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Temperature and voltage measurement in quantum systems far from equilibrium
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We show that a local measurement of temperature and voltage for a quantum system in steady state, arbitrarily
far from equilibrium, with arbitrary interactions within the system, is unique when it exists. This is interpreted as
a consequence of the second law of thermodynamics. We further derive a necessary and sufficient condition for
the existence of a solution. In this regard, we find that a positive temperature solution exists whenever there is
no net population inversion. However, when there is a net population inversion, we may characterize the system
with a unique negative temperature. Voltage and temperature measurements are treated on an equal footing: They
are simultaneously measured in a noninvasive manner, via a weakly coupled thermoelectric probe, defined by
requiring vanishing charge and heat dissipation into the probe. Our results strongly suggest that a local temperature
measurement without a simultaneous local voltage measurement, or vice versa, is a misleading characterization
of the state of a nonequilibrium quantum electron system. These results provide a firm mathematical foundation
for voltage and temperature measurements far from equilibrium.
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I. INTRODUCTION

Scanning probe microscopy [1–5] revolutionized the field
of nanoscience and enabled the measurement of local thermo-
dynamic observables such as voltage [6] and temperature [7]
in nonequilibrium quantum systems. The ability to define local
thermodynamic variables in a system far from equilibrium is of
fundamental interest because it is a necessary step toward the
construction of nonequilibrium thermodynamics [8–15]. Many
experiments in mesoscopic electrical transport utilize voltage
probes as circuit elements [16–19], and scanning potentiome-
ters are now a mature technology [20–22], routinely achieving
subangstrom spatial resolution to study a host of novel physical
phenomena [23–26]. In contrast, scanning thermometry [7] has
proven significantly more challenging [27], but is currently
undergoing a rapid evolution toward nanometer resolution
[28–31], leading to important insights into transport and
dissipation at the nanoscale [32–36]. A fundamental challenge
for theory is to develop a rigorous mathematical description of
such local thermodynamic measurements. Until now, mainly
operational definitions [12,37–46] have been advanced, lead-
ing to a competing panoply of often contradictory definitions
of such basic observables as temperature and voltage.

The second law of thermodynamics is one of the corner-
stones of physics. The origin of the second law was rooted
in empirical observations in the early nineteenth century,
and its theoretical explanation emerged with the gradual
development of the statistical foundation of thermodynamics.
The statistical basis of the second law places it in a league
of its own, among the laws of physics. A quote on the
subject, at once exalting and to the point, by the famous
astrophysicist Sir Arthur Eddington reads as follows [47]:
“The law that entropy always increases holds, I think, the
supreme position among the laws of Nature. If someone
points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations—then so much the
worse for Maxwell’s equations. If it is found to be contradicted
by observation—well, these experimentalists do bungle things
sometimes. But if your theory is found to be against the second
law of thermodynamics I can give you no hope; there is nothing

for it but to collapse in deepest humiliation.” Any theory which
purports to describe the measurement of temperature, voltage,
or other thermodynamic parameters, must therefore satisfy this
fundamental requirement, and as Eddington notes, regardless
of the nature of microscopic interactions.

We examine statements of the second law of thermody-
namics, accompanied with mathematical proofs, and their
consequences, in the context of local noninvasive measure-
ments of temperature and voltage in nonequilibrium quantum
electron systems. We derive our results from very general
considerations, i.e., for electron transport in steady state,
arbitrarily far from equilibrium, and for arbitrary interactions
within the quantum electron system. Our considerations apply
to any system of fermions, charged or neutral. For nonin-
teracting electrons, our results also hold for arbitrarily large
(invasive) probe couplings. While our analyses in this article
are presented in a theorem-proof format, their motivation
draws from physical principles. We show that the uniqueness
of the temperature and voltage measurement is a consequence
of the second law of thermodynamics and that, in order to
obtain a unique measurement, it is necessary to measure both
temperature and voltage simultaneously. Simply put, this is
because electrons carry both energy and charge.

In order to have a meaningful definition of temperature,
the Hamiltonian must be bounded below (〈H 〉 � −c for
some finite c ∈ R). By the same token, a system can, in
principle, exhibit negative temperatures if the energy averaged
over the spectrum is bounded above (〈H 〉 � c for some
finite c ∈ R). These are well-known results in statistical
physics, and we highlight their role in the context of local
noninvasive measurements of temperature and voltage. We
derive a condition, that is both necessary and sufficient, for the
existence of a joint temperature and voltage measurement. This
condition corresponds physically to a nonequilibrium system
that does not exhibit local population inversion. We obtain
also, as a corollary of the former condition, the result that
nonequilibrium systems exhibiting local population inversion
can be characterized with a negative temperature which is
also unique. Population inversion is the working principle
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behind important Fermionic devices such as the maser and
laser [48–51].

In this article we consider a probe that couples exclusively
to the electronic degrees of freedom. Out of equilibrium,
the temperature distributions of different microscopic degrees
of freedom (e.g., electrons, phonons, nuclear spins) do not,
in general, coincide, so that one has to distinguish between
measurements of the electron temperature [37,38,44,52] and
the lattice temperature [53,54]. This distinction is particularly
acute in the extreme limit of elastic quantum transport [55],
where electron and phonon temperatures are completely
decoupled. It should be emphasized that the electrons within
the system are free to undergo arbitrary interactions, e.g., with
photons, phonons, other electrons, etc. However, direct heat
transport into the probe via black-body radiation, phonons,
etc. is excluded. Inclusion of these additional heat transfer
processes into the probe leads to a temperature measurement
that is simply a combination of the temperatures of the various
microscopic degrees of freedom [45].

The article is organized as follows. We outline the formal-
ism in Sec. II, and introduce a postulate that helps put our
results on sound mathematical footing. In Sec. III we discuss
our theory of local thermodynamic measurements, explain the
idea behind noninvasive measurements, and also derive some
useful expressions for further analysis. In Sec. IV we provide
several statements of the second law of thermodynamics and
show their relation to the uniqueness of temperature and volt-
age measurements. In Sec. V we start by defining certain useful
quantities and proceed to derive the condition for the existence
of a solution. We also discuss here the case of broadband probes
in order to further illustrate the physical meaning behind our
results, and conclude that probes operating in the broadband
limit can be considered to be ideal. We consider the other
extreme as well, i.e., narrowband probes and conclude that they
are unsuitable for thermoelectric measurements. Our results
are illustrated for a two-level system which is detailed in
Sec. V D. We conclude with a summary of our central findings
in Sec. VI, contrasting our approach to prior theoretical work,
and discuss possible future directions. Some key results on the
local properties of fermions in a nonequilibrium steady state
are presented in Appendix A, which are needed in our analysis
of the measurement problem. Appendix B provides a detailed
analysis of the noninvasive-probe limit.

II. FORMALISM

We use the nonequilibrium Green’s function formalism
(NEGF) for describing the motion of electrons within a quan-
tum conductor. A general expression for the nonequilibrium
steady-state electrical current (ν = 0) [56] and the electronic
contribution to the heat current (ν = 1) [57] flowing into a
macroscopic electron reservoir P is

I (ν)
p = − i

h

∫ ∞

−∞
dω(ω − μp)ν Tr(�p(ω){G<(ω)

+ fp(ω)[G>(ω)−G<(ω)]}), (1)

where �p(ω) is the tunneling width matrix describing the
coupling of the probe to the system,

fp(ω) = {1 + exp[(ω − μp)/kBTp]}−1 (2)

is the Fermi-Dirac distribution of the probe, and G<(ω)
and G>(ω) are the Fourier transforms of the Keldysh
“lesser” and “greater” Green’s functions [58], describing the
nonequilibrium electron and hole distributions within the
system, respectively (see Appendix A for details). The spectral
function of the system is A(ω) = [G<(ω) − G>(ω)]/2πi.

Introducing the local nonequilibrium distribution function
of the system, as sampled by the probe, defined by [13]

fs(ω) ≡ Tr{�p(ω)G<(ω)}
2πi Tr{�p(ω)A(ω)} , (3)

and the effective probe-system transmission function

Tps(ω) = 2π Tr{�p(ω)A(ω)}, (4)

Eq. (1) can be written in a form analogous to the two-terminal
Landauer-Büttiker formula [13]:

I (ν)
p = 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω)[fs(ω) − fp(ω)]. (5)

We note that the expression in Eq. (5) for the steady-state
currents flowing into a macroscopic (probe) reservoir coupled
to a nonequilibrium quantum system is completely general,
and allows for arbitrary interactions within the quantum system
which is in an arbitrary nonequilibrium steady state. It is simply
a rewriting of the fully general result of Eq. (1).

