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Experimentally modeling stochastic processes with less
memory by the use of a quantum processor
Matthew S. Palsson,1 Mile Gu,2,3,4 Joseph Ho,1 Howard M. Wiseman,1* Geoff J. Pryde1*

Computer simulation of observable phenomena is an indispensable tool for engineering new technology,
understanding the natural world, and studying human society. However, the most interesting systems are often
so complex that simulating their future behavior demands storing immense amounts of information regarding
how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult
and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum
theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process’ statistical
complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our
quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical
limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more
complex systems.
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INTRODUCTION
What new tasks can be enhanced by quantum information science? It
is a matter of practical importance and fundamental interest to find
new additions to the impressive list of known quantum information
benefits that include the exponential speedup provided by Shor’s fac-
torization algorithm (1) and by algorithms for simulating quantum
systems (2), the physically guaranteed security of quantum key
distribution (3), and the sensitivity advantages in using certain quan-
tum states for metrology (4, 5). Here, we experimentally demonstrate
a fundamentally new quantum advantage (6): Quantum information
processing can reduce the memory required to simulate a stochasti-
cally evolving classical system by encoding information in nonortho-
gonal quantum states. Limitations on memory availability are a key
consideration in computer simulation—a ubiquitous tool in modern
society (7)—as the state space grows exponentially with the size of
the system.

Our work is of particular relevance to the field of complexity the-
ory. Therefore, the phenomena that people seek to understand, such
as neural networks or the dynamics of the stock market, consist of a
vast myriad of interacting components, whose internal details are too
complex or inaccessible for one to model their behavior from first
principles. In such cases, the system is instead typically regarded as
a black box such that one has access only to some observable output.
The task is then to isolate key indicators of future behavior from these
data—and these data alone—without any knowledge of the system’s
internal mechanism. It is possible to imagine that many different
models of this type could be constructed for a given process. Of these,
simpler models—those that store less data without sacrificing predic-
tive accuracy—then represent a better understanding of exactly what
observations in the past matter for the future. Our experimental work
aims to demonstrate that, in taking this motivation to its ultimate con-
clusion, quantum effects can provide a powerful resource for simplify-
ing models.

Our technique is fundamentally different from quantum data com-
pression (8, 9). That protocol is concerned with preserving all input
data and thus encodes orthogonal signal states into orthogonal en-
coded states. In contrast, our work is concerned with more efficient
ways of discarding useless data (in the sense of being useless for future
prediction), by encoding classically distinct states as nonorthogonal
quantum states, and processing them coherently.

To demonstrate the quantum advantage provided for this kind of
simulation task, we need to quantify the minimum amount of
memory (that is, stored information) required to simulate a process.
Mathematically, we can characterize the observable behavior of a dy-
namical process by a joint probability distribution PðX←; X→Þ, where X←
and X

→
represent random variables that govern the observed behavior

of the process in the past and future, respectively. A simulator, imple-
menting a model for the process, operates by storing information
about X

←
within some physical system S such that, for each instance

of the process with a particular past x
←
, it can be set to a particular state

that allows for the reproduction of expected future statistics, that is,
generating a random variable sampled from PðX→jX← ¼ x

←Þ.
The complexity of the simplest simulator—the one for which S has

minimal entropy—is regarded as an intrinsic property of the process
being simulated, capturing the bare minimum information one must
store to replicate the statistics of the process (10, 11). In complexity
theory, the minimal entropy of S is known as the statistical complexity
C. The most complex processes reside between complete randomness
(maximum system entropy) and complete order (zero system entro-
py) (12). At each extremity, the entropy of the simulator is zero: C = 0.
The statistical complexity has been applied to a wide range of prob-
lems, including self-organization (13), the onset of chaos (14), and the
complexity of a protein configuration space (15).
RESULTS
The statistical complexity of a stochastic process can be determined by
dividing the set of all possible pasts into equivalences classes such that
all members of a given class yield coinciding future predictions. The
implementation of such a model can replicate future statistics by record-
ing only the equivalence class s that x

