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Preface

The development of quantum mechanics in the 1920s was the greatest advance
in physical science since the work of Isaac Newton. It was not easy; the ideas
of quantum mechanics present a profound departure from ordinary human intu-
ition. Quantum mechanics has won acceptance through its success. It is essential
to modern atomic, molecular, nuclear, and elementary particle physics, and to a
great deal of chemistry and condensed matter physics as well.

There are many fine books on quantum mechanics, including those by Dirac
and Schiff from which I learned the subject a long time ago. Still, when I have
taught the subject as a one-year graduate course, I found that none of these
books quite fit what I wanted to cover. For one thing, I like to give a much
greater emphasis than usual to principles of symmetry, including their role in
motivating commutation rules. (With this approach the canonical formalism is
not needed for most purposes, so a systematic treatment of this formalism is
delayed until Chapter 9.) Also, I cover some modern topics that of course could
not have been treated in the books of long ago, including numerous examples
from elementary particle physics, alternatives to the Copenhagen interpretation,
and a brief (very brief) introduction to the theory and experimental tests of entan-
glement and its application in quantum computation. In addition, I go into some
topics that are often omitted in books on quantum mechanics: Bloch waves,
time-reversal invariance, the Wigner–Eckart theorem, magic numbers, isotopic
spin symmetry, “in” and “out” states, the “in-in” formalism, the Berry phase,
Dirac’s theory of constrained canonical systems, Levinson’s theorem, the gen-
eral optical theorem, the general theory of resonant scattering, applications of
functional analysis, photoionization, Landau levels, multipole radiation, etc.

The chapters of the book are divided into sections, which on average approx-
imately represent a single seventy-five minute lecture. The material of this book
just about fits into a one-year course, which means that much else has had to be
skipped. Every book on quantum mechanics represents an exercise in selectiv-
ity — I can’t say that my selections are better than those of other authors, but at
least they worked well for me when I taught the course.

There is one topic I was not sorry to skip: the relativistic wave equation of
Dirac. It seems to me that the way this is usually presented in books on quan-
tum mechanics is profoundly misleading. Dirac thought that his equation was

xv



xvi Preface

a relativistic generalization of the non-relativistic time-dependent Schrödinger
equation that governs the probability amplitude for a point particle in an exter-
nal electromagnetic field. For some time after, it was considered to be a good
thing that Dirac’s approach works only for particles of spin one half, in agree-
ment with the known spin of the electron, and that it entails negative energy
states, states that when empty can be identified with the electron’s antiparticle.
Today we know that there are particles like the W ± that are every bit as elemen-
tary as the electron, and that have distinct antiparticles, and yet have spin one,
not spin one half. The right way to combine relativity and quantum mechanics is
through the quantum theory of fields, in which the Dirac wave function appears
as the matrix element of a quantum field between a one-particle state and the
vacuum, and not as a probability amplitude.

I have tried in this book to avoid an overlap with the treatment of the quantum
theory of fields that I presented in earlier volumes.1 Aside from the quantization
of the electromagnetic field in Chapter 11, the present book does not go into
relativistic quantum mechanics. But there are some topics that were included
in The Quantum Theory of Fields because they generally are not included in
courses on quantum mechanics, and I think they should be. These subjects are
included here, especially in Chapter 8 on general scattering theory, despite some
overlap with my earlier volumes.

The viewpoint of this book is that physical states are represented by vectors in
Hilbert space, with the wave functions of Schrödinger just the scalar products of
these states with basis states of definite position. This is essentially the approach
of Dirac’s “transformation theory.” I do not use Dirac’s bra-ket notation, because
for some purposes it is awkward, but in Section 3.1 I explain how it is related
to the notation used in this book. In any notation, the Hilbert space approach
may seem to the beginner to be rather abstract, so to give the reader a greater
sense of the physical significance of this formalism I go back to its historic
roots. Chapter 1 is a review of the development of quantum mechanics from
the Planck black-body formula to the matrix and wave mechanics of Heisen-
berg and Schrödinger and Born’s probabilistic interpretation. In Chapter 2 the
Schrödinger wave equation is used to solve the classic bound-state problems
of the hydrogen atom and harmonic oscillator. The Hilbert space formalism is
introduced in Chapter 3, and used from then on.

* * *

I am grateful to Raphael Flauger and Joel Meyers, who as graduate students
assisted me when I taught courses on quantum mechanics at the University of
Texas, and suggested numerous changes and corrections to the lecture notes on

1 S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995; 1996;
2000).
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which this book is based. I am also indebted to Robert Griffiths, James Har-
tle, Allan Macdonald, and John Preskill, who gave me advice regarding specific
topics. Of course, only I am responsible for errors that may remain in this book.
Thanks are also due to Terry Riley and Abel Ephraim for finding countless books
and articles, and to Jan Duffy for her helps of many sorts. I am grateful to Lind-
say Barnes and Jon Billam of Cambridge University Press for helping to ready
this book for publication, and especially to my editor, Simon Capelin, for his
encouragement and good advice.

STEVEN WEINBERG
Austin, Texas
March 2012



Notation

Latin indices i, j, k, and so on generally run over the three spatial coordinate
labels, usually taken as 1, 2, 3.

The summation convention is not used; repeated indices are summed only where
explicitly indicated.

Spatial three-vectors are indicated by symbols in boldface. In particular, ∇ is
the gradient operator.

∇2 is the Laplacian
∑

i ∂
2/∂xi∂xi .

The three-dimensional “Levi–Civita tensor” εi jk is defined as the totally anti-
symmetric quantity with ε123 = +1. That is,

εi jk ≡
⎧⎨
⎩

+1 i jk = 123, 231, 312
−1 i jk = 132, 213, 321
0 otherwise

The Kronecker delta is

δnm =
{

1 n = m
0 n �= m

A hat over any vector indicates the corresponding unit vector: Thus, v̂ ≡ v/|v|.
A dot over any quantity denotes the time-derivative of that quantity.

The step function θ(s) has the value +1 for s > 0 and 0 for s < 0.

The complex conjugate, transpose, and Hermitian adjoint of a matrix A are
denoted A∗, AT, and A† = A∗T, respectively. The Hermitian adjoint of an oper-
ator O is denoted O†. + H.c. or + c.c. at the end of an equation indicates the
addition of the Hermitian adjoint or complex conjugate of the foregoing terms.

Where it is necessary to distinguish operators and their eigenvalues, upper case
letters are used for operators and lower case letters for their eigenvalues. This

xviii



Notation xix

convention is not always used where the distinction between operators and
eigenvalues is obvious from the context.

Factors of the speed of light c, the Boltzmann constant kB, and Planck’s constant
h or � ≡ h/2π are shown explicitly.

Unrationalized electrostatic units are used for electromagnetic fields and electric
charges and currents, so that e1e2/r is the Coulomb potential of a pair of charges
e1 and e2 separated by a distance r . Throughout, −e is the unrationalized charge
of the electron, so that the fine structure constant is α ≡ e2/�c 	 1/137.

Numbers in parenthesis at the end of quoted numerical data give the uncertainty
in the last digits of the quoted figure. Where not otherwise indicated, experi-
mental data are taken from K. Nakamura et al. (Particle Data Group), “Review
of Particle Properties,” J. Physics G 37, 075021 (2010).





1
Historical Introduction

The principles of quantum mechanics are so contrary to ordinary intuition that
they can best be motivated by taking a look at their prehistory. In this chapter
we will consider the problems confronted by physicists in the first years of the
twentieth century that ultimately led to modern quantum mechanics.

1.1 Photons

Physicists in the last decades of the nineteenth century were greatly concerned
to understand the nature of black-body radiation — radiation that had come into
thermal equilibrium with matter at a given temperature T . The energy ρ(ν, T )dν
per volume at frequencies between ν and ν + dν had been measured, chiefly
at the University of Berlin, and it was known on thermodynamic grounds that
ρ(ν, T ) is a universal function of frequency and temperature, but how could one
calculate this function?

A simple calculation was given in 1900 by John William Strutt (1842–1919),
more usually known as Lord Rayleigh.1 It was familiar that one can think of the
radiation field in a box as a Fourier sum over normal modes. For instance, for a
cubical box of width L , whatever boundary condition is satisfied on one face of
the box must be satisfied on the opposite face, so the phase of the radiation field
must change by an integer multiple of 2π in a distance L . That is, the radiation
field is the sum of terms proportional to exp(iq · x), with

q = 2πn/L , (1.1.1)

where the vector n has integer components. (For instance, to maintain transla-
tional invariance, it is convenient to impose periodic boundary conditions: each
component of the electromagnetic field is assumed to be the same on opposite
faces of the box.) Each normal mode is thus characterized by a triplet of inte-
gers n1, n2, n3 and a polarization state, which can be taken as either left- or

1 J. W. Strutt, Verh. d. deutsch. phys. Ges. 2, 65 (1900).
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2 1 Historical Introduction

right-circular polarization. The wavelength of a normal mode is λ = 2π/|q|, so
its frequency is given by

ν = c

λ
= |q|c

2π
= |n|c

L
. (1.1.2)

Each normal mode occupies a cell of unit volume in the space of the vectors n,
so the number of normal modes N (ν)dν in the range of frequencies between ν
and ν + dν is twice the volume of the corresponding shell in this space:

N (ν)dν = 2 × 4π |n|2 d|n| = 8π(L/c)3ν2dν , (1.1.3)

the extra factor of 2 taking account of the two possible polarizations for each
wave number. Rayleigh noted that in classical statistical mechanics, in any sys-
tem that can be regarded as a collection of harmonic oscillators, the mean energy
of each oscillator Ē(T ) is simply proportional to the temperature, a relation writ-
ten as Ē(T ) = kBT , where kB is a fundamental constant, known as Boltzmann’s
constant. (The derivation is given below.) If this applied to radiation, the energy
density in the radiation between frequencies ν and ν + dν would then be given
by what has come to be called the Rayleigh–Jeans formula

ρ(ν, T )dν = Ē(T ) N (ν) dν

L3
= 8πkBT ν2 dν

c3
. (1.1.4)

(A numerical error in Rayleigh’s derivation was corrected in 1905 by James
Jeans (1877–1946).) The prediction that ρ(ν, T ) is proportional to T ν2 was
actually in agreement with observation for small values of ν/T , but failed badly
for larger values. Indeed, if it held for all frequencies at a given temperature, then
the total energy density

∫
ρ(ν, T ) dν would be infinite. This became known as

the ultraviolet catastrophe.
The correct result was published a little later by Max Planck (1858–1947), in

the same volume of the proceedings of the German Physical Society.2 Planck
noted that the data on black-body radiation could be fit with the formula

ρ(ν, T ) dν = 8πh

c3

ν3 dν

exp(hν/kBT )− 1
, (1.1.5)

where h was a new constant, known ever after as Planck’s constant. Comparison
with observation gave kB ≈ 1.4 × 10−16 erg/K and3 h ≈ 6.6 × 10−27 erg sec.
This formula was just guesswork, but a little later Planck gave a derivation of
the formula4, based on the assumption that the radiation was the same as if
it were in equilibrium with a large number of charged oscillators with different

2 M. Planck, Verh. d. deutsch. phys. Ges. 2, 202 (1900).
3 The modern value is 6.62606891(9) × 10−27 erg sec; see E. R. Williams, R. L. Steiner, D. B. Newell,

P. T. Olson, Phys. Rev. Lett. 81, 2404 (1998).
4 M. Planck, Verh. d. deutsch. phys. Ges. 2, 237 (1900).



1.1 Photons 3

frequencies, the energy of any oscillator of frequency ν being an integer multiple
of hν. Planck’s derivation is lengthy and not worth repeating here, since its basis
is very different from what soon replaced it.

Planck’s formula agrees with the Rayleigh–Jeans formula (1.1.4) for ν/T �
k/h, but it gives an energy density that falls off exponentially for ν/T � k/h,
yielding a finite total energy density

∫ ∞

0
ρ(ν, T ) dν = aBT 4 ., aB ≡ 8π5k4

B
15h3c3

. (1.1.6)

(Using modern values of constants, this gives aB = 7.56577(5) × 10−15

erg cm−3 K −4.) Perhaps the most important immediate consequence of Planck’s
work was to provide long-sought values for atomic constants. The theory of
ideal gases gives the well-known law pV = n RT , where p is the pressure of
a volume V of n moles of gas at temperature T , with the constant R given by
R = kBNA, where NA is Avogadro’s number, the number of molecules in one
mole of gas. Measurements of gas properties had long given values for R, so
with kB known it was possible for Planck to infer a value for NA, the reciprocal
of the mass of a hypothetical atom with unit atomic weight (close to the mass
of a hydrogen atom). This was in good agreement with estimates of NA from
properties of non-ideal gases that depend on number density and not just mass
density, such as viscosity. Knowing the mass of individual atoms, and assuming
that atoms in solids are closely packed so that the mass to volume ratio of an
atom is similar to the measured density of macroscopic solid samples of that
element, one could estimate the sizes of atoms. Similarly, measurements of the
amount of various elements produced by electrolysis had given a value for the
Faraday, F = eNA, where e is the electric charge transferred in producing one
atom of unit valence, so with NA known, e could be calculated. It could be
assumed that e is the charge of the electron, which had been discovered in 1897
by Joseph John Thomson (1856–1940), so this amounted to a measurement of
the charge of the electron, a measurement much more precise than any direct
measurement that could be carried out at the time. Thomson had measured the
ratio of e to the mass of the electron, by observing the bending of cathode rays
in electric and magnetic fields, so this also gave a value for the electron mass.
It is ironic that all this could have been done by Rayleigh before the advent of
the Planck black-body formula, by comparing measured values of ρ(ν, T ) with
the Rayleigh–Jeans formula (1.1.4) at small values of ν/T , where the formula
works, and using the result to find kB — for this, h is not needed.

Planck’s quantization assumption applied to the matter that emits and absorbs
radiation, not to radiation itself. As George Gamow later remarked, Planck
thought that radiation was like butter; butter itself comes in any quantity, but it
can be bought and sold only in multiples of one quarter pound. It was Albert
Einstein (1879–1955) who in 1905 proposed that the energy of radiation of
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frequency ν was itself an integer multiple of hν.5 He used this to predict that
in the photoelectric effect no electrons are emitted when light shines on a metal
surface unless the frequency of the light exceeds a minimum value νmin, where
hνmin is the energy required to remove a single electron from the metal (the
“work function”). The electrons then have energy h(ν − νmin). Experiments6 by
Robert Millikan (1868–1953) in 1914–1916 verified this formula, and gave a
value for h in agreement with that derived from black-body radiation.

The connection between Einstein’s hypothesis and the Planck black-body for-
mula is best explained in a derivation of the black-body formula by Hendrik
Lorentz (1853–1928) in 1910.7 Lorentz made use of the fundamental result of
statistical mechanics due to J. Willard Gibbs (1839–1903),8 that in a system
containing a large number of identical systems in thermal equilibrium at a given
temperature (like light quanta of the same frequency in a black-body cavity),
the probability that one of these systems has an energy E is proportional to
exp(−E/kBT ). If the energies of light quanta were continuously distributed,
this would give a mean energy

Ē =
∫∞

0 exp(−E/kBT ) E d E∫∞
0 exp(−E/kBT ) d E

= kBT ,

the assumption used in deriving the Rayleigh–Jeans formula (1.1.4). But if the
energies are instead integer multiples of hν, then the mean energy is

Ē =
∑∞

n=0 exp(−nhν/kBT ) nhν∑∞
n=0 exp(−nhν/kBT )

= hν

exp(hν/kBT )− 1
. (1.1.7)

The energy density in radiation between frequencies ν and ν+dν is again given
by ρ dν = Ē Ndν/L3, which now with Eqs. (1.1.3) and (1.1.7) yields the Planck
formula (1.1.5).

Even after Millikan’s experiments had verified Einstein’s prediction for the
energies of photoelectrons, there remained considerable skepticism about the
reality of light quanta. This was largely dispelled by experiments on the scat-
tering of X-rays by Arthur Compton (1892–1962) in 1922–23.9 The energy of
X-rays is sufficiently high so that it is possible to ignore the much smaller bind-
ing energy of the electron in a light atom, treating the electron as a free particle.
Special relativity says that if a quantum of light has energy E = hν, then it
has momentum p = hν/c, in order to have m2

γ c4 = E2 − p2c2 = 0. If, for
instance, a light quantum is scattered backwards, then the scattered quantum has

5 A. Einstein, Ann. d. Physik 17, 132 (1905).
6 R. A. Millikan, Phys. Rev. 7, 355 (1916).
7 H. A. Lorentz, Phys. Z. 11m 1234 (1910).
8 J. W. Gibbs, Elementary Principles in Statistical Mechanics (New York, 1902).
9 A. H. Compton, Phys. Rev. 21, 207 (1923).
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frequency ν ′ and the electron scattered forward has momentum hν/c + hν ′/c,
where ν ′ is given by the energy conservation condition:

hν + mec2 = hν ′ +
√

m2
ec4 + (hν/c + hν ′/c)2c2,

(where me is the electron mass), so

ν ′ = ν mec2

(2hν + mec2)
.

This is conventionally written as a formula relating the wavelengths λ = c/ν
and λ′ = c/ν ′:

λ′ = λ+ 2h/mec . (1.1.8)

The length h/mec = 2.425 × 10−10 cm is known as the Compton wavelength of
the electron. (For scattering at an angle θ , the factor 2 in Eq. (1.1.8) is replaced
with 1 − cos θ .) Verification of such relations convinced physicists of the exis-
tence of these quanta. A little later the chemist G. N. Lewis10 gave the quantum
of light the name by which it has been known ever since, the photon.

1.2 Atomic Spectra

Another problem confronted physicists throughout the nineteenth and early
twentieth centuries. It had been discovered early in the nineteenth century that
hot atomic gases emit and absorb light only at certain definite frequencies, the
pattern of frequencies, or spectrum, depending on the element in question. This
became a useful tool for chemical analysis, and for the discovery of new ele-
ments, such as helium, discovered in the spectrum of the Sun. But like writing
in a forgotten language, these atomic spectra provided no intelligible message.

No progress could be made in understanding atomic spectra without know-
ing something about the structure of atoms. After Thomson’s discovery of the
electron in 1897, it was widely believed that atoms were like puddings, with neg-
atively charged electrons stuck in like raisins in a smooth background of positive
charge. This picture was radically changed by experiments carried out in the
laboratory of Ernest Rutherford (1871–1937) at the University of Manchester
in 1909–1911. In these experiments a post-doc, Hans Geiger (1882-1945) and
an undergraduate Ernest Marsden (1889–1970) let a collimated beam of alpha
particles (He4 nuclei) from a radium source strike a thin gold foil. The alpha
particles passing through the foil were detected by flashes of light when they
struck a sheet of zinc sulphide. As expected, the beam was found to be slightly
spread out by scattering of alpha particles by the gold atoms. Then for some

10 G. N. Lewis, Nature, December 18, 1926.
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reason Rutherford had the idea of asking Geiger and Marsden to check whether
any alpha particles were scattered at large angles. This would not be expected
if the alpha particle hit a much lighter particle like the electron. If a particle of
mass M with velocity v hits a particle of mass m that is at rest, and continues
along the same line with velocity v′, giving the target particle a velocity u, the
equations of momentum and energy conservation give

Mv = mu + Mv′,
1

2
Mv2 = 1

2
Mv′2 + 1

2
mu2 . (1.2.1)

(In the notation used here, a positive velocity is in the same direction as the
original velocity of the alpha particle, while a negative velocity is in the opposite
direction.) Eliminating u, we obtain a quadratic equation for v′/v:

0 = (1 + M/m)(v′/v)2 − 2(M/m)(v′/v)− 1 + M/m .

This has two solutions. One solution is v′ = v. This solution is one for which
nothing happens — the incident particle just continues with the velocity it had
at the beginning. The interesting solution is the other one:

v′ = −v
(

m − M

m + M

)
. (1.2.2)

But this has a negative value (that is, a recoil backwards) only if m > M .
(Somewhat weaker limits on m can be inferred from scattering at any large
angle.)

Nevertheless, alpha particles were observed to be scattered at large angles. As
Rutherford later explained, “It was quite the most incredible event that has ever
happened to me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper, and it came back and hit you.”1

So the alpha particle must have been hitting something in the gold atom
much heavier than an electron, whose mass is only about 1/7300 the mass of
an alpha particle. Furthermore, the target particle must be quite small to stop
the alpha particle by the Coulomb repulsion of positive charges. If the charge of
the target particle is +Ze, then in order to stop the alpha particle with charge
+2e at a distance r from the target particle, the kinetic energy Mv2/2 must be
converted into a potential energy (2e)(Ze)/r , so r = 4Ze2/Mv2. The velocity
of the alpha particles emitted from radium is 2.09 × 109 cm/sec, so the distance
at which they would be stopped by a heavy target particle was 3Z × 10−14 cm,
which for any reasonable Z (even Z ≈ 100) is much smaller than the size of the
gold atom, a few times 10−8 cm.

1 Quoted by E. N. da Costa Andrade, Rutherford and the Nature of the Atom (Doubleday, Garden City,
NY, 1964).
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Rutherford concluded2 then that the positive charge of the atom is concen-
trated in a small heavy nucleus, around which the much lighter negatively
charged electrons circulate in orbits, like planets around the Sun. But this only
heightened the mystery surrounding atomic spectra. A charged particle like the
electron circulating in orbit would be expected to radiate light, with the same
frequency as the orbital motion. The frequencies of these orbital motions could
be anything. Worse, as the electron lost energy to radiation it would spiral down
into the atomic nucleus. How could atoms remain stable?

In 1913 an answer was offered by a young visitor to Rutherford’s Manch-
ester laboratory, Niels Bohr (1885–1962). Bohr proposed in the first place that
the energies of atoms are quantized, in the sense that the atom exists in only a
discrete set of states, with energies (in increasing order) E1, E2, . . . . The fre-
quency of a photon emitted in a transition m → n or absorbed in a transition
n → m is given by Einstein’s formula E = hν and energy conservation by

ν = (Em − En)/h . (1.2.3)

A bright or dark spectral line is formed by atoms emitting or absorbing pho-
tons in a transition from a higher to a lower energy state, or vice versa. This
explained a rule, known as the Ritz combination principle, that had been noticed
experimentally by Walther Ritz (1878–1909) in 1908,3 (but without explaining
it), that the spectrum of any atom could be described more compactly by a set of
so-called “terms,” the frequencies of the spectrum being all given by differences
of the terms. These terms, according to Bohr, were just the energies En , divided
by h.

Bohr also offered a method for calculating the energies En , at least for elec-
trons in a Coulomb field, as in hydrogen, singly ionized helium, etc. Bohr noted
that Planck’s constant h has the same dimensions as angular momentum, and
he guessed that the angular momentum mevr of an electron of velocity v in
a circular atomic orbit of radius r is an integer multiple of some constant �,4

presumably of the same order of magnitude as h:

mevr = n� , n = 1, 2, . . . . (1.2.4)

(Bohr did not use the symbol �. Readers who know how � is related to h should
temporarily forget that information; for the present � is just another constant.)
Bohr combined this with the equation for the equilibrium of the orbit

mev
2

r
= Ze2

r2
(1.2.5)

2 E. Rutherford, Phil. Mag. 21, 669 (1911).
3 W. Ritz, Phys. Z. 9, 521 (1908).
4 N. Bohr, Phil. Mag. 26, 1, 476, 857 (1913); Nature 92, 231 (1913).
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and the formula for the electron’s energy

E = mev
2

2
− Ze2

r
. (1.2.6)

This gives

v = Ze2

n�
, r = n2�2

Zmee2
, E = − Z2e4me

2n2�2
. (1.2.7)

Using the Einstein relation between energy and frequency, the frequency of a
photon emitted in a transition between an orbit with quantum number n to one
with quantum number n′ < n is

ν = �E

h
= Z2e4me

2h�2

(
1

n′2 − 1

n2

)
. (1.2.8)

To find �, Bohr relied on a correspondence principle, that the results of clas-
sical physics should apply for large orbits — that is, for large n. If n � 1 and
n′ = n − 1, Eq. (1.2.8) gives ν = Z 2e4me/h�2n3. This may be compared with
the frequency of the electron in its orbit, v/2πr = Z2e4me/2πn3�3. Accord-
ing to classical electrodynamics these two frequencies should be equal, so Bohr
could conclude that � = h/2π . Using the value of h obtained by matching obser-
vations of black-body radiation with Planck’s formula, Bohr was able to derive
numerical values for velocity, radial coordinate, and energy of the electron:

v = Ze2

n�
	 Zc

137n
, (1.2.9)

r = n2�2

Zmee2
	 n2 × 0.529 Z−1 × 10−8 cm , (1.2.10)

E = − Z 2e4me

2n2�3
	 − 13.6 Z2 eV

n2
. (1.2.11)

The striking agreement of Eq. (1.2.11) with the atomic energy levels of hydrogen
inferred from the frequencies of spectral lines was a strong indication that Bohr
was on the right track.

In this derivation Bohr had relied on the old idea of classical radiation theory,
that the frequencies of spectral lines should agree with the frequency of the
electron’s orbital motion, but he had assumed this only for the largest orbits,
with large n. The light frequencies he calculated for transitions between lower
states, such as n = 2 → n = 1, did not at all agree with the orbital frequency
of the initial or final state. So Bohr’s work represented another large step away
from classical physics.

Bohr’s formulas could be used not only for hydrogen (Z = 1), but also
roughly for the innermost orbits in heavier atoms, where the charge of the
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nucleus is not screened by electrons, and we can take Ze as the actual charge
of the nucleus. For Z ≥ 10, the energy of a photon emitted in a transition from
n = 2 to n = 1 orbits is greater than 1 keV, and hence is in the X-ray spec-
trum. By measuring these X-ray energies, H. G. J. Moseley (1887–1915) was
able to find Z for a range of atoms from calcium to zinc. He discovered that,
within experimental uncertainty, Z is an integer, suggesting that the positive
charge of atomic nuclei is carried by particles of charge +e, much heavier than
the electron, to which Rutherford gave the name protons. Also, with just a few
exceptions, Z increased by one unit in going from any element to the element
with the next largest atomic weight A (roughly, the mass of the atom in units of
the hydrogen atom mass). But Z turned out to be not equal to A. For instance,
zinc has A = 60.37, and it turned out to have Z = 20.00. For some years it
was thought that the atomic weight was equal to the number of protons, with
the extra charge canceled by A − Z electrons. The discovery of the neutron by
James Chadwick (1891–1974) in 1932,5 found to have a mass close to that of the
hydrogen atom, showed that instead nuclei contain Z protons and approximately
A − Z neutrons.

Incidentally, Eqs. (1.2.9)–(1.2.11) also hold roughly for electrons in the outer-
most orbits in heavy atoms, where most of the charge of the nucleus is screened
by inner electrons, and Z can therefore be taken to be of order unity. This is
why the sizes of heavy atoms are not very much larger than those of light atoms,
and the frequency of light emitted in transitions of electrons in the outer orbits
of heavy atoms is comparable to the corresponding energies in hydrogen, and
hence in the visible range of the spectrum.

The Bohr theory applied only to circular orbits, but just as in the solar sys-
tem, the generic orbit of a particle in a Coulomb field is not a circle, but
an ellipse. A generalization of the Bohr quantization condition (1.2.4) was
proposed by Arnold Sommerfeld (1868–1951) in 1916,6 and used by him to
calculate the energies of electrons in elliptical orbits. Sommerfeld’s condition
was that in a system described by a Hamiltonian H(q, p), with several coordi-
nates qa and canonical conjugates pa satisfying the equations q̇a = ∂H/∂pa and
ṗa = −∂H/∂qa , if all qs and ps have a periodic time-dependence (as for closed
orbits), then for each a ∮

pa dqa = nah , (1.2.12)

(with na an integer), the integral taken over one period of the motion. For
instance, for an electron in a circular orbit we can take q as the angle traced
out by the line connecting the nucleus and the electron, and p as the angular
momentum mevr , in which case

∮
p dq = 2πmevr , and (1.2.12) is the same as

5 J. Chadwick, Nature, February 27, 1932).
6 A. Sommerfeld, Ann. d. Physik 51, 1(1916)
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Bohr’s condition (1.2.4). We will not pursue this approach here, because it was
soon made obsolete by the advent of wave mechanics.

In 1916 (in his spare time while discovering the general theory of relativity),
Einstein returned to the theory of black-body radiation,7 this time combining it
with the Bohr idea of quantized atomic energy states. Einstein defined a quantity
An

m as the rate at which an atom will spontaneously make a transition from a
state m to a state n of lower energy, emitting a photon of energy Em − En . He
also considered the absorption of photons from radiation (not necessarily black-
body radiation) with an energy density ρ(ν)dν at frequencies between ν and
ν + dν. The rate at which an individual atom in such a field makes a transition
from a state n to a state m of higher energy is written as Bm

n ρ(νnm), where
νnm ≡ (Em − En)/h is the frequency of the absorbed photon. Einstein also took
into account the possibility that the radiation would stimulate the emission of
photons by the atom in transitions from a state m to a state n of lower energy, at
a rate written as Bn

mρ(νnm). The coefficients Bm
n and Bn

m like An
m are assumed to

depend only on the properties of the atoms, not the radiation.
Now, suppose the radiation is black-body radiation at a temperature T , with

which the atoms are in equilibrium. The energy density of the radiation will
be the function ρ(ν, T ), given by Eq. (1.1.5). In equilibrium the rate at which
atoms make a transition m → n from higher to lower energy must equal the rate
at which atoms make the reverse transition n → m:

Nm
[
An

m + Bn
mρ(νnm, T )

] = Nn Bm
n ρ(νnm, T ) , (1.2.13)

where Nn and Nm are the numbers of atoms in states n and m. According to the
Boltzmann rule of classical statistical mechanics, the number of atoms in a state
of energy E is proportional to exp(−E/kBT ), so

Nm/Nn = exp (−(Em − En)/kBT ) = exp (−hνnm/kBT ) . (1.2.14)

(It is important here to take the Nn as the numbers of atoms in individual states
n, some of which may have precisely the same energy, rather than the numbers
of atoms with energies En .) Putting this together, we have

An
m = 8πh

c3

ν3
nm

exp(hνnm/kBT )− 1

(
exp(hνnm/kBT ) Bm

n − Bn
m

)
. (1.2.15)

For this to be possible at all temperatures for temperature-independent A and B
coefficients, these coefficients must be related by

Bn
m = Bm

n , An
m =

(
8πhν3

nm

c3

)
Bn

m . (1.2.16)

Hence, knowing the rate at which a classical light wave of a given energy den-
sity is absorbed or stimulates emission by an atom, we can calculate the rate

7 A. Einstein, Phys. Z. 18, 121 (1917).
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at which it spontaneously emits photons.8 This calculation will be presented in
Section 6.5.

1.3 Wave Mechanics

Ever since Maxwell, light had been understood to be a wave of electric and
magnetic fields, but after Einstein and Compton, it became clear that it is also
manifested in a particle, the photon. So is it possible that something like the
electron, that had always been regarded as a particle, could also be manifested
as some sort of wave? This was suggested in 1923 by Louis de Broglie (1892–
1987),1 a doctoral student in Paris. Any kind of wave of frequency ν and wave
number k has a spacetime dependence exp(ik · x − iωt), where ω = 2πν.
Lorentz invariance requires that (k, ω) transform as a four-vector, just like the
momentum four-vector (p, E). For light, according to Einstein, the energy of a
photon is E = hν = �ω, and its momentum has a magnitude |p| = E/c =
hν/c = h/λ = �|k|, so de Broglie was led to suggest that in general a particle
of any mass is associated with a wave having the four-vector (k, ω) equal to 1/�
times the four-vector (p, E):

k = p/� , ω = E/� . (1.3.1)

This idea gained support from the fact that a wave satisfying (1.3.1) would
have a group velocity equal to the ordinary velocity c2p/E of a particle of
momentum p and energy E . For a reminder about group velocity, consider a
wave packet in one dimension:

ψ(x, t) =
∫

dk g(k) exp
(

ikx − iω(k)t
)
, (1.3.2)

where g(k) is some smooth function with a peak at an argument k0. Suppose also
that the wave

∫
dk g(k) exp(ikx) at t = 0 is peaked at x = 0. By expanding

ω(k) around k0, we have

ψ(x, t) 	 exp
(

− i t[ω(k0)− k0ω
′(k0)]

) ∫
dk g(k) exp

(
ik
[
x − ω′(k0)t

])
,

and therefore

|ψ(x, t)| 	
∣∣∣ψ([x − ω′(k0)t], 0

)∣∣∣ . (1.3.3)

The wave packet that was concentrated at time t = 0 near x = 0 is evidently
concentrated at time t near x = ω′(k0)t , so it moves with speed

8 Einstein actually used this argument, together with some thermodynamic relations, to give a new
derivation of the Planck formula for ρ(ν, T ).

1 L. de Broglie, Comptes Rendus 177, 507, 548, 630 (1923).



12 1 Historical Introduction

v = dω

dk
= d E

dp
= c2 p

E
, (1.3.4)

in agreement with the usual formula for velocity in special relativity.
Just as vibrational waves on a violin string are quantized by the condition

that, since the string is clamped at both ends, it must contain an integer number
of half-wavelengths, so according to de Broglie, the wave associated with an
electron in a circular orbit must have a wavelength that just fits into the orbit a
whole number n of times, so 2πr = nλ, and therefore

p = �k = � × 2π/λ = n�/r . (1.3.5)

Using the non-relativistic formula p = mv, this is the same as the Bohr quan-
tization condition (1.2.4). More generally, the Sommerfeld condition (1.2.12)
could be understood as the requirement that the phase of a wave changes by
a whole number multiple of 2π when a particle completes one orbit. Thus the
success of Bohr and Sommerfeld’s wild guesses could be explained in a wave
theory, though that too was just a wild guess.

There is a story that in his oral thesis examination, de Broglie was asked what
other evidence might be found for a wave theory of the electron, and he sug-
gested that perhaps diffraction phenomena might be observed in the scattering
of electrons by crystals. Whatever the truth of this story, it is known that (at the
suggestion of Walter Elsasser (1904–1991)) this experiment was carried out at
the Bell Telephone Laboratories by Clinton Davisson (1881–1958) and Lester
Germer (1896–1971), who in 1927 reported that electrons scattered by a single
crystal of nickel showed a pattern of diffraction peaks similar to those seen in
the scattering of X-rays by crystals.2

Of course, an atomic orbit is not a violin string. What was needed was
some way of extending the wave idea from free particles, described by waves
like (1.3.2), to particles moving in a potential, such as the Coulomb potential
in an atom. This was supplied in 1926 by Erwin Schrödinger (1887–1961).3

Schrödinger presented his idea as an adaptation of the Hamilton–Jacobi for-
mulation of classical mechanics, which would take us too far away from
quantum mechanics to go into here. There is a simpler way of understanding
Schrödinger’s wave mechanics as a natural generalization of what de Broglie
had already done.

According to the relations p = �k and E = �ω, the wave function ψ ∝
exp(ik · x − iωt) of a free particle of momentum p and energy E satisfies the
differential equations

−i�∇ψ(x, t) = pψ(x, t) , i�
∂

∂t
ψ(x, t) = Eψ(x, t) .

2 C. Davisson and L. Germer, Phys. Rev. 30, 707 (1927).
3 E. Schrödinger, Ann. d. Physik 79, 361, 409 (1926).
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For any state of energy E , we then have

ψ(x, t) = exp(−i Et/�)ψ(x) , (1.3.6)

while for a free particle, in the non-relativistic case, E = p2/2m, so here ψ(x)
is some solution of the equation

E ψ(x) = −�2

2m
∇2ψ(x) .

More generally, the energy of a particle in a potential V (x) is given by E =
p2/2m + V (x), which suggests that for such a particle we still have Eq. (1.3.6),
but now

E ψ(x) =
[−�2

2m
∇2 + V (x)

]
ψ(x) . (1.3.7)

This is the Schrödinger equation for a single particle of energy E .
Just like the equations for the frequencies of transverse vibrations of a vio-

lin string, this equation has solutions only for certain definite values of E . The
boundary condition that takes the place here of the condition that a violin string
does not vibrate where it is clamped at its ends, is that ψ(x) is single-valued
(that is, it returns to the same value if x goes around a closed curve) and van-
ishes as |x| goes to infinity. For instance, Schrödinger was able to show that in
a Coulomb potential V (x) = −Ze2/r , for each n = 1, 2, . . ., Eq. (1.3.7) has
n2 different single-valued solutions that vanish for r → ∞ with energies given
by Bohr’s formula En = −Z2e4me/2n2�3, and no such solutions for any other
energies. (We will carry out this calculation in the next chapter.) As Schrödinger
remarked in his first paper on wave mechanics, “The essential thing seems to me
to be, that the postulation of ‘whole numbers’ no longer enters into the quantum
rules mysteriously, but that we have traced the matter a step farther back, and
found the ‘integralness’ to have its origin in the finiteness and single-valuedness
of a certain space function.”

More than that, Schrödinger’s equation had an obvious generalization to
general systems. If a system is described by a Hamiltonian H(x1, . . . ; p1 . . .)

(where dots indicate coordinates and momenta of additional particles) the
Schrödinger equation takes the form

H(x1, . . . ; −i�∇1 . . .)ψn(x1, . . .) = Enψn(x1, . . .) . (1.3.8)

For instance, for N particles of masses mr with r = 1, 2, . . ., with a general
potential V (x1, . . . xN ), the Hamiltonian is

H =
∑

r

p2
r

2mr
+ V (x1, . . . xN) , (1.3.9)
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and the allowed energies E are those for which there is a single-valued solu-
tion ψ(x1, . . . xN ), vanishing when any |xr | goes to infinity, of the Schrödinger
equation

E ψ(x1, . . . xN) =
[

N∑
r=1

−�2

2mr
∇2

r + V (x1, . . . xN)

]
ψ(x1, . . . xN) . (1.3.10)

So now it was possible at least in principle to calculate the spectrum not only of
hydrogen, but of any other atom, and indeed of any non-relativistic system with
a known potential.

1.4 Matrix Mechanics

A few years after de Broglie introduced the idea of wave mechanics, and
a little before Schrödinger developed his version of the theory, a quite dif-
ferent approach to quantum mechanics was developed by Werner Heisenberg
(1901–1976). Heisenberg suffered from hay fever, so in 1925 he escaped the
pollen-laden air of Göttingen to go on vacation to the grassless North Sea island
of Helgoland. While on vacation he wrestled with the mystery surrounding the
quantum conditions of Bohr and de Broglie. When he returned to the University
of Göttingen he had a new approach to the quantum conditions, which has come
to be called matrix mechanics.1

Heisenberg’s starting point was the philosophical judgment, that a physical
theory should not concern itself with things like electron orbits in atoms that
can never be observed. This is a risky assumption, but in this case it served
Heisenberg well. He fastened on the energies En of atomic states, and the rates
An

m at which atoms spontaneously make radiative transitions from one state m
to another state n, as the observables on which to base a physical theory. In
classical electrodynamics, a particle with charge ±e with a position vector x
that undergoes a simple harmonic oscillation emits a radiation power

P = 4e2

3c3
|ẍ|2 . (1.4.1)

Heisenberg guessed that this formula gives the power emitted in a radiative tran-
sition from an atomic state with energy Em to one with a lower energy En , with
x replaced with

x �→ [x]nm ∝ exp(−iωnmt) , (1.4.2)

where [x]nm is a complex vector amplitude characterizing this transition, and
ωnm is the circular frequency (the frequency times 2π ) of the radiation emitted
in the transition:

1 W. Heisenberg, Z. f. Physik 33, 879 (1925).
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ωnm = (Em − En)/�. (1.4.3)

Then Eq. (1.4.1) becomes a formula for the radiation power emitted in the
transition m → n:

P(m → n) = 4e2ω4
nm

3c3

∣∣∣[x]nm

∣∣∣2 . (1.4.4)

That is, the rate of emitting photons carrying energy �ωnm in the transition m →
n is, in Einstein’s notation,

An
m = P(m → n)

�ωnm
= 4e2ω3

nm

3c3�

∣∣∣[x]nm

∣∣∣2 , (1.4.5)

and, according to the Einstein relations (1.2.16), this gives the coefficients of
ρ(νnm) in the rates for induced emission and absorption

Bm
n = Bn

m = 2πe2

3�2

∣∣∣[x]nm

∣∣∣2 . (1.4.6)

In Eqs. (1.4.5) and (1.4.6), [x]nm appears only with Em > En , but Heisenberg
extended the definition of [x]nm to the case where En > Em , by the condition

[x]nm = [x]∗mn ∝ exp(iωnmt) , (1.4.7)

so that Eq. (1.4.6) holds whether Em > En or En > Em .
Heisenberg limited his calculations to the example of an anharmonic oscil-

lator in one dimension, for which the energy is given classically in terms of
position and its rate of change by

E = me

2
ẋ2 + meω

2
0

2
x2 + meλ

3
x3 . (1.4.8)

To calculate the En and [x]nm , Heisenberg used two relations. The first is a
quantum mechanical interpretation of Eq. (1.4.8):

me

2
[ẋ2]nm + meω

2
0

2
[x2]nm + meλ

3
[x3]nm =

{
En n = m
0 n �= m

, (1.4.9)

where En is the energy of the quantum state labeled n. But what meaning should
be attached to [ẋ2]nm , [x2]nm , and [x3]nm? Heisenberg found that the “simplest
and most natural assumption” was to take

[x2]nm =
∑

l

[x]nl [x]lm [x3]nm =
∑
l,k

[x]nl [x]lk [x]km (1.4.10)

and likewise

[ẋ2]nm =
∑

k

[ẋ]nk[ẋ]km =
∑

k

ωnkωmk[x]nk [x]km . (1.4.11)

Note that because [x]nm is proportional to exp(i(Em − En)/�) for all n and m,
each term in Eq. (1.4.9) is time-independent for n = m. Also, by virtue of the
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condition (1.4.7), the first two terms are positive for n = m though the last may
not be.

The second relation is a quantum condition. Here Heisenberg adopted a for-
mula that had been published a little earlier by W. Kuhn2 and W. Thomas3, which
Kuhn derived using a model of an electron in a bound state as an ensemble of
oscillators vibrating in three dimensions at frequencies νnm . From the condition
that at very high frequency the scattering of light from such an electron should be
the same as if the electron were a free particle, Kuhn derived the purely classical
statement4 that, for any given state n:

∑
m

Bm
n (Em − En) = πe2

me
. (1.4.12)

Combining this with Eq. (1.4.6) gives

� = 2me

3

∑
m

∣∣∣[x]nm

∣∣∣2ωnm . (1.4.13)

Since in three dimensions there are three terms in
∣∣∣[x]nm

∣∣∣2, the factor 1/3 gives

the average of these three terms, so in one dimension we would have

� = 2me

∑
m

∣∣∣[x]nm

∣∣∣2ωnm . (1.4.14)

This is the quantum condition used by Heisenberg.
Heisenberg was able to find an exact solution5 of Eqs. (1.4.9) and (1.4.14) for

the case λ = 0: For any integer n ≥ 0,

En =
(

n + 1

2

)
�ω0, [x]∗n+1,n = [x]n,n+1 = e−iω0t

√
(n + 1)�
2meω0

, (1.4.15)

with [x]nm vanishing unless n−m = ±1. We will see how to derive these results
for λ = 0 in Section 2.5. Heisenberg was also able to calculate the corresponding
results for small non-zero λ, to first order in λ.

This was all very obscure. On his return from Helgoland, Heisenberg showed
his work to Max Born (1882–1970). Born recognized that the formulas in
Eq. (1.4.10) were just special cases of a well-known mathematical procedure,

2 W. Kuhn, Z. Phys. 33, 408 (1925).
3 W. Thomas, Naturwiss. 13, 627 (1925).
4 Kuhn actually gave this condition only where n is the ground state, the state of lowest energy, but the

argument applies to any state. Where n is not the ground state, the terms in the sum over m are positive
if m has higher energy than n, but negative if m has lower energy.

5 Somewhat inconsistently, Heisenberg took the time-dependence factor in [x]nm to be cos(ωnmt) rather
than exp(−iωnmt). The results here apply to the case where [x]nm ∝ exp(−iωnmt); [x]nm is the term
in Heisenberg’s solution proportional to exp(−iωnmt).
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known as matrix multiplication. A matrix denoted [A]nm or just A is a square
array of numbers (real or complex), with [A]nm the number in the nth row and
mth column. In general, for any two matrices [A]nm and [B]nm , the matrix AB
is the square array

[AB]nm ≡
∑

l

[A]nl[B]lm . (1.4.16)

We also note for further use that the sum of two matrices is defined so that

[A + B]nm ≡ [A]nm + [B]nm , (1.4.17)

and the product of a matrix and a numerical factor is defined as

[λA]nm ≡ λ [A]nm . (1.4.18)

Matrix multiplication is thus associative [A(BC) = (AB)C] and distributive
[A(λ1 B1 +λ2 B2) = λ1 AB1 +λ2 AB2 and (λ1 B1 +λ2 B2)A = λ1 B1 A +λ2 B2 A],
but in general it is not commutative [AB and B A are not necessarily equal]. As
defined by Eq. (1.4.10), [x2] is the square of the matrix [x], [x3] is the cube of
the matrix [x], and so on.

The quantum condition (1.4.14) can also be given a pretty formulation as a
matrix equation. Note that according to Eq. (1.4.7), the matrix for momentum is

[p]nm = me[ẋ]nm = −imeωnm[x]nm ,

so the matrix products [px] and [xp] have the diagonal components

[px]nn =
∑

m

[p]nm[x]mn = −ime

∑
m

ωnm

∣∣∣[x]mn

∣∣∣2,

[xp]nn =
∑

m

[x]nm[p]mn = −ime

∑
m

ωmn

∣∣∣[x]mn

∣∣∣2.
(In both formulas, we have used the relation (1.4.7), which says that [x]mn is
what is called an Hermitian matrix.) Since ωnm = −ωmn , the quantum condition
(1.4.14) can be written in two ways

i� = −2[px]nn = +2[xp]nn . (1.4.19)

Of course, the relation can then also be written

i� = [xp]nn − [px]nn = [xp − px]nn , (1.4.20)

where we have used the definitions (1.4.17) and (1.4.18).
Shortly after the publication of Heisenberg’s paper, there appeared two papers

that extended Eq. (1.4.20) to a general formula for all elements of the matrix
xp − px :

xp − px = i� × 1 , (1.4.21)
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where here 1 is the matrix

[1]nm ≡ δnm ≡
{

1 n = m
0 n �= m

. (1.4.22)

That is, in addition to Eq. (1.4.20), we have [xp − px]nm = 0 for n �= m. Born
and his assistant Pascual Jordan6 (1902–1984) gave a mathematically fallacious
derivation of this fact, on the basis of the Hamiltonian equations of motion.
Paul Dirac7 (1902–1984) simply assumed Eq. (1.4.21), from an analogy with
the Poisson brackets of classical mechanics, described in Section 9.4.

Matrix mechanics was now a general scheme for calculating the spectrum of
any system described classically by a Hamiltonian H(q, p), given as a func-
tion of a number of coordinates qr and the corresponding “momenta” pr . One
looks for some representation of the qs and ps as matrices satisfying the matrix
equation

qr ps − psqr = i�δrs × 1 , (1.4.23)

and such that the matrix H(q, p) is diagonal

[H(q, p)]nm = Enδnm . (1.4.24)

The diagonal elements En are the energies of the system, and the matrix ele-
ments [x]nm can be used with Eqs. (1.4.5) and (1.4.6) to calculate the rates for
spontaneous and stimulated emission and absorption of radiation.

Unfortunately, there are very few physical systems for which this sort of
calculation is practicable. One is the harmonic oscillator, already solved by
Heisenberg. Another is the hydrogen atom, whose spectrum was obtained using
matrix mechanics in a display of mathematical brilliance by Wolfgang Pauli8

(1900–1958), a student of Sommerfeld. (Pauli’s calculation is presented in Sec-
tion 4.8.) These two problems were soluble because of special features of the
Hamiltonians, the same features that make the classical orbits of particles closed
curves. It was hopeless to use matrix mechanics to solve more complicated prob-
lems, like the hydrogen molecule, so wave mechanics largely superseded matrix
mechanics among the tools of theoretical physics.

But it must not be thought that wave mechanics and matrix mechanics are
different physical theories. In 1926, Schrödinger showed how the principles
of matrix mechanics can be derived from those of wave mechanics.9 To see
how this works, note first that the Hamiltonian is what is called an Hermitian
operator, meaning that for any functions f and g that satisfy the conditions

6 P. Jordan, Z. f. Physik 34, 858 (1925).
7 P. A. M. Dirac, Proc. Roy. Soc. Lond. A 109, 642 (1926).
8 W. Pauli, Z. Physik 36, 336 (1926).
9 E. Schrödinger, Ann. d. Physik 79, 734 (1926).
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of single-valuedness and vanishing at infinity imposed on wave functions,
we have ∫

f ∗(Hg) =
∫
(H f )∗g , (1.4.25)

the integrals being taken over all coordinates. This is trivial for the term V in
Eq. (1.3.7), and it is also true for the Laplacian operator, as can be seen by
integrating the identity

(∇2 f )∗g − f ∗(∇2g) = ∇ · [(∇ f )∗g − f ∗∇g] .
It follows that for solutions ψn of the Schrödinger equation with energy En , we
have

En

∫
ψ∗

mψn =
∫
ψ∗

m(Hψn) =
∫
(Hψm)

∗ψn = E∗
m

∫
ψ∗

mψn . (1.4.26)

Taking m = n, we see that En is real, and then taking m �= n, we see that∫
ψ∗

mψn = 0 for En �= Em . It can be shown that if there is more than one
solution of the Schrödinger equation with the same energy, the solutions can
always be chosen so that

∫
ψ∗

mψn = 0 for n �= m. (This is shown in footnote
3 of Section 3.1 in cases where there are a finite number of solutions of the
Schrödinger equation with a given energy.) By multiplying the ψn with suitable
factors we can also arrange that

∫
ψ∗

nψn = 1, so the ψn are orthonormal, in the
sense that ∫

ψ∗
mψn = δnm . (1.4.27)

Now consider any operators A, B, etc., defined by their action on wave func-
tions. For instance, for a single particle, the momentum operator P and position
operators X are defined by

[Pψ](x) ≡ −i�∇ψ(x), [Xψ](x) ≡ xψ(x) . (1.4.28)

For any such operator, we define a matrix

[A]nm ≡
∫
ψ∗

n [Aψm] . (1.4.29)

Note as a consequence of Eq. (1.3.6), this has the time-dependence (1.4.7)
assumed by Heisenberg

[A]nm ∝ exp
(

− i(Em − En)t/�
)
.

With the definition (1.4.29), we can show that the matrix of a product of
operators is the product of the matrices:∫

ψ∗
n

[
A[Bψm]

]
=
∑

l

[A]nl[B]lm . (1.4.30)
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To prove this, we assume that the function Bψm can be written as an expansion
in the wave functions:

Bψm =
∑

r

br (m)ψr ,

with some coefficients br (m). (To make this literally true, it may be necessary
to put the system in a box, like that used in Section 1.1, so that the solutions
of the Schrödinger equation form a discrete set, including those correspond-
ing to unbound electrons.) We can find these coefficients by multiplying both
sides of the expansion with ψ∗

l and integrating over all coordinates, using the
orthonormality property (1.4.27):

[B]lm =
∫
ψ∗

l [Bψm] =
∑

r

br (m)δrl = bl(m) .

It follows that

Bψm =
∑

l

[B]lmψl . (1.4.31)

Repeating the same reasoning, we have

A[Bψm] =
∑
l,s

[B]lm[A]slψs . (1.4.32)

Multiplying with ψ∗
n , integrating over all coordinates, and again using the

orthonormality property (1.4.27) then gives Eq. (1.4.30).
We can now derive the Heisenberg quantization conditions. First, note that

the matrix [H ]nm is simply

[H ]nm ≡
∫
ψ∗

n [Hψm] = Em

∫
ψ∗

nψm = Emδnm (1.4.33)

which is the same as Eq. (1.4.24). Next, we can verify the condition (1.4.14) in
the generalized form (1.4.21). Note that

∂

∂x
(xψ) = ψ + x

∂

∂x
ψ

so the operators P and X defined by (1.4.28) satisfy[
P[Xψ]

]
= −i�ψ +

[
X [Pψ]

]
.

Applying the general formula (1.4.30), we have then

[xp − px]nm = i�δnm , (1.4.34)

which is the same as (1.4.21). The same argument can evidently be applied to
give the more general condition (1.4.23).
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The approach that will be adopted when we come to the general princi-
ples of quantum mechanics in Chapter 3 will be neither matrix mechanics nor
wave mechanics, but a more abstract formulation, that Dirac called transforma-
tion theory,10 from which matrix mechanics and wave mechanics can both be
derived.

Although we will not be going into quantum electrodynamics until Chap-
ter 11, I should mention here that in 1926 Born, Heisenberg, and Jordan11

applied the ideas of matrix mechanics to the electromagnetic field. They showed
that the free field in a cubical box with edges of length L can be written as a
sum of terms with wave numbers given by (1.1.1), that is, qn = 2πn/L with n
a vector with integer components, each term described by a harmonic oscillator
Hamiltonian Hn = [ȧ2

n + ω2
na2

n]/2 (with an replacing
√

mx) where ωn = c|qn|.
The energy of this field in which the nth oscillator is in the Nnth excited state is
the sum of the harmonic oscillator energies (1.4.15)

E =
∑

n

[
Nn + 1

2

]
�ωn . (1.4.35)

Such a state is interpreted as one containing Nn photons of wave number
qn = 2πn/L , thus justifying the Einstein assumption that light comes in quanta
with energy hν = �ω. (The additional “zero-point” energy

∑
�ωn/2 is the

energy of quantum fluctuations in the vacuum, which has no effect, except on
the gravitational field. This is one contribution to the “dark energy,” that is cur-
rently a major concern of physicists and astronomers.) In 1927 Dirac12 was able
to use this quantum theory of radiation to give a completely quantum mechan-
ical derivation of the formula (1.4.5) for the rate of spontaneous emission of
photons, without having to rely on analogies with classical radiation theory. This
derivation is presented and generalized in Section 11.7.

1.5 Probabilistic Interpretation

At first, Schrödinger and others thought that wave functions represent particles
that are spread out, like pressure disturbances in a fluid — most of the particle
is where the wave function is large. This interpretation became untenable with
the analysis of scattering in quantum mechanics by Max Born1 (1882–1970).

10 P. A. M. Dirac, Proc. Roy. Soc. Lond. A 113, 621 (1927). This approach is the basis of Dirac’s treatise,
The Principles of Quantum Mechanics, 4th edn. (rev.) (Oxford University Press, 1976).

11 M. Born, W. Heisenberg, and P. Jordan, Z. f. Physik 35, 557 (1926). They ignored the polarization
of light, and treated the problem in one dimension, rather than as in the three-dimensional version
described here.

12 P. A. M. Dirac, Proc. Roy. Soc. Lond. A 114, 710 (1927).
1 M. Born, Z. f. Physik 37, 863 (1926); 38, 803 (1926).
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For this purpose, Born used a generalization of de Broglie’s assumption (1.3.6)
for the time-dependence of the wave function of a free particle. For any sys-
tem described by a Hamiltonian H , the time-dependence of any wave function,
whether or not for a state of definite energy, is given by

i�
∂

∂t
ψ = Hψ . (1.5.1)

For instance, for a particle of mass m moving in a potential V (x), the non-
relativistic Hamiltonian of classical mechanics is H = p2/2m + V , and the
wave function satisfies the time-dependent Schrödinger equation

i�
∂

∂t
ψ(x, t) = H [X,P]ψ(x, t) =

[
−�2∇2

2m
+ V (x)

]
ψ(x, t) , (1.5.2)

with the operators X and P defined by Eq. (1.4.28). By following the time devel-
opment of a packet like (1.3.2) that is localized within a small region of space,
Born found that when a particle strikes a target like an atom or atomic nucleus,
the wave function radiates out in all directions, with a magnitude decreasing as
1/r , where r is the distance to the target. (This is shown here in Chapter 7.) This
seemed to contradict the common experience that though a particle striking a
target may indeed be scattered in any direction, it does not break up and go in
all directions.

Born proposed that the magnitude of the wave function ψ(x, t) does not tell
us how much of the particle is at position x at time t , but rather the probability
that the particle is at or near x at time t . To be precise, Born proposed that for
a system consisting of a single particle, the probability that the particle is in a
small volume d3x centered at x at time t is

d P = |ψ(x, t)|2 d3x . (1.5.3)

In order that there be a 100% probability of the particle being somewhere, the
wave function must be normalized so that∫

|ψ(x, t)|2 d3x = 1 , (1.5.4)

the integral being taken over all space. The condition that the integral has the
value unity does not set important constraints on the sort of wave function that
is physically allowed, for as long as the integral is a finite constant N , we can
always make (1.5.4) satisfied by dividing the wave function by

√
N . It is impor-

tant that the integral be finite; this is a stronger version of the condition used by
Schrödinger, that the wave function must vanish at infinity.

Note that for a wave function whose time-dependence is described by the
Schrödinger equation (1.5.1), the integral (1.5.4) remains constant, so a wave
function that is normalized to satisfy (1.5.4) at one time will satisfy it at all
times. The rate of change of this integral is given by
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i�
d

dt

∫
|ψ(x, t)|2 d3x = i�

∫
ψ∗(x, t)

∂

∂t
ψ(x) d3x

− i�
∫ (

∂

∂t
ψ∗(x, t)

)
ψ(x) d3x

=
∫
ψ∗(x, t) ([Hψ](x, t)) d3x −

∫
([Hψ](x, t))∗ ψ(x, t) d3x

and this vanishes because H satisfies the condition (1.4.25), that it is an
Hermitian operator.

It follows immediately from (1.5.3) that the mean value (the “expectation
value”) of any function f (x) is given by

〈 f 〉 =
∫

f (x) |ψ(x, t)|2 d3x . (1.5.5)

In other words, if f (X) is the operator that multiplies a wave function ψ(x) by
f (x), then

〈 f 〉 =
∫
ψ∗(x) [ f (X)ψ](x) d3x , (1.5.6)

It is only a short step from this to assume that the average of any observable A is

〈A〉 =
∫
ψ∗(x) [Aψ](x) d3x , (1.5.7)

where Aψ is the effect of the operator representing the observable A on the wave
function ψ . In systems with more than one particle, the wave function depends
on the coordinates of all the particles, and the integrals in Eqs. (1.5.4)–(1.5.7)
run over all these coordinates.

In 1927 Paul Ehrenfest (1880–1933) used these results to show how the clas-
sical equations of motion of a non-relativistic particle in a potential emerge from
the time-dependent Schrödinger equation.2 To derive Ehrenfest’s results, we use
Eq. (1.5.2), and find the time-derivatives of the expectation values of the position
and momentum:

d

dt
〈X〉 = 1

i�

∫
d3xψ∗(x, t)[X, H ]ψ(x, t) = 〈P〉/m ,

d

dt
〈P〉 = 1

i�

∫
d3xψ∗(x, t)[P, H ]ψ(x, t) = −〈∇V (X)〉 .

This is not quite the same as the classical equations, because 〈V (X)〉 is not
in general the same as V (〈X〉), but if (as usual in macroscopic systems) the

2 P. Ehrenfest, Zeit. f. Phys. 45, 455 (1927).
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force does not vary much over the range in which the wave function is appre-
ciable, then these equations are very close to the classical equations of motion
for 〈P〉 as well as for 〈X〉. (This is made more precise by the use of the eikonal
approximation, described in Section 7.10.)

We can now see why it is important for all operators representing observable
quantities to be Hermitian. Taking the complex conjugate of Eq. (1.5.7) gives

〈A〉∗ =
∫

[Aψ](x)∗ ψ(x) d3x =
∫
ψ(x)∗[Aψ](x) d3x .

In the last step, we have used the definition (1.4.25) of Hermitian operators. The
final expression is the expectation value of A, so we see that Hermitian operators
have real expectation values.

We can also now derive the condition for a wave function to represent a state
that has a definite real value a for some observable represented by an Hermitian
operator A. The expectation value of (A − a)2 is

〈(A − a)2〉 =
∫
ψ∗(x)

[
(A − a)2ψ

]
(x) d3x

=
∫ ([

(A − a)ψ
]
(x)
)∗ [

(A − a)ψ
]
(x) d3x

=
∫ ∣∣∣[(A − a)ψ

]
(x)
∣∣∣2 d3x . (1.5.8)

If the state represented by ψ(x) has a definite value a for A, then the expectation
value of (A − a)2 must vanish, in which case (1.5.8) shows that (A − a)ψ
vanishes everywhere, and so

[Aψ](x) = aψ(x) . (1.5.9)

In this case, ψ(x) is said to be an eigenfunction of A with eigenvalue a. The
Schrödinger equation for the energies and wave functions of states of definite
energy is just a special case of this condition, with A the Hamiltonian operator,
and a the energy.

We can now easily see that it is impossible for any state to have definite val-
ues for any component x of position and the corresponding component p of
momentum. If there were such a state, its wave function would satisfy both

Xψ = xψ and Pψ = pψ , (1.5.10)

where x and p are the numerical values of the position and momentum. But then

X Pψ = pXψ = pxψ, P Xψ = x Pψ = xpψ ,
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and so

(X P − P X)ψ = 0

in contradiction with the commutation relation X P − P X = i�.
It is even possible to set a lower limit on the product of the uncertainty in

position and in momentum. As we shall show in Chapter 3, it follows from the
commutation relation X P − P X = i� that

�x �p ≥ �/2 (1.5.11)

where �x and �p are the uncertainties in position and momentum, defined
as the root mean square deviation of position and momentum from their
expectation values:

�x ≡ 〈
(X − 〈X〉)2

〉1/2
, �p ≡ 〈

(P − 〈P〉)2
〉1/2

. (1.5.12)

This is known as the Heisenberg Uncertainty Principle.3 Heisenberg in 1927
was able to give a physically based qualitative explanation of this inequality. If
a particle is observed using light of wavelength λ, then the uncertainty �x in
position cannot be much less than λ. Each photon will have momentum 2π�/λ,
so the uncertainty �p in momentum after the observation cannot be much less
than �/λ, and so the product of the uncertainties cannot be much less than �.

More generally, it is only possible for a state represented by a wave function
ψ to have definite values for both of two observables represented by operators
A and B if

(AB − B A)ψ = 0 . (1.5.13)

Of course, this will be true for all wave functions if AB = B A, and for no wave
functions if AB − B A is a non-zero number like i� times the unit operator. The
difference AB − B A is known as the commutator of A and B, and denoted

[A, B] ≡ AB − B A . (1.5.14)

It is only possible for a state to have definite values for both A and B if the wave
function ψ satisfies [A, B]ψ = 0. A pair of operators for which the commutator
vanishes are said to commute.

Born also gave a probabilistic interpretation of wave functions that are not
eigenfunctions of the Hamiltonian.4 Suppose a wave function is given by an
expansion in energy eigenfunctions

ψ =
∑

n

cnψn , (1.5.15)

3 W. Heisenberg, Z. f. Physik 43, 172 (1927).
4 M. Born, Nature 119, 354 (1927).
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where Hψn = Enψn , and cn are numerical coefficients. As remarked in Sec-
tion 1.4, we can choose the ψn to satisfy the orthonormality condition (1.4.27),
in which case a normalized wave function must have

1 =
∫

|ψ |2 =
∑
nm

c∗
ncm

∫
ψ∗

nψm =
∑

n

|cn|2 . (1.5.16)

The expectation value of any function f (H) of the Hamiltonian is

〈 f (H)〉 =
∑
nm

c∗
ncm

∫
ψ∗

n f (H)ψm

=
∑
nm

f (En)c
∗
ncm

∫
ψ∗

nψm =
∑

n

|cn|2 f (En) . (1.5.17)

For this to be true for all functions, we must interpret |cn|2 as the probability
that in a measurement of the energy (and, in the case of degeneracy, of other
observables that distinguish the individual states), the system will be found to
be in the state described by ψn . This is known as the Born rule. It was soon
extended to general operators, not just the Hamiltonian.

As we saw in Section 1.4, the coefficient cn can be calculated by multiplying
Eq. (1.5.15) with ψ∗

m , integrating over coordinates, and using the orthonormality
condition (1.4.27), which gives cm = ∫

ψ∗
mψ . Thus if a system is in a state

represented by a wave function ψ , and we make a measurement that puts the
system in any one of a set of states represented by orthonormal wave functions
ψn (which may or may not be energy eigenfunctions) then the probability that
the system will be found to be in a particular state represented by the wave
function ψm is

P(ψ → ψm) =
∣∣∣∣
∫
ψ∗

mψ

∣∣∣∣
2

. (1.5.18)

This can be taken as the fundamental interpretive postulate of quantum
mechanics.

The probabilistic interpretation of quantum mechanics was controversial from
the beginning. In one way or another it was opposed by such leaders of theoret-
ical physics as Schrödinger and Einstein. Debates about this aspect of quantum
mechanics continued for years, most notably at the Solvay Conferences in Brus-
sels in 1927 and later years. To the present, there continues to be a tension
between the probabilistic interpretation and the deterministic evolution of the
wave function, described by Eq. (1.5.1). If physical states, including observers
and their instruments, evolve deterministically, where do the probabilities come
from? These issues will be discussed in Section 3.7.
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Historical Bibliography

The works listed below contain convenient collections of original articles (in
English, or English translation) from the early days of quantum mechanics and
atomic physics:

1. The Question of the Atom – From the Karlsruhe Congress to the First Solvay
Conference, 1860–1911, ed. M. J. Nye (Tomash Publishers, Los Angeles/San
Francisco, 1986).

2. The Collected Papers of Lord Rutherford of Nelson O.M., FRS, ed. J.
Chadwick (Interscience 1963).

3. Sources of Quantum Mechanics, ed. B. L. Van der Waerden (North-Holland,
Amsterdam, 1967).

4. E. Schrödinger, Collected Papers on Wave Mechanics, Third English Edition
(Chelsea Publishing, New York, 1982).

5. G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads –
Reconsidering the 1927 Solvay Conference (Cambridge University Press,
Cambridge, 2009).

Problems

1. Consider a non-relativistic particle of mass M in one dimension, confined in
a potential that vanishes for −a ≤ x ≤ a, and becomes infinite at x = ±a,
so that the wave function must vanish at x = ±a.

• Find the energy values of states with definite energy, and the corresponding
normalized wave functions.

• Suppose that the particle is placed in a state with a wave function propor-
tional to a2 − x2. If the energy of the particle is measured, what is the
probability that the particle will be found in the state of lowest energy?

2. Consider a non-relativistic particle of mass M in three dimensions, described
by a Hamiltonian

H = P2

2M
+ Mω2

0

2
X2.

• Find the energy values of states with definite energy, and the number of
states for each energy.

• Find the rate at which a state of next-to-lowest energy decays by photon
emission into the state of lowest energy.

Hint: You can express the Hamiltonian as a sum of three Hamiltonians for
one-dimensional oscillators, and use the results given in Section 1.4 for the
energy levels and x-matrix elements for one-dimensional oscillators.
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3. Suppose the photon had three polarization states rather than two. What
difference would that make in the relations between Einstein’s A and B
coefficients?

4. Show that the solution ψ(x, t) of the time-dependent Schrödinger equa-
tion for a particle in a real potential has the property that ∂|ψ |2/∂t is the
divergence of a three-vector.



2
Particle States in a Central Potential

Before going on to lay out the general principles of quantum mechanics in
the next chapter, we will first in this chapter illustrate the meaning of the
Schrödinger equation by solving some important physical problems by the
methods of wave mechanics. To start, we will consider a single particle mov-
ing in three space dimensions under the influence of a general central potential.
Later we will specialize to the case of a Coulomb potential, and work out the
spectrum of hydrogen. One other classic problem, the harmonic oscillator, will
be treated at the end of this chapter.

2.1 Schrödinger Equation for a Central Potential

We consider a particle of mass1 μ moving in a central potential V (r), which
depends only on r ≡ √

x2. The Hamiltonian in this case is2

H = p2

2μ
+ V (r) = − �2

2μ
∇2 + V (r) (2.1.1)

where ∇2 is the Laplacian operator

∇2 ≡ ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

. (2.1.2)

The Schrödinger equation for a wave function ψ(x) representing a state of
definite energy E is then

Eψ = Hψ = − �2

2μ
∇2ψ + V (r)ψ . (2.1.3)

1 We are using μ for the mass here to avoid confusion with an index m that is conventionally used
in describing the angular dependence of the wave function. We will see in Section 2.4 that the same
Schrödinger equation applies to a problem of two particles with masses m1 and m2, with a potential
that depends only on the particle separation, if μ is taken as the reduced mass m1m2/(m1 + m2).

2 In this chapter, and in most of the following chapters, we will be using x both as the argument of the
wave function (with r ≡ |x|) and as the operator that multiplies the wave function by its argument,
denoted X in the previous chapter. The context should make it clear which is meant. Also, here p is the
operator −i�∇, denoted P in the previous chapter.

29
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Like any wave function for a state of definite energy E , this ψ(x) will have a
simple time-dependence contained in a factor exp(−i Et/�), which we will not
generally show explicitly.

It is a good idea when confronted with a problem like this to consider what
observables along with the energy may be used to characterize physical states.
As explained in Section 1.5, these are operators that commute with the Hamil-
tonian. One such observable is the angular momentum L = x × p. Making the
usual substitution of p with −i�∇, this suggests that in quantum mechanics we
should define an angular momentum operator

L ≡ −i� x × ∇ , (2.1.4)

where x is the operator (called X in Chapter 1) that multiplies a wave function
with its argument. Written in terms of Cartesian components, this operator is

Li = −i�
∑

jk

εi jk x j
∂

∂xk
, (2.1.5)

where i , j , k each run over the three directions 1, 2, 3, and ε is a totally
antisymmetric coefficient, defined by:

εi jk ≡
⎧⎨
⎩

+1 i, j, k even permutation of 1, 2, 3
−1 i, j, k odd permutation of 1, 2, 3
0 otherwise.

(2.1.6)

To show that L commutes with the Hamiltonian, first consider the commutator
of Li with either x j or ∂/∂x j . Recall that

∂

∂xk
(x jψ)− x j

∂

∂xk
ψ = δ jkψ ,

so [
∂

∂xk
, x j

]
= δk j . (2.1.7)

Since the components of x commute with each other, we find[
Li , x j

] = −i�
∑

m

εim j xm = +i�
∑

k

εi jk xk . (2.1.8)

To evaluate the commutator of L with the gradient operator, we need only
re-write Eq. (2.1.7) as [

xm ,
∂

∂x j

]
= −δ jm

so that, since the components of the gradient commute with each other,[
Li ,

∂

∂x j

]
= +i�

∑
k

εi jk
∂

∂xk
. (2.1.9)
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Both Eqs. (2.1.8) and (2.1.9) can be written in the form

[Li , v j ] = i�
∑
i jk

εi jkvk , (2.1.10)

where vi is either xi or ∂/∂xi . It can be shown that Eq. (2.1.10) is true of any
vector v that is constructed from x or ∇. In particular, it is true of L itself:

[Li , L j ] = i�
∑

k

εi jk Lk . (2.1.11)

This is obviously the case if i and j are equal, because εi jk vanishes if any two of
its indices are equal. To check Eq. (2.1.11) when i and j are not equal, consider
the case i = 1 and j = 2. Here

[L1, L2] = −i�
[

L1,

(
x3

∂

∂x1
− x1

∂

∂x3

)]

= −i�
(

−i�x2
∂

∂x1
+ i�x1

∂

∂x2

)

= i�L3 = i�
∑

k

ε12k Lk ,

and likewise for [L2, L3] and [L3, L1].
To show that the Li commute with the Hamiltonian, we note that if vi is any

vector satisfying Eq. (2.1.10), we have

[Li , v2] =
∑

j

[Li , v j ]v j +
∑

j

v j [Li , v j ] =
∑

j

εi jk(vkv j + vkv j ) ,

so, because εi jk is antisymmetric in j and k,

[Li , v2] = 0 . (2.1.12)

(Note that this works even if the components of v do not commute with each
other, as will be the case for some vector operators other than the position
and gradient vectors.) In particular, Li commutes with x2, and therefore with
any function of r ≡ [x2]1/2, and it commutes with the Laplacian ∇2, so it
commutes with the Hamiltonian (2.1.1). It is the rotational symmetry of the
Hamiltonian that ensures that it commutes with L; if the Hamiltonian depended
on the direction of x or p instead of just their magnitudes, it would not commute
with L.

Because L j is itself a vector v j that satisfies Eq. (2.1.10), it also follows that
Li commutes with L2. Furthermore, since Li commutes with the Hamiltonian,
so does L2. Therefore we can characterize physical states by the eigenvalues
of H , of L2, and of any one component of L, all of which commute with each
other. Note that we can only do this for one component of L, because according
to Eq. (2.1.11) the three different components do not commute with each other.
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It is conventional to choose this component as L3, so physical wave functions
will be characterized by the eigenvalues of H , L2, and L3.

Since each Li commutes with r , it must act only on the direction of the
argument x, not its length. That is, in polar coordinates defined by

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ , (2.1.13)

the operators Li act only on θ and φ. From the definition (2.1.5) of these
operators, we can work out their explicit form in polar coordinates:

L1 = i�
(

sinφ
∂

∂θ
+ cot θ cosφ

∂

∂φ

)

L2 = i�
(

− cosφ
∂

∂θ
+ cot θ sinφ

∂

∂φ

)
(2.1.14)

L3 = −i�
∂

∂φ
.

