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Abstract
Society relies and depends increasingly on information exchange and communication. In the quantum
world, security and privacy is a built-in feature for informationprocessing. The essential ingredient for
exploiting these quantumadvantages is the resource of entanglement,which canbe shared between two
ormore parties. The distribution of entanglement over large distances constitutes a key challenge for
current research anddevelopment.Due to losses of the transmitted quantumparticles, which typically
scale exponentiallywith the distance, intermediate quantumrepeater stations are needed.Herewe show
how to generalise the quantumrepeater concept to themultipartite case, by describing large-scale
quantumnetworks, i.e. networknodes and their long-distance links, consistently in the language of
graphs and graph states. This unifying approach comprises both the distributionofmultipartite
entanglement across the network, and the protection against errors via encoding. The correspondence
to graph states also provides a tool for optimising the architecture of quantumnetworks.

1. Introduction

Quantumentanglement is one of the pillars of quantum information processing. Distribution of entanglement
among two ormore spatially separated parties is a necessary ingredient formany tasks in quantum information
theory, including distributed quantum computing [1], blind quantum computing [2], teleportation [3],
telecloning [4], secret sharing [5] and quantum cryptography schemes [6–8].Multipartite entanglement enables
a violation of Bell inequalities that grows exponentially with the number of parties [9]. However, the controlled
distribution of entanglement, in particular ofmultipartite entanglement, over long distances is amajor
challenge, due to unavoidable imperfections such as particle losses and decoherence.

The seminal idea of quantum repeaters [10, 11] is based on the distribution of short-range entanglement
between intermediate repeater stations (thus avoiding losses that grow typically exponentially with the distance)
and subsequent entanglement swapping, which connects the short links along a line to long-range bipartite
entanglement. Several theoretical variations have been proposed: some of them are based on entanglement
distillation [12–14] and others are based on forward error correction [15–18].Much experimental progress
towards the realisation of a quantum repeater has beenmade [19–25].

‘Partially quantum’networks are considered in the so-called trusted node scenario [26], while fully quantum
networks have been investigated in the context of network routing [27–30] and coding [31–33] strategies and
heterogeneous network technologies [34].

Herewepropose a generalmultipartite quantumnetwork architecture, where the long-distance links are
bridged byquantumrepeater stations. This idea is illustrated infigure 1 for the long-termvision of a ‘world-wide
quantumweb’. This network contains nodes (labelled by letters), which receive,measure and sendparticles. They
couldbe located at, e.g., key institutions.Networknodes are connected by long-distance transmission channels,
which are subdivided into shorter channels by an appropriate number of quantumrepeater stations—an example
is also shown infigure 1. The geometry of these links is general. In particular it is not restricted to regular lattices.

Anynetwork suchas infigure1 formsamathematical graphby identifying thenetworknodeswith vertices and the
quantumchannelswith edges.Toanygrapha correspondinggraph state canbeassociated [35, 36]. These states are
highly entangled andconstitute a valuable resource, e.g. for one-wayquantumcomputation [35–39]. Inourproposal
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the goal is to establish amultipartite entangledgraph state between thenetworknodes,which constitutes a general
resource that is required formanyquantuminformationprotocols, including theonesmentionedat thebeginning.

This goal is reached in two steps. Step 1: a graph state is produced,where both the network nodes and the
repeater stations constitute vertices. Step 2: the vertices corresponding to the repeater stations are ‘removed’by
appropriatemeasurements. It is important to note that nomemories are needed at the repeater stations, as the
measurements canbeperformed immediately, aswill be explained inmore detail below.We remark that not all
quantumstates are graph states. Thus not allmultipartite quantumstates can beobtaineddirectly via our proposal.

In order to deal with unavoidable errors, for example photon losses infibres or in the atmosphere, quantum
error correctionwill be used, i.e. the nodes and repeater stations will process higher-dimensional encodings of
physical qubits; wewill use stabiliser codes throughout this paper.

As the same language of stabilisers is used for both the encoding and the target states, our scheme of a global
quantum repeater network is concise and general.

2. Fromgraphs to quantum repeater networks

Amathematical graphG consists of a setV ofN vertices and a set E of edges, each of which connects two vertices,
i.e. Ì ´E V V . Infigure 1, the network nodes as well as the repeater stations are vertices, and all transmission
channels between them are edges of a graph. To eachmathematical graphG corresponds a graph state ∣ ñG , which
can be defined in two equivalent ways. First, a graph state can be physically produced by switching on a specific
entangling gate for each edge of the graph. Concretely, ∣ ñG is the state that is created from the state ∣+ñÄN , with

∣ (∣ ∣ )+ñ = ñ + ñ0 11

2
, by applying a controlled-phase gateCZ to each pair (i, j) of vertices inE, i.e.

