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Learning phase transitions by confusion
Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber

Classifying phases of matter is key to our understanding of
many problems in physics. For quantum-mechanical systems
in particular, the task can be daunting due to the exponentially
large Hilbert space.Withmodern computing power and access
to ever-larger data sets, classification problems are now
routinely solved using machine-learning techniques1. Here,
we propose a neural-network approach to finding phase
transitions, based on the performance of a neural network
after it is trained with data that are deliberately labelled
incorrectly. We demonstrate the success of this method on
the topological phase transition in the Kitaev chain2, the
thermal phase transition in the classical Ising model3, and
themany-body-localization transition in a disordered quantum
spin chain4. Ourmethod does not depend on order parameters,
knowledgeof the topological contentof thephases,oranyother
specifics of the transition at hand. It therefore paves the way
to the development of a generic tool for identifying unexplored
phase transitions.

Machine learning as a tool for analysing data is becoming more
and more prevalent in an increasing number of fields. This is due
to a combination of availability of large amounts of data and the
advances in hardware and computational power, the latter most
notably through the use of graphical processing units.

Two typical methods of machine learning can be distinguished,
namely the unsupervised and supervised methods. In the former
the machine receives no input other than the data and is asked,
for example, to extract features or to cluster the samples. Such an
unsupervised approachwas applied to identify phase transitions and
order parameters from images of classical configurations of Ising
models5. In the supervised learning methods, the data have to be
supplemented by a set of labels. A typical example is classification
of data, where each sample is assigned a class label. The machine
is trained to recognize samples and predict their associated label,
demonstrating that it has learned by generalizing to samples it has
not encountered before. This approach, too, has been demonstrated
on Ising models6.

Concepts from physics have also found their way into the field of
machine learning. Examples of this are the relations between neural
networks (NNs) and statistical Ising models and renormalization
flow7, the use of tensor network techniques to train them8, using
reinforcement learning tomake networks represent wavefunctions9,
and indeed the very concept of phase transitions themselves10.

Motivated by previous studies, we apply machine-learning
techniques to the detection of phase transitions. In contrast to the
earlier works, however, we focus on a combination of supervised
and unsupervised techniques. In most cases, namely, it is exactly
the labelling that one would like to find out (that is, classification
of phases). That implies that a labelling is not known beforehand,
and hence supervised techniques are not directly applicable. In this
Letter we demonstrate that it is possible to find the correct labels, by
purposefully mislabelling the data and evaluating the performance

of the machine learner. We will base our method on NNs, which are
capable of fitting arbitrary nonlinear functions11. Indeed, if a linear
feature extraction method worked, there would have been no need
to explicitly find labels in the first place.

We emphasize the main result in this work is that with the pro-
posed method we are able to find a consistent labelling for data that
have distinct patterns. A change in the pattern of some observable
is not necessarily correlated with a physical phase transition. Our
method is capable of recognizing the change of pattern, after which
it is up to the user to investigate whether the change corresponds to
a crossover or a phase transition. We remark that we do not exclude
the possibility that linearmethods would be able to perform some of
the tasks we describe below. Nor do we exclude the possibility that
other methods such as latent-variable models or other maximum
likelihood algorithms would be able to perform the same task.
Finding the correct method or transformation of the data may be
a prohibitive task however, and so using a (possibly overpowered)
method such as NNs provides a useful starting point. Our method
boils down to bootstrapping a supervised learning method to an
unsupervised one, at the expense of computational time.

Additionally, but not less important, we propose the use of the
entanglement spectrum (ES; to be defined below) as the input data
on which to detect patterns and phase transitions. This allows for
the novelty of studying quantum models instead of classical models
as was done in previous literature. In the following we explain and
demonstrate our method on two quantum-mechanical models and
on the classical Ising model.

For quantum phase transitions, one tries to learn the quantum-
mechanical wavefunction |ψ〉, which contains exponentially many
coefficients with increasing system size. As has been noted before6, a
similar problem exists in the field of machine learning: the number
of samples in a data set has to increase exponentially with the
number of features one is trying to extract. To prevent having to deal
with exponentially large wavefunctions, we pre-process the data in
the form of the ES12, which has been shown to contain important
information about |ψ〉 (refs 13,14).