Also, in polar coordinates,

L2 = −�2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂2φ

]
. (2.1.15)

As an example of how these are derived, let us calculate L3, which will be of
special importance for us. Note that

∂

∂φ
=
∑

i

∂xi

∂φ

∂

∂xi

= −r sin θ sinφ
∂

∂x1
+ r sin θ cosφ

∂

∂x2
= −x2

∂

∂x1
+ x1

∂

∂x2

= i

�
L3 ,

justifying the formula in (2.1.14) for L3.
It should be noted that each component of L is an Hermitian operator, because

x j and pk are Hermitian operators, and commute with each other for j �= k. This
is a special case of a general rule: if A and B are Hermitian and commute, then∫

ψ∗(ABψ) =
∫
(Aψ)∗ Bψ =

∫
(B Aψ)∗ψ =

∫
(ABψ)∗ψ ,

so AB is Hermitian. Also, since each component of L is Hermitian and
commutes with itself, its square is Hermitian, and so their sum L2 is Hermitian.

What does this have to do with the Schrödinger equation? To see this, let’s
calculate the operator L2 in a different way. According to Eq. (2.1.5), this is

L2 =
∑

i

Li Li = −�2
∑
i jklm

εi jkεilm x j

(
∂

∂xk

)
xl

(
∂

∂xm

)
.
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The sum over i gives ∑
i

εi jkεilm = δ jlδkm − δ jmδkl .

(This holds because for each i , εi jk will vanish unless j and k are the two direc-
tions other than i , and εilm will vanish unless l and m are the two directions other
than i , so the product εi jkεilm vanishes unless either j = l and k = m, or j = m
and k = �. In the first case we have the product of two εs with indices in the
same order, which gives +1, and in the second case we have the product of two
εs differing by a permutation of the second and third indices, which gives −1.)
Thus

L2 = −�2
∑

jk

[
x j

(
∂

∂xk

)
x j

(
∂

∂xk

)
− x j

(
∂

∂xk

)
xk

(
∂

∂x j

)]
.

(As usual in these operator expressions, the partial derivatives here act on every-
thing to the right, including whatever function L2 acts on.) Moving the second x j

in the first term in square brackets to the left and using the commutation relation
(2.1.7) gives ∑

jk

x j

(
∂

∂xk

)
x j

(
∂

∂xk

)
= r2∇2 +

∑
j

x j

(
∂

∂x j

)
.

In the same way, interchanging the x j and xk in the second term and using the
same commutation relation gives∑

jk

x j

(
∂

∂xk

)
xk

(
∂

∂x j

)
=
∑

jk

xk

(
∂

∂xk

)
x j

(
∂

∂x j

)
+ 3

∑
j

x j

(
∂

∂x j

)

−
∑

j

x j

(
∂

∂x j

)
.

Putting this together and recalling that
∑

j x j∂/∂x j = r∂/∂r , we have

L2 = −�2

[
r2∇2 − r

∂

∂r
r
∂

∂r
− r

∂

∂r

]
= −�2

[
r2∇2 − ∂

∂r
r2 ∂

∂r

]
,

or in other words

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
− L2

�2r2
. (2.1.16)

The Schrödinger equation (2.1.3) then takes the form

Eψ(x) = − �2

2μr2

∂

∂r

(
r2 ∂ψ(x)

∂r

)
+ 1

2μr2
L2ψ(x)+ V (r)ψ(x) . (2.1.17)

Now let us consider the spectrum of the operator L2. As long as V (r) is not
extremely singular at r = 0, the wave function ψ must be a smooth function of
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the Cartesian components xi near x = 0, in the sense that it can be expressed
as a power series in these components. Suppose that, for some specific wave
function, the terms in this power series with the smallest total number of factors
of x1, x2, and x3 have � such factors. Here � can be 0, 1, 2, etc. The sum of all
these terms form what is called a homogeneous polynomial of order � in x. (For
instance, a homogeneous polynomial of rank 0 is a constant; a homogeneous
polynomial of rank 1 is a linear combination of x1, x2, and x3; a homogeneous
polynomial of rank 2 is a linear combination of x2

1 , x2
2 , x2

3 , x1x2, x2x3, x3x1; and
so on.) When written in polar coordinates, a homogeneous polynomial of order
� is r � times a function of θ and φ. Thus in the limit r → 0, ψ(x) will take the
form

ψ(x) → r � Y (θ, φ) , (2.1.18)

with Y (θ, φ) a homogeneous polynomial of order � in the unit vector

x̂ ≡ x/r = (sin θ cosφ, sin θ sinφ, cos θ) . (2.1.19)

Eq. (2.1.17) may be written

L2ψ(x) = �2 ∂

∂r

(
r2 ∂ψ(x)

∂r

)
+ 2μr2

[
E − V (r)

]
ψ(x) .

In the limit r → 0 the first term on the right-hand side is �2�(� + 1)ψ while as
long as the potential is less singular than 1/r2 the second term on the right-hand
side vanishes as r → 0 more rapidly than ψ , so Eq. (2.1.19) requires that, for
r → 0, that ψ satisfy the eigenvalue equation

L2ψ → �2�(�+ 1)ψ . (2.1.20)

Hence, if ψ is an eigenfunction of L2 and H , the eigenvalue of L2 can only be
�2�(�+ 1), with � ≥ 0 an integer. We will give a much more general derivation
of this result in Section 4.2.

If we choose the wave functions (as we can) to be eigenfunctions of L2 as
well as of H , then they must satisfy Eq. (2.1.20) not only for r → 0, but for
all r . Since L2 acts only on angles, such a wave function must be proportional to
a function only of angles, with a coefficient of proportionality R that can depend
only on r . That is, for all r ,

ψ(x) = R(r) Y (θ, φ) , (2.1.21)

where R(r) is a function of r satisfying

R(r) ∝ r � for r → 0 , (2.1.22)

and Y (θ, φ) is a function of θ and φ satisfying

L2Y = �2�(�+ 1)Y . (2.1.23)
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If we also require ψ to be an eigenfunction of L3 with eigenvalue denoted �m,
then

L3Y = �m Y . (2.1.24)

Eq. (2.1.14) shows that Y (θ, φ) must then have a φ-dependence

Y (θ, φ) = eimφ × function of θ . (2.1.25)

The condition that Y (θ, φ) must have the same value at φ = 0 and φ = 2π
requires that m be an integer. We will see in the next section that |m| ≤ �.

Using Eq. (2.1.21) in Eq. (2.1.17), the Schrödinger equation becomes an
ordinary differential equation3 for R(r):

E R(r) = − �2

2μr2

d

dr

(
r2 d R(r)

dr

)
+ �2�(�+ 1)

2μr2
R(r)+ V (r)R(r) . (2.1.26)

To these conditions we must add the requirement that R(r) vanishes sufficiently
rapidly so that

∫ |ψ |2 d3x converges, and hence∫ ∞

0
|R(r)|2 r2 dr < ∞. (2.1.27)

For a potential that approaches the value zero sufficiently rapidly for r → ∞,
the general solution of Eq. (2.1.26) for E < 0 will be a linear combination of an
exponentially growing and an exponentially decaying solution, and Eq. (2.1.27)
requires that we choose the exponentially decaying solution.

Eq. (2.1.26) can be made to look more like the Schrödinger equation in one
dimension by defining a new radial wave function

u(r) ≡ r R(r). (2.1.28)

Also multiplying with r , Eq. (2.1.26) then takes the form

− �2

2μ

d2u(r)

dr2
+
[

V (r)+ �(�+ 1)�2

2μr2

]
u(r) = E u(r) , (2.1.29)

with the normalization condition∫ ∞

0
|u(r)|2 dr < ∞ . (2.1.30)

This is almost the same as the one-dimensional Schrödinger equation, but with
two important differences. One is the extra term �(� + 1)�2/2μr2 added to the

3 Often in attempting to solve a partial differential equation like the Schrödinger equation (2.1.3), one tries
a solution that factorizes into functions, each function depending on some subset of the coordinates, as
in Eq. (2.1.21). The treatment of the Schrödinger equation presented here shows that the success of this
procedure follows from the rotational symmetry of the equation to be solved. This is the general rule:
factorizable solutions of partial differential equations can generally be found if the equations are subject
to suitable symmetry conditions.
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potential, which may be understood as the effect of centrifugal forces. The other
is the presence of a boundary at r = 0, where u(r) is required to go as r �+1.

2.2 Spherical Harmonics

As already remarked in the previous section, we use the eigenvalue of L3 as well
as the eigenvalues of H and L2 to classify the wave functions of definite energy.
The angular part of the wave function will therefore be labeled with � and m, as
Y m
� (θ, φ), with

L2Y m
� = �2�(�+ 1)Y m

� , (2.2.1)

and

L3Y m
� = �m Y m

� . (2.2.2)

We will now consider what are the allowed values of m for a given �, and show
how to calculate the Y m

� .
We can rewrite the eigenvalue condition (2.2.1) in a more convenient form,

by using expression (2.1.16) for the Laplacian. Acting on r �Y m
� , the first term

on the right-hand side of Eq. (2.1.16) is �(� + 1)r �−2Y m
� , which according to

Eq. (2.2.1) is canceled by the second term, so

∇2
(
r �Y m

�

) = 0 . (2.2.3)

Finally, recall that r �Y m
� (θ, φ) is a homogeneous polynomial of rank � in the

Cartesian components of the coordinate vector x. Equivalently, it can be written
as a homogeneous polynomial of rank � in

x± ≡ x1 ± i x2 = r sin θ e±iφ (2.2.4)

and x3 = r cos θ . Thus Eq. (2.2.2) tells us that Y m
� must contain numbers ν± of

factors of x± such that

m = ν+ − ν−. (2.2.5)

Since the total number of factors of x+, x−, and x3 is �, the index m is a positive
or negative integer, with a maximum value �, reached when ν+ = � and ν− = 0,
and a minimum value −�, reached when ν− = � and ν+ = 0. In Section 4.2 we
will see how to use the commutation relations (2.1.11) to give a purely algebraic
derivation of this result for the spectrum of L3, and also of Eq. (2.2.1) for the
spectrum of L2.

We must now ask whether Y m
� is uniquely determined (of course, up to a

constant factor) by the values of � and m. For a given �, the index m can have
any integer value from m = −� to m = +�, so it takes 2�+1 values. On the other
hand, a homogeneous polynomial of rank � in x± and x3 is a linear combination
of terms that contain ν+ factors of x+, with 0 ≤ ν+ ≤ �, plus ν− factors of x−,
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with 0 ≤ ν− ≤ � − ν+, plus � − ν+ − ν− factors of x3, so the total number of
independent homogeneous polynomials of rank � in these three coordinates is

N� =
�∑

ν+=0

�−ν+∑
ν−=0

1 =
�∑

ν+=0

(�− ν+ + 1) = 1

2
(�+ 1) (�+ 2) . (2.2.6)

The Laplacian of a homogeneous polynomial of rank � is a homogeneous poly-
nomial of rank �− 2, so Eq. (2.2.3) imposes N�−2 independent conditions on Y ,
and therefore the number of independent Y s for a given � is

N� − N�−2 = 2�+ 1 . (2.2.7)

Since this is also the number of values taken by m for a given �, we conclude
that there is just one independent polynomial for each � and m. These functions,
denoted Y m

� (θ, φ), with −� ≤ m ≤ +�, are known as spherical harmonics.
These functions may be written

Y m
� (θ, φ) ∝ P |m|

� (θ)eimφ , (2.2.8)

with P |m|
� satisfying the differential equation (see Eq. (2.1.15)):

− 1

sin θ

d

dθ

(
sin θ

d P |m|
�

dθ

)
+ m2

sin2 θ
P |m|
� = �(�+ 1)P |m|

� . (2.2.9)

The solutions of this equation are known as associated Legendre functions. They
are polynomials in cos θ and sin θ .

By simply enumerating all the independent homogeneous polynomials in x
of order 0, 1, and 2, and imposing the condition∇2(r �Y ) = 0, we easily see that
the spherical harmonics for � ≤ 2 are:

Y 0
0 =

√
1

4π

Y 1
1 = −

√
3

8π

(
x̂1 + i x̂2

) = −
√

3

8π
sin θeiφ

Y 0
1 =

√
3

4π
x̂3 =

√
3

4π
cos θ

Y −1
1 =

√
3

8π

(
x̂1 − i x̂2

) =
√

3

8π
sin θe−iφ

Y 2
2 =

√
15

32π

(
x̂1 + i x̂2

)2 =
√

15

32π
(sin θ)2 e2iφ

Y 1
2 = −

√
15

8π

(
x̂1 + i x̂2

)
x̂3 = −

√
15

8π
sin θ cos θ eiφ
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Y 0
2 =

√
5

16π

(
2x̂2

3 − x̂2
1 − x̂2

2

) =
√

5

16π

(
3(cos θ)2 − 1

)
Y −1

2 =
√

15

8π

(
x̂1 − i x̂2

)
x̂3 =

√
15

8π
sin θ cos θ e−iφ

Y −2
2 =

√
15

32π

(
x̂1 − i x̂2

)2 =
√

15

32π
(sin θ)2 e−2iφ

For instance, Y 0
0 and each Y m

1 contain respectively zero and one factor of x̂± or
x̂3, so Y 0

0 must be a constant, and Y +1
1 Y 0

1 , and Y −1
1 must be proportional to x̂+,

x̂3, and x̂− respectively in order to have the right dependence on φ. Similarly,
each Y m

2 contains just two factors of x̂± and/or x̂3, so in order to have the right
dependence on φ, Y ±2

2 must be proportional to x̂2± and Y ±1
2 must be proportional

to x̂± x̂3. The case of Y 0
2 is a little more complicated, for both x̂+ x̂− and x̂2

3 have
the right dependence on φ. If we take Y 0

2 to be proportional to Ax̂+ x̂− + Bx̂2
3 ,

then r2Y 0
2 is proportional to Ax+x− + Bx2

3 = A(x2
1 + x2

2)+ Bx2
3 , so ∇2(r2Y 0

2 ) =
4A+2B, and hence Eq. (2.2.3) requires that B = −2A. Thus Y 0

2 is proportional
to x̂+ x̂− − 2x̂2

3 = 1 − 3 cos2 θ . The numerical factors are chosen here so that the
Y s are normalized∫

d2�
∣∣Y m

� (θ, φ)
∣∣2 ≡

∫ π

0
sin θ dθ

∫ 2π

0
dφ

∣∣Y m
� (θ, φ

) |2 = 1 , (2.2.10)

where d2� is the solid angle differential sin θ dθ dφ. This leaves only the phases
arbitrary. The reason for the phases chosen here will be made clear when we
come to the general theory of angular momentum in Chapter 4.

The spherical harmonics for different �s and/or ms are orthogonal, because
they are eigenfunctions of the Hermitian operators L2 and L3 with different
eigenvalues. To check the orthogonality, note first that

∫
d2� Y m

� (θ, φ)
∗Y m′

�′ (θ, φ) ∝
∫ 2π

0
exp(i(m ′ − m)φ) dφ ∝ δm′m . (2.2.11)

Next, considering the case m ′ = m,∫
d2� Y m

� (θ, φ)
∗Y m

�′ (θ, φ) ∝
∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ . (2.2.12)

Multiplying Eq. (2.2.9) with P |m|
�′ (θ) sin θ and subtracting the same expression

with � and �′ interchanged gives

[�(�+ 1)− �′(�′ + 1)] P |m|
�′ (θ)P |m|

� (θ) sin θ

= d

dθ

[
− sin θ P |m|

� (θ)
d

dθ
P |m|
�′ (θ)+ sin θ P |m|

�′ (θ)
d

dθ
P |m|
� (θ)

]
. (2.2.13)
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The quantity in square brackets on the right-hand side vanishes at θ = 0 and
θ = π , so

[�(�+ 1)− �′(�′ + 1)]
∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ = 0 . (2.2.14)

It is only possible to have �(�+ 1) = �′(�′ + 1) with � and �′ positive if � = �′,
so ∫ π

0
P |m|
�′ (θ)P |m|

� (θ) sin θ dθ = 0 for � �= �′ . (2.2.15)

Putting together Eq. (2.2.10), (2.2.11), and (2.2.15) gives our orthonormality
relation ∫

d2� Y m
� (θ, φ)

∗Y m′
�′ (θ, φ) = δ��′δmm′ . (2.2.16)

Finally, we should note the space-inversion (or “parity”) property of the wave
function. Since the Y m

� are homogeneous polynomials of rank � in the unit vector
x̂ , it follows that under the transformation x̂ → −x̂ , the spherical harmonics
change by just a sign factor (−1)�:

Y m
� (π − θ, π + φ) = (−1)� Y m

� (θ, φ) . (2.2.17)

2.3 The Hydrogen Atom

At last we come to a realistic three-dimensional system, consisting of a single
electron moving in a Coulomb potential

V (r) = − Ze2

r
(2.3.1)

where −e is the electron charge in unrationalized electrostatic units (for which
e2/�c 	 1/137.) We wish to solve the Schrödinger equation for bound states,
which have energy E < 0.

The radial Schrödinger equation (2.1.29) (with ψ(x) ∝ u(r)Y m
� (θ, φ)/r ) is

then

− �2

2me

d2u(r)

dr2
+
[
− Ze2

r
+ �(�+ 1)�2

2mer2

]
u(r) = E u(r) ,

or in other words

− d2u(r)

dr2
+
[
−2me Ze2

r�2
+ �(�+ 1)

r2

]
u(r) = −κ2 u(r) , (2.3.2)

where κ is defined by

E = −�2κ2

2me
, κ > 0 (2.3.3)
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and me is the electron mass. We will write this in dimensionless form by
introducing

ρ ≡ κr . (2.3.4)

After dividing by κ2, Eq. (2.3.2) becomes

− d2u

dρ2
+
[
− ξ

ρ
+ �(�+ 1)

ρ2

]
u = − u , (2.3.5)

where

ξ ≡ 2me Ze2

κ�2
. (2.3.6)

We must look for a solution that decreases as ρ�+1 for ρ → 0, and (more or
less) like exp(−ρ) for ρ → ∞, so let’s replace u with a new function F(ρ),
defined by

u = ρ�+1 exp(−ρ)F(ρ) . (2.3.7)

Then

du

dρ
= ρ�+1 exp(−ρ)

[(
�+ 1

ρ
− 1

)
F + d F

dρ

]

and

d2u

dρ2
= ρ�+1 exp(−ρ)

[(
1 − 2(�+ 1)

ρ
+ �(�+ 1)

ρ2

)
F

+
(

−2 + 2(�+ 1)

ρ

)
d F

dρ
+ d2 F

dρ2

]
.

The radial wave equation (2.3.5) thus becomes

d2 F

dρ2
− 2

(
1 − �+ 1

ρ

)
d F

dρ
+
(
ξ − 2�− 2

ρ

)
F = 0 . (2.3.8)

Let’s try a power series solution

F =
∞∑

s=0

asρ
s, (2.3.9)

where a0 �= 0, because we define � so that u(r) ∝ r �+1 for r → 0. Then
Eq. (2.3.8) becomes

∞∑
s=0

as

[
s(s − 1)ρs−2 − 2sρs−1 + 2s(�+ 1)ρs−2 + (ξ − 2�− 2)ρs−1

] = 0 .

(2.3.10)
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In order to derive a relation between the coefficients in the power series, let us
replace the summation variable s with s + 1 in all terms that go as ρs−2 rather
than ρs−1. (The factors s in the first and third terms in Eq. (2.3.10) make the
sums over these terms start with s = 1, so after redefining s as s +1 all the sums
start with s = 0.) Eq. (2.3.10) then becomes

∞∑
s=0

ρs−1
[
s(s + 1)as+1 − 2sas + 2(s + 1)(�+ 1)as+1 + (ξ − 2�− 2)as

] = 0 .

(2.3.11)

This must hold for all ρ > 0, so the coefficient of each power of ρ must vanish,
which gives a recursion relation

(s + 2�+ 2)(s + 1)as+1 = (−ξ + 2s + 2�+ 2)as . (2.3.12)

The quantity (s + 2�+ 2)(s + 1) does not vanish for any s ≥ 0, so this gives all
the coefficients as in terms of an arbitrary normalization coefficient a0.

Let us consider the asymptotic behavior of this power series for large ρ.
Eq. (2.3.12) shows that, for s → ∞,

as+1/as → 2/s . (2.3.13)

Since all the as for large s have the same sign, the asymptotic behavior of the
power series is dominated by the high powers of ρ, for which Eq. (2.3.13) gives

as ≈ a 2s/(s + b) , (2.3.14)

with unknown constants a and b. (If b is not an integer the factorial here is a
Gamma function, but this makes little difference when s � b.) Thus we expect
that asymptotically

F(ρ) ≈ a
∞∑

s=0

(2ρ)s

(s + b)! → a(2ρ)−be2ρ . (2.3.15)

Aside from constants and powers of ρ, the function (2.3.7) generically then
goes as

u ≈ eρ . (2.3.16)

This is no surprise, because for generic values of ξ the solution that goes as ρ�+1

for ρ → 0 will approach a linear combination of terms proportional to eρ or e−ρ
for ρ → ∞, which will be dominated in this limit by the term proportional to
eρ . But an asymptotic behavior like Eq. (2.3.16) is clearly inconsistent with the
condition (2.1.30) that the wave function be normalizable.

The only way to avoid this is to require that the power series terminates, so
that F(ρ) goes as some power of ρ, rather than as e2ρ . The recursion relation
(2.3.12) shows that in order for the series to terminate, it is necessary for ξ to
be equal to some positive even integer 2n with n ≥ � + 1, in which case the
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series terminates with power ρn−�−1. The functions F(ρ) are then polynomials
of order n − �− 1, known as Laguerre polynomials, and conventionally written
L2�+1

n−�−1(2ρ). The first few examples (aside from normalization constants) are

F = 1 for n = �+ 1
F = 1 − ρ

�+1 for n = �+ 2 . (2.3.17)

Although the wave functions depend on � and n, the energies only depend
on n. With ξ = 2n, Eq. (2.3.6) gives

κn = 2me Ze2

ξ�2
= 1

na
(2.3.18)

where a is the Bohr radius:

a = �2

me Ze2
= 0.529177249(24)× 10−8 Z−1 cm . (2.3.19)

Since the radial wave function R(r) ≡ u(r)/r decreases at large distances like
ρn−1 exp(−ρ) ∝ rn−1 exp(−r/na), the electron is pretty well localized within a
radius na. Finally, using Eqs. (2.3.18) and (2.3.19) in Eq. (2.3.3) gives the bound
state energies as

En = −�2κ2
n

2me
= − �2

2mea2n2
= −me Z2e4

2�2n2
= −13.6056981(40) Z2 eV

n2
.

(2.3.20)

As we saw in Section 1.2, this is the famous formula guessed at by Bohr in 1913.
It is an excellent approximation (neglecting magnetic and relativistic effects) for
single-electron atoms, such as hydrogen with Z = 1, singly ionized helium
with Z = 2, doubly ionized lithium with Z = 3, and so on. As mentioned in
Section 1.2, it is also a fair approximation for the states of the outermost electron
in neutral atoms of alkali metals such as lithium, sodium, and potassium, for
which the charge Ze of the nucleus is partially shielded by the Z − 1 inner
electrons, so that Z in Eq. (2.3.20) can be taken as effectively of order unity.

Incidentally, note that the energy required to excite a hydrogen atom in the
n = 1 state to the n = 2 state is 10.2 eV, so to excite hydrogen atoms from the
ground state to any higher energy state in atomic collisions requires temperatures
of at least about 10 eV/kB 	 105 K. Hot gases in astrophysics typically cool by
emission of radiation from atoms excited in atomic collisions, so a gas of hot
hydrogen finds it very difficult to cool below about 105 K. On the other hand,
for reasons discussed in Section 4.5, the outer electrons in heavy atoms all have
larger values of n, so it takes much less energy to excite these atoms to the next
higher state, and even small quantities of heavy elements make a large difference
in the cooling rate.
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For each n we have � values running from 0 to n − 1, and for each � we have
2�+ 1 values of m, so the total number of states with energy En is

n−1∑
�=0

(2�+ 1) = 2
n(n − 1)

2
+ n = n2 . (2.3.21)

We will see in Section 4.5 that this formula plays an essential role in explain-
ing the periodic table. In multi-electron atoms the energies of these states are
actually separated from each other by departures of the effective electrostatic
potential due to the nucleus and other electrons from a strict proportionality to
1/r , as well as by relativistic effects and by magnetic fields within the atom, and
may be further split by external fields.

There is a standard nomenclature for these states. In general, one-electron
atomic states with � = 0, 1, 2, 3 are labeled s, p, d , f . (The letters stand for
“sharp,” “principal,” “diffuse,” etc., for reasons having to do with the appearance
of spectral lines.) In hydrogen, or hydrogen-like atoms, this letter is preceded by
a number giving the energy level. Thus the lowest energy state of hydrogen is
1s, the next lowest 2s and 2p, the next lowest 3s, 3p, and 3d , and so on.

As discussed in Section 1.4, in the approximation that the wavelength of light
emitted in an atomic transition is much larger than the Bohr radius, the rate at
which a state represented by a wave function ψ decays by single photon emis-
sion into a state represented by a wave functionψ ′ is proportional to | ∫ ψ ′∗xψ |2.
If we change the variable of integration from x to −x, then as mentioned in Sec-
tion 2.2, the wave functions ψ and ψ ′ change by factors (−1)� and (−1)�

′
, and

so the whole integrand changes by a factor

(−1)�+�
′+1 .

Thus the transition rate vanishes (in this approximation) unless the signs (−1)�

and (−1)�
′
are opposite. For instance, the 2p state can emit a photon and decay

into the 1s state (this is known as Lyman α radiation), but the 2s state can-
not. This selection rule actually helps the recombination of hydrogen ions and
electrons in hot gases, such as in the early universe at a temperature about
3000 K. Emission of a Lyman α photon may not provide an effective way for
hydrogen to reach the lowest energy state (the “ground state”), because that
photon just excites another hydrogen atom in the 1s state to the 2p state.1

The 2s state can only decay to the 1s state by emitting two photons, neither
of which has enough energy to excite another hydrogen atom from the ground
state.

1 There is an exception to this. In cosmology, a Lyman α photon that survives long enough will lose
energy through the cosmological expansion to the point where it can no longer excite a hydrogen atom
from the ground state to any higher state. This also contributes to hydrogen recombination.
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2.4 The Two-Body Problem

So far, we have considered the quantum mechanics of a single particle in a fixed
potential. Of course, real one-electron atoms consist of two particles, a nucleus
and an electron, with a potential that depends on the difference of their coor-
dinate vectors. It is well known in classical mechanics that the latter two-body
problem is equivalent to a one-body problem, with the electron mass replaced
with a reduced mass:

μ = mem N

me + mN
, (2.4.1)

where mN is the nuclear mass. We will now see that the same is true in quantum
mechanics.

In both classical and quantum mechanics, the Hamiltonian for a one-electron
atom is

H = p2
e

2me
+ p2

N

2m N
+ V (xe − xN ) , (2.4.2)

where pe and pN are the electron and nuclear momenta. (To a good approx-
imation the potential only depends on |xe − xN |, but for the purposes of the
present section it is just as easy to deal with the more general case.) Also, in
both classical and quantum mechanics, we introduce a relative coordinate x and
a center-of-mass coordinate X:

x ≡ xe − xN , X ≡ mexe + m N xN

me + m N
, (2.4.3)

and a relative momentum p and a total momentum P by

p ≡ μ

(
pe

me
− pN

m N

)
, P ≡ pe + pN . (2.4.4)

It is easy to see then that the Hamiltonian (2.4.2) may be written

H = p2

2μ
+ P2

2(me + mN )
+ V (x) , (2.4.5)

and this too is true in both classical and quantum mechanics.
In quantum mechanics we identify the momenta as the operators

pe = −i�∇e , pN = −i�∇N . (2.4.6)

It is then elementary to calculate that the momenta (2.4.4) are:

p = −i�∇x , P = −i�∇X . (2.4.7)

So the momenta (2.4.4) and the coordinates (2.4.3) satisfy the commutation
relations

[xi , p j ] = [Xi , Pj ] = i�δi j , [xi , Pj ] = [Xi , p j ] = 0 . (2.4.8)
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It is obvious then that the Hamiltonian (2.4.2) commutes with all components
of P, which also commute with each other, so the wave functions represent-
ing physical states of definite energy can also be taken to have definite total
momentum.

Such a wave function will have the form

ψ(x ,X) = eiP·X/�ψ(x) , (2.4.9)

where P is now a c-number eigenvalue, and ψ(x) is a wave function for an
internal energy E , satisfying the one-particle Schrödinger equation:

− �2∇2
xψ(x)
2μ

+ V (x)ψ(x) = Eψ(x) . (2.4.10)

For example, in single-electron atoms the internal energy E is given by
Eq. (2.3.20), with me replaced withμ. The total energy is just the internal energy
E of the atom, plus the kinetic energy of its overall motion:

E = E + P2

2(me + m N )
. (2.4.11)

The most important aspect of the replacement of the electron mass with
the reduced mass (2.4.1) is that internal energies then depend very slightly on the
mass of the nucleus. There are two stable isotopes of the hydrogen nucleus, the
proton with mass 1836 me, and the deuteron with mass 3670 me, giving reduced
masses

μpe = 0.99945 me , μde = 0.99973 me . (2.4.12)

This tiny difference is enough to produce a detectable split in the frequencies
of light emitted from a mixture of ordinary hydrogen and deuterium. The rela-
tive intensity of the observed hydrogen and deuterium spectral lines is used by
astronomers to measure the relative abundance of hydrogen and deuterium in
the interstellar medium, which in turn reveals conditions in the early universe
when a tiny fraction of matter was formed into deuterons.

2.5 The Harmonic Oscillator

As a final bound-state problem in three dimensions, let’s consider a particle of
mass M in a potential

V (r) = 1

2
Mω2r2 , (2.5.1)

where ω is a constant with the dimensions of frequency. Of course, this is not
the potential felt by electrons in atoms, but it is worth considering for at least
four reasons. One is its historical importance. As we saw in Section 1.4, this is
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the problem (though in one dimension) studied by Heisenberg in his ground-
breaking 1925 paper introducing matrix mechanics. Another reason is that this
theory provides a nice illustration of how we can find energy levels and radiative
transition amplitudes by algebraic methods (the methods used by Heisenberg),
without having to solve second-order differential equations. Third, the harmonic
oscillator potential is used in models of atomic nuclei, which as we will see in
Section 4.5 lead to the idea of “magic numbers” of neutrons or protons for which
nuclei are particularly stable. Finally, the methods described here for dealing
with the harmonic oscillator will turn out to be useful in Section 10.3 for dealing
with the energy levels of electrons in magnetic fields, and in Sections 11.5–11.6
for calculating the properties of photons.

The Schrödinger equation (2.1.3) is here

Eψ = − �2

2M
∇2ψ + 1

2
Mω2r2ψ . (2.5.2)

Both the Laplacian and r2 = x2 may be written as sums over the three coordinate
directions, so that the Schrödinger equation may be written(−�2

2M

∂2ψ

∂x2
1

+ Mω2x2
1ψ

2

)
+
(−�2

2M

∂2ψ

∂x2
2

+ Mω2x2
2ψ

2

)

+
(−�2

2M

∂2ψ

∂x2
3

+ Mω2x2
3ψ

2

)
= Eψ . (2.5.3)

This has separable solutions, of the form

ψ(x) = ψn1(x1) ψn2(x2) ψn3(x3) , (2.5.4)

where ψn(x) is a solution of the one-dimensional Schrödinger equation

−�2

2M

∂2ψn(x)

∂x2
+ Mω2x2ψn(x)

2
= Enψn(x) . (2.5.5)

The energy is the sum of the energies of three one-dimensional harmonic
oscillators in the n1th, n2th and n3th energy states:

E = En1 + En2 + En2 . (2.5.6)

So our problem has been reduced to the one considered by Heisenberg in 1925,
the one-dimensional harmonic oscillator.

To solve this problem, we introduce so-called lowering and raising operators

ai ≡ 1√
2M�ω

(
−i�

∂

∂xi
− i Mωxi

)
, a†

i ≡ 1√
2M�ω

(
−i�

∂

∂xi
+ i Mωxi

)
,

(2.5.7)

with i = 1, 2, and 3. These operators obey the commutation relations[
ai , a†

j

]
= δi j , (2.5.8)
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and [
ai , a j

] =
[
a†

i , a†
j

]
= 0 . (2.5.9)

Also, the one-dimensional Hamiltonian here is

Hi ≡ − �2

2M
∇2

i + Mω2x2
i

2
= �ω

[
a†

i ai + 1

2

]
. (2.5.10)

(The summation convention, that repeated indices are summed, is not being used
here.) Now, it follows from Eqs. (2.5.8)–(2.5.10) that

[Hi , ai ] = −�ωai , [Hi , a†
i ] = +�ωa†

i . (2.5.11)

Hence if ψ represents a state with energy E , then aiψ represents a state with
energy E − �ω, and a†

i ψ represents a state with energy E + �ω, provided of
course that aiψ and a†

i ψ respectively do not vanish. There is a wave function
ψ0(xi ) for which aiψ0 = 0; it is

ψ0(xi ) ∝ exp(−Mωx2
i /2�) , (2.5.12)

so this represents a state for which the energy Eni is �ω/2, and no wave function
representing a state with a lower value of Eni can be formed by operating on this
wave function with ai . On the other hand, there is no wave function ψ(xi ) for
which a†

i ψ vanishes, because the solution of the differential equation a†
i ψ = 0

is ψ ∝ exp(Mωx2
i /2�), and this is not normalizable. In consequence, there is

no upper bound to the energies of states represented by wave functions formed
by operating any number of times with a†

i on ψ0. These wave functions take the
form

ψni (xi ) ∝ a†ni
i ψ0(xi ) ∝ Hni (xi ) exp(−Mωx2

i /2�) , (2.5.13)

where Hn(x) is a polynomial of order n in x , related to a Hermite polynomial,
satisfying the parity condition

Hn(−x) = (−1)n Hn(x) . (2.5.14)

For instance, H0(x) ∝ 1; H1(x) ∝ x , H2(x) ∝ 1 − 2Mωx2/�, and so on. The
general wave function representing a state of definite energy is

ψn1n2n3(x) ∝ a†n1
1 a†n2

2 a†n3
3 ψ0(r) ∝ Hn1(x1) Hn2(x2) Hn3(x3) exp(−Mωr2/2�) ,

(2.5.15)

and the state has energy

En1n2n3 = �ω
[

N + 3�ω
2

]
, (2.5.16)

where

N = n1 + n2 + n3 . (2.5.17)
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All but the lowest of these energy levels have a great deal of degeneracy. For
a fixed value of N = n1 + n2 + n3 there is just one possible value of n3 for a
given n1 and n2, so the number of ways of writing a positive integer N as the
sum of three positive (perhaps zero) integers n1, n2, and n3 is

NN =
N∑

n1=0

N−n1∑
n2=0

1 =
N∑

n1=0

(N − n1 + 1) = (N + 1)2 − N (N + 1)

2

= (N + 1)(N + 2)

2
. (2.5.18)

Since the potential (2.5.1) is spherically symmetric, these wave functions
can also be written as sums of the spherical harmonics Y m

� (θ, φ), times
m-independent radial wave functions RN�(r), with numerical coefficients that
may depend on N , �, and m. The wave function (2.5.15) is a polynomial of
order N = n1 +n2 +n3 in the xi times a function of r , so the maximum value of
� is N . Also, according to Eq. (2.5.14) the wave function (2.5.15) is even or odd
in x according as N is even or odd. Thus this wave function is at most a sum of
terms proportional to Y m

� (θ, φ), with � = N , N − 2, and so on down to � = 1
or � = 0. For instance, H1(x) ∝ x , so the three wave functions of the form
(2.5.15) with N = 1 take the form x1 exp(−Mωr2/2�), x2 exp(−Mωr2/2�),
and x3 exp(−Mωr2/2�), which can be written as linear combinations of the
� = 1 terms rY m

1 (θ, φ) exp(−Mωr2/2�) with m = +1, m = 0, and m = −1.
It turns out that for higher values of N there are independent wave functions

proportional to Y m
� (θ, φ), with � = N , N − 2, and so on down to � = 1 or

� = 0, with one independent wave function for each such �. To check this, note
that this gives the total degeneracy as

NN =
∑

�=N , N−2, ...

(2�+ 1) . (2.5.19)

For instance, if N is even we can set � = 2k, and find a degeneracy

NN =
N/2∑
k=0

(4k + 1) = 4
(N/2)(N/2 + 1)

2
+ N/2 + 1 = (N + 1)(N + 2)

2
,

(2.5.20)
in agreement with Eq. (2.5.18). The same result holds for N odd.

The degeneracy of the energy eigenstates, and in particular the existence of
states with different values of � but the same energy, is a peculiar feature of
the Coulomb and harmonic oscillator potentials, that is not expected to occur
for generic potentials. In both cases this degeneracy arises from the existence of
operators that commute with the Hamiltonian, and which therefore when operat-
ing on a wave function with definite energy give another wave function with the
same energy. Some of these operators do not commute with L2, and when acting
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on a wave function with a given orbital angular momentum give a wave func-
tion with a different orbital angular momentum, though with the same energy.
What these operators are for the Coulomb potential will be explained in Sec-
tion 4.8. For the harmonic oscillator potential, they are the nine operators a†

j ak ,
with j and k running over the coordinate indices 1, 2, 3, which can easily be
seen to commute with the three-dimensional Hamiltonian given by the sum of
the one-dimensional Hamiltonians (2.5.10):

H = �ω

[∑
i

a†
i ai + 3

2

]
.

As we will see in Section 4.6, the fact that these operators commute with the
Hamiltonian is related to a symmetry of this Hamiltonian and of the commu-
tation rules. Incidentally, for both the Coulomb and the harmonic oscillator
potentials, the existence of operators that commute with the Hamiltonian is also
related to the peculiar property of classical orbits in these two potentials, that
they form closed curves.

In order to calculate mean values and radiation transition probabilities, it is
necessary to construct properly normalized wave functions. This can most easily
be done using the raising and lowering operators (2.5.7). First, in order that the
ground-state wave function ψ0 for one-dimensional oscillators be normalized,
we must take it as

ψ0(x) =
[

Mω

π�

]1/4

exp(−Mωx2/2�) , (2.5.21)

so that ∫ +∞

−∞
|ψ0(x)|2 dx = 1 . (2.5.22)

Also, note that a†
i is the adjoint of the operator ai , in the sense that for any two

normalizable functions f and g, we have∫ +∞

−∞
f ∗(xi ) ai g(xi ) dxi =

∫ +∞

−∞

(
a†

i f (xi )
)∗

g(xi ) dxi . (2.5.23)

It follows that∫ ∞

−∞
|a†n1

i ψ0(xi )|2 dxi =
∫ ∞

−∞

(
a†(ni −1)

i ψ0(xi )
)∗

ai a
†n1
i ψ0(xi ) dxi .

The commutation relations (2.5.8) and (2.5.9) give

ai a
†n1
i = a†n1

i ai + ni a
†(n1−1)
i ,

and since ai annihilates ψ0(xi ), we have∫ ∞

−∞

∣∣∣a†n1
i ψ0(xi )

∣∣∣2 dxi = ni

∫ ∞

−∞

∣∣∣a†(n1−1)
i ψ0(xi )

∣∣∣2 ,
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and so ∫ ∞

−∞

∣∣∣a†n1
i ψ0(xi )

∣∣∣2 dxi = ni ! (2.5.24)

The properly normalized wave functions are then

ψn1n2n3(x) = 1√
n1!n2!n3!

[
Mω

π�

]3/4

a†n1
i a†n2

2 a†n3
3 exp(−Mωr2/2�) . (2.5.25)

To calculate the matrix element of one of the components of x, say x1, we note
that according to Eq. (2.5.7)

x1 = i
√
�√

2Mω

(
a1 − a†

1

)
.

Since a1 and a†
1 respectively lower and raise the index n1 by one unit, [x1]nm

must vanish unless n − m = ±1. Also,

[x1]n+1,n ≡
∫
ψ∗

n+1(x1)x1ψn(x1) dx1

= 1√
n!√(n + 1)!

∫ (
a†(n+1)ψ0

)∗ (−ia†
1

√
�√

2Mω

)(
a†n

1 ψ0

)
dx1

= −i

√
(n + 1)�

2Mω
. (2.5.26)

If we had included the time-dependence factors exp(−i Et/�) in the wave func-
tions, this would be the same as Heisenberg’s result (1.4.15), except for a
conventional constant phase factor, which of course has no effect on |xnm |2, and
hence no effect on radiative transition rates.

Problems

1. Use the method described in Section 2.2 to calculate the spherical harmonics
(aside from constant factors) for � = 3.

2. Derive a formula for the rate of single photon emission from the 2p to the 1s
state of hydrogen.

3. Calculate the expectation values of the kinetic and potential energies in the
1s state of hydrogen.

4. Calculate the expectation values of the kinetic and potential energies in the
lowest energy state of the three-dimensional harmonic oscillator, using the
algebraic methods that were used in Section 2.5 to find the energy levels in
this system.
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5. Derive the formula for the energy levels of the three-dimensional harmonic
oscillator by using the power series method (with suitable modifications) that
was used in Section 2.3 for the hydrogen atom.

6. Find the difference in the energies of the Lyman α transitions in hydrogen
and deuterium.

7. Calculate the wave function (aside from normalization) of the 3s state of the
hydrogen atom.

Hint: In problems 2 and 3, don’t forget to use properly normalized wave
functions.



3
General Principles of Quantum

Mechanics

We have seen in the previous chapter how useful wave mechanics can be in solv-
ing physical problems. But wave mechanics has several limitations. It describes
physical states by means of wave functions, which are functions of the positions
of the particles of the system, but why should we single out position as the fun-
damental physical observable? For instance, we might want to describe states
in terms of probability amplitudes for particles to have certain values of the
momentum or energy rather than the position. A more fundamental limitation:
There are attributes of physical systems that cannot be described at all in terms
of the positions and momenta of a set of particles. One of these attributes is
spin, which will be the subject of Chapter 4. Another is the value of the electric
or magnetic field at some point in space, treated in Chapter 11. This chapter will
describe the principles of quantum mechanics in a formalism which is essen-
tially the “transformation theory” of Dirac, mentioned briefly in Section 1.4.
This formalism generalizes both the wave mechanics of Schrödinger and the
matrix mechanics of Heisenberg, and is sufficiently comprehensive to apply to
any sort of physical system.

3.1 States

The first postulate of quantum mechanics is that physical states can be repre-
sented as vectors in a sort of abstract space known as Hilbert space.

Before getting into Hilbert space, I need to say a bit about vectors in general.
In kindergarten we learn that vectors are quantities with both magnitude and
direction. Later, when we study analytic geometry, we learn instead to describe
a vector in d dimensions as a string of d numbers, the components of the vector.
This latter approach lends itself well to calculation, but in some respects the
kindergarten version is better, because it allows us to describe relations among
vectors without specifying a coordinate system. For instance, a statement that
one vector is parallel to a second vector, or perpendicular to a third, has nothing
to do with how we choose our coordinate system.

Here we will formulate what we mean by vector spaces in general, and Hilbert
space in particular, in a way that is independent of the coordinates we use to

52
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describe directions in these spaces. From this point of view, the wave functions
that we have been using to describe physical states in wave mechanics should
be considered as the set of components ψ(x) of an abstract vector �, known as
the state vector, in an infinite-dimensional space in which we happen to choose
coordinate axes that are labeled by all the values that can be taken by the position
x. The same state vector could be described instead by a wave-function ψ̃(p) in

momentum space, defined as the coefficient of exp
(

ip · x/�
)

in a wave packet

like (1.3.2).1

ψ(x) = (2π�)−3/2
∫

d3 p exp
(

ip · x/�
)
ψ̃(p).

In this case, ψ̃(p) is regarded as the component of the same state vector � along
the direction corresponding to a definite value p of the momentum. This is not
conceptually very different from switching to a description of position vectors in
terms of latitude, longitude, and altitude to some other set of three coordinates.
Or, as in Eq. (1.5.15), we could write ψ(x) as an expansion in wave functions
ψn(x) of definite energy

ψ(x) =
∑

n

cnψn(x),

and regard the coefficients cn as the components of the same state vector along
directions characterized by different values of the energy. These are just exam-
ples; our discussion of Hilbert space will not depend on any particular choice of
coordinates.

Hilbert space is a certain kind of normed complex vector space. In general,
any sort of vector space consists of quantities �, � ′, etc., with the properties
that

• If � and � ′ are vectors, then so is � + � ′. The operation of addition is
associative and commutative:

� + (� ′ +� ′′) = (� +� ′)+� ′′, (3.1.1)

� +� ′ = � ′ +�. (3.1.2)

• If � is a vector, then so is α�, where α is any number. A real vector space
is one in which these numbers are restricted to be real. In a complex vector
space, like the Hilbert space of quantum mechanics, the numbers like α can be
complex. For either real or complex vector spaces, multiplication by a number
is taken to be associative and distributive:

1 This definition is framed so that the momentum operator −i�∇ acting on ψ(x) has the effect of multi-
plying ψ̃(p) with p. The factor (2π�)−3/2 is included so that, for a wave function normalized to have∫ |ψ(x)|2d3x = 1, by a theorem of Fourier analysis we have

∫ |ψ̃(p)|2d3 p = 1.
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α(α′�) = (αα′)� (3.1.3)

α(� +� ′) = α� + α� ′ (3.1.4)

(α + α′)� = α� + α′�. (3.1.5)

• There is a single zero vector2 o, with the obvious properties that, for any
vector � and number α,

o +� = �, 0� = o, αo = o. (3.1.6)

A normed vector space is a vector space in which for any two vectors � and
� ′ there is a number, the scalar product (�,� ′), with the properties of linearity(

� ′′, [α� + α′� ′]
)

= α
(
� ′′, �

)
+ α′

(
� ′′, � ′

)
, (3.1.7)

symmetry (
� ′, �

)∗ =
(
�, � ′

)
, (3.1.8)

and positivity, which requires that the scalar product of a vector with itself is a
real number with

(�,�) > 0 for � �= o. (3.1.9)

(Note that (�, o) = 0 for any �, and in particular for � = o, because for any
number α and vector � we have α(�, o) = (�, αo) = (�, o), which is only
possible if (�, o) = 0.) For real vector spaces the scalar products (�,� ′) are
all taken to be real, and the complex conjugation in Eq. (3.1.8) has no effect; for
complex vector spaces the scalar products must be allowed to be complex. From
Eqs. (3.1.7) and (3.1.8) it follows that(

[α� + α′� ′], � ′′
)

= α∗
(
�, � ′′

)
+ α′∗

(
� ′, � ′′

)
. (3.1.10)

In addition to being a normed complex vector space, a Hilbert space is either
finite dimensional, or satisfies certain technical assumptions of continuity that
allow it to be treated for some respects as if it were finite dimensional. To explain
this, it is necessary first to say something about sets of vectors that are indepen-
dent, or complete, and how this allows us to define the dimensionality of a vector
space.

A set of vectors �1, �2, etc., is said to be independent if no non-trivial linear
combination of these vectors can vanish. That is, if �1, �2, etc. are independent,
and if for some set of numbers α1, α2, etc. we have α1�1 +α2�2 +· · · = o, then
it follows that α1 = α2 = · · · = 0. Equivalently, no one of a set of independent
vectors can be expressed as a linear combination of the others. In particular,

2 In future chapters, where no confusion can arise, we will not bother to use the special symbol o for the
zero state vector, and will instead just use the familiar zero 0.
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a set of vectors �1, �2, etc. are independent if they are orthogonal; that is, if
(�i , � j ) = 0 for i �= j , for if such a set of orthogonal vectors satisfies a relation
α1�1 + α2�2 + · · · = o, then by taking the scalar product with any of the �s
we have αi (�i , �i ) = 0, so αi = 0 for all i . The converse does not hold —
the vectors of an independent set do not have to be orthogonal — but if a set
�i of vectors with 1 ≤ i ≤ n are all independent, then we can always find n
linear combinations �i of these vectors that are not only independent but also
orthogonal.3

A set of vectors �1, �2, . . . �n , is said to be complete if any vector � can be
expressed as a linear combination of the �i :

� = α1�1 + α2�2 + · · · + αn�n.

The vectors of a complete set do not have to be independent, but if they are
not, then we can always find a subset that is both complete and independent, by
deleting in turn any vectors of the set that can be written as linear combinations
of the others. Given a complete independent set of vectors �i , by the method
described earlier we can find a set of vectors �i that are orthogonal as well
as independent, and since according to this construction every �i is a linear
combination of the �i , the �i are also complete. A complete set of orthogonal
vectors is said to form a basis for the Hilbert space.

A vector space is said to have a finite dimensionality d if the largest possible
number of independent vectors is d. In such a space, any set of d independent
vectors �i is also complete, because if there were a vector � that could not be
written as

∑d
i=1 αi�i , then there would be d + 1 independent vectors: namely,

� and the �i . Also, no set of less than d vectors ϒ j could be complete, because
if it were then each vector �i of the d independent vectors could be written
as �i = ∑d−1

j=1 ci jϒ j , and for any d × d − 1-dimensional matrix ci j there is

always a d-component quantity ui such that
∑d

i=1 ui ci j = 0, contradicting the
assumption that the �i are independent.

For our present purposes, a Hilbert space can be defined as a normed com-
plex vector space that is either of finite dimensionality, or in which there exists
an infinite set of independent orthogonal vectors �i , that are complete in the

3 In this case we can construct a vector

�n ≡ �n −
n−1∑

i, j=1

(ω−1)i j� j (� j , �n)

that is orthogonal to all the �i with 1 ≤ i ≤ n − 1, where ωi j ≡ (�i , � j ). (We know that ωi j
has an inverse, because if there were a non-zero vector v j for which

∑
i j ωi j v j = 0 then the vector

� ≡ ∑
i vi�i would have norm (�,�) = ∑

i j v
∗
i ωi jv j = 0, and would therefore have to vanish,

which since the �i are independent is only possible if all vi vanish.) Also, we know that �n does not
vanish, because that would contradict the independence of the �i . Continuing along the same lines, we
can also construct a non-zero vector �n−1 that is orthogonal to all �i with 1 ≤ i ≤ n − 2 and also to
�n , and so on, until we have a set of n orthogonal vectors �i .
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sense that for any vector � we can find a set of numbers αi such that the sum∑∞
i=1 αi�i converges to �. (By this, we mean that (�N , �N ) → 0 for N → ∞,

where �N ≡ � −∑N
i=1 αi�i .) The latter condition allows us to apply some of

the same mathematical methods as if the Hilbert space were finite dimensional.
The components of a state vector � in a basis provided by a complete orthog-

onal set of vectors �i are just the numbers αi in the expression � = ∑N
i=1 αi�i .

They are unique, because if � could be written in this way with two differ-
ent sets of αi , then the difference of the sums would vanish, contradicting the
assumption that the �i are independent. In fact, by taking the scalar product of
the sum

∑
i αi�i with � j , we see that we can write these components as

α j = (� j , �)

(� j ,� j )
,

so that any vector� is expressed in terms of a complete set of orthogonal vectors
�i by

� =
∑

j

(� j , �)

(� j ,� j )
� j . (3.1.11)

This allows a concrete realization of the scalar product of any two vectors �
and � ′:

(�,� ′) =
∑
i, j

(� j , �)
∗

(� j ,� j )

(�i , �
′)

(�i ,�i )
(� j ,�i ),

or, since the �i are orthogonal,

(�,� ′) =
∑

i

(�i , �)
∗(�i , �

′)
(�i ,�i )

. (3.1.12)

(At this point, we are limiting ourselves to a complete set of basis vectors�i that
is denumerable. The case of a continuum of basis vectors will be considered in
the next section.)

Now at last we can put some flesh on these bones, and state the interpretation
of scalar products in terms of probabilities. The first interpretive postulate of
quantum mechanics is that any complete orthogonal set of states �i are in one-
to-one correspondence with all the possible results of some sort of measurement
(what sort will be considered in Section 3.3), and that if the system before the
measurement is in a state�, then the probability that the measurement will yield
a result corresponding to the state �i is

P(� �→ �i ) =
∣∣∣(�i .�

)∣∣∣2(
�,�

) (
�i ,�i

) . (3.1.13)
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It is important to note that the probabilities given by this formula have the fun-
damental properties that must be possessed by any probabilities. First, they
are obviously all positive. Also, since the �i are a complete orthogonal set,
Eq. (3.1.12) gives

(�,�) =
∑

i

|(�i , �)|2
(�i ,�i )

so the probabilities (3.1.13) add up to one.
The probabilities (3.1.13) are unchanged if we multiply � with a constant α,

or multiply the �i with constants βi . In quantum mechanics state vectors that
differ by a constant factor are regarded as representing the same physical state.
(But � +� ′ and α� +� ′ do not generally represent the same state.) We can if
we like multiply the state vectors � and �i with constants chosen so that

(�,�) = (�i ,�i ) = 1, (3.1.14)

in which case the probabilities (3.1.13) are

P(� �→ �i ) =
∣∣∣(�i .�

)∣∣∣2 . (3.1.15)

A set of vectors �i that are orthogonal and also normalized so that (�i ,�i ) = 1
is said to be orthonormal. For a complete orthonormal set of basis vectors �i ,
Eqs. (3.1.11) and (3.1.12) become

� =
∑

j

(� j , �)� j , (3.1.16)

and

(�,� ′) =
∑

i

(�i , �)
∗(�i , �

′). (3.1.17)

Even after choosing � and �i to satisfy Eq. (3.1.14), we can still multiply the
state vectors with complex numbers of magnitude unity (that is, phase factors),
with no change in Eqs. (3.1.14) or (3.1.15). Thus physical states in quantum
mechanics are in one-to-one correspondence with rays in the Hilbert space,
each ray consisting of a set of state vectors of unit norm that differ only by
multiplication with phase factors.

This is a good place to mention the “bra-ket” notation used by Dirac. In
Dirac’s notation, a state vector � is denoted |�〉, and the scalar product (�,�)
of two state vectors is written 〈�|�〉. The symbol 〈�| is called a “bra,” and
|�〉 is called a “ket,” so that 〈�|�〉 is a bra-ket, or bracket (not to be confused
with the entirely different Dirac bracket described in Section 9.5.) In the special
cases where � is identified as a state with a definite value a for some observable
A, the ket in Dirac’s notation is frequently written as |a〉. In Section 3.3 I will



58 3 General Principles of Quantum Mechanics

explain how for some purposes the Dirac notation is particularly convenient, and
in some cases inconvenient.

3.2 Continuum States

Before going on to the next interpretive postulate of quantum mechanics, it is
necessary to explain how the description of physical states given in the previous
section is modified when we consider a system for which the complete orthog-
onal states form a continuum. Suppose that instead of being labeled as �i with
a discrete index i , they are labeled �ξ , where ξ is a continuous variable, like
position. (The mathematical condition that defines a state with a definite value
of position or any other observable is discussed in the next section.) We can
adapt the results of the previous section by treating such systems approximately,
letting ξ take a very large number ρ(ξ)dξ of discrete values of ξ in any small
interval from ξ to ξ+dξ . (For instance, if ξ is the x-coordinate of some particle,
we might replace the x-axis with a large number of discrete points, with succes-
sive points separated by a small distance 1/ρ(x).) It is convenient in such cases
when introducing a complete orthogonal set of basis vectors �ξ to normalize
them so that

(�ξ ′,�ξ ) = ρ(ξ)δξ ′,ξ . (3.2.1)

Then according to Eq. (3.1.11), an arbitrary state can be expressed as a linear
combination of basis states

� =
∑
ξ

(�ξ ,�)

ρ(ξ)
�ξ . (3.2.2)

In the limit as the points ξ become increasingly close together, any sum over ξ
of a smooth function f (ξ) can be expressed as an integral

∑
ξ

f (ξ) �→
∫

f (ξ) ρ(ξ) dξ. (3.2.3)

(The sum over all values of ξ , in an interval dξ that is small enough so that within
this interval f (ξ) and ρ(ξ) are essentially constant, equals the number ρ(ξ) dξ
of allowed values in this interval times f (ξ). Summing this over intervals gives
the integral.) Hence in this limit Eq. (3.2.2) may be written

� =
∫
(�ξ ,�)�ξ dξ, (3.2.4)

the factors ρ(ξ) here canceling. Similarly, the scalar product (3.1.12) of two
such states may be written



3.2 Continuum States 59

(�,� ′) =
∑
ξ

(�ξ ,�)
∗(�ξ ,�

′)
ρ(ξ)

=
∫
(�ξ ,�)

∗(�ξ ,�
′) dξ. (3.2.5)

In particular, the condition for a state � to have unit norm is that

1 =
∫

|(�ξ ,�)|2 dξ. (3.2.6)

If a system is initially in a state represented by a vector� of unit norm, and we
perform an experiment whose possible outcomes are represented by a complete
set of states �ξ , then the differential probability d P(� �→ �ξ) that the outcome
will be in an interval from ξ to ξ + dξ will equal the probability of finding an
individual state with a label near ξ , given by Eq. (3.1.13), times the number of
states in this interval

d P(� �→ �ξ) = |(�ξ ,�)|2
(�ξ ,�ξ )

× ρ(ξ) dξ = |(�ξ ,�)|2 dξ. (3.2.7)

According to Eq. (3.2.6), this satisfies the essential condition that the total
probability of any result should be unity:∫

d P(� �→ �ξ) = 1. (3.2.8)

For instance, we might take �x to represent states in which a particle has def-
inite values x for its position in one dimension. As mentioned at the beginning
of this chapter, the wave function of Schrödinger’s wave mechanics is nothing
but the scalar product

ψ(x) = (�x , �). (3.2.9)

Eq. (3.2.5) shows that the scalar product of two state vectors �1 and �2 is

(�1, �2) =
∫
ψ∗

1 (x)ψ2(x) dx . (3.2.10)

In particular, the condition (3.2.6) for a state vector of unit norm now reads

1 =
∫

|ψ(x)|2 dx, (3.2.11)

and for states satisfying this condition, Eq. (3.2.7) gives the probability that the
particle is located between x and x + dx :

d P = |ψ(x)|2 dx (3.2.12)

as Born guessed in 1926. (See Section 1.5.)
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We will occasionally use a “delta function” notation due to Dirac.1 Let us
define

δ(ξ − ξ ′) ≡ ρ(ξ)δξ,ξ ′ (3.2.13)

so that the normalization condition (3.2.1) for continuum states reads

(�ξ ,�ξ ′) = δ(ξ − ξ ′). (3.2.14)

According to Eq. (3.2.3), the integral over ξ ′ of this function times any smooth
function f (ξ ′) is∫

δ(ξ − ξ ′) f (ξ ′) dξ ′ =
∑
ξ ′

δ(ξ − ξ ′) f (ξ ′)
ρ(ξ ′)

= f (ξ). (3.2.15)

That is, the function (3.2.13) vanishes except at ξ ′ = ξ , but is so large there that
its integral over ξ ′ is unity, so that in an integral like Eq. (3.2.15) it picks out the
value of the function where ξ ′ = ξ .

Sometimes it is convenient to represent the delta function as a smooth function
that is negligible away from zero argument, but so strongly peaked there that its
integral is unity. For instance, we might define

δ(ξ − ξ ′) ≡ 1

ε
√
π

exp
(−(ξ − ξ ′)2/ε2

)
, (3.2.16)

where ε is allowed to go to zero through positive values. Or we might give up
continuity, and define

δ(ξ − ξ ′) ≡
{

1/2ε |ξ − ξ ′| < ε

0 |ξ − ξ ′| ≥ ε
. (3.2.17)

Another representation is suggested by the fundamental theorem of Fourier
analysis. According to this theorem, if g(k) is a sufficiently smooth function
which is sufficiently well-behaved as k → ±∞, and we define

f (x) ≡ 1√
2π

∫ ∞

−∞
g(k) eikx dk, (3.2.18)

then

g(k) = 1√
2π

∫ ∞

−∞
f (x) e−ikx dx . (3.2.19)

If we use Eq. (3.2.19) in the integrand of Eq. (3.2.18), then we have, at least
formally,

f (x) = 1

2π

∫ ∞

−∞
dx ′ f (x ′)

∫ ∞

−∞
dk eik(x−x ′), (3.2.20)

1 P. A. M. Dirac, Principles of Quantum Mechanics, 4th edn. (Clarendon Press, Oxford, 1958).
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so we can take

δ(x − x ′) = 1

2π

∫ ∞

−∞
dk eik(x−x ′). (3.2.21)

The reader can check that if we give meaning to this integral by inserting a
convergence factor exp(−ε2k2/4) in the integrand, with ε infinitesimal, then
Eq. (3.2.21) becomes the same as the representation (3.2.16).

There is a rigorous approach to the delta function known as the theory of dis-
tributions, due to the mathematician Laurent Schwartz2 (1915–2002), in which
we give up the idea of representing the delta function itself as an actual function,
and instead only define integrals involving the delta function by Eq. (3.2.15). In
the same way, the derivative of the delta function is defined by the statement that∫

δ′(ξ − ξ ′) f (ξ ′) dξ ′ = − f ′(ξ), (3.2.22)

as obtained from (3.2.15) by a formal integration by parts.

3.3 Observables

According to the second postulate of quantum mechanics, observable physical
quantities like position, momentum, energy, etc., are represented as Hermitian
operators on Hilbert space. An Hermitian operator is one that is linear and self-
adjoint. So before we spell out what this postulate means, we need to consider
what is meant by operators in general, by linear operators in particular, and by
the adjoint of an operator.

An operator is any mapping of the Hilbert space on itself. That is, an operator
A takes any vector � in the Hilbert space into another vector in the Hilbert
space, denoted A�. This leads to natural definitions of products of operators
with each other and with numbers, and of sums of operators. The product AB of
two operators is defined as the operator that operates on an arbitrary state vector
� first with B and then with A. That is,

(AB)� ≡ A(B�). (3.3.1)

An ordinary complex number α can also be regarded as the operator that multi-
plies any state vector with that number, so according to Eq. (3.3.1), the product
αA of a number α with an operator A is the operator that operates on an arbitrary
state vector � first with A and then multiplies the result with α:

(αA)� ≡ α(A�). (3.3.2)

2 L. Schwartz, Théorie des distributions (Hermann et Cie, Paris, 1966).
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The sum of two operators A and B is defined as the operator that, acting on an
arbitrary state vector �, gives the sum of the state vectors produced by acting
on � with A and B individually:

(A + B)� ≡ A� + B�. (3.3.3)

We can define a zero operator 0 that, acting on any state vector � gives the zero
state vector o:

0� ≡ o. (3.3.4)

It follows then that, for an arbitrary operator A and number α,

0A = 0, 0 + A = A, α0 = 0α = 0. (3.3.5)

We also define a unit operator 1 that, acting on any state vector � gives the same
state vector

1� = �. (3.3.6)

For an arbitrary operator A, we then have

1A = A1 = A. (3.3.7)

A linear operator A is one for which

A(� +� ′) = A� + A� ′, A(α�) = αA�, (3.3.8)

for arbitrary state vectors � and � ′ and arbitrary numbers α. It is easy to see
that if A and B are linear, then so are AB and αA + βB for any numbers α and
β. Also, both 0 and 1 are linear.

The adjoint A† of any operator A (linear or not) is defined as that operator (if
there is one) for which1

(� ′, A†�) = (A� ′, �), (3.3.9)

or equivalently

(� ′, A†�) = (�, A� ′)∗,

for any two state vectors � and � ′. It is elementary to show the following
general properties of adjoints:

(AB)† = B† A†, (A†)† = A, (αA)† = α∗ A†, (A + B)† = A† + B†.

(3.3.10)

Both 0 and 1 are their own adjoints.

1 Eq. (3.3.9) is awkward to express in Dirac’s bra-ket notation, since in 〈� ′|B|�〉 the operator B is always
presumed to act to the right. Instead of Eq. (3.3.9), one must write 〈� ′|A†|�〉 = 〈�|A|� ′〉∗.
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If we introduce a complete orthonormal set of basis vectors �i , we can
represent any linear operator A by a matrix Ai j , given by

Ai j ≡ (�i , A� j ). (3.3.11)

Using Eq. (3.1.16), we see that the matrix representing any operator product AB
is the product of the matrices

(AB)i j = (�i , AB� j ) =
∑

k

(�i , A�k)(�k, B� j ) =
∑

k

Aik Bkj . (3.3.12)

As discussed in the previous section, we frequently encounter complete sets of
state vectors �ξ , labeled with a continuum variable ξ instead of a discrete label
i , and orthonormal in the sense that

(�ξ ′,�ξ ) = δ(ξ ′ − ξ). (3.3.13)

In this case, we define

Aξ ′ξ ≡ (�ξ ′, A�ξ), (3.3.14)

and instead of Eq. (3.3.12), we have

(AB)ξ ′ξ =
∫

dξ ′′ Aξ ′ξ ′′ Bξ ′′ξ . (3.3.15)

The adjoint of an operator is represented by the transposed complex conjugate
of the matrix representing the operator:

(A†)i j = A∗
j i , (3.3.16)

and likewise for (A†)ξ ′ξ .
The second postulate of quantum mechanics holds that a state has a definite

value a for an observable represented by a linear Hermitian operator A if and
only if the state vector � is an eigenstate of A with eigenvalue a, in the sense
that

A� = a�. (3.3.17)

If also A� ′ = a′� ′, then because A is Hermitian,

a(� ′, �) = (� ′, A�) = (A� ′, �) = a′∗(� ′, �).

In the case � = � ′ �= o and a′ = a this gives a∗ = a, while for a �= a′ we
have (� ′, �) = 0. That is, the allowed values of observables are real, and state
vectors with different values for any observable are orthogonal. In terms of the
matrices (3.3.11) or (3.3.14), the condition (3.3.17) may be written∑

j

Ai j (� j , �) = a(�i , �), (3.3.18)
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or else ∫
dξ Aξ ′ξ (�ξ ,�) = a(�ξ ′, �). (3.3.19)

The Hermitian operators representing observables are assumed to have the
important property, that their eigenvectors form complete sets. This is automatic
for Hermitian operators acting in spaces of finite dimensionality.2 It is more
difficult to show that a given Hermitian operator in an infinite-dimensional space
has this property, especially when its eigenvalues form a continuum, and we will
simply assume that this is the case.

Let �r be a complete orthonormal set of state vectors representing states
with values ar for the observable represented by an operator A, for which
A�r = ar�r . The expectation value of this observable in a state represented by a
normalized vector� is the sum over allowed values, weighted by the probability
(3.1.15) of each:

〈A〉� =
∑

r

ar |(�r , �)|2 =
∑

r

(�, A�r )(�r , �) = (�, A�). (3.3.20)

It is easy to see that if the state represented by � has a definite value a for
an observable represented by an operator A, then An� = an�, and so it has
a definite value P(a) for the observable represented by any power series P(A)
in the operator A. More generally, we can define functions f (A) of Hermitian
operators by specifying that for an arbitrary linear combination

∑
r cr�r of a

complete independent set of eigenvectors �r of A with eigenvalues ar , we have

f (A)
∑

r

cr�r ≡
∑

r

cr ar�r .

2 Here is the proof. It follows from the theory of determinants that a matrix Ai j in a finite number d of
dimensions will have an eigenvalue a if and only the determinant of A−a1 vanishes. This determinant is
a polynomial in a of order d, and therefore by a fundamental theorem of algebra, there is always at least
one value of a where it vanishes, and hence at least one eigenvector u for which Au = au. Consider
the space of vectors v that are orthogonal to u — that is, for which (v, u) = 0. If A is Hermitian,
this space is invariant under A, for if (v, u) = 0 then (Av, u) = (v, Au) = a(v, u) = 0. According
to the argument given in footnote 3 of Section 3.1, we can introduce a complete orthonormal basis of
vectors vi in this space, so that Avi is a linear combination

∑
j Ai j v j of these basis vectors. Because

A ji = (v j , Avi ) = (Av j , vi ) = A∗
i j , the coefficients Ai j form an Hermitian matrix, but now in d − 1

dimensions. We then apply the same argument as before to show that there is some linear combination
v = ∑

i vi orthogonal to u that is also an eigenvector of A. Then by considering the action of A on
the d − 2-dimensional space of vectors orthogonal to both u and v, we can find an eigenvector of A
in this space. We can continue in this way to construct d orthogonal eigenvectors of A. Since they are
orthogonal, they are independent, and since there are d of them, they form a complete set. (This is often
referred to as the diagonalization of the matrix A, because we can regard the i th component of the r th
orthonormal eigenvector of A as the ir component of a matrix Uir , with the property that AU = U D,
where Drs = ar δrs is a diagonal matrix. The condition that the eigenvectors are orthonormal tells us
that U†U = 1, so U has an inverse equal to U†, and U−1 AU = D.)
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In general, the expectation value of a function of an operator is not equal to
that function of the expectation value. That is, 〈 f (A)〉� �= f (〈A〉�). In fact, for
Hermitian operators, 〈A2〉� ≥ 〈A〉2

� . To see this, we note that the expectation
value of the square of any Hermitian operator B is

〈B2〉� = (B�, B�),

so the expectation value is always positive, and vanishes only if B annihilates
the state vector �. Thus in particular

0 ≤ 〈
(A − 〈A〉�)2

〉
�

= 〈A2〉� − 2〈A〉2
� + 〈A〉2

� = 〈A2〉� − 〈A〉2
�. (3.3.21)

As this shows, 〈A〉2
� is at most equal to 〈A2〉� , and equals it only if � is an

eigenstate of A.
We are now in a position to prove a generalized version of the Heisenberg

uncertainty principle. For this purpose, we will need a general inequality, known
as the Schwarz inequality, which states that for any two state vectors � and � ′,
we have

|(� ′, �)|2 ≤ (� ′, � ′)(�,�). (3.3.22)

(This is a generalization of the familiar fact that cos2 θ ≤ 1.) The Schwarz
inequality is is proved by introducing

� ′′ ≡ � −� ′(� ′, �)/(� ′, � ′)

and noting that

0 ≤ (� ′′, � ′′)(� ′, � ′) = (�,�)(� ′, � ′)− 2(�,� ′)(� ′, �)+ |(� ′, �)|2
= (�,�)(� ′, � ′)− |(� ′, �)|2.

To give a precise statement of the uncertainty principle, we may define the root
mean square deviation of an Hermitian operator A from its expectation value in
a state represented by � as:

�� A ≡
√〈(

A − 〈A〉�
)2
〉
�

. (3.3.23)

For our purposes, it is convenient to re-write this as

�� A = √
(�A, �A),

where

�A ≡ (A − 〈A〉�)�/
√
(�,�).

For any pair of Hermitian operators A and B, the Schwarz inequality (3.3.22)
then gives

�� A�� B ≥ |(�A, �B)|.
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The scalar product on the right-hand side may be expressed as

(�A, �B) = (�, [A − 〈A〉�][B − 〈B〉�]�)
(�,�)

= (�, [AB − 〈A〉�〈B〉�]�)
(�,�)

.

In particular, since for Hermitian operators (�, AB�)∗ = (�, B A�), the
imaginary part of this scalar product is

Im(�A, �B) = (�, [A, B]�)
2i(�,�)

= 〈[A, B]〉�/2i.

The absolute value of any complex number is equal to or greater than the
absolute value of its imaginary part, so at last

�� A�� B ≥ 1

2
|〈[A, B]〉� |. (3.3.24)

For example, if we have a pair of operators X and P for which [X, P] = i�,
then in any state �,

�� X �� P ≥ �
2
. (3.3.25)

This is the Heisenberg uncertainty relation, discussed in Section 1.5. It is not
possible to derive an improved general lower bound on �� X �� P , because for
a Gaussian wave packet this product actually equals �/2.

For some operators A, we may define a number called the trace, written TrA.
The trace is defined by introducing a complete orthonormal set of basis vectors
�i , and writing

TrA ≡
∑

i

(�i , A�i ). (3.3.26)

This definition is useful because the trace where it exists is independent of
the choice of basis vectors. According to Eq. (3.1.16), for any other complete
orthonormal set of basis vectors �i , we have

A�i =
∑

j

(� j , A�i )� j ,

so Eqs. (3.3.26) and (3.1.17) give

TrA =
∑

i j

(� j , A�i )(�i ,� j ) =
∑

j

(� j , A� j ).

The trace has some obvious properties:

Tr(αA + βB) = αTrA + βTrB, TrA† = (TrA)∗. (3.3.27)
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Also,

Tr(AB) =
∑

i

(�i , AB�i ) =
∑

i j

(�i A� j )(� j , B�i )=
∑

i j

(� j , B�i )(�i A� j )

= Tr(B A). (3.3.28)

But not all operators have traces. The trace of the unit operator 1 is just
∑

i 1,
which is the dimensionality of the Hilbert space, and hence is not defined in
Hilbert spaces of infinite dimensionality. Note in particular that in a space of
finite dimensionality the trace of the commutation relation [X, P] = i�1 would
give the contradictory result 0 = i�Tr1, so this commutation relation can only
be realized in Hilbert spaces of infinite dimensionality, where the traces do not
exist.

Operators can be constructed from state vectors. For any two state vectors

� and �, we may define a linear operator
[
��†

]
known as a dyad, by the

statement that acting on an arbitrary state vector �, this operator gives3[
��†

]
� ≡ �

(
�,�

)
. (3.3.29)

The adjoint of this dyad is
[
��†

]† =
[
��†

]
. The result of operating on an

arbitrary state vector � with a product of such dyads is[
�1�

†
1

][
�2�

†
2

]
� =

(
�2,�

)[
�1�

†
1

]
�2 =

(
�2,�

)(
�1, �2

)
�1,

so the product is a numerical factor times another dyad:[
�1�

†
1

][
�2�

†
2

]
=
(
�1, �2)

[
�1�

†
2

]
. (3.3.30)

(For any given state vector � we can if we like introduce an operator �†, which
operating on any state vector � yields the number (�,�), but in this book we
will not have occasion to employ the symbol �† except as an ingredient in the

symbols for dyads like
[
��†

]
.)