←
belongs to. In the literature, these
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equivalence classes are known as causal states (14); thus, causal states
encode the information that is required to be stored. The complexity of
such a simulator is then given by its entropy (16)

Cc ¼ �∑℘s log2℘s ð1Þ

where the sum is taken over all causal states s ∈ S, and ℘s is the prob-
ability that x

←
lies in s. This representation turns out be classically op-

timal (14)—no classical model can simulate a stochastic process by storing
less memory than Cc. Thus, Cc coincides with the statistical complexity.

Naïvely, one might expect such optimal models to waste no
information—any information they store should be of relevance to
the future. Surprisingly, this is not so. Classical models are almost al-
ways inefficient. Even in very simple processes, the statistical com-
plexity Cc is usually strictly greater than E ¼ IðX←; X→Þ, the mutual
information between past and future outputs (10). Some information
stored within a simulator is simply wasted. This surprising wastefulness
of even the provably most efficient classical models can be very signif-
icant for more complex systems and contributes to an unavoidable
energy cost in stochastic simulation (17, 18).

Quantum information processing can drastically reduce this waste.
It has been theoretically demonstrated that, for any process whose op-
timal classical model satisfies Cc > E, there exists a quantum model that
requires a smaller memory, Cq < Cc (6). Quantum models assign each
causal state s a corresponding quantum causal state j~s〉. The amount of
memory required to retain j~s〉 is then given by the von Neumann en-
tropy Cq = − Tr[r log2 r], where r ¼ ∑s℘s ~s〉 〈~sjj represents the mixed
state of the associated quantum memory that takes on state j~s〉 with
probability ℘s, and Tr[⋅] denotes the matrix trace. Quantum models
then derive their advantage in not requiring the states j~s〉 to be mutually
orthogonal, without sacrificing their capacity to replicate desired future
statistical behavior. This nonorthogonality ensures that Cq < Cc,
allowing quantummodels to save additional memory over their classical
counterparts (16). This implies that when simulating N instances of
such stochastic processes in parallel, quantum compression allows
one to store all necessary past information within NCq qubits in the
asymptotic limit of large N, whereas classical simulators will necessitate
the use of NCc bits.

We experimentally demonstrate these ideas by modeling a specific,
simple, stochastic process. It applies to many different physical
systems, one of which is illustrated in Fig. 1A: a pair of binary
switches. At each time step j, one of the switches is chosen at random
and flipped with probability P. The system then outputs 0 if the
switches are aligned and 1 if they are anti-aligned. The obvious (per-
haps naïve) model keeps track of the state of both switches, resulting
in a memory of entropy 2. However, we may optimize this classical
model by observing that the parity of the switches corresponds to the
causal states of the system (any past histories for coinciding switch
parity have statistically identical futures). Thus, to simulate its statis-
tics, we need to only store a single binary value, s, that takes on 0 and
1 with equiprobability. A potential representation of the simplest
model for the switches in Fig. 1A is illustrated in Fig. 1B, which uses
antiparallel red and blue vectors to represent the two causal states.

Figure 2A summarizes how the dynamics of this process are com-
pletely captured by transitions between the two causal states. For a
single flip probability P, the steady-state occupation probabilities ℘0

and ℘1 for the two causal states coincide due to symmetry. Thus, this
process, in general, has a statistical complexity of Cc = 1. The only
exception is P = 0.5, because each output bit is then completely random
Palsson et al. Sci. Adv. 2017;3 : e1601302 3 February 2017
(uncorrelated with earlier output bits), so that no memory of previous
outcomes is required. Because the P = 0.5 protocol can be run without
a memory, its theoretical Cc is 0, consistent with 0 bits of memory.
[However, note that if the protocol is run with a single bit of (un-
necessary) memory, that bit will be maximally mixed on average
and the memory will have Cactual

