comparison, the conventional thermal broadening DEtherm of
differential conductance spectra in the STM due to the Fermi
function is also shown as a black line (DEtherm¼ 3.5 kBT). While
the thermal Fermi function broadening depends linearly on
temperature, we find an overall empirical relation for the effective
energy resolution due to P(E)-broadening, which is a function of
temperature and capacitance DEPðEÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ECkBT
p

. The coeffi-
cient g has an average value of g¼ 2.45±0.1, keeping in mind
that the capacitative noise is the dominant contribution to the
FWHM. The P0(E)-function changes the coefficient g slightly
depending on the actual values of the parameters. This means
that for low-enough temperature, the P(E)-broadening will
eventually be the dominant contribution to the resolution limit,
regardless of whether the tip and/or sample are superconducting
or not. We note that this empirical equation holds for capacitive
noise from Cooper pairs. For noise from quasiparticles, we expect
the P(E)-broadening to be reduced by about one half. At or below
1 K, the P(E)-broadening definitely has to be taken into account
when optimizing the energy resolution. The optimizing strategy
will be to increase the junction capacitance by appropriate ex situ
tip shaping on a macroscopic scale (up to mm-scale). Increasing
the junction capacitance will increase the crosstalk between tip
and sample, so that a trade-off between energy resolution and
STM performance will have to be made.

Due to the asymmetry of the P(E)-function, the spectral
features in the density of states will not only be broadened, but
may also change shape, which can have a strong influence on the
interpretation of experimental data. The asymmetry evens out for
higher temperatures, but at low temperatures, it has to be
considered as can be seen in the fits of the differential
conductance spectra in Fig. 3. If a symmetric broadening had
been sufficient to fit these spectra, a Dynes fit would likely have
sufficed. We expect the P(E)-broadening to be most significant on
intrinsically sharp spectral features, such as coherence peaks of a
superconducting gap. In addition, sharp Kondo peaks with a low
Kondo temperature on the order of 1 K may show an effectively
higher Kondo temperature when the P(E)-broadening is not
taken into account. Also, Yu–Shiba–Rusinov states, which have
an intrinsically d-like spectral appearance39, will be strongly
influenced by P(E)-broadening.

In summary, we have shown that the interaction of tunnelling
electrons with the environmental impedance as well as the
capacitative junction noise limit the effective energy resolution in
spectroscopic measurements of the differential conductance with
the STM. The P(E)-function that models the energy exchange
with the electromagnetic environment combined with the
capacitative noise is the energy resolution function of the tunnel
junction. The effect of P(E)-broadening becomes dominant at or
below 1 K and has to be taken into account when optimizing the
energy resolution. In this regime, the quantum nature of the
tunnelling process becomes evident, there is virtually no elastic
tunnelling in experiments, and the surrounding electromagnetic
environment has to be taken into account.

Methods
Sample preparation. The sample that was used was an Al(100) single crystal and
the tip was an Al wire of 99.9999% purity. The sample was sputtered (Arþ ions at
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500 eV) and annealed in ultrahigh vacuum (low 10� 10 mbar range) in several
cycles, while the tip was cut in air, transferred in vacuum and then sputtered
(Arþ ions at 500 eV) to remove the native oxide. With a superconducting
transition temperature TC¼ 1.1 K both tip and sample are superconducting at
15 mK with a fully open gap. The quasiparticle density of states of aluminium in
the superconducting state has a very Bardeen–Cooper–Schrieffer (BCS)-like
character with minimal intrinsic broadening31, which is why aluminium is an
excellent material for demonstrating the broadening effects in a tunnel junction.

The dynamical Coulomb blockade regime. We assume a sequential tunnelling
regime, where the system, including the environment, is relaxed before the next
quasiparticle or Cooper pair tunnels. To support our treatment of inelastic Cooper
pair/quasiparticle tunnelling in the main text, we here show data for the normal
conducting regime. Accordingly, DCB should then induce a characteristic dip in
the differential conductance around zero voltage. This is indeed found in Fig. 5a,
which shows the differential conductance spectrum taken with the Al tip and the Al
sample in the normal conducting state in a 10 mT magnetic field. The spectrum
clearly shows a conductance dip by about 8% demonstrating a DCB in our system.
This dip is clear evidence that the consequences of charge quantization cannot be
neglected in our operating regime. Consequently, we have to take the effects
of the tunnelling capacitance into account and conduct P(E)-theory to describe
our data21. The spectra in Fig. 5b,c show the quasiparticle spectrum in the
superconducting state (at 0 mT) and the Josephson effect, respectively. Both of
these spectra were fitted with the same P(E)-function as in Fig. 5a having a
capacitance CJ¼ 7 fF (tip wire with 1 mm diameter), a resonance energy
‘o0 ¼ 70 meV and a damping factor a¼ 0.75 (the details of these parameters are
described below). The fitted temperature was 100 mK. For the spectrum in Fig. 5a,
we used the charging energy EC for quasiparticles, because both tip and sample are
in the normal conducting state. For the spectrum in Fig. 5b,c, we used the charging
energy for Cooper pairs.