In particular, if � is a normalized state vector, then the dyad
[
��†

]
is an

Hermitian operator equal to its own square:

[��†]2 = [��†]. (3.3.31)

Such operators are called projection operators. From Eq. (3.3.31) it follows that
the eigenvalues λ of projection operators satisfy λ2 = λ, and therefore are all

3 Here the Dirac bra-ket notation is particularly convenient. The dyad
[
��†

]
is written in this nota-

tion as |�〉〈�|, which immediately suggests that (|�〉〈�|)|�〉 = |�〉(〈�|�〉), which is the same as
Eq. (3.3.29).
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either one or zero. The projection operator [��†] represents an observable, that
takes the value one in the state represented by �, and the value zero in any state
represented by a vector orthogonal to �. For a complete orthonormal set of state
vectors �i , the relation (3.1.17) may be expressed as a statement about the sum
of the corresponding projection operators∑

i

[
�i�

†
i

]
= 1. (3.3.32)

An Hermitian operator A with eigenvalues ai and a complete set of orthonor-
mal eigenvectors �i can be expressed as a sum of projection operators with
coefficients equal to the eigenvalues:

A =
∑

i

ai

[
�i�

†
i

]
. (3.3.33)

(To see this, it is only necessary to check that the operator A − ∑
i ai

[
�i�

†
i

]
annihilates any of the �i ; since the �i form a complete set, this operator
therefore vanishes.)

From Eq. (3.3.33) it is easy to see that for any polynomial function P(A) of
an Hermitian operator A, we have

P(A) =
∑

i

P(ai )
[
�i�

†
i

]
.

We extend this to a definition of general functions of operators: for any function
f (a) that is finite at the eigenvalues ai , we define

f (A) ≡
∑

i

f (ai )
[
�i�

†
i

]
. (3.3.34)

Probabilities can enter in quantum mechanics not only because of the proba-
bilistic nature of state vectors, but also because (just as in classical mechanics)
we may not know the state of a system. A system may be in any one of a number
of states, represented by state vectors �n that are normalized but not neces-
sarily orthogonal, with probabilities Pn satisfying

∑
n Pn = 1. (For instance,

an atomic state with � = 1 may have a 20% chance of being in a state with
Lz = �, a 30% chance of having Lx = 0, and a 50% chance of having
(Lx + L y)/

√
2 = �.) In such cases, it is often convenient to define a density

matrix (actually an operator, not a matrix) as a sum of projection operators, with
coefficients equal to the corresponding probabilities

ρ ≡
∑

n

Pn

[
�n�

†
n

]
. (3.3.35)

We note that the expectation value of the observable represented by an arbitrary
Hermitian operator A is the sum of the expectation values in the individual states
�n , weighted with the probabilities of these states:
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〈A〉 =
∑

n

Pn

(
�n, A�n

)
= Tr{Aρ} (3.3.36)

so in quantum mechanics the physical properties of a statistical ensemble of pos-
sible states are completely characterized by the density matrix of the ensemble.
This is remarkable, because the same density matrix can be written in different
ways as sums over various sets of states with various probabilities. In particular,
because ρ is Hermitian, it has a complete set of orthonormal eigenvectors �i

with eigenvalues pi , so it can also be written

ρ =
∑

i

pi

[
�i�

†
i

]
. (3.3.37)

Also, ρ is a positive matrix, in the sense that any of its expectation values is a
positive number, so all pi have pi ≥ 0. Finally, using Eq. (3.1.17), we can see
that the operator (3.3.35) has unit trace

Trρ =
∑

n

Pn = 1,

so applying this to the representation (3.3.37), we also have
∑

i pi = 1. As far
as calculating expectation values is concerned, we can equally well say that the
system is in any of the states �n with probabilities Pn , or in any of the states
�i with probabilities pi . It is a special feature of quantum mechanics that our
knowledge of the same system can be expressed in different ways, as different
sets of probabilities that the system is in different sets of states.

It is sometimes convenient to express the degree to which the state of a system
differs from a single pure state by the von Neumann entropy:

S[ρ] ≡ −kBTr
(
ρ ln ρ

)
= −kB

∑
i

pi ln pi , (3.3.38)

where kB (often omitted) is the Boltzmann constant. For a pure state, with one pi

equal to unity and all others equal to zero, the von Neumann entropy vanishes,
while in all other cases we have S > 0.

3.4 Symmetries

Historically, it was classical mechanics that provided quantum mechanics with a
menu of observable quantities and with their properties. But much of this can be
learned from fundamental principles of symmetry, without recourse to classical
mechanics.

A symmetry principle is a statement that, when we change our point of view in
certain ways, the laws of nature do not change. For instance, moving or rotating
our laboratory should not change the laws of nature observed in the labora-
tory. Such special ways of changing our point of view are called symmetry
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transformations. This definition does not mean that a symmetry transformation
does not change physical states, but only that the new states after a symmetry
transformation will be observed to satisfy the same laws of nature as the old
states.

In particular, symmetry transformations must not change transition probabil-
ities. Recall that if a system is in a state represented by a normalized Hilbert
space vector �, and we perform a measurement (say, of a set of observables
represented by commuting Hermitian operators) which puts the system in any
one of a complete set of states represented by orthonormal state vectors �i , then
the probability of finding the system in a state represented by a particular �i is
given by Eq. (3.1.15):

P(� �→ �i ) =
∣∣∣(�i , �

)∣∣∣2 . (3.4.1)

Thus symmetry transformations must leave all |
(
�,�

)
|2 invariant. One way to

satisfy this condition is to suppose that a symmetry transformation takes gen-
eral state vectors � into other state vectors U�, where U is a linear operator
satisfying the condition of unitarity, that for any two state vectors � and �, we
have (

U�,U�
)

=
(
�,�

)
. (3.4.2)

Recall that the adjoint of an operator U is defined so that(
U�,U�

)
=
(
�,U †U�

)
,

so the condition of unitarity may also be expressed as an operator relation:

U †U = 1. (3.4.3)

We limit ourselves to symmetry transformations that, like rotations and trans-
lations, have inverses, which undo the effect of the transformation. (For instance,
the symmetry transformation of rotating around some axis by an angle θ has an
inverse symmetry transformation, in which one rotates around the same axis by
an angle −θ .) If a symmetry transformation is represented by a linear unitary
operator that takes any � into U�, then its inverse must be represented by a
left-inverse operator U−1 that takes U� into �, so that

U−1U = 1. (3.4.4)

The same must be true for U−1 itself, so it has an left-inverse (U−1)−1 for which
(U−1)−1U−1 = 1. Multiplying this on the right with U and using Eq. (3.4.4)
then gives

(U−1)−1 = U, (3.4.5)
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so by applying Eq. (3.4.4) to U−1, we see that the left-inverse of U is also a
right-inverse:

UU−1 = 1. (3.4.6)

Acting on Eq. (3.4.3) on the right with U−1, we see that the inverse of a unitary
operator is its adjoint:

U † = U−1. (3.4.7)

Now, is this the only way that symmetry transformations can act on physical
states? In formulating the mathematical conditions for symmetry principles in
quantum mechanics, we immediately run into a complication. As discussed in
Section 3.1, in quantum mechanics a physical state is not represented by a spe-
cific individual normalized vector in Hilbert space, but by a ray, the whole class
of normalized state vectors that differ from one another only by phase factors,
numerical factors with modulus unity. We have no right simply to assume that
a symmetry transformation must map an arbitrary vector in Hilbert space into
some other definite vector. We are only entitled to require that symmetry trans-
formations map rays into rays — that is, a symmetry transformation acting on
the normalized state vectors differing by phase factors that represent a given
physical state will yield some other class of normalized state vectors differ-
ing only by phase factors that represent some other physical state. To represent
a symmetry, such a transformation of rays must preserve transition probabili-
ties — that is, if� and� are state vectors belonging to the rays representing two
different physical states, and a symmetry transformation takes these two rays
into two other rays containing the state vectors � ′ and �′, then we must have

|(�′, � ′)|2 = |(�,�)|2. (3.4.8)

Notice that this is only a condition on rays — if it is satisfied by a given set of
state vectors, then it is satisfied by any other set of state vectors that differ from
the first set only by arbitrary phases.

There is a fundamental theorem due to Eugene Wigner1 (1902–1995), which
says that there are just two ways that this condition can be satisfied for all �
and �. One is the way we have already discussed: phases can be chosen so that
the effect of a symmetry transformation on any state vector� is a transformation
� → U�, with U a linear unitary operator satisfying the condition (3.4.2). The
other possibility is that U is antilinear and antiunitary, by which is meant that

U (α� + α′� ′) = α∗� + α′∗� ′, (3.4.9)

1 E. P. Wigner, Ann. Math. 40, 149 (1939). Some missing steps are provided by S. Weinberg, The
Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995), pp. 91–96.



72 3 General Principles of Quantum Mechanics

and

(U�,U�) = (�,�)∗. (3.4.10)

(Note that an antiunitary operator cannot be linear, because if it were then we
would have α(U�,U�) = (U�,Uα�) = (�, α�)∗ = α∗(U�,U�), which
is not true for complex α.) For antiunitary operators the definition of the adjoint
is changed to

(U †�,�) = (�,U�)∗,

so Eq. (3.4.3) applies to antiunitary as well as to unitary operators. We will see
in Section 3.6 that symmetries represented by antilinear antiunitary operators all
involve a change in the direction of time’s flow. We will mostly be concerned
with those represented by linear unitary operators.

The operator 1 represents a trivial symmetry, that does nothing to state vec-
tors. It is of course unitary as well as linear. If U1 and U2 both represent
symmetry transformations, then so does U1U2. This property, together with the
existence of inverses and a trivial transformation 1, means that the set of all
operators representing symmetry transformations forms a group.

There is a special class of symmetries represented by linear unitary
operators — those for which U can be arbitrarily close to 1. Any such symmetry
operator can conveniently be written

Uε = 1 + iεT + O(ε2), (3.4.11)

where ε is an arbitrary real infinitesimal number, and T is some ε-independent
operator. The unitarity condition is(

1 − iεT † + O(ε2)
)(

1 + iεT + O(ε2)
)

= 1,

or, to first order in ε,

T = T †. (3.4.12)

Thus Hermitian operators arise naturally in the presence of infinitesimal sym-
metries. If we take ε = θ/N , where θ is some finite N -independent parameter,
and then carry out the symmetry transformation N times and let N go to infinity,
we find a transformation represented by the operator[

1 + iθT/N
]N → exp (iθT ) = U (θ). (3.4.13)

(To see that is true for Hermitian operators T , note that it is true when both
sides of the equation act on any eigenvector of T , where T can be replaced with
the eigenvalue, and since these eigenvectors form a complete set, it is true in
general.) The operator T appearing in Eq. (3.4.11) is known as the generator
of the symmetry. As we shall see, many if not all of the operators representing
observables in quantum mechanics are the generators of symmetries.
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Under a symmetry transformation � �→ U�, the expectation value of any
observable A is subjected to the transformation

(�, A�) �→ (U�, AU�) = (�,U−1 AU�), (3.4.14)

so we can find the transformation properties of expectation values (or any other
matrix elements) by subjecting observables to the transformation:

A �→ U−1 AU. (3.4.15)

Transformations of this type are called similarity transformations. Note that
similarity transformations preserve algebraic relations:

U−1 AU × U−1 BU = U−1(AB)U, U−1 AU + U−1 BU = U−1(A + B)U.

Also, similarity transformations do not change the eigenvalues of operators; if
� is an eigenvector of A with eigenvalue a, then U−1� is an eigenvector of
U−1 AU with the same eigenvalue. Where U takes the form (3.4.11) with ε

infinitesimal, an arbitrary operator A is transformed into

A �→ A − iε[T, A] + O(ε2). (3.4.16)

Thus the effect of infinitesimal symmetry transformations on any operator is
expressed in the commutation relations of the symmetry generator with that
operator. This is in particular true when the operator A is itself a symmetry gen-
erator; as we will see in several examples, in that case the commutation relations
reflect the nature of the symmetry group.

3.5 Space Translation

As an example of a symmetry transformation of great physical importance, let
us consider the symmetry under spatial translation: the laws of nature should
not change if we shift the origin of our spatial coordinate system, so that the
expectation value of any particle coordinate Xn (where n labels the individual
particles) is transformed to Xn+a, where a is an arbitrary three-vector. It follows
that there must exist a unitary operator1 U (a) such that

U−1(a)XnU (a) = Xn + a. (3.5.1)

In particular, for a infinitesimal, U must take a form like (3.4.11), which in this
case we will write with an Hermitian operator −P/� in place of A:

U (a) = 1 − iP · a/� + O(a2). (3.5.2)

1 We will generally not bother to label such unitary operators with the nature of the symmetry they
represent, leaving this to be indicated by the argument of the unitary operator.
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The condition (3.5.1) then requires that, for any infinitesimal three-vector a,

i[P · a,Xn]/� = a,

and therefore

[Xni , Pj ] = i�δi j . (3.5.3)

The presence of � in this familiar commutation relation arises because we con-
ventionally express the generator of spatial translations in units of mass times
velocity, rather than in natural units of inverse length. Eq. (3.5.2) can simply
be taken as the definition of what we mean by momentum, leaving it to experi-
ence to justify the identification of this symmetry generator with what is called
momentum in classical mechanics.

It should be noted that the operator P introduced here has the same com-
mutation relation (3.5.3) with the coordinate vector of any particle, so P must
be interpreted as the total momentum of any system. In a system containing a
number of different particles labeled n, the total momentum usually takes the
form

P =
∑

n

Pn (3.5.4)

where the operator Pn acts only on the nth particle, and therefore

[Pn,Xm] = 0 for n �= m. (3.5.5)

It follows then from Eq. (3.5.3) that

[Xni , Pmj ] = i� δi j δnm . (3.5.6)

Of course, the individual momentum operators Pn are not the generators of any
symmetry of nature.

A translation by a vector a followed by a translation by a vector b gives
the same change of coordinates as a translation by a vector b followed by a
translation by a vector a, so

U (b)U (a) = U (a)U (b).

The terms in this relation proportional to ai b j tell us that the components of
momentum commute with each other:

[Pi , Pj ] = 0. (3.5.7)

Because they commute, we can find a complete set of eigenvectors of all three
components of momentum, so by the same argument we used earlier in deriving
Eq. (3.4.13), for finite translations we have

U (a) = exp
(

− iP · a/�
)
. (3.5.8)
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This is a very simple example of the derivation of commutation relations from
the structure of a transformation group. It isn’t always so easy. The effect of two
rotations around different axes depends on the order in which the rotations are
carried out so, as we shall see in the next chapter, the different components of
the generator of rotations, the angular momentum vector, do not commute with
each other.

If �0 is a one-particle state with a definite position at the origin (that is, an
eigenstate of the position operator X with eigenvalue zero), then according to
Eq. (3.5.1), we can form a state with definite position x:

�x ≡ U (x)�0, (3.5.9)

in the sense that

X�x = x�x. (3.5.10)

From Eq. (3.5.6) we can infer that

Pj�x = i�
∂

∂x j
�x, (3.5.11)

so the scalar product of this state with a state �p of definite position is(
�p,�x

)
= exp

(
− ip · x/�

)(
�p,�0

)
.

It is convenient to normalize these states so that(
�p,�x

)
= (2π�)−3/2 exp

(
− ip · x/�

)
.

The complex conjugate gives the usual plane wave formula for the coordinate-
space wave function of a particle of definite momentum

ψp(x) ≡
(
�x, �p

)
= (2π�)−3/2 exp

(
ip · x/�

)
. (3.5.12)

This normalization has the virtue that, if the states �x satisfy the usual
normalization condition for continuum states(

�x′,�x

)
= δ3(x − x′),

then so do the states �p. That is, the scalar product of these states is

(
�p′,�p

)
=
∫

d3x ψ∗
p′(x)ψp(x) =

∫
d3x (2π�)−3 exp

(
i(p − p′) · x/�

)
.

We recognize this integral as the product of the representations (3.2.21) of the
delta function (with ki = pi/�) for each coordinate direction, so
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�p′,�p

)
= δ3(p − p′), (3.5.13)

as required by Eq. (3.2.14).

* * *

In some external environments, the Hamiltonian is not invariant under all
translations, but only under a subgroup of the translation group. In a three-
dimensional crystal, the Hamiltonian is invariant under spatial translations

x �→ x + Lr , r = 1, 2, 3 (3.5.14)

as well as any combinations of these. The Lr are the three independent transla-
tion vectors that take any atom to the neighboring atom with an identical crystal
environment. (Of course, Lr are three independent vectors, not the three compo-
nents of a single vector.) For instance, in a cubic lattice like sodium chloride the
three Lr are orthogonal vectors of equal length, but in general they do not need
to be either orthogonal or equal in length.

Because of this symmetry, if ψ(x) is a solution of the time-independent
Schrödinger equation for an electron in the crystal, then each of ψ(x + Lr ) with
r = 1, 2, 3 is also a solution with the same energy. Assuming no degeneracy,2

this requires that ψ(x + Lr ) is simply proportional to ψ(x), with a proportion-
ality constant that is required by the normalization of the wave function to be a
phase factor:

ψ(x + Lr ) = eiθrψ(x), (3.5.15)

where θr are three real angles. In the language of group theory, the wave function
provides a one-dimensional representation of the group of translations that con-
sists of all combinations of the three fundamental translations (3.5.14). Without
loss of generality, we can limit each of the θr by

0 ≤ θr < 2π, r = 1, 2, 3. (3.5.16)

We will define a wave vector q by the three conditions

q · Lr = θr , r = 1, 2, 3. (3.5.17)

In the special case of a cubic lattice, this directly gives the Cartesian components
of q. More generally, it is necessary to solve these three linear equations to find
the three components of q. In any case, it follows from Eqs. (3.5.15) and (3.5.17)

2 The conclusion (3.5.15) applies also in the case of degeneracy, but a few more words are needed in the
argument. In the case of an N -fold degeneracy, in place of the factors exp(iθr ) in Eq. (3.5.15) we have
three N ×N unitary matrices. Because translations commute, these three unitary matrices commute with
each other, and hence we can choose a basis for the N degenerate wave functions in which the unitary
matrices are diagonal: they have phase factors exp(iθrν) on the main diagonal, with ν = 1, 2, . . . , N ,
and zero everywhere else. In this basis Eq. (3.5.15) applies to the νth degenerate wave function, with a
phase θrν in place of θi .
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that the function e−iq·xψ(x) is periodic, the factors arising from the change in
the exponential canceling the factors eiθr in Eq. (3.5.15). Hence we may write

ψ(x) = eiq·xϕ(x), (3.5.18)

where ϕ(x) is periodic, in the sense that

ϕ(x + Lr ) = ϕ(x), r = 1, 2, 3. (3.5.19)

Such solutions of the Schrödinger equation are known as Bloch waves.3

If ψ(x) satisfies a Schrödinger equation of the form

H(∇, x)ψ(x) = Eψ(x), (3.5.20)

then ϕ(x) satisfies a q-dependent equation

H(∇ + iq, x)ϕ(x) = Eϕ(x). (3.5.21)

Just as in the case of free particles in a box with periodic boundary conditions,
the periodicity conditions (3.5.19) make the spectrum of eigenvalues for each q
appearing in the differential equation (3.5.21) a discrete set En(q). Of course,
q is a continuous variable, but according to Eqs. (3.5.16) and (3.5.17) it varies
only over a finite range, defined by:4

|q · Lr | < 2π, r = 1, 2, 3. (3.5.22)

Hence for each n the energies En(q) occupy a finite band. As will briefly be
described in Section 4.5, many of the properties of crystalline solids depend on
the occupancy of these bands.

3.6 Time Translation

One of the fundamental symmetries of nature is time-translation invariance —
the laws of nature should not depend on how we set our clocks. Thus whatever
time-dependence physical state vectors �(t) may have, the results �(t + τ) of
a time translation by an arbitrary amount τ should be physically equivalent, so
there must be some linear unitary operator U (τ ) such that the state of a system
at time t is transformed to

U (τ )�(t) = �(t + τ). (3.6.1)

3 F. Bloch, Zeit. f. Physik 52, 555 (1928).
4 This is known as the first Brillouin zone, identified by L. Brillouin, Compt. Rend. 191, 292 (1930). If we

had adopted a convention for the angles θr in Eq. (3.5.15) other than Eq. (3.5.16), then the wave vector
q would lie in one of various other finite regions, known as the second, third, etc. Brillouin zones. This
would just amount to a re-definition of the periodic function ϕ(x), with no change in physical results.



78 3 General Principles of Quantum Mechanics

Because τ is a continuous variable, it must be possible to express U (τ ) in a form
like (3.4.13). For time translation in place of the general Hermitian operator T
in Eq. (3.4.13), we introduce an Hermitian operator −H/�, so that

U (τ ) = exp
(

− i Hτ/�
)
. (3.6.2)

This can be taken as the definition of the Hamiltonian H .
It follows, by setting t = 0 in Eq. (3.6.1) and then replacing τ with t , that the

time-dependence of any physical state vector is given by

�(t) = exp
(

− i Ht/�
)
�(0). (3.6.3)

Like any symmetry transformation represented by linear unitary operators, this
leaves scalar products invariant:(

�(t),�(t)
)

=
(
�(0),�(0)

)
. (3.6.4)

From Eq. (3.6.3) we easily derive a differential equation for the time-dependence
of the state vector

i��̇(t) = H�(t). (3.6.5)

This is the general version of the time-dependent Schrödinger equation.
This formalism, in which we ascribe time-dependence to physical states (and

hence to wave functions) is known as the Schrödinger picture. There is a com-
pletely equivalent formalism, in which we keep the state vectors fixed, by
describing any state in terms of its appearance at a fixed time such as t = 0,
and instead ascribe time-dependence to operators representing observables. In
order that the time-dependence of expectation values should be the same in both
pictures, we must define operators in the Heisenberg picture by

AH (t) = exp
(

+ i Ht/�
)

A exp
(

− i Ht/�
)
. (3.6.6)

Note that, since H commutes with itself,

exp
(

+ i Ht/�
)

H exp
(

− i Ht/�
)

= H,

so the Hamiltonian is the same in the Heisenberg and Schrödinger pictures. The
time-dependence of any operator in the Heisenberg picture is given by

ȦH (t) = i[H, AH (t)]/�, (3.6.7)

provided that A does not depend explicitly on time. The Hamiltonian thus deter-
mines the time-dependence of most physical quantities. Any operator A that
commutes with the Hamiltonian and that does not depend explicitly on time is
conserved, in the sense that ȦH (t) = 0, which means that expectation values
of this observable are time-independent, whether we use the Heisenberg or the
Schrödinger picture.
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Symmetry principles provide a natural reason why physical theories should
involve conserved quantities. If an observer sees a state �(t) evolving according
to Eq. (3.6.3), then another observer for whom the laws of nature are the same
must see the state U�(t) evolving according to the same equation

U�(t) = exp
(

− i Ht/�
)

U�(0). (3.6.8)

In order for this to be consistent with Eq. (3.6.3) for all states, we must have

exp
(

− i Ht/�
)

U = U exp
(

− i Ht/�
)
, (3.6.9)

and therefore, provided U is a linear operator,

U−1 HU = H. (3.6.10)

That is, the Hamiltonian must be invariant under the symmetry transformation.
For an infinitesimal symmetry transformation with U given by Eq. (3.4.11), this
tells us that

[H, T ] = 0, (3.6.11)

so observables represented by the generators of symmetries of the Hamiltonian
commute with the Hamiltonian. It is invariance under space and time translation
that are responsible for the conservation of momentum and energy.

Note that this would not work if U were antilinear. In that case, because of
the i in the exponent in Eq. (3.6.9), in place of Eq. (3.6.10) we would find
U−1 HU = −H . This would imply that for every eigenstate � of the Hamil-
tonian with energy E , there would be another eigenstate U� with energy −E ,
which is clearly in conflict with observation and with the stability of matter.
The only way to avoid this conclusion for symmetries represented by antilinear
operators is to suppose that, instead of Eq. (3.6.8), such symmetries reverse the
direction of time:

U�(t) = exp
(

i Ht/�
)

U�(0). (3.6.12)

Then in place of Eq. (3.6.9), consistency with Eq. (3.6.3) would require that

exp
(

i Ht/�
)

U = U exp
(

− i Ht/�
)
. (3.6.13)

With U antilinear, this again yields the result that U commutes with H , avoid-
ing the disaster of negative energies. So we see that symmetries represented by
antilinear operators are possible, but they necessarily involve a reversal of the
direction of time.

It used to be thought that nature respects a symmetry under a transformation
t → −t with everything else left unchanged. As discussed in Section 4.7, it is
now known that this symmetry is violated by the weak interactions, although
it is a good approximation even there; there is however a transformation that
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reverses both the direction of time and of space, and also interchanges matter
and antimatter, which is believed to be an exact symmetry of all interactions.
This is discussed further in Section 4.7.

Not all symmetries are represented by operators that commute with the
Hamiltonian. The leading example of a different sort of symmetry is invariance
under Galilean transformations, which take the spatial coordinate x into x + vt
(where v is a constant velocity) while leaving the time coordinate unchanged. In
quantum mechanics there must be a unitary linear operator U (v) such that

U−1(v)XH (t)U (v) = XH (t)+ vt, (3.6.14)

where XH (t) is the Heisenberg picture operator representing the spatial coor-
dinate of any particle. Taking the time-derivative of Eq. (3.6.14) and using
Eq. (3.6.7) gives

iU−1(v)[H,XH (t)]U (v) = i[H,XH (t)] + �v,

and therefore

i[U−1(v)HU−1(v),U−1(v)XU (v)] = i[H,U−1(v)XU−1(v)] + �v.

For t = 0 Eq. (3.6.14) tells us that U (v) commutes with the Schrödinger picture
operator X, so this gives

i
[
U−1(v)HU−1(v),X

]
= i[H,X] + �v. (3.6.15)

This requires that

U−1(v)HU (v) = H + P · v, (3.6.16)

where P is an operator satisfying the usual commutation relation, [Xi , Pj ] =
i�δi j with every particle coordinate — that is, P is the total momentum vector.

For v infinitesimal we can write

U (v) = 1 − iv · K + O(v2), (3.6.17)

with K some Hermitian operator, known as the boost generator. Since the
transformations (3.6.14) are additive, we have U (v)U (v′) = U (v + v′), and
hence

[Ki , K j ] = 0. (3.6.18)

Also, letting v in Eq. (3.6.16) become infinitesimal, we find

[K, H ] = −iP. (3.6.19)

It is because K does not commute with the Hamiltonian that we do not use its
eigenvalues to classify physical states of definite energy.
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Since Eq. (3.6.14) applies to the coordinate Xn of any particle (now label-
ing individual particles with a subscript n), by taking the time-derivative and
multiplying with the particle mass mn , we have

U−1(v)PnH (t)U (v) = PnH (t)+ mnv, (3.6.20)

where PnH ≡ mnẊnH is the momentum of the nth particle in the Heisenberg pic-
ture. Setting t = 0 and specializing to the infinitesimal Galilean transformations
(3.6.17), this gives

[Ki , Pnj ] = −imnδi j . (3.6.21)

Note that then Eq. (3.6.19) is satisfied by the usual Hamiltonian for a multi-
particle system

H =
∑

n

P2
n

2mn
+ V, (3.6.22)

provided the potential V depends only on the differences of the particle
coordinate vectors. Indeed, from a point of view that regards symmetries as fun-
damental, we can say that Galilean invariance is the reason why Hamiltonians
for non-relativistic particles take this form.

In theories that obey Lorentz invariance rather than Galilean invariance, there
are again symmetries generated by the total momentum P, the Hamiltonian
H , and a boost generator K, but the commutation relations are different: the
commutator of K with P is proportional to H , not to the total mass, and the
commutators [Ki , K j ] do not vanish, but are proportional to the total angular
momentum operator.

3.7 Interpretations of Quantum Mechanics

The discussion of probabilities in Section 3.1 was based on what is called the
Copenhagen interpretation of quantum mechanics, formulated under the lead-
ership of Niels Bohr.1 According to Bohr,2 “The essentially new feature of the
analysis of quantum phenomena is ... the introduction of a fundamental distinc-
tion between the measuring apparatus and the objects under investigation. This
is a direct consequence of the necessity of accounting for the functions of the

1 N. Bohr, Nature 121, 580 (1928), reprinted in Quantum Theory and Measurement, eds. J. A. Wheeler
and W. H. Zurek (Princeton University Press, Princeton, NJ, 1983); Essays 1958–1962 on Atomic
Physics and Human Knowledge (Interscience, New York, 1963).

2 N. Bohr, “Quantum Mechanics and Philosophy – Causality and Complementarity,” in Philosophy in the
Mid-Century, ed. R. Klibansky (La Nuova Italia Editrice, Florence, 1958), reprinted in N. Bohr, Essays
1958–1962 on Atomic Physics and Human Knowledge (Interscience Publishers, New York, 1963).
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measuring apparatus in purely classical terms, excluding in principle any regard
to the quantum of action.”

As Bohr acknowledged, in the Copenhagen interpretation a measurement
changes the state of a system in a way that cannot itself be described by quan-
tum mechanics.3 This can be seen from the interpretive rules of the theory. If we
measure an observable represented by an Hermitian operator A, and the system
is initially in a normalized superposition

∑
n cn�n of orthonormal eigenvectors

�n of A with eigenvalues an , then the state will collapse during the measure-
ment to a state in which the observable has a definite one of the values an , and
the probability of finding the value an is given by what is known as the Born rule,
as |cn|2. This interpretation of quantum mechanics entails a departure from the
dynamical assumptions of quantum mechanics during measurement. In quan-
tum mechanics the evolution of the state vector described by the time-dependent
Schrödinger equation is deterministic. If the time-dependent Schrödinger equa-
tion described the measurement process, then whatever the details of the process,
the end result would be some definite state, not a number of possibilities with
different probabilities.

This is clearly unsatisfactory. If quantum mechanics applies to everything,
then it must apply to a physicist’s measurement apparatus, and to physicists
themselves. On the other hand, if quantum mechanics does not apply to every-
thing, then we need to know where to draw the boundary of its area of validity.
Does it apply only to systems that are not too large? Does it apply if a
measurement is made by some automatic apparatus, and no human reads the
result?

This puzzle has led some physicists to propose ways to replace quantum
mechanics with a more satisfactory theory. One possibility is to add “hidden
variables” to the theory. The probabilities encountered in quantum mechanics
would then reflect our ignorance of these variables, rather than any intrinsic
indeterminacy in nature.4 Another possibility, which goes in the opposite direc-
tion, is to introduce nonlinear and intrinsically random terms into the equation
for the evolution of the state vector, with no hidden variables, so that super-
positions spontaneously collapse in an unpredictable way into the sorts of states
familiar in classical physics, too slowly for it to be observed for microscopic
systems like atoms or photons, but much more quickly for macroscopic systems
such as measuring instruments.5

In this section we will limit ourselves to interpretations of quantum mechan-
ics that do not entail any change in its foundations — no hidden variables, and

3 There are variants of the Copenhagen interpretation sharing this feature, some of them described by
B. S. DeWitt, Physics Today, September 1970, p. 30.

4 The best known theory of this sort is that of D. Bohm, Phys. Rev. D 85, 166, 180 (1952).
5 The leading theory of this type is that of G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986). For a review, see A. Bassi and G. C. Ghirardi, Phys. Rept. 379, 257 (2003).
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no modifications to the time-dependent Schrödinger equation. Here we may dis-
tinguish interpretations belonging to two broad classes. We may take the state
vector seriously, as a complete description of the physical state of the system,
and attempt to understand how probabilities arise from the deterministic evolu-
tion of the state vector. Or we may give up the attempt at an objective description
of physical states, and instead regard the state vector as merely incorporat-
ing predictions of probabilities, according to rules that are assumed and not
derived.

Taking the state vector as a complete description of any closed system seems
to lead inevitably to the “many-worlds interpretation” of quantum mechanics,
presented originally in the 1957 Princeton Ph.D. thesis6 of Hugh Everett (1930–
1982). In this approach, the state vector does not collapse; it continues to be
governed by the deterministic time-dependent Schrödinger equation, but dif-
ferent components of the state vector of the system studied become associated
with different components of the state vector of the measuring apparatus and
observer, so that the history of the world effectively splits into different paths,
each characterized by different results of the measurement.

The difference between this interpretation of quantum mechanics and the
Copenhagen interpretation can be illustrated by considering some classic exam-
ples of the measurement process. One is the 1922 Stern–Gerlach experiment,
which will be considered in detail (more detail than we need here) in Section 4.2.
In this sort of experiment a beam of atoms is sent into an inhomogeneous
magnetic field, which puts the atoms on different trajectories according to the
value of the z-component Jz of the total angular momentum of the atom. If
the atom is initially in a state that is a linear combination of eigenstates of Jz

with different eigenvalues, then the state vector evolves to become a superposi-
tion of terms in which the atoms are following different trajectories. According
to the Copenhagen interpretation, somehow when that atom interacts with an
observer, the system collapses to a state in which the atom has a definite value
Jz , and is following just one trajectory. According to the many-worlds interpre-
tation, the state vector of the system comprising both the atom and the observer
remains a superposition: in one term, the observer sees the atom with one value
for Jz and following one definite trajectory; in another term of the state vec-
tor, the observer sees the atom with a different value for Jz and following a
different trajectory. Either interpretation is in accord with experience, but the
Copenhagen interpretation relies on something happening during a measure-
ment that is outside the scope of quantum mechanics, while the many-worlds
interpretation strictly follows quantum mechanics, but supposes that the history
of the universe is continually splitting into an inconceivably large number of
branches.

6 The published version is H. Everett, Rev. Mod. Phys. 29, 454 (1957).
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A more melodramatic example of measurement in quantum mechanics was
offered in 1935 by Schrödinger.7 A cat is placed in a closed chamber with a
radioactive nucleus, a Geiger counter that can detect the nuclear decay, and a
capsule of poison that is released when the counter records that the decay has
occurred. After one half-life, the state vector of the combined system is a super-
position of terms with equal magnitude: in one term, the nucleus has not yet
decayed and the cat is still alive; in the other term the decay has occurred and
the cat has been killed by the poison. According to the Copenhagen interpre-
tation, when the cat is observed (perhaps by the cat himself — it is not clear)
the state of the nucleus and the cat and the observer collapses, either to a state
with the nucleus not yet decayed and the cat still alive, or to a state with the
decay having occurred and the cat being dead, each with its own probability. In
contrast, according to the many-worlds interpretation, the state vector remains
a superposition of terms, one with the cat alive and the observer seeing the cat
alive, and the other term with the cat dead and the observer seeing it dead. (Of
course, even in the term in the state vector in which the cat is still alive after a
single half-life, its future is dim.)

Whether or not we adopt the many-worlds interpretation, it is interesting to
see how far we can get in describing the process of measurement within the
scope of quantum mechanics, without invoking a collapse of the state vector. The
first step in a measurement is an evolution of the state vector in the Schrödinger
picture, which establishes a correlation between the system under study (which I
will call the microscopic system, though in principle it need not be small), such
as an atom’s angular momentum or a radioactive nucleus, and a macroscopic
apparatus, such as a detector that determines the atom’s trajectory, or a cat. Sup-
pose that the microscopic system can be in various states labeled with an index
n, while the apparatus can be in states labeled with an index a, so that the states
of the combined system can be expressed in terms of a complete orthonormal
basis of state vectors denoted �na . (There must be at least as many apparatus
states a as system states n, though there may be many more.) The apparatus is
placed at t = 0 in a suitable initial state denoted a = 0, with the microscopic
system in a general superposition of states, so that the combined system has a
state vector

�(0) =
∑

n

cn�n0. (3.7.1)

We then turn on an interaction between the microscopic system and the mea-
suring apparatus, so that the system evolves in a time t to U�(0), where U is
the unitary operator U = exp(−i t H/�). We suppose that we are free to choose
the Hamiltonian H to be anything we like, so that U is whatever unitary trans-
formation we need. For an ideal measurement, what we need is that, if �(0) is

7 E. Schrödinger, Naturwiss. 48, 52 (1935).
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any of the basis states �n0, then it evolves into a state U�(0) = �nan , with n
unchanged,8 and with an labeling some definite state of the apparatus in a unique
correspondence with the state of the microscopic system, so that an �= an′ if
n �= n′. That is, we need

Un′a′,n0 = δn′nδa′an . (3.7.2)

(We can always choose the other elements of Un′a′,na , those with a �= 0, to make
the whole matrix unitary. For instance, for a �= 0, we can take

Un′a′,na =
{
δn′n U (n)

a′a a′ �= an′
0 a′ = an′

(3.7.3)

where the matrix U (n) is constrained by the condition that, for a �= 0 and ā �= 0,

δaā =
∑

a′ �=an

U (n)∗
a′a U (n)

a′a . (3.7.4)

The matrices U (n)
a′a are square, because a′ runs over all apparatus states except

a′ = an , and a runs over all apparatus states except a = 0. The condition (3.7.4)
is thus simply the condition that these submatrices are unitary, and since they
are subject to no other constraints, we can find any number of matrices that
satisfy this condition. They can for instance be simply chosen as the matrices
that permute the index a = 0 into the position an . The reader can check that
the conditions (3.7.2)–(3.7.4) make the whole matrix Un′a′,na unitary.) After the
microscopic system and the measuring apparatus have interacted, the combined
system is in a state U�(0), which according to Eqs. (3.7.1) and (3.7.2) is a
superposition of apparatus states:

U�(0) =
∑

n

cn�nan . (3.7.5)

A frequently quoted example9 was given by John von Neumann (1903–1957).
Instead of discrete indices n and a, the states of the microscopic system and the
apparatus are characterized by the position coordinate x of a particle and the
coordinate X of a pointer. The Hamiltonian is taken as H = −ωx P where ω
is some constant, and P is the pointer momentum operator, satisfying the usual
commutation relation [X, P] = i� (and with X and P commuting with x and
its associated momentum p). If at t = 0 the coordinate-space wave function is

8 Measurements that are ideal in this sense, with the state of the microscopic system unchanged, were
called by Wheeler “quantum non-demolition” measurements. In some cases measurements that change
the state of the microscopic system are also useful.

9 J. v. Neumann, Mathematical Foundations of Quantum Mechanics, trans. R. T. Beyer (Princeton
University Press, Princeton, NJ, 1955).
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ψ(x, X, 0) = f (x − ξ)g(X), then at a later time t the wave function in this case
will be

ψ(x, X, t) = f (x − ξ)g(X − xωt). (3.7.6)

If both f and g are sharply peaked at zero values of their arguments, then obser-
vation of the pointer position X will tell us the position ξ of the particle, with
an uncertainty that can be made as small as we like by choosing the peaks in
f and g to be sufficiently sharp. But if we start with the particle described by a
broad wave packet f , then no matter how sharply peaked we take the function g,
the pointer will be left in a superposition of states with a broad range of different
positions X .

The correlation between system and apparatus exhibited in Eqs. (3.7.5) and
(3.7.6) does not in itself represent a measurement, because the system and appa-
ratus are still left in a superposition of states. It is in the next step that the
difference between the Copenhagen and many-worlds interpretation emerges.
In the Copenhagen interpretation, by the time an observer finishes examining
the state (3.7.5), the state vector has collapsed to one of the �nan . In the many-
worlds interpretation, the state vector remains a superposition (3.7.5), but the
apparatus includes the observer, and so each term of the superposition repre-
sents a state in which the observer thinks that the state of the apparatus has
become one of the an .

There is another problem with both interpretations. Experience shows that
when a measurement is made, the apparatus is generally left in a state of
the sort familiar from classical physics. The atom in a Stern–Gerlach experi-
ment is found to have a definite trajectory, not a superposition of trajectories.
Schroödinger’s cat is found to be either alive or dead, not in a state such as
�alive + �dead. We will refer to these favored states as classical states. (These
states were identified by Zurek,10 with the name of “pointer states.”) Quantum
mechanics itself does not indicate anything special about the classical states. As
far as our discussion so far is concerned, we could have taken the �na to be any
orthonormal basis we like. So why do measurements in our experience result in
classical states?

The Copenhagen and many-worlds interpretations of quantum mechanics give
very different answers to this question. For the Copenhagen interpretation, it is
the collapse of the state that inevitably selects classical states as the result of
a measurement. Classical physics in this interpretation does not emerge from
quantum mechanics; it is from the beginning part of the foundations of quan-
tum mechanics. For the many-worlds interpretation, a very different answer has
emerged in recent years, in the phenomenon of decoherence.11

10 W. Zurek, Phys. Rev. D 24, 1516 (1981).
11 For a review of decoherence, see W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
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Decoherence occurs because any real macroscopic apparatus will always be
subject to tiny perturbations from the external environment, if only from the
black-body photons that are present at any temperature above absolute zero.
These perturbations cannot normally change one classical state into another. For
instance, exposure to low-temperature black-body photons will not cause a par-
ticle on one trajectory in a Stern–Gerlach experiment to switch to an entirely
different trajectory, or change a dead cat into one that is alive. But these pertur-
bations can and do rapidly change the phase of classical states. These rapid and
random phase changes almost immediately change any superposition of clas-
sical states to other superpositions.12 A feline superposition �alive + �dead will
become eiα�alive +eiβ�dead, with α and β randomly fluctuating phases. Joos and
Zeh13 have considered an experiment in which electrons can classically follow
either one of two possible trajectories, and shown how room temperature radi-
ation will in one second introduce large random phases in the state vectors of
trajectories separated by only 1 mm.

As a consequence of decoherence, the state of a microscopic system and the
apparatus to which it is coupled is changed from (3.7.5) to

∑
n exp(iϕn)cn�nan ,

where the ϕn are randomly fluctuating phases, and the classical states �na of the
sort discussed above are here assumed to form a complete orthonormal basis.14

In consequence, when we calculate expectation values the interferences between
different terms in this superposition average to zero, and the observed expecta-
tion value of any Hermitian operator A (not necessarily one for which the �nan

are eigenstates) will be

〈A〉 =
∑

n

|cn|2
(
�nan , A�nan

)
, (3.7.7)

with the bar over the expectation value indicating that it is averaged over the
phases ϕn . This is interpreted as meaning that the probability of the system under
study and the apparatus being in the state �nan is |cn|2, just as in the Copenhagen
interpretation.

Of course, if everything in a closed system is observed, then there is no deco-
herence. The phases αn arise only because there are some features of the system,
such as black-body photons, that we do not observe in detail. It may be that, in
addition to the decoherence that occurs as a practical matter in all real exper-
iments, there is a fundamental decoherence, due to the fact that as a result of

12 The possibility of suppressing decoherence so that superpositions of classical states can be observed is
discussed by A. J. Leggett, Contemp. Phys. 25, 583 (1984).

13 E. Joos and H. D. Zeh, Zeit. Phys. B: Condensed Matter 59, 223 (1985).
14 In simple cases such as a Stern–Gerlach experiment, the classical states do form a complete orthonormal

set. This is not necessarily true in more complicated cases.
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the finite speed of light there are always parts of the universe that we can not
observe.15

There seems to be a wide spread impression that decoherence solves all obsta-
cles to the class of interpretations of quantum mechanics, which take seriously
the dynamical assumptions of quantum mechanics as applied to everything,
including measurement. This is a controversial matter. My own opinion is that
these interpretations, like the Copenhagen interpretation, remain unsatisfactory.

The problem is with the Born rule, that tells us that in a state (3.7.5), the
probability that an observer sees the system in the state �nan is |cn|2. In the
Copenhagen interpretation this is simply an assumption about what happens
during the mysterious collapse of the state, an intrinsically probabilistic process.
But where does the Born rule come from in other interpretations? The “deriva-
tion” given above, based on Eq. (3.7.7), is clearly circular, because it relies on
the formula for expectation values as matrix elements of operators, which is
itself derived from the Born rule.

Different meanings have been attached to probability by scientists, mathe-
maticians, and philosophers. In physics, when we say that the probability of
an observer finding the combined system in state �nan is |cn|2, we commonly
mean that if an observer performs this measurement many times, always start-
ing with the state vector (3.7.1), then the fraction Pn of the measurements that
will yield the state �nan is |cn|2. Equivalently, when we say that the expectation
value of an observable A in a state � is (�, A�)/(�,�), what we mean is that
when an observer measures this observable many times in this state, the aver-
age result with be (�, A�)/(�,�). This is sometimes called the “frequentist”
interpretation of probability.

Statements of this sort about probabilities are predictions about how state vec-
tors evolve in time during measurements, so if measurement is really described
by quantum mechanics, then we ought to be able to derive such formulas by
applying the time-dependent Schrödinger equation to the case of repeated mea-
surement. This is not just a matter of intellectual tidiness, of wanting to reduce
the postulates of physical theory to the minimum number needed. If the Born
rule cannot be derived from the time-dependent Schrödinger equation, then
something else is needed, something outside the scope of quantum mechan-
ics, and the many-worlds interpretation thus shares the inadequacies of the
Copenhagen interpretation.16

To address this problem, we need to be specific about the circumstances in
which probabilities are to be measured. Since we are here discussing probability
as a matter of the frequencies of things seen by observers, we have to spec-
ify when the observer becomes so tangled with the system, that we can think

15 For a discussion of decoherence associated with cosmological horizons, see R. Bousso and L. Susskind,
arXiv:1105.3795 (2011).

16 For a strong expression of this view, see A. Kent, Int. J. Mod. Phys. A 5, 1745 (1990).
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of different terms in the state vector as including different conclusions of the
observer.

One possibility is that a sequence of experiments is carried out, in each case
starting with the same state vector (3.7.1), and in each case followed by a mea-
surement of the sort described above, with the observer treated as part of the
measuring apparatus. In each measurement the history of the world splits into
as many branches as there are states n, and (as long as none of the cn vanish) for
every possible sequence of experimental results n1, n2, etc. there is one history
in which the observer sees those results. For instance, consider a system with
only two possible states, which appear in the state vector with coefficients c1

and c2. As long as neither coefficient vanishes, after a single measurement the
state of the world will have two branches, in one of which the observer finds
that the system is in state 1, and in the other of which the observer finds that the
system is in state 2. After N repeated measurements, the history of the world
will have 2N branches, in which occur every possible history of results of these
experiments. No matter how large or small the ratio c1/c2 may be, as long as it
is neither zero nor infinity, there is nothing to pick out one sequence of experi-
mental results as being more or less likely than another. There is nothing in this
picture that corresponds to the usual assumption of quantum mechanics, that
assigns a probability |cn1 |2|cn2 |2 · · · to a history in which the sequence of results
found by the observer is n1, n2, etc.

In a different sort of experiment for the measurement of probabilities, a large
number N of copies of the same system are prepared in the same state

∑
n cn�n ,

so that the state vector of the combined system is a direct product:

� =
∑

n1n2...nN

cn1cn2 · · · cnN�n1n2...nN , (3.7.8)

where �n1n2...nN is the state in which system s is in state ns . If the �n are suit-
able classical states, of the sort that survive decoherence, then the effect of the
environment will be to multiply each cns with a phase factor exp(iϕs,ns ), so that
Eq. (3.7.8) becomes

� =
∑

n1n2···nN

cn1cn2 · · · cnN exp
[
iϕ1,n1 + · · · + iϕN ,nN

]
�n1n2...nN (3.7.9)

with the phases ϕs,ns random and uncorrelated. We take the states of this basis
to be orthonormal, in the sense that(

�n′
1n′

2...n
′
N
, �n1n2...nN

)
= δn′

1n1δn′
2n2 · · · δn′

N nN ,

and the state (3.7.9) is then normalized if
∑

n |cn|2 = 1. In this scenario, it is only
after the microscopic system has been prepared in the state (3.7.8) that, by cor-
relating the state (3.7.9) with a measuring apparatus and observer, the observer
finds herself in a branch of the history of the world in which each of the copies of
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the system is in some definite basis state, say in the states n1, n2, . . . nN . Let’s
say that she finds Nn copies in each state n, of course with

∑
n Nn = N . She will

conclude that the probability that any one copy is in the state n is Pn = Nn/N .
Note that this is pretty much how probabilities are actually measured in prac-

tice. For instance, if we want to measure the probability that a nucleus in a given
initial state will experience a radioactive decay in a certain time t , we assemble
a large number N of these nuclei in the same initial state, and count how many
have experienced the decay after a time t ; the decay probability is that number
divided by N .

Here again, all results are possible. The observer can find any set of results
n1, n2, . . . nN for the states of the identical subsystems. This is not so different
from the situation in classical mechanics. An observer tossing a coin may find
that it comes up heads every time. In all cases, one has to hope that if the number
N of repetitions is sufficiently large, the relative frequencies Nn/N will give a
good approximation to the actual probability Pn .

Even in the limit of large N , does this picture lead to the usual assump-
tion of quantum mechanics, that the quantities Pn approach |cn|2? Of course,
state vectors tell us nothing without some sort of interpretive postulate. The one
postulate that does not seem to raise problems of consistency with the determin-
istic dynamics of the Schrödinger equation is the “second postulate of quantum
mechanics” described in Section 3.3: If the state vector of a system is an eigen-
state of the Hermitian operator A representing some observable, with eigenvalue
a, then the system definitely has the value a for that observable. The operators
that interest us here are frequency operators Pn , defined by the conditions that
they are linear and act on the basis states of the combined system as

Pn�n1n2...nN ≡ (Nn/N )�n1n2...nN , (3.7.10)

where Nn is the number of the indices n1, n2, . . . nN equal to n. It would solve
all our problems if we could show that the state (3.7.9) is an eigenstate of Pn

with eigenvalue |cn|2, but of course this is not true (except in the special cases
where |cn| is zero or one, where � either does not contain any term �n1n2...nN

where any index equals n, or is just proportional to a term where all indices
equal n). What we can show is that this eigenvalue condition is nearly true for
large N . Specifically, for the states (3.7.9) we have17

||(Pn − |cn|2)�||2 = |cn|2(1 − |cn|2)
N

≤ 1

4N
, (3.7.11)

17 The proof that ||(Pn − |cn |2)�|| vanishes for large N was given by J. B. Hartle, Am. J. Phys. 36, 704
(1968). Also see B. S. DeWitt, in Battelle Rencontres, 1967 Lectures in Mathematics and Physics, eds.
C. DeWitt and J. A. Wheeler (W. A. Benjamin, New York, 1968); N. Graham, in The Many Worlds
Interpretation of Quantum Mechanics, eds. B. S. DeWitt and N. Graham (Princeton University Press,
Princeton, NJ, 1973) [who gives Eq. (3.7.11) explicitly]; E. Farhi, J. Goldstone, and S. Gutmann, Ann.
Phys. 192, 368 (1989); D. Deutsch, Proc. Roy. Soc. Lond. A 455, 3129 (1999).
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where for any state �, the norm ||�|| denotes (�,�)1/2.
Here is the proof. It is convenient to replace the set of indices n1n2 . . . nN with

a compound index ν, and let Nν,n be the number of the indices n1n2 . . . nN that
are equal to n. Of course, for any ν, we have

∑
n Nν,n = N . The state (3.7.9)

can be written in this notation as

� =
∑
ν

(∏
n

cNν,n
n

)
eiϕν�ν,

and Eq. (3.7.10) gives

Pn� =
∑
ν

(∏
m

cNν,m
m

)
eiϕν

(
Nν,n

N

)
�ν.

The number of ν’s with Nν,n = Nn for some given set of Nn is the binomial
coefficient N !/N1!N2! · · · . Thus we have

||(Pn − |cn|2)�||2 =
∑

N1 N2...

(∏
m

|cm |2Nm

)(
Nn

N
− |cn|2

)2 N !
N1!N2! · · · ,

with the sum constrained by N1 + N2 + · · · = N . According to the binomial
theorem,

∑
N1 N2...

(∏
m

|cm |2Nm

)
N !

N1!N2! · · · =
(∑

m

|cm |2
)N

,

so

||(Pn − |cn|2)�||2

=
[

1

N 2

(
|cn|2 ∂

∂|cn|2
)2

− 2

N

(
|cn|4 ∂

∂|cn|2
)

+ |cn|4
](∑

m

|cm |2
)N

= N (N − 1)

( |cn|4
N 2

)(∑
m

|cm |2
)N−2

+ N

( |cn|2
N 2

)(∑
m

|cm |2
)N−1

−2N

( |cn|4
N

)(∑
m

|cm |2
)N−1

+ |cn|4
(∑

m

|cm |2
)N

.

If we now use the normalization condition
∑

m |cm |2 = 1, we find Eq. (3.7.11).
What should we make of this? Eq. (3.7.11) does not show that the states �ν

approach eigenstates of the frequency operators Pn for N → ∞, because these
states do not approach any limit. Indeed, the size of the Hilbert space they inhabit
depends on N . Hartle and Farhi, Goldstone, and Gutmann in ref. 17 showed how



92 3 General Principles of Quantum Mechanics

to construct a Hilbert space for the case N = ∞,18 and showed that the operators
Pn acting on this space have eigenvalues |cn|2, but to apply this construction it
is necessary to extend the usual interpretive assumption about eigenvalues from
the Hilbert spaces for finite numbers of systems to the Hilbert space for N = ∞,
which seems a stretch.

We might try introducing a strengthened version of the postulate about eigen-
states and eigenvalues, assuming that, if a normalized state vector � is nearly an
eigenvector of an Hermitian operator A with eigenvalue a, in the sense that the
norm ||(A − a)�|| is small, then in the state represented by �, it is almost cer-
tain that the value of the observable represented by A is close to a. This is hardly
precise, and in any case, since this assumption refers to something being “almost
certain,” it re-introduces a postulate regarding probability, without showing how
it follows from the dynamical assumptions of quantum mechanics.

Apart from these problems, which as mentioned earlier are not so different
from those that afflict discussions of probability in classical physics, there is
the additional difficulty, that the Born rule emerges from this analysis precisely
because we use the quantum mechanical norm ||�|| ≡ (�,�)1/2 as a measure
of the departure of physical states from being eigenstates of the operator Pn with
eigenvalue |cn|2. The smallness of ||(Pn − |cn|2)�|| for large N does tell us that
the scalar product of � with any eigenstate of Pn with an eigenvalue appreciably
different from |cn|2 is small. (Specifically, the sum of |(�,�)|2 over states � for
which Pn has an eigenvalue that differs from |cn|2 by more than terms of order
1/

√
N is at most of order 1/N .) If we assume the Born rule, then this means

that the probability of an observer observing such “wrong” values of Nn/N is
small, but of course it is circular to use this reasoning to derive the Born rule.

There is another difficulty in taking the state vector as a complete description
of closed systems: it entails the possibility of instantaneous communication. We
will take this up when we come to entanglement in Section 12.1.

Now let us turn to the other broad class of interpretations of quantum mechan-
ics, in which one gives up the idea that the state vector of a closed system gives
a complete account of its state, and instead regards it as just providing a pre-
scription for the calculation of probabilities. We could adopt this point of view
as a re-interpretation of the Copenhagen version of quantum mechanics: Instead
of invoking a mysterious collapse of the state of a system during measurement,
one could simply assume that in a state with a normalized state vector �, the
probability that the system actually has a value an for some quantity represented
by an Hermitian operator A (rather than any other value of that quantity) is
pn = ∑

r |(�nr , �)|2, where �nr are all the orthonormal eigenvectors of A with
eigenvalue an . These are “objective” probabilities, in that they do not depend on
the presence of an observer, but all this also applies if the system does happen
to contain a measuring apparatus and an observer. In that case, if the measuring

18 For criticisms of this construction, see C. M. Caves and R. Schack, Ann. Phys. 315, 123 (2005).
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apparatus is set up to measure some quantity, and we take the quantity repre-
sented by A to be the value of whatever is being measured that the observer
thinks has been found, then pn is the probability that the observer will think
that the quantity being measured has the value an . If we do not give any other
significance to the state vector, then we are not forced to accept the reality of
the huge number of worlds entailed by the many-worlds interpretation of quan-
tum mechanics. (We are not forced to reject it, either.) Of course, we also give
up all hope of deriving the Born rule for probabilities, which appears here as a
postulate of the theory.

This point of view has been carried further in the “decoherent histories” or
“consistent histories” approach, due originally to Griffiths,19 and developed by
Omnès20 and in detail by Gell-Mann and Hartle.21 In this approach, one defines
histories of closed systems (such as the whole universe) to which one can
attribute probabilities that are consistent with the usual properties of probability.
A history is characterized by a normalized initial state �, which then evolves
from the initial time t0 to a time t1 according to the time-dependent Schrödinger
equation, at which time the system is averaged over its properties, holding fixed
only the values a1n of a few observables A1n , followed by evolution to a time
t2, at which time the system is again averaged over its properties, now holding
fixed only values a2n of another set of observables A2n , and so on. That is, the
history is defined by �, by the times t1, t2, etc., and by the values a1n , a2n , etc. of
the observables that are held fixed at each averaging. This corresponds to what
is actually done in observations, say of particle trajectories, in which only a few
properties of a system are measured, and other properties such as the surround-
ing thermal radiation field is ignored. But this approach also applies where there
are no actual observers, in particular to the early universe.

To simplify our notation, we will suppress the index n, as if each averaging
held fixed the value of just a single observable. To each history one associates a
state vector:

�a1a2...aN ≡ �N (aN ) exp
(

− i H(tN − tN−1)/�
)

· · · exp
(

− i H(t3 − t2)/�
)

×�2(a2) exp
(
− i H(t2 − t1)/�

)
�1(a1) exp

(
− i H(t1 − t0)/�

)
�,

(3.7.12)

19 R. B. Griffiths, J. Stat. Phys. 36, 219 (1984); also see Consistent Quantum Theory (Cambridge
University Press, Cambridge, 2002).

20 R. Omnès, Rev. Mod. Phys. 64, 339 (1992); also see The Interpretation of Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1994).

21 M. Gell-Mann and J. B. Hartle, in Complexity, Entropy, and the Physics of Information, ed. W. Zurek
(Addison-Wesley, Reading, MA, 1990); in Proceedings of the Third International Symposium on the
Foundations of Quantum Mechanics in the Light of New Technology, ed. S. Kobayashi, H. Ezawa,
Y. Murayama, and S. Nomura (Physical Society of Japan, 1990); in Proceedings of the 25th Inter-
national Conference on High Energy Physics, Singapore, August 2–8, 1990, ed. K. K. Phua and Y
Yamaguchi (World Scientific, Singapore, 1990); J. B. Hartle, Directions in Relativity, Vol. I, ed. B.-L.
Hu, M.P. Ryan, and C.V. Vishveshwars (Cambridge University Press, Cambridge, 1993).
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where �1(a1), �2(a2), etc. are sums of projection operators on all states of the
system that are consistent with restrictions labeled by a1, a2, etc. (For instance, if
the r th sum held fixed only the value ar of a single observable Ar , then �r (ar )

would be the sum
∑(ar )

i [�i�
†
i ] over a set of orthonormal states �i that are

complete in the subspace consisting of eigenstates of Ar with eigenvalue ar .
This is called coarse-graining by Gell-Mann and Hartle in ref. 21. Projection
operators were discussed in Section 3.3.) Equivalently, we have

�a1a2...aN = e−i HtN /��N (aN , tN ) · · ·�2(a2, t2)�1(a1, t1)e
i Ht0/��, (3.7.13)

where �r (ar , tr ) are the same sums of projection operators, but in the Heisen-
berg picture:

�r (ar , tr ) = ei Htr /��r (ar )e
−i Htr /�. (3.7.14)

A positive probability is assumed for each history:

P(a1a2 . . . ) ≡ ||�a1a2...||2. (3.7.15)

These probabilities are regarded as objective properties of the various histories,
not necessarily related to anything seen by any observer.

It is necessary to show that Eq. (3.7.15) possesses the usual properties of prob-
abilities, but this is true only for a limited class of possible histories. Specifically,
we must show that the sum of these probabilities over all possible values of one
of the observables, say ar , equals the probability of the history in which this
observable is not held fixed:∑

ar

P(a1a2 . . . ar−1ar ar+1 . . . aN ) = P(a1a2 . . . ar−1ar+1 . . . aN ). (3.7.16)

This is the case for histories that satisfy the consistency condition, that(
�a′

1a′
2...a

′
N , �a1a2...aN

)
= 0 unless a′

1 = a1, a′
2 = a2, . . . . (3.7.17)

Here is the proof. According to Eq. (3.7.15), the sum in Eq. (3.7.16) is∑
ar

P(a1a2 . . . ar−1ar ar+1 . . . aN )

=
∑

ar

(
�a1a2...ar−1ar ar+1...aN , �a1a2...ar−1ar ar+1...aN

)
.

By using the consistency condition (3.7.17), we can write this as∑
ar

P(a1a2 . . . ar−1ar ar+1 . . . aN )

=
⎛
⎝∑

a′
r

�a1a2...ar−1a′
r ar+1...aN ,

∑
ar

�a1a2...ar−1ar ar+1...aN

⎞
⎠ .
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But the completeness relation (3.3.32) gives∑
ar

�r (ar , tr ) = 1,

so ∑
ar

�a1a2...ar−1ar ar+1...aN = �a1a2...ar−1ar+1...aN ,

from which Eq. (3.7.16) follows immediately. This theorem has the important
consequence that the sum of probabilities for all histories of a given type (that
is, all histories with a given initial state �, given times t1, . . . tN , and given
observables Ar that are held fixed at each of these times) is unity:

∑
a1a2...aN

P(a1a2 . . . aN ) =
(
�,�

)
= 1. (3.7.18)

The histories that satisfy the consistency condition (3.7.17) are identified by
considerations of decoherence. For instance, the history of a planet’s motion
around the sun is characterized by a set of projection operators, with labels a
that distinguish various cells of finite spatial volume in which the planet might
be found. (It is necessary to deal with finite volumes of space, since a precise
measurement of position would give the planet an unwanted change in momen-
tum.) In evaluating (3.7.12) or (3.7.13) for any given history, we average over all
other variables characterizing perturbations of the planet’s orbit, including those
that describe solar radiation, interplanetary matter, etc. These perturbations do
not move a planet from one cell to another, but they do change the phase of
the state vector (3.7.12), and the averaging over perturbations thus destroys the
correlations that would invalidate the consistency condition (3.7.17).

There is nothing absurd or inconsistent about the decoherent histories
approach in particular, or about the general idea that the state vector serves only
as a predictor of probabilities, not as a complete description of a physical system.
Nevertheless, it would be disappointing if we had to give up the “realist” goal of
finding complete descriptions of physical systems, and of using this description
to derive the Born rule, rather than just assuming it. We can live with the idea
that the state of a physical system is described by a vector in Hilbert space rather
than by numerical values of the positions and momenta of all the particles in the
system, but it is hard to live with no description of physical states at all, only
an algorithm for calculating probabilities. My own conclusion (not universally
shared) is that today there is no interpretation of quantum mechanics that does
not have serious flaws, and that we ought to take seriously the possibility of find-
ing some more satisfactory other theory, to which quantum mechanics is merely
a good approximation.
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Problems

1. Consider a system with a pair of observable quantities A and B, whose
commutation relations with the Hamiltonian take the form [H, A] = iwB,
[H, B] = −iwA, where w is some real constant. Suppose that the expec-
tation values of A and B are known at time t = 0. Give formulas for the
expectation values of A and B as a function of time.

2. Consider a normalized initial state � at t = 0 with a spread �E in energy,
defined by

�E ≡
√〈(

H − 〈H〉�
)2
〉
�

.

Calculate the probability |(�(δt),�)|2 that after a very short time δt the
system is still in the state �. Express the result in terms of �E , � and δt , to
second order in δt .

3. Suppose that the Hamiltonian is a linear operator with

H� = g�, H� = g∗�, Hϒn = 0,

where g is an arbitrary constant, � and � are a pair of normalized indepen-
dent (but not necessarily orthogonal) state vectors, and ϒn runs over all state
vectors orthogonal to both � and �. What are the conditions that � and �
must satisfy in order for this Hamiltonian to be Hermitian? With these con-
ditions satisfied, find the states with definite energy, and the corresponding
energy values.

4. Suppose that a linear operator A, though not Hermitian, satisfies the condi-
tion that it commutes with its adjoint. What can be said about the relation
between the eigenvalues of A and of A†? What can be said about the scalar
product of two eigenstates of A with unequal eigenvalues?

5. Suppose the state vectors � and � ′ are eigenvectors of a unitary operator
with eigenvalues λ and λ′, respectively. What relation must λ and λ′ satisfy
if � is not orthogonal to � ′?

6. Show that the product of the uncertainties in position and momentum takes
its minimum value �/2 for a Gaussian wave packet of free-particle wave
functions.



4
Spin et cetera

Wave mechanics failed badly in accounting for the multiplicity of atomic energy
levels. This was most conspicuous in the case of the alkali metals, lithium,
sodium, potassium, and so on. It was known that an atom of any of these ele-
ments can be treated as a more-or-less inert core, consisting of the nucleus and
Z − 1 inner electrons, together with a single outer electron whose transitions
between energy levels are responsible for spectral lines. Since the electrostatic
field felt by the outer electron is not a Coulomb field, its energy levels in the
absence of external fields depend on the orbital angular momentum quantum
number � as well as a radial quantum number n, but because of the spherical
symmetry of the atom, not on the angular momentum z-component �m. (See
Eq. (2.1.30).) For each n, �, and m there should be just one energy level. But
observations of atomic spectra showed that in fact all but the s states were dou-
bled. For instance, even a spectroscope of low resolution shows that the D line
of sodium, which is produced in a 3p → 3s transition, is a doublet, with wave-
lengths 5896 and 5890 Angstroms. Pauli was led to propose that there is a fourth
quantum number for electrons in such atoms, in addition to n, �, and m, with the
fourth quantum number taking just two values in all but s states. But the physical
significance of this fourth quantum number was obscure.

Then in 1925 two young physicists, the theorist George Uhlenbeck (1900–
1988) and experimentalist Samuel Goudsmit (1902–1978) suggested1 that the
doubling of energy levels was due to an internal angular momentum of the elec-
tron, whose component in the direction of L (for L �= 0) can only take two
values, and whose interaction with the weak magnetic field produced by the
orbital motion of the electron therefore splits all but s states into nearly degener-
ate doublets. Any component of angular momentum s would take 2s + 1 values,
so the quantity s corresponding to � for the internal angular momentum would
have to have the unusual value 1/2. This internal angular momentum came to be
called the electron’s spin.

At first this idea was widely disbelieved. As we saw in Section 2.1, orbital
angular momentum cannot have the value � = 1/2. Another worry was that if

1 S. Goudsmit and G. Uhlenbeck, Naturwiss. 13, 953 (1925); Nature 117, 264 (1926).
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a sphere with the mass of the electron and with angular momentum �/2 has a
rotation velocity at its surface less than the speed of light, then its radius must
be larger than �/2mec 	 2 × 10−11 cm, and it was presumed that an elec-
tron radius that large would not have escaped observation. Electron spin became
more respectable a little later, when several authors2 showed that the coupling
between the electron’s spin and its orbital motion accounted for the fine struc-
ture of hydrogen — the splitting of states with � �= 0 into doublets. (This is
discussed in Section 4.2.)

The worries about models of spinning electrons were due to the lingering wish
to understand quantum phenomena in classical terms. Instead, we should think
of the existence of both spin and orbital angular momenta as consequences of a
symmetry principle. We saw in Sections 3.4–3.6 how symmetry principles imply
the existence of conserved observables such as energy and momentum. There
is another classic symmetry of both non-relativistic and relativistic physics,
invariance under spatial rotations. In Section 4.1 we will show how rotational
invariance leads in quantum mechanics to the existence of a conserved angular
momentum three-vector J. The commutation relations of these operators will be
used in Section 4.2 to derive the spectrum of eigenvalues of J2 and J3, and to
find how all three components of J act on the corresponding eigenstates. It turns
out that the eigenvalues of J3 can be integer or half-integer multiples of �. In
general the angular momentum J of any particle is the sum of its orbital angular
momentum, already discussed in Section 2.1, and a spin angular momentum,
that can take half-integer as well as integer values. Also, in a multi-particle
system, the total angular momentum of the system is the sum of the angular
momenta of the individual particles. For both reasons, in Section 4.3 we will
consider how the eigenstates of J2 and J3 for the sum of two angular momenta
are constructed from the corresponding eigenstates for the individual angular
momenta. In Section 4.4 the rules for angular momentum addition are applied to
derive a formula, known as the Wigner–Eckart theorem, for the matrix elements
of operators between multiplets of angular momentum eigenstates. Section 4.5
discusses the relation between the spin of a particle and the symmetry or anti-
symmetry of the state vector in multi-particle states, and derives consequences
for atomic and nuclear physics.

It turns out that not only the electron but also the proton and neutron have
spin 1/2. It is sometimes said that this value of the spin of the electron and other
particles is a consequence of relativity. This is because Dirac in 1928 developed
a kind of relativistic wave mechanics,3 which required that the particles of the
theory have spin 1/2. But Dirac’s relativistic wave mechanics is not the only
way to combine relativity and quantum mechanics. Indeed, in 1934 Pauli and

2 W. Heisenberg and P. Jordan, Z. f. Physik 37, 263 (1926); C. G. Darwin, Proc. Roy. Soc. Lond. A116,
227 (1927).

3 P. A. M. Dirac, Proc. Roy. Soc. Lond. A 117, 610 (1928).
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Victor Weisskopf4(1908–2002) showed how a relativistic quantum theory could
be constructed for particles with no spin. Today we know of particles like the
Z and W particles that seem to be every bit as elementary as the electron, and
that have spins with j = 1 rather than j = 1/2. There is nothing about spin
that requires relativity to be taken into account, and nothing about relativity that
requires elementary particles to have spin 1/2.

Though it was not known at first, the spin of a particle determines whether the
wave function of several particles of the same type is symmetric or antisymmet-
ric in the particle coordinates. This is discussed in Section 4.5, along with some
of its implications for atoms, gases, and crystals.

Using what we have learned about angular momentum, in Sections 4.6 and
4.7 we will consider two other kinds of symmetry: internal symmetries, such
as isotopic spin symmetry, and symmetry under space inversion. Section 4.8
shows that for the Coulomb potential there are two different three-vectors with
the properties of angular momentum, and uses the properties of such three-
vectors derived in Section 4.2 to give an algebraic calculation of the spectrum
of hydrogen.

4.1 Rotations

A rotation is a real linear transformation xi �→ ∑
j Ri j x j of the Cartesian

coordinates xi that leaves invariant the scalar product x · y = ∑
i xi yi . That is,∑

i

(∑
j

Ri j x j

)(∑
k

Rik yk

)
=
∑

i

xi yi ,

with sums over i, j, k, etc. running over the values 1, 2, 3. By equating coeffi-
cients of x j yk on both sides of the equation, we find the fundamental condition
for a rotation: ∑

i

Ri j Rik = δ jk, (4.1.1)

or in matrix notation

RT R = 1 (4.1.2)

where RT denotes the transpose of a matrix, [RT ] j i = Ri j , and 1 is here the unit
matrix, [1] jk = δ jk .

Not all transformations xi �→ ∑
j Ri j x j with Ri j satisfying Eq. (4.1.2), are

rotations. Taking the determinant of Eq. (4.1.2) and using the facts that the deter-
minant of a product of matrices is the product of the determinants, and that the

4 W. Pauli and V. F. Weisskopf, Helv. Phys. Acta 7, 709 (1934).
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determinant of the transpose of a matrix equals the determinant of the matrix,
we see that [DetR]2 = 1, so DetR can only be +1 or −1. The transformations
with DetR = −1 are space-inversions; an example is the simple transformation
x �→ −x. These transformations will be considered in Section 4.7. The transfor-
mations with DetR = +1 are the rotations, which concern us here. The rotations
form a group by themselves, since any product of matrices with unit determinant
will have unit determinant. This group is known as the special orthogonal group
in three dimensions, or SO(3), where “orthogonal” means that it consists of real
3 × 3 matrices satisfying Eq. (4.1.1), and “special” indicates that these matrices
have unit determinant.

Like other symmetry transformations, a rotation R induces on the Hilbert
space of physical states a unitary transformation, in this case � �→ U (R)�.
If we perform a rotation R1 and then a rotation R2, physical states undergo the
transformation � �→ U (R2)U (R1)�, but this must be the same as if we had
performed a rotation R2 R1, so1

U (R2)U (R1) = U (R2 R1). (4.1.3)

Acting on the operator V representing a vector observable (such as the coordi-
nate vector X or the momentum vector P), U (R) must induce a rotation

U−1(R)ViU (R) =
∑

j

Ri j Vj . (4.1.4)

Rotations unlike inversions can be infinitesimal. In this case,

Ri j = δi j + ωi j + O(ω2), (4.1.5)

with ωi j infinitesimal. The condition (4.1.2) gives here

1 =
(

1 + ωT + O(ω2)
)(

1 + ω + O(ω2
)

= 1 + ωT + ω + O(ω2)

so ωT = −ω, or in other words

ω j i = −ωi j . (4.1.6)

For such infinitesimal rotations, the unitary operator U (R) must take the form

U (1 + ω) → 1 + i

2�
∑

i j

ωi j Ji j + O(ω2), (4.1.7)

1 In general it might be possible for a phase factor exp[iα(R1, R2)] to appear on the right-hand side of
this relation. But this does not occur for rotations that can be built up from rotations by very small
angles, the case that will be of interest here. For a detailed discussion of this point, see S. Weinberg,
The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995), pp. 52–53 and
Section 2.7.
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with Ji j = −Jji a set of Hermitian operators. (The factor 1/� is inserted in the
definition (4.1.7) in order to give Ji j the dimensions of �, the same as distance
times momentum.)

As usual with the generators of symmetry transformations, the transformation
property of other observables can be expressed in commutation relations of these
observables with the symmetry generators. For instance, by using Eq. (4.1.7) in
the transformation rule (4.1.4) for a vector V, we find

i

�
[Vk, Ji j ] = δik Vj − δ jk Vi . (4.1.8)

We can also find the transformation rule of the Ji j s, and their commutators
with each other. As an application of Eq. (4.1.3), we have

U (R′−1)U (1 + ω)U (R′) = U (R′−1(1 + ω)R′) = U (1 + R′−1ωR′),

for any ωi j = −ω j i , and any rotation R′, unrelated to ω. To first order in ω, we
then have∑

i j

ωi jU (R′−1)Ji jU (R′) =
∑

kl

(R′−1ωR)kl Jkl =
∑
i jkl

R′
ik R′

jlωi j Jkl,

in which we have used Eq. (4.1.2), which gives R′−1 = R′T . Equating the coef-
ficients of ωi j on both sides of this equation then gives the transformation rule
of the operator Ji j :

U (R′−1)Ji jU (R′) =
∑

kl

R′
ik R′

jl Jkl . (4.1.9)

That is, Ji j is a tensor. We can take this a step further, and let R′ itself be an
infinitesimal rotation, of the form R′ → 1 + ω′, with ω′

i j = −ω′
j i infinitesimal.