To justify the use of the ES, we note that recently the quantum
entanglement has taken up a major role in the characterization of
many-body quantum systems13,15. In particular, the ES has been
used as an important tool in, for example, fingerprinting topo-
logical order16–18, tensor network properties19,20, quantum critical
points, symmetry-breaking phases21,22, and even many-body local-
ization23,24. Very recently, an experimental protocol for measuring
the ES has been proposed25. On the level of the ES, the information
of phases is not clearly identifiable as in the classical images, which
we will show in the following sections. However, patterns in the ES
suggest that learning and generalization is still possible.

We will next consider the Kitaev chain as a demonstration
of our method. The Kitaev chain serves as an excellent example
since analytical results are available, and the ES shows a clear
distinction between the two phases of the model. We demonstrate
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Figure 1 | Learning the topological phase transition in the Kitaev chain. a, Evolution of the entanglement spectrum as a function of the chemical potentialµ.
Here we plot the largest four eigenvalues of the reduced density matrix ρA. The degeneracy structure is clearly observable. b, Principal component
analysis of the entanglement spectrum. All data points are shown in the plane of the first two principal components y1 and y2. c, Supervised learning
with blanking. The shaded region is blanked out during the training phase, and the NN can still predict the correct transition point µ=−2t. d, P(µ′c),
evolution of the accuracy of prediction, as a function of the proposed critical point µ′c, which shows the universal W-shape. See text for more details.
(Parameters for training: batch size Nb= 100, learning rate α=0.075 and regularization l2=0.001. See the Methods for an explanation of these terms.)

the generalizing power of the NN by blanking out the training
data around the transition, and show that it can still predict
the transition accurately. We then purposefully mislabel the data,
thereby confusing the network, and introduce the characteristic
shape of the networks’ performance function.

The Kitaev chain model is defined through the following
Hamiltonian:

Ĥ=−t
L∑

i=1

(
ĉ†
i+1ĉi+ ĉi+1ĉi+h.c.

)
−µ

L∑
i=1

ĉ†
i ĉi (1)

where t > 0 controls the hopping and the pairing of spinless
fermions alike andµ is a chemical potential. The ground state of this
model has a quantum phase transition from a topologically trivial
(|µ|>2t) to a non-trivial state (|µ|<2t) as the chemical potential
µ is tuned across µ=±2t .

We use the ES to compress the quantum-mechanical
wavefunction. The ES is defined as follows. The whole system
is first divided into two subsets A and B, after which the reduced
density matrix of subset A is calculated by partially tracing out
the degrees of freedom in B, that is, ρA = TrB|ψ〉〈ψ|. Denoting
the eigenvalues of ρA as λi, the ES is then defined as the set of
numbers− lnλi. It is important to remark that various types of
bipartition of the whole system into subsets A and B exist, such as
dividing the bulk into extensive disconnected parts26, divisions in
momentum space27 or indeed even random partitioning28. In this
work, we use the usual spatial bipartition into left and right halves
of the whole system.

As shown in Fig. 1a, the ES of the Kitaev chain is clearly
distinguishable in the two phases, especially since the non-trivial
phase has a degeneracy structure as do all symmetry-protected
topological phases18. This feature is clear also for human eyes,
and a machine-learning routine is overkill. We use this model for
demonstration purposes and in the following, we will apply the

introduced methodology to more complex models. The data for
machine learning are chosen to be the largest 10 eigenvalues λi, for
L= 20 with an equal partitioning LA= LB= 10, and for various
values of−4t≤µ≤0.

First we perform unsupervised learning, using an established
method for feature extraction. The entanglement spectra are
interpreted as points in a 10-dimensional space, andwe use principal
component analysis (PCA)29 to extract mutually orthogonal axes
along which most of the variance of the data can be observed. PCA
amounts to a linear transformation Y=XW , where X is an N×10
matrix containing the entanglement spectra as rows (N=104 is the
number of samples).