∣ ∣ ( )
( )

( )ñ = + ñ
Î

ÄG C , 1
i j E

Z
i j N

,

,

where in the computational basis {∣ ∣ ∣ ∣ }ñ ñ ñ ñ00 , 01 , 10 , 11 the entangling gate readsCZ=diag(1, 1 , 1,−1).
Second, a graph state is the unique state which is eigenstate of a set of so-called stabiliser operators, with

eigenvalues+1. Each vertex i of the graph has an associated stabiliser operator giwhich is a product of the Pauli-
X operator for vertex i and the Pauli-Z operator for all its neighbours, i.e. gi reads

( )

( )

=
Î
Î

g X Z . 2i i
j V

i j E

j

,

Here,Xi is a short‐hand notation for the Pauli operatorX acting on vertex i and the identity  at all other vertices.
The graph state ∣ ñG is defined via the eigenequations ∣ ∣ñ = ñg G Gi , for all Îi V . Note that a product of stabiliser
operators is also a stabiliser.

Figure 1.Multipartite quantumnetwork based on graphs: network nodes together with links between them constitute a graph. Both
network nodes and repeater stations receive and send quantumparticles. They prepare qubits (in the ∣+ñ-state), perform entangling
quantumgates (CZ-gates) andmeasurements (in theX-basis). The number of such actions for a given node depends on its number of
neighbours. Arrows indicate the transmission direction. Some examples are illustrated. Note that repeater stations have exactly two
neighbours, while network nodesmay havemore than two neighbours.
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In order to present ourmain idea, let usfirst describe the twomentioned steps. In step 1, a graph state
according to the graph infigure 1 is created: for the simple line graphs, which constitute the long-distance links,
each repeater station receives one qubit from the previous station, produces one qubit in state ∣+ñ, entangles it
with the qubit from the previous station via aCZ gate and then sends the second qubit through the channel to the
next repeater station, which acts in the sameway. Thus, the edges between repeater stations are created. The
network nodes act in a slightly different way: depending on their number of neighbours, they receive a certain
number of inputs, create a certain number of qubits in state ∣+ñ, perform entanglingCZ gates, and send on the
appropriate number of qubits to the neighbouring repeater stations. Some examples are given infigure 1. Thus,
thewhole graph offigure 1will be produced.

In step 2, the vertices corresponding to all repeater stations are removed by a simple PauliX-measurement at
each repeater station. The reasoning is as follows: remember that a product of stabilisers is also a stabiliser.
Consider the vertex S (SouthAfrica) in the quantumnetwork shown infigure 1 and assume that the number of
repeater stations is even on each edge (odd numbers can be treated in an analogousway). Take the product of the
stabiliser generators starting from S and for every second repeater station, until reaching the neighboursT,M, P,
I, andR. Due to the definition of gi in equation (2) and the fact that = Z 2 , this product of stabilisers contains
onlyX-operators at S and thementioned repeater stations, andZ-operators on the neighbouring network nodes
of S in the network (see also [40]).We call this stabiliser operator themain stabiliser centred on S.Measuring all
repeater stations in theX-basis projects the state onto one stabilised byX Z Z Z Z ZS T M P I R in theHilbert space of
the network nodes only. Here the sign of the stabiliser operator depends on the parity of themeasurement
outcomes of the repeater stations included in themain stabiliser centred on S. Theminus sign can be removed by
applying the so-called by-product operatorZS in this case. This reasoning holds for all network nodes. By
comparison of the obtained stabilisers with equation (2) it is clear that the graph state corresponding to the
global network (large vertices infigure 1) has been produced.

Even thoughwe have explained the procedure in two consecutive steps, it is not necessary to store the full
graph state: as the localmeasurements commutewith the operations on other repeater stations, a qubit can be
measured immediately after action of theCZ gate, which is easier to realise experimentally. Thus, thewhole
graph state between network nodes is gradually built up in a one-way fashion, as explained infigure 1, without
need formemories in the repeater stations.

In an implementation of the above scheme, losses in the transmission channels, noise in the gates aswell as
errors in preparation andmeasurementwill occur andwould lead to a low-quality output state. As a solution to
this problem, quantum error correction can be employed: themain idea is to encode the state of a so-called
logical qubit redundantly intomany physical qubits, such that a local error leads to a unique error syndrome and
can be corrected by applying a suitable operation [41]. This is in contrast to previous ideas [42]where
graph states were used as resource states formeasurement-based implementations of quantum error correction.

In the present article wemake use of so-called stabiliser codes [43], which are defined via a set of stabiliser
operators, the eigenstates of which (with eigenvalue 1) are the codewords. In particular, we focus here on a
subclass of stabiliser codes, the Calderbank-Shor-Steane (CSS) codes [41]which have the useful property of
‘transversal’ logical entangling gates (see appendix B). Thus the only change in our scheme is that instead of
initial physical qubit states ∣+ñmulti-qubit encoded logical states, denoted in the following as ∣+̄ñ, need to be
generated. The specific structure of ∣+̄ñdepends on the chosen error correction code. Low-error state
preparation can be donemore efficiently than general quantumoperations on an unknown state, see e.g. [44] for
a preparation scheme for the quantumGolay code [45–47]. The repeater operation in the encoded case and the
short-hand notation ∣+̄ñand ¯MX for themeasurement on the encoded state is illustrated infigure 2.