Then, to first order in ω′, Eq. (4.1.9) gives

i

2�

[
Ji j ,

∑
kl

ω′
kl Jkl

]
=
∑

kl

(
ω′

ikδ jl + ω′
jlδik

)
Jkl =

∑
k

ω′
ik Jk j +

∑
l

ω′
jl Jil .

Equating the coefficients of ω′
kl on both sides of this equation gives the

commutation rule of the J s:

i

�

[
Ji j , Jkl

]
= −δil Jk j + δik Jl j + δ jk Jil − δ jl Jik . (4.1.10)

So far, all this could be applied to rotationally invariant theories in spaces of
any dimensionality. In three dimensions it is very convenient to express Ji j in
terms of a three-component operator J, defined by

J1 ≡ J23, J2 ≡ J31, J3 ≡ J12,
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or more compactly,

Jk ≡ 1

2

∑
i j

εi jk Ji j , Ji j =
∑

k

εi jk Jk, (4.1.11)

where εi jk is a totally antisymmetric quantity, whose only non-vanishing com-
ponents are ε123 = ε231 = ε312 = +1 and ε213 = ε321 = ε132 = −1. The unitary
operator (4.1.7) for infinitesimal rotations then takes the form

U (1 + ω) → 1 + i

�
ω · J + O(ω2), (4.1.12)

where ωk ≡ 1
2

∑
i j εi jkωi j . The rotation here is by an infinitesimal angle |ω|

around an axis in the direction of ω.
In terms of J, the characteristic property (4.1.8) of a three-vector V takes the

form

[Ji , Vj ] = i�
∑

k

εi jk Vk . (4.1.13)

(For instance, Eq. (4.1.8) gives [J1, V2] = [J23, V2] = i�V3.) Also, the
commutation relation (4.1.10) takes the form

[Ji , Jj ] = i�
∑

k

εi jk Jk . (4.1.14)

(For instance, Eq. (4.1.10) gives [J1, J2] = [J23, J31] = −i�J21 = i�J3.) That
is, J is itself a three-vector. We may recall that Eq. (4.1.14) is the same com-
mutation relation as the commutation relation (2.1.11) satisfied by the orbital
angular momentum operator L, but derived here from the assumption of rota-
tional symmetry, with no assumptions regarding coordinates or momenta. This
commutation relation will be the basis of our treatment of angular momentum
in the following sections.

Incidentally, it should not be surprising that the quantity J defined by
Eq. (4.1.11) should be a vector, because although the components of εi jk are
the same in all coordinate systems, it is a tensor, in the sense that

εi jk =
∑
i ′ j ′k′

Rii ′ R j j ′ Rkk′εi ′ j ′k′ . (4.1.15)

This is because the right-hand-side is totally antisymmetric in i , j , and k, so
it must be proportional to εi jk . According to the definition of determinants, the
proportionality coefficient is just DetR, which for rotations is +1. Knowing that
εi jk and Ji j are tensors, it becomes obvious from Eq. (4.1.11) that Ji is a three-
vector.

Now let’s return to the point raised in the introduction to this chapter, that the
total angular momentum J of a particle may be different from its orbital angular
momentum L. If J is the true generator of rotations, then it is J rather than L that
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has the commutator (4.1.13) with any vector. As we saw in Section 2.1, direct
calculation shows that in the case of a particle in a central potential the operator
L ≡ X × P satisfies the same commutation relation (4.1.14) as J:

[Li , L j ] = i�
∑

k

εi jk Lk, (4.1.16)

and since L is a vector we must have

[Ji , L j ] = i�
∑

k

εi jk Lk . (4.1.17)

Therefore if we define an operator S ≡ J − L, so that

J = L + S, (4.1.18)

then by subtracting Eq. (4.1.16) from Eq. (4.1.17), we find

[Si , L j ] = 0. (4.1.19)

From Eqs. (4.1.19), (4.1.18), (4.1.16), and (4.1.14) we then have

[Si , Sj ] = i�
∑

k

εi jk Sk . (4.1.20)

Thus S acts as a new kind of angular momentum, and may be thought of as
an internal property of a particle, called the spin. In Section 2.1 we assumed in
effect that the particle in question had S = 0, but this is not the case for electrons
and various other particles.

The spin operator is not constructed from the particle’s position and momen-
tum operators. Indeed, it commutes with them. Direct calculation gives

[Li , X j ] = i�
∑

k

εi jk Xk, [Li , Pj ] = i�
∑

k

εi jk Pk, (4.1.21)

while, as a special case of Eq. (4.1.13),

[Ji , X j ] = i�
∑

k

εi jk Xk, [Ji , Pj ] = i�
∑

k

εi jk Pk . (4.1.22)

The difference of Eqs. (4.1.21) and (4.1.22) then gives

[Si , X j ] = [Si , Pj ] = 0. (4.1.23)

A system containing several particles has a total angular momentum given
by the sum of the orbital angular momenta Ln and spins Sn of the individual
particles (labeled here with indices n, n′)

J =
∑

n

Ln +
∑

n

Sn. (4.1.24)
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Because they act on different particles, the commutation relations of the
contributions to J take the general form

[Lni , Ln′ j ] = i�δnn′
∑

k

εi jk Lnk, (4.1.25)

[Lni , Sn′ j ] = 0, (4.1.26)

[Sni , Sn′ j ] = i�δnn′
∑

k

εi jk Snk, (4.1.27)

so that J satisfies Eq. (4.1.14). Also, Ln acts only on the coordinates of the nth
particle, so

[Lni , Xn′ j ] = i�δnn′
∑

k

εi jk Xnk, [Lni , Pn′ j ] = i�δnn′
∑

k

εi jk Pnk, (4.1.28)

while

[Sni , Xn′ j ] = [Sni , Pn′ j ] = 0. (4.1.29)

Without an explicit formula for S or J, it is important to be able to calculate
how angular momentum operators act on physical state vectors in general, using
just the commutation relations. We will work this out in the next section for J,
but exactly the same analysis applies to S and L, and to the total or spin or orbital
angular momenta of individual particles.

4.2 Angular Momentum Multiplets

We will now work out the eigenvalues of J2 and J3, and the action of J on a mul-
tiplet of eigenvectors of these operators, for any Hermitian operator J satisfying
the commutation relations (4.1.14).

First, we note that

[J3,
(

J1 ± i J2

)
] = i�J2 ± i (−i�J1) = ± �

(
J1 ± i J2

)
. (4.2.1)

Therefore J1 ± i J2 act as raising and lowering operators: For a state vector �m

that satisfies the eigenvalue condition J3�
m = �m�m (with any m), we have

J3

(
J1 ± i J2

)
�m = (m ± 1)�

(
J1 ± i J2

)
�m,

so if
(

J1 ±i J2

)
�m does not vanish, then it is an eigenstate of J3 with eigenvalue

�(m±1). Since J2 commutes with J3, we can choose �m to be an eigenvector of

J2 as well as J3, and since J2 commutes with
(

J1±i J2

)
, all the state vectors that

are connected with each other by lowering and/or raising operators will have the
same eigenvalue for J2.
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Now, there must be a maximum and a minimum to the eigenvalues of J3

that can be reached in this way, because the square of any eigenvalue of J3 is
necessarily less than the eigenvalue of J2. This is because in any normalized
state � that has an eigenvalue a for J3 and an eigenvalue b for J2, we have

b − a2 =
(
�, (J2 − J 2

3 )�
)

=
(
�, (J 2

1 + J 2
2 )�

)
≥ 0.

It is conventional to define a quantity j as the maximum value of the eigenvalues
of J3/� for a particular set of state vectors that are related by raising and lower-
ing operators. We will also temporarily define j ′ as the minimum eigenvalue of
J3/� for these state vectors. The state vector � j for which J3 takes its maximum
eigenvalue � j must satisfy (

J1 + iJ2

)
� j = 0, (4.2.2)

since otherwise
(

J1 + iJ2

)
� j would be a state vector with a larger eigenvalue

of J3. Likewise, acting on the state vector � j with
(

J1 − iJ2

)
gives an eigen-

state of J3 with eigenvalue �( j − 1), unless of course this state vector vanishes.
Continuing in this way, we must eventually get to a state vector � j ′ with the
minimum eigenvalue � j ′ of J3, which satisfies(

J1 − iJ2

)
� j ′ = 0, (4.2.3)

since otherwise
(

J1 − iJ2

)
� j ′ would be a state vector with an even smaller

eigenvalue of J3. We get to � j ′ from � j by applying the lowering operator(
J1 − iJ2

)
a whole number of times, so j − j ′ must be a whole number.

To go further, we use the commutation relations of J1 and J2 to show that(
J1 − iJ2

)(
J1 + iJ2

)
= J 2

1 + J 2
2 + i[J1, J2] = J2 − J 2

3 − �J3, (4.2.4)(
J1 + iJ2

)(
J1 − iJ2

)
= J 2

1 + J 2
2 − i[J1, J2] = J2 − J 2

3 + �J3. (4.2.5)

According to Eq. (4.2.2), the operator (4.2.4) gives zero when acting on � j , so

J2� j = �2 j ( j + 1)� j . (4.2.6)

On the other hand, according to Eq. (4.2.3) the operator (4.2.5) gives zero when
acting on � j ′ , so

J2� j ′ = �2 j ′ ( j ′ − 1)� j ′ . (4.2.7)

But all these state vectors are eigenstates of J2 with the same eigenvalue, so
j ′( j ′−1) = j ( j+1). This quadratic equation for j ′ has two solutions, j ′ = j+1,
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and j ′ = − j . The first solution is impossible, because j ′ is the minimum eigen-
value of J3/�, and therefore cannot be greater than the maximum eigenvalue j .
This leaves us with the other solution

j ′ = − j. (4.2.8)

But we saw that j − j ′ must be an integer, so j must be an integer or a half
integer. The eigenvalues of J3 range over the 2 j +1 values of �m with m running
by unit steps from − j to + j . The corresponding eigenstates will be denoted�m

j ,
so that

J3�
m
j = �m �m

j , m = − j, − j + 1, . . . + j (4.2.9)

J2 �m
j = �2 j ( j + 1)�m

j . (4.2.10)

These are the same eigenvalues that we found previously in the case of orbital
angular momentum, with the one big difference, that j and m may be half-
integers rather than integers.

The state vectors �m
j for different values of m are orthogonal, because they

are eigenvectors of the Hermitian operator J3 with different eigenvalues, and
they can be multiplied with suitable constants to normalize them, so that(

�m′
j , �

m
j

)
= δm′m . (4.2.11)

Also, we have noted that
(

J1 ± i J2

)
�m

j has eigenvalue �(m ± 1) for J3, so it

must be proportional to �m±1
j(

J1 ± i J2

)
�m

j = α±( j,m)�m±1
j . (4.2.12)

It follows then from Eq. (4.2.4) that

α−( j,m + 1)α+( j,m) = �2[ j ( j + 1)− m2 − m]. (4.2.13)

In order to satisfy the normalization condition (4.2.11), it is necessary that

|α±( j,m)|2 =
(
(J1±i J2)�

m
j , (J1±i J2)�

m
j

)
=
(
�m

j , (J1∓i J2)(J1±i J2)�
m
j

)
,

and therefore, according to Eqs. (4.2.4) and (4.2.5),

|α±( j,m)|2 = �2 [ j ( j + 1)− m2 ∓ m]. (4.2.14)

We can adjust the phases of the coefficients α−( j,m) to be anything we want,
by multiplying the state vectors �m

j with phase factors (complex numbers
with modulus unity), which do not affect Eq. (4.2.11). (To adjust the phase of
α−( j, j), multiply �

j−1
j by a suitable phase factor; then to adjust the phase of

α−( j, j − 1), multiply �
j−2
j by a suitable phase factor; and so on.) It is con-

ventional to adjust these phases so that all α−( j,m) are real and positive, in
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which case Eq. (4.2.13) requires that all α+( j,m) are also real and positive.
Eq. (4.2.14) then gives these factors as

α±( j,m) = �
√

j ( j + 1)− m2 ∓ m, (4.2.15)

so that (
J1 ± i J2

)
�m

j = �
√

j ( j + 1)− m2 ∓ m �m±1
j . (4.2.16)

It can now be revealed that the phases of the spherical harmonics Y m
� were cho-

sen in Section 2.2 so that the same relations apply to them, with Li and � in
place of Ji and j . Eqs. (4.2.9) and (4.2.16) provide a complete statement of how
the quantum mechanical operators Ji act on the state vectors �m

j . In group the-
ory, we say that the relations (4.2.9) and (4.2.16) furnish a representation of the
commutation relations (4.1.14). (Of course, the state vectors �m

j can depend on
any number of other dynamical variables, which are invariant under the action
of the symmetry generators Ji .)

As an example, consider the case j = 1/2. We note that Eq. (4.2.16) here
gives

(J1 ± i J2)�
∓1/2
1/2 = ��±1/2

1/2 , (J1 ± i J2)�
±1/2
1/2 = 0

and of course

J3�
±1/2
1/2 = ±�

2
�

±1/2
1/2 .

These results can be summarized in the statement that(
�m′

1/2, J�m
1/2

)
= �

2
σ m′m, (4.2.17)

where σi are 2 × 2 matrices, known as Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.2.18)

There is a simple application of Eq. (4.2.16) that is useful in many physical
calculations. Suppose we know that a system is in a state with normalized state
vector �m

j , and we want to know the probability that a certain measurement will
put the system in a state with normalized state vector �m

j (rather than any other
of a complete orthonormal set), where the various �m

j form a multiplet related
to each other by Eq. (4.2.16), and likewise for the �m

j . According to the general
principles of quantum mechanics, this probability is the absolute value squared
of the matrix element1 (�m

j , �
m
j ). Using Eq. (4.2.16), we can show that this

1 We consider only the matrix elements in which both state vectors have equal values of j and m, because
both state vectors are eigenstates of the Hermitian operators J2 and J3, so the matrix element would
vanish unless they both had the same eigenvalues.
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matrix element, and hence the probability, is independent of m. To see this, we
use Eq. (4.2.16) to calculate

�
√

j ( j + 1)− m2 ∓ m
(
�m±1

j , �m±1
j

)
=
(
�m±1

j , (J1 ± i J2) �
m
j

)
=
(
(J1 ∓ i J2)�

m±1
j , �m

j

)
= �

√
j ( j + 1)− (m ± 1)2 ± (m ± 1)

(
�m∗

j , �m
j

)
= �

√
j ( j + 1)− m2 ∓ m

(
�m

j , �
m
j

)
,

and therefore (
�m±1

j , �m±1
j

)
=
(
�m

j , �
m
j

)
. (4.2.19)

This can be repeated, leading to the conclusion that
(
�m

j , �
m
j

)
is independent of

m, as was to be proved. This little theorem will be used in Section 4.4 to calculate
the m-dependence of matrix elements of operators with various transformation
properties under rotations.

* * *

As we have seen, the angular momentum of bound state energy levels deter-
mines the multiplicity of these levels. The components of angular momentum
can also be measured directly. The classic example of such a measurement is that
of Walter Gerlach (1889–1979) and Otto Stern (1888–1969) in 1922,2 already
briefly mentioned in Section 3.7 in connection with the interpretation of quan-
tum mechanics. In the Stern–Gerlach experiment, a beam of neutral atoms3 is
sent into a slowly varying magnetic field. The magnetic field is of the form

B(x) = B0 + B1(x), (4.2.20)

where B0 is a constant, and the variable term B1(x) is much smaller than B0.
As we will see, the direction of B0 determines what it is that is measured in this
experiment. We will take the three-axis to be in this direction. The precise form
of B1(x) is not very important, though of course it must satisfy the free-field
Maxwell equations

∇ · B1 = 0, ∇ × B1 = 0. (4.2.21)

For instance, we might have B1i = ∑
j Di j x j , with the constant matrix Di j

both symmetric and traceless. The atom is supposed to have a total angular
momentum J. The Hamiltonian of the atom is then

H = p2

2m
−
(
μ

� j

)(
J3|B0| + J · B1(x)

)
, (4.2.22)

2 W. Gerlach and O. Stern, Zeit. f. Physik 9, 353 (1922).
3 Neutral atoms are used, both to avoid Coulomb forces from incidental electric fields, and to avoid the

Lorentz force produced by the motion of a charged particle through a magnetic field.
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where J2 = �2 j ( j + 1), and μ is a property of the atom, known as its magnetic
moment. In the original Stern–Gerlach experiment, the atoms in question were
of silver, with angular momentum j = 1/2 arising from the spin of a single elec-
tron (though this was not known at the time), but it is just as easy to consider the
general case, of arbitrary j . According to the arguments of Ehrenfest described
in Section 1.5, the expectation values of the position and the momentum will
obey the equations of motion

d

dt
〈x〉 = 〈p〉/m,

d

dt
〈p〉 =

(
μ

� j

) 〈
∇
(

J · B1(x)
)〉
. (4.2.23)

For sufficiently large B0, the time-dependence of the component of a state vec-
tor having the eigenvalue �σ �= 0 for J3 is dominated by a rapidly oscillating
factor exp(iσμ|B0|t/j). We have seen that the eigenvalues of J3 are �σ , where
σ = − j, − j + 1, · · · + j . Also, Eq. (4.2.16) shows that J1 and J2 have matrix
elements only between eigenstates of J3 that differ by ±�, so these matrix ele-
ments are proportional to exp(±iμ|B0|t/j), and therefore vanish when averaged
even over short time intervals. Thus the equations of motion (4.2.23) of a particle
for which Jz = �σ become effectively

d

dt
〈x〉 = 〈p〉/m,

d

dt
〈p〉 =

(
μσ

j

)
〈∇B13(x)〉 . (4.2.24)

For instance, in the case discussed above where B1i = ∑
j Di j x j , these two

equations can be combined to give a single second-order differential equation
for 〈x〉:

m
d2

dt2
〈xi 〉 =

(
μσ

j

)
D3i .

Whatever the form of B1, there are 2 j + 1 possible trajectories, and observation
of the actual trajectory that is followed by the particle tells us the value of σ .

4.3 Addition of Angular Momenta

It often happens that a physical system will contain angular momenta of two or
more different types. For instance, in the ground state of the helium atom there
are two electrons, each with its own spin, but no orbital angular momentum.
In the excited states of the hydrogen atom with � > 0 there is both an orbital
angular momentum and a spin angular momentum. The presence of interactions
between the individual angular momenta usually has the effect that they are not
separately conserved — that is, the individual angular momenta do not com-
mute with the Hamiltonian. In such cases it is useful to introduce a total angular
momentum operator, given by the sum of the individual angular momentum
operators, which does commute with the Hamiltonian. The problem is, how
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to relate the states labeled by values of the total angular momentum to states
described in terms of the individual angular momenta?

Suppose we have two angular momentum operator vectors J′ and J′′, which
may be spins or orbital angular momenta or the sums of spins and/or angular
momenta, with each satisfying the commutation relations (4.1.14):

[J ′
1, J ′

2] = i�J ′
3, [J ′

2, J ′
3] = i�J ′

1, [J ′
3, J ′

1] = i�J ′
2. (4.3.1)

[J ′′
1 , J ′′

2 ] = i�J ′′
3 , [J ′′

2 , J ′′
3 ] = i�J ′′

1 , [J ′′
3 , J ′′

1 ] = i�J ′′
2 , (4.3.2)

but commuting with each other

[J ′
i , J ′′

k ] = 0. (4.3.3)

We consider a set of states having two independent angular momenta j ′ and
j ′′, with J ′

3 and J ′′
3 taking values �m ′ and �m ′′, respectively,1 and with m ′ and

m ′′ running by unit steps from − j ′ to j ′ and from − j ′′ to j ′′, respectively. The
normalized state vectors �m′m′′

j ′ j ′′ of these states satisfy

J′2 �m′m′′
j ′ j ′′ = �2 j ′( j ′ + 1)�m′m′′

j ′ j ′′ , (4.3.4)

J ′
3�

m′m′′
j ′ j ′′ = �m ′ �m′m′′

j ′ j ′′ , (4.3.5)(
J ′

1 ± i J ′
2

)
�m′m′′

j ′ j ′′ = �
√

j ′( j ′ + 1)− m ′2 ∓ m ′ �m′±1,m′′
j ′ j ′′ , (4.3.6)

J′′2 �m′m′′
j ′ j ′′ = �2 j ′′( j ′′ + 1)�m′m′′

j ′ j ′′ , (4.3.7)

J ′′
3 �

m′m′′
j ′ j ′′ = �m ′′ �m′m′′

j ′ j ′′ , (4.3.8)(
J ′′

1 ± i J ′′
2

)
�m′m′′

j ′ j ′′ = �
√

j ′′( j ′′ + 1)− m ′′2 ∓ m ′′ �m′,m′′±1
j ′ j ′′ . (4.3.9)

We can then introduce a total angular momentum

J = J′ + J′′, (4.3.10)

which also satisfies the commutation relations (4.1.14):

[J1, J2] = i�J3, [J2, J3] = i�J1, [J3, J1] = i�J2. (4.3.11)

Both J′2 and J′′2 commute with all the components of J′ and J′′. On the other
hand, the Hamiltonian will in general contain interaction terms that do not com-
mute with either J′ or J′′, such as a possible term proportional to J′ · J′′. We then
have to look for other operators that do commute with such interaction terms.

This usually (though not always!) includes J′2 and J′′2, since they each com-
mute with both J′ and J′′. Also, as we have seen in Section 4.1, the total angular
momentum J commutes with all rotationally invariant operators. For instance,

1 Of course there is no connection between the j ′ used here and that introduced temporarily in the
previous section.
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J′ · J′′ = 1

2

[
J2 − J′2 − J′′2

]
,

and each term on the right-hand side commutes with J. Instead of states of defi-
nite energy being characterized by the values �2 j ′( j ′+1), �m ′, �2 j ′′( j ′′+1), and
�m ′′ of J′2, J ′

3, J′′2, and J ′′
3 , they will be characterized by the values �2 j ′( j ′ +1),

�2 j ′′( j ′′ + 1), �2 j ( j + 1) and �m of J′2, J′′2, J2, and J3, respectively. Our prob-
lems are, what values of j occur for a given j ′ and j ′′, how many states for
a given j ′, j ′′, j, and m can be constructed from the states with state vectors
�m′m′′

j ′ j ′′ , and how can we express the state vectors of these states in terms of the

�m′m′′
j ′ j ′′ ?
The general rule is, that there is precisely one state for each j and m in the

ranges

j = | j ′ − j ′′|, | j ′ − j ′′| + 1, . . . , j ′ + j ′′, m = j, j − 1, . . . ,− j. (4.3.12)

The normalized state vectors �m
j ′ j ′′ j of these states are then uniquely defined (up

to a common phase factor) by

J′2 �m
j ′ j ′′ j = �2 j ′( j ′ + 1)�m

j ′ j ′′ j , (4.3.13)

J′′2 �m
j ′ j ′′ j = �2 j ′′( j ′′ + 1)�m

j ′ j ′′ j , (4.3.14)

J2 �m
j ′ j ′′ j = �2 j ( j + 1)�m

j ′ j ′′ j , (4.3.15)

J3�
m
j ′ j ′′ j = �m�m

j ′ j ′′ j , (4.3.16)(
J1 ± i J2

)
�m

j ′ j ′′ j = �
√

j ( j + 1)− m2 ∓ m �m±1
j ′ j ′′ j . (4.3.17)

These state vectors may be expressed as linear combinations

�m
j ′ j ′′ j =

∑
m′m′′

C j ′ j ′′( j m ; m ′ m ′′)�m′m′′
j ′ j ′′ , (4.3.18)

where C j ′ j ′′( j m ; m ′ m ′′) are a set of constants known as Clebsch–Gordan coef-
ficients. Of course, since J3 = J ′

3 + J ′′
3 , the only non-vanishing Clebsch–Gordan

coefficients are those for which

m = m ′ + m ′′. (4.3.19)

To verify that the values of j for which the Clebsch–Gordan coefficients do
not vanish are limited by Eq. (4.3.12), we note first that the values of m =
m ′ + m ′′ can only lie between j ′ + j ′′ and − j ′ − j ′′, so the maximum possible
value for j is j ′ + j ′′. On the other hand a state vector with m ′ = j ′ and m ′′ = j ′′
has j ≥ |m| = j ′ + j ′′, so it can only have j = j ′ + j ′′. Furthermore, the only
way to have m = j ′ + j ′′ is to have m ′ = j ′ and m ′′ = j ′′, so there is precisely
one state with j = j ′ + j ′′ and m = j ′ + j ′′, and hence only one state with
j = j ′ + j ′′ and any m between j ′ + j ′′ and − j ′ − j ′′. With an appropriate
choice of phase, the state vector for this state is simply
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�
j ′+ j ′′
j ′ j ′′ j ′+ j ′′ = �

j ′ j ′′
j ′ j ′′ . (4.3.20)

That is,

C j ′ j ′′( j m ; j ′ j ′′) = δ j, j ′+ j ′′δm, j ′+ j ′′ . (4.3.21)

Now consider the state vectors �m′m′′
j ′ j ′′ with m = m ′ + m ′′ = j ′ + j ′′ − 1. There

are generally two such state vectors, one with m ′ = j ′ and m ′′ = j ′′ − 1, and the
other with m ′ = j ′ −1 and m ′′ = j ′′. The only exceptions occur if j ′ −1 < − j ′,
or in other words j ′ = 0, in which case m ′ cannot equal j ′ −1, or j ′′ −1 < − j ′′,
or in other words j ′′ = 0, in which case m ′′ cannot equal j ′′ − 1. One linear
combination of these two state vectors is a state vector with j = j ′ + j ′′, which
is formed by operating with the lowering operator J1 − i J2 on the state vector
(4.3.20). The factor (4.2.15) here is√

j ( j + 1)− j2 + j = √
2 j = √

2( j ′ + j ′′),

so

�
j ′+ j ′′−1
j ′ j ′′ j ′+ j ′′ = (2( j ′ + j ′′))−1/2

(
J1 − i J2

)
�

j ′+ j ′′
j ′ j ′′ j ′+ j ′′

= (2( j ′ + j ′′))−1/2
(

J ′
1 − i J ′

2 + J ′′
1 − i J ′′

2

)
�

j ′ j ′′
j ′ j ′′

= ( j ′ + j ′′)−1/2

(√
j ′ � j ′−1, j ′′

j ′ j ′′ +√
j ′′ � j ′, j ′′−1

j ′ j ′′

)
. (4.3.22)

There is no other state vector with j = j ′ + j ′′ and m = j ′ + j ′′ − 1, because if
there were then there would also have to be two state vectors with j = j ′ + j ′′
and m = j ′ + j ′′, and we have seen that there is only one. Therefore the only
other state vector with m = j ′ + j ′′ − 1 must have the only other value of j
that is possible for such a state vector, j = j ′ + j ′′ − 1. The state vector with
this value of j must be orthogonal to the state vector (4.3.22), since it is a state
vector with a different value of J2, so (apart from an arbitrary choice of a phase
factor) if properly normalized it can only be the state vector

�
j ′+ j ′′−1
j ′ j ′′ j ′+ j ′′−1 = ( j ′ + j ′′)−1/2

(√
j ′′ � j ′−1, j ′′

j ′ j ′′ −√
j ′ � j ′, j ′′−1

j ′ j ′′

)
. (4.3.23)

That is,

C j ′ j ′′( j m ; j ′ −1 j ′′)= δm, j ′+ j ′′−1

[√
j ′

j ′ + j ′′ δ j, j ′+ j ′′ +
√

j ′′

j ′ + j ′′ δ j, j ′+ j ′′−1

]
,

(4.3.24)
and

C j ′ j ′′( j m ; j ′ j ′′ − 1)= δm, j ′+ j ′′−1

[√
j ′′

j ′ + j ′′ δ j, j ′+ j ′′ −
√

j ′

j ′ + j ′′ δ j, j ′+ j ′′−1

]
.

(4.3.25)
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Continuing in this way, we find that at first for each step down in m there
is just one new state vector �m

j ′ j ′′ j that is orthogonal to all the state vectors of
this type that are obtained by applying the lowering operator to the state vectors
already constructed (which have j = m + 1, m + 2, . . . , j ′ + j ′′), and that
therefore can only have j = m.

This procedure eventually stops, because m ′ is limited to the range from − j ′
to + j ′, and m ′′ is limited to the range from − j ′′ to + j ′′. It follows that for a
given m, m ′ = m − m ′′ runs up from the greater of − j ′ and m − j ′′ to the lesser
of + j ′ and m + j ′′. For m = j ′+ j ′′ the greater of − j ′ and m − j ′′ is m − j ′′ = j ′
and the lesser of + j ′ and m + j ′′ is j ′, so of course the value of m ′ is unique,
m ′ = j ′. As long as the greater of − j ′ and m − j ′′ is m − j ′′ and the lesser of
+ j ′ and m + j ′′ is j ′, each unit step down in m increases the range of m ′ by
one, giving a new value of j one unit lower at each step. But this continues only
until either m − j ′′ = − j ′ or m + j ′′ = j ′ — in other words, until m equals
the greater of j ′′ − j ′ and j ′ − j ′′, which is | j ′ − j ′′|. After that, we get no new
values of j , which therefore is limited to the range (4.3.12).

As a check, let’s count the total number of all these state vectors. Suppose
that j ′ ≥ j ′′, so that (4.3.12) allows values of j running from j ′ − j ′′ to j ′ + j ′′,
each with 2 j + 1 values of m. The total number of state vectors �m

j ′ j ′′ j is then

j ′+ j ′′∑
j= j ′− j ′′

(2 j + 1)= 2
( j ′ + j ′′)( j ′ + j ′′ + 1)

2
− 2

( j ′ − j ′′ − 1)( j ′ − j ′′)
2

+ 2 j ′′+ 1

= (2 j ′ + 1)(2 j ′′ + 1), (4.3.26)

which is just the number of state vectors �m′m′′
j ′ j ′′ with m ′ and m ′′ taking 2 j ′ + 1

and 2 j ′′ + 1 values, respectively. Since the result is symmetric in j ′ and j ′′, the
same result applies for j ′′ ≥ j ′.

With the phase conventions adopted here, the Clebsch–Gordan coefficients
are all real. They also have another important property, that follows from their
role as the transformation coefficients between two complete sets of orthonormal
state vectors. To see this in general, suppose we have two sets of state vectors,
�n and �′

a , that satisfy the orthornormality conditions(
�n, �m

) = δnm,
(
�′

a, �
′
b

)
= δab,

and are related by a set of coefficients Cna

�n =
∑

a

Cna �
′
a. (4.3.27)

The orthonormality conditions require that

δnm =
(
�n,�m

)
=
∑
ab

C∗
naCmb

(
�′

a,�
′
b

)
=
∑

a

C∗
naCma. (4.3.28)
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There is a general theorem of matrix algebra,2 that tells us that when a finite
square array of complex numbers Cna satisfies this relation, then we also have∑

n

C∗
naCnb = δab. (4.3.29)

In consequence

�′
a =

∑
n

C∗
na�n. (4.3.30)

For the real Clebsch–Gordan coefficients the conditions (4.3.28) and (4.3.29)
read ∑

jm

C j ′ j ′′( j m ; m ′ m ′′)C j ′ j ′′( j m ; m̃ ′ m̃ ′′) = δm′m̃′δm′′m̃′′, (4.3.31)

and ∑
m′m′′

C j ′ j ′′( j m ; m ′ m ′′)C j ′ j ′′( j̃ m̃ ; m ′ m ′′) = δ j j̃δmm̃ . (4.3.32)

Also, the relation (4.3.18) may be inverted to read

�m′m′′
j ′ j ′′ =

∑
jm

C j ′ j ′′( j m ; m ′ m ′′)�m
j ′ j ′′ j . (4.3.33)

Values for some Clebsch–Gordan coefficients are given in Table 4.1.
To take a physical example, consider the state vectors of the hydrogen atom,

now taking into account the spin 1/2 of the electron. For � = 0 the only possible
value of j is of course j = 1/2, while for � > 0 there are two values of j , that
is, j = � + 1/2 and j = � − 1/2. In a standard notation, the hydrogen states
are written n � j , with orbital angular momenta � = 0, 1, 2, 3, 4, . . . represented
by the letters s, p, d, f , g, and from then on alphabetically. Recall also that
� ≤ n − 1. We saw that the ground state, with n = 1, has � = 0, so this state has
a unique j value, j = 1/2, and is denoted 1s1/2. The first excited energy level,
with n = 2, has � = 0 and � = 1. The n = 2 state with � = 0 has j = 1/2,
and is denoted 2s1/2. The n = 2 state with � = 1 can be decomposed into states
with j = 1/2 and j = 3/2, denoted 2p1/2 and 2p3/2. The hydrogen states are
therefore 1s1/2, 2p3/2, 2p1/2, 2s1/2, 3d5/2, 3d3/2, 3p3/2, 3p1/2, 3s1/2, etc.

2 In matrix notation, the relation
∑

a C∗
naCma = δnm is written CC† = 1, where the product AB of

any two matrices A and B is defined as a matrix with components (AB)mn ≡ ∑
a Ama Ban . and C†

is the matrix with C†
an = (Cna)

∗. Also, 1 is here the unit matrix with 1mn = δnm . The determinant
of a product of matrices is the product of the determinants, and the determinant of C† is the complex
conjugate of the determinant of C , so here |DetC |2 = 1. Since DetC �= 0, C has an inverse, which in this
case is C†, so here also C†C = 1. The ab component of this equation tells us that

∑
n C∗

naCnb = δab .
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Table 4.1 The non-vanishing Clebsch–Gordan coefficients for the addition of angular
momenta j ′ and j ′′ with 3-components m′ and m′′ to give angular momentum j with
3-component m, for several low values of j ′ and j ′′.

j ′ j ′′ j m m′ m′′ C j ′ j ′′( j m ; m′ m′′)
1
2

1
2 1 +1 +1

2 +1
2 1

1
2

1
2 1 0 ±1

2 ∓1
2 1/

√
2

1
2

1
2 1 −1 −1

2 −1
2 1

1
2

1
2 0 0 ±1

2 ∓1
2 ±1

√
2

1 1
2

3
2 ±3

2 ±1 ±1
2 1

1 1
2

3
2 ±1

2 ±1 ∓1
2

√
1/3

1 1
2

3
2 ±1

2 0 ±1
2

√
2/3

1 1
2

1
2 ±1

2 ±1 ∓1
2 ±√

2/3

1 1
2

1
2 ±1

2 0 ±1
2 ∓√

1/3

1 1 2 ±2 ±1 ±1 1

1 1 2 ±1 ±1 0 1/
√

2

1 1 2 ±1 0 ±1 1/
√

2

1 1 1 ±1 ±1 0 ±1/
√

2

1 1 1 ±1 0 ±1 ∓1/
√

2

1 1 0 0 ±1 ∓1 1/
√

3

1 1 0 0 0 0 −1/
√

3

If for instance we measure the values S3 and L3 of the 3-component of the
electron’s spin and orbital angular momentum3 in the 2p3/2 state with m = 1/2,
then we will either get values 1/2 and 0, or values −1/2 and +1, with proba-
bilities equal to the squares of the corresponding Clebsch–Gordan coefficients,
which according to Table 4.1 are 2/3 and 1/3, respectively.

3 This can be done for example by a Stern–Gerlach experiment, with a strong magnetic field in the
3-direction. As we will see in Section 5.2, L and S contribute differently to the magnetic moment
of the atom, so the interaction energy of the atom with the magnetic field will be different for different
values of m� and ms , even for states with the same value of m = m� + ms . If this interaction energy
is large compared with the interaction between the atom’s spin and orbital angular momentum, then the
matrix elements of the 1 and 2 components of the magnetic moment, which connect states with different
values for m� and/or m�, will oscillate rapidly, and will not contribute to the interaction energy. Thus if
the magnetic field also has a weak inhomogeneous term with a non-vanishing 3-component, the atom
will pursue different trajectories for different values of m� and/or ms .
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The spin-orbit interaction proportional to L · S splits the states with the same
n and � but different j from each other by what is known as the fine structure
of the hydrogen atom. For instance, the energy difference of the 2p1/2 and 2p3/2

states is 4.5283 ×10−5 eV. These effects would leave states with the same j and
n but different � with the same energy, but they are split by a smaller energy
difference known as the Lamb shift, due chiefly to a continual emission and
reabsorption of photons by the electron. This splitting of the 2p1/2 and 2s1/2

states is 4.35152 × 10−6 eV.
The above discussion of the hydrogen spectrum ignored the effect of the mag-

netic moment of the proton. This is very small, because the proton’s large mass
gives it a much smaller magnetic moment than the electron. The effects of the
magnetic field of the nucleus of any atom on the atom’s energy levels is called
its hyperfine splitting. For instance, there are two 1s states of hydrogen, with
total proton plus electron spin equal to 1 or 0, separated by an energy difference
5.87 × 10−6 eV, comparable to the Lamb shift of the n = 2 states. The radiative
transition between the states of total spin 1 and 0 is the famous 21 centimeter
line in the radio spectrum of hydrogen.

* * *

There is an alternative description of angular momentum multiplets that
is useful in some contexts, and can be extended to other symmetry groups
of physical importance. According to Eqs. (4.2.17) and (4.1.12), the action
of an infinitesimal rotation 1 + ω on a spin one-half state vector �m (with
m = ±1/2) is

�m →
∑

m′=±1/2

(
1 + i

2
ω · σ

)
mm′

�m′ . (4.3.34)

Now, for general real ω,

ω · σ =
(

ω3 ω1 − iω2

ω1 + iω −ω3

)
,

which is the most general traceless Hermitian 2×2 matrix. Hence (4.3.34) is the
most general 2 × 2 unitary infinitesimal transformation with unit determinant.
(Recall that for M infinitesimal, Det(1 + M) = 1 + TrM .) So acting on spin
one-half indices, the three-dimensional rotation group is the same as the group
known as SU (2), the group of 2 × 2 unitary matrices that are “special” in the
sense of having unit determinant. We see that, at least for rotations that can
be built up from infinitesimal rotations, the three-dimensional rotation group
SO(3) is the same as the two-dimensional unitary unimodular group SU (2).
(There are similar relations in a few higher dimensions, as for instance a similar
relation between SO(6) and SU (4), but nothing like this occurs in spaces of
general dimensionality.)
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More generally, a state vector �m1...m N that combines N spin one-half angular
momenta, with each mi equal to ±1/2, transforms as a tensor under SU (2)

�m1...m N →
∑

m′
1...m

′
N

Um1m′
1
· · · Um N m′

N
�m′

1...m
′
N

(4.3.35)

where U is a unitary 2 × 2 matrix with unit determinant. In general, from such a
tensor we can derive tensors with fewer indices. Note that the condition that U
has unit determinant means that∑

m′
1m′

2

Um′
1m1Um′

2m2εm′
1m′

2
= εm1m2 (4.3.36)

where

ε 1
2 ,− 1

2
= −ε− 1

2 ,
1
2

= 1, ε 1
2 ,

1
2

= ε− 1
2 ,− 1

2
= 0. (4.3.37)

It follows that by multiplying a general tensor �m1...m N with εmr ms (where r and
s are any two different integers between 1 and N ) and summing over mr and
ms , we can form a tensor with two fewer indices. The only sorts of tensors,
which are irreducible in the sense that from them we cannot in this way form
non-trivial tensors with fewer indices, are those that are totally symmetric, for
which the sum over mr and ms would vanish.

To put this in the language of angular momentum, we note by the rules of
angular momentum addition, a state vector �m1...m N can be expressed as a sum
of state vectors of various total angular momenta, just one of which will be
angular momentum N/2. From the fourth line of Table 4.1, we see that the
tensor (4.3.37) is essentially just the Clebsch–Gordan coefficient for combining
two angular momenta one-half to form angular momentum zero:

εm1m2 = √
2 C 1

2 ,
1
2
(0, 0; m1m2) (4.3.38)

so when we multiply �m1...m N with εmr ms and sum over mr and ms , we get a
state vector that combines N − 2 spin one-half angular momenta, which can be
expressed as a sum of state vectors of various total angular momenta, all of them
less than N/2. Thus in order to isolate the part of a state vector �m1...m2 j that
contains only the angular momentum j , the state vector must be symmetrized in
the indices m1 . . .m2 j . The independent components of this symmetrized state
vector are entirely characterized by the numbers n and 2 j − n of indices with
m = +1/2 and m = −1/2, so the number of independent components is simply
the number of values of n between zero and 2 j , which is 2 j + 1. Thus a spin j
state vector can simply be described as a symmetrized combination of 2 j spins
one-half. For instance, a multiplet with total angular momentum unity consists
of the three states

� 1
2 ,

1
2
, � 1

2 ,− 1
2
+�− 1

2 ,
1
2
, �− 1

2 ,− 1
2
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in agreement (apart from normalization) with the first three lines of Table 4.1.
We can use this alternative formalism to work out rules for the addition of

angular momenta. When we combine spins j1 and j2, the state vector in this for-
malism takes the form �m1...m2 j1 ;m′

1...m
′
2 j2

, symmetrical in the ms and symmetrical

in the m ′s, but with no particular symmetry between the ms and m ′s. From this,
by multiplying with M factors εmr m′

s
and summing over indices, we can form a

tensor with M fewer m indices and M fewer m ′ indices. If we symmetrize with
respect to the remaining indices, we have a tensor that describes only angular
momentum 2 j1 + 2 j2 − 2M . Here M can be given any value from zero to the
lesser of 2 j1 and 2 j2. Hence by combining angular momenta j1 and j2, we can
form any angular momentum j = j1 + j2 − M , with 0 ≤ M ≤ min{2 j1, 2 j2},
or in other words, with | j1 − j2| ≤ j ≤ j1 + j2, just as we found earlier by the
use of raising and lowering operators.

4.4 The Wigner–Eckart Theorem

One of the advantages of the algebraic approach to angular momentum is that
we can deduce the form of the matrix elements of various operators if we know
their commutation relations with the rotation generators, which follow from the
rotation transformation properties of the corresponding observables. A set of
2 j + 1 operators Om

j with m = j, j − 1, − j is said to have spin j if the com-
mutators of the rotation generators with these operators have the same form as
the formulas (4.2.9) and (4.2.16) for their action on state vectors �m

j of angular
momentum j : [

J3, Om
j

] = �m Om
j , (4.4.1)

[
J1 ± i J2, Om

j

] = �
√

j ( j + 1)− m2 ∓ m Om±1
j . (4.4.2)

These conditions can be summarized in the statement that

[J, Om
j ] = �

∑
m′

J( j)
m′m Om′

j , (4.4.3)

where J( j)
m′m is the spin-j representation of the angular momentum operators

[J ( j)
3 ]m′m ≡ mδm′m, [J ( j)

1 ]m′m ± i[J ( j)
2 ]m′m ≡

√
j ( j + 1)− m2 ∓ m δm′,m±1.

(4.4.4)

For instance, a scalar operator S is one that commutes with all components of J,
which trivially agrees with Eqs. (4.4.1) and (4.4.2) or equivalently with (4.4.3)
if we assign the operator j = m = 0, for which J(0)m′m = 0. Also, according to
Eq. (4.1.13), a vector operator V is one that satisfies the commutation relations
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[
Ji , Vj

] = i�
∑

k

εi jk Vk . (4.4.5)

We can define spherical components of this vector as the quantities

V +1 ≡ −V1 + iV2√
2

, V −1 ≡ V1 − iV2√
2

, V 0 ≡ V3. (4.4.6)

Then we can use the commutation relations (4.4.5) to show that

[J3, V m] = �m V m, (4.4.7)

and

[J1 ± i J2, V m] = �
√

2 − m2 ∓ m V m±1, (4.4.8)

so the V m form an operator V m
1 with j = 1. A special case of such an operator

V m
1 is provided by the spherical harmonic Y m

1 (x̂), with x̂ treated as an operator.
Indeed, for any vector operator V, the �th order polynomials |V|�Y m

� (V̂ ) are
operators of type Om

j with j = �.
We will prove a fundamental general result due to Wigner1 and Carl Eckart2

(1902–1973), known as the Wigner–Eckart theorem, that gives(
�m′′

j ′′ , Om
j �

m′
j ′
)

= C j j ′( j ′′m ′′; mm ′)
(
�||O||�

)
, (4.4.9)

where C j j ′( j ′′m ′′; mm ′) is the Clebsch–Gordan coefficient introduced in

Section 4.3, and
(
�||O||�

)
is a coefficient known as the reduced matrix

element that can depend on everything except the 3-components m, m ′, and m ′′.
To prove this result, consider a general operator Om

j of spin j . When multi-

plied with the angular momentum generators, the state vector �mm′
j j ′ ≡ Om

j �
m′
j ′

becomes

Ji �
mm′
j j ′ = [Ji , Om

j ]�m′
j ′ + Om

j Ji �
m′
j ′

= �
∑
m′′

[J ( j)
i ]mm′′�m′′m′

j j ′ + �
∑
m′′

[J ( j ′)
i ]m′m′′�mm′′

j j ′ . (4.4.10)

In other words, Ji acts on �mm′
j j ′ just as if �mm′

j j ′ were a state vector for a system
consisting of two particles with spins j and j ′ and 3-components m and m ′.
Therefore

Om
j �

m′
j ′ =

∑
j ′′m′′

C j j ′( j ′′m ′′; mm ′)�m′′
j j ′ j ′′ (4.4.11)

1 E. P. Wigner, Gruppentheorie (Vieweg u. Sohn, Braunschweig, 1931).
2 C. Eckart, Rev. Mod. Phys. 2, 305 (1930).
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where �m′′
j j ′ j ′′ is a state vector of angular momentum j ′′ with 3-component m ′′.

Applying Eq. (4.2.19) to the state vectors � and � then gives the desired result,
Eq. (4.4.9).

There is an immediate application of this result for vector operators: the
matrix elements of all vector operators for state vectors of definite angular
momentum are parallel. That is, for any pair of vectors V and W, as long as
(�||W ||�) does not vanish, we have

(�m′′
j ′′ , V m

1 �
m′
j ′
)

=
⎛
⎝
(
�||V ||�

)
(
�||W ||�

)
⎞
⎠(�m′′

j ′′ ,W m
1 �

m′
j ′
)
. (4.4.12)

Since this is true of the spherical components of the vectors, it is also true of the
Cartesian components

(
�m′′

j ′′ , Vi�
m′
j ′
)

=
⎛
⎝
(
�||V ||�

)
(
�||W ||�

)
⎞
⎠(�m′′

j ′′ ,Wi�
m′
j ′
)
. (4.4.13)

In particular, since J is itself a vector, we have(
�m′′

j ′ , Vi�
m′
j ′
)

∝
(
�m′′

j ′ , Ji�
m′
j ′
)
. (4.4.14)

We have written this last result only for the case j ′′ = j ′ because, since J com-
mutes with J2, the reduced matrix element (�||J ||�) would vanish if � and �
had different angular momenta. But it should not be thought that vector operators
generally have vanishing matrix elements between states of different total angu-
lar momentum; this is a general rule only for the angular momentum operator
itself.

We will use Eq. (4.4.14) in our treatment of the Zeeman effect in Section 5.2.
It is often explained “physically,” by arguing that any vector’s components
orthogonal to the angular momentum vector are averaged out by the rotation
of a system around J, but without the Wigner–Eckart theorem one might think
that this essentially classical explanation leaves open the possibility of quantum
corrections.

As a further application of the Wigner–Eckart theorem, we will derive the
selection rules obeyed by the most common sort of photon emission transition.
As we saw in Section 1.4, Heisenberg made use of the classical formula for
radiation by an oscillating charge to guess at a formula, Eq. (1.4.5), for the rate
of a transition from one atomic state to another. Generalizing to any number of
charged particles with position operators Xn (relative to the center of mass) and
charges en , this formula gives the rate of transition from initial atomic state a to
final atomic state b as

�(a → b) = 4(Ea − Eb)
3

c3�4

∣∣∣(b|D|a
)∣∣∣2 (4.4.15)
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where D is the dipole operator

D =
∑

n

enXn. (4.4.16)

We will give a quantum mechanical derivation of this formula in Section 11.7.

As shown there, Eq. (4.4.15) gives the radiative transition rate (with
(

b|Xn|a
)

defined as the matrix element of the nth particle coordinate relative to the center
of mass, stripped of its momentum conservation delta function), in the approxi-
mation that the wavelength hc/(Ea − Eb) of the emitted photon is much larger

than the size of the atom, provided that the matrix element
(

b|D|a
)

does not

vanish. What concern us here are the conditions under which the matrix element
may not vanish.

The operator D is a three-vector, and so, as in Eq. (4.4.6), its components can
be written as linear combinations of a j = 1 multiplet of operators Dm :

D1 = 1√
2

(
− D+1 + D−1

)
, D2 = i√

2

(
D+1 + D−1

)
, D3 = D0. (4.4.17)

The matrix elements of the operators Dm have a dependence on m and on the
angular momenta quantum numbers ja,ma , and jb,mb of the initial and final
states given by a Clebsch–Gordan coefficient:(

b|Dm |a
)

∝ C ja1( jbmb; mam), (4.4.18)

with a constant of proportionality independent of m, ma , and mb. The transition
rate (4.4.15) therefore vanishes unless the angular-momentum quantum numbers
satisfy

| ja − jb| ≤ 1, ja + jb ≥ 1, |ma − mb| ≤ 1. (4.4.19)

There is a further parity selection rule, given in Section 4.7.
Where these selection rules are satisfied, and the transition rate is given to

a good approximation by Eq. (4.4.15), this is known as an electric dipole,
or E1, transition. Of course, not all possible atomic transitions satisfy these
selection rules. Where the selection rules are not satisfied, photon transitions
are still possible, but their rates are suppressed by additional factors of the
atomic size divided by the photon wavelength. Such transitions are discussed
in Section 11.7.

4.5 Bosons and Fermions

As far as we know, every electron in the universe is identical to every other
electron, except for the values taken by their positions (or momenta) and
spin 3-components. The same is true of the other known elementary particles:
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photons, quarks, etc. For such indistinguishable particles, it can make no differ-
ence what order we write the position and spin labels on a physical state: we
can say that in a state with state vector �x1,m1;x2,m2;... there is one electron with
position x1 and spin 3-component �m1, another electron with position x2 and
spin 3-component �m2, and so on, and not that the first electron has position x1

and spin 3-component �m1, that the second electron has position x2 and spin
3-component �m2, and so on. Thus for instance the state vector �x2,m2;x1,m1;...
must represent the same physical state as the state vector �x1,m1;x2,m2;.... This
does not mean that these state vectors are equal, only that they are equal up to a
constant factor,1 say α:

�x2,m2;x1,m1;... = α�x1,m1;x2,m2;.... (4.5.1)

Because α does not depend on momentum or spin, we also have

�x1,m1;x2,m2;... = α�x2,m2;x1,m1;.... (4.5.2)

Inserting Eq. (4.5.1) in the right-hand side of Eq. (4.5.2), we see that

�x1,m1;x2,m2;... = α2�x1,m1;x2,m2...,

and therefore

α2 = 1. (4.5.3)

This argument applies to particles of any type, elementary or not. Particles with
α = +1 and α = −1 are known as bosons and fermions, respectively, named
after Satyendra Nath Bose (1894–1974) and Enrico Fermi (1901–1954).

One of the most important consequences of special relativity in quantum
mechanics is that all particles whose spins are half odd integers are fermions,
and all particles whose spins are integers are bosons.2 Thus electrons and quarks,
which have spin 1/2, are fermions. The heavy W and Z particles, which play
an essential role in the radioactive process known as beta decay, have spin one,
and are therefore bosons. (The definition of spin for a massless particle like the
photon requires some care. For our purposes here we note only that the com-
ponent of spin angular momentum in the direction of a photon’s motion can

1 It is important in deriving Eq. (4.5.3) that α should depend only on the species of particle, not on the
particle’s momentum or spin. This follows from considerations of spacetime symmetry; a dependence
of α on momentum or spin would contradict invariance under rotations of the coordinate system or
transformations to moving coordinate systems. In two space dimensions there is an exotic possibility,
that α might depend on the paths by which the particles are brought to their positions or momenta, but
this is not possible in three or more space dimensions.

2 This result was first presented in the context of perturbation theory by M. Fierz, Helv. Phys. Acta 12,
3 (1939); W. Pauli, Phys. Rev. 58, 716 (1940). Non-perturbative proofs in axiomatic field theory were
given by G. Lüders and B. Zumino, Phys. Rev. 110, 1450 (1958) and N. Burgoyne, Nuovo Cimento 8,
807 (1958). Also see R. F. Streater and A. S. Wightman, PCT, Spin & Statistics, and All That (Benjamin,
New York, 1968).
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only take the values ±�, corresponding to left- and right-circularly polarized
electromagnetic waves, and that photons are bosons.)

When we exchange a pair of identical composite particles, we exchange all
of their constituents, so we get a sign factor given by the product of all the sign
factors for the individual constituents. It follows that a composite particle con-
sisting of an even number of fermions and any number of bosons is a boson,
and a composite particle consisting of an odd number of fermions and any num-
ber of bosons is a fermion. Thus the proton and neutron, which each consist
of three quarks, are fermions. The hydrogen atom, which consists of a proton
and an electron, is a boson. Note that this rule is consistent with the feature
of angular momentum addition, that the addition of an odd number of half-
odd-integer angular momenta and any number of integer angular momenta is
a half-odd-integer angular momentum, while the addition of an even number of
half-odd-integer angular momenta and any number of integer angular momenta
is an integer angular momentum. It would have been impossible for all integer
spin particles to be fermions, because a composite of an even number of integer
spin particles would have integer spin, but would also be a boson.

The distinction between bosons and fermions is particularly important for
systems in which to a good approximation the Hamiltonian acts separately on
each particle. That is,

H�ξ1ξ2... =
∫

dξ ′
1 Hξ ′

1,ξ1�ξ ′
1ξ2... +

∫
dξ ′

2 Hξ ′
2,ξ2�ξ1ξ

′
2...

+ · · · , (4.5.4)

where Hξ ′,ξ is the matrix element of an effective one-particle Hamiltonian
between one-particle states

Hξ ′,ξ ≡
(
�ξ ′, H eff�ξ

)
. (4.5.5)

(We are now using ξ to denote a particle momentum and spin z-component, and
an integral over ξ is understood to include an integral over the momentum vec-
tor and a sum over the spin z-component.) In atomic physics, this is called the
Hartree approximation.3 It is often a good approximation in many-particle sys-
tems, where any one particle can be assumed to respond to the potential created
by the other particles, while its response to this potential has negligible reac-
tion back on the potential. When the Hamiltonian takes the form (4.5.4), a state
� will be an eigenstate of the Hamiltonian if its wave function is a product of
single-particle wave functions:(

�ξ1,ξ2,···, �
)

= ψ1(ξ1)ψ2(ξ2) · · · , (4.5.6)

3 D. R. Hartree, Proc. Camb. Phil. Soc. 24, 111 (1928).
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where the ψa are eigenfunctions of the one-particle Hamiltonian∫
dξ ′ Hξ,ξ ′ψa(ξ

′) = Eaψa(ξ). (4.5.7)

In this case, we have(
�ξ1,ξ2,···, H�

)
=
∫

dξ ′
1 H ∗

ξ ′
1,ξ1

ψ1(ξ
′
1)ψ2(ξ2) · · ·

+
∫

dξ ′
2 H ∗

ξ ′
2,ξ2

ψ1(ξ1)ψ2(ξ
′
2) · · · + · · · .

Using the Hermiticity of the one-particle Hamiltonian, we have H ∗
ξ ′,ξ = Hξ,ξ ′ ,

so with Eq. (4.5.7) this gives(
�ξ1,ξ2,···, H�

)
= (E1 + E2 + . . . )

(
�ξ1,ξ2,···, �

)
and therefore � is an eigenvector of H with energy E1 + E2 + · · · :

H� = (E1 + E2 + · · · )�. (4.5.8)

But for identical particles Eq. (4.5.6) is in conflict with the requirement
that �ξ1,ξ2,... must be symmetric or antisymmetric in the ξs for bosons or
fermions, respectively. In this case, in place of (4.5.6), we must symmetrize
of antisymmetrize the wave function:(

�ξ1,ξ2,···, �
)

=
∑

P

δPψ1(ξP1)ψ2(ξP2) · · · , (4.5.9)

where the sum is over all permutations 1, 2, . . . �→ P1, P2, . . . , and δP for
fermions is +1 or −1 for even or odd permutations, respectively, while for
bosons δP = 1 for all permutations. The argument given above for the energy
of the wave function (4.5.6) applies to each term of this sum, so by the same
argument, � is again an eigenvector of H with eigenvalue E1 + E2 + · · · .

For instance, for a two-particle state there are just two permutations, the
identity 1, 2 �→ 1, 2 and the odd permutation 1, 2 �→ 2, 1, so(

�ξ1,ξ2, �
)

= ψ1(ξ1)ψ2(ξ2)± ψ1(ξ2)ψ2(ξ1),

the sign being plus for bosons and minus for fermions. For fermions, the wave
function in the general case is a determinant, known as a Slater determinant.4

(
�ξ1,ξ2,···, �

)
=

∣∣∣∣∣∣∣∣
ψ1(ξ1) ψ1(ξ2) ψ1(ξ3) . . .

ψ2(ξ1) ψ2(ξ2) ψ2(ξ3) . . .

ψ3(ξ1) ψ3(ξ2) ψ3(ξ3) . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣
. (4.5.10)

4 J. C. Slater, Phys. Rev. 34, 1293 (1929).
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For bosons we also get a determinant, but with all minus signs replaced with
plus signs.

For fermions it is impossible to form a state vector of the form (4.5.10) in
which any of the ψa are the same, because then two rows of the determinant
would be the same, and the state vector would vanish. This is known as the Pauli
exclusion principle.5 In contrast, for bosons we can even have a state in which a
macroscopic number of the ψa are the same. This is known as a Bose–Einstein
condensation.6 The peculiar properties of liquid He4 can be interpreted as due
to a Bose–Einstein condensation, but in this case the wave function cannot be
expressed approximately as a symmetrized sum of products of one-particle wave
functions. Only in recent years has a Bose–Einstein condensation been observed
for a gas of atoms,7 where this approximation is appropriate.

The first great application of these considerations was in explaining the
periodic table of the elements. As already mentioned, each electron in a multi-
electron atom may be considered approximately to move in a potential V (r)
arising from the nucleus and the other electrons. This potential is very close to
a central potential, depending only on the distance r from the nucleus, but it
is not a simple Coulomb potential proportional to 1/r . It behaves instead like
− Ze2/r near the nucleus (whose charge is +Ze), and like − e2/r outside the
atom, where the nuclear charge is screened by the negative charge of Z − 1
electrons. Because the potential is a central potential we can still label the wave
functions ψa(ξ) of the individual electrons with an orbital angular momentum
� and a principal quantum number n, with 2(2� + 1) of these states for each n
and � (the extra factor 2 arising from the electron’s spin). The integer n can be
defined as �+1 plus the number of nodes of the radial wave function, just as for
a Coulomb potential. But because the potential is not a Coulomb potential we
no longer have precisely equal energies for states of different � and the same n.
Instead, there is a tendency of energy to increase with �, because the wave func-
tion behaves near the origin like r �, so that electrons with large � spend little
time near the nucleus, where r |V (r)| is largest. For atoms with a large number
Z of electrons, it even sometimes happens that a one-electron state of large �
has a higher energy than a state of larger n and smaller �.

The Pauli exclusion principle tells us that no two electrons can have the same
wave function ψa(ξ), so as we consider atoms with more and more electrons,
the electrons must be placed in one-electron states of higher and higher energy
Ea . Of course, with increasing numbers of electrons the potential V (r) changes,

5 W. Pauli, Zeits. f. Physik 31, 763 (1925).
6 In a letter to Einstein, Bose described the theory of bosons like photons for which the number of particles

is not fixed. Einstein translated it himself from English to German, and had it published, as S. N. Bose,
Zeit. f. Phys. 26, 178 (1924). Einstein then worked out the theory of gases of bosons with a fixed number
of particles, published in A. Einstein, Sitz. Preuss. Akad. Wiss. (1925), p. 3.

7 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198
(1995).
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so the values of the energies Ea and even their order also change. Detailed cal-
culations show that the one-electron states are filled (with sporadic exceptions)
in the order (with energies increasing down the list)

1s,

2s, 2p,

3s, 3p,

4s, 3d, 4p,

5s, 4d, 5p,

6s, 4 f, 5d, 6p,

7s, 5 f, 7p, . . . , (4.5.11)

where s, p, d, and f are the time-honored symbols for � = 0, � = 1, � = 2, and
� = 3. The one-electron states listed on the same line have approximately equal
energy.

Taking spin into account, the total number of states for the energy levels listed
on each line of Eq. (4.5.11) are 2, 2 + 6 = 8, 2 + 6 = 8, 2 + 6 + 10 = 18,
2 + 10 + 6 = 18, 2 + 14 + 10 + 6 = 32, and so on. The first 2 elements
hydrogen and helium, with Z = 1 and Z = 2, have electrons only in the first
(deepest) of the energy levels (4.5.11); the next 8 elements from lithium to neon
have electrons also in the second of these energy levels; the 18 elements from
sodium to argon have electrons in the third as well as the first and second of
these energy levels; and so on.

Now, the chemical properties of an element are generally determined by
the number of electrons in its highest energy level, which are least tightly
bound. (An important exception is noted below.) An element whose atoms
have no electrons outside filled energy levels is particularly stable chemically.
Such elements are called noble gases, and include helium with Z = 2, neon
with Z = 2 + 8 = 10, argon with Z = 2 + 8 + 8 = 18, krypton with
Z = 2 + 8 + 8 + 18 = 36, xenon with Z = 2 + 8 + 8 + 18 + 18 = 54, and
radon with Z = 2+8+8+18+18+32 = 86. For elements with a small num-
ber of electrons more or less than a noble gas, chemical properties are largely
determined by that number, known as the valence — positive for extra electrons,
negative for missing electrons. Stable compounds are typically formed from ele-
ments whose valences add up to zero. If there is just one electron in the highest
energy level then it is easily lost, so the element behaves as a chemically reactive
metal with valence +1. (Metals are characterized by their property of forming
solids in which electrons leave individual atoms and travel freely through the
solid. This gives metals their high thermal and electrical conductivity.) Such
elements are called alkali metals, and include lithium with Z = 2 + 1 = 3,
sodium with Z = 2 + 8 + 1 = 11, potassium with Z = 2 + 8 + 8 + 1 = 19,
etc. Likewise, if there is just one electron missing in the highest energy level,
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then the atom tends strongly to attract one extra electron, so it is a chemically
reactive non-metal, with valence −1, which can form particularly stable com-
pounds with the alkali metals. Such elements are called halogens, and include
fluorine with Z = 2 + 8 − 1 = 9, chlorine with Z = 2 + 8 + 8 − 1 = 17,
bromine with Z = 2 + 8 + 8 + 18 − 1 = 35, and so on. Elements with two
electrons more than a noble gas are chemically reactive, though not as reactive
as the alkali metals; these are known as the alkali earths, with valence +2, and
include beryllium with Z = 2 + 2 = 4, magnesium with Z = 8 + 2 = 10,
calcium with Z = 18 + 2 = 20, and so on. Similarly, elements with two elec-
trons less than a noble gas are chemically reactive, with valence −2, though not
as reactive as the halogens. These include oxygen with Z = 10 − 2 = 8, sulfur
with Z = 18 − 2 = 16, and so on.

The inclusion of 4 f states in the sixth energy level and 5 f states in the
seventh energy level produces a striking feature of the periodic table of the
elements. Detailed calculations show that the mean radius of the 4 f orbits is
smaller than that of the 6s states, and the mean radius of the 5 f orbits is smaller
than that of the 7s states, so the numbers of 4 f or 5 f electrons have little
effect on the chemical properties of the atom, even where these are the high-
est energy electrons in the atom. Thus the 2(2 · 3 + 1) = 14 elements in which
the highest energy electrons are in 4 f states are quite similar chemically, and
likewise for the 14 elements in which the highest energy electrons are in 5 f
states. The first set of elements are known as rare earths or lanthanides, and
have Z running from 2 + 8 + 8 + 18 + 18 + 2 + 1 = 57 (lanthanum)8 to
2 + 8 + 8 + 18 + 18 + 2 + 14 = 70 (ytterbium). The second set are known as
actinides, and have Z running from 2 + 8 + 8 + 18 + 18 + 32 + 2 + 1 = 89
(actinium) to 2+8+8+18+18+32+2+14 = 102 (nobelium). Much beyond
nobelium the question of chemical behavior becomes moot, because for such
large values of Z the Coulomb repulsion among the protons makes the nucleus
so unstable that the atoms do not last long enough to participate in chemical
reactions.

An analogous shell structure is seen in atomic nuclei.9 There are certain
“magic numbers” of protons or neutrons that form closed shells, as shown by
the fact that the nucleus with one additional proton or neutron has anomalously
small binding energy. The magic numbers observed in this way are

2, 8, 20, 28, 50, 82, 126. (4.5.12)

8 Lanthanum is actually one of the sporadic exceptions to the rule of filling energy levels in the order
shown in Eq. (4.5.11). The 57th electron is in a 5d rather than a 4 f state. But in the next rare earth
(cerium) there are two electrons in the 4 f state, and none in the 5d state, and this pattern continues for
all the other rare earths. Similar exceptions occur for the actinides.

9 M. Goeppert-Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New
York, 1955).
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For instance, He4 is doubly magic, since it has two protons and two neutrons,
and in consequence there is no stable nucleus with one extra proton or neutron,
which is one of the reasons that nuclear reactions in the early universe produced
almost no complex nuclei heavier than He4. Other doubly magic nuclei such
as O16 and Ca40 do allow the binding of an extra proton or nucleus, but with
substantially less binding energy than neighboring nuclei, and as a result these
isotopes of oxygen and calcium are produced in stars more abundantly than
neighboring nuclei.

The explanation of magic numbers in nuclei is similar to the explanation of
the atomic numbers Z = 2, 10, 18, etc. of noble gases, but of course with a
very different potential. To the extent that nucleons can be supposed to move in
a common potential V (r) in nuclei, the potential must be analytic in the three-
vector x at the origin, since unlike the case of atoms, in nuclei there is nothing
special about the origin. Thus for r → 0, the potential must go as a constant
plus a term of order r2. A simple potential that satisfies this condition is the
harmonic oscillator potential, V (r) ∝ V0 + mNω

2r2/2, with ω some constant
frequency. As we saw in Section 2.5, the first few energy levels (with energies
relative to the zero-point energy V0 + 3�/2) of a particle in this potential, and
the degeneracies of these levels, are as follows:

Energy States Degeneracy
0 s 2
�ω p 6
2�ω s & d 12
3�ω p & f 20
... ... ...

(4.5.13)

An extra factor 2 has been included in these degeneracies to take account of the
two spin states of the nucleon. Protons are fermions, and are all identical to each
other, so the number of protons in a nucleus with the lowest energy level filled
is 2; with all levels filled up to �ω it is 2 + 6 = 8; with all levels filled up to 2�ω
it is 2 + 6 + 12 = 20, and so on. Of course, the same applies to neutrons.

This accounts for the first three magic numbers, but would suggest that the
next magic number should be 2 + 6 + 12 + 20 = 40, which is definitely not
the case. For all beyond the lightest nuclei, it is necessary to take into account
not only inevitable departures from the simple harmonic potential, but also the
spin-orbit coupling, which as discussed in Section 4.3 splits the 2(2�+ 1) states
with definite � into 2� + 2 states with total one-particle angular momentum
j = � + 1/2 and 2� states with j = � − 1/2. It turns out that the spin-orbit
coupling depresses the energy of the f state with j = 7/2 below the other states
in the 3�ω level. The degeneracy of the f7/2 state is 8, so the next magic number
beyond 20 is 20 + 8 = 28. Similar considerations explain the higher magic
numbers.
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The distinction between bosons and fermions has a profound effect on the way
we count physical states in statistical mechanics. According to the general prin-
ciples of statistical mechanics, the probability of any state in thermal equilibrium
is proportional to an exponential function of linearly conserved quantities —
that is, quantities whose sum over subsystems is conserved when the subsys-
tems interact. These conserved quantities include the total energy10 E , and the
number N of particles (strictly speaking, the numbers of certain kinds of par-
ticles, such as quarks and electrons, minus the numbers of their antiparticles).
This exponential probability distribution is known as a grand canonical ensem-
ble. We will consider here a system like a gas, for which the total energy is the
sum over one-particle states labeled n of the energies En of these states times
the numbers Nn of particles in the nth state. The probability of any given set of
Nn in thermal equilibrium is then

P(N1, N2, . . . ) ∝ exp

(
− E

kB T
+ μN

kB T

)
= exp

(
−
∑

n

Nn(En − μ)/kB T

)
,

(4.5.14)

where N = ∑
n Nn and E = ∑

n Nn En are the total particle number and energy,
kB is Boltzmann’s constant, and T and μ are parameters describing the state of
the system, known respectively as the temperature and chemical potential.

So far, there is no difference between distinguishable and indistinguishable
particles, or for indistinguishable particles between bosons and fermions. The
difference enters when we sum over states in calculating thermodynamic aver-
ages. For distinguishable particles, we sum over the possible states of each
particle. For indistinguishable particles, we instead sum over the number of par-
ticles in each one-particle state. For bosons, the mean number of particles in the
nth state is then

N n =
∑∞

Nn=0 Nn exp (−Nn(En − μ)/kB T )∑∞
Nn=0 exp (−Nn(En − μ)/kB T )

= 1

exp ((En − μ)/kB T )− 1
. (4.5.15)

(The sums over the numbers Nm of particles in states m �= n other than n
cancel between numerator and denominator.) This is the case of Bose–Einstein
statistics.

For instance, the number of photons is not conserved in radiative pro-
cesses, so for photons we have to take μ = 0. As we saw in Section 1.1,
there are 8πν2 dν/c3 one-photon states between frequencies ν and ν + dν,
each with energy hν, so the energy per volume between frequencies ν and

10 We usually do not include the total momentum, even though it is linearly conserved, because we can
always choose a frame of reference in which the total momentum vanishes.
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ν + dν is 8πhν3 N dν/c3, which immediately yields the Planck black-body
formula (1.1.5).

For fermions the calculation of N n is precisely the same as for bosons, except
that in accord with the Pauli exclusion principle, the sums over each Nn runs
only over the values zero and one. Hence

N n = exp (−(En − μ)/kB T )

1 + exp (−(En − μ)/kB T )

= 1

exp ((En − μ)/kB T )+ 1
. (4.5.16)

Note that N n ≤ 1, as of course is required by the Pauli principle. This is the case
of Fermi–Dirac statistics.

When the temperature is sufficiently small, the mean occupation number
(4.5.16) is well approximated by

N n =
{

1 En < μ

0 En > μ
. (4.5.17)

The surface En = μ in momentum space provides the boundary of the space of
filled states, and is known as the Fermi surface. The existence of a Fermi surface
plays an important role for electrons in white dwarf stars and for neutrons in
neutron stars.

The Pauli principle has important implications also for the dynamics of elec-
trons in crystals. As we saw in Section 3.5, in a crystal the allowed energies of
an electron fall in several distinct bands. A crystal in which each band has all its
states occupied by electrons or all empty is an insulator; the electron states can-
not respond to an electric field because these states are completely fixed by the
Pauli principle. A crystal in which some band has both an appreciable number
of filled states and an appreciable number of unfilled states is a metal, with good
electrical and thermal conductivity, because in this case the Pauli principle does
not block the change of electron states to other states in an electric field, and
there are plenty of electrons to respond. A crystal in which some band is nearly
full or nearly empty, while all other bands are entirely full or empty, is a semi-
conductor. At zero temperature a pure semiconductor is an insulator, but it can
be made into a conductor by doping it with impurities that either add electrons
to the nearly empty band, or remove electrons from the nearly full band.

The distinction between Eq. (4.5.15) for bosons and Eq. (4.5.16) for fermions
evidently disappears when the exponential exp ((En − μ)/kB T ) is much larger
than unity. In this case, we have simply

N n = exp (−(En − μ)/kB T ) , (4.5.18)

which is the familiar case of Maxwell–Boltzmann statistics.
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4.6 Internal Symmetries

So far, we have considered only symmetry transformations that act on spacetime
coordinates. There are also important symmetry transformations that act instead
on the nature of particles, leaving their spacetime coordinates unaffected. This
is a very large subject, to which only a very brief introduction can be given here.

An early example grew out of the 1932 discovery of the neutron. From the
beginning it was striking that the neutron mass is nearly equal to the proton
mass — they are respectively 939.565 MeV and 938.272 MeV. This suggested
that there should be a “charge symmetry,” a symmetry under a transformation
that, acting on any state, turns neutrons into protons and protons into neutrons.
This would clearly not be an exact symmetry, since neutrons and protons do
not have precisely the same masses. It would not be a symmetry of the elec-
tromagnetic interactions at all, since protons are charged and neutrons are not.
But it was at least plausible that it would be a symmetry of whatever strong
nuclear forces hold neutrons and protons together inside atomic nuclei and that
presumably also have a large effect on neutron and proton masses.

This charge symmetry has important implications for complex nuclei. For
light nuclei, where Coulomb forces are not dominant, each energy level of a
nucleus with Z protons and N neutrons should be matched by an energy level
of a nucleus with N protons and Z neutrons, with the same energy and spin.
This is well borne out by experiment. For instance, the spin 1/2 ground state
of H3 is so close in energy to the spin 1/2 ground state of He3 that the energy
difference is just barely enough to allow H3 to decay into He3 with the emission
of an electron and an approximately massless antineutrino. Likewise, the spin 1
ground state of B12 is matched with the spin 1 ground state of N12.