The orthogonal matrixW has vectors representing the principal
components ω` as its columns, which are determined through the
eigenvalue equation XTXω` = λ`ω`. The eigenvalues λ` are the
singular values of the matrix X , and are hence non-negative real
numbers, and we normalize them such that

∑
λ`= 1. The result

of PCA is shown in Fig. 1b, and it is indeed possible to cluster the
spectra into three sets: µ<−2t , µ=−2t and µ>−2t .

We now turn to training a feedforward NN on the
10-dimensional inputs, and refer to the online Methods and
ref. 30 for more details. For completeness, we mention the essentials
of NNs in Fig. 2.

We train the network with 80 hidden sigmoid neurons in a single
hidden layer, and 2 output neurons. The first/second output neuron
predicts the (not necessarily normalized) probability for the data to
be in trivial/non-trivial phase, and the predicted phase is the phase
with the larger probability. We use stochastic gradient descent and
l2 regularization to try to minimize a cross-entropy cost function.
The network easily learns to distinguish the spectra and is able to
generalize to unseen data points.

Arguably the most important objective of machine learning in
general is that of generalization. After all, learning is demonstrated
by being able to perform well on examples that have not been
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Figure 2 | Neural networks. a, A single artificial neuron, with n inputs
labelled x1 through xn and a single output y. The output of the neuron is
computed by applying the activation function f to the weighted input
a=

∑n
i wixi=w ·x. b, A neural network, consisting of many artificial

neurons that have been arranged in layers. In this particular network
architecture, called a feedforward network, the neurons within each layer
are not connected. Apart from the first layer and the last layer we use one
hidden layer in between (a shallow network, as opposed to a deep network
with many layers). The neurons in the first layer have no inputs, but instead
their outputs are fixed to the values of the input data and hence they serve
as dummy neurons. The entire network can be considered as a highly
nonlinear function g(x;W) that takes the input data x and feeds them
forward to get the output. The goal of a neural network-based approach is
to optimize the choice of the weights such that the network approximates
the desired function.

encountered before. As another display of the generalizing power of
the network, we blank out the data in a width w around µ=−2t
and ask the network to interpolate and find the transition point.
Figure 1c shows that the network has no difficulties doing so even
for w=2t . We were able to go up to widths w=3t before training
became unreliable.

The PCA as an unsupervised learning technique may be applied
without perfectly known information of the system, but it is a linear
analysis and is hence incapable of extracting nonlinear relationships
among the data. On the other hand, a NN is capable of fitting any
nonlinear function11, but a training phase with correctly labelled
input–output pairs is needed. In the following, we propose a scheme
combining both supervised and unsupervisedmethods that we refer
to as a confusion scheme. This scheme is themain result of thiswork.

We suppose that the data depend on a parameter that lies in the
range (a,b), and we assume that there exists a critical point a< c<b
such that the data can be classified into two groups. However, we do
not know the value of c. We propose a critical point c ′, and train a
network that we callNc′ by labelling all data with parameters smaller
than c ′ with label 0 and the others with label 1. Next, we evaluate
the performance of Nc′ on the entire data set and refer to its total
performance, with respect to the proposed critical point c ′, as P(c ′).
We will show that the function P(c ′) has a universal W-shape, with
the middle peak at the correct critical point c. Applying this to the
Kitaev model, we can see from Fig. 1d that for −4t <µ< 0, the
prediction performance from the confusion scheme has a W-shape
with the middle peak at µ=−2t .