c ¼ 1; see results below.]
Figure 1C provides a conceptual representation of the quantum

causal states. The quantum model makes use of a nonorthogonal en-
coding such that each of the two values of s is assigned to a correspond-
ing quantum state j~s〉, namely

j~0〉 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� P

p
j0〉þ

ffiffiffi
P

p
j1〉 ð2Þ

j~1〉 ¼
ffiffiffi
P

p
j0〉þ

ffiffiffiffiffiffiffiffiffiffiffi
1� P

p
j1〉 ð3Þ

Here, |0〉 and |1〉 are the logical basis states of a qubit. The quantum-
enhanced model saves further memory by sacrificing absolute knowl-
edge of switch parity—it distinguishes the two possible immediate
pasts only to the extent required to generate correct future statistics.
The storage of j~s〉 in a physical system S, rather than the classical states
s, results in a reduced simulator entropy of

Cq ¼ �Trðr log2rÞ ð4Þ

where

r ¼ 1
2

j~0〉 〈~0 þj j~1〉 〈~1j� � ¼ 1
2

1̂ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1� PÞ

p
X̂

h i
ð5Þ

represents the state of S averaged over possible causal states, and X̂ is
the Pauli operator. The coherence in Eq. 5 comes from the nonortho-
gonality, which guarantees reduced complexity Cq < Cc for any P (ex-
cept P = 0.5, where Cq = Cc = 0). For P close to 0.5, Cq can be
arbitrarily small, whereas Cc = 1.

Figure 1 (D and E) shows classical and quantum logical circuits,
respectively, that implement these models. The operation of the
circuits is explained in detail in the caption, but the key point is that
the ( j + 1)th simulation step (going from discrete time tj to tj + 1, say)
involves taking the memory as input, applying the probabilistic
operation, and generating a classical output xj + 1. In the classical case,
the probability P of a flip is inserted externally, but in the quantum
case, it comes from the intrinsic randomness of quantum measure-
ments on nonorthogonal states. In either scenario, the resulting pre-
dictive model can faithfully replicate future statistical behavior. That is,
when initialized in the appropriate (quantum) causal states at time t,
the future outputs are statistically indistinguishable and align with that
of the original process being modeled.

Experimental implementation
We implemented the quantum switch model using a photonic quan-
tum logic circuit. We compared it with the theoretical classical bound
and a classical switch model that we also implemented with a photonic
circuit. Figure 1 (F and G) shows the mapping of the conceptual models
onto what we realized experimentally. Experimentally processing
either classical states (classical model) or quantum states (quantum
model) required a CNOT gate, as well as two single photons—one to
2 of 6
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encode the state of the model and one to facilitate readout. We used
a linear optics controlled-Z (CZ) gate (Fig. 3) with local unitary
operations, and spontaneous parametric downconversion for photon
generation, to realize these (see Materials and Methods).

In the classical circuit, the causal states are encoded in orthogonal
logical photon polarization states, the equivalent of classical bits. The
CNOT gate performs a classical XOR (exclusive-OR) operation, map-
ping the system state (after the probabilistic operation) onto a meter
bit, which is read out via a destructive projective measurement to pro-
vide the ( j + 1)th data value of the model output.

In the quantum circuit, the relevant quantum causal states are
encoded in nonorthogonal photon polarization states, as per Eqs. 2
Palsson et al. Sci. Adv. 2017;3 : e1601302 3 February 2017
and 3. The CNOT gate produces an entangled state between the
model state and a meter qubit. The probability of a flip is de-
termined by the degree of orthogonality of the causal states. De-
structive projective measurement of the first qubit after the CNOT
gate produces a classical output, which is the ( j + 1)th data value of
the model output, and the corresponding collapse of the quantum
state on the other photon implements the probabilistic operation on
the model qubit for the next time step.