3. Error analysis in the graph language

Theunified descriptionof thequantumnetwork in termsof stabilisers for both the states and the encoding allows
for a comprehensive analysis of errors andperformance study. An error can benoticed, in the sense that it is known
which qubit is affected (e.g. a no-detection event), or unnoticed (noise). For our performance studywewill use the
usual exponential lossmodel inopticalfibres, i.e. the failure probability during transmission fT is given by

( ) ( )= - - -f f1 1 e , 3T C
L L0 att

where fC is a coupling failure probability, L0 is the distance between repeater stations and Latt is the attenuation
length of the fibre, for whichwewill use the value Latt=20 km. All qubit errors (for sources, gates, channels,
detectors)will bemodelled by the depolarising channel, characterised as

( ) ( )r r - + f f1
1

2
, 4
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i.e. with a failure probability f the state of the qubit is proportional to the identity, andwith probability (1− f ) it
is unaffected. Thus in case of failure the state is depolarised to the completelymixed state. The same effect is
achieved by randomly applying bit-flips and phase-flips to the state. Thismathematically equivalent viewpoint
of a perfect operation followed by discreteX andZ errors is very convenient [48].

When a physicalX orZ error has occurred, it propagates via the gates through the network, i.e. itmay
influence the consecutive qubits andmeasurement results. However, fortunately the spreading of errors along a
repeater line is restricted to afinite length, concretely to up to two repeater stations. This is due to some simple
rules for error propagation via aCZ gate: aZ error that occurs on one of the two input qubits of aCZ gate remains
aZ error on the corresponding output qubit and does not affect the other output qubit. AnX error that occurs on
one of the two input qubits remains anX error on the corresponding output qubit, but also causes aZ error on
the other output qubit. (Ifmore than one error has occurred, the output qubits will suffer from corresponding
products of errors.)AnX orZ errormay therefore be spread to the next repeater station, where the
corresponding qubit will pass through the nextCZ gate and thenwill bemeasured. Regarding themeasurement,
anX-(Z-) error before anX-(Z-)measurement does not affect themeasurement outcome, while anX-(Z-) error
before aZ- (X-)measurement flips themeasurement outcome.

The possible sources of errors are shown infigure 3. It is important to note, due to the arguments given
above, that repeater station number i is only influenced by errors propagating fromnearest and next-to-nearest
neighbours, i.e. from stations (i−1) and (i−2).

If an error is noticed, the correspondingmeasurement outcome is set to ‘?’. The physical error rate depends
on the failure probabilities for transmission, gates andmeasurements and is explicitly calculated in appendix B.

Infigure 3we focus on the physical error rates along a repeater line. The generalisation of our analysis to
more gates andmore qubits in the case of the network nodes is straightforward and can be described in terms of
the vertex (in- and out-) degree, see appendixD.Note, however, that in a large-scale quantumnetwork there are
manymore repeater stations than network nodes. Thus the performance of the networkmainly depends on the
error rate at the repeater stations, whichwas described above.

Figure 2.Repeater stationwith encoding: encoded state preparation, action of gates andmeasurements on physical qubits correspond
to the equivalent short-hand notation of actions on logical qubits, denoted by a bar.

Figure 3.Error propagation through a graph state repeater line: all possible sources of an error at repeater station i are shown.Here, ‘?’
denotes noticed errors and denotes unnoticed errors. Themeasurement outcome at repeater station i ismarked as ‘?’ in case of a
noticed error, andmay be flipped in case of an unnoticed error.
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Up to nowwe have described the physical errors. For a given encoding the logical error rate, i.e. the rate of
uncorrectable errors, is a function of the physical error rate, see appendix C.

Remember that the (logical)measurement outcomes at the repeater stations of themain stabiliser centred on a
node vdeterminewhether the by-product operatorZvneeds to be applied. Thus evennumbers of logical errors on
the corresponding repeater stations cancel each other. The local error rate ev at the vertex v is an important
indicator of thequality of theproduced state. The formula to calculate ev follows the previous reasoning and is
given in appendixA. The error rates ev effectively combine all errors of the repeater stations and simplify the
analysis considerably. The stabiliser error rates allow to bound thefidelity of the established state, see appendixA.

4. Performance and quantumnetwork architectures

The performance of a quantumnetworkmay depend on the task it was built for: possiblefigures ofmerit are e.g.
the rate for the production of a long-distance entangled state, the success probability for a task such as quantum
teleportation, or the secret key rate in a cryptographic setting. In the followingwewill use as figure ofmerit the
cost-performance ratioCwhich compares the needed resources [18]: it is defined as the total number of needed
qubits divided by the total distance L and a specific quality factorQ, i.e.

( )=C
nw

LQ
, 5

wheren is the number of qubits per station (neglecting preparationoverhead) andw is thenumber of repeater
stations.Our description in the graph state language provides a tool to optimise the architecture of a quantum
network: two graphsG andG′with the same set of verticesVbut different sets of edges ¹ ¢E E may correspond to
local-unitary equivalent graph states [36], i.e. states that are related by local basis changes. This fact leads to general
optimisation arguments for quantumnetworks;wenowconsider onlynetworknodes as vertices and their
connecting repeater lines as edges,which have aweight according to the number of repeater stations on this line.