The W-shape can be understood as follows. We assume that the
data have two different structures in the regimes below c and above
c, and that the NN is able to find and distinguish them. We refer to
these different structures as features. When we set c ′= a, the NN
chooses to assign label 1 to both features and thus correctly predicts
100% of the data. A similar analysis applies to c ′= b, except that
every data point is assigned the label 0. When c ′= c is the correct
labelling, the NN will choose to assign the right label to both sides
of the critical point and again performs perfectly. When a< c ′< c,
in the training phase the NN sees data with the same feature in the
ranges from a to c ′ and from c ′ to c, but having different labels (hence
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Figure 3 | Learning the Ising transition. The position of the middle peak in
the universal W-shape deviates from T′c=Tc for L= 10 due to the
finite-size e�ect. Here kBTc≈2.27J is the exact transition temperature in
the thermodynamic limit. For L=20 the middle peak is located exactly at
T′c=Tc. Error bars are obtained by averaging over ten di�erent and
independent Monte Carlo runs for obtaining the data. The errors are larger
for points that deviate from the expected W-shape. (Parameters for
training: batch size Nb= 100, learning rate α=0.02 and regularization
l2=0.005. See the Methods for an explanation of these terms.)

the confusion). In this case it will choose to learn the label of the
majority data, and the performance will be

P(c ′)=1−
min

(
c− c ′, c ′−a

)
b−a

(2)

Similar analysis applies to c < c ′ < b. This gives the typical
W-shape seen in Fig. 1d.Note that if the point c is not exactly centred
between a and b, the W-shape will be slightly distorted. Its middle
peak always corresponds to the correct labelling, but the depth of
the minima will differ between the left and right.

We test the confusion scheme on the thermal phase transition in
the two-dimensional classical Ising model, which has been studied
by both supervised learning6 and unsupervised learning5 methods.
Here we train a NN (with L2 neurons in the input and hidden
layers, and 2 neurons in the output layer) on the L× L classical
configurations sampled fromMonte Carlo simulations. As shown in
Fig. 3, the W-shape again predicts the right transition temperature.
Note the confusion scheme works better when the underlying
feature in the data is sharper, that is, for the larger system size L=20.
We also remark that the error bars shown in the figure are large for
the points deviating from the expected W-shape. These error bars
were obtained by repeating the confusion procedure with Monte
Carlo data from independent runs.

To confirm that the confusion scheme indeed extracts non-trivial
features from the input data, we have checked the performance
curve from the confusion scheme, when the NN is trained on
unstructured random data. We use a fictive parameter as a tuning
parameter, but have completely unstructured (random) data as a
function of it. Hence, the network will not find structure in the
data, and a correct labelling does not exist. The middle peak of the
characteristic W-shape disappears, turning it into a V-shape.

We will now test our proposed scheme on an example where the
exact location of the transition point is not known.We study a case of
interest in recent literature, namely that of many-body localization.
We consider the following model:

H= J
L∑

i=1

Si ·Si+1+
∑
α=x ,y ,z

L∑
i=1

hαi S
α

i (3)

where S denote spin-1/2 operators. The local fields hαi are drawn
from a uniform box distribution with zero mean and width hαmax.

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

3

http://dx.doi.org/10.1038/nphys4037
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4037

15a

b

c

10

5

0

1.0

1.0

0.8

0.6

0.4

0.2

0.0
1.0 1.5 2.0

25, 1 × 10−6, 0.01
25, 1 × 10−8, 0.01
100, 1 × 10−6, 0.01
100, 1 × 10−7, 0.01
100, 1 × 10−8, 0.01
100, 1 × 10−8, 25

2.5

Nb, α, l2

3.0
h′c/J

3.5 4.0 4.5 5.0

1.0 1.5 2.0 2.5 3.0
h′c/J

3.5 4.0 4.5 5.0

0.9

0.8

0.7

0.6

y 2

−5

−10

−15
100 150 200

y1

250 300

P(
h′ c)

P(
h′ c)

 a
t h

′ c o
nl

y

Figure 4 | Learning the many-body-localization transition. a, Principal
component analysis of the random-field Heisenberg model. Unlike in the
Kitaev model or for the Ising data5, there is no clearly observable clustering.
b, The characteristic W-shape of the performance curve on the
many-body-localization data. The result shows that the network N h′c for
h′c≈3J performs best, indicating that this is the correct labelling. The
distinction between the thermalizing and non-thermalizing phase can
hence be put at hc≈3J, in agreement with ref. 24. (Parameters for training:
batch size Nb= 100, learning rate α= 10−8 and regularization l2=0.01.
See the Methods for an explanation of these terms.) c, The performance of
network N h′c , when evaluated at the point h′c only, for various di�erent sets
of learning parameters (see legend). Clearly the performance of the
network is most independent of the exact training scheme at h′c≈3J,
showing a robustness of this correct labelling against variations in training.