To verify the statistical complexity of the simulation, we measure
the entropy of the model register via quantum state tomography at the
end of the time-step circuit. This requires a destructive measurement of
the photonic memory (qu)bit and, consequently, repreparation using
 on F
ebruary 3, 2017
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Fig. 1. Representation of a stochastic system, with classical and quantum statistical models, at the ( j + 1)th time step of evolution. (A) The example system is a pair of
switches whose settings determine the value of an output bit and are randomized by a probabilistic process during the step (see text for details). (B) Because the output is
determined solely by the parity of the switches, a 1-bit classical model can be used to represent the system and to produce equivalent output statistics. In the example shown,
the orientation (up or down) of the vector [or equivalently its color (red or blue)] represents the state of the model and determines the output bit xj + 1. (C) A quantum model
allows for reduced complexity (see text for details) by encoding the state into nonorthogonal quantum states (the multicolor vectors, with nonpolar orientations, represent
quantum superpositions of logical states). (D) A conceptual classical circuit (double lines represent classical bit rails) for realizing the operation of the classical model above. The
classical input state (top rail) at time tj is subjected to a probabilistic action, potentially flipping the state. The model state is then correlated with a meter bit (bottom rail),
initially in the logical zero state, via a controlled-NOT (CNOT) gate. Reading out the meter via a logical (Pauli “Z”) measurement provides the output bit. After readout, the
model state is passed on to the next time step, along with a fresh meter bit. (E) A conceptual quantum circuit (glowing lines represent qubit states) for realizing the quantum
model above. The operation is similar to the classical circuit in (D), except that the probabilistic action is delayed until the readout of the meter (as above), which yields a
random result, and collapses the model state because of the entanglement generated by the CNOT gate acting on superposition states. (F and G) Conceptual circuits of the
classical and quantum models, as experimentally realized. The key difference (for practical reasons only) is the interruption of the model states for characterizing measure-
ments (denoted T, for quantum state tomography) with subsequent repreparation.
3 of 6
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classical logic. This is a slight practical difference from the theoretical
circuits of Fig. 1 (D and E) and is necessary only for the sake of verifying
the information storage requirements of the quantum model.

Experimental determinations of the statistical complexity, for both
classical and quantum models, are shown in Fig. 4A, where they are
compared with theoretical predictions. We collected data for various
values of P ranging from 0 to 1 at intervals of 0.1. For a wide range of
P values, Cexp

q < Cc ¼ 1, as predicted by theory. Small imperfections
inCexp

q arise due to slight imperfections in the operation of the CNOT
gate and preparation of the input states. Figure 4B shows theoretical
and experimental single-qubit density matrices, for the symmetric case
where P = 0.8, and provides a good example of the strong agreement
between theory and experiment.

The classical scenario for this model uses orthogonal logical states,
which are invariant with P. Experimentally, this leads to a single data
point for the classical symmetric case because the statistics are inde-
pendent of P. Experimental imperfections, as discussed, led to a
measured value of Cexp

c ¼ 0:9992 ± 0:0002, very slightly less than the
Palsson et al. Sci. Adv. 2017;3 : e1601302 3 February 2017
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predicted value of unity (Fig. 4A). The imperfections, at the ≲ 0.1 %
level, bias the equilibrium statistics. Note that measuring a value of less
unity does not imply that the classical bound of unity is incorrect but
rather that our slightly imperfect experiment implements a classical
model of a slightly different process, one with a statistical complexity
marginally less than 1. In principle, the same effect could cause the
quantum statistical complexity to be lower than that of the expected
process. In our experiment, we used careful characterization of the ex-
perimental circuit, state preparations, and measurements to ensure
that the implemented model was very close to the desired model. Be-
cause we implemented our classical protocol with 1 bit of memory at
P = 0.5, we observe Cc(0.5) ≈ 1, as discussed previously. However, no
memory is required, in principle, for either the classical or quantum
simulation at P = 0.5; hence, there is no quantum advantage in theory
for this special case.