Charge symmetry requires that the strong nuclear force between two neutrons
be the same as between two protons, but it says nothing about the force between
a proton and a neutron. At first only the neutron–proton force could be mea-
sured, both directly by scattering neutrons on hydrogen targets and indirectly
by measurement of the properties of the deuteron. The neutron–neutron force
could not be directly measured for obvious reasons: there are no neutron targets,
and no two–neutron bound states. The proton–proton force could be measured,
but at low energies the Coulomb repulsion between protons keeps protons from
coming close to each other, so the force is almost purely electromagnetic. By
1936 it had become possible to accelerate protons to sufficiently high energy to
measure effects of the nuclear force, and it was found that this force was similar
to the proton–neutron force. To be more precise, the energy of the protons in
this experiment was still small enough so that the scattering state had � = 0
(the connection between low energy and low � is explained in Section 7.6), so
because protons are fermions they had to be in an antisymmetric spin state,
with total spin zero. It was possible to separate out the force between protons
and neutrons in the state with � = 0 and total spin zero from neutron–proton
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scattering experiments by subtracting the force in the state with � = 0 and total
spin one, as measured from the properties of the deuteron. It was found that the
nuclear forces in the neutron–proton and proton–proton states with � = 0 and
total spin zero were similar in strength and range.1

This clearly called for a symmetry between protons and neutrons that
goes beyond charge symmetry. The correct symmetry transformations were
identified2 as (

p
n

)
�→ u

(
p
n

)
, (4.6.1)

where u is a general 2×2 unitary matrix with unit determinant. As we saw at the
end of Section 4.3, this is the same as the group of rotations in three dimensions,
but acting on the labels p and n instead of coordinates or momenta or ordinary
spin indices, and with the doublet (p, n) transforming the same way that a spin
1/2 doublet of states transforms under ordinary rotations. These are known as
isospin transformations.

For these transformations to be symmetries of a quantum mechanical theory,
there must exist a unitary operator U (u) for each 2 × 2 unitary matrix u with
unit determinant. These transformations are generated by Hermitian operators
Ta (with a = 1, 2, 3), in the sense that for an isospin transformation with u close
to unity, of the general form

u = 1 + i

2

(
ε3 ε1 − iε2

ε1 + iε2 −ε3

)
,

(with εa real and infinitesimal), the operator U (u) takes the form

U → 1 + i
∑

a

εaTa. (4.6.2)

Because the structure of the isospin group is the same as the structure of the
rotation group, the generators satisfy the same commutation relations (4.1.14)
(without the conventional factor �) as ordinary angular momentum

[Ta, Tb] = i
∑

c

εabcTc. (4.6.3)

The action of these generators on proton and neutron states can be derived in the
same way that we derived Eq. (4.2.17):

(T1 + iT2)�p = 0, (T1 − iT2)�p = �n, T3�p = 1

2
�p

(T1 + iT2)�n = �p, (T1 − iT2)�n = 0, T3�n = −1

2
�n. (4.6.4)

1 M. A. Tuve, N. Heydenberg, and L. R. Hafstad, Phys. Rev. 50, 806 (1936).
2 B. Cassen and E. U. Condon, Phys. Rev. 50, 846 (1936); G. Breit and E. Feenberg, Phys. Rev. 50, 850

(1936).
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We note that single nucleon states have electric charge (1/2+T3)e. Hence states
consisting of A nucleons have electric charge

Q =
(

A

2
+ T3

)
e, (4.6.5)

which shows clearly the violation of isospin invariance by electromagnetic
interactions.

Isospin invariance has implications for nuclear structure that go beyond those
of charge symmetry. Each energy level in a light nucleus must be part of a mul-
tiplet of energy levels in 2t + 1 nuclei (where t is an integer or half-integer,
analogous to j), with the same atomic weight A and with T3 running by unit
steps from −t to +t , and hence with atomic numbers Z running from A/2 − t
to A/2 + t , all of these nuclear states having the same spin and approximately
the same energy. For instance, not only do the ground states of B12 and N12 have
the same spin ( j = 1) and approximately the same energy — there is also an
excited state of C12 with the same spin and energy, indicating that these three
nuclear energy levels form an isospin multiplet with t = 1. (The t = 1 state in
C12 is not the ground state, which is 15 MeV below the t = 1 excited state, and
has spin j = 0 instead of j = 1.)

Isospin invariance requires that not only nuclei, but all particles that feel the
strong nuclear force, form isospin multiplets. Thus, for instance, in 1947 a pair
of unstable charged particles π± with charges +e and −e were discovered, in
reactions like N + N → N + N + π (where N can be either a neutron or a
proton.) These “pions” have nucleon number A = 0, so according to Eq. (4.6.5),
the π+ and π− have T3 = +1 and T3 = −1, respectively. Isospin then requires
that the pions must be part of a multiplet of 2t + 1 approximately equal-mass
particles with t ≥ 1. In particular, there would have to be a neutral particle π0

with T3 = 0, and indeed, such a neutral pion was soon discovered. But no doubly
charged pions were found, so the pions form a triplet, with t = 1.

The decays of these particles are quite different: the π± decay through weak
interactions (similar to those in nuclear beta decay) into a heavy counterpart
of the positron and electron, the μ±, and a neutrino or antineutrino, while the
π0 decays through electromagnetic interactions into two photons. But isospin
invariance is respected in any process that is dominated by the strong nuclear
forces. For instance, there is a multiplet of four unstable states �++, �+, �0,
and �− of a nucleon and a pion, all �s with spin 3/2 and masses of about
1240 MeV. These states show a large uncertainty in energy, about 120 MeV,
so by the uncertainty principle they must decay very rapidly, indicating that the
decay is not produced by weak or electromagnetic interactions, but by the strong
nuclear force, which respects isospin symmetry. Since the �s decay into a state
with one nucleon, they have A = 1, and hence according to Eq. (4.6.5) have
T3 respectively equal to 3/2, 1/2, −1/2, and −3/2. This is evidently an isospin
multiplet with t = 3/2. The amplitude M for a � with T3 = m to decay through
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strong interactions into a π with T3 = m ′ and a nucleon with T3 = m ′′ then has
a dependence on charges proportional to a Clebsch–Gordan coefficient:

M(m,m ′,m ′′) = M0 C1 1
2

(
3

2
m; m ′m ′′

)
,

where M0 is independent of charges. The decay rates are of course proportional
to the squares of these amplitudes. Inspection of the fifth, sixth, and seventh
lines of Table 4.1 shows that these decay rates have ratios given by

�(�++ → π+ + p) = �(�− → π− + n) ≡ �0,

�(�+ → π+ + n) = �(�0 → π− + p) = 1

3
�0,

�(�+ → π0 + p) = �(�0 → π0 + n) = 2

3
�0,

all in good agreement with observation.3

The discovery in 1947 of new particles forced a significant change in the rela-
tion (4.6.5) between electric charge and isospin. For example (using modern
names), collisions between nucleons were found to produce a number of spin
1/2 particles called hyperons — a neutral particle �0 with mass 1115 GeV, and
a triplet of particles �+, �0, and �−, with masses 1189 GeV, 1192 GeV, and
1197 GeV. These hyperons were always produced in association with a doublet
of spin zero particle K + and K 0, with masses 494 GeV and 498 GeV. (Super-
scripts indicate the electric charge in units of e.) It had been thought that the
number A of nucleons (minus the number of antinucleons) was absolutely con-
served in nature, but hyperons were observed to decay into a nucleon and a
pion, so it became necessary to extend this conservation law to a quantity B
called baryon number, the number of nucleons and hyperons, minus the number
of their antiparticles. But it is not enough just to replace A in Eq. (4.6.5) with B.
Since the �0 is not part of an isospin multiplet with other particles, it must have
t = 0 and hence T3 = 0, but if we replace A in Eq. (4.6.5) with the baryon num-
ber B = 1, then this formula would give the �0 charge e/2, not zero. Similar
problems would arise with the �s and K s. The suggestion was made to replace
Eq. (4.6.5) with4

Q =
(

B + S

2
+ T3

)
e, (4.6.6)

where S is a quantity known as strangeness, equal to zero for ordinary particles
like nucleons and pions, but equal to −1 for the � and �, and equal to +1 for

3 H. L. Anderson, E. Fermi, R. Martin, and D. E. Nagle, Phys. Rev. 91, 151 (1953); J. Orear, C. H. Tsao,
J. J. Lord, and A. B. Weaver, Phys. Rev. 95, 624A (1954).

4 M. Gell-Mann, Phys. Rev. 92, 833 (1953); T. Nakano and K. Nishijima, Prog. Theor. Phys. (Kyoto) 10,
582 (1953).
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the K . These assignments fix the charges: the � and �s have B + S = 0, so
Q = T3e, while the K s have B + S = 1, so Q = T3 + 1/2. The conservation
of strangeness in strong interactions requires that in nucleon–nucleon collisions
these hyperons must be produced in association with K particles, to keep the
total strangeness zero.

Other strange particles were discovered: a doublet �0 and �−, with masses

1315 GeV and 1322 GeV, and the antiparticles K
−

and K
0

of the K + and K 0.
To get their charges right the � must be assigned strangeness −2, and the anti-
K strangeness −1. Strangeness is not conserved in the decay of hyperons and
K s and K̄ s into nucleons and pions, but these decays proceed through a class
of interactions much weaker than the strong nuclear forces. (Strange particles
typically have lifetimes around 10−8 to 10−10 seconds, which is enormously
long compared with the typical time scale of strong interactions, �/(1 GeV) =
6.6 × 10−25 sec.) So strangeness is not conserved by the weak interactions
responsible for strange particle decays, but it is conserved by the strong (and
electromagnetic) interactions.

All of these approximate or exact conservation laws, of charge, baryon
number, and strangeness, can also be formulated as symmetry principles. For
example, we may construct a unitary operator,

U (α) ≡ exp(iαQ), (4.6.7)

where here Q is an Hermitian operator that, acting on any state, gives a factor
equal to the total electric charge q of the particles in the state, and α is an arbi-
trary real number. Acting on any state of charge q the operator U (α) gives a
phase factor, exp(iαq). Transition amplitudes are invariant under this symme-
try if and only charge is conserved — that is, if and only if the Hamiltonian H
satisfies

U−1(α) H U (α) = H. (4.6.8)

The symmetry group here is U (1), the group of multiplication by 1 × 1 unitary
matrices, which of course are just phase factors. The conservation of baryon
number and strangeness can likewise be expressed as invariance under other
U (1) symmetry groups.

These U (1) symmetries were entirely separate from the SU (2) of isospin,
in the sense that their generators commuted with the generators Ta of isospin.
The question naturally arose, whether some of these symmetries could be com-
bined in a symmetry that united some of these isospin multiplets. The winning
candidate was SU (3), the group of all unitary 3 × 3 matrices with unit determi-
nant.5 The SU (2) transformations of isospin invariance form a subgroup, with

5 M. Gell-Mann, Cal. Tech. Synchrotron Laboratory Report CTSL–20 (1961), unpublished. Y. Ne’eman,
Nucl. Phys. 26, 222 (1961). [These are reproduced along with other articles on SU (3) symmetry in M.
Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin, New York, 1964).]
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the isotopic spin generators Ta represented by 3 × 3 Hermitian matrices of the
form (

ta 0
0 0

)

where ta are the 2 × 2 Hermitian traceless matrices that represent the SU (2)
generators. There is also a U (1) subgroup with a generator known as the
hypercharge

Y ≡ B + S

which is represented by the Hermitian traceless matrix

y =
⎛
⎝ 1/3 0 0

0 1/3 0
0 0 −2/3

⎞
⎠ .

We can find the particle multiplets by using the tensor formalism discussed in the
context of ordinary rotations at the end of Section 4.3. But there is a difference
here. In general, for a group of unitary matrices in N dimensions, the particle
multiplets form tensors �n1n2...

m1m2...
(where the ms and ns run from 1 to N ), with the

transformation property

�n1n2...
m1m2...

�→
∑

m′
1m′

2...

∑
n′

1n′
2...

um1m′
1
um2m′

2
· · · u∗

n1n′
1
u∗

n2n′
2
· · ·�n′

1n′
2...

m′
1m′

2...
.

In two dimensions, and only in two dimensions, there is a constant tensor
(4.3.37) with two indices, which when contracted with an upper index converts
it into a lower index, so that it is not necessary to distinguish between upper and
lower indices. For N = 3 we have to distinguish upper and lower indices, but
we can still limit ourselves to irreducible tensors that are completely symmet-
ric in both sorts of indices, because there exists a constant antisymmetric tensor
εm1m2m3 that otherwise would allow us to convert two upper indices into a lower
index, or two lower indices into an upper index. For irreducible tensors we must
also impose the condition of tracelessness

�rn2...
rm2...

= 0,

for otherwise we could separate out a tensor �rn2...
rm2...

with one less upper and
one less lower index. For example, the nucleons, �, �s, and �s can be united
in an octet with j = 1/2, whose states form a traceless tensor �n

m , which has
eight independent components. Similarly, the πs, K s, K̄ s, and an eighth spin
zero particle, the η, form another octet, but with j = 0. There is also a 10-
member multiplet of spin 3/2 particles that contains the � discussed above,
corresponding to the symmetric tensor �m1m2m3 .

* * * * *
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The group SU (3) has another application, not as an internal symmetry, but
as a dynamical symmetry of the Hamiltonian for a harmonic oscillator in three
dimensions. As described in Section 2.5, this Hamiltonian is

H = �ω

[
3∑

i=1

a†
i ai + 3

2

]
, (4.6.9)

where ai and a†
i are lowering and raising operators, satisfying the commutation

relations

[ai , a†
j ] = δi j [ai , a j ] = [a†

i , a†
j ] = 0. (4.6.10)

The Hamiltonian and commutation relations are obviously invariant under the
transformations

ai �→
∑

j

ui j a j , a†
i �→

∑
j

u∗
i j a

†
j , (4.6.11)

where ui j is a unitary matrix, with
∑

j ui j u∗
k j = δik . This group is U (3), the

group of 3×3 unitary matrices. The degenerate states with energy (N +3/2)�ω
are of the form

a†
i1

a†
i2

· · · a†
iN
�0,

where �0 is the ground state with energy 3�ω/2; under the transformation
(4.6.11), these states transform as a symmetric tensor:

a†
i1

a†
i2

· · · a†
iN
�0 �→

∑
j1 j2... jN

u∗
i1 j1

u∗
i2 j2

· · · u∗
iN jN

a†
j1

a†
j2

· · · a†
jN
�0. (4.6.12)

The number (N + 1)(N + 2)/2 of independent states of energy (N + 3/2)�ω
is the number of independent components of a symmetric tensor of rank N in
three dimensions.

In the special case where ui j = δi j eiϕ with ϕ real, the transformations (4.6.11)
are the same as

ai �→ exp(i Hϕ/�ω)ai exp(−i Hϕ/�ω), a†
i �→ exp(i Hϕ/�ω)a†

i exp(−i Hϕ/�ω),
(4.6.13)

so the symmetry in this case is nothing new, just time-translation invariance. The
new symmetries that are special to the three-dimensional harmonic oscillator are
those for which Detu = 1, forming the group SU (3).

For infinitesimal transformations, we have

ui j = δi j + εi j , (4.6.14)

where εi j are here infinitesimal anti-Hermitian matrices, with ε∗
i j = −ε j i .

For SU (3), these matrices are also traceless. These infinitesimal transforma-
tions must induce corresponding unitary transformations on the Hilbert space of
harmonic oscillator states,
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U (1 + ε) = 1 +
∑

i j

εi j Xi j , (4.6.15)

where X†
i j = X ji are symmetry generators that commute with the Hamiltonian.

These symmetry generators are proportional to the operators ai a
†
j mentioned in

Section 2.5.

4.7 Inversions

We saw in Section 4.1 that the space inversion transformation Xn �→ −Xn of the
coordinate operators of particles (labeled n) is not a rotation, but a separate sort
of symmetry transformation. It therefore can have consequences beyond those
that can be derived from rotational invariance alone.

In a quantum theory that is invariant under space inversion, we expect there
to be a unitary “parity” operator P, with the property that

P−1XnP = −Xn. (4.7.1)

In a wide class of theories, the momentum operator Pn can be expressed as
Pn = (imn/�)[H,Xn], so if the Hamiltonian H commutes with P, then also

P−1PnP = −Pn. (4.7.2)

The operator P then commutes with the orbital angular momentum L =∑
n Xn × Pn . Consistency with the angular momentum commutation relations

also requires that it commutes with J and S. This transformation leaves invariant
the sort of Hamiltonian we have been considering

H =
∑

n

P2
n

2mn
+ V

where V depends only on the distances |Xn − Xm |.
For a system like the hydrogen atom, with a single particle in a central poten-

tial, it follows from Eq. (4.7.1) that if �x is an eigenstate of X with eigenvalue x,
then P�x is an eigenstate of X with eigenvalue −x. (Since P commutes with S3,
this state is also an eigenstate of S3 with the same eigenvalue as the state �x, so
for the present we will not need to display spin indices explicitly.) Hence, apart
from possible phases (about which more later),

P�x = �−x. (4.7.3)

A state�m
� with orbital angular momentum �� and 3-component �m has a scalar

product with �x (that is, a coordinate-space wave function) proportional to a
spherical harmonic: (

�x, �
m
�

)
= R(|x|)Y m

� (x̂). (4.7.4)
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The inversion property Y m
� (−x̂) = (−1)�Y m

� (x̂) thus gives(
�−x, �

m
�

)
= (−1)�

(
�x, �

m
�

)
.

Inserting the operator P−1P = 1 in the scalar product on the left and using
Eq. (4.7.3) and the unitarity of P, we find(

�x,P�m
�

)
= (−1)�

(
�x, �

m
�

)
,

and therefore

P�m
� = (−1)��m

� . (4.7.5)

This allows us to understand why, even when subtle effects like the Lamb shift
and spin-orbit coupling are included, the states of hydrogen with definite j also
have definite values of �, rather than being mixtures of states with � = j ± 1/2.
For instance, why when all these effects are taken into account, can we still talk
of the n = 2 states of hydrogen with j = 1/2 as pure 2s1/2 and 2p1/2 states?
The Hamiltonian of the hydrogen atom (including spin effects and relativistic
corrections) is invariant under space inversion, so space inversion applied to a
one-particle state vector of definite energy gives another state vector of the same
energy. With enough perturbations included to break all degeneracies between
states of a given j and n, the space inversion of the state vector of a state of
definite energy must give a result proportional to the same state vector, which
would not be true if the states of definite energy were mixtures of states with
both odd and even values of �, such as states with � = j + 1/2 and � = j − 1/2.

The space inversion symmetry of atomic physics has an immediate applica-
tion in the selection rules for the most common radiative transitions in atoms. As
noted at the end of Section 4.4, in the approximation that the wavelength of the
emitted photon is much larger than the atomic size, the transition rate is propor-
tional to the square of the matrix element of an operator D = ∑

n enXn between
the initial and final atomic states. It follows immediately from Eq. (4.7.1) that
P−1DP = −D. If the initial state �a and final state �b are eigenstates of the
parity operator with eigenvalues πa and πb respectively, then

πaπb

(
�b,D�a

)
= −

(
�b,D�a

)
,

so the matrix element and the transition rate vanish unless

πaπb = −1. (4.7.6)

In the case mentioned earlier, where the transition involves just a single electron,
we have πa = (−1)�a and πb = (−1)�b , where �a and �b are the orbital angular
momenta of the electron in the initial and final states, so in this case the parity
selection rule is just that � must change from even to odd or odd to even. But
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Eq. (4.7.6) applies also to transitions between states with any number of charged
particles.

Let us now return to the question of possible extra phase factors in transforma-
tion rules like (4.7.3) and (4.7.5). If the same extra phase factor appeared in the
transformation of all states, it would have no effect, for it could be eliminated
by a re-definition of the phase of the unitary operator P. There is, however,
a less trivial possibility, of a phase that depends on the nature of the parti-
cles in the state, which would have important consequences for transitions in
which new particles are created or destroyed. We would expect the operator P
to act separately on each particle when the particles are far apart, and if P com-
mutes with the Hamiltonian, it would then continue to act separately on each
particle when they come together, so the extra phase in the transformation in
a multi-particle state would be the product of the phases ηn for the individual
particles

P�x1,σ1;x2,σ2;... = η1η2 · · ·�−x1,σ1;−x2,σ2;..., (4.7.7)

where the σ s are spin 3-components, and the phase factor ηn depends only on the
species of particle n. These factors are known as the intrinsic parities of the dif-
ferent particle types. The operator P2 commutes with all coordinates, momenta,
and spins. It could be an internal symmetry of some sort, but if it were a U (1)
operator that like (4.6.7) is of the form exp(iαA), where A is some conserved
Hermitian operator, then exp(−iαA/2) would also be an internal symmetry, and
we could define a new space inversion operator P′ ≡ P exp(−iαA/2) for which
P′2 = 1. Dropping the prime, we suppose that P is chosen so that P2 = 1. In
this case, all the intrinsic parities ηn in Eq. (4.7.7) are just either +1 or −1.

A classic example of the use of such a transformation rule is provided by the
disintegration of the 1s state of an atom consisting of a deuterium nucleus and
a negatively charged spin zero particle, the π−, instead of an electron. The π−
is observed to be quickly absorbed by the deuterium nucleus, giving a pair of
neutrons.1 Because neutrons are fermions, the two-neutron state must be anti-
symmetric under an exchange of both spin and position, so it either has total
spin one (symmetric in spins) and odd orbital angular momentum, or it has
total spin zero (antisymmetric in spins) and even orbital angular momentum.
But the deuterium nucleus is known to have spin one, so the 1s state of the
d–π− atom has total angular momentum one, while a two-neutron state with
total spin zero and even orbital angular momentum can not have total angular
momentum one. We can conclude then that the two-neutron final state here must
have odd orbital angular momentum, and therefore has parity −η2

n . This tells us
then that ηdηπ− = −η2

n . The deuterium nucleus is known to be a mixture of s
and d states of a proton and a neutron, so ηd = ηpηn , and hence ηpηπ = −ηn .

1 W. Chinowsky and J. Steinberger, Phys. Rev. 95, 1561 (1954).
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We would not expect the space inversion operator P to be part of an isotopic
spin multiplet of independent inversion operators, so we expect P to commute
with the isospin symmetries discussed in the previous section,2 in which case
ηp = ηn , and therefore the π− has intrinsic parity −1. Isospin invariance then
tells us also that its antiparticle, the π+, and its neutral counterpart, the π0 also
have negative intrinsic parity.

It used to be taken for granted that nature is invariant under the space inversion
transformation. Then in the 1950s the use of this symmetry principle led to a
serious problem. Two charged particles of similar mass were found in cosmic
rays, a θ+ that decays into π+ + π0, and a τ+ that decays into π+ + π+ + π−
(and also into π+ + π0 + +π0). By studying the angular distributions of the πs
in these final states, it was found that these πs had no orbital angular momenta,
so with πs having negative parity, the θ+ would have to have even parity, and
the τ+ odd parity. But as measurements were improved, it was found that both
the masses and the mean lifetimes of the θ+ and τ+ were indistinguishable. One
could imagine some sort of symmetry that would make their masses equal, but
how could their lifetimes be equal, when they decay in such different ways?
Then in 1956, Tsung-Dao Lee and Chen-Ning Yang3 proposed that the θ+ and
τ+ are in fact the same particle (now called K +), and that although invariance
under space inversion is respected by the electromagnetic and strong nuclear
forces, it is not respected by the much weaker interactions that lead to these
decays. (The weakness of these interactions is shown by the long lifetime of the
K +particle; it is 1.238×10−8 seconds, vastly longer than the characteristic time
scale �/mK c2 = 1.3 × 10−24 seconds.) Lee and Yang further suggested that
invariance under space inversions is badly violated in all weak interactions of
elementary particles, including nuclear beta decay, and suggested experiments
that soon showed that they were right.4

There are two other inversion symmetry transformations that commute
with the strong and electromagnetic interaction Hamiltonians. One is charge-
conjugation: a conserved operator C acting on any state simply changes every
particle into its antiparticle, with a possible sign factor depending on the nature
of the particles. Another is time-reversal: a conserved operator T reverses the
direction of time in the time-dependent Schrödinger equation. As we saw in
Section 3.6, T must be antiunitary and antilinear. The same experiments that
showed that P is not respected by the weak interactions showed also that these
interactions do not respect invariance under PT. Subsequent experiments also

2 Even apart from isospin conservation, we can always define the operator P so that ηp = ηn = 1, if
necessary by including in the operator P a factor equal to (−1) to a power given by a suitable linear
combination of the conserved quantities electric charge and baryon number.

3 T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
4 C. S. Wu et al., Phys. Rev. 105, 1413 (1957); R. Garwin, L. Lederman, and M. Weinrich, Phys. Rev.

105, 1415 (1957); J. I. Friedman and V. L. Telegdi, Phys. Rev. 105, 1681 (1957).
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revealed a violation of CP.5 But any quantum field theory necessarily respects
invariance under CPT,6 and as far as we know CPT is exactly conserved, so
the violation of invariance under PT and CP immediately implied a violation
also of invariance under C and T. Thus it appears that CPT is the only inversion
under which the laws of nature are strictly invariant.

4.8 Algebraic Derivation of the Hydrogen Spectrum

As discussed in Section 1.4, Pauli1 in 1926 used the matrix mechanics of
Heisenberg to give the first derivation of the energy levels of hydrogen and
their degeneracies. This derivation is an outstanding example of the use of
a dynamical symmetry: The symmetry generators not only commute with the
Hamiltonian, but have commutators with each other that depend on the Hamil-
tonian, in such a way that we can calculate energy levels by purely algebraic
means.

Pauli’s derivation is based on a device that is well-known in celestial mechan-
ics, the Runge–Lenz vector.2 In a potential V (r) = −Ze2/r , this vector (actually
the original Runge–Lenz vector multiplied by the particle mass m) is

R = − Ze2x
r

+ 1

2m

(
p × L − L × p

)
, (4.8.1)

where L is as usual the orbital angular momentum L ≡ x×p. Classically there is
no difference between p×L and −L×p; it is the average of these operators that
appears in the quantum mechanical derivation Eq. (4.8.1) because this average
is Hermitian, and therefore so is R:

R† = R. (4.8.2)

Classically R is conserved, which has the consequence (unique to Coulomb
and harmonic oscillator potentials) that the classical orbits form closed curves.
The quantum mechanical counterpart of this classical result is of course that R
commutes with the Hamiltonian:

[H,R] = 0, (4.8.3)

where H is the Coulomb Hamiltonian

H = p2

2m
− Ze2

r
. (4.8.4)

5 J. H. Christensen, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964).
6 G. Lüders, Kong. Danske Vid. Selskab Mat.-Fys. Medd. 28, 5 (1954); Ann. Phys. 2, 1 (1957); W. Pauli,

Nuovo Cimento 6, 204 (1957).
1 W. Pauli, Z. Physik 36, 336 (1926).
2 For its application to motion in a gravitational field, see e.g. S. Weinberg, Gravitation and Cosmology

(Wiley, New York, 1972), Section 9.5.
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It is convenient to use the commutation relation [Li , p j ] = i�
∑

k εi jk pk to
rewrite Eq. (4.8.1) as

R = − Ze2x
r

+ 1

m
p × L − i�

m
p. (4.8.5)

The angular momentum operator is orthogonal to each of the three terms in
Eq. (4.8.5), so

L · R = R · L = 0. (4.8.6)

To calculate the square of R, we need formulas easily derived from the
commutators among x , p, and L:

x · (p × L) = L2, (p × L) · x = L2 + 2i�p · x, (p × L)2 = p2L2,

p · (p × L) = 0, (p × L) · p = 2i�p2.

A straightforward calculation then gives

R2 = Z2e4 +
(

2H

m

)(
L2 + �2

)
. (4.8.7)

So we can find the energy levels if we can find the eigenvalues of R2.
For this purpose, we need to work out the commutators of the components of

R with each other. Another straightforward though tedious calculation gives

[Ri , R j ] = −2i

m
�
∑

k

εi jk H Lk . (4.8.8)

Also, the fact that R is a vector tells us immediately that

[Li , R j ] = i�
∑

k

εi jk Rk . (4.8.9)

Thus the operators L and R/
√−H form a closed algebra. We can recognize the

nature of this algebra by introducing linear combinations

A± ≡ 1

2

[
L ±

√
m

−2H
R
]
. (4.8.10)

Then the commutators (4.8.8) and (4.8.9) and the usual commutation relations
for L yield

[A±i ,A± j ] = i�
∑

k

εi jkA±k, [A±i ,A∓ j ] = 0. (4.8.11)

So we see that the symmetry here consists of two independent three-dimensional
rotation groups. This is known as the group SO(3)⊗ SO(3).

Now, from our study of the ordinary rotation group, we know that (pro-
vided the operators A± are Hermitian) the allowed values of A2± take the form
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�2a±(a± + 1), where a± in general are independent positive integers (includ-
ing zero) or half-integers; that is, 0, 1/2, 1, 3/2, . . . . But here we have a special
condition (4.8.6), which with Eq. (4.8.10) tells us that

A2
± = 1

4

[
L2 +

(
m

−2H

)
R2

]
, (4.8.12)

so in this case a+ = a−. We will let a denote their common value, and take E
as the corresponding eigenvalue of H . Then, using Eq. (4.8.7), we have

�2a(a + 1) = 1

4

[
L2 +

(
m

−2E

)
R2

]

= 1

4

[
L2 +

(
m

−2E

)
Z2e4 − (L2 + �2)

]

=
(

m

−8E

)
Z2e4 − �2

4
,

and therefore(
m

−8E

)
Z2e4 = �2

(
a(a + 1)+ 1

4

)
= �2

4
(2a + 1)2. (4.8.13)

We can define a principal quantum number

n = 2a + 1 = 1, 2, 3, . . . , (4.8.14)

and write Eq. (4.8.13) as a formula for the energy

E = − Z2e4m

2�2n2
, (4.8.15)

which of course we recognize as the energy levels of hydrogen, whose 1913
calculation by Bohr is described in Section 1.2, and whose derivation using the
Schrödinger equation is given in Section 2.3.

Note that we have found only negative energies — that is, bound states. There
are of course also unbound states, with E > 0, in which an electron is scattered
by a nucleus. These states have not shown up in our calculation because, act-
ing on states for which H has a positive eigenvalue, the operators A± given
by Eq. (4.8.10) are no longer Hermitian, and this invalidates the derivation in
Section 4.2 of the familiar result that the allowed values of A2± can only take
the form �2a±(a± + 1), where a± are positive integers or half-integers. (Mathe-
matically, one says that the algebra furnished by the commutators of the L and
R is not compact; that is, these are the generators of a symmetry group whose
parameters do not form a compact space. It is a well-known feature of such non-
compact algebras that the states connected by their generators form a continuum,
which is why here the allowed positive values of E here form a continuum.)

We can use these algebraic results to work out not only the allowed values
of energy, but the degeneracy of each energy level. Just as for ordinary angular
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momentum, the eigenvalues of the operators A±3 can only take the 2a+1 values
−a,−a +1, . . . , a, and since their eigenvalues are independent, there are (2a +
1)2 = n2 states with a given n. This is the same as the degeneracy found in
Section 2.3.

This degeneracy has a pretty geometric interpretation. We have noted that the
operators A± are the generators of two independent three-dimensional rotation
groups — that is, of SO(3)⊗SO(3). They can also be regarded as the generators
of the rotation group in four dimensions, denoted SO(4), because these are the
same symmetry groups. As we saw in Eq. (4.1.10), the generators of the rotation
group in any number of dimensions are operators Jαβ = −Jβα, with α and β

running over the coordinate indices, satisfying the commutation relations

i

�

[
Jαβ, Jγ δ

]
= −δαδ Jγβ + δαγ Jδβ + δβγ Jαδ − δβδ Jαγ . (4.8.16)

In the case of four dimensions, α, β, etc. run from 1 to 4. If as before we let i , j ,
etc. run only from 1 to 3, and as in Eq. (4.1.11) take Ji j ≡ ∑

k εi jk Lk , then the
commutation relations with δ = β = 4 take the form

[Ji4, Jj4] = −i�Jji = i�
∑

k

εi jk Lk . (4.8.17)

This is the same as Eq. (4.8.8) if we take

Ri =
√−2H

m
Ji4. (4.8.18)

The others of the commutation relations (4.8.16) then give the commutator
(4.8.9) between Li and R j and the usual commutator between Li and L j . In
terms of the operators (4.8.10), we have

Ji j =
∑

k

εi jk

(
A+ k + A− k

)
, Jk4 = A+ k − A− k . (4.8.19)

The states of the hydrogen atom with a given energy can thus be classified
according to their transformation under the four-dimensional rotation group.

The condition that a+ = a− limits these states to those transforming as
four-dimensional symmetric traceless tensors. The number of independent com-
ponents of a symmetric tensor of rank r in four dimensions is (3+r)!/3!r !, while
the condition of tracelessness for r ≥ 2 requires the vanishing of a symmetric
tensor with r −2 indices and hence with (1+r)!/3!(r −2)! independent compo-
nents, so the number of independent components of a symmetric traceless tensor
in four dimensions is

(3 + r)!
3!r ! − (1 + r)!

3!(r − 2)! = (r + 1)2,

which is the degeneracy found earlier if we identify the states with principal
quantum number n as transforming like a four-dimensional symmetric traceless
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tensor of rank r = n − 1. For instance, the n = 0 state transforms as a
four-dimensional scalar; the n = 2 states transform as the components of a
four-dimensional vector vα, of which vi are the three p states and v4 is the s
state; and the n = 3 states transform as the components of a symmetric traceless
tensor tαβ , of which the traceless part of ti j are the five d states, ti4 = t4i are the
three p states, and

∑
i ti i = −t44 is the one s state. The relations between matrix

elements of operators between states of given energy but different values of �
can be found using invariance under four-dimensional rotations, if we know the
transformation properties of the operators under such rotations.

Problems

1. Suppose that an electron is in a state of orbital angular momentum � = 2.
Show how to construct the state vectors with total angular momentum
j = 5/2 and corresponding 3-components m = 5/2 and m = 3/2 as lin-
ear combinations of state vectors with definite values of S3 and L3. Then
find the state vector with j = 3/2 and m = 3/2. (All state vectors here
should be properly normalized.) Summarize your results by giving values
for the Clebsch–Gordan coefficients C 1

2 2( jm; msm�) in the cases ( j,m) =
(5/2, 5/2), (5/2, 3/2), and (3/2, 3/2).

2. Suppose that A and B are vector operators, in the sense that

[Ji , A j ] = i�
∑

k

εi jk Ak, [Ji , B j ] = i�
∑

k

εi jk Bk .

Show that the cross-product A × B is a vector in the same sense.

3. What is the minimum value of the total angular momentum J2 that a state
must have in order to have a non-zero expectation value for an operator Om

j
of spin j .

4. The Hamiltonian for a free particle of mass M and spin S placed in a
magnetic field B in the 3-direction is

H = p2

2M
− g|B|S3,

where g is a constant (proportional to the particle’s magnetic moment). Give
the equations that govern the time-dependence of the expectation values of
all three components of S.

5. A particle of spin 3/2 decays into a nucleon and pion. Show how the angu-
lar distribution in the final state (with spins not measured) can be used to
determine the parity of the decaying particle.
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6. A particle X of isospin 1 and charge zero decays into a K and a K . What is

the ratio of the rates of the processes X0 → K + + K
−

and X0 → K 0 + K
0
?

7. Imagine that the electron has spin 3/2 instead of 1/2, but assume that the one-
particle states with definite values of n and � in atoms are filled, as the atomic
number increases, in the same order as in the real world. What elements with
atomic numbers in the range from 1 to 21 would have chemical properties
similar to those of noble gases, alkali metals, halogens, and alkali earths in
the real world?

8. What is the commutator of the angular momentum operator J with the
generator K of Galilean transformations?

9. Consider an electron in a state of zero orbital angular momentum in an atom
whose nucleus has spin (that is, internal angular momentum) 3/2. Express
the states of the atom with total angular momentum z-component m = 1
(of electron plus nucleus) and each possible definite value of the total angu-
lar momentum as linear combinations of states with definite values of the
z-components of the nuclear and electron spins.



5
Approximations for Energy Eigenvalues

Courses on quantum mechanics generally begin with the same time-honored
examples: the free particle, the Coulomb potential, and the harmonic oscilla-
tor potential, covered here in Chapter 2. This is because these are almost the
only cases for which the Schrödinger equation for states of definite energy has
a known exact solution. In the real world, problems are more complicated, and
we have to rely on approximation schemes. Indeed, even if we could find exact
solutions for complicated problems the solutions themselves would necessarily
be complicated, and we would need to make approximations to understand the
physical consequences of the solutions.

5.1 First-Order Perturbation Theory

The most widely useful approach to finding approximate solutions to compli-
cated problems is perturbation theory. In this method one starts with a simpler
problem, which can be exactly solved, and then treats the corrections to the
Hamiltonian as small perturbations.

Consider an unperturbed Hamiltonian H0 , like that of the hydrogen atom
treated in Section 2.3, which is simple enough so that we can find its energy
values Ea and corresponding orthonormal state vectors �a:

H0�a = Ea�a, (5.1.1)

(
�a, �b

)
= δab. (5.1.2)

Suppose we add a small term δH to the Hamiltonian, proportional to some
tiny parameter ε. (For instance, in the case of the hydrogen atom H0 was the
kinetic energy operator plus a potential proportional to 1/r , and we might take
δH = εU (X), where U (X) is an arbitrary ε-independent function of the position
operator X, representing perhaps a departure from the 1/r Coulomb potential
due to the finite size of the proton.) The energy values then become Ea + δEa ,
with corresponding state vectors �a + δ�a , where δEa and δ�a are presumably
given by power series in ε:

148
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δEa = δ1 Ea + δ2 Ea + · · ·, δ�a = δ1�a + δ2�a + · · ·, (5.1.3)

with δN Ea and δN�a proportional to εN . The Schrödinger equation takes the
form (

H0 + δH
) (

�a + δ�a

)
=
(

Ea + δEa

) (
�a + δ�a

)
. (5.1.4)

To collect the terms of first order in ε, we can drop the terms δH δ�a and
δEa δ�a in Eq. (5.1.3), whose power series start with terms of order ε2. We
then have

δH�a + H0 δ1�a = δ1 Ea �a + Ea δ1�a. (5.1.5)

To find δ1 Ea , we take the scalar product of Eq. (5.1.5) with �a . Because H0

is Hermitian, we have (
�a, H0 δ1�a

)
= Ea

(
�a, δ1�a

)
so these terms in the scalar product cancel, and we are left with

δ1 En =
(
�a, δH�a

)
. (5.1.6)

This is the first major result of perturbation theory: To first order, the shift in the
energy of a bound state is the expectation value in the unperturbed state of the
perturbation δH.

But this argument does not always work, even when δH is very small. To
see what may go wrong, let us calculate the change in the state vector produced
by the perturbation. This time, we take the scalar product of Eq. (5.1.5) with
a general unperturbed energy eigenvector �b. Again using the fact that H0 is
Hermitian, this gives(

�b, δH�a

)
= δ1 En δab +

(
Ea − Eb

) (
�b, δ1�a

)
. (5.1.7)

For a = b, this is the same as Eq. (5.1.6), so the new information is that(
�b, δH�a

)
= (Ea − Eb)

(
�b, δ1�a

)
, for a �= b. (5.1.8)

A problem arises in the case of degeneracy. Suppose there are two states�b �=
�a for which Eb = Ea . Then Eq. (5.1.8) is inconsistent unless

(
�b, δH�a

)
vanishes, which need not be the case. But we can always avoid this problem
by a judicious choice of the degenerate unperturbed states. Suppose there are
a number of states �a1, �a2, etc., all with the same energy Ea . The quantities(
�ar , δH�as

)
form an Hermitian matrix, so according to a general theorem of

matrix algebra the vector space on which this matrix acts is spanned by a set of
orthonormal eigenvectors urn of this matrix, such that∑

r

(
�as, δH�ar

)
urn = �n usn. (5.1.9)
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We can define eigenstates of H0 with the same energy Ea:

�an ≡
∑

r

urn�ar , (5.1.10)

for which(
�am, δH�an

)
=
∑

rs

u∗
smurn

(
�as, δH�ar

)
=
∑

s

u∗
smusn�n

= δnm�n, (5.1.11)

in which we have used the orthonormality relation
∑

s u∗
smusn = δnm . For these

states the off-diagonal matrix elements of the perturbation all vanish, so we
avoid the problem of inconsistency with Eq. (5.1.8) if we start with the �s
instead of the �s.

If we stubbornly insist on taking one of the �ar as our unperturbed state,

where some
(
�as, δH�ar

)
for s �= r do not vanish, then perturbation theory

doesn’t work; even a tiny perturbation causes a very large change in the state
vector. For instance, suppose that H0 is rotationally invariant, and we add a
perturbation δH = ε · v, where v is some vector operator. As we saw in the
previous chapter, because H0 is rotationally invariant, there are 2 j + 1 states
with the same unperturbed energy and the same eigenvalue �2 j ( j + 1) of J2.
If our unperturbed state is an eigenstate of J3, but ε is not in the 3-direction,
then no matter how small ε is, there will be a large correction to the state vector.
The perturbation forces the state into an eigenstate of J · ε. But if we take the
unperturbed states to be eigenstates of J · ε to begin with, then δH commutes
with J · ε, and the change in the state vector is of order ε.

Returning now to Eq. (5.1.8), if either there is no degeneracy, or we choose

the unperturbed states so that
(
�b, δH�a

)
= 0 if Eb = Ea and b �= a, then we

can conclude that

(
�b, δ1�a

)
=
(
�b, δH�a

)
Ea − Eb

, for a �= b. (5.1.12)

To find the component of δ1�a along �a , we need to impose the condition that
�a + δ�a is properly normalized. This gives

1 =
(
�a + δ�a, �a + δ�a

)
= 1 +

(
�a, δ1�a

)
+
(
δ1�a, �a

)
+ O(ε2),

so to order ε,

0 = Re
(
�a, δ1�a

)
. (5.1.13)

We are free to choose the imaginary part of
(
�a, δ1�a

)
to be anything we like,

as this just represents a choice of phase of the whole state vector. That is, multi-
plying the state vector �a by a phase factor exp(iδϕa), with δϕa an arbitrary real
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constant of order ε, produces a change in δ1�a equal to iδϕa�a , which changes(
�a, δ1�a

)
by an amount iδϕa . So in particular, we can choose

(
�a, δ1�a

)
to

be real, in which case the normalization condition (5.1.13) becomes

0 =
(
�a, δ1�a

)
. (5.1.14)

With Eq. (5.1.12), the completeness of the state vectors with definite values of
H0 tells us that

δ1�a =
∑

b

(
�b, δ1�a

)
�b =

∑
b �=a

�b

(
�b, δH�a

)
Ea − Eb

. (5.1.15)

It may be somewhat surprising that a tiny perturbation to the Hamiltonian can
tell us what we must take as the unperturbed energy eigenstates, but there is a
similar phenomenon in classical physics. Consider a particle moving in two or
more dimensions under the influence of a potential V (x), with enough friction
to bring the particle to rest at a local minimum of the potential. Suppose that the
potential consists of an unperturbed term V0(x) plus a perturbation εU (x). If the
local minima of V0(x) are at isolated points xn , then we would expect the local
minima of the complete potential to be at points xn + δxn , with δxn of order ε.
The condition that these are local minima of the perturbed potential reads

0 = ∂[V (x)+ εU (x)]
∂xi

∣∣∣∣
x=xn+δxn

,

or, to first order in ε,

0 = ∂V (x)
∂xi

∣∣∣∣
x=xn

+ ε
∂U (x)
∂xi

∣∣∣∣
x=xn

+
∑

j

∂2V (x)
∂xi∂x j

∣∣∣∣
x=xn

(δxn) j .

The first term vanishes because the xn are local minima of the unperturbed
potential, so this gives the condition on δx as

∑
j

∂2V (x)
∂xi∂x j

∣∣∣∣
x=xn

(δxn) j = −ε ∂U (x)
∂xi

∣∣∣∣
x=xn

.

But suppose that the local minima of the unperturbed potential are not at isolated
points, and instead lie on a curve x = x(s), so that for all s

0 = ∂V (x)
∂xi

∣∣∣∣
x=x(s)

.

Differentiating this with respect to s gives

0 =
∑

j

∂2V (x)
∂xi∂x j

∣∣∣∣
x=x(s)

dx j (s)

ds
.
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Following the same reasoning as before, the shift δx(s) in the position of the
local minimum is now governed by the equation∑

j

∂2V (x)
∂xi∂x j

∣∣∣∣
x=x(s)

δx j (s) = −ε ∂U (x)
∂xi

∣∣∣∣
x=x(s)

.

Because ∂2V (x)/∂xi∂x j is symmetric in i and j , the left-hand side of this
equation vanishes when multiplied with dxi (s)/ds and summed over i , so this
equation cannot be solved unless

0 =
∑

i

dxi (s)

ds

∂U (x)
∂xi

∣∣∣∣
x=x(s)

= dU (x(s))
ds

.

That is, in order for the perturbation εU (x) to make only a small shift in the par-
ticle’s equilibrium position, the particle must not only initially be on the curve
x = x(s) where the unperturbed potential is a local minimum, but must also be
at the point on this curve where the value of the perturbation on the curve is a
local minimum.

5.2 The Zeeman Effect

The shift of atomic energies in the presence of an external magnetic field pro-
vides an important example of first-order perturbation theory. This is known
as the Zeeman effect. The effect was first observed in the 1890s by the spec-
troscopist Pieter Zeeman1 (1865–1943), as a splitting of the D lines of sodium
mentioned at the beginning of Chapter 4 (the same spectral lines that give the
light from sodium vapor lamps their orange color) in a magnetic field, but it
could not be correctly calculated until the advent of quantum mechanics.

We will consider the effect of a magnetic field on the spectrum of an atom
of the alkali metal type, such as sodium. In such atoms we can concentrate
on the single electron outside closed shells, which feels an effective central
potential due to the other electrons and the nucleus. According to classical elec-
trodynamics, the interaction of an external magnetic field B with an electron
moving in an orbit with orbital angular momentum L gives the electron an extra
energy equal to (e/2mec)B · L, so in quantum mechanics we include a term
in the Hamiltonian of the form (e/2mec)B · L. We can guess that the interac-
tion of the magnetic field with the spin angular momentum S will produce an
additional term in the Hamiltonian of the form (ege/2mec)B · S, with a con-
stant factor ge known as the gyromagnetic ratio of the electron, but there is
no reason to expect that ge = 1. In fact, to lowest order in the fine structure
constant e2/�c 	 1/137 quantum electrodynamics gives ge = 2 (a result first

1 P. Zeeman, Nature 55, 347 (1897).
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obtained by Dirac using his relativistic wave equation), while corrections due to
processes like the emission and absorption of photons shift the predicted value
to ge = 2.002322 . . . , in good agreement with experiment. We therefore take
the perturbation to the Hamiltonian as

δH = e

2mec
B ·

[
L + ge S

]
. (5.2.1)

To calculate the shift in the energies of the states of the atom, we need the

matrix elements
(
�m′

n�j , δH�m
n�j

)
of the perturbation δH between state vectors

of the same energy En�j , where

H0�
m
n�j = En�j�

m
n�j . (5.2.2)

Here H0 is the effective one-particle Hamiltonian of the electron in the absence
of the magnetic field. But what must be included in this Hamiltonian? The gen-
eral rule is that we can only ignore terms that produce energy shifts that are
small compared with the shift produced by the perturbation in question. For typ-
ical magnetic field strengths, this means that we must include in H0 not only
the effective electrostatic potential produced by the nucleus and the other elec-
trons, but also the interaction between the electron’s spin and orbital angular
momentum that produces the fine structure, the dependence of energy levels on
j for a given n and �. But we can usually neglect the smaller interaction between
the spins of the electron and nucleus that produces a splitting of spectral lines
known as the hyperfine effect.

In calculating these expectation values, we recall that Eq. (4.4.14) tells us that

for any vector operator V, the matrix element
(
�m′

n�j V�
m
n�j

)
is in the same direc-

tion as the matrix element with V replaced with J, and has the same dependence
on m and m ′. In particular, this is true for the vector L + geS, so(

�m′
n�j , [L + geS]�m

n�j

)
= gnj�

(
�m′

n�j J�m
n�j

)
, (5.2.3)

where gnj� is a constant independent of m and m ′, known as the Landé g-factor.
As mentioned in Section 4.4, this result is often explained in quantum mechan-
ics textbooks as due to the rapid precession of the vectors S and L around the
total angular momentum J, but this odd blend of classical and quantum mechan-
ical reasoning is quite unnecessary; Eq. (5.2.3) is a simple consequence of the
commutation relations of angular momentum operators with vector operators.

To calculate the Landé g-factor, note that because J commutes with J2, the
state vector J�m

n�j is itself just a linear combination of the same state vectors

�m′′
n�j with various values of m ′′, so we also have∑

i

(
�m′

n�j , [Li + ge Si ]Ji�
m
n�j

)
= gnj�

∑
i

(
�m′

n�j , Ji Ji�
m
n�j

)
. (5.2.4)
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The matrix elements on both sides are easily calculated. On the right, we use∑
i

Ji Ji�
m
n�j = �2 j ( j + 1)�m

n�j ,

while on the left, using S = J − L,∑
i

Li Ji�
m
n�j = 1

2

[
− S2 + L2 + J2

]
�m

n�j

= �2

2

[
−3

4
+ �(�+ 1)+ j ( j + 1)

]
�m

n�j ,

and, using L = J − S,∑
i

Si Ji�
m
n�j = 1

2

[
− L2 + S2 + J2

]
�m

n�j

= �2

2

[
−�(�+ 1)+ 3

4
+ j ( j + 1)

]
�m

n�j .

(Note that, for any vector V, we have V · J = J · V, because [Ji , Vj ] =
i�
∑

k εi jk Vk vanishes for i = j .) Therefore Eq. (5.2.4) gives

1

2

[
−3

4
+ �(�+ 1)+ j ( j + 1)

]
+ ge

1

2

[
−�(�+ 1)+ 3

4
+ j ( j + 1)

]
= j ( j + 1)gnj�

so that gnj� is independent of n, and given by

g j� = 1 + (ge − 1)

(
j ( j + 1)− �(�+ 1)+ 3/4

2 j ( j + 1)

)
. (5.2.5)

Now let’s return to the problem of finding the perturbed energies. According
to Eqs. (5.2.1) and (5.2.3), the matrix elements we need are(

�m′
n�j , δH�m

n�j

)
= eg j�

2mec

(
�m′

n�j ,B · J�m
n�j

)
. (5.2.6)

For B in a general direction, this does not satisfy the condition for the use of
first-order perturbation theory found in the previous section, that the matrix ele-
ment of the perturbation between different state vectors of the same energy must
vanish. We can avoid this problem by taking the unperturbed state vectors to be
eigenstates of B · J instead of J3, but we can also avoid the problem without
introducing new state vectors in place of �m

n�j by simply using a coordinate sys-
tem in which the 3-axis is in the direction of B. In such a coordinate system, the
matrix elements (5.2.6) become(

�m′
n�j , δH�m

n�j

)
=
(

e�g j�B

2mec

)
m δm′m . (5.2.7)
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We can therefore calculate the energy shifts using first-order perturbation theory,
which gives

δEnj�m =
(

e�g j�B

2mec

)
m. (5.2.8)

For instance, in the D lines of sodium studied by Zeeman, there are really
two spectral lines in the absence of a magnetic field, a D1 line caused by a
3p1/2 → 3s1/2 transition of the outer “valence” electron, and a D2 line caused by
the transition 3p3/2 → 3s1/2. (Recall that because the potential felt by the outer
electron is not simply proportional to 1/r , there is no degeneracy between states
with different values of �. Also, spin-orbit coupling gives energies a dependence
on j = � ± 1/2, indicated by a subscript, as well as on � and on a principal
quantum number n, which in this case has the value n = 3.) For the states
involved, Eq. (5.2.5) gives the Landë g-factors (in the approximation ge = 2):

g 3
2 1 = 4

3
, g 1

2 1 = 2

3
, g 1

2 0 = 2. (5.2.9)

The D1 and D2 lines are then split into components with photon energies
shifted by

�E1(m → m ′) = EB

(
2m

3
− 2m ′

)
(5.2.10)

�E2(m → m ′) = EB

(
4m

3
− 2m ′

)
, (5.2.11)

where EB ≡ e�B/2mec. Since both the D1 and D2 transitions are between states
of opposite parity and j differing by 0 or 1, these are electric dipole transitions,
which as shown in Section 4.4 only allow a change in m equal to zero or ±1.
The D1 line is then split into four components with photon energies shifted by
the amounts

�E1(±1/2 → ±1/2) = ∓2EB/3, (5.2.12)

�E1(±1/2 → ∓1/2) = ±4EB/3, (5.2.13)

while the D2 line is split into six components with photon energies shifted by
the amounts

�E2(±3/2 → ±1/2) = ±EB, (5.2.14)

�E2(±1/2 → ±1/2) = ∓EB/3, (5.2.15)

�E2(±1/2 → ∓1/2) = ±5EB/3. (5.2.16)

Note that if ge were equal to unity, as would be expected classically, then
Eq. (5.2.5) would give a Landé g-factor g j� = 1 for all energy levels, so
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Eq. (5.2.8) would give a formula for the energy shift that depends on no
properties of the energy level but the magnetic quantum number m:

δEnj�m =
(

e�B

2mec

)
m.

Both the D1 and D2 lines would be split into three components, with photon
energies shifted by amounts depending only on the change of the magnetic
quantum number

�E1(�m = ±1) = �E2(�m = ±1) = ±EB,

�E1(�m = 0) = �E2(�m = 0) = 0.

The frequency shift EB/h = eB/4πmec was derived on classical grounds by
Hendrik Antoon Lorentz2 (1853–1928), and is known as the normal Zeeman
effect. Comparison of Lorentz’s formula with the early data of Zeeman indi-
cated that whatever charged particle inside the atom is involved in the emission
of radiation has a charge/mass ratio e/m about a thousand times greater than the
charge/mass ratio of the hydrogen ions involved in electrolysis. This was before
Thomson’s discovery of the electron, and was the first indication that charges
in atoms are carried by particles much lighter than atoms. But the correct split-
tings are those given by Eqs. (5.2.12)–(5.2.16). This is known as the anomalous
Zeeman effect, because it is not what would be expected for ge = 1.

The results derived here for the anomalous Zeeman effect are valid only for
magnetic fields that are sufficiently small so that the energy shift (5.2.8) is much
less than the fine-structure splitting between states of the same n and � but differ-
ent j . In the opposite limit, where the energy shift (5.2.8) is much greater than
the fine-structure splitting (though still much less than the splittings between
states with different n or �), we have a larger set of essentially degenerate unper-
turbed states: all those with state vectors �n�m�ms with eigenvalues �m� for L3

and �ms for S3. With the magnetic field again taken in the 3-direction, the matrix
elements of the perturbation are(

�n�m′
�m′

s
, δH�n�m�ms

)
=
(

e�B

2mec

)[
m� + gems

]
δm′

�m�
δm′

s ms . (5.2.17)

For different state vectors of the same unperturbed energy (i.e., the same values
of n and �) these matrix elements vanish, so we can use first-order perturbation
theory for the energy shift, and find

δEn�m�ms =
(

e�B

2mec

)[
m� + gems

]
. (5.2.18)

2 H. A. Lorentz, Phil. Mag. 43, 232 1897); Ann. d. Physik 43, 278 (1897).



5.3 The First-Order Stark Effect 157

The transition from energies given by Eq. (5.2.8) to energies given by
Eq. (5.2.18) is known as the Paschen–Back effect.

5.3 The First-Order Stark Effect

We now turn to the shift of atomic energy levels in the presence of an external
electric field, an effect discovered in 1914, and known as the Stark effect.1 We
will concentrate here on the Stark effect in hydrogen, where the �-independence
of energies for states of a given n and j plays a crucial role. As we will see,
the Stark effect in hydrogen provides an example in which the problem of
degeneracy in first-order perturbation theory must be solved in a somewhat less
trivial way than for the Zeeman effect. The Stark effect in atoms other than
hydrogen (and in some hydrogen states) must be calculated using second-order
perturbation theory, the subject of the next section.

The interaction of an electron with an external electrostatic potential ϕ(x)
gives it an extra energy −eϕ(x). Since atoms are very small compared with the
scales over which ϕ(x) varies, we can replace ϕ(x) with the first two terms in its
Taylor series. Setting the (arbitrary) value of ϕ(x) at the position x = 0 of the
atomic nucleus equal to zero, this gives ϕ(x) = −E · x, where E ≡ −∇ϕ(0) is
the electric field at the nucleus, so the change in the Hamiltonian may be taken as

δH = eE · X, (5.3.1)

where as usual X is the position operator.
Once again, we take the unperturbed Hamiltonian H0 to be the Hamiltonian

of the hydrogen atom in the absence of the electric field, including the fine-
structure splitting but neglecting the Lamb shift and the hyperfine splitting. The
degenerate unperturbed states are then all the state vectors �m

n�j for a fixed n
and j . We need to calculate the matrix elements of the perturbation between
these state vectors:(

�m′
n�′ j , δH�m

n�j

)
= eE ·

(
�m′

n�′ j ,X�m
n�j

)
. (5.3.2)

As in the case of the Zeeman effect, to avoid non-vanishing matrix elements for
m ′ �= m, we choose the 3-axis to lie in the direction of the electric field, in which
case this becomes(

�m′
n�′ j , δH�m

n�j

)
= eEδm′m

(
�m

n�′ j , X3�
m
n�j

)
(5.3.3)

This is still not suitable for first-order perturbation theory, because the matrix
elements (5.3.3) do not vanish for �′ �= �. Indeed, since X is odd under space
inversion, and space inversion gives factors (−1)�

′
and (−1)� when acting on the

1 J. Stark, Verh. deutsch. phys. Ges. 16, 327 (1914).
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state vectors � j
n�′m and �

j
n�m , respectively, the matrix element (5.3.3) vanishes

unless (−1)�
′
(−1)� = −1, so that the only non-vanishing matrix elements are

those for which �′ �= �.
For instance, in the energy levels of hydrogen with n = 1 and j = 1/2 or

n = 2 and j = 3/2, there is no first-order Stark effect, because in these energy
levels we only have � = 0 or � = 1, respectively. On the other hand, in the
n = 2, j = 1/2 energy level of hydrogen we have both a 2s1/2 and 2p1/2 state
for each m = ±1/2. Hence for n = 2 and j = 1/2 we have the non-vanishing

matrix elements
(
�

±1/2
2 1 1/2, X3�

±1/2
2 0 1/2

)
and

(
�

±1/2
2 0 1/2, X3�

±1/2
2 1 1/2

)
(where as usual

the state vectors are labeled �m
n�j , with s = 1/2 understood throughout). The

operator X3 acts on orbital angular momentum indices but does not act on spin
indices, so to calculate its matrix elements between state vectors we need to use
Clebsch–Gordan coefficients to express the state vectors here in terms of state
vectors �m�ms

n� with S3 = �ms and L3 = �m�:

�m
n�j =

∑
m�ms

C� 1
2
( jm; m�ms)�

m�ms
n� . (5.3.4)

Because X3 does not involve the spin, the matrix elements of X3 between state
vectors with definite eigenvalues for L3 and S3 are

(
�

m�ms
n� , X3�

m′
�m′

s
n′�′

)
= δms m′

s

∫
d3x Rn�(r)Y

m�

�

∗
(θ, φ)r cos θ Rn′�′(r)Y

m′
�

�′ (θ, φ).

(5.3.5)
(Recall that the radial wave functions Rn�(r) are real.) The operator X3 com-
mutes with both L3 and S3, and since the s-wave state vector �±1/2

2 0 1/2 can only
have m� = 0, the integrals of x3 between this state vector and the p-wave state
vector �±1/2

2 1 1/2 receive contributions only from the m� = 0 components of both
wave functions. The non-vanishing matrix elements are thus(

�
±1/2
2 1 1/2, X3 �

±1/2
2 0 1/2

)
=
(
�

±1/2
2 0 1/2, X3 �

±1/2
2 1 1/2

)
= C1 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
C0 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
I, (5.3.6)

where

I ≡
∫

d3x r cos θ R2 1(r)Y
0
1 (θ)R2 0(r)Y

0
0 . (5.3.7)

The Clebsch–Gordan coefficients in Eq. (5.3.6) are

C1 1
2

(
1

2
± 1

2
; 0 ± 1

2

)
= ∓ 1√

3
, C0 1

2

(
1

2
± 1

2
; 0 ± 1

2

)
= 1, (5.3.8)
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so the non-zero matrix elements (5.3.3) are2(
�

±1/2
2 1 1/2, δH�

±1/2
2 0 1/2

)
=
(
�

±1/2
2 0 1/2, δH�

±1/2
2 1 1/2

)
= ∓eEI√

3
. (5.3.9)

Because there are non-vanishing matrix elements of δH between the degen-
erate state vectors �

±1/2
2 1 1/2 and �

±1/2
2 0 1/2, these are not the appropriate state

vectors for which to calculate perturbed energies. Instead, we must consider
the orthonormal state vectors

�m
A ≡ 1√

2

[
�m

2 1 1/2 +�m
2 0 1/2

]
, �m

B ≡ 1√
2

[
�m

2 1 1/2 −�m
2 0 1/2

]
. (5.3.10)

The non-vanishing matrix elements of δH between these state vectors are(
�

±1/2
A , δH�

±1/2
A

)
= −

(
�

±1/2
B , δH�

±1/2
B

)
= ∓eEI√

3
, (5.3.11)

while (
�

±1/2
A , δH�

±1/2
B

)
=
(
�

±1/2
B , δH�

±1/2
A

)
= 0. (5.3.12)

Therefore first-order perturbation theory gives the energy shifts in these states as

δE±1/2
A = ∓eEI√

3
, δE±1/2

B = ±eEI√
3
. (5.3.13)

It remains to calculate the integral I. Eqs. (2.1.28) and (2.3.7) give the radial
wave functions as

Rn�(r) ∝ r � exp(−r/na)Fn�(r/na),

where a is the hydrogen Bohr radius given by Eq. (2.3.19), a = �2/mee2, and
Eq. (2.3.17) gives

F2 1(ρ) ∝ 1, F2 0(ρ) ∝ 1 − ρ.

Normalizing these state vectors properly, we have

R2 0(r)Y
0
0 = 1√

4π
(2a)−3/2

(
2 − r

a

)
exp(−r/2a),

R2 1(r)Y
0
1 (θ) = cos θ√

4π
(2a)−3/2

( r

a

)
exp(−r/2a). (5.3.14)

2 The fact that the matrix elements of δH between j = 1/2 state vectors depend on the value of m =
±1/2 through a sign factor ± can be understood more directly, as a consequence of the Wigner–Eckart
theorem. Here δH is proportional to X3, which is the spherical component xμ of a vector X with μ = 0,
so according to Eq. (4.4.9), (

�m
2 1 1/2, δH�m

2 0 1/2

)
∝ C

1 1
2

(1

2
m; 0 m

)
,

and according to Table 4.1, this Clebsch–Gordan coefficient has the value −2m/
√

3.
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Then Eq. (5.3.7) gives

I = 2π
∫ ∞

0
r2dr

∫ π

0
sin θ dθ

1

4π
(2a)−3r cos2 θ

( r

a

) (
2 − r

a

)
exp(−r/a)

= −3 a. (5.3.15)

In this calculation we have tacitly assumed that the electric field is so weak
that the Stark effect energy shift is much less than the fine-structure splitting
(though larger than the Lamb shift and hyperfine splittings). In the opposite
limit, where the Stark effect energy shift is much greater than the fine-structure
splitting, we have degeneracy among all the state vectors�m�ms

n� for a given value
of n. Since X3 does not act on spin indices, the spin is irrelevant here. For n = 2
we have non-vanishing matrix elements(

�
0 ms
2 1 , δH�

0 ms
2 0

)
=
(
�

0 ms
2 0 , δH�

0 ms
2 1

)
= eEI. (5.3.16)

The appropriate state vectors to use in connection with first-order perturbation
theory are then

�
ms
A = 1√

2

[
�

0 ms
2 1 +�

0 ms
2 0

]
, �

ms
B = 1√

2

[
�

0 ms
2 1 −�

0 ms
2 0

]
, (5.3.17)

and the energy shifts are

δEms
A = eEI, δEms

B = −eEI. (5.3.18)

This is the analog of the Paschen–Back effect, and is the result that is usually
quoted in quantum mechanics textbooks.

These calculations show that even a very weak electric field will thoroughly
mix the 2s and 2p states. (It is only necessary that the Stark energy shift should
be large compared with the Lamb shift between the 2s1/2 and 2p1/2 states.) This
has the dramatic effect that the 2s state, which is metastable in the absence of
an electric field, can rapidly decay by single photon emission into the 1s state
through its mixing with the 2p state in even a weak electric field.

5.4 Second-Order Perturbation Theory

We now consider the change in energies due to a perturbation δH , to second
order in whatever small parameter ε appears as a factor in δH . Of course, this
is of special interest when the first-order perturbation vanishes, as it does for the
Stark shift of atomic energy levels in an electric field for the 1s1/2, 2p3/2, etc.,
states of hydrogen and almost all states of other atoms.

We return to the Schrödinger equation (5.1.4), and equate the terms of second
order in ε on both sides:

H0 δ2�a + δH δ1�a = Ea δ2�a + δ1 Ea δ1�a + δ2 Ea �a. (5.4.1)
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We found in Section 5.1 that if there is no degeneracy, or if
(
�a, δH�b

)
= 0

whenever Ea = Eb but a �= b, then the first-order perturbations to the energy
and state vector are

δ1 Ea =
(
�a, δH�a

)
, (5.4.2)

δ1�a =
∑
b �=a

(
�b, δH�a

)
Ea − Eb

�b. (5.4.3)

To find the second-order energy shift, we take the scalar product of Eq. (5.4.1)

with �a . Because H0 is Hermitian, the term
(
�a, H0δ2�a

)
in the scalar product

of the left-hand side of Eq. (5.4.1) is equal to Ea

(
�a, δ2�a

)
, and therefore

cancels this term in the matrix element of �a with the right-hand side, leaving
us with (

�a, δH δ1�a

)
= δ2 Ea + δ1 Ea

(
�a, δ1�a

)
. (5.4.4)

We drop the term proportional to δ1 Ea , because as explained in Section 5.1,
we choose the phase and normalization of the perturbed state vector so that(
�a, δ1�a

)
= 0. Using Eq. (5.4.3) in Eq. (5.4.4) then gives

δ2 Ea =
∑
b �=a

∣∣∣(�b, δH�a

)∣∣∣2
Ea − Eb

. (5.4.5)

When one says that an energy shift is produced by the emission and reabsorp-
tion of some virtual particle, as for instance the Lamb shift is produced by the
emission and reabsorption of a photon by the electron in the hydrogen atom,
what is meant is that δ2 Ea (or higher-order corrections) receives an important
contribution from a state b containing that particle.

One immediate consequence of Eq. (5.4.5) is that, if �a is the state of lowest
energy of a system, then the second-order energy shift of its energy is always
negative, because all other states have Eb > Ea .

As an example of the use of Eq. (5.4.5), consider a two-state system, with
unperturbed energies E1 �= E2. According to Eqs. (5.4.2) and (5.4.5), to second
order the perturbation to these energies are

δE1 =
(
�1, δH�1

)
+
∣∣∣(�2, δH�1

)∣∣∣2
E1 − E2

, δE2 =
(
�2, δH�2

)
−
∣∣∣(�2, δH�1

)∣∣∣2
E1 − E2

,

so second-order corrections increase the higher energy by the same amount that
they lower the lower energy.
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It is generally not easy to do the sum over states in Eq. (5.4.5). In some cases
the sum can diverge; there are ultraviolet divergences that occur when the matrix

elements
∣∣∣(�b, δH�a

)∣∣∣ do not fall off rapidly enough for high-energy states

�b to make the sum converge, and there are infrared divergences that occur
when there is a continuum of states �b with energies Eb extending down to Ea .
The treatment of these infinities has been a major preoccupation of theoretical
physicists since the 1930s.

There are two cases that allow δ2 Ea to be easily calculated. In the first case,

the energies Eb of all the states �b for which
(
�b, δH�a

)
is appreciable for

a given state �a are clustered at a value Eb 	 Ea + �a , with �a �= 0. The
completeness of the orthonormal state vectors �b allows us to write

∑
b

∣∣∣(�b, δH�a

)∣∣∣2 =
(
�a, δH

∑
b

�b

(
�b, δH�a

))
=
(
�a, (δH)2�a

)
(5.4.6)

so in this case δ2 Ea is given by what is called the closure approximation:

δ2 Ea 	 1

−�a

∑
b

∣∣∣(�b, δH�a

)∣∣∣2 = −
(
�a, (δH)2�a

)
�a

. (5.4.7)

The second case occurs when there is a small set of states for which(
�b, δH�a

)
is appreciable, and Eb is very close to Ea . In this case, the sum

in Eq. (5.4.5) can be restricted to these states. For instance, the second-order
Stark shift in the 2p3/2 state of hydrogen can be estimated by keeping only the
2s1/2 state, with which it is nearly degenerate, in Eq. (5.4.5).

5.5 The Variational Method

Some problems cannot be solved by perturbation theory, because the Hamilto-
nian is not close to one with known eigenvalues and eigenstates. A classic case
is encountered in chemistry: there is no small parameter in which we can expand
the energies and state vectors of electrons in a molecule with several nuclei. In
such cases, it is often possible to get a good estimate at least of the ground state
energy, by a technique known as the variational method. It is based on a gen-
eral theorem that the true ground state energy is less than or equal to to the
expectation value of the Hamiltonian in any state.

To prove this result, recall the expression (3.1.16) for the expansion of any
state vector � in a series of orthonormal state vectors �n:

� =
∑

n

�n

(
�n, �

)
, where

(
�n, �m

)
= δnm . (5.5.1)
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We can take the �n to be exact eigenvectors of the Hamiltonian

H�n = En�n. (5.5.2)

This gives the expectation value of the Hamiltonian in the state � as

〈H〉� ≡
(
�, H�

)
(
�,�

) =
∑

n En

∣∣∣(�n, �
)∣∣∣2

∑
n

∣∣∣(�n, �
)∣∣∣2 . (5.5.3)

If Eground is the true ground state energy, then En ≥ Eground for all n, so

〈H〉� ≥ Eground, (5.5.4)

as was to be proved.
We can check that this result is respected by the approximations we found

earlier in perturbation theory. Recall that in to first order in a small pertur-
bation δH , the energy of a physical state with unperturbed state vector �(0)

n
and unperturbed energy E (0)

n is given by the expectation value of the total
Hamiltonian

E (0)
n + δEn = E (0)

n +
(
�(0)

n , δH�(0)
n

)
=
(
�(0)

n , (H + δH)�(0)
n

)
(provided that the unperturbed state vectors have been chosen so that(
�(0)

n , δH�(0)
m

)
= 0 if E (0)

m = E (0)
n but m �= n). Further, we have seen that the

energy in second-order perturbation theory is less than this expectation value.
As we have now seen, this expectation value is not only an approximation to the
true energy in first-order perturbation theory, and an upper bound to the ground
state energy in second-order perturbation theory — it is an exact upper bound to
the ground state energy, whatever we choose for �(0)

n .
Not only this, but 〈H〉� generally gives a good approximation to the ground

state energy provided we take � as a “trial” wave function that depends on
several parameters λi , and adjust these parameters to minimize this expectation
value. The change in the expectation value when we make changes δλi in the
parameters λi is

δ〈H〉� = 2
Re
(
δ�, H�

)
(
�,�

) − 2

(
�, H�

)
Re
(
δ�,�

)
(
�,�

)2
=

2Re
(
δ�, (H − 〈H〉�)�

)
(
�,�

) ,

where δ� is the change in � produced by these changes in the parameters λi :

δ� ≡
∑

i

∂�

∂λi
δλi .
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If λ is at a minimum (or any other stationary point) of the expectation value
under variations of the λi , then

Re
(
δ�, (H − 〈H〉�)�

)
= 0,

and since this must be satisfied for all complex δλi , we must have(
∂�/∂λi , (H − 〈H〉�)�

)
= 0 (5.5.5)

for all i . Since the state vector (H − 〈H〉�)� is thus orthogonal to all the state
vectors ∂�/∂λi , we can guess that if there are enough independent parameters
λi then H� − 〈H〉�� should be small, so that � will be close to an eigen-
vector of the complete Hamiltonian with energy 〈H〉� . The more independent
parameters λi we introduce, the closer to 〈H〉�� the state vector H� is likely
to be.

One nice thing about the variational principle is that, although the choice of
a trial state vector is a matter of judgment, there is an objective way of telling
which of two trial state vectors is better. Since the true ground state energy is
less than the expectation value of the Hamiltonian for any trial state vector, that
trial state vector that gives the smallest expectation value is better.

For a system consisting of a single particle of mass μ moving in three
dimensions in a general potential V (X), the Hamiltonian is

H = P2

2M
+ V (X), (5.5.6)

so, since P is Hermitian,

〈H〉� =
∑

i

(
Pi�, Pi�

)
/2M +

(
�, V�

)
(
�,�

) (5.5.7)

= 〈T 〉� + 〈V 〉� (5.5.8)

where

〈T 〉� =
∫

d3x �2

2M

∑
i

∣∣∣ ∂ψ(x)
∂xi

∣∣∣2∫
d3x |ψ(x)|2 , 〈V 〉� =

∫
d3x V (x) |ψ(x)|2∫

d3x |ψ(x)|2 , (5.5.9)

where ψ(x) is the coordinate-space wave function (�x, �). The mean kinetic
energy 〈T 〉� is minimized by a ψ(x) that is as flat as possible, while for an
attractive potential like the Coulomb potential, the mean potential 〈V 〉� is min-
imized by a ψ(x) that is concentrated near the origin. The wave function that
minimizes 〈H〉ψ is therefore a compromise — somewhat concentrated near the
origin, but with some spread out to larger distances.