Since the spectral function A(ω) is positive-semidefinite
and the probe-system coupling �p(ω) is positive-semidefinite
(see Appendix A), we note that

Tr{A(ω)�(ω)} = Tr{A(ω)1/2A1/2(ω)�(ω)}
= Tr{A1/2(ω)�(ω)A1/2(ω)}
� 0, (6)

where A1/2(ω) is the positive-semidefinite square root of
A(ω). A1/2(ω)�(ω)A1/2(ω) becomes positive-semidefinite
when A1/2(ω) and �(ω) are positive-semidefinite [59] and
therefore we have

Tps(ω) � 0, ∀ω ∈ R. (7)

We note that fs(ω) satisfies the property of a distribution
function, namely,

0 � fs(ω) � 1, ∀ω ∈ R, (8)

as shown in Appendix A. We start our analysis with the
following postulate, and explain its physical significance.

Postulate 1. The local probe-system transmission func-
tion Tps : R → [0,∞) and the nonequilibrium distribution
function fs : R → [0,1] are measurable over any interval
[a,b] ∈ R, and Tps(ω) satisfies

0 <

∫ ∞

−∞
dωTps(ω) < ∞ (9)

and ∣∣∣∣
∫ ∞

−∞
dω ωTps(ω)

∣∣∣∣ < ∞. (10)

The measurability of Tps(ω) and fs(ω) is taken to lend
meaning to the currents in Eq. (5). We point out that the
finiteness of the two integrals given in Eqs. (9) and (10) is more
relevant to our discussion of existence in Sec. V. Our result
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on uniqueness, as stated in Theorem 2, is somewhat stronger
and requires only that the function Tps(ω) grow slower than
exponentially for large values of energy (for ω → ±∞).

On physical grounds, the probe-sample transmission func-
tion Tps(ω) can be argued to have a compact support (nonzero
only for some finite interval [ω−,ω+] ⊂ R). It is easy to see
that Tps must have a lower bound ω− such that Tps(ω) =
0 ∀ ω < ω−, since physical Hamiltonians must have a finite
ground-state energy. However, for energies larger than the
probe work function (ω+), it can be argued that the particle will
merely pass through the probe and not contribute to the steady
state currents into the probe. Tps(ω) then has a compact support
and satisfies Eqs. (9) and (10). In Sec. V we comment upon
the limiting case where the measure of ωTps(ω) in Eq. (10)
tends to infinity. The absolute value on the left-hand side in
Eq. (10) is somewhat redundant since the limiting case must
have ω+ → ∞ while ω− → −∞ is ruled out based on the
principle that any physical spectrum has a finite ground-state
energy. We note that Eqs. (9) and (10) also imply

0 <

∫ ∞

−∞
dωTps(ω)fs(ω),

∫ ∞

−∞
dωTps(ω)fp(ω) < ∞

(11)

and∫ ∞

−∞
dω ωTps(ω)fs(ω),

∫ ∞

−∞
dω ωTps(ω)fp(ω) < ∞.

(12)

III. LOCAL MEASUREMENTS

The local voltage and temperature of a nonequilibrium
quantum system, as measured by a scanning thermoelectric
probe, is defined by the simultaneous conditions of vanishing
net charge dissipation and vanishing net heat dissipation into
the probe [13,15,44,45,52,60]:

I (ν)
p = 0, ν ∈ {0,1}, (13)

where ν = 0,1 correspond to the electron number current and
the electronic contribution to the heat current, respectively.
Equation (13) gives the conditions under which the probe is
in local equilibrium with the sample, which is itself arbitrarily
far from equilibrium.

We define the system’s local temperature and voltage using
a probe that is weakly coupled via a tunnel barrier (see Fig. 1).
The other end of this scanning probe [4,5] is the macroscopic
electron reservoir whose temperature and voltage are both
adjusted until Eq. (13) is satisfied. A weakly coupled probe
is a useful theoretical construction for our analysis, and the
extension of our results beyond the weak-coupling limit is an
open question. We explain the physical basis of weak coupling
below, and derive some useful formulas.

Noninvasive measurements

When the coupling of the probe to the system is weak,
we may take Tps(ω) in Eq. (4) and the local nonequilibrium
distribution function fs(ω) to be independent of the probe
temperature Tp and chemical potential μp. While both Tps(ω)
and fs(ω) depend upon the local probe-system coupling in

FIG. 1. Illustration of the measurement setup: The quantum
conductor represented below is in a nonequilibrium steady state. A
weakly coupled scanning tunneling probe noninvasively measures
the local voltage (μp) and local temperature (Tp) simultaneously:
By requiring both a vanishing net charge exchange (I (0)

p = 0) and
a vanishing net heat exchange (I (1)

p = 0) with the system. The
nonequilibrium steady state has been prepared, in this particular
illustration, via the electrical and thermal bias of the strongly coupled
reservoirs (1 and 2). The measurement method itself is completely
general and does not depend upon (a) how such a nonequilibrium
steady state is prepared, (b) how far from equilibrium the quantum
electron system is driven, and (c) the nature of interactions within
that system.

an obvious manner, the weak-coupling condition essentially
implies that the nonequilibrium steady state of the system is
unperturbed by the introduction of the probe terminal. The
voltage and temperature of the probe itself play no role in
preparing the nonequilibrium steady state. In other words,
the probe does not drive the system but merely exchanges
energy and particles across a weakly coupled tunnel barrier
and constitutes a noninvasive measurement. For a precise
analysis of the conditions necessary for a noninvasive probe,
see Appendix B.

Given a system prepared in a certain nonequilibrium
steady state (e.g., by a particular bias of the strongly coupled
reservoirs), the currents given by Eq. (5) are functions of the
probe Fermi-Dirac distribution specified by its temperature
and chemical potential

I (ν)
p ≡ I (ν)

p (μp,Tp). (14)

It can be seen that the currents are continuous functions
of μp ∈ (−∞,∞) and Tp ∈ (0,∞) with continuous gradient
vector fields defined by

∇I (ν)
p ≡

(
∂I (ν)

p

∂μp

,
∂I (ν)

p

∂Tp

)
. (15)

With kB set to unity, we compute the gradients of the currents
using Eq. (5). We find the gradient of the number current to be

∇I (0)
p =

(
−L(0)

ps , − L(1)
ps

Tp

)
. (16)

The gradient of the heat current reduces to

∇I (1)
p =

(
−L(1)

ps − I (0)
p , − L(2)

ps

Tp

)
, (17)
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where we define the response coefficients L(ν)
ps as

L(ν)
ps ≡ L(ν)

ps (μp,Tp)

= 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω)

(
−∂fp

∂ω

)
, (18)

which are easily seen to be finite [61].
Although the coefficients L(ν)

ps formally resemble the On-
sager linear-response coefficients [62] of an elastic quantum
conductor [63], it is very important to note that we do not make
the assumptions of linear response, time-reversal symmetry,
local equilibrium, or elastic transport in the above definition of
L(ν)

ps : The system itself may be arbitrarily far from equilibrium
with arbitrary inelastic scattering processes. The coefficients
above appear naturally when we calculate the gradient fields
defined by Eq. (15), and the gradient operator is of course
given by the first derivatives. Our main results follow from an
analysis of the properties of these gradient fields.

IV. UNIQUENESS AND THE SECOND LAW

We now turn to one of the central problems which we set
out to address: I (ν)

p (μp,Tp) = 0, with ν = {0,1}, is a system
of coupled nonlinear equations in two variables that defines
our local voltage and temperature measurement. There is no a
priori reason to expect a unique solution, if a solution exists at
all. We begin the section with statements of the second law of
thermodynamics, and conclude by showing that the uniqueness
of the measurement emerges as a consequence.

A. Statements of the second law

We note that ∀ μp ∈ (−∞,∞) and Tp ∈ (0,∞),

L(0)
ps (μp,Tp) > 0,

L(2)
ps (μp,Tp) > 0,

(19)

since Tps(ω) � 0, and the measure of Tps(ω) and the Fermi-
function derivative are both nonzero and strictly positive. This
leads to two statements of the second law of thermodynamics,
related to the Clausius statement, which are presented in the
following two lemmas. The idea is to choose the correct
contour for each case, and to evaluate the line integral over
the current gradients in Eqs. (16) and (17). A cursory glance
at the number current gradient in Eq. (16) suggests that the
contour should be defined over a constant temperature, while
the heat current gradient in Eq. (17) suggests a line integral
over a constant voltage contour.

Lemma 1. The number current contour defined by
I (0)
p (μp,Tp) = 0 exists for all Tp ∈ (0,∞) and defines a

function M : (0,∞) → R where μp = M(Tp), such that the
second law of thermodynamics is obeyed:

I (0)
p (μ′

p,Tp) > 0, if μ′
p < M(Tp) and

I (0)
p (μ′

p,Tp) < 0, if μ′
p > M(Tp).