Modelling the superconducting gap. We model the superconducting gap of
aluminium with the simple BCS model because we work with high purity tip and
sample material, so that we assume that there is negligible depairing due to
impurities in the material. Further, the tip is solid aluminium wire, and we have not
observed any indications of confinement effects. As such, there is a priori no real

justification to describe the superconducting gap with Maki’s equation or the
Usadel equation40,41, although the functions may give a satisfactory fit. Conducting
P(E)-theory gives an overall consistent picture and describes the superconduting
quaisparticle spectrum with the simplest BCS model demonstrating that
P(E)-broadening is the dominating broadening mechanism in our case.

Modelling the environmental impedance. In our STM the surrounding
impedance that contributes to the P(E)-function is the vacuum as well as the tip
acting as a monopole antenna with a corresponding resonance spectrum that
depends on the length of the tip11. Approximating the resonance spectrum by an
infinite transmission line impedance11,18, we find an analytic expression for the
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impedance Z(o):

ZðoÞ ¼ Renv

1þ i
a tan p

2
o
o0

� �

1þ ia tan p
2
o
o0

� � ; ð7Þ

where Renv is the effective d.c. resistance of the environmental impedance, a is an
effective damping parameter and o0 is the frequency of the principal resonance.
The parameter Renv is set to the vacuum impedance of 376.73O. The fit parameters
for this impedance are a and o0.

The total impedance ZT(o) takes into account the capacitance CJ in the tunnel
junction as well:

ZTðoÞ ¼
1

ioCJ þZ� 1ðoÞ : ð8Þ

Here, the parameter CJ is also a fit parameter.

Calculating the P(E)-function. The P(E)-function is commonly defined through
the equilibrium phase correlation function J(t) through18:

PðEÞ ¼
Z1

�1

dt
2p‘

exp½JðtÞþ iEt=‘ �: ð9Þ

We regard the energy exchange with the environmental impedance and the
capacitative noise from the tunnel junction as two independent processes, which
allows us to separate the correlation function as:

JðtÞ ¼ J0ðtÞþ JNðtÞ; ð10Þ
where J0(t) is the phase correlation function from the environmental impedance
and JN(t) is due to the capacitative junction noise. We can then calculate the
corresponding probability functions separately, where P0(E) is the probability due
to the interaction with the environmental impedance and PN(E) is due to the
capacitative noise. Exploiting the convolution theorem, we can calculate the total
P(E)-function through a convolution:

PðEÞ ¼
Z1

�1

dE0P0ðE� E0ÞPNðE0Þ: ð11Þ

For the calculation of the P0(E)-function for the environmental impedance,
we follow the implementation given in ref. 20. The P0(E)-function is calculated
through an indirect definition within an integral equation:

P0ðEÞ ¼ IðEÞþ
Z1

�1

doKðE;oÞP0ðE�‘oÞ; ð12Þ

where K(E,o) is the integral kernel. The inhomogeneity I(E) is defined as:

IðEÞ ¼ 1
p

D
D2 þE2

ð13Þ

with

D ¼ p
b
<ZTð0Þ

RQ
; ð14Þ

where b ¼ ðkBTÞ� 1, T is the temperature, and RQ¼ h/(2e2) is the resistance
quantum. The integral kernel K(E,o) is defined as:

KðE;oÞ ¼ ‘E
D2 þ E2

kðoÞþ ‘D
D2 þ E2

kðoÞ ð15Þ

with the functions k(o) and k(o) being:

kðoÞ ¼ 1
1� e� b‘o

<ZTðoÞ
RQ

� 1
b‘o

<ZTð0Þ
RQ

ð16Þ

kðoÞ ¼ 1
1� e� b‘o

IZTðoÞ
RQ

� 2
b‘

X1
n¼1

nn

n2
n þo2

ZTð� innÞ
RQ

: ð17Þ

The Matsubara frequencies vn are defined as ‘ nn ¼ 2np=b. Using the
inhomogeneity I(E) as a starting value for the P0(E)-function calculation, the
integral equation in equation (12) can be solved self-consistently. Convergence is
usually reached within a few iterations. Treating the integral as a convolution, the
calculation can be done very efficiently numerically. Care should be taken to extend
the integral range to sufficiently large energies, while at the same time having a high
enough numerical point density. Other than the impedance ZT(o), the temperature
T is a fit parameter in this part of the P(E)-function calculation.

The PN(E)-function for the thermal capacitative noise of the tunnel junction has
proven a non-negligible part of the total P(E)-function. The low frequency
capacitative noise PN(E) is modelled by a Gaussian18:

PNðEÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pECkBT
p exp � E2

4ECkBT

� �
; ð18Þ

where EC¼Q2/2CJ is the charging energy for Cooper pairs (Q¼ 2e). The

PN(E)-function does not introduce any new fit parameters as the junction
capacitance CJ as well as the temperature T are already defined in the
P0(E)-function.