For a Coulomb potential there is a simple relation between the kinetic
and potential energy terms in Eq. (5.5.8) at the minimum of 〈H〉� , known
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as the virial theorem. If we normalize the trial wave function ψ(x), so that∫
d3x |ψ(x)|2 = 1, then ψ has dimensionality [length]−3/2, so it must be of

the form ψ(x) = a−3/2 f (x/a), where f (z) is a dimensionless function of a
dimensionless argument, and a is a length that can be varied freely when we
vary the wave function. By changing the variable of integration in Eq. (5.5.9)
from x to x/a, it is easy to see that when we vary a, 〈T 〉� goes as a−2, while for
a Coulomb potential 〈V 〉� goes as a−1. Since a d/da of the sum must vanish at
the minimum, we have

− 2〈T 〉� − 〈V 〉� = 0 (5.5.10)

so 〈H〉� = −〈T 〉� . (It should perhaps be emphasized that this relation can be
applied only after a stationary point of 〈H〉� has been found; otherwise we could
minimize 〈H〉� by maximizing 〈T 〉� , which is certainly not the case.) Similar
results hold for multi-electron atoms, or even for molecules, providing the only
forces are Coulomb forces.

The variational principle can often be generalized to estimate the energies of
some other states besides the ground state. Suppose that there is some Hermitian
operator A (such as L2) that commutes with the Hamiltonian. Then if a trial state
vector � is an eigenstate of A, the expectation value of the Hamiltonian for that
state vector gives an upper bound on the energies of all eigenstates of H with the
same eigenvalue of A. Thus, for instance, taking the trial wave function ψ(x) in
Eq. (5.5.8) to have the form R(r)Y m

� (x̂), this expectation value gives an upper
bound on the energies of all states of angular momentum �.

5.6 The Born–Oppenheimer Approximation

There are theories in which part of the Hamiltonian is suppressed by a small
parameter, and yet we cannot use a perturbation theory based on the expansion
of energies and eigenvalues to first or second order in this parameter. A good
example is provided by molecular physics, in which the kinetic energy of nuclei
is suppressed by the reciprocal of nuclear masses. Instead of ordinary perturba-
tion theory, here we can instead use an approximation introduced by Born and
J. Robert Oppenheimer (1904–1967) in 1927.1

The Hamiltonian for a molecule can be written2

H = Telec(p)+ Tnuc(P)+ V (x, X), (5.6.1)

1 M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).
2 In this section we are giving up our usual practice of using upper case letters for operators and lower

case letters for their eigenvalues. Instead, here upper and lower case letters for coordinates and momenta
refer to nuclei and electrons, respectively. We leave it to the context to clarify whether the symbols for
coordinates and momenta denote operators or their eigenvalues.



166 5 Approximations for Energy Eigenvalues

where Telec and Tnuc are the kinetic energies of the electrons (labeled n) and
nuclei (labeled N ):

Telec(p) =
∑

n

p2
n

2me
Tnuc(P) =

∑
N

P2
N

2MN
, (5.6.2)

and V is the potential energy

V (x, X) = 1

2

∑
n �=m

e2

|xn − xm | + 1

2

∑
N �=M

Z N Z Me2

|XN − XM | −
∑
nN

Z N e2

|xn − XN | , (5.6.3)

where Z N e is the charge of nucleus N . Of course, [xni , pmj ] = i�δnmδi j ,
[X Ni , PM j ] = i�δN Mδi j , and all other commutators of coordinates and/or
momenta vanish. We are using upper and lower case letters for the dynami-
cal variables of nuclei and electrons, respectively. Boldface as usual indicates
three-vectors, and when boldface (and vector indices) are omitted it should
be understood that x, p and X, P denote the whole set of dynamical vari-
ables for electrons and nuclei, respectively. We have ignored spin variables in
Eqs. (5.6.1)–(5.6.3), but if necessary one can include electron and nuclear spin
3-components among the variables denoted x, p and X, P .

We seek solutions of the Schrödinger equation:[
Telec(p)+ Tnuc(P)+ V (x, X)

]
� = E �. (5.6.4)

The Born–Oppenheimer approximation exploits the suppression of the nuclear
kinetic energy term by the large nuclear masses MN , so let’s first consider
the eigenvalue problem for the reduced Hamiltonian, with Tnuc omitted. The
nuclear coordinates X Ni commute with this reduced Hamiltonian, so we can
find simultaneous eigenvectors of both the reduced Hamiltonian and X :[

Telec(p)+ V (x, X)
]
�a,X = Ea(X)�a,X , (5.6.5)

where the subscript X here indicates the eigenvalue of the nuclear coordinate
operators (which were denoted X in Eq. (5.6.4)). In Eq. (5.6.5) the nuclear
coordinates XN can be regarded as c-number parameters, on which the reduced
Hamiltonian Telec+V and hence also its eigenvalues and eigenfunctions depend.
The reduced Hamiltonian is Hermitian, so these states can be chosen to be
orthonormal, in the sense that:(

�b,X ′,�a,X

)
= δab

∏
Ni

δ
(

X ′
Ni − X Ni

)
. (5.6.6)

We can write the state �a,X as a superposition of states �x,X with definite values
of the electron as well as of the nuclear coordinates

�a,X =
∫

dx ψa(x; X)�x,X . (5.6.7)
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With the �x,X given the usual continuum normalization(
�x ′,X ′,�x,X

)
=
∏
ni

δ(xni − x ′
ni )
∏
N j

δ(X N j − X ′
N j ), (5.6.8)

the normalization condition (5.6.6) implies that for each X :∫
dx ψ∗

a (x; X)ψb(x; X) = δab. (5.6.9)

Inserting Eq. (5.6.7) in (5.6.5) gives[
Telec(−i�∂/∂x)+ V (x, X)

]
ψa(x; X) = Ea(X)ψa(x; X). (5.6.10)

This can be regarded as an ordinary Schrödinger equation in a reduced Hilbert
space, consisting of square-integrable functions of x .

Unfortunately, we cannot simply use first-order perturbation theory, with Tnuc

taken as the perturbation and the state vectors �a,X taken as unperturbed energy
eigenstates. This is because we are looking for discrete eigenvalues of the full
Hamiltonian, for which the eigenvectors � would be normalizable, in the sense

that
(
�,�

)
is finite, while Eq. (5.6.6) shows that

(
�a,X ,�a,X

)
is infinite.

We cannot expand in powers of a perturbation that converts a state vector with
continuum normalization into one that is normalizable as a discrete state.

Since the �a,X do form a complete set, the true solution � of the full
Schrödinger equation (5.6.4) can be written

� =
∑

a

∫
d X fa(X)�a,X . (5.6.11)

The normalization condition (�,�) = 1 here reads∑
a

∫
d X | fa(X)|2 = 1. (5.6.12)

Inserting the expansion (5.6.11) in the Schrödinger equation (5.6.4), and using
the reduced Schrödinger equation (5.6.5), we have

0 =
∑

a

∫
d X fa(X)

[
Tnuc(P)+ Ea(X)− E

]
�a,X . (5.6.13)

So far, this is exact, but it is complicated by the fact that the operator Tnuc does
not merely act on the X -index on �a,X . That is, acting on the basis states �x,X ,
an individual component of nuclear momentum gives3

PNi�x,X = i�
∂

∂X Ni
�x,X (5.6.14)

3 A reminder: According to Eq. (3.5.11), a momentum operator P acts on basis states �X as i�∂/∂X , so
that

P
∫

d X ψ(X)�X =
∫

[−i�∂ψ(X)/∂X ]�X .
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so that, using Eq. (5.6.7) and integrating by parts,∫
d X fa(X) PN ,i�a,X = −i�

∫
dx

∫
d X

[
ψa(x; X)

∂

∂X Ni
fa(X)

+ fa(X)
∂

∂X Ni
ψa(x; X)

]
�x,X . (5.6.15)

The Born–Oppenheimer approximation consists of dropping the derivative of
ψa(x; X) with respect to X in Eq. (5.6.15), so that, using Eq. (5.6.7) again,∫

d X fa(X)Tnuc(P)�a,X 	
∫

d X �a,X

∑
N

( −�2

2MN

)
∇2

N fa(X). (5.6.16)

We will make this approximation and see where it leads us, and then come back
to whether the solutions we find are consistent with this approximation.

With the approximation (5.6.16), the Schrödinger equation (5.6.13) becomes

0 =
∑

a

∫
d X �a,X

[∑
N

( −�2

2MN

)
∇2

N + Ea(X)− E

]
fa(X). (5.6.17)

Since the eigenvectors �a,X of the reduced Hamiltonian are independent, each
term in the sum must vanish, so for all a,[∑

N

( −�2

2MN

)
∇2

N + Ea(X)

]
fa(X) = E fa(X). (5.6.18)

That is, fa(X) satisfies a Schrödinger equation in which electron dynamical vari-
ables no longer appear, except that the energy Ea(X) of the electronic state with
fixed nuclear coordinates X acts as a potential for the nuclei. For this purpose
all we need to calculate about the electrons is the energy Ea(X), not the eigen-
vector �a,X . This still isn’t easy, but at least we can (and usually do) find the
lowest Ea(X) by applying the variational principle to the reduced Hamiltonian
Telec + V , with nuclear coordinates held fixed.

The different electronic configurations have decoupled from each other, so
that we have solutions for each a in which all of the other fb vanish. From now
on we will drop the index a, keeping our attention on just a single electronic
configuration, which often is taken as the ground state, in which the electron
energy E(X) is the lowest of the Ea(X).

For multi-atom molecules the function E(X) is pretty complicated. It may
be expected to have several local minima, corresponding to different stable or
metastable molecular configurations. There will be solutions of Eq. (5.6.18) with
the wave function f (X) concentrated around one of these minima, correspond-
ing to various vibrational modes of the molecule in this configuration. Taking
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XN = 0 as the coordinates of one local minimum, for each such wave function
Eq. (5.6.18) may be approximated as4⎡
⎣∑

N

( −�2

2MN

)
∇2

N + 1

2

∑
N N ′i j

KNi,N ′ j X Ni X N j

⎤
⎦ f (X) = E f (X), (5.6.19)

where

KNi,N ′ j ≡
[

∂2E(X)
∂X Ni X N ′ j

]
X=0

. (5.6.20)

We note in passing that this program is made easier by using a result known
as the Hellmann–Feynman theorem,5 which states

∂E(X)
∂X Ni

=
∫

dx |ψ(x; X)|2 ∂V (x .X)

∂X Ni
. (5.6.21)

In other words, to calculate the first derivatives of E(X), as we need to do to find
its local minima, we do not need to calculate derivatives of the electronic wave
function ψ(x; X) with respect to the nuclear coordinates X . To prove this, we
note from Eq. (5.6.10) (dropping the subscript a) that

E(X) =
∫

dx ψ∗(x; X)
[
Telec(−i�∂/∂x)+ V (x; X)

]
ψ(x; X),

so

∂E(X)
∂X Ni

=
∫

dx

[
∂

∂X Ni
ψ(x; X)

]∗ [
Telec(−i�∂/∂x)+ V (x, X)

]
ψ(x; X)

+
∫

dx ψ∗(x; X)
[
Telec(−i�∂/∂x)+ V (x, X)

] [ ∂

∂X Ni
ψ(x; X)

]

+
∫

dx |ψ(x; X)|2 ∂V (x .X)

∂X Ni

= E(X)
{∫ [

∂

∂X Ni
ψ(x; X)

]∗
ψ(x; X)+

∫
dx ψ∗(x; X)

[
∂

∂X Ni
ψ(x; X)

]}

+
∫

dx |ψ(x; X)|2 ∂V (x .X)

∂X Ni
.

But the normalization condition (5.6.9) is satisfied for all X , so

4 It is not necessary for our purposes, but this can be rewritten as the Schrödinger equation for a set of
independent harmonic oscillators, by introducing new coordinates defined as linear combinations of the
X Ni . The wave function f is then a product of harmonic oscillator wave functions, one for each new
coordinate, and the energy E is the sum of the corresponding harmonic oscillator energies.

5 F. Hellmann, Einfühuring in die Quantumchemie (Franz Deutcke, Leipzig and Vienna, 1937); R. P.
Feynman, Phys. Rev. 56, 540 (1939).
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∫ [
∂

∂X Ni
ψ(x; X)

]∗
ψ(x; X)+

∫
dx ψ∗(x; X)

[
∂

∂X Ni
ψ(x; X)

]
= 0,

which yields the desired result (5.6.21).
We can now check the validity of the Born–Oppenheimer approximation, in

which we neglected the derivative of ψa(x; X) with respect to X in Eq. (5.6.15).
The eigenvalue equation (5.6.5) involves only electronic variables, so the only
dimensional parameters in this equation are me, e, and �. The distance scale over
which we must vary X to make an appreciable change in ψa(x; X) is therefore
the Bohr radius

a ≈ �2/mee2,

because this is the only quantity with the units of length that can be formed
from me, e, and �. On the other hand, the Schrödinger equation (5.6.19) for the
vibrational wave function f (x) of the molecule involves only the parameters
�2/M (where M is a typical nuclear mass in this molecule) and K . Eq. (5.6.20)
shows that the units of K are [energy]/[distance]2, so since K arises from the
electronic energy, it can only be of the order of atomic binding energies, roughly
e4me/�2, divided by a2, so

K ≈ e4me

�2a2
= e8m3

e

�6
.

The only quantity that can be formed from �2/M and K that has the dimensions
of length is

b =
(

�2

M K

)1/4

≈ �2

e2 M1/4m3/4
e

.

so this is the distance over which one must vary X to make an appreciable
change in fa(X). The ratio of the second to the first term in the square brackets
in Eq. (5.6.15) is then of order

second term

first term
≈ 1/a

1/b
≈
(me

M

)1/4
.

This varies from 0.15 for hydrogen to 0.04 for uranium. The corrections to the
Born–Oppenheimer approximation are suppressed by one or more powers of
this quantity. This shows a clear failure of first-order perturbation theory; the
corrections to the leading approximation here are not proportional to 1/MN , but
to 1/M1/4

N .
There is another, perhaps more physical, way of understanding the Bohr–

Oppenheimer approximation. The energies of excited electronic states in
molecules are similar to those in atoms, of order e4me/�2. In contrast, the
energies of the excited molecular vibrational states are of order
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√
K�2/M ≈ e4m3/2

e

�2 M1/2
.

Hence vibrational excitation energies are smaller than electronic excitation ener-
gies by a factor of order

√
me/M . (This is why molecular spectra are generally

in the infrared, while atomic spectra are in the visible or ultraviolet.) The Born–
Oppenheimer approximation works because the motion of nuclei in a molecule
does not involve energies large enough to excite higher electronic states.

We can carry this further. Note that the excitation energies of rotational states
of the whole molecule are of the order of the squared angular momentum divided
by the moment of inertia. The angular momentum is of order �, and the moment
of inertia is of order Ma2, so these rotational energies are of order �2/Ma2 =
m2

ee4/M�2, which is even smaller than the vibrational energies, by an additional
factor

√
me/M . Thus we have a hierarchy of energies:

Electronic : e4me/�2

Vibrational : (me/M)1/2 × e4me/�2

Rotational : (me/M)× e4me/�2

In the language of modern elementary particle physics, in the Born–
Oppenheimer approximation the electronic states are “integrated out,” resulting
in an “effective Hamiltonian” for the nuclear motions. Similarly, to a first
approximation we do not need to consider the electronic and vibrational states
of molecules in calculating rotational spectra.

In much the same way, from the beginning of atomic and molecular physics,
theorists employed effective Hamiltonians in which internal excitations of
atomic nuclei were implicitly ignored. Born and Oppenheimer were just the
first to make this sort of analysis explicit, though for them it was electronic
rather than nuclear excitations that were ignored. Today we usually (though not
always) study the internal structure of nuclei using an effective Hamiltonian in
which neutrons and protons are treated as point particles, ignoring the structure
of the proton and neutron as composites of quarks, since the energies required
to produce excited states of the proton and neutron are larger than those encoun-
tered in ordinary nuclear phenomena. And, similarly, we use the Standard Model
of elementary particles without needing to know what happens at the very high
energies where gravitation becomes a strong interaction.

5.7 The WKB Approximation

A particle of sufficiently high momentum will have a wave function that
varies very rapidly with position, much more rapidly than the potential. The
Schrödinger equation can be easily solved exactly for a constant potential, so
it can be solved approximately for a potential that varies much more slowly
than the wave function. This is the basis of an approximation introduced
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independently by Gregor Wentzel1 (1898–1978), Hendrik Kramers2 (1894–
1952), and Leon Brillouin3 (1889-1969), known as the WKB approximation.

Consider a Schrödinger equation of the form

d2u(x)

dx2
+ k2(x) u(x) = 0 (5.7.1)

where

k(x) ≡
√

2μ

�2

(
E − U (x)

)
. (5.7.2)

This is the form of the Schrödinger equation for a particle of mass μ in one
dimension, with u(x) the wave function for a state of energy E and with U (x)
the potential, and it is also the form of the Schrödinger equation for a particle of
mass μ (or for two particles with reduced mass μ) in three dimensions, where
x is the radial coordinate, u(x) is x times the wave function ψ(x) for energy
E , and

U (x) ≡ V (x)+ �2

2μ

�(�+ 1)

x2
,

with V (x) a central potential. For the present we are assuming that U (x) ≤ E ;
later we will consider the case U (x) ≥ E .

If k(x) were constant, Eq. (5.7.1) would have a solution u(x) ∝ exp(±ikx),
so when k(x) is slowly varying, we expect a solution of the form

u(x) ∝ A(x) exp

[
±i
∫

k(x) dx

]
, (5.7.3)

where A(x) is a slowly varying amplitude. This will satisfy Eq. (5.7.1) exactly if

A′′ ± 2ik A′ ± ik ′ A = 0. (5.7.4)

Of course, this is no easier to solve than Eq. (5.7.1), but if A(t) is sufficiently
slowly varying we may be able to find an approximate solution by dropping the
term A′′. We will find such a solution, and then check under what conditions it
is a good approximation.

With A′′ neglected, Eq. (5.7.4) becomes exactly soluble, with A(x) ∝
k−1/2(x), so that we have a pair of approximate solutions of Eq. (5.7.1):

u(x) ∝ 1√
k(x)

exp

[
±i
∫

k(x) dx

]
. (5.7.5)

1 G. Wentzel, Zeit. f. Phys. 38, 518 (1926).
2 H. A. Kramers, Zeit. f. Phys. 39, 828 (1926).
3 L. Brillouin, Compt. Rendu Acad. Sci. 183, 24 (1926).
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These solutions are valid if the term A′′ in Eq. (5.7.4) is indeed much smaller
than k ′ A. For A = Ck−1/2 with C constant, we have

A′′ = C

[
− k ′′

2k3/2
+ 3k ′2

4k5/2

]
,

so we have |A′′| � |k ′ A| if |k ′′/k3/2| � |k ′/
√

k| and |k ′2/k5/2| � |k ′/k1/2|, or
in other words if ∣∣∣∣k ′′

k ′

∣∣∣∣ � k,

∣∣∣∣k ′

k

∣∣∣∣ � k. (5.7.6)

These conditions simply require that the magnitude of the fractional changes in
both k ′ and k in a distance 1/k are much less than unity.

In the classically forbidden region where U > E , the Schrödinger equation
takes the form

d2u(x)

dx2
− κ2(x) u(x) = 0, (5.7.7)

where

κ(x) ≡
√

2μ

�2

(
U (x)− E

)
. (5.7.8)

In exactly the same way as in the case U < E , we can find solutions

u(x) ∝ 1√
κ(x)

exp

[
±
∫
κ(x) dx

]
, (5.7.9)

which are good approximations provided∣∣∣∣κ ′′

κ ′

∣∣∣∣ � κ,

∣∣∣∣κ ′

κ

∣∣∣∣ � κ. (5.7.10)

At this point, our discussion has to divide between problems in one or three
dimensions.

One Dimension

In a typical bound-state problem in one dimension, we have U < E in a finite
range aE < x < bE , and U > E outside this range, where the wave function
must decay exponentially for x → ±∞. The conditions (5.7.6) and (5.7.10)
clearly are not satisfied near the “turning points” aE and bE , where U = E .
If the conditions (5.7.10) become satisfied for all x that are sufficiently greater
than bE , then in order to have a normalizable solution, in this region we must
have

u(x) ∝ 1√
κ(x)

exp

[
−
∫
κ(x) dx

]
. (5.7.11)
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On the other hand, for x in the range aE < x < bE , and sufficiently far from
the turning points, the solution is some linear combination of the two solutions
(5.7.5). To find this solution, we must ask what linear combination for x suffi-
ciently below bE fits smoothly with the solution (5.7.11) for x sufficiently above
bE . (We will come back later to the solution below aE .)

Unless E takes some special value, we expect that when x is near bE we have
U (x)− E ∝ x − bE , so that for x just a little above bE , we have

κ(E) 	 βE

√
x − bE , (5.7.12)

where βE ≡ √
2μU ′(bE)/�. To be more specific, Eq. (5.7.12) is a good approx-

imation if bE ≤ x � bE + δE , where δE ≡ 2U ′(bE)/|U ′′(bE)|. In this range of
x , it is convenient to replace x with a variable

φ ≡
∫ x

bE

κ(x ′) dx ′ = 2βE

3
(x − bE)

3/2 . (5.7.13)

In this case, the wave equation (5.7.7) takes the form

d2u

dφ2
+ 1

3φ

du

dφ
− u = 0. (5.7.14)

This has two independent solutions

u ∝ φ1/3 I±1/3(φ), (5.7.15)

where Iν(φ) is the Bessel function of order ν with imaginary argument:4

Iν(φ) = e−iπν/2 Jν
(
eiπ/2φ

)
,

where Jν(z) is the usual Bessel function of order ν.
Now, as long as Eq. (5.7.12) is a good approximation, we will have

κ ′

κ2
= 1

3φ
,

κ ′′

κκ ′ = − 1

3φ
,

so the conditions (5.7.10) for the WKB approximation will be satisfied if φ � 1.
There will be some overlap between the regions of x in which the approximation
(5.7.12) and the WKB approximation are satisfied, provided φ(bE + δE) � 1,
or in other words, if

2βE

3

(
2U ′(bE)

|U ′′(be)|
)3/2

= κE L E � 1, (5.7.16)

4 See, e.g., G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University
Press, Cambridge, 1944), Section 3.7.
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where κE ≡ √
2μ|E |/�, and L E is a length that characterizes the scale of

variation of the potential

L E ≡ 25/2U ′2(bE)

3|U ′′(bE)|3/2|U (bE)|1/2
. (5.7.17)

We will assume from now on that κE L E � 1, so that there is a region in which
the WKB approximation and the approximation (5.7.12) are both satisfied. As
we have seen, in this region we must have φ � 1, in which case we can use the
asymptotic forms of the functions (5.7.15):

φ1/3 I±1/3(φ) → (2π)−1/2φ−1/6

[
exp(φ) (1 + O(1/φ))

+ exp(−φ − iπ/2 ∓ iπ/3) (1 + O(1/φ))

]
. (5.7.18)

Note that when Eq. (5.7.12) is satisfied, φ−1/6 ∝ κ−1/2, so the solutions (5.7.18)
do indeed match the form (5.7.9) for WKB solutions. It is now clear that in order
for the solution of (5.7.14) to fit smoothly with the decaying WKB solution
(5.7.11) when both are valid, we must take the solution near the turning point as
the linear combination

u ∝ φ1/3
[
I+1/3(φ)− I−1/3(φ)

]
. (5.7.19)

Similarly, on the other side of the turning point, where x is in the range bE −
δE � x ≤ bE , we can write

k(x) 	 βE

√
bE − x (5.7.20)

and it is convenient to introduce a variable

φ̃ ≡
∫ bE

x
k(x ′) dx ′ = 2βE

3
(bE − x)3/2. (5.7.21)

The Schrödinger equation (5.7.1) then becomes

d2u

dφ̃2
+ 1

3φ̃

du

dφ̃
+ u = 0. (5.7.22)

This has two independent solutions

u ∝ φ̃1/3 J±1/3(φ̃), (5.7.23)

where, again, Jν(z) is the usual Bessel function of order ν. To see what lin-
ear combination of these solutions fits smoothly with the linear combination
(5.7.19), we need to consider how both behave as x → bE .
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For φ → 0, the solutions φ1/3 I±1/3(φ) have the limiting behavior

φ1/3 I+1/3(φ) → φ2/3

21/3�(4/3)
= (2βE/3)2/3

21/3�(4/3)
(x − bE), (5.7.24)

φ1/3 I−1/3(φ) → 21/3

�(2/3)
. (5.7.25)

On the other hand, for φ̃ → 0 the solutions φ̃1/3 J±1/3(φ̃) behave as

φ̃1/3 J+1/3(φ̃) → φ̃2/3

21/3�(4/3)
= (2βe/3)2/3

21/3�(4/3)
(bE − x), (5.7.26)

φ̃1/3 J−1/3(φ̃) → 21/3

�(2/3)
. (5.7.27)

We see that φ1/3 I+1/3(φ) fits smoothly with −φ̃1/3 J+1/3(φ̃), while φ1/3 I−1/3(φ)

fits smoothly with +φ̃1/3 J−1/3(φ̃), so the solution (5.7.19) fits smoothly with

u ∝ φ̃1/3
[

J+1/3(φ̃)+ J−1/3(φ̃)
]
. (5.7.28)

As long as inequality (5.7.16) is satisfied, there will be values of x for which both
φ̃ � 1, so that the inequalities (5.7.6) are satisfied, and also the approximation
(5.7.20) is satisfied, in which case we can use the asymptotic limit of Eq. (5.7.28)
for φ̃ � 1 :

φ̃1/3
[

J+1/3(φ̃)+ J−1/3(φ̃)
]

→
√

2

π
φ̃−1/6

[
cos

(
φ̃ − π

6
− π

4

)
+ cos

(
φ̃ + π

6
− π

4

)]
so

u ∝ φ̃−1/6 cos
(
φ̃ − π

4

)
∝ k−1/2(x) cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
.

Everywhere between the turning points where the conditions (5.7.6) are satisfied
the wave function must be a fixed linear combination of the two independent
solutions (5.7.5), and so we can conclude that for all such x

u ∝ k−1/2(x) cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
. (5.7.29)

The same arguments apply to the other turning point, at x = aE , except that
here U (x) increases with decreasing rather than with increasing x , so by the
same reasoning, we can conclude that everywhere between the turning points
where the conditions (5.7.6) are satisfied the wave function must have the form

u ∝ k−1/2(x) cos

(∫ x

aE

k(x ′) dx ′ − π

4

)
. (5.7.30)



5.7 The WKB Approximation 177

In order for both Eqs. (5.7.29) and (5.7.30) to be correct, we must have

cos

(∫ bE

x
k(x ′) dx ′ − π

4

)
∝ cos

(∫ x

aE

k(x ′) dx ′ − π

4

)
,

for all such x . Further, since both cosines oscillate between +1 and −1, the
coefficient of proportionality can only be +1 or −1. This leaves us with just two
possibilities for the arguments of the cosines:∫ bE

x
k(x ′) dx ′ − π

4
=
∫ x

aE

k(x ′) dx ′ − π

4
+ nπ

or else ∫ bE

x
k(x ′) dx ′ − π

4
= −

[∫ x

aE

k(x ′) dx ′ − π

4

]
+ nπ

where n is an integer, not necessarily positive. The first of these two alternatives
is ruled out because the left-hand side decreases with x while the right-hand
side increases with x , so we are left with the second possibility, which can be
written as ∫ bE

aE

k(x ′) dx ′ =
(

n + 1

2

)
π. (5.7.31)

The left-hand side is positive, so here the integer n can only be zero or positive-
definite.

Eq. (5.7.31) is almost the same as the generalization (1.2.12) of Bohr’s quan-
tization condition introduced subsequently by Sommerfeld. In a whole cycle
of oscillation a particle goes from bE to aE and then back again, so the WKB
approximation gives the integral in the Sommerfeld quantization condition as∮

p dq = 2�
∫ bE

aE

k(x ′) dx ′ = 2π�
(

n + 1

2

)
= h

(
n + 1

2

)
.

Hence Eq. (5.7.31) differs from the Sommerfeld quantization condition only
by the presence of the term 1/2 accompanying n. The derivation given here
suggests that Eq. (5.7.31) should work well only for large n, in which case the
term 1/2 is inconsequential, but in fact with this term for many potentials it
works surprising well for all n. In particular, for the harmonic oscillator we have
U (x) = μω2x2/2, so E = μω2b2

E/2 and aE = −bE . The integral in Eq. (5.7.31)
is then ∫ be

ae

k dx = μωb2
E

�

∫ +1

−1

√
1 − y2 dy = μωb2

E

�
π

2
= Eπ

�ω

and Eq. (5.7.31) therefore gives E = �ω(n + 1/2), which is the correct exact
result for a harmonic oscillator potential.
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Three Dimensions with Spherical Symmetry

For the three-dimensional case, the radial coordinate r (now using r rather than
x for the coordinate) is of course limited to r > 0, so we do not have any
boundary condition for r → −∞. Instead, as we saw in Section 2.1, for any
potential that does not grow as fast as 1/r2 for r → 0, the reduced wave function
u(r) ≡ rψ(r) obeys the boundary condition that u(r) ∝ r �+1 for r → 0. We
generally will have an outer turning point at r = bE where U (bE) = E , and the
wave function must decay exponentially for r � bE , so that in at least a range
of r below bE the wave function will be of the form (5.7.29):

u(r) ∝ k−1/2(r) cos

(∫ bE

r
k(r ′) dr ′ − π

4

)
. (5.7.32)

For � �= 0 we always also have an inner turning point at r = aE < bE where
U (aE) = E . The wave function (5.7.32) is then subject to the condition that
it fit smoothly with a solution for r < aE that goes as r �+1 rather than r−�
as r → 0. This can be complicated, especially because for � �= 0 the WKB
approximation does not work for r → 0, where κ ∝ 1/r . Things are simpler
for the case � = 0, where there is no centrifugal barrier, and there may not be
any inner turning point. If there is no inner turning point, then for a reasonably
smooth potential the solution (5.7.32) will continue to be valid all the way down
to r = 0. In this case, the condition that u(r) ∝ r for r → 0 requires that the
argument of the cosine in Eq. (5.7.32) must take the value nπ + π/2 for r = 0,
where n is an integer, so that the condition for a bound state is that∫ bE

0
k(r ′) dr ′ =

(
n + 3

4

)
π. (5.7.33)

For instance, for the � = 0 states of the Coulomb potential, we have U (r) =
−Ze2/r , so

k(r) =
√

2me

�2

(
E + Ze2/r

)
.

For E < 0 there is a turning point, at bE = −Ze2/E , and∫ bE

0
k(r) dr =

√−2me E

�2

∫ bE

0
dr

√
bE

r
− 1 = π

2

√
−2me

�2 E
Ze2.

The condition (5.7.33) then gives

E = − Z2e4me

2�2(n + 3/4)2
.

This is the same as the Bohr formula (1.2.11) for the nth energy level (which as
shown in Chapter 2 is the correct consequence of quantum mechanics), except
that n is replaced here with n + 3/4. Thus the WKB approximation works very
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well for the high energy levels, for which n � 3/4, as we would expect, since for
these energy levels the wave function oscillates many times. But for moderate n,
the WKB quantization condition (5.7.33) does not work as well for the Coulomb
potential as the Sommerfeld quantization condition (1.2.12).

5.8 Broken Symmetry

It sometimes happens that a Hamiltonian has a symmetry, which is shared by
its eigenstates, but that the physical states that are actually realized in nature
are instead nearly exact solutions of the Schrödinger equation for which the
symmetry is broken. We can find examples of this in non-relativistic quantum
mechanics of great importance to chemistry and molecular physics.

For instance, consider a particle of mass m moving in one dimension in a
potential V (x) with the symmetry V (−x) = V (x). If ψ(x) is a solution of the
Schrödinger equation with a given energy, then so is ψ(−x), so in the absence
of degeneracy we must have ψ(−x) = αψ(x), with α some constant. It fol-
lows then that ψ(x) = αψ(−x) = α2ψ(x), so α can only be +1 or −1, and
the energy eigenfunctions will be either even or odd in x . The states of low-
est energies with even or odd wave functions will generally have quite different
energies.

But suppose that the potential has two minima, symmetrically spaced around
the origin, separated by a high thick barrier centered at x = 0. This is the case for
instance for the ammonia NH3 molecule, where x is the position of the nitrogen
nucleus along a line transverse to the plane formed by the three hydrogen nuclei,
and the barrier is provided by the strong repulsion between the positive charges
of the nitrogen and hydrogen nuclei. If the barrier were infinitely high and thick,
there would be two degenerate energy eigenstates with energies E0, one with
a wave function ψ0(x) that is non-zero only for x > 0, and the other with a
wave function ψ0(−x) that is non-zero only for x < 0. Each of these solutions
break the symmetry under x ↔ −x . From them, we could form even and odd
solutions, [ψ0(x)±ψ0(−x)]/√2, that would also be degenerate, with energy E0.
But if the barrier is high and thick but finite, then these even and odd solutions
are not degenerate, but only nearly degenerate.

To estimate the order of magnitude of the energy splitting, we can use the
WKB method described in the previous section. Within the barrier, the even and
odd wave functions take the form

ψ±(x) ∝ 1√
κ(x)

[
exp

(∫ x

0
κ(x ′) dx ′

)
± exp

(∫ −x

0
κ(x ′) dx ′

)]
, (5.8.1)

where for a particle of mass m and energy E in a potential V (x),

κ(x) =
√

2m

�2

(
V (x)− E

)
. (5.8.2)
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The logarithmic derivatives of these wave functions are

ψ ′±(x)
ψ±(x)

	 − κ ′(x)
2κ(x)

+ κ(x)

⎡
⎣exp

(∫ x
0 κ(x ′) dx ′)∓ exp

(∫ −x
0 κ(x ′) dx ′

)
exp

(∫ x
0 κ(x ′) dx ′)± exp

(∫ −x
0 κ(x ′) dx ′

)
⎤
⎦ .

(5.8.3)

(For the validity of the WKB approximation it is necessary that |κ ′|/κ � κ , so
the first term in Eq. (5.8.3) is generally much less than the second term, but we
keep it here anyway, because it does not raise problems for our discussion.) For
a thick barrier extending from −a to +a with∫ a

0
κ dx =

∫ 0

−a
κ dx � 1

the logarithmic derivatives at the barrier edges are

ψ ′±(a)
ψ±(a)

= −ψ ′±(−a)

ψ±(−a)
	 − κ ′(a)

2κ(a)
+ κ(a)

[
1 ∓ 2 exp

(
−
∫ a

−a
κ(x ′) dx ′

)]
.

(5.8.4)

The energy is determined by the condition that these logarithmic derivatives
must match the logarithmic derivative of the wave function just outside the
barrier. Eq. (5.8.4) shows that for a thick barrier, this condition is nearly the
same for the even and odd solution, the difference being a term proportional
to exp

(− ∫ a
−a κ(x

′) dx ′). Thus the even and odd wave functions have energies
E± 	 E1 ± δE , where E1 is approximately equal to the energy of both even and
odd states in the limit of an infinitely thick barrier, and δE is suppressed by a
factor exp

(− ∫ a
−a κ(x

′) dx ′).
Because δE is very small for a thick barrier, the broken-symmetry states,

with the wave function concentrated on one side or the other of the barrier,
are nearly energy eigenstates. But why should these broken-symmetry states
be the ones realized in nature, rather than the true energy eigenstates, which
are either even or odd under the symmetry? The answer has to do with the
phenomenon of decoherence, discussed in Section 3.7. The wave function will
inevitably be subject to external perturbations, which for a thick barrier produce
fluctuations in the phase of the wave function, with no correlation between the
phase changes on the two sides of the barrier. These fluctuations cannot change
a broken-symmetry wave function that is concentrated on one side of the barrier
into a solution that is wholly or partly concentrated on the other side, but they
rapidly change an even or odd wave function into one that is an incoherent mix-
ture of even and odd wave functions. The states realized in the real world are
the ones that are stable up to a phase under these fluctuations, and these are the
broken-symmetry states.
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But the broken-symmetry states, though insensitive to external perturbations,
are not really stable. It is instructive to look at the time-dependence of a wave
function ψ(x, t) that at t = 0 takes the form ψ0(x), non-zero only for x > 0.
We can write this initial wave function as

ψ(x, 0) = 1

2
[ψ0(x)+ ψ0(−x)] + 1

2
[ψ0(x)− ψ0(−x)] ,

so at any later time t , the wave function is

ψ(x, t) 	 1

2
[ψ0(x)+ ψ0(−x)] exp

(
− i(E1 + δE)t/�

)
+1

2
[ψ0(x)− ψ0(−x)] exp

(
− i(E1 − δE)t/�

)
= exp

(
− i E1t/�

) [
ψ0(x) cos

(
δE t/�

)
− iψ0(−x) sin

(
δE t/�

)]
.

(5.8.5)

We see that a particle given the broken-symmetry wave function ψ0(x) will
at first leak through the barrier into the region x < 0, with an amplitude for
the other wave function ψ0(−x) increasing at a rate � = δE/�. Eventually the
amplitude for x < 0 builds up, until the particle begins to leak back into the
region x > 0. But if the barrier is very high and thick, the broken-symmetry
wave function ψ0(x) can persist for an exponentially long time. Indeed, there
are molecules like sugars and proteins that can exist in “chiral” configurations,
configurations with a definite left-handedness or right-handedness, that are sep-
arated by barriers much thicker than for ammonia. For such molecules, the
transition from one broken-symmetry state to another takes so long as to be
unobservable. This is why we can encounter left- and right-handed sugars and
proteins in nature.

These considerations point up a general feature of spontaneous symmetry
breaking: It is always associated with systems that in some sense are very
large. It is only the very large barrier in molecules like proteins and sugars that
allow these molecules to have a definite handedness. In quantum field theory,
it is the infinite volume of the vacuum state that allows other symmetries to be
spontaneously broken.1

Problems

1. Suppose that the interaction of the electron with the proton in the hydrogen
atom produces a change in the potential energy of the electron of the form

�V (r) = V0 exp(−r/R),

1 For a discussion of this point, see S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge
University Press, Cambridge, 1996), Section 19.1.
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where R is much smaller than the Bohr radius a. Calculate the shift in the
energies of the 2s and 2p states of hydrogen, to first order in V0.

2. It is sometimes assumed that the electrostatic potential felt by an electron in
a multi-electron atom can be approximated by a shielded Coulomb potential,
of the form

V (r) = − Ze2

r
exp(−r/R),

where R is the estimated radius of the atom. Use the variational method to
give an approximate formula for the energy of an electron in the state of
lowest energy in this potential, taking as the trial wave function

ψ(x) ∝ exp
(

− r/ρ
)
,

with ρ a free parameter.

3. Calculate the shift in energy of the 2p3/2 state of hydrogen in a very weak
static electric field E , to second order in E , assuming that E is small enough
so that this shift is much less than the fine-structure splitting between the
2p1/2 and 2p3/2 states. In using second-order perturbation theory here, you
can consider only the intermediate state for which the energy-denominator is
smallest.

4. The spin-orbit coupling of the electron in hydrogen produces a term in the
Hamiltonian of the form

�H = ξ(r)L · S,

where ξ(r) is some small function of r . Give a formula for the contribution
of �V to the fine-structure splitting between the 2p1/2 and 2p3/2 states in
hydrogen, to first order in ξ(r).

5. Using the WKB approximation, derive a formula for the energies of the
bound s states of a particle of mass m in a potential V (r) = −V0 e−r/R ,
with V0 and R both positive.



6
Approximations for Time-Dependent

Problems

The Hamiltonian of any isolated system is time-independent, but we often have
to deal with quantum mechanical systems that are not isolated, but affected by
time-dependent external fields, in which case the part of the Hamiltonian rep-
resenting the interaction with these fields depends on time. Here we are not
interested in calculating perturbations to the energies of bound states, because
physical states are no longer characterized by definite energies. Instead, our
interest is in calculating the rates at which the quantum system undergoes
changes of one sort of another. Such calculations can be done exactly only in the
simplest cases, so again we find it necessary to consider approximation methods,
of which the simplest and most versatile is perturbation theory.

6.1 First-Order Perturbation Theory

We consider a Hamiltonian

H(t) = H0 + H ′(t), (6.1.1)

where H0 is the time-independent Hamiltonian of the system in the absence
of external fields, and H ′(t) is a small time-dependent perturbation. The state
vector � of the system satisfies the time-dependent Schrödinger equation

i�
d�(t)

dt
= H(t)�(t). (6.1.2)

We can find a complete orthonormal set of time-independent unperturbed state
vectors

H0�n = En�n,
(
�n, �m

)
= δnm, (6.1.3)

and expand �(t) in the �n

�(t) =
∑

n

cn(t) exp(−i Ent/�)�n (6.1.4)

with time-dependent coefficients cn(t) from which a factor exp(−i Ent/�) has
been extracted for later convenience. The perturbation H ′(t) acting on �n may
itself be expanded in the �m :

183
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H ′(t)�n =
∑

m

�m

(
�m, H ′(t)�n

)

so the time-dependent Schrödinger equation (6.1.2) reads

∑
n

[
i�

dcn(t)

dt
+ Encn(t)

]
exp(−i Ent/�)�n

=
∑

n

cn(t)

[
En�n +

∑
m

H ′
mn(t)�m

]
exp(−i Ent/�),

where

H ′
mn(t) =

(
�m, H ′(t)�n

)
.

Canceling the terms proportional to En , then interchanging the labels m and n
on the right-hand side, and equating the coefficients of �n on both sides gives a
differential equation for cn(t):

i�
dcn(t)

dt
=
∑

m

H ′
nm(t)cm(t) exp (i(En − Em)t/�) . (6.1.5)

So far, this has been exact. Since the rate of change (6.1.5) of cn(t) is propor-
tional to the perturbation, to first order in this perturbation we can replace cm(t)
on the right-hand side with a constant, equal to the value of cm(t) at any fixed
time, say t = 0, in which case the solution is

cn(t) 	 cn(0)− i

�
∑

m

cm(0)
∫ t

0
dt ′ H ′

nm(t
′) exp

(
i(En − Em)t

′/�
)
. (6.1.6)

Higher-order approximations can be obtained by iterating this procedure.
In what follows, we will see that the way that perturbation theory is used

and the results obtained depend critically on the sort of time-dependence we
assume for H ′(t). We will consider two cases: monochromatic perturbations,
in which H ′(t) oscillates with a single frequency, and random fluctuations, for
which H ′(t) is a stochastic variable, whose statistical properties do not change
with time.

6.2 Monochromatic Perturbations

Let us now specialize to the case of a weak perturbation that oscillates at a single
frequency ω/2π :

H ′(t) = U exp(−iωt)+ U † exp(iωt), (6.2.1)
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with ω here taken positive. The integral in (6.1.6) is then trivial, and gives the
first-order solution for the coefficients cn(t) in Eq. (6.1.4):

cn(t) = cn(0)+
∑

m

Unmcm(0)

⎡
⎣exp

(
i(En − Em − �ω)t/�

)
− 1

En − Em − �ω

⎤
⎦

+
∑

m

U ∗
mncm(0)

⎡
⎣exp

(
i(En − Em + �ω)t/�

)
− 1

En − Em + �ω

⎤
⎦ . (6.2.2)

In particular, if all the cn(t) vanish at t = 0 except for c1(0) = 1, then the
amplitudes cn(t) for n �= 1 are given by

cn(t) = Un1

⎡
⎣exp

(
i(En − E1 − �ω)t/�

)
− 1

En − E1 − �ω

⎤
⎦

+ U ∗
1n

⎡
⎣exp

(
i(En − E1 + �ω)t/�

)
− 1

En − E1 + �ω

⎤
⎦ . (6.2.3)

Both terms in Eq. (6.2.3) vanish at t = 0, and then for a while increase pro-
portionally to t . The increase of the first and second terms ends when t becomes
of the order of |(En − E1)/�−ω|−1 or |(En − E1)/�+ω|−1, respectively, after
which that term oscillates but no longer grows. The interesting case is when the
final state has an energy close either to E1 +�ω or to E1 −�ω, so that one of the
two terms in (6.2.3) can keep growing for a long time. In the case of absorption
of energy, where En 	 E1 + �ω, the second term stops growing long before
the first term, and will consequently become relatively negligible at late times,
so that

cn(t) → Un1

⎡
⎣exp

(
i(En − E1 − �ω)t/�

)
− 1

En − E1 − �ω

⎤
⎦ .

Then the probability after a sufficiently long time t of finding the system in state
n �= 1 is

∣∣∣(�n, �
)∣∣∣2 = |cn(t)|2 	 4|Un1|2

sin2
(
(En − E1 − �ω)t/2�

)
(En − E1 − �ω)2

. (6.2.4)

Now, for large times we may approximate

2� sin2(W t/2�)
π tW 2

→ δ(W ), (6.2.5)
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because this function vanishes for t → ∞ like 1/t if W �= 0, while it is so large
for W = 0 that∫ ∞

−∞
2� sin2(W t/2�)

π tW 2
dW = 1

π

∫ ∞

−∞
sin2 u

u2
du = 1.

Therefore, for large t Eq. (6.2.4) gives

|cn(t)|2 = 4|Un1|2
(
π t

2�

)
δ(E1 + �ω − En),

and the rate of transitions to the state n is therefore

�(1 → n) ≡ |cn(t)|2/t = 2π

�
|Un1|2δ(E1 + �ω − En), (6.2.6)

a formula often known as Fermi’s golden rule. In the case of stimulated emission
of energy, where �ω is close to E1 − En , we have instead

�(1 → n) = 2π

�
|U1n|2δ(En + �ω − E1).

We have treated the final states n as if they are discrete. In order to use this
formula in cases where the states n are part of a continuum (as for a free electron
produced by ionizing an atom) we may imagine that the whole system is placed
in a large box. To avoid spurious effects due to the box walls, it is convenient
to adopt periodic boundary conditions, which require that the wave function
be unaffected by a translation of any of the three Cartesian coordinates, xi →
xi + Li , where the Li are large lengths that will eventually be taken to infinity.
The normalized wave function of a free particle then takes the form

exp(ip · x/�)√
L1L2L3

(6.2.7)

with the components of p constrained by

pi = 2π�ni

Li
, (6.2.8)

with n1, n2, and n3 arbitrary positive or negative integers. When we sum the rate
(6.2.6) over free-particle states n, we are really summing over n1, n2, and n3.
Now, according to Eq. (6.2.8) the number of ni values in a range �pi � �/Li

is Li�pi/2π�, so the total number of states in a momentum-space volume
d3 p = �p1 �p2 �p3 is d3 pL1L2L3/(2π�)3. Thus we can sum the rate (6.2.6)
over continuum states by integrating over momenta, and supplying an extra fac-
tor L1L2L3/(2π�)3 in the rate for each free particle in the state. Equivalently,
we can supply an extra factor

√
L1L2L3/(2π�)3/2 in the matrix element Un1 for

each free particle in the state n. But the matrix element Un1 will also contain a
factor 1/

√
L1L2L3 from the wave function (6.2.7) for each free particle in the

state n, so the volume factors cancel, and we are left with a factor (2π�)−3/2
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for each free particle. Thus the rate (6.2.6) should be integrated rather than
summed over the momenta of the free particles in the final states, with their
wave functions taken as

exp(ip · x)
(2π�)3/2

, (6.2.9)

instead of Eq. (6.2.7). This is the free-particle wave function (3.5.12), with nor-
malization factor chosen to give the scalar product (3.5.13). (Alternatively, we
can integrate over wave numbers instead of momenta, but then we must drop the
factor � in Eq. (6.2.9).)

The delta function in Eq. (6.2.6) fixes the sum of the free-particle energies,
leaving only a finite integral over angles and energy ratios. An example is given
in the next section.

6.3 Ionization by an Electromagnetic Wave

As an example of the use of time-dependent perturbation theory in the case of
a monochromatic perturbation, consider a hydrogen atom in its ground state
placed in a light wave. Just as in Section 5.3, if the wavelength of the light is
much larger than the Bohr radius a, then the perturbation Hamiltonian depends
only on the electric field at the location of the atom, which for plane polarization
takes the form

E = E exp(−iωt)+ E∗ exp(iωt), (6.3.1)

with E constant. (We consider only the electric field, because the magnetic
forces on a non-relativistic charged particle in an electromagnetic wave are less
than the electric forces by a factor of order of the ratio of the particle velocity to
the speed of light.) The perturbation in the Hamiltonian is then

H ′(t) = eE · X exp(−iωt)+ eE∗ · X exp(iωt), (6.3.2)

where X is the operator for the electron position. If we take E to lie in the
3-direction, with magnitude E , then the operator U in Eq. (6.2.1) is

U = eEX3. (6.3.3)

We need to calculate the matrix element of this perturbation between the
normalized wave function of the ground state

ψ1s(x) = exp(−r/a)√
πa3

, (6.3.4)

(where a is the Bohr radius, given by Eq. (2.3.19) as a = �2/mee2 =
0.529 × 10−8 cm), and the wave function of a free electron of momentum �ke,
normalized as described in the previous section:
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ψe(x) = (2π�)−3/2 exp(ike · x). (6.3.5)

We are justified in treating the emitted electron as a free particle only if it
emerges with an energy much larger than the hydrogen binding energy. Other-
wise, in place of Eq. (6.3.5) we should use the wave function of an unbound
electron in the Coulomb field of the proton. With the binding energy of the
hydrogen atom and the recoil energy of the hydrogen nucleus neglected, for
a light wave number kγ the energy of the emitted electron equals the photon
energy �ckγ , while the hydrogen binding energy (2.3.20) is e2/2a, so in using
Eq. (6.3.5) we are assuming that

kγ a � e2/2�c 	 1/274. (6.3.6)

Note that this is not inconsistent with our assumption that the light wavelength
is much larger than the atomic size, which only requires that kγ a � 1.

The matrix element of the perturbation (6.3.3) between the wave functions
(6.3.4) and (6.3.5) is

Ue,1s = eE
(2π�)3/2

√
πa3

∫
d3x e−ike·xx3 exp(−r/a). (6.3.7)

We can do the angular integral here by recalling that in general∫
d3x e−ik·x f (r) = 1

k

∫ ∞

0
4πr f (r) sin kr dr.

Differentiating this expression with respect to k3 gives

−i
∫

d3x e−ik·x f (r)x3 = k3

k3

∫ ∞

0
4πr f (r)

[
− sin kr + kr cos kr

]
dr.

Applying this in Eq. (6.3.7) gives

Ue,1s = −4π ieEke3

k3
e (2π�)3/2

√
πa3

∫ ∞

0
exp(−r/a)

[
sin ker − ker cos ker

]
r dr. (6.3.8)

The integral here is given by∫ ∞

0
exp(−r/a)

[
sin ker − ker cos ker

]
r dr = 8k3

e a5

(1 + k2
e a2)3

.

With the final electron energy �2k2
e/2me equal to the photon energy �ckγ , we

have

k2
e a2 	 2meckγ a2

�
= 2kγ a · �c

e2
,

which according to Eq. (6.3.6) is much greater than one, so Eq. (6.3.8) gives

Ue,1s = −8
√

2ieE cos θ

π �3/2k5
e a5/2

, (6.3.9)
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where θ is the angle between ke and the direction of polarization of the
electromagnetic wave, taken here to be in the 3-direction.

According to Eq. (6.2.6), the differential ionization rate is

d�(1s → ke) = 2π

�
∣∣Ue, 1s

∣∣2 δ (�ckγ − Ee

)
�3k2

e dke d�, (6.3.10)

where Ee = �2k2
e/2me, and d� = sin θ dθ dφ is the differential element of

solid angle of the final electron direction, so that �3k2
e dke d� is the momentum-

space volume element of the final electron. (In accordance with our assumption
(6.3.6), in the delta function we are neglecting the hydrogen binding energy, as
well as the very small recoil energy of the hydrogen nucleus, compared with
Ee.) Now, dke = med Ee/�2ke, and the effect of the factor d Ee δ (�ω − Ee) in
any integral over ke is just to set ke equal to the value fixed by the conservation
of energy

�ke = √
2me�ckγ , (6.3.11)

so the differential ionization rate is
d�(1s → ke)

d�
= 2πmeke

∣∣Ue,1s

∣∣2 , (6.3.12)

with ke given by Eq. (6.3.11). Using Eq. (6.3.9) in Eq. (6.3.12) gives our final
formula for the differential ionization rate

d�(1s → ke)

d�
= 256e2E2me cos2 θ

π�3k9
e a5

, (6.3.13)

valid in the range of light wave numbers with

1

274
� kγ a � 1. (6.3.14)

6.4 Fluctuating Perturbations

The monochromatic perturbations discussed in Section 6.2 can produce a finite
transition rate between a discrete state and a continuum, as in the ionization
process discussed in Section 6.3. But monochromatic perturbations cannot pro-
duce transitions between discrete states without fine-tuning the perturbation
frequency. (For a perturbation that lasts a time that is short compared with the
time t that we let the system evolve, the width of the frequency distribution will
be large compared with 1/t , and no fine tuning is needed. But of course, in this
case the transition probability, called |cn(t)|2 in Section 6.1, does not increase
with time once the perturbation is ended, and one cannot speak of a transition
rate.) There is however a kind of perturbation that can span a wide range of
frequencies, so that no fine-tuning is needed to produce transitions between dis-
crete states, and yet yields a transition probability proportional to the elapsed
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time, so that there is a finite transition rate. It is the case of a perturbation that
fluctuates randomly, but with statistical properties that do not change with time.

To be specific, suppose that the correlation between the perturbations at two
different times depends only on the differences of the times, not on the times
themselves:

H ′
nm(t1)H

′∗
nm(t2) = fnm(t1 − t2), (6.4.1)

where a line over a quantity indicates an average over fluctuations. Fluctuations
of this sort are called stationary.

In the case where cn(0) = δn1, Eq. (6.1.6) gives the transition probability to a
state n �= 1

|cn(t)|2 = 1

�2

∫ t

0
dt1

∫ t

0
dt2 H ′

n1(t1)H
′∗
n1(t2) exp

(
i(En − E1)(t1 − t2)/�

)
(6.4.2)

so the average transition probability is

|cn(t)|2 = 1

�2

∫ t

0
dt1

∫ t

0
dt2 fn1(t1 − t2) exp

(
i(En − E1)(t1 − t2)/�

)
. (6.4.3)

We can write the correlation function fnm as a Fourier transform

fnm(t) =
∫ ∞

−∞
dω Fnm(ω) exp(−iωt) (6.4.4)

so that Eq. (6.4.3) becomes

|cn(t)|2 = 1

�2

∫ ∞

−∞
dω Fn1(ω)

∣∣∣∣
∫ t

0
dt1 exp

[
i
(
(En − E1)/� − ω

)
t1
]∣∣∣∣

2

= 4
∫ ∞

−∞
dω Fn1(ω)

sin2
[(

En − E1 − �ω
)

t/2�
]

(
En − E1 − �ω

)2 . (6.4.5)

Just as in Eq. (6.2.5), for large times we may approximate

2� sin2(W t/2�)
π tW 2

→ δ(W ) = 1

�
δ(W/�), (6.4.6)

so Eq. (6.4.5) gives a transition rate

�(1 → n) ≡ |cn(t)|2
t

= 2π

�2
Fn1

(
(En − E1)/�

)
. (6.4.7)

We will apply this result in the next section.
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6.5 Absorption and Stimulated Emission of Radiation

To illustrate the general results of the previous section, let us consider an atom
in a fluctuating electric field, such as found in a gas of photons. The frequency
ω/2π of the fluctuations that drive a transition 1 → n between atomic states
equals (En − E1)/h, so the scale over which the electric field varies in space
is of the order of c/|ω| = hc/|En − E1|. This is typically several thousands of
Angstroms, much larger than atomic sizes, which are typically a few Angstroms.
So it is a good approximation here, as in Eq. (5.3.1), to take the perturbation as

H ′
nm(t) = e

∑
N

[xN ]nm · E(t), (6.5.1)

where E is the electric field at the position of the atom, the sum runs over the
electrons in the atom, and

[xN ]nm =
(
�n,XN�m

)
=
∫
ψ∗

n (x)xNψm(x)
∏
M

d3xM . (6.5.2)

We assume that the fluctuations of the electric field have a correlation function
of the form

Ei (t1)E j (t2) = δi j

∫ ∞

−∞
dω P(ω) exp

(
− iω(t1 − t2)

)
. (6.5.3)

(In setting this proportional to δi j , we are assuming that there is no preferred
direction for the electric field; δi j is the most general tensor that does not depend
on the orientation of the coordinate system.) Since the left-hand side is real and
symmetric under the interchange of t1 and i with t2 and j , we have

P(ω) = P(−ω) = P∗(ω). (6.5.4)

The correlation function of the perturbation is now given by

H ′
nm(t1)H

′∗
nm(t2) = e2

∣∣∣∣∣
∑

N

[xN ]nm

∣∣∣∣∣
2 ∫ ∞

−∞
dω P(ω) exp

(
− iω(t1 − t2)

)
. (6.5.5)

That is, the function Fnm(ω) introduced in Eqs. (6.4.1) and (6.4.4) is

Fnm(ω) = e2

∣∣∣∣∣
∑

N

[xN ]nm

∣∣∣∣∣
2

P(ω). (6.5.6)

Eq. (6.4.7) then gives the rate at which an atom makes the transition from an
initial state m = 1 to a higher or lower energy state n:

�(1 → n) = 2πe2

�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

P(ωn1), (6.5.7)

where ωnm = (En − Em)/�.
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The function P(ω) can be related to the frequency distribution of energy in
the fluctuating field. In radiation the magnetic field B has the same magnitude as
the electric field, so the energy density (in unrationalized electrostatic units) is
[E2 + B2]/8π = E2/4π . Setting t1 = t2 and summing over i = j in Eq. (6.5.3),
we find the average energy density of radiation

ρ = 1

4π
E2(t) = 3

4π

∫ ∞

−∞
dω P(ω) = 3

2π

∫ ∞

0
dω P(ω), (6.5.8)

so the energy density between circular frequencies of magnitude |ω| and |ω| +
d|ω| is (3/2π)P(|ω|) d|ω|. For the purposes of comparison with the results cited
in Chapter 1, we can convert this into an energy distribution in frequency ν =
|ω|/2π : The energy density between frequencies ν and ν + dν is

ρ(ν)dν = (3/2π)P(|ω|) d|ω| = 3P(2πν)dν (6.5.9)

so we can write Eq. (6.5.7) as

�(1 → n) = 2πe2

3�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

ρ(νnm), (6.5.10)

where νnm = |ωnm |/2π = |En − Em |/h. As we saw in Section 1.2, Einstein
introduced a constant Bn

1 as the coefficient of ρ(νn1) in the rate of absorption (if
En > E1) or stimulated emission (if E1 > En), so in either case

Bn
1 = 2πe2

3�2

∣∣∣∣∣
∑

N

[xN ]n1

∣∣∣∣∣
2

. (6.5.11)

For hydrogen or an alkali metal, where it is essentially a single electron that
interacts with radiation, this takes the familiar form

Bn
1 = 2πe2

3�2
|[x]n1|2 . (6.5.12)

This agrees with the result (1.4.6), which was derived historically from the clas-
sical formula (1.4.1) for radiation from a charged oscillator and from the relation
(1.2.16), which was obtained from considerations of the equilibrium of such
an oscillator with black-body radiation. The historical derivation can now be
reversed; using Eqs. (6.5.11) and (1.2.16), we can infer the formula (1.4.5) for
the rate of spontaneous emission in a transition 1 → n:

An
1 = 4e2|ωn1|3

3c3�

∣∣∣[x]n1

∣∣∣2, (6.5.13)

without relying on an analogy with classical electrodynamics. This derivation
was originally given in 1926 by Dirac.1 The same result will be obtained in

1 P. A. M. Dirac, Proc. Roy. Soc. Lond. A112, 661 (1926).
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Section 11.7 by a direct calculation, in which we consider the interaction of an
atom with the quantized electromagnetic field.

6.6 The Adiabatic Approximation

In some cases the Hamiltonian is a function H [s] of one or more parameters that
we will collectively label s, which are slowly varying functions s(t) of time.1 For
instance, one might consider a spin in a slowly varying magnetic field, in which
case s(t) consists of the three components of the field. In such cases, we can
find the solution of the time-dependent Schrödinger equation by use of what is
known as the adiabatic approximation.2

For any s, we can find a complete orthonormal set of eigenstates �n[s] of
H [s] with eigenvalues En(s):

H [s]�n[s] = En[s]�n[s],
(
�n[s],�m[s]

)
= δnm . (6.6.1)

Since the �n[s] and �n[s ′] for any pair of parameters s and s ′ both form com-
plete orthonormal sets, they are related by a unitary transformation. In particular,
if we label the initial value of s(t) at t = 0 as s(0) = s0, then there exists a
unitary operator U [s] for which

�n[s] = U [s]�n[s0], U [s]−1 = U [s]† U [s0] = 1, (6.6.2)

where

U [s] =
∑

n

�n[s]�†
n[s0]. (6.6.3)

We can transform the Hamiltonian

H̃ [s] ≡ U [s]† H [s]U [s] (6.6.4)

so that though its eigenvalues depend on s, its eigenstates do not:

H̃ [s]�n[s0] = En[s]�n[s0]. (6.6.5)

That is, if for any operator O we define

Onm ≡
(
�n[s0], O �m[s0]

)
, (6.6.6)

then in this basis the transformed Hamiltonian is

H̃nm[s] = En[s]δnm, (6.6.7)

1 In this section we use square brackets to indicate the dependence of various quantities on s, and
parentheses to indicate dependence on time.

2 This approximation was introduced in modern quantum mechanics by M. Born and V. Fock, Zeit.
f. Physik 51, 165 (1928). For a more accessible reference, see Albert Messiah, Quantum Mechanics
(North-Holland Publishing Co., 1962), Vol. II, Chapter XVII, Sections 10–14.
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The time-dependent Schrödinger equation

i�
d

dt
�(t) = H [s(t)]�(t), (6.6.8)

can now be put in the form

i�
d

dt
�̃(t) =

{
H̃ [s(t)] +�(t)

}
�̃(t), (6.6.9)

where

�̃(t) ≡ U [s(t)]†�(t), (6.6.10)

and

�(t) ≡ i�
[

d

dt
U [s(t)]

]†

U [s(t)]. (6.6.11)

We note that since U is unitary, U̇ †U + U †U̇ = 0, and so � is Hermitian.
At this point, it is tempting to neglect �(t), which involves the rate of change

of the eigenvectors of H [s(t)], as compared with H̃ [s(t)], which does not. How-
ever, this is not justified, because no matter how slowly the parameters s(t) of
the Hamiltonian evolve, we want to integrate the differential equation (6.6.9)
out to times sufficiently late so that s(t) will have changed by a non-negligible
amount. The length of this time interval may compensate for the smallness of
�(t), which therefore cannot in general be neglected.

To deal with this, we perform one more unitary transformation. Define the
unitary operator V (t) by the differential equation

i�
d

dt
V (t) = H̃ [s(t)]V (t), (6.6.12)

and the initial condition V (0) = 1. The solution is trivial in the basis (6.6.6):

Vnm(t) = δnm exp
(

iφn(t)
)

(6.6.13)

where φn(t) is a so-called dynamical phase:

φn(t) = −1

�

∫ t

0
En[s(τ )] dτ. (6.6.14)

Using Eq. (6.6.12), Eq. (6.6.9) may be written

i�
d

dt
˜̃
�(t) = �̃(t) ˜̃

�(t), (6.6.15)

where

˜̃
�(t) ≡ V (t)†�̃(t) = V (t)†U (t)†�(t), (6.6.16)



6.6 The Adiabatic Approximation 195

and

�̃(t) ≡ V (t)†�(t)V (t). (6.6.17)

In the representation (6.6.6), Eq. (6.6.13) gives

�̃nm(t) = �nm(t) exp
[
iφm(t)− iφn(t)

]
= �nm(t) exp

[
i

�

∫ t

0

[
En[s(t)] − Em[s(t)]

]
dt

]
. (6.6.18)

Now, if the fractional rate of change of s(t) is very small compared with
(En[s]−Em[s])/� for all n �= m (which is only possible in the absence of degen-
eracy), then in a time that is long enough for s(t) to change by an appreciable
amount the phase factor in Eq. (6.6.18) will oscillate many times for n �= m,
preventing the build-up of the off-diagonal components of �̃. Thus the only
components of �̃ that contribute to the long-time evolution of the state vector
despite their smallness are the diagonal components, so that effectively we may
make the replacement

�̃nm(t) → δnmρn(t), (6.6.19)

where ρn(t) is the real quantity

ρn(t) ≡ �̃nn(t) = �nn(t) = i�

([
d

dt
U [s(t)]

]†

U [s(t)]
)

nn

= i�
(

d

dt
�n[s(t)],�n[s(t)]

)
. (6.6.20)

The solution of Eq. (6.6.15) is then

˜̃
�(t) =

∑
n

�n[s0] exp[iγn(t)]
(
�n[s0], ˜̃

�(0)
)

=
∑

n

�n[s0] exp[iγn(t)]
(
�n[s0], �(0)

)
, (6.6.21)

where γn(t) is the phase

γn(t) = −1

�

∫ t

0
ρn(τ ) dτ. (6.6.22)

Together with Eqs. (6.6.16), (6.6.2), and (6.6.13), this gives the solution of the
time-dependent Schrödinger equation (6.6.8) as

�(t) = U (t)V (t) ˜̃
�(t) =

∑
n

U (t)�n[s0]
(
�n[s0], V (t) ˜̃

�(t)
)

=
∑

n

exp[iφn(t)] exp[iγn(t)]�n[s(t)]
(
�n[s0], �(0)

)
. (6.6.23)
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That is, aside from the phases φn(t) and γn(t), the prescription provided by
the adiabatic approximation is that we are to find the time-dependence of the
state vector by decomposing it into eigenstates of H [s(t)], and giving each
component just whatever time-dependence is needed to keep it an eigenstate
of H [s(t)].

As already mentioned, this only applies in the absence of degeneracy. To deal
with the case of degeneracy, we can replace n with a compound index Nν: the
energy is labeled by N , M , etc., so that EN �= EM if N �= M , while ν, μ, etc.
label states with a given energy. In this case, �̃ in Eq. (6.6.15) is replaced with

�̃Nν,Mμ(t) → δN M R(N )
νμ (t), (6.6.24)

where R(N ) is an Hermitian operator in the space of states with energy EN :

R(N )
νμ (t) ≡ �̃Nμ,Nν(t) = �Nμ,Nν(t) = i�

([
d

dt
U [s(t)]

]†

U [s(t)]
)

Nμ,Nν

= i�
(

d

dt
�Nμ[s(t)],�Nν[s(t)]

)
. (6.6.25)

By the same reasoning that led to Eq. (6.6.23), the solution of the time-
dependent Schrödinger equation (6.6.8) is here

�(t) =
∑

N

exp[iφN (t)]
∑
μν

�(N )
μν (t)�Nμ[s(t)]

(
�Nν[s0], �(0)

)
(6.6.26)

where the dynamical phase φN (t) is given by Eq. (6.6.14), with N in place of n,
and �(N )(t) is a unitary matrix, defined as the solution of the equation

i�
d

dt
�(N )(t) = R(N )(t)�(N )(t), (6.6.27)

with the initial condition �(N )(0) = 1. In the degenerate case this unitary matrix
takes the place of the phase factor eiγn(t).3

6.7 The Berry Phase

The non-dynamical phase γn(t) appearing in the adiabatic solution (6.6.23) of
the time-dependent Schrödinger equation has interesting properties and physical
applications, first noted by Michael Berry.1 First, it should be noted that γn(t) is
geometric — that is, it depends on the path through the parameter space of the
Hamiltonian from s(0) to s(t), but not on the time-dependence of travel along

3 F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
1 M. V. Berry, Proc. Roy. Soc. Lond. A 392, 45 (1984).
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this path. This can be seen by combining Eqs. (6.6.20) and (6.6.22), and writing
the result as

γn(t) = −i
∫

C(t)

∑
i

dsi

(
∂

∂si
�n[s],�n[s]

)
, (6.7.1)

where C(t) indicates that the integral is to be taken along the path through the
Hamiltonian’s parameter space traced by s(τ ) from τ = 0 to τ = t .

It is also important to note that γn(t) is itself not physically significant, for we
can always change the energy eigenstates �n[s] by arbitrary s-dependent phases

�n[s] → eiαn [s]�n[s]. (6.7.2)

This subjects the phase γn(t) to the shift

γn(t) → γn(t)+ αn[s(0)] − αn[s(t)], (6.7.3)

though of course the state vector (6.6.23) is unaffected. What are physically
significant are the classes of phases γn that are equivalent, in the sense that they
can be related to one another by the transformation (6.7.3).

As Berry noted, in general these classes are non-trivial — that is, it is not
generally possible to eliminate the phase γn(t) by a change (6.7.2) of the basis
states. To identify such cases, it is only necessary to consider the phase γn(t)
associated with a path C(t) that begins at t = 0 and ends at the same point at a
later time t . This phase is obviously independent of how we choose the phases
of the energy eigenstates �n[s] for s at intermediate points along this curve,
so if γn(t) can be eliminated by a transformation like (6.7.2), then the phase
γn(t) associated with a closed curve must vanish, whatever phases we choose
for �n[s]. Conversely, if the phases (6.7.1) associated with all closed curves
C(t) vanish, then the phase associated with a path from s(0) to s(t) must be the
same as the phase associated with any other such path, because the difference
of these phases is the phase associated with a closed curve that goes from s(0)
to s(t) on the first path and then back to s(0) along the second path. This would
mean that γn(t) is a function only of s(t), and can therefore be eliminated by a
transformation of the form (6.7.3). The phase γn associated with a closed path
C will from now on be denoted γn[C]; this is often called the Berry phase.

The Berry phase can be put in a form that is convenient for calculation, and
that makes manifest its independence of the phase convention used for the basis
states �n[s]. According to a generalized version of Stokes’ theorem, the line
integral (6.7.1) may be expressed as an integral over any surface A[C] bounded
by the closed curve C :

γn[C] = −i
∫ ∫

A[C]

∑
i j

d Ai j
∂

∂si

(
∂

∂s j
�n[s],�n[s]

)
, (6.7.4)
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where d Ai j = −d A ji is the tensor element of surface area.2 For instance, in the
case where the Hamiltonian depends on just three independent parameters si ,
we have d Ai j = ∑

k εi jkekd A, where εi jk as usual is the totally antisymmetric
tensor with ε123 = +1; d A is the usual element of surface area; and e is the unit
vector normal to the surface. (We use e rather than the conventional n for the
unit normal to avoid confusion with the label n on the state vector.) In this case,
Eq. (6.7.4) is the result of the usual Stokes’ theorem:

γn[C] = −i
∫ ∫

A[C]
d A e[s] ·

(
∇ × (∇�n[s],�n[s])

)
, (6.7.5)

where the gradients here are taken with respect to the three si .
Returning now to the general case, we note that because d Ai j is antisymmetric

in i and j , Eq. (6.7.4) may be written

γn[C] = i
∫ ∫

A[C]

∑
i j

d Ai j

(
∂

∂si
�n[s], ∂

∂s j
�n[s]

)

= i
∫ ∫

A[C]

∑
i j

d Ai j

∑
m

(
∂

∂si
�n[s],�m[s]

)(
�m[s], ∂

∂s j
�n[s]

)
. (6.7.6)

By differentiating (�n[s],�n[s]) = 1, we see that(
∂

∂si
�n[s],�n[s]

)
= −

(
�n[s], ∂

∂si
�n[s]

)
,

so the contribution of the term with m = n in Eq. (6.7.6) is

−i
∫ ∫

A[C]

∑
i j

d Ai j

(
∂

∂si
�n[s],�n[s]

)(
∂

∂s j
�n[s],�n[s]

)
,

and this vanishes because d Ai j is antisymmetric. On the other hand, the terms
with m �= n can be put in a form not involving derivatives of the energy eigen-
states. By differentiating the Schrödinger equation (6.6.1) with respect to s j and
then taking the scalar product with �m[s] for m �= n, we find

(
En[s] − Em[s]

)(
�m[s], ∂

∂s j
�n[s]

)
=
(
�m[s],

[
∂H [s]
∂s j

]
�n[s]

)
, (6.7.7)

2 For a flat curve C in the kl plane in any number of dimensions, the integral
∑

i j
∫

A[C] d Ai j Ti j of any
tensor Ti j is equal to the ordinary integral over the area A[C] bounded by C of Tkl − Tlk . The case of a
curve that is not flat can be dealt with by breaking up the area it bounds into small flat areas; the integral
is the sum of the integrals over these small areas.
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so that Eq. (6.7.6) may be written

γn[C] = i
∫ ∫

A[C]

∑
i j

d Ai j

×
∑
m �=n

(
�n[s],

[
∂H [s]
∂si

]
�m[s]

)∗ (
�n[s],

[
∂H [s]
∂s j

]
�m[s]

)

×(Em[s] − En[s])−2. (6.7.8)

This makes it apparent that the Berry phase is independent of the phase con-
vention used for the energy eigenstates. Unlike the dynamical phase, the Berry
phase is also independent of the scale of the Hamiltonian: multiplying H [s] with
a constant λ has the effect of multiplying both ∂H [s]/∂si and Em[s]−En[s] with
λ, so that the factors of λ cancel in Eq. (6.7.8). Another advantage of Eq. (6.7.8)
is that it is generally easier to calculate the derivative of the Hamiltonian
with respect to the parameters si than the derivative of the energy eigenstates.
This expression for the Berry phase is real, because the area element d Ai j is
antisymmetric.