(20)

Proof. We first show that I (0)(μp,Tp) = 0 is sat-
isfied for all Tp ∈ (0,∞). For any Tp ∈ (0,∞), we
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FIG. 2. Illustration of Lemma 1: The contour PQ shown in
magenta cuts the number current contour I (0)

p = 0 (or any I (0)
p =

const.) exactly once. The contour line from P to Q is at a constant
temperature (Tp = const.), and illustrates the Clausius statement: The
number current is monotonically decreasing along PQ. The system
and bias conditions are detailed in Sec. V D.

have

lim
μp→−∞ I (0)(μp,Tp) = 1

h

∫ ∞

−∞
dωTps(ω)

× [fs(ω) − lim
μp→−∞ fp(ω)]

= 1

h

∫ ∞

−∞
dωTps(ω)fs(ω) > 0 (21)

and

lim
μp→∞ I (0)(μp,Tp) = 1

h

∫ ∞

−∞
dωTps(ω)[fs(ω) − lim

μp→∞ fp(ω)]

= 1

h

∫ ∞

−∞
dωTps(ω)[fs(ω) − 1] < 0. (22)

This ensures at least one solution due to the continuity of the
currents, but does not ensure uniqueness.

We note that I (0)
p is monotonically decreasing along dl =

(dμp,0),

�I (0)
p =

∫ μ′
p

μp

∇I (0)
p · dl =

∫ μ′
p

μp

−L(0)
ps dμp (23)

due to the fact that L(0)
ps is positive, and more explicitly:

�I (0)
p = 1

h

∫ ∞

−∞
dωTps(ω)[fp(μp,Tp; ω) − fp(μ′

p,Tp; ω)]

> 0, if μ′
p < μp,

< 0, if μ′
p > μp. (24)

This implies the existence of a unique solution to
I (0)
p (μp,Tp) = 0 for every Tp ∈ (0,∞) which we denote by

μp = M(Tp), and Eq. (20) is implied by Eq. (24). �
We also note that the number current [μp = M(Tp)] contour

is vertical when the temperature approaches absolute zero, as
shown in Fig. 2, since L(1)

ps /Tp → 0 as Tp → 0, and implies
a vanishing Seebeck coefficient for the probe-system junction
near absolute zero.
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An “ideal potentiometer” was initially proposed [37] by
merely requiring I (0)

p = 0. Subsequently, Büttiker [64,65]
clarified that this definition holds only near absolute zero due
to the absence of thermoelectric corrections. Such a voltage
probe determines the voltage uniquely at zero temperature in
the linear response regime, and is relevant for experiments in
mesoscopic circuits [16–19] which are carried out at cryogenic
temperatures. However, at higher temperatures and/or larger
bias voltages, where the sample may be heated by both
the Joule and Peltier effects, thermoelectric corrections to
voltage measurements must be considered. Indeed, Bergfield
and Stafford [60] argue that an ideal voltage probe must be
required to equilibrate thermally with the system (I (1)

p = 0),
without which “a voltage will develop across the system-probe
junction due to the Seebeck effect.”

Voltage probes have been used extensively in the theoretical
literature to mimic the effects of various scattering processes,
such as inelastic scattering [64,66–70] and dephasing [71–
73] in mesoscopic systems. A modern variation of Büttiker’s
voltage probe, additionally requiring that the probe exchange
no heat current, has been used to model inelastic scattering in
quantum transport problems at finite temperature [39,42,74–
76]. The probe technique, as a model for scattering, has also
been extensively studied beyond the linear response regime
[77–79].

Lemma 1 implies that a “voltage probe” (defined only by
I (0)
p = 0) requires the simultaneous specification of a probe

temperature Tp so that μp = M(Tp) is uniquely determined.
Figure 2 illustrates that the measured voltage shows a large
dependence on the probe temperature. Therefore, it is impor-
tant to define a simultaneous temperature measurement by
imposing I (1)

p (μp,Tp) = 0.
Lemma 2. The heat current contour defined by

I (1)
p (μp,Tp) = c, where c is some constant, obeys the second

law of thermodynamics, namely,

I (1)
p (μp,T ′

p) > c, if T ′
p < Tp,

< c, if T ′
p > Tp. (25)

Proof. We follow an analogous argument to Lemma 1, and
show the monotonicity of I (1)

p (μp,Tp) along a certain contour
in the μp-Tp plane. Naturally, the contour we choose is along
a fixed μp [cf. Eq. (17)] since we know that L(2)

ps is posi-
tive. Therefore we have �I (1)

p = I (1)
p (μp,T ′

p) − I (1)
p (μp,Tp) =∫ T ′

p

Tp
∇I (1)

p · dl, where dl = (0,dTp) and explicitly,

�I (1)
p = 1

h

∫ ∞

−∞
dω(ω − μp)Tps(ω)

× [fp(μp,Tp; ω) − fp(μp,T ′
p; ω)]

> 0, if T ′
p < Tp,

< 0, if T ′
p > Tp. (26)

This implies Eq. (25). �
We stated Lemma 2 with a constant c [80], not necessarily

c = 0, unlike Lemma 1. This is because we do not a priori
know whether the contour I (1)

p = 0 exists, and we derive a
necessary and sufficient condition for its existence in Sec V.
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FIG. 3. Illustration of Lemma 2: The contour PQ shown in
magenta cuts I (1)

p = 0 (or any I (1)
p = const.) exactly once. Contour

PQ is defined along constant voltage μp = const., and illustrates
the Clausius statement: The heat current is monotonically decreasing
along PQ. The system and bias conditions are detailed in Sec. V D.

Analogous to Lemma 1, Lemma 2 implies that a “tem-
perature probe” [37] (defined only by I (1)

p = 0) requires the
simultaneous specification of a probe voltage μp so that the
temperature Tp = τ0(μp) (cf. [80]) is uniquely determined.
Figure 3 illustrates that the measured temperature shows a
large dependence on the probe voltage. Therefore, it becomes
important to simultaneously measure the voltage by imposing
I (0)
p = 0. If the temperature probe is not allowed to equilibrate

electrically with the system, then a temperature difference will
build up across the probe-system junction due to the Peltier
effect, leading to an error in the temperature measurement.

Clearly, depending upon the probe voltage, the temperature
probe could measure any of a range of values, rendering
the measurement somewhat meaningless (see Fig. 3). Anal-
ogously, the “voltage probe” could measure any of a range
of values depending upon the probe temperature (see Fig. 2).
Thermoelectric probes (also referred to as dual probes and
voltage-temperature probes) treat temperature and voltage
measurements on an equal footing, and implicitly account
for the thermoelectric corrections exactly. Only such a dual
probe is in both thermal and electrical equilibrium with the
system being measured, and therefore yields an unbiased
measurement of both quantities. A mathematical proof of
the uniqueness of a voltage and temperature measurement is
therefore of fundamental importance.

We may also deduce that Tp = 0 cannot be obtained as a
measurement outcome since

lim
Tp→0

I (1)
p (μp,Tp) =

∫ ∞

−∞
dω (ω − μp)Tps(ω)

× [
fs(ω) − lim

Tp→0
fp(μp,Tp)

]

=
∫ μp

−∞
dω (ω − μp)Tps(ω)[fs(ω) − 1]

+
∫ ∞

μp

dω (ω − μp)Tps(ω)fs(ω)

> 0, (27)

155433-5



ABHAY SHASTRY AND CHARLES A. STAFFORD PHYSICAL REVIEW B 94, 155433 (2016)

consistent with the third law of thermodynamics. However,
temperatures arbitrarily close to absolute zero are, in principle,
possible [15].

Lemmas 1 and 2 may be interpreted in terms of the
Clausius statement of the second law [81]: “No process is
possible whose sole effect is to transfer heat from a colder
body to a warmer body.” Lemma 2 gives us the direction
in which heat will flow [cf. Eq. (26)] when the probe is
biased away from the point of thermal equilibrium with the
system, I (1)

p (μp,Tp) = 0: whenever the probe is hotter than
the temperature corresponding to thermal equilibrium, with the
chemical potential held constant, heat flows out of the probe
and vice versa. Similarly, Lemma 1 gives us the direction in
which particle flow occurs when the probe is biased away from
the point of electrical equilibrium, I (0)

p (μp,Tp) = 0: whenever
the probe is at a higher chemical potential than the one
corresponding to electrical equilibrium, with temperature held
constant, particles flow out of the probe and vice versa. Here
we refer to electrical (ν = 0, Lemma 1) and thermal (ν = 1,
Lemma 2) equilibration of the probe with the system under the
local exchange of particles and energy. The system itself may
be arbitrarily far from equilibrium, and may possess no local
equilibrium.

The problem of a unique measurement of a voltage probe
(defined only by I (0)

p = 0), or a temperature probe (defined
only by I (1)

p = 0) has been attempted previously by Jacquet
and Pillet [12] for transport beyond linear response, and to
our knowledge is the only work in this direction. However, in
Ref. [12], the bias conditions considered are quite restrictive
and the result assumes noninteracting electrons. Lemmas 1
and 2, respectively, generalize the result to arbitrary bias con-
ditions, and arbitrary interactions within a quantum electron
system while also providing a useful insight via the Clausius
statement of the second law of thermodynamics. However, the
question we would like to answer in this article pertains to the
uniqueness of a thermoelectric probe measurement, defined
by both I (0)

p = 0 and I (1)
p = 0. A result for such dual probes

has been obtained only in the linear response regime and for
noninteracting electrons [39].