(1)The graph G′ can have fewer edges than G. This corresponds to a reduced number of repeater lines in a
network, see e.g.figure 4(a).

(2)The graph G′ can have less cycles than G, see e.g. figures 4(a) and (c). Note that in general cycles increase the
required coherence time of the used quantummemories at the network nodes, because the qubits need to be
stored until all gates have been applied to them.

(3)The total length of the edges in E and E′may differ, even if the number of edges ofG′ andG are equal, see e.g.
figure 4(b). One can thusminimise the total number of repeater stations in the network.

(4)Themaximal vertexdegree ofG andG′maybedifferent.Given that thenumberof repeater stations is optimised
w.r.t.C for each individual edge, the rate of errors increaseswith the vertex degree (see appendixA). Thus it can
be advantageous to reduce themaximal vertexdegree, see e.g.figure 4(c).In order to illustrate the general
performanceof a graph state quantumrepeater and to compare different codeswe consider in the following a
bipartite setting, i.e. one repeater line. This is a typical quantumcryptographic scenario, and thereforeweuse as
the quality factorQ in the cost-performance ratioC the effective secret fractionR, given by

( )= ¥R P r , 6succ

where Psucc denotes the probability for not aborting of the protocol (onemight choose to abort in case of a ‘fatal’
pattern of noticed errors in order to increase the quality of the produced state), employing a given code. The
factor r∞ is the secret fraction for the BB84 protocol, given by [49]

{ ( ) ( ) } ( )= - -¥r h e h emax 1 , 0 . 7A B

Here, eA and eB are the error rates of the two endnodes, and thebinary entropy is defined as
( ) ( ) ( ) ( )= - - - -h p p p p plog 1 log 12 2 .Note that eA and eBdependon the logical error rate of the error

correction code: a logicalmeasurement error remains, if the outcomes are decoded to a codewordwithwrongparity.
We optimised the cost-performance ratioCwith respect to the number of repeater stationsw for different L

for several codes. The optimal separation distance of the repeater stations decreases with increasing total
distance. Note that the number of repeater stations infigure 4, i.e. the optimal weight of the long-distance edges,
was also calculated using this bipartitefigure ofmerit for each edge. For a comparison of various encoding
schemeswith the original repeater see figure 5. For distances on the global scale the cost-performance ratioC of
theGolay code remains in the same order ofmagnitude, e.g. for L=100 000 km it isC≈63.5 for optimised
repeater spacing (approx. 480 m) and gate error probability fG=10−4. Starting fromdistances larger than about
800 km, theGolay code outperforms all previous approaches.With ourmethods, this type of comparison can
nowbe performed for any quantumnetwork architecture and any quantum information processing task, using
a corresponding figure ofmerit for the quality factorQ.
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5.Discussion

Establishing a large-scale entangled quantum state is a formidable future task. In our proposal of a graph state
quantum repeater network this taskfinds a unified description in the elegant language of stabilisers. Though
being of abstractmathematical origin, this approach allows to quantitatively evaluate the implementation of a
quantumnetwork corresponding to an arbitrary graph and compare it to other networks and different
approaches from the literature. For given quantumhardware such as sources, transmission channels, gates and

Figure 4.The left example networks are local-unitary-equivalent to their right-hand side counterparts. Despite producing the same
final state up to local basis transformations, these networks can differ in their performance and cost. For all figures a gate error rate of
fG=1×10−4 has been used. The number of repeater stations on each linkminimises its cost-performance ratioC and is shown as
the edgeweight. The resulting error rates at the network nodes are shown in the box next to the network. They are approximately
proportional to the corresponding vertex degree, because all links introduce roughly the same amount of errors (as a result of the
optimisationw.r.t. the cost-performance ratioC).

6

New J. Phys. 18 (2016) 053036 MEpping et al



detectors, a suitable error correction code can be found, and the performance for quantum information
processing protocols such as e.g. secret key generation between two ormore parties can be determined.

For fixed locations of participating parties, ourmethod helps to design an optimal quantumnetwork in
terms of resources and performance with respect to a specific task (e.g. cryptography or synchronisation of
distributed clocks [51, 52]). Exploiting local unitary equivalence of different quantumnetworks has no classical
counterpart and deserves further detailed investigations. Future research on quantumnetworkswill benefit
from the presented description in the stabiliser formalism. This includes in particular the analysis of the efficient
use of thewhole network infrastructure to produce entangled states shared by a subset of parties.While we
showed that the performance of the 23-qubit quantumGolay code is outstanding for large distances, further
researchmay focus on smaller codes for smaller networks.

Acknowledgments

MEacknowledges helpful discussions with SMuralidharan and financial support by theGerman Federal
Ministry of Education andResearch (BMBF).