In the special case where i and j run over three values, Eq. (6.7.8) takes the
form

γn[C] =
∫ ∫

A[C]
d A e[s] · Vn[s], (6.7.9)

where e[s] is the unit vector normal to the surface A[C] at the point s, and Vn[s]
is a three-vector in parameter space:

Vn[s] ≡ i
∑
m �=n

{(
�n[s],

[
∇H [s]

]
�m[s]

)∗ ×
(
�n[s],

[
∇H [s]

]
�m[s]

)}

×(Em[s] − En[s])−2. (6.7.10)

This formalism has a natural application to the case of a particle or other
system with non-vanishing angular momentum J in a slowly varying magnetic
field. As mentioned earlier, the parameters si here are the components of the
magnetic field B. We take the Hamiltonian as

H [B] = κB · J + H0, (6.7.11)

where κ is a constant, related to the magnetic moment, and H0 is independent
of the magnetic field or any other external field, and hence commutes with J.
The energy eigenstates are eigenstates of the component of J along B and of J2

and H0:

B̂ ·J�n[B] = �n�n[B], J2�n[B] = �2 j ( j +1)�n[B], H0�n[B] = E0�n[B],
(6.7.12)
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with energies

En[B] = κ|B|�n + E0, (6.7.13)

where n is an integer or half integer, running from − j to + j by unit steps. In
the spirit of the adiabatic approximation, we focus on one value of n and one
value of E0 as the magnetic field changes. As promised, the factors κ cancel in
the three-vector (6.7.10), which here takes the form

Vn[B] ≡ i

�2|B|2
∑
m �=n

{
(�n[B], J�m[B])∗ × (�n[B], J�m[B])}

×(m − n)−2. (6.7.14)

We will first calculate this three-vector at one particular value of B in the
range A[C] in field space. For this purpose, it is convenient to choose the 3-axis
to lie along the direction of B. Since �m and �n are then eigenstates of J3, the
matrix element (�n[B], J�m[B]) with n �= m has components only in the 1–2
plane, and so (6.7.14) is in the 3-direction. Also, the only states �m for which
either (�n[B], J1�m[B]) or (�n[B], J2�m[B]) do not vanish have m = n ± 1,
and for these states (m − n)2 = 1. Hence the only non-vanishing component of
the vector (6.7.14) is its 3-component:

Vn3[B] = i

�2|B|2
∑
±

[(
�n[B], J1�n±1[B]

)∗(
�n[B], J2�n±1[B]

)

−
(
�n[B], J2�n±1[B]

)∗(
�n[B], J1�n±1[B]

)]

= 1

2�2|B|2
∑
±

{∣∣∣(�n[B], (J1 + i J2)�n±1[B]
)∣∣∣2

−
∣∣∣(�n[B], (J1 − i J2)�n±1[B]

)∣∣∣2}

According to the results of Section 4.2, the non-zero matrix elements here are(
�n[B], (J1 + i J2)�n−1[B]

)
= �

√
( j − n + 1)( j + n),

and (
�n[B], (J1 − i J2)�n+1[B]

)
= �

√
( j − n)( j + n + 1),

and so

Vn3[B] = n

|B|2 , Vn1[B] = Vn2[B] = 0.
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We can put this in a form that does not depend on our choice of the 3-axis to lie
along B:

Vn[B] = nB
|B|3 , (6.7.15)

which in this form holds everywhere. The Berry phase (6.7.9) is therefore

γn[C] = n
∫ ∫

A[C]
d A

B · e[B]
|B|3 , (6.7.16)

the integral being taken over any area in the space of the magnetic field vector
surrounded by the curve C . We can evaluate this integral using Gauss’ theorem.
Draw a cone (not a circular cone unless C happens to be a circle) with base A[C]
and sides running from the origin in field space to the curve C . The integral
(6.7.16) may be written as an integral over the whole surface of this cone, since
on the sides of this cone the normal e is perpendicular to B, and so these sides do
not contribute to the surface integral. But then Gauss’ theorem tells us that the
integral over A[C] of the normal component of the vector B/|B|3 is the same as
the integral of the divergence of this vector over the volume V [C] of the cone:

γn[C] = n
∫

V [C]
d3 B ∇ · B

|B|3 . (6.7.17)

The divergence of B/|B|3 vanishes everywhere except for a singularity 4πδ3(B)
at the origin. This singularity is spherically symmetric, so the integral over B in
Eq. (6.7.17) is just equal to 4π times the fraction of the whole sphere occupied
by the cone. This fraction is the solid angle �[C] subtended by C as seen from
the origin in field space divided by 4π , so the integral is just�[C], and the Berry
phase is simply

γn[C] = n �[C]. (6.7.18)

For instance, if the magnetic field changes only in direction, keeping its
3-component fixed, then C is a circle with both B3 and |B| fixed, and

γn[C] = n
∫ arccos(B3/|B|)

0
2π sin θ dθ = 2πn(1 − B3/|B|).

There are many other places in physics where a Berry phase, or a phase
analogous to the Berry phase, makes an appearance.3 We will encounter one
in Section 10.4, on the Bohm–Aharonov effect.

3 Aspects of such phases are treated in Geometric Phases in Physics, ed. A. Shapere and F. Wilczek
(World Scientific Publishers Co., Singapore, 1989).



202 6 Approximations for Time-Dependent Problems

Problems

1. Consider a time-dependent Hamiltonian H = H0 + H ′(t), with

H ′(t) = U exp(−t/T ),

where H0 and U are time-independent operators, and T is a constant. What
is the probability to lowest order in U that the perturbation will produce
a transition from one eigenstate n of H0 to a different eigenstate m of H0

during a time interval from t = 0 to a time t � T ?

2. Calculate the rate of ionization of a hydrogen atom in the 2p state in
a monochromatic external electric field, averaged over the component of
angular momentum in the direction of the field. (Ignore spin.)

3. Consider a Hamiltonian H [s] that depends on a number of slowly varying
parameters collectively called s(t). What is the effect on the Berry phase
γn[C] for a given closed curve C , if H [s] is replaced with f [s]H [s], where
f [s] is an arbitrary real numerical function of the s?



7
Potential Scattering

We do not observe the trajectories of particles within molecules or atoms or
atomic nuclei. Instead, information about these systems that does not come from
the energies of their discrete states we mostly have to take from scattering exper-
iments. Indeed, as we saw in Section 1.2, at the very beginning of modern atomic
physics, our understanding that the positive charge of atoms is concentrated in
a small heavy nucleus came in 1911 from a scattering experiment carried out in
Rutherford’s laboratory, in which alpha particles emitted by radium nuclei were
scattered by gold atoms. Today the exploration of the properties of elementary
particles is largely carried out by studying the scattering of particles coming
from high-energy accelerators.

In this chapter we will study the theory of scattering in a simple but important
case, the elastic scattering of a non-relativistic particle in a local potential, but
using modern techniques that can easily be extended to more general problems.
The general formalism of scattering theory will be described in the following
chapter.

7.1 In-States

We consider a non-relativistic particle of mass μ in a potential V (x). The
Hamiltonian is

H = H0 + V (X), (7.1.1)

where H0 = P2/2μ is the kinetic energy operator, and X is the position operator.
Later we will specialize to the case of a central potential V (r), that depends only
on r ≡ |x|, but for the present it is just as easy to consider this more general
case. We assume that V (x) → 0 for r → ∞. We will not be concerned here
with a particle in a bound state, which would have negative energy, but with a
positive energy particle, which comes in to the potential from great distances
with momentum �k, and is scattered, going out again to infinity, generally along
a different direction.

In the Heisenberg picture, this situation is represented by a time-independent
state vector � in

k , the superscript “in” indicating that this state looks like it

203
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consists of a particle with momentum �k far from the scattering center if
measurements are made at very early times. We have to be careful what is meant
by this. At very early times the particle is at a location where the potential is
negligible, so it has an energy �2k2/2μ, and this state vector is therefore an
eigenstate of the Hamiltonian, with

H� in
k = �2k2

2μ
� in

k . (7.1.2)

Hence in the Schrödinger picture, the time-dependent state exp(−i t H/�)� in
k

is just � in
k times a seemingly trivial phase factor exp(−i�tk2/2μ). In order to

interpret the above definition of � in
k , we must consider the time-dependence of

a superposition of states with a spread of energies:

�g(t) =
∫

d3k g(k) exp(−i�tk2/2μ)� in
k , (7.1.3)

where g(k) is a smooth function that is peaked at some wave number k0. The
state � in

k may be defined as the particular solution of the eigenvalue equa-
tion (7.1.2) that satisfies the further condition that, for any sufficiently smooth
function g(k), in the limit t → −∞,

�g(t) →
∫

d3k g(k) exp(−i�tk2/2μ)�k, (7.1.4)

where �k are orthonormal eigenvectors of the momentum operator P with
eigenvalue �k

P�k = �k�k,
(
�k,�k′

)
= δ3(�k − �k′), (7.1.5)

and hence eigenvectors of H0 (not H !), with eigenvalue E(|k|) = �2k2/2μ.
(Even though these states are labeled with their wave number, it proves con-
venient to normalize them so that their scalar product is a delta function
of momentum, rather than of wave number.) The normalization condition(
�g, �g

)
= 1 then is equivalent to the condition

�−3
∫

d3k |g(k)|2 = 1. (7.1.6)

The condition (7.1.4) can be expressed by re-writing the Schrödinger equation
as an integral equation. We can write Eq. (7.1.2) as

(E(|k|)− H0)�
in
k = V� in

k .

This has a formal solution

� in
k = �k +

(
E(|k|)− H0 + iε

)−1
V� in

k , (7.1.7)
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where ε is a positive infinitesimal quantity, which is inserted to give meaning to
the operator (E(|k|) − H0 + iε)−1 when we integrate over the eigenvalues of
H0. It is known as the Lippmann–Schwinger equation.1 (This is only a “formal”
solution, because � in

k appears on the right-hand side as well as the left-hand
side.)

Of course, we could have found a similar formal solution of the Schrödinger
equation with a denominator E(|k|)− H0 − iε in place of E(|k|)− H0 + iε. We
could even have taken any average of E(|k|) − H0 − iε and E(|k|) − H0 + iε,
or dropped the first term in Eq. (7.1.7). The special feature of the particular
“solution” (7.1.7) is that it also satisfies the initial condition (7.1.4).

To see this, we can expand V� in
k in the orthonormal free-particle states �q:

V� in
k = �3

∫
d3q �q

(
�q, V� in

k

)
. (7.1.8)

Then Eq. (7.1.7) becomes

� in
k = �k + �3

∫
d3q

(
E(|k|)− E(|q|)+ iε

)−1
�q

(
�q, V� in

k

)
. (7.1.9)

In calculating the integral over k in Eq. (7.1.4), we note that∫
d3k g(k)

exp(−i�tk2/2μ)

E(|k|)− E(q)+ iε
=
∫

d�
∫ ∞

0
k2 g(k) dk

exp(−i�tk2/2μ)

E(k)− E(q)+ iε

where d� = sin θ dθ dφ. We can convert the integral over k to an integral over
energy, using dk = μ d E/k�2. Now, when t → −∞, the exponential oscillates
very rapidly, so the only values of E that contribute are those very near E(q),
where the denominator also varies very rapidly. Thus for t → −∞ we can set
k = q everywhere except in the rapidly varying exponential and denominator,
giving a result proportional to∫ ∞

−∞
exp(−i Et/�)

E − E(q)+ iε
d E .

(The range of integration has been extended to the whole real axis, which is
permissible since the integral receives no appreciable contributions anyway from
the range |E − E(q)| � �/|t |.) For t → −∞ we can close the contour of
integration with a very large semicircle in the upper half of the complex plane,
on which the integrand is negligible because, for ImE > 0 and t → −∞, the
numerator exp(−i Et/�) is exponentially small. But the only singularity of the
integrand is a pole at E = E(q) − iε, which is in the lower half plane, so the
integral vanishes for t → −∞. This leaves only the contribution of the first term
in Eq. (7.1.9), which gives Eq. (7.1.4) for t → −∞.

1 B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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To clarify the significance of the condition (7.1.4), consider its scalar product
with a state �x of definite position, using the usual plane-wave wave function of
states of definite momentum, which as we saw in Eq. (3.5.12) takes the form:(

�x,�k

)
= (2π�)−3/2eik·x. (7.1.10)

This gives, for t → −∞,(
�x, �g(t)

)
→ (2π�)−3/2

∫
d3k g(k) exp

(
ik · x − i�tk2/2μ

)
. (7.1.11)

We will assume that the particle comes in from a great distance along the nega-
tive 3-axis, so we are interested in the limit of very large negative t and x3, but
with x3/t held finite. However, we will also assume that the particle velocity is
sufficiently closely confined to the 3-direction so that, where the function g(k)
is not negligible,

�|t |k2
⊥/2μ � 1, (7.1.12)

where k⊥ is the two-vector (k1, k2). Eq. (7.1.11) can then be written(
�x, �g(t)

)
→ (2π�)−3/2

∫
d2k⊥

∫ ∞

−∞
dk3 g(k⊥, k3) exp

(
ik⊥ · x⊥

)
× exp

(
i x2

3μ/2�t
)

exp
(

− i�t (k3 − μx3/�t)2/2μ
)
. (7.1.13)

The rapid oscillations of the final factor as a function of k3 makes this integral
negligible for t → −∞ except for contributions from k3 close to its stationary
point at k3 = μx3/�t , so in the limit t → −∞ with x3/t fixed, the integral
becomes(
�x, �g(t)

)
→ (2π�)−3/2

∫
d2k⊥ g(k⊥, μx3/�t) exp

(
ik⊥ · x⊥

)
× exp

(
i x2

3μ/2�t
) ∫ ∞

−∞
dk3 exp

(
− i�t (k3 − μx3/�t)2/2μ

)

= (2π�)−3/2 exp
(

i x2
3μ/2�t

)√2μπ

i�t

×
∫

d2k⊥ g(k⊥, μx3/�t) exp
(

ik⊥ · x⊥
)
. (7.1.14)

We assume that the function g(k⊥, k3), though smooth, is strongly peaked at
k3 = k0 and k⊥ = 0, so the expression (7.1.14) is peaked at x3 = �k0t/μ,
corresponding to a particle moving along the x3 axis, with velocity �k0/μ.

In particular, the spatial probability distribution is∣∣∣(�x, �g(t)
)∣∣∣2 → μ

4π2�4t

∣∣∣∣
∫

d2k⊥ g(k⊥, μx3/�t) exp
(

ik⊥ · x⊥
)∣∣∣∣

2

,

(7.1.15)
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and respects the conservation of probability:∫
d3x

∣∣∣(�x, �g(t)
)∣∣∣2 → μ

�4t

∫
d2k⊥

∫ ∞

−∞
dx3 |g(k⊥, μx3/�t)|2

= �−3
∫

d2k⊥
∫ ∞

−∞
dk3 |g(k⊥, k3)|2 = 1. (7.1.16)

* * *

We can see in greater detail how this works out by taking a simple example
for the function g(k),

g(k) ∝ exp

(
−�2

0

2
(k − k0)

2 − i
�k · k0t0

μ
+ i�t0k2

2μ

)
,

where t0 is a large negative initial time, k0 is in the 3-direction, and �0 is a
constant. (The terms in the exponent proportional to t0 are chosen so that, as
we will see, �0 is the spread of the coordinate-space wave function at time
t = t0. These terms are stationary in k at k = k0, so that their presence does not
invalidate the argument leading to Eq. (7.1.14).) A straightforward calculation
using Eq. (7.1.11) gives a spatial probability distribution∣∣∣(�x, �g(t)

)∣∣∣2 ∝ �−3 exp

(
− 1

2�2

(
x − (�k0/μ)t

)2
)
,

where

� ≡
(
�2

0 + �2(t − t0)2

μ2�2
0

)1/2

.

The probability distribution is thus centered on a point that moves with velocity
equal to the mean momentum �k0 divided by the mass μ, reaching the scattering
center x = 0 at t = 0.

The spread of this distribution is �0 at t = t0, but it begins to expand
for t − t0 > μ�2

0/�. This can easily be understood on simple kinematic
grounds. The wave function has a spread in velocity �v equal to �/μ times
the spread in wave number, and hence of order �/μ�0. After a time inter-
val t − t0, this contributes an amount �v(t − t0) ≈ �(t − t0)/μ�0 to the
spread in position. This becomes greater than the initial spread �0 for t − t0 >
μ�2

0/�.
This expansion in the wave packet does not become significant in typical

cases. In order for the wave packet not to expand appreciably in the time inter-
val from t = t0 to t = 0, we need �2

0 > �|t0|/μ. But we also must have
�0 � �k0|t0|/μ, in order that t0 should be sufficiently early so that the wave
packet does not spread all the way to the scattering center at t = t0. These two
conditions are compatible if �k2

0 |t0|/μ � 1, which just requires that the oscilla-
tion of the wave function has time to go through many cycles before the particle
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hits the scattering center. This requirement can be taken as part of what we mean
by a scattering process.

7.2 Scattering Amplitudes

In the previous section we defined a state that at early times has the appearance
of a particle traveling toward a collision with a scattering center. Now we must
consider what this state looks like after the collision.

For this purpose, we consider the coordinate-space wave function of the state
� in

k . Returning to Eq. (7.1.7), let us write

V� in
k =

∫
d3x �x

(
�x, V� in

k

)
=
∫

d3x �x V (x) ψk(x), (7.2.1)

where ψk(x) is the coordinate-space wave function of the in-state

ψk(x) ≡
(
�x, �

in
k

)
. (7.2.2)

Then, by taking the scalar product of Eq. (7.1.7) with a state �x of definite
position, and using Eq. (7.1.10) we have

ψk(x) = (2π�)−3/2eik·x +
∫

d3 y Gk(x − y)V (y)ψk(y) (7.2.3)

where Gk is the Green’s function

Gk(x − y) =
(
�x, [E(k)− H0 + iε]−1�y

)
=
∫

d3q

(2π�)3

eiq·(x−y)

E(k)− E(q)+ iε

= 4π

(2π)3

∫ ∞

0
q2 dq

sin(q|x − y|)
q|x − y|

2μ/�2

k2 − q2 + iε

= −i
2μ

�2

1

4π2|x − y|
∫ ∞

−∞
eiq|x−y| q dq

k2 − q2 + iε

= −2μ

�2

1

4π |x − y|eik|x−y|. (7.2.4)

(The last expression is obtained by completing the contour of integration with a
large semicircle in the upper half plane, and picking up the contribution of the
pole at q = k + iε.) For a potential V (y) that vanishes sufficiently rapidly as
|y| → ∞, Eq. (7.2.3) gives, for |x| → ∞,

ψk(x) → (2π�)−3/2
[
eik·x + fk(x̂)e

ikr/r
]
, (7.2.5)
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where r ≡ |x|, and fk(x̂) is the scattering amplitude,

fk(x̂) = − μ

2π�2
(2π�)3/2

∫
d3 y e−ikx̂ ·yV (y)ψk(y). (7.2.6)

Now let’s consider how the superposition (7.1.3) behaves for late times. We
consider the wave function

ψg(x, t) ≡
(
�x, �

in
g (t)

)
=
∫

d3k g(k)ψk(x) exp
(

− i�tk2/2μ
)
, (7.2.7)

in the limit t → +∞, with r/t held fixed, and x off the 3-axis. Using Eq. (7.2.5)
in this limit, Eq. (7.2.7) gives

ψg(x, t) → (2π�)−3/2

r

∫
d2k⊥

∫ ∞

−∞
dk3 g(k⊥, k3)

× exp
(

ik3r − i�tk2
3/2μ

)
fk0(x̂). (7.2.8)

We have taken the subscript on the scattering amplitude to be k0, because the
function g is sharply peaked at this value of k, and we have approximated

k ≡
√

k2
3 + k2

⊥ as k 	 k3 in the exponents, because g(k⊥, k3) is assumed to
be negligible except for |k⊥| � k3. As in the previous section, for large r and t
we can set k3 in g(k⊥, k3) equal to the value k3 = μr/�t where the argument of
the exponential is stationary, so that

ψg(x, t) → (2π�)−3/2

r
fk0(x̂)

∫
d2k⊥ g(k⊥, μr/�t)

×
∫ ∞

−∞
dk3 exp

(
ik3r − i�tk2

3/2μ
)

= (2π�)−3/2

r
fk0(x̂)

∫
d2k⊥ g(k⊥, μr/�t) exp

(
iμr2/2�t

)√2μπ

i�t
.

(7.2.9)

The probability d P(x̂) that the particle at late times is somewhere within the
cone of infinitesimal solid angle d� around the direction x̂ is then the integral
of |ψg(x, t)|2 over this cone:

d P(x̂, k0) = d�
∫ ∞

0
r2 dr

∣∣ψg(r x̂, t)
∣∣2

→ d�

(2π)2

μ

�4t
| fk0(x̂)|2

∫ ∞

0
dr

∣∣∣∣
∫

d2k⊥ g(k⊥, μr/�t)

∣∣∣∣
2

, (7.2.10)

or, changing the variable of integration r to k3 ≡ μr/�t ,

d P(x̂, k0)

d�
= 1

(2π)2�3
| fk0(x̂)|2

∫ ∞

0
dk3

∣∣∣∣
∫

d2k⊥ g(k⊥, k3)

∣∣∣∣
2

. (7.2.11)



210 7 Potential Scattering

Now, the coefficient of | fk0(x̂)|2 in Eq. (7.2.11) has the dimensions of an
inverse area. In fact, it is precisely the probability per area that the particle is in
a small area centered on the 3-axis and normal to that axis:

ρ⊥ ≡
∫ ∞

−∞
dx3

∣∣ψg(0, x3, t)
∣∣2 , (7.2.12)

for t → −∞. To see this, note that according to Eq. (7.1.15), with x⊥ = 0, the
quantity (7.2.12) is

ρ⊥ = μ

4π2�4t

∫ ∞

−∞
dx3

∣∣∣∣
∫

d2k⊥ g(k⊥, μx3/�t)

∣∣∣∣
2

= 1

4π2�3

∫ ∞

−∞
dk3

∣∣∣∣
∫

d2k⊥ g(k⊥, k3)

∣∣∣∣
2

, (7.2.13)

which is the coefficient appearing in Eq. (7.2.11). Hence Eq. (7.2.11) may be
written

d P(x̂, k0)

d�
= ρ⊥| fk0(x̂)|2. (7.2.14)

We define the differential cross-section as the ratio

dσ(x̂, k0)

d�
≡ 1

ρ⊥
d P(x̂),k0)

d�
, (7.2.15)

so

dσ(x̂, k0)

d�
= | fk0(x̂)|2. (7.2.16)

We can think of dσ(x̂, k0) as a tiny area normal to the 3-axis, which the particle
must hit in order for it to be scattered into a solid angle d� around the direction
x̂ . Eq. (7.2.15) then says that the probability of hitting this area equals the ratio
of dσ to the effective cross-sectional area 1/ρ⊥ of the beam.

From now on, we shall drop the subscript 0 on k0. Also, instead of writing
the scattering amplitude as a function of k and x̂ , we will generally write it as a
function of k and the polar angles θ and φ of x around the direction of k, so that
Eq. (7.2.16) reads

dσ(θ, φ, k) = | fk(θ, φ)|2 sin θ dθ dφ. (7.2.17)

This is our general formula for the differential cross-section in terms of the
scattering amplitude.

Of course, to measure dσ/d�, experimenters do not actually send a particle
or particles toward a single target. Instead, they direct a beam of particles toward
a thin slab containing some large number NT of targets. (It is necessary to spec-
ify a thin slab, to avoid the possibility of particles from the beam experiencing
multiple scattering involving more than one target. This is why in the discovery
of the atomic nucleus discussed in Section 1.2, the target was chosen to be a thin
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gold leaf.) If scattering into some particular range of angles can occur only if
a particle from the beam hits a tiny area dσ around one of the targets, then the
number of particles that are scattered into this range of angles is the number NB

of beam particles per unit transverse area, times the total area NT dσ that they
have to hit.

7.3 The Optical Theorem

It may seem odd that the plane wave term in Eq. (7.2.5) does not appear
to be depleted by the scattering of the incident wave. Actually, in the for-
ward direction there is an interference between the two terms in Eq. (7.2.5),
which does decrease the amplitude of the plane wave beyond the scattering
center, as required by the conservation of probability. In order for this to be
the case, there must be a relation between the forward scattering amplitude
and the total cross-section for scattering. This relation is known as the optical
theorem.1

To derive the theorem, we use the conservation condition for probabilities in
three dimensions. In coordinate space, the Schrödinger equation here is

− �2

2M
∇2ψk + V (x)ψk = �2k2

2M
ψk. (7.3.1)

We multiply this with the complex conjugate ψ∗
k , and then subtract the complex

conjugate of the product. For a real potential this gives

0 = ψ∗
k∇2ψk − ψk∇2ψ∗

k = ∇ ·
(
ψ∗

k∇ψk − ψk∇ψ∗
k

)
. (7.3.2)

Using Gauss’ theorem, it follows that, for a sphere of any radius r ,

0 = r2
∫ π

0
sin θ dθ

∫ 2π

0
dφ

(
ψ∗

k
∂ψk

∂r
− ψk

∂ψ∗
k

∂r

)
. (7.3.3)

In particular, we can take r large enough to use the asymptotic formula (7.2.5).
In this limit, with k in the 3-direction and recalling that x3 = r cos θ ,

(2π�)3ψ∗
k
∂ψk

∂r
→ ik cos θ + ik fkeikr(1−cos θ)

r
− fkeikr(1−cos θ)

r2

+ ik f ∗
k cos θ e−ikr(1−cos θ)

r
+ ik| fk|2

r2
− | fk|2

r3

1 The theorem has been given that name because it was first encountered in classical electrodynamics, as
a relation due to Lord Rayleigh between the absorption of light and the imaginary part of the index of
refraction. It was first derived for the scattering amplitude in quantum mechanics by E. Feenberg, Phys.
Rev. 40, 40 (1932). For a historical review, see R. G. Newton, Amer. J. Phys. 44, 639 (1976).
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so that

(2π�)3

[
ψ∗

k
∂ψk

∂r
− ψk

∂ψ∗
k

∂r

]
→

2ik cos θ + ik(1 + cos θ)eikr(1−cos θ) fk

r
+ ik(1 + cos θ)e−ikr(1−cos θ) f ∗

k

r

− eikr(1−cos θ) fk

r2
+ e−ikr(1−cos θ) f ∗

k

r2
+ 2ik| fk|2

r2
. (7.3.4)

For kr � 1 the exponentials e±ikr(1−cos θ) oscillate rapidly except where cos θ =
1, so the integral over θ in Eq. (7.3.3) receives almost its whole contribution
from near θ = 0. For any smooth function g(θ, φ) of θ and φ, we can therefore
approximate∫ π

0
sin θ dθ

∫ 2π

0
dφ eikr(1−cos θ)g(θ, φ) → 2πg(0)

∫ π

0
sin θ dθ eikr(1−cos θ),

(7.3.5)

where g(0) is the φ-independent value of g(θ, φ) for θ = 0. Introducing the
variable ν ≡ 1 − cos θ , and replacing the limit ν = 2 with ν = ∞ (since the
oscillation of the integral makes the contribution for ν between 2 and infinity
exponentially small for large kr ) this is∫ π

0
sin θ dθ

∫ 2π

0
dφ eikr(1−cos θ)g(θ, φ) → 2πg(0)

∫ ∞

0
dν eikrν = 2π ig(0)/kr.

(7.3.6)

(To evaluate the integral over ν, we use the usual trick of inserting a factor e−εν
with ε > 0 in the integrand, and then letting ε go to zero after doing the integral.)
Applying this to the solid angle integral of Eq. (7.3.4) then gives

(2π�)3
∫ π

0
sin θ dθ

∫ 2π

0
dφ

(
ψ∗

k
∂ψ

∂r
− ψk

∂ψ∗
k

∂r

)
→
(

ik

r

)(
2π i

kr

)
2 fk(0)

+
(

ik

r

)(−2π i

kr

)
2 f ∗

k (0)+ 2ik

r2

∫ π

0
sin θ dθ

∫ 2π

0
| fk(θ, φ)|2dφ + O

(
1

r3

)

→ −8π i

r2
Im fk(0)+ 2ik

r2

∫ π

0
sin θ dθ

∫ 2π

0
dφ | fk(θ, φ)|2 (7.3.7)

and so for large r , Eq. (7.3.3) gives

σscat ≡
∫ π

0
sin θ dθ

∫ 2π

0
dφ | fk(θ, φ)|2 = 4π

k
Im fk(0). (7.3.8)

This is a special case of what is known as the optical theorem, derived here
under the condition of elastic scattering by a real potential. In this case the total
cross-section σtot (defined so that, if the initial particle is confined to a transverse
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area A, then the total probability of scattering or any other reaction is σtot/A) is
the same as the elastic scattering cross-section σscat, so we can just as well write
Eq. (7.3.8) as

σtot = 4π

k
Im fk(0). (7.3.9)

This is the optical theorem in its most general form, which will be proved for
general scattering processes in Section 8.3.

To see that Eq. (7.3.9) is what is required by the conservation of probability,
let us consider a plane wave traveling in the 3-direction that strikes a thin foil of
scatterers (thin enough to make multiple scattering negligible) lying in the x − y
plane, and calculate the wave function at a distance z � 1/k behind the foil. For
this purpose we have to add up the contribution of the individual scatterers, by
multiplying the scattering amplitude with the number N of scatterers per unit
area of the foil and integrating over the foil area. This gives a downstream wave
function for x = y = 0:

ψk = (2π�)−3/2

×
[

eikz + N
∫ ∞

0

b db

(z2 + b2)1/2

∫ 2π

0
dφ fk(arcsin(b/z), φ) eik(z2+b2)1/2

]
= (2π�)−3/2eikz

×
[

1 + N
∫ ∞

0

b db

(z2 + b2)1/2

∫ 2π

0
dφ fk(arcsin(b/z), φ) eik[(z2+b2)1/2−z]

]
.

Expanding the square root in the exponent, we see that the integrand oscillates
rapidly for kb2/z � 1, so the values of b that contribute appreciably to the
integral are limited to an upper bound of order

√
z/k. Since we are assuming

that kz � 1, this means that most of the integral comes from values of b much
less than z, so that it simplifies to

ψk = (2π�)−3/2eikz

[
1 + π fk(0)N z−1

∫ ∞

0
db2 eik b2/2z

]
. (7.3.10)

As usual, we interpret
∫∞

0 eiax dx by inserting a convergence factor e−εx , calcu-
lating the integral as 1/(ε − ia), and then setting ε = 0, so that Eq. (7.3.10)
gives

ψk = (2π�)−3/2eikz
[
1 + 2iπ fk(0)N k−1

]
. (7.3.11)

To first order2 in N , the probability density in the plane wave is therefore
reduced by a factor

2 Terms of higher order in N are of the same order as terms produced by multiple scattering in the foil,
which we are neglecting here.
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(2π�)3|ψk|2 = 1 − 4πIm fk(0)N
k

. (7.3.12)

This should equal 1 − P , where P is the probability that the particle is scattered
or in any other way removed from the beam. This probability is given by σtot/A
times the number N A of scatterers in the effective area A ≡ 1/ρT of the initial
wave packet, so that P = σtotN . Equating the quantity (7.3.12) to 1 − P then
gives the optical theorem in its general form (7.3.9). In this form, it applies to
every reaction initiated by an initial particle, relativistic or non-relativistic.

There is an immediate consequence of the optical theorem that provides
important information about scattering at high energies. If the scattering ampli-
tude fk(θ, φ) is a smooth function of angles, then there must be some solid
angle �� within which the differential scattering cross-section | fk(θ, φ)|2 is
not much less than in the forward direction — to be definite, let’s say not less
than | fk(0)|2/2. Then

σtot(k) ≥ 1

2
| fk(0)|2�� ≥ 1

2
|Im fk(0)|2�� = k2σ 2

tot(k)��

32π2

and so

�� ≤ 32π2

k2σtot(k)
. (7.3.13)

As discussed in Section 8.4, in collisions of strongly interacting particles such as
protons, the total cross-section becomes constant or grows slowly at high energy,
so the solid angle �� within which the differential cross-section is no less than
half the value in the forward direction must vanish more or less as 1/k2. This
sharp peak of the scattering probability in the forward direction is known as the
diffraction peak.

7.4 The Born Approximation

One of the advantages of the approach we have followed is that it leads imme-
diately to a widely useful approximation, known as the Born approximation.1

This approximation is generally valid for weak potentials, or more precisely, if
relevant matrix elements of the potential V are much less than typical matrix
elements of the kinetic energy H0. In this case, since Eq. (7.2.6) for the scat-
tering amplitude already includes an explicit factor of the potential, it can be
evaluated by taking the “in” wave function ψk as the free-particle wave function
(2π�)−3/2 exp(ik · x), so

fk(x̂) = − μ

2π�2

∫
d3 y V (y) exp

(
i(k − kx̂) · y

)
. (7.4.1)

1 M. Born, Z. f. Physik 38, 803 (1926).
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In particular, for a central potential, this gives

fk(θ, φ) = −2μ

�2

∫ ∞

0
r2 dr V (r)

sin
(

qr
)

qr
, (7.4.2)

where �q̄ is the momentum transfer;

q ≡ |k − kx̂ | = 2k sin(θ/2), (7.4.3)

with θ the angle between the incident direction k̂ and the direction x̂ of scat-
tering. The result that the amplitude is independent of the azimuthal angle φ is
an obvious consequence of the symmetry of the problem under rotations about
the 3-axis for central potentials, and does not depend on the Born approxima-
tion. On the other hand, the result that the scattering amplitude depends on k
and θ only in the combination q depends not only on the potential being only a
function of r , but also on the use of the Born approximation.

For example, consider scattering in a shielded Coulomb potential:

V (r) = Z1 Z2e2

r
e−κr . (7.4.4)

This is a crude approximation to the potential felt by a nucleus of charge Z1e
being scattered by an atom of atomic number Z2; at small r the incoming nucleus
feels the full Coulomb field of the atom’s nucleus, while for large r that charge
is screened by the atomic electrons. (A potential of this form is also known as a
Yukawa potential, because Hideki Yukawa (1907–1981) showed in 1935 that a
potential of this form is produced by the exchange of a virtual spinless boson of
mass �κ/c between nucleons.2) Using this in Eq. (7.4.2) gives

fk(θ, φ) = −2μZ1 Z2e2

q�2

∫ ∞

0
dr e−κr sin

(
qr
)

= −2μZ1 Z2e2

�2

1

q2 + κ2
.

(7.4.5)

In particular, the scattering amplitude for a pure Coulomb potential is given in
the Born approximation by setting κ = 0 in Eq. (7.4.5). This gives a scattering
cross-section identical to that derived by Rutherford in his analysis of the scatter-
ing of alpha particle by gold atoms, which as discussed in Section 1.2 led in 1911
to the discovery of the atomic nucleus. Rutherford was lucky; his derivation
was strictly classical, and would not have given the same result as the quantum
mechanical calculation for any potential other than the Coulomb potential. We
will see in Section 7.9 that the scattering amplitude receives significant correc-
tions from effects of higher order in the potential, but for the special case of
the Coulomb potential these corrections only change the phase of the scattering
amplitude, and hence do not affect the Coulomb scattering cross-section.

2 H. Yukawa, Proc. Phys.-Math. Soc. (Japan) (3) 17, 48 (1935).
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7.5 Phase Shifts

There is a useful representation of the scattering amplitude that is especially con-
venient for spherically symmetric potentials. Since the incoming wave exp(ikx3)

is invariant under rotations around the 3-axis, and the Laplacian and the potential
are invariant under all rotations, the full wave function must also be invari-
ant under rotations around the 3-axis, and hence independent of the azimuthal
angle φ. Expanding it in spherical harmonics, we thus encounter only terms with
m = 0. The spherical harmonics for m = 0 are conventionally written in terms
of Legendre polynomials P�(cos θ) as

Y 0
� (θ) =

√
2�+ 1

4π
P�(cos θ). (7.5.1)

(To see that Y 0
� (θ) is a polynomial in cos θ , recall that it is a polynomial in

the components of the unit vector x̂ , and since it is invariant under rotations
around the 3-axis, it must be a polynomial in x̂3 = cos θ and x̂+ x̂− = sin2 θ =
1 − cos2 θ . The numerical factor in Eq. (7.5.1) is chosen so that P�(1) = 1.) We
therefore write the complete wave function as

ψ(r, θ) =
∞∑
�=0

R�(r)P�(cos θ). (7.5.2)

Also, the plane wave term in Eq. (7.2.5) has a well-known expansion:

exp(ikr cos θ) =
∞∑
�=0

i�(2�+ 1) j�(kr) P�(cos θ), (7.5.3)

where j�(kr) is the spherical Bessel function:

j�(z) ≡
√
π

2z
J�+1/2(z) = (−1)�z�

d�

(z dz)�

(
sin z

z

)
. (7.5.4)

Eq. (7.5.3) can be derived by noting that eikr cos θ = eikx3 satisfies the wave
equation (∇2 + k2)eikr cos θ = 0. According to Eqs. (2.1.16) and (2.2.1), if we
write the partial wave expansion of eikr cos θ as

eikr cos θ =
∞∑
�=0

f�(kr)P�(cos θ),

then the coefficient f�(kr) must satisfy the wave equation[
1

r2

d

dr
r2 d

dr
− �(�+ 1)

r2
+ k2

]
f�(kr) = 0.

It follows then that
√

r f�(kr) satisfies the Bessel differential equation for order
�+1/2. With the condition that f�(kr) is regular at r = 0, this tells us that f�(kr)
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is proportional to j�(kr), as defined by the first Eq. (7.5.4). The constant of
proportionality can be found by calculating

∫ 1
−1 exp(ikrμ)P�(μ)dμ, and using

the orthonormality property
∫ 1
−1 P�′(μ)P�(μ) dμ = 2δ�′�/(2� + 1). Unlike the

ordinary Bessel functions, the spherical Bessel functions can be written in terms
of elementary functions; for instance,

j0(x) = sin x

x
, j1(x) = sin x

x2
− cos x

x
, (7.5.5)

and so on. The other solutions of the same wave equation that are not regular at
the origin are spherical Neumann functions

n0(x) = −cos x

x
, n1(x) = −cos x

x2
− sin x

x
,

and so on.
To find the scattering amplitude, we must now consider the difference of the

wave function (7.5.2) and the plane wave (7.5.3) for r → ∞. If the potential
vanishes sufficiently rapidly for large r , the reduced radial wave function r R�(r)
for large r must become proportional to a linear combination of cos(kr) and
sin(kr), which without loss of generality we may write as

R�(r) →
c�(k) sin

(
kr − �π/2 + δ�(k)

)
kr

, (7.5.6)

where c� and δ� are quantities that may depend on k, but not on r . It is easy to
see that the radial wave function R�(r) is real, up to an over-all constant factor.
(With a potential that does not grow as r → 0 as rapidly as 1/r2, the Schrödinger
equation (2.1.26), multiplied with 2μr2/�2 R�(r), takes the form for r → 0:

1

R�(r)

d

dr

(
r2 d

dr

)
R�(r) → �(�+ 1),

so as r → 0, R�(r) goes as a linear combination of r � and r−�−1. The condition
of normalizability requires that we choose R�(r) to go purely as r � for r → 0.
For a real potential, R∗

� (r) satisfies the same homogeneous second-order differ-
ential equation and the same initial condition on its logarithmic derivative as
R�(r), so it must equal R�(r) up to a constant factor, which tells us that R�(r)
is real, up to a complex constant factor.) Hence c� may be complex, but δ� is
necessarily real.

On the other hand, for large arguments the spherical Bessel functions
appearing in the plane wave have the asymptotic behavior

j�(kr) →
sin
(

kr − �π/2
)

kr
. (7.5.7)

In the absence of interactions we would just have the plane wave term in the
wave function, so R�(r) would have to be proportional to j�(kr). Comparison
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of Eqs. (7.5.6) and (7.5.7) shows that in this case all δ� would vanish. For this
reason, the δ� are known as phase shifts.

To determine the coefficients c�, we impose the condition that for r →
∞, the scattered wave ψ(r, θ) − exp(ikr cos θ) can contain only terms with
r -dependence proportional to the outgoing wave exp(ikr)/kr , not the incoming
wave exp(−ikr)/kr . Subtracting (7.5.3) from (7.5.2), and using Eqs. (7.5.6) and
(7.5.7), we see that the coefficient of P�(cos θ) exp(−ikr)/2ikr in the scattered
wave is

c�i
�e−iδ� − i2�(2�+ 1),

and therefore

c� = i�(2�+ 1)eiδ� . (7.5.8)

The scattered wave then has the asymptotic behavior

ψ(r, θ)− exp(ikr cos θ) → eikr

2ikr

∞∑
�=0

(2�+ 1)P�(cos θ)
(
e2iδ� − 1

)
, (7.5.9)

and the scattering amplitude is therefore

f (θ) = 1

2ik

∞∑
�=0

(2�+ 1)P�(cos θ)
(
e2iδ� − 1

)
. (7.5.10)

We can now verify the optical theorem. From Eq. (7.5.10) we find immedi-
ately that

Im f (0) = 1

2k

∞∑
�=0

(2�+ 1) (1 − cos 2δ�) = 1

k

∞∑
�=0

(2�+ 1) sin2 δ�. (7.5.11)

The orthonormality condition for the spherical harmonics gives

δ��′ = 2π
∫ π

0
Y 0
� (θ)Y

0
�′(θ) sin θ dθ = 2�+ 1

2

∫ π

0
P�(cos θ)P�′(cos θ) sin θ dθ,

(7.5.12)
so the elastic scattering cross-section is

σscat = 4π

k2

∞∑
�=0

(2�+ 1) sin2 δ�. (7.5.13)

The comparison of Eqs. (7.5.11) and (7.5.13) gives the optical theorem (7.3.8).
One of the things that the phase shift formalism is good for is to analyze the

behavior of the scattering amplitude at low energy. To deal with this, we will
first derive a formula for the phase shift that applies at any energy, and then
specialize to the case of low energy.

Suppose that the potential is negligible outside a radius a. (We are assuming
that the potential vanishes rapidly for r → ∞, so even if it is not strictly zero
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at any finite r , the results we obtain will be qualitatively reliable.) For r > a,
the radial wave function R�(r) for a given � is a solution of the free-particle
wave equation, which in general is a linear combination of the spherical Bessel
functions j�(kr) that are regular as r → 0 and functions n�(kr) that become
infinite at the origin. These functions have the asymptotic behavior for large
argument

j�(ρ) → sin
(
ρ − �π

2

)
ρ

, n�(ρ) → −cos
(
ρ − �π

2

)
ρ

. (7.5.14)

Hence the linear combination that has the asymptotic behavior given by
Eqs. (7.5.6) and (7.5.8) is

R�(r) = i�(2�+ 1)eiδ�
[

j�(kr) cos δ� − n�(kr) sin δ�
]

for r > a. (7.5.15)

The value of R′
�(r)/R�(r) at r = a (where the asymptotic formulas (7.5.14)

do not apply) is set by the condition that the wave function must fit smoothly
with the solution of the Schrödinger equation for r < a that is well behaved
(R� ∝ r �) at r → 0, which of course depends on the details of the potential.
This condition may be written

R′
�(a)/R�(a) = ��(k), (7.5.16)

with ��(k) depending only on the wave function for r < a. Eqs. (7.5.15) and
(7.5.16) together then give

tan δ�(k) = k j ′
�(ka)−��(k) j�(ka)

kn′
�(ka)−��(k)n�(ka)

. (7.5.17)

Now, for sufficiently small k, the term k2 R� in the Schrödinger equation for
the radial wave function has little effect, so ��(k) becomes essentially inde-
pendent of k for low energy. Also, the spherical Bessel functions for small
argument are

j�(ρ) → ρ�

(2�+ 1)!! , n�(ρ) → −(2�− 1)!!ρ−�−1, (7.5.18)

where, for any odd integer n,

n!! ≡ n (n − 2) (n − 4) · · · 1, (7.5.19)

with (−1)!! ≡ 1. Hence for ka � 1, Eq. (7.5.17) gives

tan δ� →
(

�− a��

a�� + �+ 1

)
(ka)2�+1

(2�+ 1)!!(2�− 1)!! . (7.5.20)

This shows that tan δ� vanishes as k2�+1 for k → 0, and hence δ�(k) either
vanishes or approaches an integer multiple of π . We can go further, and say
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something about higher terms in k. Note that �� depends on k only through the
presence of a term k2 R� in the Schrödinger equation, so �� is a power series
in k2. Also, k−� j�(ka), k1−� j ′

�(ka), k�+1n�(ka), and k�+2n′
�(ka) are all power

series in k2. Hence from Eq. (7.5.17), we see that also k−2�−1 tan δ� is a power
series in k2.

Evidently, if there is no selection rule that suppresses s-wave scattering, then
δ0 is the dominant phase shift for k → 0. It is conventional to express k cot δ0,
rather than its reciprocal k−1 tan δ�, as a power series in k2:

k cot δ0 → − 1

as
+ reff

2
k2 + · · · , (7.5.21)

where as and reff are constants with the dimensions of length, known respec-
tively as the scattering length and the effective range. According to Eq. (7.5.13),
the cross-section for k → 0 approaches a constant

σscat → 4πa2
s . (7.5.22)

We will see in Section 8.8 that in the presence of a shallow s-wave bound state,
it is possible to derive a formula for as in terms of the energy of the bound state,
without having to know anything about the details of the potential.

I should mention that there is an exception to these results, in the case where
an s-wave bound state sits precisely at zero energy. In general at k = 0 the
� = 0 radial wave function R0 outside the range of the potential satisfies the
Schrödinger equation d/dr(r2d R0/dr) = 0, so R0 is a linear combination of
terms that go as 1/r and a constant. With a bound state at zero energy, the
constant term must be absent, so R0 ∝ 1/r at r = a, and hence �0(0) = −1/a.
In this case the denominator a�0 + 1 in Eq. (7.5.20) vanishes, invalidating the
conclusion that tan δ0 → 0 for k → 0. In fact, we shall show on very general
grounds in Section 8.8 that in the presence of an s-wave bound state at zero
energy, tan δ0 at zero energy is infinite, not zero.

7.6 Resonances

There are other circumstances where a phase shift will exhibit a characteris-
tic dependence on energy, independent of the detailed form of the potential.
Consider a potential that has a high value in a thick shell around the origin,
surrounding an inner region where the potential is much smaller. In these cir-
cumstances, the general solution of the Schrödinger equation within the barrier
is a linear combination of two solutions, one solution R+(r, E, �) that grows
exponentially with increasing r , and the other R−(r, E, �) that decays expo-
nentially. To see this, note that at any energy E below the barrier height the
Schrödinger equation (2.1.29) for the reduced radial wave function u(r, E, �) ≡
r R(r, E, �) within the barrier can be put in the form
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d2u

dr2
= κ2u, (7.6.1)

where

κ2(r, E, �) ≡ 2μ

�2

[
V (r)− E

]
+ �(�+ 1)

r2
> 0. (7.6.2)

In assuming that the barrier is high and thick, we will specifically suppose that
κ and κ ′ ≡ ∂κ/∂r change very little in a distance 1/κ; that is,∣∣∣∣κ ′

κ

∣∣∣∣ � κ,

∣∣∣∣κ ′′

κ ′

∣∣∣∣ � κ, (7.6.3)

with κ understood from now on as the positive square root of the quantity (7.6.2).
Under these circumstances, we can use the WKB approximation discussed in
Section 5.7 to find approximate solutions of Eq. (7.6.1), of the form

u±(r, E, �) ≡ r R±(r, E, �) = A±(r, E, �) exp

(
±
∫ r

κ(r ′, E, �) dr ′
)
,

(7.6.4)
where A± varies much more slowly than the argument of the exponential.
(Eq. (5.7.9) shows that to a good approximation, A± ∝ 1/

√
κ .) So in partic-

ular the solution of the Schrödinger equation that goes as r � rather than r−�−1 as
r → 0 must take the form

R(r, E, �) = c+(E, �)R+(r, E, �)+ c−(E, �)R−(r, E, �) (7.6.5)

in which outside the barrier

R−(r, E, �)

R+(r, E, �)
= O

(
exp

[
−2

∫
barrier

κ(r ′, E, �) dr ′
])

� 1, (7.6.6)

the integral being taken over the whole region in which V (r ′) > E .
Now recall Eq. (7.5.17) for the phase shift:

tan δ�(k) = k j ′
�(ka)−��(k) j�(ka)

kn′
�(ka)−��(k)n�(ka)

, (7.6.7)

where ��(k) is the logarithmic derivative ��(k) ≡ R′(a, E, �)/R(a, E, �) at a
radius a just outside the barrier. For generic energies below the barrier height,
the coefficients c±(E, �) will be comparable in magnitude, so the wave function
will be dominated by R+, and ��(k) will be equal to R′+(a, E, �)/R+(a, E, �).
For most energies, this gives tan δ�(E) a smoothly varying value, which we will
call tan δ�(E).

But suppose that in the limit of an infinitely thick barrier there would
be a bound-state solution of the Schrödinger equation at an energy E0 and
orbital angular momentum �0. At this energy the solution of the Schrödinger
equation that goes as r �0 for r → 0 must decay inside the barrier, so
c+(E0, �0) = 0. As long as E is close enough to E0 so that c+(E, �0)/c−(E, �0)
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is less than an amount of order (7.6.6), the logarithmic derivative ��0(k)
will be appreciably different from R′+(a, E, �0)/R+(a, E, �0), taking a value
R′−(a, E, �0)/R−(a, E, �0) at E = E0, where c+ vanishes. We conclude then
that as the energy increases past E0 the quantity tan δ�0(E) varies rapidly, sud-
denly near E = E0 becoming appreciably different from the value tan δ�0(E),
and then returns to the smoothly varying value tan δ�0(E). The range in which
tan δ�0(E) is appreciably different from tan δ�0(E) is proportional to (7.6.6).

We will give an argument in the next section that a rapid decrease of the phase
shift would violate causality. Since tan δ�0(E) varies rapidly but returns to about
this same value as E passes E0, the phase shift must increase in a narrow range
of energies around E0 by 180◦ (or possibly an integer multiple1 of 180◦), and
therefore must become equal to 90◦ at an energy ER somewhere in that range.
The phase shift can therefore be assumed to take the form

δ�0(E) = δ�0(E)+ δ
(R)
�0
(E), (7.6.8)

tan δ(R)�0
(E) = −1

2

�

E − ER
, (7.6.9)

where � is a constant with the dimensions of energy, proportional to (7.6.6),
and ER is an energy differing from E0 by an amount at most of order �. (The
constant of proportionality is written as −�/2 for later convenience. In order for
Eq. (7.6.9) to give an increasing phase shift, we must have � > 0.) The rapid
growth of the phase shift at an energy ER is like the large resonant response
of a classical system to oscillatory perturbations whose frequency matches one
of the natural frequencies of the system, and for this reason the divergence of
tan δ�0(E) at an energy ER is known as a resonance; ER is the resonance energy.

The non-resonant phase shift δ�0(E) is typically much less than 90◦. In this
case, we can neglect the term δ�0(E) in Eq. (7.6.8), which then gives

sin2 δ�0(E) = tan2 δ�0(E)

1 + tan2 δ�0(E)
= �2/4

(E − ER)2 + �2/4
,

so that Eq. (7.5.13) for the total cross-section gives

σscat 	 π(2�0 + 1)

k2

�2

(E − ER)2 + �2/4
. (7.6.10)

Eq. (7.6.10) is known as the Breit–Wigner formula.2 We see that � is the full
width of the peak in the cross-section at half maximum. The cross-section at
its maximum value will take the value 4π(2�0 + 1)/k2

R , or roughly a square

1 In the case where δ�(E) jumps up by 360◦, 540◦, etc., it must also pass through 270◦, 540◦, etc., and
the scattering cross-section will exhibit several peaks at nearly the same energy. This case, of several
resonances that for some reason are at the same energy, will not be considered here.

2 G. Breit and E. P. Wigner, Phys. Rev. 49, 519 (1936).
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wavelength, independent of the details of the potential. A generalization of this
formula to a much wider variety of problems is given in Section 8.5.

The resonance width � has an important connection with the lifetime of the
resonant state. Using Eqs. (7.6.8) and (7.6.9) and some elementary trigonometry,
we easily see that the quantity exp(2iδ�0) in the scattering amplitude (7.5.10)
behaves near the resonance as

exp
(

2iδ�0(E)
)

= exp
(

2iδ�0(E)
) [

1 − i�

E − ER + i�/2

]
. (7.6.11)

If at t = 0 we put the system in the nearly stable state with angular momen-
tum �0 and radial wave function

∫
g(E)R(r, �0, E) d E , where g(E) is a smooth

function that varies slowly for E near ER , the resonant contribution to the time-
dependent wave function

∫
g(E) R(r, �0, E) exp(−i Et/�) d E will have a term

with a time-dependence proportional at late times to the integral∫ +∞

−∞
exp(−i Et/�) d E

E − ER + i�/2
= −2π i exp (−i ERt/� − � t/2�) . (7.6.12)

(This integral for t > 0 is most easily done by completing the contour of inte-
gration with a large semicircle in the lower half of the complex plane.) The
factor exp(−i ERt/�) supports the interpretation that scattering occurs by for-
mation of a nearly stable state with energy near ER , and the factor exp(−� t/2�)
in the scattering amplitude, which gives a factor exp(−� t/�) in the scattering
probability, indicates that this state decays at a rate �/�.

There are cases in nuclear physics of states with a barrier so thick that their
decay rate � is very small, small enough so that nuclei in these states can be
found in nature, rather than as resonances in scattering processes. The clas-
sical example is provided by nuclei that are unstable against the emission of
alpha particles, first treated quantum mechanically by George Gamow3 (1904–
1968). In transitions in which the alpha particle is emitted in an s wave, such
as U238 → Th234 + α and Ra226 → Rn222 + α, the barrier arises purely from
the Coulomb potential, which in alpha decay is V (r) = 2Ze2/r , where Z is the
atomic number of the final nucleus. The barrier extends from an effective nuclear
radius R out to a turning point where V (r) equals the final kinetic energy Eα of
the alpha particle. The barrier penetration integral in Eq. (7.6.6) is then

2
∫

barrier
κ dr = 2

∫ 2Ze2/Eα

R
dr

√
2mα

�2

(
2Ze2

r
− Eα

)
. (7.6.13)

In many cases this exponent is quite large, giving extremely long lifetimes for
alpha-emitting nuclei. The lifetime of U238 is 4.47 × 109 years, long enough

3 G. Gamow, Z. Phys. 52, 510 (1928); also see E. U. Condon and R. W. Gurney, Phys. Rev. 33, 127
(1929).
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that appreciable uranium has survived on Earth from before the formation of the
Solar System. Even Ra226 has a lifetime of 1600 years, long enough for radium
from a chain of radioactive decays originating with U238 to be found in associ-
ation with uranium ores. (Needless to say, � for Ra226 and U238 is far too small
for these states ever to be seen as resonances in the scattering of alpha particles
on Th234 or Rn226.) The exponential of the quantity (7.6.13) is an extremely sen-
sitive function of Eα and Z , which of course are known precisely, and also of R,
which is not so well known, so this formula was historically used together with
observed alpha decay rates to determine R.

Finally, recall that the Breit–Wigner formula (7.6.10) was derived here for the
case of a negligible non-resonant phase shift δ�0(E). But there are cases where
δ�0(E) is itself close to 90◦, in which case the total phase shift rises at a reso-
nance from 90◦ to 270◦. Where it passes through 180◦, we have a sharp dip rather
than a peak in the total cross-section. This effect was first observed in 1921–2
independently by Ramsauer and Townsend,4 in the scattering of electrons by the
atoms of noble gases.

7.7 Time Delay

The demonstration in the previous section, that a resonance of width � repre-
sents a state that decays with a rate �/�, considered the time-dependence of a
superposition of scattering wave functions at a single position. To see what is
going on in the scattering, we need instead to consider the time-dependence of
such a superposition at late times and large distances. We did this in Section 7.2,
where we derived the behavior (7.2.9) of the wave function at late times and
large distances from Eqs. (7.2.5) and (7.2.7). But there we assumed that the
scattering amplitude fk depends on the wave number k much more smoothly
than the wave packet g(k) or the factors eikr or exp(−i�tk2/2μ). Now we want
to consider the possibility that the phase shift δ�(E) for any particular angular
momentum � may vary rapidly with energy.

According to Eq. (7.5.10), the wave function (7.2.7) contains a term that for
large r behaves as

(2π�)−3/2

2ikr

∫
d3k g(k) exp

(
ikr − i�tk2/2μ+ 2iδ�(E)

)
(2�+ 1) P�(cos θ),

(7.7.1)

where the argument of the phase shift is E = �2k2/2μ. At late times the inte-
gral is dominated by the value of k where the argument of the exponential is
stationary, at which

4 C. Ramsauer, Ann. d. Physik 4, No. 64, 513 (1921); V. A. Bailey and J. S. Townsend, Phil. Mag. S.6,
No. 43, 1127 (1922).
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r − �tk/μ+ 2δ′
�(E)�

2k/μ = 0,

or in other words

r = �k

μ

(
t −�t

)
, (7.7.2)

where1

�t = 2�δ′
�(E). (7.7.3)

(This of course applies only if t is positive as well as large; for t large and
negative, Eq. (7.7.2) would have no solution with r > 0, and this term would
be absent in the asymptotic form of the wave function.) Eq. (7.7.2) shows that
�t is the time delay experienced by the incoming particle in entering and then
leaving the potential.

The result (7.7.3) justifies the remark made in the previous section, that phase
shifts generally can increase sharply but not decrease sharply with increasing
energy. The time at which a wave packet arrives at a scattering center is uncer-
tain by an amount of order R/v, where R is the range of the potential and
v is the velocity of the wave packet, so it is possible to have �t negative
if it is no greater than this in magnitude, but a negative �t of much larger
magnitude would represent a failure of causality — the wave packet would
be emerging from the potential before it entered it. With Eq. (7.7.3), this sets
a crude upper limit to the rate of decrease of any phase shift with energy:
−δ′

�(E) ≤ R/2�v.
Eq. (7.7.3) has a natural application to the case of resonance. Neglecting the

rate of change with energy of the non-resonant contribution δ�0(E) (where �0

is the angular momentum of the nearly stable state), Eq. (7.6.9) gives the time
delay (7.7.3) near a resonance as the positive quantity

�t = 2�
1 + tan2 δ

(R)
�0
(E)

d

d E
tan δR)

�0
(E) = ��

(E − ER)2 + �2/4
. (7.7.4)

In particular, at the resonance peak the time delay is 4�/�. We can understand
the factor 4 by noting that, according to Eq. (7.6.12), the mean time required for
the leakage of a wave packet (not the probability density) out of the potential
barrier is 2�/�, and it is plausible that this is also the time required for the
incoming wave packet to leak into the potential barrier, giving a total time delay
4�/�.

1 E. P. Wigner, Phys. Rev. 98, 145 (1955).
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7.8 Levinson’s Theorem

There is a remarkable theorem1 due to the mathematician Norman Levinson
(1912–1975), which relates the behavior of the phase shift for E > 0 to the
number of bound states with E < 0. It is most easily proved by supposing
the system to be enclosed in a large sphere of radius R, on which the particle
wave function must vanish. Recall that according to Eq. (7.5.6), the radial wave
function for orbital angular momentum � and positive energy E = �2k2/2μ is

proportional to sin
(

kr −�π/2+δ�(E)
)

, so the boundary condition requires that

these states must have k equal to one of the discrete values kn for which

kn R − �π/2 + δ�(En) = nπ, (7.8.1)

where n is any integer for which this gives a positive value of kn . The num-
ber N�(E) of states with orbital angular momentum � and energies between
0 and E is the number of values of n for which Eq. (7.8.1) is satisfied with
0 ≤ En ≤ E ,

N�(E) = 1

π

(
k R + δ�(E)− δ�(0)

)
. (7.8.2)

In the absence of the interaction V the phase shift vanishes, and the correspond-
ing number of states is just k R/π , so the change in the number of scattering
states of energy between 0 and E due to the interaction is

�N�(E) = 1

π

(
δ�(E)− δ�(0)

)
. (7.8.3)

Now, when we gradually turn on the interaction, physical states can neither be
created nor destroyed, but states that were scattering states with energy E > 0
for V = 0 can be converted by the interaction to bound states with E < 0. The
fact that states are neither created nor destroyed tells us that the total change
�N�(∞) due to the interaction in the number of all positive energy scattering
states with orbital angular momentum �, plus the total number of bound states
with this orbital angular momentum, must vanish, so that the number of bound
states is

N� = 1

π

(
δ�(0)− δ�(∞)

)
. (7.8.4)

This is necessarily positive, so the phase shift must either undergo no net change
or suffer a net decrease as the energy rises from zero to infinity. This does not
contradict the result of the previous section, which forbids only rapid decreases

1 N. Levinson, Kgl. Dansk. Viden. Selskab, Mat. fys. Medd. 25, 9 (1949). Levinson’s proof relied on
rigorous methods beyond the scope of this book. Levinson’s paper shows that the result derived here
does not apply if there happens to be a bound state with zero binding energy.
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in the phase shift. Since the phase shift grows rapidly by 180◦ at each resonance,
it must also decrease gradually away from resonances by 180◦ times the total
number of resonances and bound states.

This is a remarkable result, but not a very useful one. It holds only for elas-
tic scattering due to a non-relativistic potential, but it refers to the phase shift
at infinite energy, where inelastic channels are open and relativistic effects are
important. There have been many attempts to generalize this theorem to models
that are realistic at all energies, but so far without success.

7.9 Coulomb Scattering

Up to this point, in this chapter we have considered only potentials that vanish
as r → ∞ faster than 1/r . But the single most important example of potential
scattering is Coulomb scattering, say for a particle of charge Z1e scattered by a
scattering center of charge Z2e, for which V (r) = Z1 Z2e2/r . Fortunately in this
case it is possible to calculate the differential scattering cross-section exactly,
without needing to rely on the Born approximation or even on the partial wave
expansion.

The Schrödinger equation for the Coulomb potential and a positive energy
E = �2k2/2μ takes the form

− �2

2μ
∇2ψ + Z1 Z2e2

r
ψ = �2k2

2μ
ψ. (7.9.1)

It turns out that it is possible to find a solution of this equation that behaves well
as r → 0, and behaves like a plane wave plus an outgoing wave for r → ∞, in
the form

ψ(x) = eikzF(r − z). (7.9.2)

A straightforward calculation shows that the Laplacian of such a wave func-
tion is

∇2ψ = eikz

[
−k2F(ρ)+ 2

r

[
(1 − ikρ)F ′(ρ)+ ρF ′′(ρ)

]]
, (7.9.3)

where ρ ≡ r − z. The Schrödinger equation (7.9.1) thus takes the form of an
ordinary differential equation

ρF ′′(ρ)+ (1 − ikρ)F ′(ρ)− kξF(ρ) = 0, (7.9.4)

where ξ is the dimensionless quantity

ξ = Z1 Z2e2μ

�2k
. (7.9.5)
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This can be put in the form of a well-known differential equation by introducing
a new independent variable

s ≡ ikρ = ik(r − z). (7.9.6)

Then Eq. (7.9.4) may be written

s
d2

ds2
F + (1 − s)

d

ds
F + iξF = 0. (7.9.7)

This is a special case of what is known as the confluent hypergeometric equation
or Kummer equation:

s
d2

ds2
F + (c − s)

d

ds
F − aF = 0, (7.9.8)

in our case with

c = 1, a = −iξ. (7.9.9)

The solution of Eq. (7.9.8) that is regular at s = 0 is known as the Kummer
function,1 and can be expressed as a power series

1 F1(a; c; s) = 1 + a

c

s

1! + a(a + 1)

c(c + 1)

s2

2! + · · · . (7.9.10)

With its normalization left to be determined, the wave function is

ψ(x) = N eikz
1 F1(−iξ ; 1; ik[r − z]) (7.9.11)

with N a constant to be chosen later. The asymptotic behavior of the Kummer
function for large complex argument is

1 F1(a; c; s) → �(c)

�(c − a)
(−s)−a

[
1 + O(1/s)

]+ �(c)

�(a)
essa−c

[
1 + O(1/s)

]
,

(7.9.12)
where �(z) is the familiar Gamma function, defined for Rez > 0 by

�(z) =
∫ ∞

0
dx xz−1e−x

and by analytic continuation to other values of z. Hence the asymptotic behavior
of the wave function for large r with cos θ = z/r fixed is2

1 See, e.g., W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical
Physics, trans. J. Webber (Chelsea Publishing Co., New York, 1949): Chapter VI, Section 1.

2 In deriving the first line of Eq. (7.9.13), it is important to note that for s = ik[r − z], the phase of
−s in the first term of Eq. (7.9.12) must be taken as −π/2, and the phase of s in the second term of
Eq. (7.9.12) must be taken as π/2.
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ψ → Neξπ/2

[ [k(r − z)]iξ

�(1 + iξ)
eikz + [k(r − z)]−iξ−1

i�(−iξ)
eikr

]

= Neξπ/2

�(1 + iξ)

[
eikz+iξ ln(kr(1−cos θ)) + fk(θ)

eikr−iξ ln(kr(1−cos θ))

r

]
. (7.9.13)

where

fk(θ) = �(1 + iξ)

�(−iξ)

1

ik(1 − cos θ)
= −�(1 + iξ)

�(1 − iξ)

ξ

k(1 − cos θ)

= −�(1 + iξ)

�(1 − iξ)

2Z1 Z2e2μ

�2q2
. (7.9.14)

Here we use the general formula �(1 + z) = z�(z), and define q2 ≡ 2k2(1 −
cos θ) = 4k2 sin2(θ/2). The contribution of the logarithmic terms to the phases
of the two terms in the second line of Eq. (7.9.13) becomes negligible for
macroscopically large values of r , so this is effectively the same as the standard
formula (7.2.5) for the asymptotic wave function, with

N = �(1 + iξ)e−ξπ/2(2π�)−3/2, (7.9.15)

and fk(θ) the scattering amplitude.
We note that for |ξ | � 1, where the factor �(1 + iξ)/�(1 − iξ) is unity,

Eq. (7.9.14) gives the same scattering amplitude as the Born approximation
result (7.4.5) for infinite screening radius 1/κ . For all ξ , �(1 + iξ)/�(1 − iξ)
just affects the phase of the scattering amplitude, so the Born approximation
gives the correct differential cross-section to all orders. The total elastic scatter-
ing cross-section is infinite, meaning that every particle in the incoming beam is
scattered by some amount, though in practice there always is some screening of
Coulomb potentials and the total cross-section is never really infinite.

7.10 The Eikonal Approximation

The eikonal approximation1 is an extension of the WKB approximation to prob-
lems in three dimensions, where no spherical symmetry is available to simplify
calculations. This approximation can be applied in scattering problems, and we
will use it when we come to the Aharonov–Bohm effect in Section 10.4.

Consider the general energy-eigenvalue problem for a single spinless2 particle
with coordinate x:

1 For the eikonal approximation in optics, see M. Born and E. Wolf, Principles of Optics (Pergamon
Press, New York, 1959).

2 For a particle with spin subject to spin-dependent forces, it is necessary to extend the treatment here to
a set of coupled equations for the different spin components. The general treatment of multicomponent
wave propagation in anisotropic media is given by S. Weinberg, Phys. Rev. 126, 1899 (1962).
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H(−i�∇, x)ψ(x) = Eψ(x). (7.10.1)

We are interested in solutions for which ψ(x) varies much more rapidly with
x than does the Hamiltonian H . Our experience with the WKB approximation
suggests that we should seek a solution of the form

ψ(x) = N (x) exp
(

i S(x)/�
)
, (7.10.2)

where the phase S(x) varies much more rapidly than the amplitude N (x). To
leading order, the phase should then satisfy the equation

H
(
∇S(x), x

)
= E . (7.10.3)

The problem here, which did not confront us in one dimension, is that this is
just one equation for the three components of ∇S. For instance, if the gradient
appears in the Hamiltonian in the form of the Laplacian ∇2, then Eq. (7.10.3)
tells us the magnitude of ∇S but tells us nothing about its direction. The remain-
ing information needed to calculate S is that the three-vector ∇S is a gradient.
The following prescription allows us to construct a function S(x)whose gradient
satisfies Eq. (7.10.3).

First, we need an appropriate initial condition. This is provided by the condi-
tion that S(x) should take some constant value S0 on an “initial surface.” This
implies that ∇S(x) is normal to the initial surface at all points on the surface.

Next, we define a family of “ray paths” starting at the initial surface. These
curves are defined by a pair of equations, similar to the equations of motion in
classical Hamiltonian dynamics:

dqi

dτ
= ∂H(p,q)

∂pi
,

dpi

dτ
= −∂H(p,q)

∂qi
, (7.10.4)

where here τ parameterizes the curves. The initial condition on these differential
equations is that each trajectory starts at τ = 0 with q(0) on the initial surface,
with p(0) normal to the surface at that point, and with the magnitude of p(0)
given by the condition that, at that point,

H(p(0),q(0)) = E . (7.10.5)

Although this is a time-independent problem, we can evidently regard τ as the
time required for a classical particle to travel to q(τ ) from the initial surface.

We assume that these ray paths without crossing fill at least a finite volume of
space adjacent to the initial surface, so that for each point x in this volume there
is a unique τx such that

q
(
τx

)
= x. (7.10.6)

The phase S is then given by

S(x) =
∫ τx

0
p(τ ) · dq(τ )

dτ
dτ + S0. (7.10.7)
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Let us check that this solves our problem. It is easy to see that for all such τ ,

H(p(τ ),q(τ )) = E . (7.10.8)

This is because the differential equations (7.10.4) imply that

d

dτ
H(p(τ ),q(τ ))

=
∑

i

∂H
(

p(τ ),q(τ )
)

∂pi (τ )

dpi (τ )

dτ
+
∑

i

∂H
(

p(τ ),q(τ )
)

∂qi (τ )

dqi (τ )

dτ
= 0

(7.10.9)

so since Eq. (7.10.8) is satisfied at τ = 0, it is satisfied for all τ , at least in a
finite range.

It only remains to show that p = ∇S. For this purpose, we note that an
infinitesimal change δx in x will not only change τx, say to τx+�τx, but will also
shift the ray path that connects the initial surface to the point x to a new path,
having q(τ ) and p(τ ) replaced with q(τ )+�q(τ ) and p(τ )+�p(τ ), where �q
and �p are infinitesimal, and

δx =
[

dq(τ )
dτ

�τx +�q(τ )
]
τ=τx

. (7.10.10)

The change in x produces a change in the S(x) given by Eq. (7.10.7):

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+
∫ τx

0

[
p(τ ) · d�q(τ )

dτ
+�p(τ ) · dq(τ )

dτ

]
dτ.

We may re-arrange this to read

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+
∫ τx

0

d

dτ

[
p(τ ) ·�q(τ )

]
dτ

+
∫ τx

0

[
�p(τ ) · dq(τ )

dτ
− dp(τ )

dτ
·�q(τ )

]
dτ.

The first integral is given by the value of the integrand at the upper endpoint
τ = τx ∫ τx

0

d

dτ

[
p(τ ) ·�q(τ )

]
dτ = p(τx) ·�q(τx).

The contribution of the lower endpoint τ = 0 vanishes because on the initial
surface p is normal to the surface while �q is tangent to the surface, so that
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p(0) ·�q(0) = 0. According to the ray path equations (7.10.4), the integrand of
the second integral is

�p(τ ) · dq(τ )
dτ

− dp(τ )
dτ

·�q(τ ) =
∑

i

�pi (τ )
∂H

(
q(τ ),p(τ )

)
∂pi

+
∑

i

�qi (τ )
∂H

(
q(τ ),p(τ )

)
∂qi

= �H
(

q(τ ),p(τ )
)
,

and this vanishes because, as we have seen, H has the same value H = E on all
ray paths. We are left with

δS(x) = �τx p(τx) · dq(τ )
dτ

∣∣∣∣
τ=τx

+ p(τx) ·�q(τx) = p(τx) · δx. (7.10.11)

and so

p(τx) = ∇S(x), (7.10.12)

as was to be shown.
We can learn about the amplitude N (x) by going to the next order in gradi-

ents. Using Eq. (7.10.2), the Schrödinger equation (7.10.1) may be expressed
exactly as3

H
(
∇S(x)− i�∇, x

)
N (x) = E N (x). (7.10.13)

With Eq. (7.10.3) satisfied, the terms of zeroth order in the gradients of N (x)
and ∇S(x) cancel. To first order in these gradients, the Schrödinger equation
then becomes

A(x) · ∇N (x)+ B(x)N (x) = 0, (7.10.14)

where

Ai (x) ≡
[
∂H(x,p)

∂pi

]
p=∇S(x)

, B(x) ≡ 1

2

∑
i j

[
∂2 H(x,p)
∂pi∂p j

]
p=∇S(x)

∂2S(x)
∂xi∂x j

.

(7.10.15)
Using Eq. (7.10.4), it follows from Eq. (7.10.14) that

d

dτ
ln N

(
q(τ )

)
= −B

(
q(τ )

)
,

3 The function H
(
∇S(x)− i�∇, x

)
is defined by its power series expansion. In this expansion, it should

be understood that the operator −i�∇ acts on everything to its right, including not only N but also the
derivatives of S.
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and therefore

N (x) = N (x0) exp

(
−
∫ τx

0
B
(

q(τ )
)

dτ

)
, (7.10.16)

where x0 is the point on the initial surface connected by a ray path to x. The
important thing is that N (x) does not depend on its value at any point on the
initial surface other than x0, so that we can speak of the wave function as being
propagated from the initial surface along the ray paths.

In potential scattering we have

H(q,p) = p2

2m
+ V (q),

so

A(x) = 1

m
∇S(x), B(x) = 1

2m
∇2S(x).