Theorem 1. The coefficients L(ν)
ps satisfy the inequality

L(0)
psL(2)

ps − (
L(1)

ps

)2
> 0. (28)

Proof. We may define functions g(ω) and h(ω) as

g(ω) =
√
Tps(ω)

(
−∂fp

∂ω

)
(29)

and

h(ω) = (ω − μp)

√
Tps(ω)

(
−∂fp

∂ω

)
. (30)

We note that g(ω) and h(ω) belong to L2(R) [61]. Noting that
g and h are real, we apply the Cauchy-Schwarz inequality∣∣∣∣

∫ ∞

−∞
dωg(ω)h(ω)

∣∣∣∣
2

�
∫ ∞

−∞
dω|g(ω)|2

∫ ∞

−∞
dω|h(ω)|2.

(31)

The integral appearing on the left-hand side (lhs) is L(1)
ps , while

on the right-hand side (rhs) we have the product of L(0)
ps and

L(2)
ps , respectively. We drop the absolute value on the lhs by

noting that L(1)
ps is real and write(

L(1)
ps

)2 � L(0)
psL(2)

ps . (32)

We drop the equality case above by noting that g and h are
linearly independent except for the trivial case when Tps(ω) =
0 ∀ω, or when the probe coupling is narrowband [Tps(ω) =
γ̄ δ(ω − ω0)] which we discuss in Sec. V C. �

The proof above can be easily extended to show the positive-
definiteness of the linear response matrices [62] widely used
for elastic transport calculations (e.g., in Refs. [63,82]).
Theorem 1 implies a positive thermal conductance (see, e.g.,
Ref. [82]), which is necessary for positive entropy production
consistent with the second law of thermodynamics.

B. Uniqueness

Theorem 2. The local temperature and voltage of a nonequi-
librium quantum system, measured by a thermoelectric probe,
is unique when it exists.

Proof. The tangent vectors t(ν) for I (ν)
p are along

t(0) =
(
−L(1)

ps

Tp

,L(0)
ps

)
(33)

and

t(1) =
(
L(2)

ps

Tp

, − L(1)
ps − I (0)

p

)

=
(
L(2)

ps

Tp

, − L(1)
ps

)
, if I (0)

p = 0, (34)

respectively, such that we have∫ s2

s1

ds
t(ν) · ∇I (ν)

p

|t(ν)| = 0, (35)

where s is a scalar that labels points along the contour I (ν)
p =

const.
We now compute the change in I (1)

p along the contour I (0)
p =

0. The points along I (0)
p = 0 are labeled by the continuous

parameter ξ such that μp = μp(ξ ) and Tp = Tp(ξ ). ξ is chosen
to be increasing with increasing temperature. The change �I (1)

p

becomes

�I (1)
p =

∫ ξ2

ξ1

dξ
t(0) · ∇I (1)

p

|t(0)|

=
∫ ξ2

ξ1

dξ
1

|t(0)|Tp

[(
L(1)

ps

)2 − L(0)
psL(2)

ps

]
> 0 if ξ2 < ξ1,

< 0 if ξ2 > ξ1, (36)

due to Theorem 1. Therefore I (1)
p = 0 (or for that matter

I (1)
p = c, for any c) is satisfied at most at a single point along

I (0)
p = 0. �
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FIG. 4. Left panel: Illustration of Theorem 2 for positive temperatures. The contour PQ along I (0)
p = 0 (shown in blue) cuts the contour

I (1)
p = 0 (shown in red) exactly once. Contour PQ illustrates a certain statement of the second law of thermodynamics: The heat current is

monotonically decreasing along PQ (thus implying uniqueness). Right panel: The local spectrum sampled by the probe Ā(ω) (black), the
nonequilibrium distribution function fs(ω) (red), and the probe Fermi-Dirac distribution fp(ω) (blue) corresponding to the unique solution
in the left panel. The resonances in the spectrum Ā(ω) correspond to the eigenstates of the closed two-level Hamiltonian (see Sec. V D)
ε± = ±1 shown in magenta. The Fermi-Dirac distribution is monotonically decreasing with energy, and corresponds to a situation with positive
temperature (no net population inversion). The necessary and sufficient condition for the existence of a positive temperature solution is stated
in Theorem 3.

Theorem 1 is a form of the second law of thermodynamics
that gives us the direction in which the heat current flows
along the contour I (0)

p = 0 [cf. Eq. (36)]. The heat current I (1)
p

decreases monotonically along the contour I (0)
p = 0. Therefore

we may find only one point along I (0)
p = 0 that also satisfies

I (1)
p = 0, which implies a unique solution to Eq. (13) when it

exists.
Indeed, Onsager points out in his 1931 paper [62] that

for positive entropy production, the linear response matrix
will have to be positive-definite (which translates to our
condition in Theorem 1). However, that analysis rests upon
the assumption of linear response near equilibrium. Our result
in Theorem 1 does not require such a condition for the
nonequilibrium state of the system, but instead emerges out
of the analysis of the currents flowing into a weakly coupled
probe. In addition, we obtain a strict mathematical proof of
Theorem 1. We point out that Theorem 1 holds even when the
physically expected Postulate 1 fails, making the uniqueness
result in Theorem 2 very general [61].

V. EXISTENCE

A unique local measurement of temperature and voltage is
only part of our main problem. An equally important part is
to derive the conditions for the existence of a solution. The
main idea behind this analysis is to follow the number current
contour I (0)

p = 0 and ask what happens to the heat current
I (1)
p as we traverse towards higher and higher temperatures

Tp → ∞. We noted that near Tp = 0, the heat current into
the probe must be positive, consistent with the third law of
thermodynamics [cf. Eq. (27)]. Since we know that the heat
current is monotonically decreasing along the number current
contour (Theorem 2), we could guess whether or not a solution
occurs depending upon the asymptotic value of the heat current
along that contour as Tp → ∞. In this way, we find a necessary
and sufficient condition for the existence of a solution while

analyzing the problem for positive temperatures (see Fig. 4
for an illustration of this case). On the other hand, when this
condition is not met, one can immediately prove that a negative
temperature must satisfy the measurement condition I (ν)

p =
0, ν = {0,1}. This latter condition corresponds to a system
exhibiting local population inversion which leads to negative
temperature [83] solutions, as illustrated in Fig. 5.

Our results here are again completely general and are
valid for electron systems with arbitrary interactions, arbitrary
steady state bias conditions, and for any weakly coupled probe.
However, our analysis here leads us to demarcate between two
extremes of the probe-system coupling. We conclude that an
ideal probe is one which operates in the broadband limit. A
measurement by such a probe depends only on the properties
of the system that it couples to, and is independent of the
spectral properties of the probe itself. The broadband limit
lends itself to an easier physical interpretation of the population
inversion condition as well, and we discuss this important limit
in Sec. V B. The other extreme is that of a narrowband probe
which is capable of probing the system at just one value of
energy, leading to a nonunique measurement (see also the
proof of Theorem 1), and is discussed in Sec. V C. Only this
pathological case leads to an exception to Theorem 2.

The simplest system which could, in principle, exhibit
population inversion is a two-level system. Therefore, our
results, including that of the previous section, have been
illustrated by using a two-level system. The details of the
nonequilibrium two-level system and its coupling to the
thermoelectric probe are given in Sec. V D.

Our analysis starts with a rearrangement of the currents
given by Eq. (5) and a restatement of the measurement
condition [cf. Eq. (13)] in terms of energy currents, and we also
define some useful quantities along the way. We may rewrite
the number current in Eq. (5) as

I (0)
p = 〈Ṅ〉|fs

− 〈Ṅ〉|fp
, (37)
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FIG. 5. Left panel: Illustration of Theorem 2 for negative temperatures. The contour PQ along I (0)
p = 0 (shown in blue) cuts the contour

I (1)
p = 0 (shown in red) exactly once. Contour PQ illustrates a certain statement of the second law of thermodynamics: The heat current is

monotonically decreasing along PQ (thus implying uniqueness). Right panel: The local spectrum sampled by the probe Ā(ω) (black, and
nearly unchanged from Fig. 4), the nonequilibrium distribution function fs(ω) (red), and the probe Fermi-Dirac distribution fp(ω) (blue) which
corresponds to the unique solution (shown in the left panel). The resonances in the spectrum Ā(ω) correspond to the eigenstates of the closed
two-level Hamiltonian (see Sec. V D) ε± = ±1 shown in magenta. The system has a net population inversion, satisfying the conditions of
Corollary 3.1, and the probe Fermi-Dirac distribution is monotonically increasing with energy, corresponding to a negative temperature.

where

〈Ṅ〉|fs
≡ 1

h

∫ ∞

−∞
dωTps(ω)fs(ω), (38)

and similarly

〈Ṅ〉|fp
≡ 1

h

∫ ∞

−∞
dωTps(ω)fp(ω). (39)