AppendixA. Logical graph states

An [[n, k, d]] error correction code encodes k logical qubits inton>kphysical qubits. This redundancy guarantees
the correction of up to -d 1

2
single qubit errors or d−1 erasures.Note that erasures,marked in the classical data as

‘?’, are not only causedby losses of qubits at that particular position. In the schemedescribed in themain text, any
noticed error on the qubit ior i−1will lead to an erasure of themeasurement outcome at position i.

Let Sdenote the stabiliser groupof the codespace of a stabiliser code. Furthermore let
¯ ¯ ¯ ¯( ) ( ) ( ) ( )¼ ¼X X Z Z, , , , ,k k1 1 denote logicalX- andZ-operators. These operators are elements of the normaliser of S
but not elements of S and fulfill ( ) ( ) ( ) ( )= -X Z Z Xi i i i , while operators ondifferent logical qubits commute. For
simplicitywe focus on the k=1 case anddrop the label of the logical operator. In analogy to a graph state,we
define a logical graph state associatedwith a graphG=(V,E) as theunique state ∣ ¯ñG that is stabilised byoperators

¯ ¯ ¯ ( )

( )

=
Î
Î

g X Z . A1i i
j V

i j E

j

,

This definition can be generalised to k>1which leads to k copies of the graph state.
A logical error e occurs when the recovery operation leads to awrong codeword ∣ ¯ ¯ñ ¹e G G. This can happen

ifmore errors occurred on one block than the code is able to correct. A logicalmeasurement error occurs if e
anticommutes with the observable. One assumes that the probability of (un-noticed) errors fu and erasures fn are
the same for all physical qubits. Then for any quantum error correction code, the probability of a logical error f̄u
is a function of fu and fn. It is possible to retry the production on a particular pattern of noticed errors. Thus the
function ¯ ( )f f f,u u n depends on the error correction code and the strategy of when to abort. Several examples are
given in appendix C.

Given the probability of logicalmeasurement errors at each vertex it is straightforward to calculate the logical
error rate at the position of the network nodes. For eachmain stabiliser Si centred on party i, the applied by-

product operator ¯åZi
xj depends on all X̄ -measurement outcomes x̄j of the qubits included in themain stabiliser

Figure 5.Comparison of the cost-performance ratioC for several codes: encoding via the seven-qubit Steane code (red), the 23-qubit
quantumGolay code (yellow), and the (here up to 84-qubit) quantumparity code of [18] (green), comparedwith the original
(distillation based) scheme [10, 50] (blue). The gate failure rates are fG=10−3 (dashed) and fG=10−4 (solid). The grey line
corresponds to using no repeaters. The comparisonwith the original scheme assumesmeasurement times of 10μs.
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(i.e. the qubits onwhich it acts non-trivially). These are half of the qubits on the links from and to party i, i.e.

å Î wj V ij
1

2
, wherewij is the number of repeater stations on the link (i, j). Even numbers of logical errors cancel

each other and the stabiliser error rate is

¯ ¯
( )r=

-⎛
⎝⎜

⎞
⎠⎟e

g
tr

2
, A2i

i

¯ ¯ ∣ ¯ ¯ ∣ ¯ ¯ ( )( ) ( )

å  r= ñá
Î
¹

¢Î
¢¹

¢

¢

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
tr Z Z G G Z Z , A3

n
i

k V
k i

k
n

i
k V
k i

k
nk

k

¯ ( ) ( )å=
Î

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟P f f f w, ,

1

2
, A4u u n

j V
ijodd

where nk is the kth binary digit of n and

( ) ( ( ) ) ( )= - -P f N f,
1

2
1 1 2 . A5N

odd

Suppose that the state produced by the quantumnetwork is given by a densitymatrix ρ. An error on any stabiliser
implies the production of a state orthogonal to the target state ∣ ñG . Note that it suffices to consider only Z̄ errors,
as the effect of X̄ -errors can be describedwith Z̄ errors due the stabilisers of the graph state. One can thus
immediately gain bounds on thefidelity of ρwith respect to the state ∣ ñG from the local error rates ev,

∣ ∣ { ∣ } ( ) å r- á ñ - Î
Î

e G G e v V1 1 max . A6
v V

v v

For the network given infigure 4(b), these bounds evaluate to ∣ ∣ rá ñG G94% 99%, for example.

Appendix B. Error propagation through repeater stations

CSS codes allow the transversal implementation of controlled-NOTgates [41]. A transversal application of a
quantumgate on two blocks of an [[n, k, d]] quantum error correction code is the qubit-wise application of the
gate, i.e. n gates act in parallel on the ith qubit of block one and the ith qubit of block two, = ¼i n1, 2, , , see
figure 2. By using two alternating codes in the X̄ - and Z̄-basis on alternating qubits, the transversal application
of the controlled-NOTgates acts like a logical controlled-phase gate andwe can stick to the language of
graph states. Because only transversal gates are applied in the quantum circuit, it suffices to calculate the physical
error rate by considering thefirst qubit of each block only.We start by calculating the unnoticed error rate fu for
a repeater station, i.e. the probability to get aflippedmeasurement outcome.Notice that two errors of this kind
cancel each other.We collect all independent sources of errors that lead to the error pattern under consideration
(e.g. ‘flipped outcome at position i’) into a vector


p . Then the probability for this error is

˜ ( ) ( ) ( )