Our setup can also be generalized to model a class of more general
stochastic processes, including the case where probabilities of transi-
tioning between the two causal states do not coincide (see Fig. 2B).
This is the case, for example, when the probability of flipping a switch
depends on its current parity. Although the causal states of such a
process remain unchanged, this generalization does affect the
transition probabilities between the two causal states and, thus, their
equilibrium distribution. In general, ℘1 ≠ ℘2, and thus, Cc ≠ 1 (see
Materials and Methods for details).

We experimentally tested one such case, where P← = 0.3 and P→ =
0.9. The experimental implementation is the same as before, except
that the states j~0〉 and j~1〉 are no longer symmetrically distributed
around ðj0〉þ j1〉Þ= ffiffiffi

2
p

. The experimentally determined entropy for
the quantum model is Sq = 0.19 ± 0.01, much lower than the equiv-
alent case for the classical model Sc = 0.818 ± 0.001. Note that these
values are slightly in excess of the theoretically predicted values of 0.12
and 0.81, respectively, which we attribute to a combination of slightly
imperfect state preparation and slightly imperfect CNOT gate
operation.
Fig. 2. Replicating statistical behavior with causal states—transition diagram
for the model. (A) In the example in Fig. 1, the probability of the model state bit
transitioning from one causal state (denoted here by a circle) to the other is P, and
thus, the probability of remaining in the same state is 1 − P. (B) In general, a two–
causal state model may have a transition probability, either P→ or P← , that depends
on the causal state at the beginning of the step. The case we consider for most of
this work, P = P→ = P← , is a particular example.
 on F
ebruary 3, 2017
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Fig. 3. Experimental setup. Photons from a continuous wave–pumped spontaneous parametric downconversion (SPDC) source are prepared in the relevant input states by
half-wave plates (HWPs) and are incident on a linear optics CNOT gate realized with partially polarizing beam splitters (PPBS) (see Materials and Methods). Converting between
classical and quantum models requires changing the input states from classical (orthogonal) polarization states to nonorthogonal superposition states. Measurement of one
output determines the output bit at the current time step, and the other output is tomographically characterized over many measurement runs to determine the state of
the model and its entropy. Key elements include polarizing beam splitters (PBS), PPBS, quarter wave plates (QWP) and HWP, and avalanche photodiode (APD) single-
photon detectors.
4 of 6
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DISCUSSION
In complexity theory, the statistical complexity of a stochastic process is
considered as an intrinsic quantifier of its structure, representing the
ultimate limit in the amount of memory required to optimally simulate
its future statistics. Here, we have experimentally demonstrated that this
limit can be surpassed with quantum processing. Stochastic processes
permeate quantitative science, modeling diverse phenomena from neu-
Palsson et al. Sci. Adv. 2017;3 : e1601302 3 February 2017
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ral networks to financial markets. In complexity theory, the construc-
tion of the simplest such models that replicate their observation
behavior has played an important role in understanding their hidden
structure. Our results present a proof of principle that these existing
methods can be enhanced through quantum technology. Recent theo-
retical work indicates that quantummodels can be further improved for
non-Markovian processes (19), and our technology could be adapted to
realizing these designs.

In the short term, it will be possible to implement simulations with
few-qubit systems, in line with the current state of the art in quantum
computer logic. As realizable quantum processor circuits increase in
scale, it will be possible to implement this for large numbers of qubits,
in one or more of the scalable platforms [including, but not limited to,
optics, spins in solids (20), trapped ions (21), and superconductors
(22)]. We note that the particular optical gate presented here is not suit-
able for scaling to large circuits in its current form, but optical quantum
logic is scalable with more sophisticated implementations (23–25).