The quantity 〈Ṅ〉|fs
is the rate of particle flow into the probe

from the system, while 〈Ṅ〉|fp
gives the rate of particle flow

out of the probe and into the system.
Similarly, the rate of energy flow into the probe from the

system is

〈Ė〉|fs
≡ 1

h

∫ ∞

−∞
dω ωTps(ω)fs(ω), (40)

while

〈Ė〉|fp
≡ 1

h

∫ ∞

−∞
dω ωTps(ω)fp(ω) (41)

gives the rate of energy outflux from the probe back into the
system. The net energy current flowing into the probe is given
by IE

p = 〈Ė〉|fs
− 〈Ė〉|fp

.
The local equilibration conditions in Eq. (13) now become

〈Ṅ〉|fp
= 〈Ṅ〉|fs

,

〈Ė〉|fp
= 〈Ė〉|fs

.
(42)

The equation for the rate of energy flow above is equivalent to
the condition I (1)

p = 0 when I (0)
p = 0 since

IE
p (μp,Tp) ≡ 〈Ė〉|fs

− 〈Ė〉|fp
= I (1)

p + μpI (0)
p . (43)

The lhs in Eq. (42) depends upon the probe parameters
(temperature and voltage) while the rhs is fixed for a given
nonequilibrium system with a given local distribution function
fs(ω). The probe measures the appropriate voltage and
temperature when it exchanges no net charge and energy with
the system.

We may introduce a characteristic rate of particle flow [cf.
Eq. (9)] as

〈Ṅ〉|f ≡1 = 1

h

∫ ∞

−∞
dωTps(ω) ≡ γp

�
. (44)

This leads to the following inequalities:

0 < 〈Ṅ〉|fs
<

γp

�
,

0 < 〈Ṅ〉|fp
<

γp

�
. (45)

The lhs in the inequality for 〈Ṅ〉|fs
above excludes fs(ω) ≡ 0

while the rhs excludes fs(ω) = 1 ∀ω ∈ R, and we retain the
strict inequalities imposed by Eq. (45) [see also Eqs. (11) and
(12) and the preceding discussion].

We similarly introduce a characteristic rate for the energy
flow between the system and probe:

〈Ė〉|f ≡1 = 1

h

∫ ∞

−∞
dω ωTps(ω)

≡ γp

�
ωc, (46)

where ωc < ∞ (due to Postulate 1) can be interpreted as
the centroid of the probe-sample transmission function. We
find that ωc → ∞ necessarily implies a positive temperature
solution. We remind the reader that ωc → −∞ is physically
impossible due to the principle that any physical system must
have a lower bound for the energy (〈H 〉 � −c for some finite
c ∈ R).

The quantities 〈Ṅ〉|fs
, 〈Ṅ〉|fp

, 〈Ṅ〉|f ≡1, 〈Ė〉|fs
, 〈Ė〉|fp

,
〈Ė〉|f ≡1 are all finite due to Postulate 1 [cf. Eqs. (9)–(12)].

A. Asymptotic properties, and conditions for
the existence of a solution

Traversing along I (0)
p = 0 results in a monotonically de-

creasing heat current I (1)
p (Theorem 2). Here we traverse the

contour from low temperatures (Tp → 0) to higher tempera-
tures (Tp → ∞) as discussed in Theorem 2. This implies a
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monotonically increasing 〈Ė〉|fp
due to Eq. (43). We proceed

to calculate the asymptotic value of 〈Ė〉|fp
along the number

current contour.
Let the asymptotic scaling of μp = M(Tp) defined by the

contour I (0)
p (μp,Tp) = 0 (Lemma 1) be

lim
Tp→∞

M(Tp)

Tp

= 
. (47)

We use the above limiting value to calculate 〈Ṅ〉|fp
along the

contour μp = M(Tp):

lim
Tp→∞

〈Ṅ〉|fp
= 1

h

∫ ∞

−∞
dωTps(ω) lim

Tp→∞
1

1 + exp
(ω−M(Tp)

Tp

)
= 1

h

∫ ∞

−∞
dωTps(ω)

1

1 + exp (−
)

= 1

1 + exp (−
)

γp

�
. (48)

The above limiting value satisfies the inequality in Eq. (45) for
any 
 ∈ R. The points on the contour satisfy 〈Ṅ〉|fp

= 〈Ṅ〉|fs

by construction, therefore 
 is computed from the equation

1

1 + exp (−
)

γp

�
= 〈Ṅ〉|fs

. (49)

It is important to note that the asymptotic scaling defined
by Eq. (47) does not mean that the scaling is linear. For
example, a sublinear scaling M(Tp) = αT n

p with n < 1 merely
corresponds to 
 = 0 which could satisfy Eq. (49) if the
nonequilibrium system is prepared in that way. However,

 → ±∞ do not obey the strict inequality in Eq. (45). 
 →
∞ corresponds to a trivial and unphysical nonequilibrium
distribution fs(ω) ≡ 1, and likewise, 
 → −∞ corresponds
to fs(ω) ≡ 0 ∀ω.

The asymptotic value of 〈Ė〉|fp
along the I (0)

p = 0 contour
is simply

lim
Tp→∞

〈Ė〉|fp
= 1

h

∫ ∞

−∞
dω ωTps(ω) lim

Tp→∞
1

1 + exp
(ω−M(Tp)

Tp

)
= 1

h

∫ ∞

−∞
dω ωTps(ω)

1

1 + exp (−
)

= 1

1 + exp (−
)

γp

�
ωc

= ωc〈Ṅ〉|fs
. (50)

Theorem 3. A positive temperature solution exists if and
only if there is no net population inversion, i.e., when

〈Ė〉|fs

〈Ṅ〉|fs

< ωc. (51)

Proof. 〈Ė〉|fp
/〈Ṅ〉|fs

< 〈Ė〉|fs
/〈Ṅ〉|fs

when Tp → 0
along the contour I (0)

p = 0 [cf. Eqs. (27) and (43)]. The
asymptotic limit of 〈Ė〉|fp

/〈Ṅ〉|fs
is ωc [cf. Eq. (50)].

〈Ė〉|fp
is continuous ∀ μp ∈ (−∞,∞),Tp ∈ (0,∞) and is

monotonically increasing along I (0)
p = 0 (Theorem 2). We use

the intermediate value theorem. �

Corollary 3.1. There exists a negative temperature solution
for a nonequilibrium system with net population inversion, i.e.,
when

〈Ė〉|fs

〈Ṅ〉|fs

> ωc. (52)

Proof. Let fp(μp,Tp) be the Fermi-Dirac distribution
with Tp > 0; we define the Fermi-Dirac distribution f −

p ≡
fp(μp, − Tp) = 1 − fp:

I (ν)
p (μp, − Tp)

= 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω){fs(ω) − [1 − fp(ω)]}

= 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω){fp(ω) − [1 − fs(ω)]}

= 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω)[fp(ω) − f −

s (ω)]

≡ −I (ν)−
p , (53)

I (ν)−
p = 0 with ν = {0,1} is now understood to solve the com-

plementary nonequilibrium system with f −
s (ω) ≡ 1 − fs(ω).

f −
s (ω) is of course a completely valid nonequilibrium

distribution function and satisfies Eq. (8). We apply Theorem
3 and find that

〈Ė〉|f −
s

< ωc〈Ṅ〉|f −
s
,

γp

�
ωc − 〈Ė〉|fs

< ωc

(γp

�
− 〈Ṅ〉|fs

)
,

−〈Ė〉|fs
< −ωc〈Ṅ〉|fs

,

〈Ė〉|fs
> ωc〈Ṅ〉|fs

.

(54)

For the case that 〈Ė〉|fs
= ωc〈Ṅ〉|fs

, Tp = ±∞, correspond-
ing to fp = 1/2, independent of energy. �

B. Ideal probes: The broadband limit

In the broadband limit, the probe-system coupling becomes
energy independent, and we may write �p(ω) = �p(μ0). The
spectrum of the system, sampled locally by the probe, is given
by

Ā(ω) ≡ Tr{�p(ω)A(ω)}
Tr{�p(ω)}

= Tr{�p(μ0)A(ω)}
Tr{�p(μ0)} . (55)

The occupancy and energy of the system, respectively, are
given by

〈N〉|fs
=

∫ ∞

−∞
dωĀ(ω)fs(ω),

〈E〉|fs
=

∫ ∞

−∞
dω ωĀ(ω)fs(ω). (56)

The measurement conditions in Eq. (13) become simply [13]

〈N〉|fp
= 〈N〉|fs

,

〈E〉|fp
= 〈E〉|fs

. (57)
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The above equations imply that an ideal measurement of
voltage and temperature constitutes a measurement of the
zeroth and first moments of the local energy distribution of the
system. That is to say, when the probe is in local equilibrium
with the nonequilibrium system, the local occupancy and
energy of the system are the same as they would be if the
system’s local spectrum were populated by the equilibrium
Fermi-Dirac distribution fp ≡ fp(μp,Tp) of the probe.