We set hx
max= hz

max= hmax and hy
max= 0. The disorder allows us to

generatemany samples at a fixed set ofmodel parameters, in analogy
to the different configurations for a fixed temperature in the classical
spin systems5,6.

The model in equation (3) has a transition between thermalizing
and non-thermalizing (that is, many-body localized) behaviour,
driven by the disorder strength hmax. In particular, when varying
hmax, both the energy level statistics as well as the statistics of the
entanglement spectra change their nature24. For the case of the en-
ergy levels, the gaps (level spacings) follow either a Wigner–Dyson
distribution for the thermalizing phase, or a Poisson distribution for
the localized phase; while for the ES, theWigner–Dyson distribution
is replaced by a semi-Poisson distribution. Note that the change of
ES can already be seen from the statistics in a single eigenstate24.

We numerically obtain the ES for the ground state of themodel in
equation (3), for disorder strengths between hmax= J and hmax=5J .
The transition was shown to happen around hmax ≈ 3J (ref. 24),

but we stress that our method does not rely on this knowledge. We
would simply have started from a larger width of points, and then
systematically narrow it down to the current range. At each value of
hmax we generate 105 disorder realizations for system size L=12 and
calculate the ES for LA=LB=6. These 26=64 levels are used as the
input to the NN.

First, we try to use an unsupervised PCA to cluster the data.
This analysis shows that the first two principal components are
dominant, with the other components being of order 10−4 or less.
However, a scatterplot of the data when projected onto the first two
principal components (shown in Fig. 4a) does not reveal a clear
clustering of the spectra.

We therefore turn to train a shallow feedforward network on the
entanglement spectra to use the confusion scheme. Here we use a
network with 64 input neurons, 100 hidden neurons and 2 output
neurons. The results are shown in Fig. 4b. Also in this case, the
characteristic W-shape is obtained and we detect the transition at
hc≈3J . In addition to the previous cases, we also consider explicitly
the performance of the network Nh′c at h

′

c. We do this to confirm
that the labelling with h′c at 3J is indeed correct. We expect that
the training of the network is most robust against changes in its
parameters for the correct labelling. In other words, we may also
look for the h′c at which the training is most independent of chosen
conditions. As shown in Fig. 4c, this point is also at hc.

An interesting direction for future studies is the relaxation of
the assumption that there are only two phases to be distinguished.
If there are multiple phase transitions present in the data as a
function of the tuning parameter, the characteristicW-shape will be
modified, and its new shape (that is, the number of peaks) will signal
the correct number of different labels. This is due to the fact that
data with multiple phases can always be bipartitioned into classes
‘belongs to phase A’ and ‘does not belong to phase A’, where A can be
any phase in the data. Additionally, it may be possible to formulate
this method in a self-consistent way, with an adaptive labelling and
having the algorithm determine the correct labels by itself.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
In this section we will describe in detail the method of NNs. A more extensive
pedagogical introduction can be found in ref. 30. To do so, we first introduce the
concept of an artificial neuron, as depicted in Fig. 2a in the main text. The artificial
neuron we consider has a number of n inputs, and a single output. To each of the
inputs is associated an incoming value xi and a weight wi, i=1 . . .n from which the
neuron computes its output y . This is done according to y= f (a) with a being the
weighted sum of the inputs, that is, a=

∑
iwixi, and f (.) representing an activation

function. A typical choice for the activation function (and indeed the one we have
used) is the sigmoid f (a)=1/(1+ea), turning our artificial neuron into a sigmoid
neuron. We also mention the common RELU neuron (rectified linear unit), for
which the activation function reads f (a)=aΘ(a) withΘ(a) representing the
Heaviside step function.