∣ ∣

( ) ( )
å = = -
=

-

=

-f P p p p1 , B1u
n

n
k

N

k
n

k
n

odd
0
odd

2 1

1

1

H

N
k k

where nk is the kth binary digit of n. In case of the repeater stations the error sources correspond to

( )


=

+⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

p P
f f f

P
f

P
f f

2
, 2 ,

2
,

2
, 3 ,

2
, 2 ,

2
. B2

P u P n P u

G u T u M u

odd
, , ,

odd
,

odd
, ,

Herewe included noticed/unnoticed errors for preparation ( fP, n/u), transmission ( fT, n/u), gates ( fG, n/u) and
measurement ( fM, n/u). Remember that ( )P f N,odd was defined in equation (A5). In order to identify the
processes that contribute to fu one checks all possible propagations of errors to aZ-error on the qubit i under
consideration. It is useful to note that onlyX-errors spread toZ-errors on adjacent qubits in aCZ gate.

Please note that we have neglected the difference of the physical error rates for qubits at the boundary of a
repeater line and ‘typical’ qubits. This ismotivated by the fact, that in a large-scale quantumnetwork there are
manymore repeater stations than parties. Incorporating these boundary effects is however straightforward.

We assume that noticed errors do not cancel each other. Againwe collect all independent sources of the error
under consideration. In contrast to the case of fu, fn denotes the probability that any of these events occurred.
Thus the probability for an error of this type is

( ) ( ) ( ) ( ) ( )= - - - - -f f f f f1 1 1 1 1 . B3n P n G n T n M n,
2

,
3

,
2

,
2
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AppendixC. Logical error rate of someCSS codes

In order to calculate the secret key rate for a specific encoding, we need the error rates on odd and even logical
qubits. The decoder assigns a codeword to anyword given by themeasurement, i.e. to the true outcomes altered
by the error pattern. This recovered codeword is used to calculate the value of the logical observable. If this
recovered value is different from the ‘true outcome’ this word ofmeasurement outcomes contributes to the
logical error rate. The decodermay trigger an abort on any error from the set  . The naive approach to
calculating this rate thus is

¯ ( ) ( ) ( ) ( )


å=
Î

f f f
k

f e P e,
1

, C1u u n
e

e,

TableC1. Logical error rates of the Steane code.

7-qubit Steane code ( =n 0max )
¯ ( )f f f,u u n = ( ) ( )- - + - + -f f f f f f f1 48 168 252 210 98 21n u u u u u u

7 2 5 4 3 2

Psucc( fn) = ( )- f1 n
7

7-qubit Steane code ( =n 1max )
¯ ( )f f f,u u n = ( ) ( ( ) ( ) ( ) ( )- - - - + - - -f f f f f f f f f f1 48 1 168 1 252 1 210 1n u n u n u n u n u

6 6 5 4 3

( ) ( ) )+ - + - +f f f f f14 9 7 21 1 3 21n u n u n
2

( )P fnsucc = ( ) ( )- +f f1 6 1n n
6

7-qubit Steane code (nmax=2)
¯ ( )f f f,u u n = ( ) ( ( ) ( ) ( ) ( )- - - - + - - -f f f f f f f f f f1 48 1 168 1 252 1 210 1n u n u n u n u n u

5 2 6 2 5 2 4 2 3

( ( ) ) ( ( ) ) ( ))+ - + + + - - +f f f f f f f f14 3 16 7 21 3 4 1 21 2 1n n u n n u n n
2

Psucc( fn) = ( ) ( )- - + +f f f1 15 5 1n n n
5 2

7- qubit Steane code (nmax=3)
¯ ( )f f f,u u n = ( ) ( ( )- - + - + - + +f f f f f f f f f1 96 336 504 420 308 210 84 7n n u u u u u u u

1

2
4 3 7 6 5 4 3 2

( )- - + - + - -f f f f f f f f2 144 504 756 630 266 21 21n u u u u u u u
2 6 5 4 3 2

( )+ - + - + - +f f f f f f f f2 144 504 756 630 322 105 21n u u u u u u u
6 5 4 3 2

( ))+ - + - + - +f f f f f f2 48 168 252 210 98 21u u u u u u
2 5 4 3 2

Psucc( fn) = ( ) ( )- + + +f f f f1 20 10 4 1n n n n
4 3 2

7-qubit Steane code (nmax=4)
¯ ( )f f f,u u n = ( ) ( ( )- - + - + - + -f f f f f f f f f1 3 32 112 168 140 84 42 14 7n n u u u u u u u

1

2
3 4 7 6 5 4 3 2

( )- - + - + - + +f f f f f f f f384 1344 2016 1680 840 252 42 7n u u u u u u u
3 7 6 5 4 3 2