We may now write the condition for the existence of a
positive temperature solution (Theorem 3) simply as

〈E〉|fs

〈N〉|fs

< ωc, (58)

where ωc is the centroid of the spectrum given by

ωc =
∫ ∞

−∞
dω ωĀ(ω). (59)

The condition in Eq. (58) implies the following: Given
some nonequilibrium distribution function fs , one can have a
positive temperature solution if and only if the average energy
per particle is smaller than the centroid of the spectrum. In
other words, a positive temperature solution exists if and only
if there is no net population inversion. Similarly, Corollary 3.1
states that there exists a negative temperature solution for a
system exhibiting population inversion:

〈E〉|fs

〈N〉|fs

> ωc. (60)

The advantage of the broadband limit is that one may
write the measurement conditions, as well as the condition for
the existence of a solution, in terms of the local expectation
values of the energy and occupancy directly, instead of using
the rate of particle and energy flow into the probe. We also
do not need to introduce a “characteristic tunneling rate.”
We note that ωc in Eq. (59) is the centroid since the local
spectrum Ā normalizes to unity within the broadband limit (see
Appendix A 1).

A local measurement by a weakly coupled broadband
thermoelectric probe is ideal in the sense that the result
is independent of the properties of the probe, and depends
only on the nonequilibrium state of the system and the
subsystem thereof sampled by the probe. Such a measurement
provides more than just an operational definition of the local
temperature and voltage of a nonequilibrium quantum system,
since the thermodynamic variables are determined directly
by the moments (56) of the local (nonequilibrium) energy
distribution.

C. Nonunique measurements: The narrowband limit

A narrowband probe is one that samples the system only
within a very narrow window of energy. The extreme case of
such a probe-system coupling would be a Dirac-delta function:

�p(ω) = 2πV †
pVpδ(ω − ω0), (61)

which gives Tps(ω) = 2π Tr {VpA(ω)V †
p}δ(ω − ω0) which we

write simply as

Tps(ω) = γ (ω) δ(ω − ω0), (62)

where γ (ω) = 2π Tr {VpA(ω)V †
p} has dimensions of energy.

We previously noted that Theorem 1 does not hold for Tps

given by Eq. (62). One can verify straightforwardly that, for a
probe-sample transmission that is extremely narrow, we will
have

L(0)
psL(2)

ps − (
L(1)

ps

)2 = 0. (63)

This results in a nonunique solution since following the proof
of Theorem 2 would give us [cf. Eq. (36)] �I (1)

p = 0. In fact,
it would lead to a family of solutions.

We may solve for the solution explicitly. The number
current reduces to

I (0)
p = γ (ω0)

h
[fp(ω0) − fs(ω0)], (64)

while the heat current is given by

I (1)
p = (ω0 − μp)

γ (ω0)

h
[fp(ω0) − fs(ω0)], (65)

which trivially vanishes for vanishing number current. There-
fore, the family of solutions to the measurement is simply
given by

fp(ω0; μp,Tp) = fs(ω0), (66)

which is linear in the μp-Tp plane and is given by

μp = ω0 − Tp log

(
1 − fs(ω0)

fs(ω0)

)
. (67)

fs(ω) has the following explicit form:

fs(ω) = Tr{VpG<(ω)V †
p}

2πi Tr{VpA(ω)V †
p}

. (68)

A narrowband probe is therefore unsuitable for thermoelec-
tric measurements. Even if a probe were to sample the system
at just two distinct energies ω1 and ω2, Theorem 1 would
hold and the thermoelectric measurement would be unique.
Indeed, the narrowband probe is a pathological case whose
only function is to highlight a certain theoretical limitation for
the measurement of the temperature and voltage.

D. Example: Two-level system

Net population inversion is essentially a quantum phe-
nomenon, since classical Hamiltonians are generally un-
bounded above due to the kinetic energy term, i.e., there does
not exist a finite c ∈ R that satisfies 〈H 〉 < c. In other words,
ωc → ∞ generally holds for classical systems and negative
temperatures are not possible. The simplest quantum system
where a net population inversion can be achieved is a two-level
system (see Fig. 6). We therefore illustrated our results for a
two-level system in Figs. 2–5.

The system Hamiltonian here was taken to be

H =
[

ε1 V

V ∗ ε2

]
, (69)

whose values were set as V = 2(1−i)
3 , ε1 = 1/3, and ε2 =

−1/3, such that the eigenvalues are ε± = ±1 and units
are taken as eV. We introduce two reservoirs that are
strongly coupled locally to each site with �1 = diag(0.5,0)
and �2 = diag(0,0.5), while the probe coupling is taken as
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FIG. 6. Schematic diagram of a two-level system coupled to
two electron reservoirs under bias. (a) Bias condition not leading
to population inversion. (b) Bias condition leading to population
inversion due to direct injection into excited state.

�p = diag(0.01,0.1), which is about five times weaker than
the coupling to the reservoirs that bias the system.

We used two different bias conditions: (a) To illustrate
the case without a net population inversion in Figs. 2–4,
the reservoirs had a symmetric (μ1 + μ2 = 0) voltage bias
μ1 − μ2 = 1 eV; (b) to illustrate the case with a net population
inversion in Fig. 5, the reservoirs had a symmetric voltage bias
of μ1 − μ2 = 4 eV. The two reservoirs are held at T = 300 K
for both cases.

It has been previously noted that the probe-system coupling
strength does not strongly affect the measured temperature and
voltage even when varied over several orders of magnitude
[52], but we remind the reader that our theoretical results
depend upon the assumption of a weakly coupled probe
(noninvasive measurements). How weak is weak enough is
a different, and more subtle, theoretical question addressed
in Appendix B. Numerically, however, we do find that the
probe measurements are not much altered even when the
probe coupling strength is comparable to that of the strongly
coupled reservoirs. We also show in Appendix B that, for
noninteracting electrons, all our results hold for strongly-
coupled probes with arbitrary bias conditions.

VI. CONCLUSIONS

The local temperature and voltage of a nonequilibrium
quantum system are defined in terms of the equilibration of
a noninvasive thermoelectric probe, locally coupled to the
system. The simultaneous temperature and voltage measure-
ment is shown to be unique for any system of fermions in
steady state, arbitrarily far from equilibrium, with arbitrary
interactions within the system, and the conditions for the
existence of a solution are derived. In particular, it is shown
that a positive temperature solution exists provided the system
does not have a net local population inversion; in the case of
population inversion, a unique negative temperature solution

is shown to exist. Our results hold for arbitrarily strong probe
couplings for noninteracting systems. These results provide
a firm mathematical foundation for temperature and voltage
measurements in quantum systems far from equilibrium.

Our analysis reveals that a simultaneous temperature and
voltage measurement is uniquely determined by the local
spectrum and nonequilibrium distribution of the system [cf.
Eq. (42)], and is independent of the properties of the probe for
broadband coupling (ideal probe). Such a measurement there-
fore provides a fundamental definition of local temperature
and voltage, which is not merely operational.

In contrast, prior theoretical work relied almost exclusively
on operational definitions [12,37–46], leading to a competing
panoply of often contradictory predictions for the measure-
ment of such basic observables as temperature and voltage.
Measurements of temperature or voltage, taken separately (see,
e.g., Refs. [12,37]), are shown to be ill-posed: a thermometer
out of electrical equilibrium with a system produces an error
due to the Peltier effect across the probe-sample junction,
while a potentiometer out of thermal equilibrium with a system
produces an error due to the Seebeck effect.

Our results put the local thermodynamic variables tem-
perature and voltage on a mathematically rigorous footing
for fermion systems under very general nonequilibrium
steady-state conditions, a necessary first step toward the
construction of nonequilibrium thermodynamics [8–15]. Our
analysis includes the effect of interactions with bosonic
degrees of freedom (e.g., photons, phonons, etc.) on the
fermions. However, the temperatures of the bosons themselves
[53,54] were not addressed in the present analysis. Moreover,
we did not explicitly consider magnetic systems, which require
separate consideration of the spin degree of freedom, and
its polarization. Future investigation of probes that exchange
bosonic or spin excitations may enable similarly rigorous
analysis of local thermodynamic variables in bosonic and
magnetic systems, respectively.
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APPENDIX A: THE NONEQUILIBRIUM STEADY STATE

We consider a system whose Hamiltonian Ĥ is independent
of time, but is driven out of equilibrium, e.g., by electrical
and/or thermal bias. The nonequilibrium steady state is
described by a density matrix ρ̂ that is time independent. The
expectation values of observables are given by their usual
prescription in statistical physics

〈Q̂〉 = Tr{ρ̂Q̂} =
∑
μ,ν

ρμν〈ν|Q̂|μ〉. (A1)

The “lesser” and “greater” Green’s functions [58] used in
the paper are defined as follows:

G<
αβ(t) ≡ i〈d†

β (0)dα(t)〉, (A2)
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while its Hermitian conjugate is

G>
αβ(t) ≡ −i〈dα(t)d†

β(0)〉, (A3)

where

dα(t) = ei Ĥ
�

t dα(0)e−i Ĥ
�

t (A4)

evolves according to the Heisenberg equation of motion for a
system with Hamiltonian Ĥ . Here α, β denote basis states in
the one-body Hilbert space of the system.