From a single neuron we are now able to construct a so-called feedforward NN,
by combining layers of neurons as shown in Fig. 2b in the main text. Such a
network consists of layers (represented as columns in the figure) of neurons, whose
outputs are fed into the next layer as inputs. Two points here must be remarked
upon. First, although each neuron is shown to have many outgoing connections as
opposed to the neuron we just introduced, each of these is assigned the same
outgoing value. Second, the neurons in the first layer (column) of the network,
called the input layer, have no incoming values but instead are ‘dummy’ neurons
whose outputs are assigned the values of the input data. There can be arbitrarily
many ‘hidden’ layers, each with an arbitrary number of neurons, until we reach the
final output layer. The connections between neurons in layer i and i+1 are
associated with a weight matrix w[i], such that w[i]nm is the weight between neuron n
in layer i and neuronm in layer i+1. We will be concerned with networks that
have a single hidden layer, falling under the class of shallow networks, as opposed
to deep learning networks consisting of multiple layers.

At this point, the network provides a black-box function g (x;W) that provides
the predicted output of the network for a given input x, and depends on all of the
weightsW=

{
w[1], . . . ,w[n−1]

}
between the neurons. This output is a vector of

length equal to the number of neurons in the output layer. Having a single output is
equivalent to doing a type of regression, whereas here we will mostly use two
outputs as we will describe below. The training of the network now proceeds
iteratively as follows. The weights are initialized randomly at first, after which we
start feeding input samples through the network. For the sake of simplicity,
denoting the output of the network by ỹ=g (x;W), we seek to change the weights
such that we minimize the cost function C(ỹ,y), with y representing the correct
(targeted) output corresponding to input x. Typical cost functions used in the
literature are the quadratic-cost function C(ỹ,y)= (ỹ−y)2/2 and the

cross-entropy cost function defined as C(ỹ,y)= ỹ lny+ (1− ỹ) ln(1−y). We have
chosen to work with the latter. The optimization of the weights is done via the
standard backpropagation algorithm, which is in essence gradient descent on the
function g (x;W). This updates the weights iteratively such thatW→W+α1W ,
with α being a parameter called the learning rate. We also mention that instead of
feeding through single samples to compute the gradient, we may use a batch of
inputs of size Nb to compute the average gradient for faster convergence.

To prevent the network from overfitting the data, we include a standard
l2 regularization term. This term enters the cost function as C(ỹ,y)→C(ỹ,y)+
l2W2/2, such that using gradient descentwe try to keep theweights small when l2>0.

We note that the choice of the learning rate (α) and regularization (l2) is
essential for a successful training. The use of regularization is expected to reduce
overfitting and make the network less sensitive to small variations of the data,
hence forcing it to learn its structure. However, the confusion scheme of the main
text depends solely on the ability of finding the majority label for the underlying
structure in the data. In this sense, overfitting is not necessarily bad. Indeed, we
have observed that training with a negative l2 may lead to an equally good
performance. We speculate that this is because a negative l2 tries to quickly increase
the weights, making it harder for the network to change its opinion about data
samples in later stages. If the initial training data are uniformly sampled, meaning
the majority data are indeed represented by a majority, the network will rapidly
adjust its weights to this majority. The training is stopped when a clear W-shape
is formed.

For the quantum models, the input to the NN is the ES, which has the nice
property that successive singular values decay very fast. Thus, we have kept a fixed
number of singular values and the computational time is independent of the system
size. For the classical models, the input is the classical configuration. In this case we
fix the number of hidden neurons and increase the numbers of input neurons
according to the system size N , thus the complexity isO(N ).

Last we mention the absence of error bars. Obtaining error bars as is typically
done by averaging over different disorder realizations is not feasible, since the
performance of the network is itself already an average over such realizations.
Instead, we might train different networks with different initial weights and average
over those, so that we obtain an averaged W-shape. However, the error bars thus
obtained do not shed light on the location of the transition. Once a W-shape is
identified in the training, one may instead tweak the network parameters to
optimize the shape.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on request.
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