Because the amount of information classical models waste often
scales with the complexity of the processes they model, the adoption
of our methods could have significant potential in simplifying more
complex simulations. This highlights not only quantum theory’s
relevance in understanding the microscopic world but also its impor-
tance in studying the complex macroscopic systems that are char-
acteristic of everyday life.
 on F
ebruary 3, 2017
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MATERIALS AND METHODS
Photon source and CNOT gate
A source of polarization-unentangled photon pairs was realized using
type I spontaneous parametric downconversion in bismuth triborate
(BiBO). The source produced photon pairs at 820 nm when pumped
with a 410-nm, continuous-wave, 60-mW diode laser. The classical or
quantum logic was implemented by constructing a linear optics CNOT
gate as shown in Fig. 3. [In practice, the CNOT gate was realized using a
CZ gate (26) and Hadamard rotations, which were incorporated into
the settings of the wave plates before and after the gate.] To determine
how well the CNOT gate was operating (27), we attempted to generate
a maximally entangled state from separable inputs, with the resultant
2-qubit density matrix reconstructed via quantum state tomography. The
fidelity of the state produced by the CNOT gate with the desired max-
imally entangled state was measured to be 0.97 ± 0.01.

Classical XOR gate
The classical XOR gate, used to implement the model with classical
causal states, can be implemented using a quantum CNOT gate (as
above) and orthogonal logical photon polarization states as bits. Be-
cause of experimental contingencies, we collected the classical data
using a different (but nominally identical in layout and component
type) CNOT gate to the one used for the quantum data collection and
at a later time.

Asymmetric two-switch process
In the main text, we studied the special case of the two-switch process,
where the probability of flipping a switch did not depend on the state
of the two switches. We can generalize this model by assuming that a
switch is flipped with probability P→ when the switches align, or P←
otherwise (Fig. 2B). The resulting system will still have two causal
states, s = {0, 1}, corresponding to the parity of the two switches. How-
ever, the two causal states no longer occur with equiprobability and
Fig. 4. Experimental data for classical and quantum models of the stochastic
process. (A) Experimentally measured statistical complexities (entropy) for the
classical and quantum model states, sampled for a range of values for P(= P→ = P←).
Blue squares are the quantum data, and black diamonds are the classical data. The
orange solid line represents the theoretically calculated entropy for the classical
scenario. The black curve represents the theoretically calculated entropy for the quan-
tum scenario. Error bars are 1 SD, derived from Poissonian counting statistics. Error bars
not shown are much smaller than the data points. The orange triangle denotes the
classical prediction for P = 0.5, where no memory is required for the corresponding
completely random process. (B) Real parts of the tomographically determined equilib-
rium density matrix, at the model state output, for P = 0.8. Top, classical model; bottom,
quantum model; left, theory; right, experiment. Imaginary components (small) are not
shown. Fractional uncertainties in the density matrix reconstruction are comparable in
size to the uncertainties in (A).
5 of 6
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instead satisfy ℘0P→ = ℘1P←. Thus, Cc ⩽ 1, with equality when P→ =
P←. The quantummodel causal states for the general model are given by

j~0〉 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P→

p j0〉þ ffiffiffiffiffiffiffi
P→

p j1〉 ð6Þ

j~1〉 ¼ ffiffiffiffiffiffiffi
P←

p j0〉þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P←

p j1〉 ð7Þ

The statistical complexity is given by the von Neumann entropy of
r ¼ ℘0

~0〉 〈~0 þ℘1j j~1〉 〈~1j�� . The quantum circuit to realize this quantum
model is the same as that in Fig. 1F, except that we must replace the
controlled-X̂ (CNOT) operation with a controlled-Û (CU) gate, where
Û is the operator such that Û j~0〉 ¼ j~1〉. In practice, Û ¼ V̂ X̂ V̂

†
,

where V̂ ðP→; P←Þ is a rotation around the y axis of the Bloch sphere.
Thus, the rotation can be implemented by HWPs in the meter arm
before and after the CNOT gate—we incorporated these rotations into
the settings of the state preparation and measurement wave plates.
However, the asymmetry of settings, when implemented with exper-
imental components, lead to a slight degradation in the performance
of the CU gate compared with the CNOT case.
 on F
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