( )+ - + - + -f f f f f f f12 48 168 252 210 98 21n u u u u u u
2 2 5 4 3 2

( )- - + - + - +f f f f f f f f6 64 224 336 280 140 42 7n u u u u u u u
6 5 4 3 2

( ))+ - + - + -f f f f f f2 48 168 252 210 98 21u u u u u u
2 5 4 3 2

Psucc( fn) = - + - +f f f15 35 21 1n n n
7 6 5

7-qubit Steane code (nmax=5)
¯ ( )f f f,u u n = ( ) ( ( )- - + - + - +f f f f f f f f f1 6 16 56 84 70 42 21 7n n u u u u u u u

1

2
2 5 6 5 4 3 2

( )- - + - + - + -f f f f f f f f2 240 840 1260 1050 546 189 42 7n u u u u u u u
4 7 6 5 4 3 2

( )+ - + - + - + +f f f f f f f f960 3360 5040 4200 2016 504 42 7n u u u u u u u
3 7 6 5 4 3 2

( )- - + - + - +f f f f f f f f6 160 560 840 700 336 84 7n u u u u u u u
2 6 5 4 3 2

( )+ - + - + - +f f f f f f f f2 240 840 1260 1050 518 147 21n u u u u u u u
6 5 4 3 2

( ))+ - + - + - +f f f f f f2 48 168 252 210 98 21u u u u u u
2 5 4 3 2

Psucc( fn) = - +f f6 7 1n n
7 6

7-qubit Steane code (nmax=6)
¯ ( )f f f,u u n = ( )- + - + - + -f f f f f f f f48 168 252 210 126 63 21n u u u u u u u

7 7 6 5 4 3 2 7

2

( ) ( )- - - + - +f f f f f f2 1 4 8 6 2 1n u u u u u
21

2
6 3 4 3 2

( ) ( )+ - - + - +f f f f f f2 1 12 24 18 6 1n u u u u u
21

2
5 3 4 3 2

( ) ( ) ( ) ( )- - - + - + - - + - -f f f f f f f f f f f f105 2 1 2 4 3 1 2 1 60 120 90 30 1n u u u u u n u u u u u
4 3 3 2 7

2
3 3 4 3 2

( ) ( ) ( ) ( )- - - + - + - - + -f f f f f f f f f f f f63 2 1 2 4 3 1 21 2 1 2 4 3 1n u u u u u n u u u u u
2 3 3 2 3 3 2

( )+ - + - + - +f f f f f f48 168 252 210 98 21u u u u u u
2 5 4 3 2

Psucc( fn) = - f1 n
7

7-qubit Steane code (nmax=7)
¯ ( )f f f,u u n = ( ) ( ) ( ) ( )- - + - + - - - + - +f f f f f f f f f f f f3 2 1 2 4 3 1 2 1 4 8 6 2 1n u u u u u n u u u u u

7 3 4 3 2 21

2
6 3 4 3 2

( ) ( ) ( ) ( )+ - - + - + - - - + -f f f f f f f f f f f f2 1 12 24 18 6 1 105 2 1 2 4 3 1n u u u u u n u u u u u
21

2
5 3 4 3 2 4 3 3 2

( ) ( ) ( ) ( )+ - - + - - - - - + -f f f f f f f f f f f f2 1 60 120 90 30 1 63 2 1 2 4 3 1n u u u u u n u u u u u
7

2
3 3 4 3 2 2 3 3 2

( ) ( ) ( )+ - - + - + - + - + - +f f f f f f f f f f f f21 2 1 2 4 3 1 48 168 252 210 98 21n u u u u u u u u u u u
3 3 2 2 5 4 3 2

Psucc( fn) = 1
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where Pe(e) is the probability of the error e and f (e) is the number of logical errors after decoding. The success
probability depends on  and reads

( ) ( ) ( )
 

å å= = -
Î Î

P P e P e1 . C2
e

e
e

esucc

Let us consider a decoder that returns themost likely codeword c in the sense that an error pattern e that changes
c to the observed data hasmaximal probability Pe(e). If this is not unique the decoder chooses any such cwith
equal probability.We use it for the 7-qubit Steane code and use a fatal error set  of the form

{ ∣ } ( ) = e e ncontains more than losses , C3max

where Înmax , i.e. the protocol is aborted ifmore than nmax losses occurred. The error rates of the 7-qubit
Steane code listed in table C1 were obtained by implementing equation (C1). The logical error rate of theGolay
code is given in table C2.

AppendixD.Generalisation of the error analysis

Given a graphG=(V,E)with verticesV and edges E. The state ∣ ñG is stabilised by the generators of the stabiliser
gi ( ∣ ∣= ¼i V1, , ).The repeater network that creates the graph state ∣ ñG is obtained by replacing each edge (i, j) in
E by a line graphwithwij additional vertices (the repeater stations). Let us assume thatwij is even, for simplicity.
All repeater stations aremeasured in the X̄ basis. This projects onto a state that is stabilised by the giup to
byproduct operators that depend on themeasurement outcomes. Thus after application of the byproduct
operators ∣ ∣ñ = ñg G Gi holds. Aflip of onemeasurement outcome on the ithmain stabiliser (gi connected by
chains ofX-operators) leads to ∣ ∣ñ = - ñg G Gi . The same holds for X̄ errors on the neighbours of party i or aZ
error on the qubit of party i. The corresponding error probability is fi.We denote the probability for thewrong
sign in the stabiliser equation of gi by ei. It is

˜ ¯ ∣( ) ( )å= Î
⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟e P P f w f f i j E, , , , . D1i u

j
ij i jodd odd

Table C2. Logical error rate for theGolay-code.