Estimating the junction capacitance. The capacitance of the tunnel junction
cannot be easily calculated as the details of the tip shape of the apex are unknown.
However, it is possible to estimate the contributions to the junction capacitance
from a simple model that can be calculated analytically. Assuming a conical tip that
touches a flat sample in one point (see Fig. 6), we can calculate the junction
capacitance CJ using spherical coordinates:

CJ ¼
ped

sinða=2Þ lnðcotða=4ÞÞ : ð19Þ

This model shows that for the junction capacitance the full diameter d of the tip
has to be considered. For a tip wire diameter d of 0.5 mm and an opening angle a
of 60�, we calculate a junction capacitance of about 21 fF. In the experiment
we have used wire diameters of 0.25 mm (tip 1) and 1 mm (tip 2), with junction
capacitances of 3.5 and 7 fF, respectively. Considering the crudeness of the model,
we find good agreement between experiment and calculation.

From the total impedance ZT(o) in equation (8), we find that the larger the
junction capacitance CJ, the less sensitive the junction will be to the environment,
the smaller the capacitative noise will be, and, correspondingly, the better the
energy resolution will be. Thus, the diameter of the tip plays a crucial role. The
length of the tip will essentially determine the position of the antenna resonances,
which is less crucial to the energy resolution.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information.
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11. Jäck, B. et al. A nanoscale gigahertz source realized with Josephson scanning
tunneling microscopy. Appl. Phys. Lett. 106, 013109 (2015).

12. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope.
Phys. Rev. B 31, 805–813 (1985).

13. Pan, S. H., Hudson, E. W. & Davis, J. C. Vacuum tunneling of superconducting
quasiparticles from atomically sharp scanning tunneling microscope tips. Appl.
Phys. Lett. 73, 2992–2994 (1998).

14. Chen, C. J. Introduction To Scanning Tunneling Microscopy (Oxford Univ.
Press, 2008).

15. Delsing, P., Likharev, K. K., Kuzmin, L. S. & Claeson, T. Effect of
high-frequency electrodynamic environment on the single-electron tunneling
in ultrasmall junctions. Phys. Rev. Lett. 63, 1180–1183 (1989).

16. Devoret, M. H. et al. Effect of the electromagnetic environment on the coulomb
blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824 (1990).

17. Averin, D., Nazarov, Y. & Odintsov, A. Incoherent tunneling of the cooper
pairs and magnetic flux quanta in ultrasmall Josephson junctions. Phys. B
165–166, 945 (1990).

18. Ingold, G., Grabert, H. & Eberhardt, U. Cooper-pair current through ultrasmall
Josephson junctions. Phys. Rev. B 50, 395 (1994).

19. Ingold, G.-L. & Nazarov, Y. V. Single Charge Tunneling, chap. Charge
Tunneling Rates in Ultrasmall Junctions (Plenum Press, 1992).

20. Ingold, G.-L. & Grabert, H. Finite-temperature current-voltage characteristics
of ultrasmall tunnel junctions. Europhys. Lett. 14, 371 (1991).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13009 ARTICLE

NATURE COMMUNICATIONS | 7:13009 | DOI: 10.1038/ncomms13009 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


21. Hofheinz, M. et al. Bright side of the Coulomb blockade. Phys. Rev. Lett. 106,
217005 (2011).

22. Brun, C. et al. Dynamical Coulomb blockade observed in nanosized electrical
contacts. Phys. Rev. Lett. 108, 126802 (2012).

23. Serrier-Garcia, L. et al. Scanning tunneling spectroscopy study of the proximity
effect in a disordered two-dimensional metal. Phys. Rev. Lett. 110, 157003 (2013).

24. Pekola, J. P. et al. Environment-assisted tunneling as an origin of the dynes
density of states. Phys. Rev. Lett. 105, 026803 (2010).

25. Assig, M. et al. A 10 mK scanning tunneling microscope operating in ultra high
vacuum and high magnetic fields. Rev. Sci. Inst 84, 033903 (2013).

26. Odintsov, A. Effect of dissipation on the characteristics of small-area tunnel
junctions: application of the polaron model. Sov. Phys. JETP 67, 1265 (1988;
(Russian original - ZhETF, 94, 312, (1988)).

27. Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6,
57–59 (1961).

28. Chen, C. J. Theory of scanning tunneling spectroscopy. J. Vac. Sci. Technol 6,
319–322 (1988).

29. Guillamon, I., Suderow, H., Vieira, S. & Rodiere, P. Scanning tunneling
spectroscopy with superconducting tips of Al. Phys. C 468, 537–542 (2008).

30. Rodrigo, J. G., Suderow, H. & Vieira, S. On the use of STM superconducting
tips at very low temperatures. Eur. Phys. J. B 40, 483–488 (2004).

31. Giaever, I., Hart, H. R. & Megerle, K. Tunneling into superconductors at
temperatures below 1�K. Phys. Rev. 126, 941–948 (1962).

32. Ivanchenko, Y. M. & Zil’berman, L. A. The Josephson effect in small tunnel
contacts. Sov. Phys. JETP 28, 1272 (1969).

33. Grabert, H., Ingold, G.-L. & Paul, B. Phase diffusion and charging effects in
Josephson junctions. Europhys. Lett. 44, 360–366 (1998).

34. Ankerhold, J. et al. Overdamped quantum phase diffusion and charging effects
in Josephson junctions. Europhys. Lett. 67, 280 (2004).
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