The spectral representation uses the eigenbasis of the
Hamiltonian Ĥ |ν〉 = Eν |ν〉, where ν denotes a many-body
energy eigenstate. One may write the lesser Green’s function
as

G<
αβ(ω) = 2πi

∑
μ,μ′,ν

ρμν〈ν|d†
β |μ′〉〈μ′|dα|μ〉

× δ

(
ω − Eμ − Eμ′

�

)
, (A5)

while the greater Green’s function becomes

G>
αβ(ω) = −2πi

∑
μ,μ′,ν

ρμν〈ν|dα|μ′〉〈μ′|d†
β |μ〉

× δ

(
ω − Eμ′ − Eν

�

)
. (A6)

The spectral function A(ω) is given by

A(ω) ≡ 1

2πi
(G<(ω) − G>(ω)), (A7)

and can be expressed in the spectral representation as

Aαβ(ω) =
∑

μ,μ′,ν

[ρμν〈ν|d†
β |μ′〉〈μ′|dα|μ〉

+ ρνμ′ 〈μ′|dα|μ〉〈μ|d†
β |ν〉]δ

(
ω − Eμ − Eμ′

�

)
.

(A8)

1. Sum rule for the spectral function

Equation (A8) leads to the following sum rule for the
spectral function:∫ ∞

−∞
dωAαβ (ω) =

∑
μ,ν

ρμν〈ν|d†
βdα|μ〉 +

∑
μ′,ν

ρνμ′ 〈μ′|dαd
†
β |ν〉

=
∑
μ,ν

ρμν〈ν|d†
βdα + dαd

†
β |μ〉

=
∑
μ,ν

ρμν〈ν|δαβ |μ〉

=
∑
μ,ν

ρμνδμνδαβ

= δαβ Tr {ρ̂}
= δαβ. (A9)

In our theory of local thermodynamic measurements, the
quantity of interest is the local spectrum of the system sampled
by the probe Ā(ω), defined in Eq. (55). This obeys a further
sum rule in the broadband limit (ideal probe), discussed below.

Local spectrum in the broadband limit

The probe-system coupling is energy independent in the
broadband limit, �p(ω) = const, and we write Tr {�p} = �̄p

for its trace. The local spectrum sampled by the probe Ā(ω)
defined in Eq. (55) can be written in the broadband limit as

Ā(ω) = 1

�̄p

∑
α,β

〈β|�p|α〉Aαβ(ω). (A10)

In this limit it obeys a further sum rule:∫ ∞

−∞
dωĀ(ω) = 1

�̄p

∑
α,β

〈β|�p|α〉
∫ ∞

−∞
dωAαβ (ω)

= 1

�̄p

∑
α,β

〈β|�p|α〉δαβ

= 1. (A11)

The broadband limit is special in that the measurement is
determined by the local properties of the system itself, and
is not influenced by the spectrum of the probe. In this limit,
the local spectrum Ā(ω) obeys the sum rule (A11) since the
probe samples the same subsystem at all energies. One should
not expect such a local sum rule to hold outside the broadband
limit, since the probe samples different subsystems at different
energies.

2. Diagonality of ρ̂

We have, for any observable Q̂,

〈Q̂(t)〉 =
∑
μ,ν

ρμν〈ν|Q̂(t)|μ〉

=
∑
μ,ν

ρμν〈ν|ei Ĥ
�

t Q̂e−i Ĥ
�

t |μ〉

=
∑
μ,ν

ρμνe
−i

Eμ−Eν

�
t 〈ν|Q̂|μ〉. (A12)

The system observables must be independent of time in
steady state. Therefore ρ̂ must be diagonal in the energy basis,
as seen from the above equation. The nondiagonal parts of ρ̂

in the energy basis, when they exist, must be in a degenerate
subspace so that Eμ = Eν in the above equation.

For states degenerate in energy, the boundary conditions
determining the nonequilibrium steady state will determine
the basis in which ρ̂ is diagonal. Henceforth, we work in that
basis.

3. Positivity of −i G<(ω) and i G>(ω)

Working in the energy eigenbasis in which ρ̂ is diagonal,

−i〈α|G<(ω)|α〉
≡ −iG<

αα(ω)

= 2π
∑
μ,μ′

ρμμ|〈μ|d†
α|μ′〉|2δ

(
ω − Eμ − Eμ′

�

)

� 0. (A13)
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Similarly,

i〈α|G>(ω)|α〉 ≡ iG>
αα(ω)

= 2π
∑
μ,μ′

ρμμ|〈μ|d†
α|μ′〉|2δ

(
ω − Eμ′ − Eμ

�

)

� 0. (A14)

It follows that

〈α|A(ω)|α〉 = 1

2π
〈α| −iG<(ω) + iG>(ω)|α〉 � 0. (A15)

Therefore, all three operators −iG<(ω), iG>(ω), and A(ω)
are positive-semidefinite.

4. 0 � fs(ω) � 1

The nonequilibrium distribution function fs(ω) was defined
in Eq. (3) as

fs(ω) ≡ Tr{�p(ω)G<(ω)}
2πi Tr{�p(ω)A(ω)} . (A16)

We have �p(ω) > 0 by causality [58]:

Im �r
p(ω) = − 1

2�p(ω) < 0. (A17)

Let �p|γp〉 = γp|γp〉, where γp � 0 and some γp satisfy γp >

0. The energy dependence is taken to be implicit. The traces in
Eq. (A16) may be evaluated in the eigenbasis of �p, yielding

fs(ω) =
∑

γp
γp〈γp|G<(ω)|γp〉

2πi
∑

γp
γp〈γp|A(ω)|γp〉

=
∑

γp
γp〈γp| − iG<(ω)|γp〉∑

γp
γp〈γp| − iG<(ω) + iG>(ω)|γp〉 . (A18)

Therefore

0 � fs(ω) � 1. (A19)

APPENDIX B: NONINVASIVE PROBES

Our main results in this paper relied upon the assumption
of a noninvasive probe. We explained the physical basis for
this assumption in Sec. III A, and we understood it to mean
that the local probe-system transmission function Tps and the
local nonequilibrium distribution function fs are independent
of the probe bias parameters (μp,Tp). In this Appendix we
clarify the implicit mathematical details that have gone into
this assumption of a noninvasive probe.

fs and Tps have been defined in Eqs. (3) and (4),
respectively, and they depend upon the Green’s functions of
the nonequilibrium quantum system. The Green’s functions
of the system do depend upon the probe parameters (μp,Tp)
and we clarify this dependence. We label the probe parameter
simply as xp ∈ {μp,Tp}, which can be taken to mean either
the chemical potential or the temperature of the probe.

In order to characterize the noninvasive-probe limit, we
introduce a dimensionless parameter λ, and write the probe-
system coupling as �p(ω) = λ�̃p(ω). Without loss of gen-
erality, we may set Tr {�̃p(μ0)} = ∑

α �=p Tr {�α(μ0)}, where
�α(ω) is the tunneling-width matrix describing the coupling
of lead α (e.g., source, drain, etc.) to the system, and μ0 is the

equilibrium chemical potential of the system (or some other
convenient reference value). The parameter

λ ≡ Tr{�p(μ0)}∑
α �=p Tr{�α(μ0)} 
 1 (B1)

thus gives the condition for a weakly coupled probe.
The currents flowing into the probe from the system are

given by Eq. (5) as

I (ν)
p = 1

h

∫ ∞

−∞
dω(ω − μp)νTps(ω)[fs(ω) − fp(ω)], (B2)

where

Tps = λ2π Tr{�̃pA}

= λ2π Tr{�̃pA|λ=0} + λ22π Tr

{
�̃p ∂A

∂λ

∣∣∣∣
λ=0

}
+ O(λ3)

(B3)

and

Tpsfs =−iλ Tr{�̃pG<}

=−iλ Tr{�̃pG<|λ=0} − iλ2 Tr

{
�̃p ∂G<

∂λ

∣∣∣∣
λ=0

}
+O(λ3)

(B4)

[cf. Eqs. (3) and (4)]. From Eqs. (B2)–(B4) we see that I (ν)
p ∼

O(λ). Similarly, it can be shown that

∂I (ν)
p

∂xp

= −I (0)
p δν,1δxp,μp

− λ

�

∫ ∞

−∞
dω(ω − μp)ν

× Tr{�̃pA|λ=0} ∂fp

∂xp

+ O(λ2). (B5)

The leading-order results for the gradients are also O(λ), and
agree with Eqs. (16) and (17). The noninvasive probe limit
consists in keeping only the terms O(λ) in Eqs. (B3), (B4),
and (B5), and underlies the analysis presented in the body of
the article. Deviations from the noninvasive probe limit appear
as terms O(λ2) and higher, which we now proceed to derive.