Golay code[47] assuming ¯ »fu
p

2
w

¯ ( )f f f,u u n = ( ) ( )( ) ( )
- + - + + - - + -

+ - + -⎜⎛⎝ f f f f f f1 1
f f f f f f f

n u n n u n
1

2 4096

23 1

2048

253 1

1024

1771

512
3 20 8855

256
4 19n n u n n u n

23 22 2 21

( ) ( ) ( ) ( )+ + - - + - + + - - + -f f f f f f f f f f f f1 1 1 30613 1n u n n u n n u n n u n
33649

128
5 18 100947

64
6 17 245157

32
7 16 8 15

( )( ) ( )- - + - + + -f f f f f f f1 1 101200 1n n u n n u n
253

16
7 15 9 14

( )( ) ( ) ( )( )+ - + - - + - - - + -f f f f f f f f f f f1 1 272734 1 1 1n n u n n u n n n u n
3795

8
8 14 10 13 26565

4
9 13

( ) ( )( ) ( )+ + - + - + - - + -f f f f f f f f f f560924 1 1 1 695520 1n u n n n u n n u n
11 12 115115

2
10 12 12 11

( )( ) ( ) ( )- - + - + + - - + +f f f f f f f f f319424 1 1 1 2 1n n u n n u n u n
11 11 8855

2
11 11

( )( ) ( ) ( )+ - + - - + - - + +f f f f f f f f f949256 1 1 97405 1 2 1n n u n n u n u n
12 10 12 10

( ) ( ) ( ) ( )+ + - - + + + + - - + +f f f f f f f f f f779240 1 2 1 18975 1 6 1n u n u n n u n u n
13 9 13 9

( ) ( ) ( ) ( )- + - - + + - + - - + +f f f f f f f f f f485760 1 6 1 2277 1 14 1n u n u n n u n u n
14 8 14 8

( ) ( ) ( )( ) ( )+ + - - + + + - + - - + +f f f f f f f f f f f32384 1 14 1 1 1 14 1n u n u n n n u n u n
15 7 253

2
14 7

( ) ( ( ) ( ) )+ + - - - + - +f f f f f f f212520 1 1 10 1 8n u n u n u n
14 2 2 7

( )( ) ( )- - + - - + +f f f f f f100947 1 1 14 1n n u n u n
15 6

( ) ( )( )- + - - + + - + +f f f f f f f28336 1 2 1 14 1n u n u n u n
16 5

( ) (( ) ( ) )- + - - - - +f f f f f f f5313 1 1 15 1 30n u n u n u n
16 2 2 5

( ) (( ) ( ) )+ + - - - - +f f f f f f f8855 1 1 17 1 90n u n u n u n
17 2 2 4

( ) (( ) ( ) ( ) )- + - - - - + - +f f f f f f f f f1771 1 1 17 1 138 1 96n u n u n u n u n
17 3 2 2 3 3

( ) ( ( ) ( ) ( ) )- + - - - + - - - +f f f f f f f f f253 1 1 18 1 171 1 90n u n u n u n u n
18 3 2 2 3 2

( ) ( ( ) ( ) ( ) ) ( )+ + - - - + - - - + + + -f f f f f f f f f f f23 1 1 19 1 190 1 560 1n u n u n u n u n n u
19 3 2 2 3 23

( ) ( ) ( ) )- + - + + - - + - +f f f f f f f f f23 1 253 1 1771 1 1u n u u n u u n u
22 2 21 3 20

Psucc= 1
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In analogy to equations (14) and (16) of the article one can estimate the error rate

˜ ( )

( )

( )

( ) ( )

= +

+

+

+

-

+

-

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

f P P
f

i

P
f f

i

P
f

i

P
f

i
f

2
, 1 deg ,

2
, deg ,

2
, 1 deg ,

2
, 1 deg ,

2
D2

i u
P u

P n P u

G u

T u M u

, odd odd
,

odd
, ,

odd
,

odd
, ,

and

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

= - - -

- -

+ +

+ +

-

- -

f f f

f f

1 1 1

1 1 , D3

i n P n
i

G n
i

T n
i

M n
i

, ,
1 deg

,
1 deg

,
1 deg

,
1 deg

where ( )ideg , ( )- ideg , and ( )+ ideg are the degree, in-degree, and out-degree of vertex i, respectively. From these
physical error rates one can calculate the logical error rate in analogy to f̄u, i.e. ¯ ¯ ( )= = =f f f f f f,i u u i u n i n, , .
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