1. Dependence of G on λ and xp

Standard NEGF arguments can be used to elucidate the
dependence of the system Green’s functions on λ and xp.
Let G0 denote the Green’s function of the isolated quantum
system without two-body interactions, and let � denote the
self-energy describing two-body interactions and coupling to
various reservoirs, including the probe. Dyson’s equation for
the retarded (advanced) Green’s function is [58]

Gr,a = G
r,a
0 + G

r,a
0 �r,aGr,a. (B6)

The Keldysh equation for G< is [58]

G<(ω) = Gr (ω)�<(ω)Ga(ω), (B7)

where the lesser self-energy is

�< = iλ�̃p(ω)fp(ω) + i
∑
α �=p

�α(ω)fα(ω) + �<
int, (B8)

and �<
int is the self-energy contribution due to electron-

electron, electron-phonon, electron-photon interactions, etc.
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Similarly, the spectral function A may be expressed as

2πA(ω) = Gr (ω)�(ω)Ga(ω), (B9)

where

�(ω) = λ�̃p(ω) +
∑
α �=p

�α(ω) + �int(ω), (B10)

and �int = i(�r
int − �a

int) is the contribution due to two-body
interactions. Note that all the terms appearing on the rhs of
Eq. (B10) are positive definite due to causality.

Differentiating the self-energies with respect to xp gives

∂�<

∂xp

= iλ�̃p ∂fp

∂xp

+ ∂�<
int

∂xp

(B11)

and

∂�r,a

∂xp

= ∂�
r,a
int

∂xp

. (B12)

Using Eqs. (B6), (B7), (B11), and (B12), it can be shown that

∂Gr,a

∂xp

= Gr,a ∂�
r,a
int

∂xp

Gr,a, (B13)

∂G<

∂xp

= iλGr�̃pGa ∂fp

∂xp

+ Gr ∂�<
int

∂xp

Ga

+Gr ∂�r
int

∂xp

G< + G< ∂�a
int

∂xp

Ga. (B14)

Using 2πiA = Ga − Gr , the derivative of the spectral function
may be written as

2πi
∂A(ω)

∂xp

= Ga ∂�a
int

∂xp

Ga − Gr ∂�r
int

∂xp

Gr. (B15)

Finally, the derivatives of �int are given by

∂�
γ
int(ω)

∂xp

=
∑

η=r,a,<

∫ ∞

−∞
dω′Kγη(ω,ω′)

∂Gη(ω′)
∂xp

, (B16)

where

Kγη(ω,ω′) ≡ δ�
γ
int(ω)

δGη(ω′)
(B17)

is the irreducible kernel for the two-particle Green’s function
[58].

Equations (B13), (B14), and (B16) are three coupled linear
(integral) equations for ∂G/∂xp and ∂�int/∂xp. The only
inhomogeneous term [first term on the rhs of Eq. (B14)] is
O(λ). Let

∂Gγ (ω)

∂xp

≡ λFγ
xp

(ω), (B18)

∂�
γ
int(ω)

∂xp

≡ λSγ
xp

(ω). (B19)

F and S satisfy the equations

F r,a
xp

= Gr,aSr,a
xp

Gr,a, (B20)

F<
xp

= iGr�̃pGa ∂fp

∂xp

+ GrS<
xp

Ga + GrSr
xp

G< + G<Sa
xp

Ga,

(B21)

and

Sγ
xp

=
∑

η=r,a,<

KγηF η
xp

, (B22)

where the energy integral on the rhs of Eq. (B22) is implicit.
The leading-order solution is obtained by setting Gγ = Gγ |λ=0
in Eqs. (B20) and (B21), so we see that ∂G/∂xp, ∂�int/∂xp ∼
O(λ), and can be neglected in the noninvasive probe limit.
There exist a number of additional terms in ∂G/∂λ|λ=0 that
are independent of xp, but these do not affect the proofs of
Theorems 1, 2, and 3.

2. Proof of uniqueness

We are now in a position to evaluate the dependence of
the currents I (ν)

p on xp ∈ {μp,Tp}. Taking the derivative of
Eq. (B2) using the results of Appendix B 1, one obtains the
exact expression

∂I (ν)
p

∂xp

=−I (0)
p δν,1δxp,μp

− λ

h

∫ ∞

−∞
dω(ω − μp)ν Tr{�̃pGr (� − �p)Ga}∂fp

∂xp

− iλ2

h

∫ ∞

−∞
dω(ω − μp)ν Tr

{
�̃p

(
GrS<

xp
Ga

+GrSr
xp

G< + G<Sa
xp

Ga
)}

+ iλ2

h

∫ ∞

−∞
dω(ω − μp)νfp(ω)

× Tr
{
�̃p

(
GaSa

xp
Ga − GrSr

xp
Gr

)}
. (B23)

To leading order in λ, Eq. (B23) reduces to the result given
in Eqs. (16) and (17), while the corrections are O(λ2) or
higher. Thus Theorems 1 and 2 hold to leading order in
λ for systems with arbitrary two-body interactions, and the
noninvasive-probe limit may be precisely defined as the limit
λ 
 1.

a. Special case: Noninteracting system

Without two-body interactions, only the first two terms in
Eq. (B23) survive. The current gradients therefore have the
same form as in Eqs. (16) and (17), while the L(ν)

ps coefficients
have the same form [cf. Eq. (18)] but with the transmission
function replaced by

T̃ps(ω) = Tr{�p(ω)Gr (ω)[�(ω) − �p(ω)]Ga(ω)}, (B24)

which is positive due to causality [see Eq. (B10)]. Theorem
1 therefore still holds. The uniqueness result as stated in
Theorem 2 holds also, since the argument only makes use
of current gradients. We note that Theorems 1 and 2 hold for
arbitrarily strong probe couplings when two-body interactions
are absent.
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b. Example: Hartree-Fock approximation

In the Hartree-Fock approximation, the irreducible kernel
defined in Eq. (B17) has the form

Kr< ≡ δ
(
�r

HF

)
nm

δ(G<)ij
= Unjδnmδij − Unmδniδmj , (B25)

where Unm is the Coulomb integral between orthonormal basis
orbitals n and m of the system. Furthermore, Ka< = Kr<

and K<< = K>< = 0. Equation (B22) therefore reduces to
S<

xp
= 0 and

(
Sr,a

xp

)
nm

= δnm

∑
j

Unj

∫ ∞

−∞
dω′[F<

xp
(ω′)]jj

−Unm

∫ ∞

−∞
dω′[F<

xp
(ω′)]nm. (B26)

3. Proof of existence

The proof of Theorem 3 is based on an analysis of
the quantities 〈Ṅ〉|fs

, 〈Ṅ〉|fp
, 〈Ė〉|fs

, and 〈Ė〉|fp
defined

in Eqs. (38)–(41), respectively. These quantities are simply
energy integrals of ωνTpsfs and ωνTpsfp, with ν = 0,1, whose
dependence on the small parameter λ is given in Eqs. (B3)
and (B4). Keeping only terms O(λ) (noninvasive-probe limit),
these quantities reduce to the form considered in Sec. V, so
that Theorem 3 and Corollary 3.1 hold as before. Deviations
from the noninvasive-probe limit involve corrections O(λ2)
and higher, and it is an open question whether a unique solution
to the probe equilibration conditions (42) exists for arbitrarily
strong probe-system coupling in the presence of interactions.

Special case: Noninteracting system

For systems without two-body interactions, the proof of
Theorem 3 can be straightforwardly extended to the case of
arbitrarily strong probe-system coupling. Using Eqs. (B3) and
(B10) with �int = 0, one can write

Tps =
∑

α

Tr{�pGr�αGa}. (B27)

Similarly, using Eqs. (B4) and (B8) with �<
int = 0, one has

Tpsfs =
∑

α

Tr{�pGr�αGa}fα. (B28)

The probe equilibration conditions (42) whose solution we
seek may be rewritten

〈Ṅ〉|fs
− 〈Ṅ〉|fp

= 0,

〈Ė〉|fs
− 〈Ė〉|fp

= 0. (B29)

The integrands in both conditions involve

Tps[fs − fp] =
∑
α �=p

Tr{�pGr�αGa}[fα − fp]

= T̃ps[f̃s − fp], (B30)

where T̃ps is given by Eq. (B24) and

f̃s =
∑

α �=p Tr{�pGr�αGa}fα∑
α �=p Tr{�pGr�αGa} . (B31)

f̃s and T̃ps are both independent of xp for the noninteracting
system, and 〈Ṅ〉|fs

, 〈Ṅ〉|fp
, 〈Ė〉|fs

, and 〈Ė〉|fp
can be redefined

using f̃s and T̃ps without affecting the conditions (B29).
Therefore the proofs of Theorem 3 and Corollary 3.1 hold for
arbitrarily strong probe-system coupling in systems without
two-body interactions.
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[66] M. Büttiker, Phys. Rev. B 32, 1846 (1985).
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