Thus Eq. (7.10.14) is here just the equation of conservation of probability to first
order in gradients of N (x) and ∇S(x):

0 = ∇ ·
(
ψ∗∇ψ − ψ∇ψ∗

)
= i∇ ·

(
N 2∇S

)
= 2i N

[
∇S · ∇N + N

2
∇2S

]

= 2i Nm
[
A · ∇N + B N

]
. (7.10.17)

It follows that the distribution of probabilities of scattering at various angles
are thus given in the eikonal approximation by classical scattering theory. For
simplicity, consider the case of a central potential, and suppose that by solv-
ing the classical equations of motion we find that a particle that approaches a
scattering center at the origin, with momentum in the z-direction and impact
parameter (the distance from the z axis) b, will be scattered by an angle θ(b).
Every particle that is scattered into the solid angle 2π sin θdθ between angles θ
and θ + dθ will have to approach the scattering center within the ring between
impact parameters b and b + db, so

dσ

d�
× 2π sin θdθ = 2πb db,

or in other words, the differential cross-section is classically

dσ

d�
= b

sin θ

∣∣∣∣db

dθ

∣∣∣∣ . (7.10.18)

(For instance, for a particle of mass μ with initial velocity v0 scattered
by the Coulomb potential Z1 Z2e2/r , the classical equations of motion give
b = Z1 Z2e2/μv2

0 tan(θ/2). Using this in Eq. (7.10.18) we get a differen-
tial cross-section dσ/d� = Z2

1 Z2
2e4/4μ2v4

0 sin4(θ/2). This is how Rutherford
calculated the Coulomb scattering cross-section in 1911. Fortunately for Ruther-
ford, if we set the momentum μv0 equal to �k, then this is the same as the
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quantum mechanical result, given by the absolute value squared of Eq. (7.9.14).)
According to Eq. (7.9.17), the result (7.10.13) of the eikonal approximation tells

us that ∇ ·
(

N 2∇S
)

= 0. Integrating this over the shell of ray paths extending

from the ring between impact parameters between b and b + db to the solid
angle between angles θ and θ+dθ and using Gauss’ theorem gives the classical
formula (7.10.18). But the eikonal approximation goes beyond classical scatter-
ing theory in providing a formula for the phase of the scattering amplitude, not
just its absolute value.

Problems

1. Use the Born approximation to give a formula for the s-wave scattering
length as for scattering of a particle of mass μ and wave number k by an arbi-
trary central potential V (r) of finite range R, in the limit k R � 1. Use this
result and the optical theorem to calculate the imaginary part of the forward
scattering amplitude to second order in the potential.

2. Suppose that in the scattering of a spinless non-relativistic particle of mass
μ by an unknown potential, a resonance is observed at energy ER for which
the elastic cross-section at the peak of the resonance is σmax. Show how to
use this data to give a value for the orbital angular momentum of the resonant
state.

3. Give a formula for the tangent of the � = 0 phase shift for scattering by a
potential

V (r) =
{ −V0 r < R

0 r ≥ R
,

for all E > 0, and to all orders in V0 > 0.

4. Suppose that the eigenstates of an unperturbed Hamiltonian include not only
continuum states of a free particle with momentum p and unperturbed energy
E = p2/2μ, but also a discrete state of angular momentum � with a negative
unperturbed energy. Suppose that when we turn on the interaction, the con-
tinuum states feel a local potential, but remain in the continuum, while also
the discrete state moves to positive energy, thereby becoming unstable. What
is the change in the phase shift δ�(k) as the wave number k increases from
k = 0 to k = ∞?

5. Find an upper bound on the elastic scattering cross-section in the case where
the scattering amplitude f is independent of angles θ and φ.

6. Use the eikonal approximation to calculate the phase of the scattering ampli-
tude for the scattering of a non-relativistic charged particle by a Coulomb
potential.



8
General Scattering Theory

The previous chapter described the theory of elastic scattering of a single
non-relativistic particle by a local potential. There are much more general
circumstances to which scattering theory is applicable. The scattering can pro-
duce additional particles; the interaction may not be a local potential; some
or all of the particles involved may be moving at relativistic velocities; and
the initial state may even contain more than two particles. This chapter will
describe scattering theory at a level of generality that encompasses all these
possibilities.

In this chapter we will be using the relativistic formula for energies: the
energy of a particle of momentum p and mass m is (p2c2 + m2c4)1/2, where
c is the speed of light. This is because we want to consider inelastic scattering
processes, in which mass energy is converted to kinetic energy, or vice versa. It
is not entirely trivial to formulate dynamical theories consistent with special rel-
ativity — the only really satisfactory approach is based on the quantum theory
of fields — but as far as general principles are concerned, quantum mechanics
applies equally to relativistic and non-relativistic systems.

8.1 The S-Matrix

We again assume that the Hamiltonian H is the sum of an unperturbed Hermitian
term H0, describing any number of non-interacting particles, plus some sort of
interaction V :

H = H0 + V . (8.1.1)

The only assumptions we make about V are that it is Hermitian, and that its
effects become negligible when the particles described by H0 are all far from
one another.

In Section 7.1 we defined an “in” state� in
k as an eigenstate of the Hamiltonian

that looks like it consists of a single particle with momentum �k far from the
scattering center if measurements are made at sufficiently early times. We gen-
eralize this definition, and define “in” and “out” states �+

α and�−
α as eigenstates

of the Hamiltonian

235



236 8 General Scattering Theory

H�±
α = Eα�

±
α (8.1.2)

that look like an eigenstate �α of the free-particle Hamiltonian

H0�α = Eα�α (8.1.3)

consisting of a number of particles at great distances from each other, provided
measurements are made at very early times (for �+

α ) or very late times (for �−
α ).

Here α is a compound index, standing for the types and numbers of the particles
in the state, as well as all their momenta and spin 3-components (or helicities).
It will be convenient to choose the states �α to be orthonormal(

�β,�α

)
= δ(β − α). (8.1.4)

The delta function δ(α − β) consists of a product of Kronecker deltas for the
numbers and types and spin 3-components of corresponding particles in the
states α and β, together with three-dimensional delta functions for the momenta
of the corresponding particles in these states.

The definition of �+
α and �−

α can be made more precise by specifying that if
g(α) is a sufficiently smooth function of the momenta in the state α, then (as a
generalization of Eqs. (7.1.3) and (7.1.4)):∫

dα g(α)�±
α exp(−i Eαt/�) →

∫
dα g(α)�α exp(−i Eαt/�) (8.1.5)

for t → ∓∞. (Integrals over α in general include sums over the numbers and
types of particles along with the 3-components of their spins, as well as integrals
over the momenta of all the particles in the state α.) We can satisfy this condi-
tion by re-writing Eq. (8.1.2) as a generalization of the Lippmann–Schwinger
equation (7.1.7):

�±
α = �α + (Eα − H0 ± iε)−1V�±

α , (8.1.6)

with ε a positive infinitesimal quantity. Eq. (8.1.5) then follows by a simple
extension of the argument used in Section 7.1: From Eq. (8.1.6) we have∫

dα g(α)�±
α exp(−i Eαt) =

∫
dα g(α)�α exp(−i Eαt)

+
∫

dα
∫

dβ
g(α) exp(−i Eαt)

(
�β, V�±

α

)
Eα − Eβ ± iε

�β. (8.1.7)

The rapid oscillation of the exponential in the second term on the right-hand side
kills all contributions to this integral except those from Eα near Eβ , where the
denominator varies rapidly. This contribution can be evaluated for t → ∞ by
closing the contour of integration over Eα with a large semicircle in the upper
half of the complex plane for t → −∞ or in the lower half of the complex
plane for t → +∞, since in both cases the factor exp(−i Eαt) is exponen-
tially damped on the semicircle. In both cases the pole at Eα = Eβ ∓ iε is
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outside the contour of integration, so this integral vanishes, leaving us with
Eq. (8.1.5). (By the way, it is the ±iε term in the denominator in Eq. (8.1.6)
that has led to “in” and “out” states being conventionally denoted �+

α and �−
α ,

respectively.)
The “in” and “out” states inhabit the same Hilbert space, and are distinguished

only by how they are described, by their appearance at t → −∞ or at t → +∞.
Indeed, any “in” state can be expressed as a superposition of “out” states:

�+
α =

∫
dβ Sβα �

−
α . (8.1.8)

The coefficients Sβα in this relation form what is known as the S-matrix. If we
arrange a state so that it appears at t → −∞ like a free-particle state �α, then
the state is �+

α , and Eq. (8.1.8) tells us that the state will appear at late times
like the superposition

∫
dβ Sβα�β . As we will see, the S-matrix contains all

information about the rates of reactions among particles of any sorts.
We can derive a useful formula for the S-matrix by considering what the “in”

state looks like if measurements are made at late times. We again use Eq. (8.1.7)
for �+

α , but now because t > 0 we can only close the contour of integration of
Eα in the second term with a large semi-circle in the lower half of the complex
plane, so now we receive a contribution from the pole at Eα = Eβ − iε. Because
we are integrating over a closed contour running in the clockwise direction, the
contribution of this pole is −2π i times the same integral, but with the denomina-
tor dropped, and with the integration over Eα replaced by setting Eα = Eβ − iε
in the remainder of the integrand. Since ε is infinitesimal, this just amounts to
replacing (Eα − Eβ + iε)−1 in Eq. (8.1.7) with −2π iδ(Eα − Eβ), so that for
t → +∞∫

dα g(α)�+
α exp(−i Eαt) →

∫
dα g(α)�α exp(−i Eαt)

−2π i
∫

dα
∫

dβ g(α) exp(−i Eαt)
(
�β, V�+

α

)
δ(Eα − Eβ)�β. (8.1.9)

As remarked in the previous paragraph, the state �+
α looks at t → +∞ like the

superposition
∫

dβSβα�β , so from Eq. (8.1.9) we have

Sβα = δ(β − α)− 2π iδ(Eα − Eβ)Tβα, (8.1.10)

where

Tβα ≡
(
�β, V�+

α

)
. (8.1.11)

We have chosen the states �α to be orthonormal, and it follows then from
Eq. (8.1.6) that the “in” and “out” states are also orthonormal. This is fairly
obvious from the condition (8.1.5), but we can also give a more direct proof.
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We can evaluate the matrix element
(
�±
β , V�±

α

)
by using Eq. (8.1.6) in either

the right or left side of the scalar product. The results must be equal, so (using
the fact that H0 and V are Hermitian)(

�±
β , V�α

)
+
(
�±
β , V (Eα − H0 ± iε)−1V�±

α

)
=
(
�β, V�±

α

)
+
(
�±
β , V (Eβ − H0 ∓ iε)−1V�±

α

)
. (8.1.12)

We use the trivial identity

(Eα − H0 ± iε)−1 − (Eβ − H0 ∓ iε)−1 = − Eα − Eβ ± 2iε

(Eα − H0 ± iε)(Eβ − H0 ∓ iε)

so that, dividing by Eα − Eβ ± 2iε,

−
⎡
⎣

(
�α, V�±

β

)
Eβ − Eα ± 2iε

⎤
⎦

∗

−
(
�β, V�±

α

)
Eα − Eβ ± 2iε

=
(
�±
β , V (Eβ − H0 ∓ iε)−1(Eα − H0 ± iε)−1V�±

α

)
.

The only important thing about ε is that it is a positive infinitesimal, so we may
as well replace 2ε here with ε. According to Eq. (8.1.6), this tells us that

−
(
�α, [�±

β −�β]
)∗ −

(
�β, [�±

α −�α]
)

=
(
[�±

β −�β], [�±
α −�α]

)
,

and therefore (
�±
β ,�

±
α

)
=
(
�β,�α

)
= δ(α − β). (8.1.13)

By taking the scalar product of Eq. (8.1.8) with �−
β , we have now

Sβα =
(
�−
β ,�

+
α

)
. (8.1.14)

Thus Sβα is the probability amplitude that a state that is arranged to look at
t → −∞ like the free-particle state �α will look when measurements are made
at t → ∞ like the free-particle state �β .

Because Sβα is the matrix of scalar products of two complete orthonormal sets
of state vectors, it must be unitary. We can also show this directly by multiplying
Eq. (8.1.12) (for “in” states) with δ(Eα − Eβ), from which we learn that

δ(Eα − Eβ)
(

T ∗
αβ − Tβα

)
= 2iεδ(Eα − Eβ)

∫
dγ

T ∗
γβTγα

(Eα − Eγ )2 + ε2
.

For infinitesimal ε the function ε/(x2 + ε2) is negligible away from x =
0, while its integral over all x is π , so in any integral it can be replaced
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with πδ(x). Multiplying with −2iπ , replacing δ(Eα − Eβ)δ(Eα − Eγ ) with
δ(Eβ − Eγ )δ(Eα − Eγ ), and recalling Eq. (8.1.10), we have then

−[Sβα−δ(α−β)]−[S∗
αβ−δ(α−β)] =

∫
dγ [Sγβ−δ(β−γ )]∗[Sγα−δ(α−γ )]

or in other words ∫
dγ S∗

γβSγα = δ(α − β). (8.1.15)

In matrix language, S†S = 1, where as usual † denotes the transpose of the
complex conjugate.

If α and β were discrete states instead of members of a continuum, the unitar-
ity of the S-matrix would yield the result that the total probability

∑
β |Sβα|2 is

unity. The physical implications of unitarity in the real world, where these states
form a continuum, will be discussed in Section 8.3.

* * *

The distinction between “in” and “out” states is contained in the sign of the
±iε term in the denominator in the Lippmann–Schwinger equation (8.1.6). To
make this a bit less abstract, let’s take a look at what the wave function of “out”
states looks like in the case studied in Chapter 7, a non-relativistic particle of
mass μ and momentum �k being scattered by a real local potential V (x). We
saw in Section 7.2 that the coordinate-space wave scattering function ψ+

k (x)
satisfies the integral equation (7.2.3):

ψ+
k (x) = (2π�)−3/2eik·x +

∫
d3 y G+

k (x − y) V (y) ψ+
k (y), (8.1.16)

where G+
k (x − y) is a Green’s function given by Eq. (7.2.4):

G+
k (x−y) =

(
�x, [E(k)−H0+iε]−1�y

)
= −2μ

�2

1

4π |x − y|eik|x−y|, (8.1.17)

and we are now including a superscript “+” to make clear that this refers only to
“in” states. For “out” states, the wave function instead satisfies

ψ−
k (x) = (2π�)−3/2eik·x +

∫
d3 y G−

k (x − y) V (y) ψ−
k (y), (8.1.18)

where G−
k (x − y) is a different Green’s function

G−
k (x − y) =

(
�x, [E(k)− H0 − iε]−1�y

)
. (8.1.19)

Comparison of Eqs. (8.1.17) and (8.1.19) shows that

G−
k (x − y) = G+∗

k (y − x) = −2μ

�2

1

4π |x − y|e
−ik|x−y|. (8.1.20)
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Hence the solution of Eq. (8.1.18) is simply

ψ−
k (x) = ψ+∗

−k (x). (8.1.21)

In particular, in place of Eq. (7.2.5), the asymptotic form of the “out” space wave
function for large |x| is

ψ−
k (x) → (2π�)−3/2

[
eik·x + f ∗

−k(x̂)e
−ikr/r

]
, (8.1.22)

with r ≡ |x|.

8.2 Rates

The S-matrix given by Eq. (8.1.10) evidently conserves energy. Even where the
states α and β are different, Sβα is proportional to δ(Eα − Eβ). Also, the sym-
metry of invariance under spatial translations tells us that the Hamiltonian H
commutes with the momentum operator P, and since H0 evidently commutes
with P, so does V ; it follows then that Tβα and Sβα are proportional also to a
three-dimensional delta function δ3(Pα − Pβ), where Pα and Pβ are the total
momenta of the states α and β. In the case where α and β are not identical
states, we can write

Sβα = δ(Eα − Eβ) δ
3(Pα − Pβ) Mβα, (8.2.1)

where Mβα is a smooth function of the momenta in the states α and β, con-
taining no delta functions.1 The presence of the delta functions in Eq. (8.2.1)
poses an immediate problem: in setting the probability for the transition α → β

equal to |Sβα|2, what are we to make of the squares of δ(Eα − Eβ) and
δ3(Pα − Pβ)?

The easiest way to deal with this problem is to imagine that the system is
contained in a box of finite volume V , and that the interaction is turned on only
for a finite time T . One consequence is that the delta functions, which as shown
in Section 3.2 can be represented as

δ3(Pα − Pβ) ≡ 1

(2π�)3

∫
d3x ei(Pα−Pβ)·x/�,

δ(Eα − Eβ) ≡ 1

2π�

∫ ∞

−∞
dt ei(Eα−Eβ)t/�.

1 Strictly speaking, this is true only if no subsets of particles in the states α and β have identical total
momenta. This condition is necessary to rule out the possibility that the transition α → β involves
several distant reactions having nothing to do with each other, in which case Sβα would include several
factors of momentum-conservation delta functions, one for each separate reaction. This possibility does
not occur in the scattering of just two particles.
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are instead replaced with

δ3
V (Pα − Pβ) ≡ 1

(2π�)3

∫
V

d3x ei(Pα−Pβ)·x/�,

δT (Eα − Eβ) ≡ 1

2π�

∫
T

dt ei(Eα−Eβ)t/�. (8.2.2)

Then we have [
δ3

V (Pα − Pβ)
]2 = V

(2π�)3
δ3

V (Pα − Pβ), (8.2.3)

[
δT (Eα − Eβ)

]2 = T

2π�
δT (Eα − Eβ). (8.2.4)

Also, in using the square of S-matrix elements as transition probabilities, we
must take the states to be suitably normalized. In coordinate space, this means
that instead of giving a one-particle state �p of momentum p the wave function
(6.2.9) with continuum normalization:(

�x,�p

)
= eip·x/�

(2π�)3/2
,

we take it to be normalized so that the integral of its absolute-value squared over
the box is unity: (

�x,�
Box
p

)
= eip·x/�

√
V

.

That is, we define the box-normalized state as

�Box
p ≡

√
(2π�)3

V
�p. (8.2.5)

For multi-particle states a product of factors of
√
(2π�)3/V appears in the

relation between box-normalized and continuum-normalized states. Hence the
S-matrix elements between box-normalized states are

SBox
βα =

[
(2π�)3

V

](Nα+Nβ)/2

Sβα, (8.2.6)

where Nα and Nβ are the numbers of particles in the initial and final states,
respectively. Putting this together, we see that the probability of the transition
α → β is

P(α → β) = ∣∣SBox
βα

∣∣2 = T

2π�

[
(2π�)3

V

]Nα+Nβ−1

× δT (Eα − Eβ)δ
3
V (Pα − Pβ)

∣∣Mβα

∣∣2 .
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The transition rate is the transition probability divided by the time T during
which the interaction is acting, or

�(α → β) = P(α → β)

T
= 1

2π�

[
(2π�)3

V

]Nα+Nβ−1

× δT (Eα − Eβ)δ
3
V (Pα − Pβ)

∣∣Mβα

∣∣2 . (8.2.7)

But this is still not what is generally measured. Eq. (8.2.7) gives the rate of
transition to a single one of the possible final states. But in a large box, these
states are very close together. As we saw in Section 6.2, the number of one-
particle states in a volume d3 p of momentum space is V d3 p/(2π�)3, so the
rate for transitions into a range dβ of final states is

d�(α → β) = [V/(2π�)3]Nβ �(α → β) dβ

= 1

2π�

[
(2π�)3

V

]Nα−1 ∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ,

(8.2.8)

where dβ is here the product of the d3 p factors for each particle in the state. (We
have dropped the subscripts V and T on the delta functions, since this formula
will always be used in the limit V → ∞ and T → ∞, where the delta functions
(8.2.2) become the ordinary delta functions.) This is our final general formula
for transition rates.

The factor (1/V )Nα−1 in Eq. (8.2.8) is just what should be expected on phys-
ical grounds. For Nα = 1, this factor is unity, so the rate of decay of a single
particle into some set β of particles is independent of the volume in which the
decay takes place

d�(α → β) = 1

2π�
∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ, (8.2.9)

as one would expect. For Nα = 2 this factor is 1/V , so the rate of producing the
final state β in the collision of two particles is proportional to the density 1/V of
either particle at the position of the other, again as would be expected. Since this
is a rate, it should actually be proportional to the rate per area uα/V at which
the beam of one of the particles strikes the other, where uα is the relative speed
of the two particles. The coefficient of uα/V in the transition rate d�(α → β)

is the differential cross-section

dσ(α → β) ≡ d�(α → β)

uα/V
= (2π�)2

uα

∣∣Mβα

∣∣2 δ(Eα − Eβ)δ
3(Pα − Pβ) dβ.

(8.2.10)

We will mostly work in the center-of-mass frame, in which the two particles
have equal and opposite momenta — say, p and −p — in which case the relative
velocity is
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u = |p|c2

E1
+ |p|c2

E2
= |p|

μ
μ ≡ E1 E2

c2(E1 + E2)
, (8.2.11)

with

E1 =
√

p2c2 + m1c4, E2 =
√

p2c2 + m2c4.

In the non-relativistic case, where E 	 mc2, the quantity μ is the familiar
reduced mass m1m2/(m1 + m2).

There are even physically important collision processes with three particles
in the initial state, such as the first step e− + p + p → d + ν in the chain of
reactions that gives heat to the Sun. The rates of such reactions are naturally
proportional to the product of the densities of two of the particles at the position
of the third, or 1/V 2.

It is still necessary to explain how to deal with the factor δ(Eα − Eβ)δ
3(Pα −

Pβ) dβ in Eqs. (8.2.8)–(8.2.10). For two particles in the final state, this factor
is just proportional to the differential element of solid angle. Let us work in
the center-of-mass frame, in which the total momentum of the initial state van-
ishes. Then if the final state consists of two particles of momenta p1 and p2 and
energies E1 and E2, this factor is

δ3(p1 + p2)δ (E1 + E2 − E) d3 p1d3 p2 = δ (E1 + E2 − E) p2
1 dp1 d�1

= p2
1 d�1

|∂(E1 + E2)/∂p1| = μp1d�1. (8.2.12)

where μ is given by Eq. (8.2.11). In the final expression, p1 is the momentum
fixed by energy conservation, the solution of the equation E1 + E2 = E . (In

deriving this result, we use the fact that δ
(

f (p)
)

dp = 1/| f ′(p)|, where f ′(p)

is evaluated at the value of p where f (p) = 0.)
For instance, according to Eq. (8.2.9), the rate of decay of a single particle

into two particles is

d� = 1

2π�
∣∣Mβα

∣∣2 μβ pβd�β, (8.2.13)

and Eq. (8.2.10) gives the differential cross-section for a transition to a two-
particle final state in the collision of two particles in the center-of-mass frame as

dσ(α → β) = (2π�)2

uα

∣∣Mβα

∣∣2 μβ pβd�β = (2π�)2

(
pβ
pα

)
μαμβ

∣∣Mβα

∣∣2 d�β.

(8.2.14)

For the purpose of comparison with the results of the previous chapter, we
note that in the case of elastic scattering of a non-relativistic particle by a
fixed scattering center, there is no momentum-conservation delta function in the
relation (8.2.1), which here gives

Sk′,k = δ(E(k ′)− E(k)) Mk′,k, (8.2.15)



244 8 General Scattering Theory

where k and k′ are the initial and final wave numbers, and we are assuming here
that k′ �= k. Comparing this with Eqs. (8.1.10) and (8.1.11) gives

Mk′,k = −2π i
(
�k′, V�+

k

)
= −2π i

∫
d3x (2π�)−3/2e−ik′·xV (x)ψk(x).

(8.2.16)

Then Eq. (7.2.6) gives the relation between the scattering amplitude (in a slightly
different notation) and the M-matrix element:

f (k → k′) = −2π�iμMk′,k. (8.2.17)

Here μβ = μα ≡ μ and pα = pα, so in this case Eq. (8.2.14) gives the
differential cross-section dσ = | f |2d�, as found in Section 7.2.

8.3 The General Optical Theorem

We now take up an important consequence of the unitarity of the S-matrix.
Eq. (8.2.1) applies only to the case of a reaction in which the states α and β

are different; more generally we have

Sβα = δ(α − β)+ δ(Eα − Eβ) δ
3(Pα − Pβ) Mβα. (8.3.1)

The condition of unitarity reads

δ(α − β) =
∫

dγ S∗
γβSγα

= δ(α − β)+ δ(Eα − Eβ) δ
3(Pα − Pβ)

[
Mβα + M∗

αβ

]
+
∫

dγ M∗
γβMγαδ(Eγ − Eβ) δ

3(Pγ − Pβ)δ(Eγ − Eα) δ
3(Pγ − Pα)

and so, for Pβ = Pα and Eβ = Eα,

0 = Mβα + M∗
αβ +

∫
dγ M∗

γβMγαδ(Eγ − Eα) δ
3(Pγ − Pα). (8.3.2)

This is particularly useful in the case α = β. In this case the last term of
Eq. (8.3.2) is proportional to the total rate for all reactions with initial state α,
which is given by Eq. (8.2.8) as

�α ≡
∫

dγ �(α → γ ) = 1

2π�

[
(2π�)3

V

]Nα−1 ∫ ∣∣Mγα

∣∣2
× δ(Eα − Eγ )δ

3(Pα − Pγ ) dγ. (8.3.3)

Thus in the case α = β, Eq. (8.3.2) may be written

Re Mαα = −π�
[

V

(2π�)3

]Nα−1

�α. (8.3.4)
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This is the most general form of the optical theorem.
In the special case of a two-particle state α, Eq. (8.3.4) becomes

Re Mαα = − π�
(2π�)3

uασα, (8.3.5)

where uα is the relative velocity, and σα = �α/(uα/V ) is the total cross-section
for all possible results of the collision of the two particles. Using Eq. (8.2.17),
the imaginary part of the forward scattering amplitude is then

Im f (kα → kα) = −2π�μαReMαα = μαuα
4π�

σα = kα
4π

σα, (8.3.6)

which is the original optical theorem, derived in Section 7.3.

8.4 The Partial Wave Expansion

By using rotational invariance together with unitarity, we can derive a represen-
tation of the S-matrix that is much like the expression of the scattering amplitude
in terms of phase shifts in the previous chapter, but now in a much more general
context, including inelastic reactions and particles with spin.

We must first see how to express two-particle states �p1,σ1;p2,σ2 with momenta
p1 and p2, spins s1 and s2, and spin 3-components σ1 and σ2, in terms of states
of definite total energy E , total momentum P, total angular momentum J , total
angular momentum 3-component M , orbital angular momentum �, and total spin
s. Let us define

�P,E,J,M,�,s,n ≡
∫

d3 p1
1√
μ|p1|δ(E − E1 − E2)

×
∑

σ1σ2σm

Y m
� ( p̂1)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)�p1,σ1;P−p1,σ2;n. (8.4.1)

Here n is a compound index, labeling the particle types, including their masses
m1 and m2 and spins s1 and s2; Y m

� is the spherical harmonic described in Sec-
tion 2.2; the Cs are the Clebsch–Gordan coefficients described in Section 4.3;
and the Ei are the energies

E1 ≡
√

m2
1c4 + p2

1c4, E2 ≡
√

m2
2c4 + (P − p1)2c4.

We will concentrate here on the center-of-mass system, for which P = 0. In this
case μ is the reduced mass defined by Eq. (8.2.11). The idea of the definition
(8.4.1) is that the two spins add up to a total spin s with 3-component σ , and
in the center-of-mass frame with P = 0, the total spin and the orbital angular
momentum add up to a total angular momentum J with 3-component M . As we
will now see, the factor (μ|p1|)−1/2 is inserted to give the states (8.4.1) a simple
norm.
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The states �p1,σ1;p2,σ2;n are taken to have the conventional continuum normal-
ization(
�p′

1,σ
′
1;p′

2,σ
′
2;n′,�p1,σ1;p2,σ2;n

)
= δn′nδ

3(p′
1 − p1) δ

3(p′
2 − p2)δσ ′

1σ1δσ ′
2σ2 . (8.4.2)

Let us check the normalization of the states (8.4.1). In the case of interest here,
where one of these states is taken to have zero total momentum, the scalar
product of these states is

(
�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)
∫

d3 p1

μ|p1|
×δ(E1 + E2 − E)

∑
σ1σ2m′mσ ′σ

Y m′
�′ ( p̂1)

∗Y m
� ( p̂1)

×Cs1s2(s
′σ ′; σ1σ2)Cs′�′(J ′M ′; σ ′ m ′)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m).

(8.4.3)

Using the defining property of the delta function, we have (for P = 0)∫ ∞

0
p2

1 dp1 δ(E1 + E2 − E) = p2
1

|(∂/∂p1)(E1 + E2)| = p1 E1 E2/Ec2 = μp1

where here p1 is the solution of the energy-conservation equation E1 + E2 = E ,

with E1 ≡
√

m2
1c4 + p2

1c4 and E2 ≡
√

m2
2c4 + p2

1c4. This is canceled by the
factor 1/μp1 in Eq. (8.4.3), which is why we put the square root of this factor in
the definition (8.4.1). Thus Eq. (8.4.2) becomes(
�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)

×
∑

σ1σ2m′mσ ′σ

∫
d2 p̂1 Y m′

�′ ( p̂1)
∗Y m

� ( p̂1)

×Cs1s2(s
′σ ′; σ1σ2)Cs′�′(J ′M ′; σ ′ m ′)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m). (8.4.4)

Next, we use the orthonormality properties of the spherical harmonics and
Clebsch–Gordan coefficients:∫

d2 p̂1 Y m′
�′ ( p̂1)

∗Y m
� ( p̂1) = δ�′�δm′m,

∑
σ1σ2

Cs1s2(s
′σ ′; σ1σ2)Cs1s2(sσ ; σ1σ2) = δs′sδσ ′σ

and then ∑
σm

Cs�(J ′M ′; σ m)Cs�(J M; σ m) = δJ ′ J δM ′ M ,
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so Eq. (8.4.4) becomes the desired result:(
�P′,E ′,J ′,M ′,�′,s′,n′,�0,E,J,M,�,s,n

)
= δn′nδ

3(P′)δ(E ′ − E)δs′sδ�′�δJ ′ J δM ′ M .

(8.4.5)

The advantage of using the states (8.4.1) as a basis is that for these states the
Wigner–Eckart theorem and energy and momentum conservation tell us that the
S-matrix can be expressed as

SP′,E ′,J ′,M ′,�′,s′,n′;0,E,J,M,�,s,n = δ3(P)δ(E ′ − E)δJ ′ J δM ′ M S J
n′�′s′;n�s(E), (8.4.6)

where S J is a matrix with discrete indices labeling its rows and columns. It
follows that in this basis, the matrix Mβα in Eq. (8.3.1) takes the form

M0,E,J ′,M ′,�′,s′,n′;0,E,J,M,�,s,n = δJ ′ J δM ′ M
[

S J (E)− 1
]

n′�′s′;n�s
. (8.4.7)

But to calculate cross-sections, we need this matrix in the original basis of states
with definite momentum for each particle. To go over to the original basis, we
use Eqs. (8.4.1) and (8.4.2) to calculate the scalar product(

�p1,σ1;−p1,σ2,n,�P,E,J,M,�,s,n′
)

= δnn′√
μ|p1|δ

3(P) δ(E − E1 − E2)

×
∑
σm

Y m
� ( p̂1)Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)�p1,σ1;−p1,σ2.n. (8.4.8)

Then Eq. (8.4.5) gives

�p1,σ1;−p1,σ2;n =
∫

d3 P
∫

d E
∑

J M�sn′

(
�P,E,J,M,�,s,n′,�p1,σ1;−p1,σ2;n

)
×�P,E,J,M,�,s,n′

= 1√
μ|p1|

∑
J M�msσ

Y m
� ( p̂1)

∗Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)�0,E1+E2,J,M,�,s,n,

(8.4.9)

and from Eq. (8.4.7) we have

Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n = 1√
μ′|p′

1|
1√
μ|p1|

×
∑
J M

∑
�′m′s′σ ′

Y m′
�′ ( p̂′

1)Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′�′(J M; σ ′ m ′)

×
∑
�msσ

Y m
� ( p̂1)

∗Cs1s2(sσ ; σ1σ2)Cs�(J M; σ m)
[

S J (E)− 1
]
�′,s′,n′;�,s,n

.

(8.4.10)
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We will choose a coordinate system in which the initial momentum p1 is in the
3-direction, and use the property of the spherical harmonic, that in this case

Y m
� ( p̂1) = δm0

√
2�+ 1

4π
, (8.4.11)

so that Eq. (8.4.10) simplifies slightly:

Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n = 1√
μ′|p′

1|
1√
μ|p1|

×
∑
J M

∑
�′m′s′σ ′

Y m′
�′ ( p̂′

1)Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′�′(J M; σ ′ m ′)

×
∑
�sσ

√
2�+ 1

4π
Cs1s2(sσ ; σ1σ2)Cs�(J M; σ 0)

[
S J (E)− 1

]
�′,s′,n′;�,s,n

.

(8.4.12)

This gives a complicated differential cross-section, but the result becomes
much simpler if we integrate over the direction of the final momentum, sum over
final spin 3-components, and average over initial spin 3-components. According
to Eq. (8.2.14), the total cross-section for the transition n → n′ when spins are
not observed is

σ(n → n′; E) = (2π�)2μμ′

(2s1 + 1)(2s2 + 1)

(
p′

1

p1

)

×
∑

σ1σ2σ
′
1σ

′
2

∫
d�′

1

∣∣∣Mp′
1,σ

′
1,−p′

1,σ
′
2,n

′;p1,σ1,−p1,σ2,n

∣∣∣2 . (8.4.13)

The sums over J , M , �′, m ′, s ′, σ ′, �, s, σ in one factor of the M-matrix in
Eq. (8.4.12) is accompanied with a sum over independent variables J , M , �

′
,

m ′, s ′, σ ′, �, s, σ in the other factor of the M-matrix, but these double sums
collapse back to single sums if in turn we use the following relations in the
order listed: ∫

Y m′
�′ ( p̂′

1)Y
m′
�
′ ( p̂′

1)
∗d�′

1 = δ
�′�′δm′m′, (8.4.14)∑

σ ′
1σ

′
2

Cs′
1s′

2
(s ′σ ′; σ ′

1σ
′
2)Cs′

1s′
2
(s ′, σ ′; σ ′

1σ
′
2) = δs′s′δσ ′σ ′ (8.4.15)

∑
σ ′m′

Cs′�′(J M; σ ′m ′)Cs′�′(J , M; σ ′m ′) = δJ J δM M (8.4.16)

∑
σ1σ2

Cs1s2(sσ ; σ1σ2)Cs1s2(s σ ; σ1σ2) = δssδσσ (8.4.17)

∑
Mσ

Cs�(J M; σ0)Cs�(J M; σ0) = 2J + 1

2�+ 1
δ��. (8.4.18)
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After we carry out this integral and these sums, Eq. (8.4.13) becomes

σ(n → n′; E) = π

k2(2s1 + 1)(2s2 + 1)

∑
J�′s′�s

(2J + 1)

∣∣∣∣(S J (E)− 1
)
�′s′n′,�sn

∣∣∣∣
2

,

(8.4.19)

where k ≡ p1/� is the initial wave number. For any matrix A,
∑

N ′ |AN ′ N |2 =
(A† A)N N . so the total cross-section for producing two-particle final states is∑

n′
σ(n → n′; E) = π

k2(2s1 + 1)(2s2 + 1)

×
∑
J�s

(2J + 1)
[(

S J†(E)− 1
)(

S J (E)− 1
)]

�sn,�sn
.

(8.4.20)

This may be compared with the total spin-averaged cross-section for all
reactions, given by the general optical theorem (8.3.5):

σtotal(n; E) = − 8π2�2μ

p1(2s1 + 1)(2s2 + 1)

∑
σ1σ2

ReMp1,σ1,−p1,σ2,n;p1,σ1,−p1,σ2,n.

(8.4.21)
Using Eq. (8.4.12) and (8.4.11) again, we then have

σtotal(n; E) = 2π

k2(2s1 + 1)(2s2 + 1)

∑
σ1σ2 J M�′s′σ ′�sσ

√
(2�+ 1)(2�′ + 1)

×Cs1s2(s
′σ ′; σ1σ2)Cs1s2(sσ ; σ1σ2)Cs′�′(J M; σ ′0)Cs�(J M; σ 0)

×Re
[
1 − S J (E)

]
�′s′n,�sn

.

Then Eq. (8.4.17) and (8.4.18) (with primes instead of bars) give the total spin-
averaged cross-section:

σtotal(n; E) = 2π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1)Re
[
1 − S J (E)

]
�sn,�sn

.

(8.4.22)

In general, this is not equal to Eq. (8.4.20), because the sum in Eq. (8.4.20) runs
only over two-particle final states. The difference between (8.4.22) and (8.4.20)
is the cross-section for reactions in which the final state contains three or more
particles:

σproduction(n; E) ≡ σtotal(n; E)−
∑

n′
σ(n → n′; E)

= π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1)
[
1 − S J†(E)S J (E)

]
�sn,�sn

. (8.4.23)
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It is only when the energy is too small to admit the production of extra particles
that the matrix S J (E) (which was defined in the space of two-particle states) is
unitary.

It sometimes happens that for a given n and E , the only final states that can
be produced from a set of initial states �0,E,J,M,�,s,n are the same states. For
instance, this is the case in the collision of two spinless particles with energy
too low to allow inelastic scattering, since we necessarily have � = J , and of
course s = 0. The same is true (ignoring weak parity violation) in the elastic
scattering of particles with s1 = 0 and s2 = 1/2, as for instance pion–nucleon
scattering below the threshold for producing extra pions,1 since the two states
with � = J +1/2 and � = J −1/2 have opposite parity, and therefore cannot be
connected by non-zero elements of S J . In any such case, the assumed vanishing
of the production cross-section (8.4.23) and the vanishing of S�′s′n′,�sn unless
�′ = �, s ′ = s, and n′ = n tells us that

1 = [
S J†(E)S J (E)

]
�sn,�sn

=
∣∣∣∣[S J (E)

]
�sn,�sn

∣∣∣∣
2

, (8.4.24)

and so in these cases we can write[
S J (E)

]
�′s′n′,�sn

= exp (2iδJ�sn(E)) δ�′�δs′sδn′n (8.4.25)

where δJ�sn(E) is a real quantity, known (by analogy with its appearance in
potential scattering) as the phase shift. Using this in Eq. (8.4.19) gives the cross-
section (which is here the total cross-section)

σ(n → n; E) = 4π

k2(2s1 + 1)(2s2 + 1)

∑
J�s

(2J + 1) sin2
(
δJ�sn(E)

)
. (8.4.26)

This is a generalization of the corresponding result (7.5.13) for potential scat-
tering, but now applicable to the case of particles with spin, or with relativistic
velocities, or interactions more complicated than local potentials.

More generally, Eq. (8.4.23) tells us that
[
S J†(E)S J (E)

]
�sn,�sn

is at most
unity, so in general∣∣∣∣[S J (E)

]
�sn,�sn

∣∣∣∣
2

≤ [
S J†(E)S J (E)

]
�sn,�sn

≤ 1. (8.4.27)

We can if we like write[
S J (E)

]
�sn,�sn

≡ exp (2iδJ�sn(E)) (8.4.28)

but then in general ImδJ�sn(E) ≥ 0.

1 Strictly speaking, these remarks apply only to π+ p or π−n scattering, since for the other cases we have
inelastic reactions such as π− p ↔ π0n. These other cases can be treated in the same way by taking
advantage of the conservation of isotopic spin as well as total angular momentum. That is, we have
phase shifts for states with definite J , �, and total isospin T , with T = 1/2 or T = 3/2.



8.4 The Partial Wave Expansion 251

We can use this formalism to get a good insight into the behavior of the var-
ious cross-sections at high energy. If the energy is so large that the wavelength
h/p is much smaller than the characteristic radius R of the colliding particles —
that is, k R � 1, where k = p/� — then it is plausible to invoke a classical
picture of the scattering.

Suppose that two hadrons, whose cross-sections are disks of radius R1 and
R2, approach each other with momenta p1 and −p1 parallel to and at distances
b1 and b2 from some central line. Classically, the total angular momentum is
�� = |p1|b1+|p1|b2. The hadrons will plow into each other if R1+R2 ≥ b1+b2,
that is, if � ≤ k R, where k = |p1|/� and R = R1 + R2. We suppose that in this
case the particles collide destructively, with no chance of a transition �sn → �sn
in which nothing happens, while for � ≥ k R, there is no collision. That is, we
assume that

S J
� s n, � s n =

{
0 � < k R
1 � > k R

. (8.4.29)

Together with Eq. (8.4.22), this gives

σtotal(n; E) → 2π

k2(2s1 + 1)(2s2 + 1)

k R∑
�=0

∑
J,s

(2J + 1). (8.4.30)

The values of J in this sum run from |� − s| to � + s. For k R � 1 this sum is
dominated by large values of �, for which � � s, and hence 2J + 1 	 2�. The
number of values of J for � � s is 2s + 1. Further, the sum over s runs from
s = |s1 − s2| to s = s1 + s2, so the remaining sum over s is

s1+s2∑
s=|s1−s2|

(2s + 1) = 2

[
(s1 + s2)(s1 + s2 + 1)

2
− (|s1 − s2| − 1)|s1 − s2|

2

]

+s1 + s2 − |s1 − s2| + 1 = (2s1 + 1)(2s2 + 1).

Finally,

k R∑
�=0

2� = k R(k R + 1) → (k R)2.

Putting this together, Eq. (8.4.30) now gives

σtotal(n; E) → 2πR2. (8.4.31)

The factor 2 in Eq. (8.4.31) may be surprising. One might have expected that
high-energy particles in the center-of-mass frame experience some sort of reac-
tion if and only if they approach each other along lines separated by no more than
a distance R, the range of their interaction. In that case, the asymptotic value of
the total cross-section would be πR2, not 2πR2. The larger cross-section may
be attributed to quasi-elastic scattering, with two particles in the final as well
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as the initial state, due to the diffraction of particles that approach each other
at distances a little larger than R. We can estimate the relative contribution of
quasi-elastic scattering and particle production if we strengthen Eq. (8.4.29),
assuming that

S J
�′s′n′,�sn =

{
0 � < k R
δ�′�δs′sδn′n � > k R

. (8.4.32)

In this case, Eq. (8.4.23) gives

σproduction(n; E) → π

k2(2s1 + 1)(2s2 + 1)

k R∑
�=0

∑
J,s

(2J + 1) = πR2. (8.4.33)

The result that σproduction(n; E) → πR2 is not surprising. Particles that collide
well within the effective area πR2 cannot merely be scattered quasi-elastically,
but rather, like colliding glass spheres, must produce a shower of other particles.

The cross-sections for strong-interaction scattering processes such as proton–
proton scattering2 actually do become nearly constant at very high energy. There
is a slow growth of the cross-sections, which may be attributed to a slow increase
in R. We can guess that R is the distance at which a potential like the Yukawa
potential, V ∝ e−r/RY /r falls below the kinetic energy �2k2/2μ, which for
very large k gives R 	 RY ln k. The cross-sections thus are expected to grow
as ln2 k, the fastest growth allowed under very general considerations.3 Per-
haps surprisingly, this all agrees pretty well with observation.4 Measurements
of proton–proton scattering at the Large Hadron Collider at 7 TeV and in cos-
mic rays at 57 TeV show that the cross-sections really do increase as ln2 k, while
the ratio σproduction/σtotal approaches 0.491 ± 0.021, in agreement with the ratio
of Eqs. (8.4.33) and (8.4.31).

8.5 Resonances Revisited

In Section 7.6 we considered the scattering of a spinless non-relativistic particle
by a potential with a high thick barrier surrounding an inner region in which the
potential is much smaller. We found in Eq. (7.6.13) that the scattering amplitude
is proportional to (E − ER + i�/2)−1, where � is exponentially small, and ER is
the energy (up to terms of order �) of a state that would be a stable bound state
if the barrier were infinitely high or thick. By considering the time-dependence

2 In proton–proton collisions there are no appreciable transitions to other two-particle states, so here
we do not need to distinguish between the “production” cross-section (8.4.33) and the total inelastic
cross-section.

3 M. Froissart, Phys. Rev. 135, 1053 (1961).
4 M. M. Block and F. Halzen, Phys. Rev. Lett. 107, 212002 (2011).
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of a wave packet in Eq. (7.6.12), we were able to interpret the quantity �/� as
the decay rate of this unstable state.

This argument can be turned around and generalized. There are several pos-
sible reasons for the appearance of nearly stable states. One is the existence of
a barrier, like that treated in Section 7.6, through which a particle must tunnel
for the state to decay. This is the case for instance in nuclear alpha decay, such
as the radioactive decay of U235 or U238, in which the alpha particle must tun-
nel through a Coulomb potential due to 90 protons. A nearly stable state can
also occur when the decay of the state is only possible because of an interaction
that is intrinsically weak. For instance, Eq. (6.5.13) shows that the rate �/� at
which atomic states decay by emission of a single photon is typically of order
e2ω3a2/c3�, where a is a characteristic atomic size, andω ≈ e2/a� is the photon
frequency, of the same order as the frequency with which electrons classically
go around their orbits. The ratio of the decay rate to the orbital frequency is then
�/�ω ≈ e6/�3c3, which is very small because e2/�c 	 1/137 is small. It is also
possible for a state of a large number of particles to be nearly stable because
energy conservation allows the decay only if, through some fluctuation, much
of the energy of the state is concentrated on a single particle. Whatever the rea-
son for the existence of a nearly stable state, in all such cases the existence of a
state with energy ER and decay rate �/� implies the presence in the S-matrix of
a factor (E − ER + i�/2)−1, so that the probability of the reaction continuing
for a time t will be proportional to1

∣∣∣∣
∫ ∞

−∞
exp(−i Et/�) d E

(E − ER + i�/2)

∣∣∣∣
2

= 4π2 exp(−�t/�). (8.5.1)

The behavior of S-matrix elements near the resonance is largely determined
by the unitarity of the S-matrix, whatever the mechanism that is responsible for
the nearly stable state. To analyze this, it is helpful to generalize the basis of
states introduced in the previous section. For a given total energy E and total
momentum P, the space occupied by the allowed individual three-momenta
has finite volume, so it is always possible to expand any multi-particle state
�p1,p2,p2,... in a series of states �E,P,J,M,N , analogous to the expansion (8.4.9) in
the two-particle case. Here E , P, J , and M are again the total energy, momen-
tum, angular momentum, and angular momentum 3-component, and N is a
discrete index, a generalization of the compound index �, s, n for two-particle
states. In this basis we can write general S-matrix elements in the center-of-mass
frame as

1 This is calculated as usual by closing the contour of integration with a large semicircle in the lower half
plane, and picking up the contribution of the pole at E = ER − i�/2. Of course, the actual integrand
involves other factors, including the amplitude of the wave packet, and these may also have poles in the
lower half plane, but for sufficiently narrow resonances, these poles will all be at a distance below the
real axis greater than �/2, and therefore will not contribute at very late times.
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SE ′ P′ J ′ M ′ N ′, E 0 J M N = δ(E ′ − E)δ3(P′)δJ ′ J δM ′ MS J
N ′ N (E). (8.5.2)

(The fact that the matrix element depends on M only through the factor δM ′ M
follows from the results of Section 4.2.) If these states are normalized so that(

�E ′,P′,J ′ M ′ N ′,�E,P,J M N

)
= δ(E ′ − E)δ3(P′ − P)δJ ′ J δM ′ MδN ′ N , (8.5.3)

then unitarity tells us that the matrix S J (E) must be unitary

S J†(E)S J (E) = 1, (8.5.4)

where 1 is of course here the matrix with 1N ′ N = δN ′ N .
Now, suppose that near the resonance the S J matrix takes the form

S J (E) 	 S(0) + R
E − ER + i�/2

, (8.5.5)

where S(0) and R are constant matrices. We don’t keep the label J on S(0)

and R, because Eq. (8.5.5) is supposed to hold only for one value of J , the
total angular momentum of the resonant state. (The term S(0) is analogous to
exp(2iδ), where δ is the slowly varying non-resonant phase shift in Eq. (7.6.8).)

The matrix S J†(E)S J (E) − 1 is a sum of terms proportional to (E −
ER)2/[(E − ER)2 +�2/4], to 1/[(E − ER)2 +�2/4], and to a constant. Since
these three functions of E are independent, the unitarity relation (8.5.4) requires
the coefficients of each term to vanish. The constant term gives

S(0)†S(0) = 1 ; (8.5.6)

the terms proportional to (E − ER)/[(E − ER)2 + �2/4] give

S(0)†R + R†S(0) = 0 ; (8.5.7)

and the terms proportional to 1/[(E − ER)2 + �2/4] give

− i�

2
S(0)†R + i�

2
R†S(0) + R†R = 0. (8.5.8)

These conditions can be made more perspicuous by introducing another constant
matrix A, such that

R = −i�AS(0), (8.5.9)

which we know is possible because Eq. (8.5.6) shows that S(0) has an inverse.
Then Eqs. (8.5.7) and (8.8.8) tell us that

A† = A, A2 = A. (8.5.10)

Because A is Hermitian, it can be diagonalized — that is, it can be expressed as
uDu†, where u is a unitary matrix and D is a diagonal matrix. Further, because



8.5 Resonances Revisited 255

A2 = A, the elements of D on the diagonal are all either zero or one. That is,
we can write

AN ′ N =
∑

r

uN ′r u∗
Nr (8.5.11)

the sum here running over all the eigenvalues of A that are one rather than zero.
Because u is a unitary matrix, its elements uNr satisfy a normalization condition∑

N

u∗
Nr uNr ′ =

[
u†u

]
rr ′ = δrr ′ . (8.5.12)

Eqs. (8.5.5), (8.5.9), and (8.5.11) then give the matrix S(E) near a resonance as

S J (E)N ′ N 	
∑
N ′′

[
δN ′ N ′′ − i�

E − ER + i�/2

∑
r

uN ′r u∗
N ′′r

]
S(0)N ′′ N . (8.5.13)

So far, this has been quite general. To go further, we will now make the sim-
plifying assumption that the scattering near the resonance is entirely dominated
by the resonance, so that S(0) 	 1, and Eq. (8.5.13) therefore gives

S J (E)N ′ N 	 δN ′ N − i�

E − ER + i�/2

∑
r

uN ′r u∗
Nr . (8.5.14)

We will further assume that the only degeneracy of the resonant state is that
associated with the 2J + 1 values of the 3-component M of the total angular
momentum. The index r therefore takes only one value, and can henceforth be
dropped. Then Eq. (8.5.14) becomes

S J (E)N ′ N 	 δN ′ N − i�

E − ER + i�/2
uN ′u∗

N , (8.5.15)

and the normalization condition (8.5.12) is here∑
N

|uN |2 = 1. (8.5.16)

Eq. (8.5.15) shows that the probability of the resonant state decaying into chan-
nel N is proportional to |uN |2, while Eq. (8.5.16) then tells us that the constant
of proportionality is unity — that is, |uN |2 is the probability of this decay, known
as the branching ratio.

In particular, for basis states containing just two particles, we can take N to be
the compound index �, s, n, where � is the orbital angular momentum, s is the
total spin, and n labels the species of the two particles, including their masses
and spins. In the notation of Section 8.4, Eq. (8.5.14) gives for two-particle states

S J (E)�′s′n′,� s n 	 δ�′�δs′sδn′n − i�

E − ER + i�/2
u�′s′n′u∗

� s n, (8.5.17)
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and Eq. (8.5.16) gives ∑
� s n

|u� s n|2 +
∑

≥3 particles

|uN |2 = 1. (8.5.18)

Then Eq. (8.4.19) gives the cross-section for the transition n → n′ (summed
over final spins, and averaged over initial spins) at energies near the resonance

σ(n → n′; E) = π(2J + 1)

k2(2s1 + 1)(2s2 + 1)

�n�n′

(E − ER)2 + �2/4
, (8.5.19)

where �n is the partial width

�n ≡ �
∑
�s

|u�sn|2 . (8.5.20)

Also, Eq. (8.4.22) gives the total cross-section (averaged over initial spins) for
all reactions with an initial state n:

σtotal(n; E) = π(2J + 1)

k2(2s1 + 1)(2s2 + 1)

�n�

(E − ER)2 + �2/4
. (8.5.21)

Note that the ratio of the specific cross-section (8.5.19) and the total cross-
section (8.5.21) is simply

σ(n → n′; E)

σtotal(n; E)
= �n′

�
=
∑
�s

|u�sn′ |2. (8.5.22)

Whatever the final state, the probability of forming the resonant state in a colli-
sion process is the same, so Eq. (8.5.22) gives the branching ratio, the probability
that the resonant state decays into the specific two-body final state n′. According
to Eq. (8.5.18), the sum of these branching ratios is unity if the resonant state
decays only into two-particle states; otherwise the sum is less than unity. Finally,
since �/� is the total decay rate of the resonance, it follows that �n′/� is the rate
at which the resonant state decays into the specific final state n′.

8.6 Old-Fashioned Perturbation Theory

The Lippmann–Schwinger equation (8.1.6) allows an easy formal solution by
iteration:

�±
α = �α + (Eα − H0 ± iε)−1V�α

+(Eα − H0 ± iε)−1V (Eα − H0 ± iε)−1V�α + · · · . (8.6.1)

This in turn yields a series for the S-matrix (8.1.10) in powers of the interaction,
which we shall write as:

Sβα = δ(α − β)− 2π i δ(Eβ − Eα)

(
�β,

[
V + G(Eα + iε)

]
�α

)
, (8.6.2)
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where, for an arbitrary complex W ,

G(W ) = K (W )+ K 2(W )+ · · · , (8.6.3)

and

K (W ) ≡ (W − H0)
−1V . (8.6.4)

This is called “old-fashioned perturbation theory” because it has been super-
seded for most (but not all) purposes by the time-dependent perturbation theory
described in the next section. The first term in square brackets in Eq. (8.6.2)
provides the Born approximation discussed in Section 7.4.

A question naturally arises about the convergence of expansions such as
(8.6.3). This is easy to answer if K is a number; the series converges if and only
if |K | < 1. It is also easy to answer if K is a finite matrix; the series converges
if and only if every eigenvalue of K has an absolute value less than one. More
generally, the branch of mathematics known as functional analysis tells us that
operators with a property known as complete continuity can be approximated
with arbitrary precision by finite matrices. In consequence, if K is completely
continuous, then the geometric series K + K 2 + K 3 +· · · will converge if all the
eigenvalues of K are less than one in absolute value.1 Complete continuity has a
rather abstract definition,2 which would not be of use to us here. The important
point for us is that an operator K is completely continuous if (though not only
if) it has a finite value for the quantity

τK ≡ Tr
[

K † K
]
, (8.6.5)

with the trace understood to mean the sum over all discrete indices and the
integral over all continuous indices of the diagonal elements of the operator.
Also, the eigenvalues λ of K all satisfy

|λ|2 ≤ τK . (8.6.6)

Hence the power series (8.6.3) converges if (but not only if) τK < 1.
Clearly, to have any chance of writing Eqs. (8.6.3) as a series in powers

of a kernel K with a finite value for τK , we must deal with the momentum-
conservation delta functions in matrix elements of the operator (W − H0)

−1V .
This is no problem for theories with one particle in a fixed potential, where
K involves no momentum-conservation delta function. It is also no problem for

1 These matters and their application to scattering theory are discussed by me in some detail, with ref-
erences to the original literature, in Lectures on Particles and Field Theory — 1964 Brandeis Summer
Institute in Theoretical Physics (Prentice Hall, Englewood-Cliffs, NJ, 1965): pp. 289–403.

2 An operator A is said to be completely continuous if for any infinite set of vectors �ν , which is bounded

in the sense that all norms
(
�ν,�ν

)
are less than some number M , there exists a subsequence �n for

which A�n is convergent, in the sense that for some vector �, the norm of A�n − � approaches zero
for n → ∞.
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two particles with no external potential. In the latter case we can define operators
V and K, by factoring out a delta function(
�β, V�α

)
≡ δ3(Pβ−Pα)Vβα,

(
�β, (W −H0)

−1V
)

≡ δ3(Pβ−Pα)Kβα(W ),

and re-write Eqs. (8.6.2) and (8.6.3) as

Sβα = δ(α − β)− 2π iδ(Eβ − Eα)δ
3(Pβ − Pα)

[
V + VG(Eα + iε)

]
βα

where, for an arbitrary complex W ,

G(W ) = (W − H0)
−1V + (W − H0)

−1V(W − H0)
−1V + · · · .

Since the single momentum-conservation delta function for two-body scattering
has been factored out, the matrix elements of K ≡ (W − H0)

−1V will be smooth
functions, at least in the sense of containing no more delta functions. It is then
at least possible to have τK finite, depending on the energy and the details of the
potential.

It is more difficult to use the methods for problems involving three or more
particles. Three-particle matrix elements of the operator (W − H0)

−1V contain
terms in which any one of the three particles’ momenta is conserved, as well as
the sum of all three momenta. These terms represent the unavoidable possibility
that two particles interact, leaving the third free. These delta functions can’t
simply be factored out of the problem, as they are not the same delta functions
in each term. There are complicated ways to deal with this in any theory with
a fixed number of particles, involving a re-writing of the series (8.6.3).3 But
these methods fail for theories, such as quantum field theories, with unlimited
numbers of particles.

For these reasons, we will limit ourselves here to the case of a single particle
in a fixed potential or the equivalent problem of two particles in the absence of
an external potential. In the two-particle case we can eliminate the problem of
the momentum-conservation delta functions by factoring out the delta function,
as described above. For the sake of simplicity, from now on we concentrate on
the case of scattering of a single non-relativistic particle by a local (though not
necessarily central) potential V (x).

Whether with one particle or two, there still is a problem with the singularity
of the operator (W − H0)

−1 when W approaches real values in the spectrum of
H0. As noted by many authors, this can usually be dealt with by expanding in
powers of a symmetrized operator, defined in the one-particle case by

K (W ) ≡ V 1/2(W − H0)
−1V 1/2. (8.6.7)

3 This was first worked out for the case of three particles by L. D. Faddeev, Sov. Phys. JETP 12, 1014
(1961); Sov. Phys. Doklady 6, 384 (1963); Sov. Phys. Doklady 7, 600 (1963); and independently for
arbitrary numbers of particles by S. Weinberg, Phys. Rev. 133, B232 (1964).
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The S-matrix (8.6.2) can be written as

Sβα = δ(α − β)− 2π i δ(Eβ − Eα)

(
�β,

[
V + V 1/2G(Eα + iε)V 1/2

]
�α

)
,

(8.6.8)
where, for an arbitrary complex W ,

G(W ) = K (W )+ K (W )2 + · · · . (8.6.9)

Using a coordinate representation, we can represent the operator (E+iε−H0)
−1

using Eq. (7.2.4)

(
�x′, (E + iε − H0)

−1�x

)
= −2μ

�2

eik|x′−x|

4π |x′ − x| , (8.6.10)

where μ is the particle mass (in the two-particle case it would be the reduced
mass), and k is the positive root of E = k2/2μ. The trace (8.6.5) for the operator
K is then

τK ≡ Tr
[

K (E + iε)† K (E + iε)
]

=
(

2μ

�2

)2 ∫
d3x d3x ′ V (x′)V (x)

1

16π2|x′ − x|2 . (8.6.11)

This is convergent if V (x) diverges no worse than |x|−2+δ for |x| → 0, and
vanishes at least as fast as |x|−3−δ for |x| → ∞ (with δ > 0 in both cases).
For instance, for the shielded Coulomb potential V (r) = −g exp(−r/R)/r , we
have τK = 2μ2g2 R2/�4. Thus the perturbation series for the S-matrix converges
for |g| < �2/μR

√
2. But for the unshielded Coulomb potential R is infinite, and

this test for convergence does not work.
Similar techniques can be used to set limits on the binding energies of possible

bound states. For this purpose, we need an expansion of the operator [W −H ]−1,
known as the resolvent:

[W − H ]−1 = [W − H0]−1 +
[

K (W )+ K 2(W )+ · · ·
]
[W − H0]−1, (8.6.12)

where K (W ) is the unsymmetrized kernel (8.6.4). (We could of course write
this in terms of the symmetrized kernel V 1/2[W − H0]−1V 1/2, but this is unnec-
essary here because [W − H0]−1 is non-singular for W = −B < 0.) The
resolvent must become singular when W equals the energy −B of a bound
state below the spectrum of H0, because for such an energy W − H annihi-
lates the state vector of the bound state. But at an energy outside the spectrum
of H0, each term in Eq. (8.6.12) is finite, so the singularity in the resol-
vent can only come from a divergence of the series in powers of K (−B).
Hence a bound state with energy −B is impossible if τK (−B) < 1, where
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τK (−B) ≡ Tr
[
K (−B)† K (−B)

]
. Using Eq. (8.6.10) with k = +i

√
2Bμ/�, for

a local potential we have

τK (−B) =
(

2μ

�2

)2 ∫
d3x d3x ′ V 2(x)

exp
(
−2
√

2Bμ/�2|x′ − x|
)

16π2|x′ − x|2

=
(

2μ

�2

)3/2 1

8π
√

B

∫
d3x V 2(x). (8.6.13)

Hence it is only possible to have bound states with binding energies subject to
the bound

B ≤
(

2μ

�2

)3 [ 1

8π

∫
d3x V 2(x)

]2

. (8.6.14)

It sometimes happens that V itself is not small enough for transition ampli-
tudes to be calculated using perturbation theory, but it is possible to write

V = Vs + Vw, (8.6.15)

where Vs is strong, but cannot by itself cause a given transition α → β, while
Vw can cause this transition, and is sufficiently weak so that we can calculate the
amplitude for α → β to first order in Vw, though we need to include all orders in
Vs . For instance, in nuclear beta decay, the strong nuclear interaction and even
the electromagnetic interaction can not be neglected, but they cannot themselves
change neutrons into protons or vice versa, or create electrons and neutrinos.
The beta decay amplitude thus would vanish if the weak nuclear interaction
were absent, and since this interaction is indeed weak, the amplitude can be
calculated to first order in the weak interactions.

To calculate transition amplitudes to first order in Vw, let us first define states
that would be “in” and “out” states if Vw were zero:

�±
sα = �α + (Eα − H0 ± iε)−1Vs�

±
sα. (8.6.16)

Then we can write Eq. (8.1.11) as

Tβα =
(
�β, V�+

α

)
=
(
[�−

sβ − (Eβ − H0 − iε)−1Vs�
−
sβ], V�+

α

)
=
(
�−

sβ, V�+
α

)
−
(
�−

sβ, Vs(Eα − H0 + iε)−1V�+
α

)
,

and therefore, using the Lippmann–Schwinger equation again,

Tβα =
(
�−

sβ, V�+
α

)
−
(
�−

sβ, Vs�
+
α

)
+
(
�−

sβ, Vs�α

)
=
(
�−

sβ, Vw�
+
α

)
+
(
�−

sβ, Vs�α

)
. (8.6.17)
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This is most useful in the case mentioned earlier, where the process α → β

cannot take place in the absence of the weak interaction. In this case the last
term in Eq. (8.6.17) vanishes, and we have

Tβα =
(
�−

sβ, Vw�
+
α

)
. (8.6.18)

So far, this is exact. Since Eq. (8.6.18) contains an explicit factor Vw, to
first order in Vw we can ignore the difference between �+

α and �+
sα, and write

Eq. (8.6.18) as

Tβα 	
(
�−

sβ, Vw�
+
sα

)
. (8.6.19)

This is known as the distorted wave Born approximation.
For example, in nuclear beta decay, we can take Vs to be the sum of the strong

nuclear interaction and the electromagnetic interaction, while Vw is the weak
nuclear interaction. In this case �+

sα in Eq. (8.6.19) is just the state vector of the
original nucleus, while�−

sβ is the state vector of the final nucleus and the emitted
electron (or positron) and antineutrino (or neutrino). The neutrino or antineu-
trino does not have strong nuclear or electromagnetic interactions with the final
nucleus, while the electron or positron has electromagnetic but no strong nuclear
interactions with the final nucleus. In a coordinate representation, the state vec-
tor�−

sβ is proportional to the product of a plane wave function for the neutrino or
antineutrino, which does not concern us, and the two-particle wave function of
the electron or positron and final nucleus. The weak nuclear interaction acts only
when the electron or positron and the nucleus are in contact, so (at least for non-
relativistic electrons or positrons) the matrix element is proportional to the value
of the Coulomb wave function at zero separation, given by Eqs. (7.9.11) and
(7.9.10) as the quantity (7.9.15). The rate for beta decay therefore has a depen-
dence on the quantity ξ = ±Z ′e2me/�2ke (where Z ′e is the charge of the final
nucleus, and the sign is plus or minus for positrons and electrons, respectively)
proportional to4

F(ξ) = |�(1 + iξ)|2 exp(−πξ) = 2πξ

exp(2πξ)− 1
. (8.6.20)

The same factor appears in the low-energy cross-sections for ν+ N → e− + N ′
and ν + N → e+ + N ′.

4 In evaluating this, we use the reality property �(z)∗ = �(z∗) and the familiar recursion relation �(1 +
z) = z�(z) to write

|�(1 + iξ)|2 = �(1 + iξ)�(1 − iξ) = iξ�(iξ)�(1 − iξ),

and then evaluate this product using the classic formula

�(z)�(1 − z) = π/ sinπ z.
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For |ξ | � 1 the factor F is unity, indicating no enhancement or suppression
of the process. For ξ � −1, this factor is 2π |ξ |, indicating a mild enhancement.
For ξ � 1, F 	 2πξ exp(−2πξ), indicating a severe suppression. This sup-
pression is nothing but the effect of the positive potential barrier discussed in
Section 7.6.

8.7 Time-Dependent Perturbation Theory

The energy denominators in the old-fashioned perturbation theory discussed in
the previous section give this formalism several disadvantages. Because these
denominators depend on energy but not momentum, they obscure the Lorentz
invariance of relativistic theories, and because the denominators depend on the
energies of all the particles involved in a reaction, they obscure the independence
of the rates for processes happening far from each other. Both disadvantages
are avoided by describing the same perturbation series in a different formalism,
known as time-dependent perturbation theory.

To derive a formula for the S-matrix in time-dependent perturbation theory,
let us return to the defining condition (8.1.5) of “in” and “out” states. Using the
energy eigenvalue conditions (8.1.2) and (8.1.3), we can write Eq. (8.1.5) as

exp(−i Ht/�)
∫

dα g(α)�±
α

t→∓∞→ exp(−i H0t/�)
∫

dα g(α)�α. (8.7.1)

This can be abbreviated as

�±
α = �(∓∞)�α, (8.7.2)

where

�(t) ≡ ei Ht/�e−i H0t/�. (8.7.3)

The limits t → ∓∞ are really only well defined when Eq. (8.7.2) is multiplied
with a smooth wave packet amplitude g(α) and integrated over α, but we can
understand the limit intuitively, by noting that H effectively becomes equal to
H0 at very early or very late times, when the colliding particles are far from each
other.

Using Eq. (8.1.14), we see that the S-matrix is

Sβα =
(
�−
β ,�

+
α

)
=
(
�β,�

†(+∞)�(−∞)�α

)
=
(
�β,U (+∞,−∞)�α

)
,

(8.7.4)

where

U (t, t ′) ≡ �†(t)�(t ′) = ei H0t/�e−i H(t−t ′)/�e−i H0t ′/�. (8.7.5)
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To calculate U , we can write Eq. (8.7.5) as a differential equation

d

dt
U (t, t ′) = − i

�
ei H0t/�[H − H0]e−i H(t−t ′)/�e−i H0t ′/� = − i

�
VI (t)U (t, t ′),

(8.7.6)
together with the initial condition

U (t ′, t ′) = 1, (8.7.7)

where

VI (t) ≡ ei H0t/� V e−i H0t/�, (8.7.8)

and of course V ≡ H − H0. The subscript I stands for “interaction picture,” a
term used to distinguish operators whose time-dependence is governed by the
free-particle Hamiltonian H0, in contrast to operators in the Heisenberg picture,
whose time-dependence is governed by the total Hamiltonian H , or operators in
the Schrödinger picture, which do not depend on time.

The differential equation (8.7.6) and initial condition (8.7.7) are equivalent to
an integral equation

U (t, t ′) = 1 − i

�

∫ t

t ′
dτVI (τ )U (τ, t ′), (8.7.9)

which can be solved (at least formally) by iteration:

U (t, t ′) = 1 − i

�

∫ t

t ′
dτVI (τ )

+
(

− i

�

)2 ∫ t

t ′
dτ1

∫ τ1

t ′
dτ2VI (τ1)VI (τ2)+ · · · . (8.7.10)

We can re-write this by introducing a time-ordered product

T {VI (τ )} ≡ VI (τ ),

T {VI (τ1)VI (τ2)} ≡
{

VI (τ1)VI (τ2) τ1 > τ2

VI (τ2)VI (τ1) τ2 > τ1
,

and in general

T {VI (τ1) · · · VI (τn)} ≡
∑

P

θ(τP1 − τP2)θ(τP2 − τP3) · · · θ(τP[n−1] − τPn)

× VI (τP1) · · · VI (τPn), (8.7.11)

where the sum runs over all n! permutations of 1, 2, . . . n into P1, P2, . . . Pn,
and θ is the step function

θ(x) ≡
{

1 x > 0
0 x < 0

. (8.7.12)
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The product of step functions in Eq. (8.7.11) picks out the one term in the sum
for which the VI are time-ordered, with the one with the latest argument first on
the left, the next-to-latest second from the left, and so on. When we integrate
Eq. (8.7.11) over all τi from t ′ to t , each of the n! terms gives just the integral
appearing in the nth order term in Eq. (8.7.10), so

U (t, t ′) =
∞∑

n=0

1

n!
[
− i

�

]n ∫ t

t ′
dτ1 · · ·

∫ t

t ′
dτn

×T {VI (τ1) · · · VI (τn)} , (8.7.13)

the n = 0 term being understood as the unit operator. Eq. (8.7.4) then gives the
Dyson perturbation series1 for the S-matrix:

Sβα =
∞∑

n=0

1

n!
[
− i

�

]n ∫ ∞

−∞
dτ1 · · ·

∫ ∞

−∞
dτn

×
(
�β, T {VI (τ1) · · · VI (τn)}�α

)
. (8.7.14)

It is straightforward to calculate each term in this series — we only need to
calculate the matrix element between free-particle states of the integral of a
product of interaction-picture operators whose time-dependence, governed by
H0, is essentially trivial. Of course, when we limit the sum over n to a finite
number of terms, the result may or may not be a good approximation.

This formula makes Lorentz invariance transparent in at least some theories.
For instance, if VI (t) = ∫

d3x H(x, t) where H is a scalar function of field
variables, then Eq. (8.7.14) gives

Sβα =
∞∑

n=0

1

n!
[
− i

�

]n ∫
d4x1 · · ·

∫
d4xn

×
(
�β, T {H(x1) · · ·H(xn)}�α

)
, (8.7.15)

the integrals now running over all space and time. This at least appears Lorentz
invariant, though we still have to worry about the time-ordering in Eq. (8.7.15).
The statement that a spacetime point {x′, t ′} is at a later time than a point {x, t}
is Lorentz invariant if {x′, t ′} is inside the light cone centered at {x, t} — that
is, if (x′ − x)2 < c2(t ′ − t)2. Thus the time ordering in Eq. (8.7.15) is Lorentz
invariant if H(x, t) commutes with H(x′, t ′) when (x′ − x)2 ≥ c2(t ′ − t)2. (This
is a sufficient, but not a necessary condition, for there are important theories
in which non-vanishing terms in the commutators of H(x, t) with H(x′, t ′) for
(x′ − x)2 ≥ c2(t ′ − t)2 are canceled by terms in the Hamiltonian that can not be
written as the integrals of scalars.)

1 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).
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Eq. (8.7.14) also makes the independence of distant processes transparent.
Suppose that the transition α → β consists of two separate transitions a → b
and A → B, with all the particles in the states a and b far from all the particles
in the states A and B. If we assume that interactions become negligible between
distant particles, then each VI (t) in Eq. (8.7.14) acts either on the particles in the
states a and b or on the particles in the states A and B, but not both. If VI (x, t)
acts on the particles in the states a and b while VI (x′, t ′) acts on the particles
in the states A and B, then these operators commute, and their time-ordered
product can be replaced by an ordinary product. For a given term of nth order
in Eq. (8.7.14), we must sum over the number m of operators that act on the
particles in the states a and b from m = 0 to m = n, with the remaining n − m
operators acting on the particles in the states A and B. The number of ways of
selecting the m operators acting on a and b from the n − m operators acting on
A and B is n!/m!(n − m)!, so

SbB,a A =
∞∑

n=0

1

n!
[
− i

�

]n ∫ ∞

−∞
dτ1 · · ·

∫ ∞

−∞
dτn

n∑
m=0

n!
m!(n − m)!

×
(
�b, T {VI (τ1) · · · VI (τm)}�a

) (
�B, T {VI (τm+1) · · · VI (τn)}�A

)
= Sba SB A.

This factorization ensures that the rates for the various final states b produced
from the initial state a do not depend on the existence of the transition A → B.
It is not easy to see this essential factorization in old-fashioned perturbation
theory.

In the exceptional cases where the VI with different τ -arguments all commute
with one another, we can drop the time-ordering in Eq. (8.7.14), so that the sum
is just the usual convergent series for the exponential function

Sβα =
(
�β, exp

[−i

�

∫ ∞

−∞
dτ VI (τ )

]
�α

)
.

Even where (as is usual) this simple result does not hold, it is common to
abbreviate the result (8.7.14) as

Sβα =
(
�β, T

{
exp

[−i

�

∫ ∞

−∞
dτ VI (τ )

]}
�α

)
, (8.7.16)

the T indicating that this quantity is to be evaluated by time-ordering each term
in the power series for the expression in curly brackets.

For a very simple example, where the VI (τi ) do not commute with one
another, consider the classic example of a single non-relativistic particle being
scattered by a local potential. Here H0 is the kinetic energy, a function H0 =
p2/2μ of the momentum operator, and V is a function V (x) of the position
operator. Since the relation Eq. (8.7.8) between the interaction in the interaction
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and Schrödinger pictures is a similarity transformation, it gives (at least for any
potential that can be expressed as a power series)

VI (τ ) = V
(

xI (τ )
)
, (8.7.17)

where xI (τ ) is the position operator in the interaction picture

xI (t) ≡ ei H0t/� x e−i H0t/�. (8.7.18)

This operator satisfies the differential equation

d

dt
xI (t) = i

�
ei H0t/� [H0, x] e−i H0t/� = 1

μ
ei H0t/� p e−i H0t/� = p/μ, (8.7.19)

and the obvious initial condition

xI (0) = x, (8.7.20)

so

xI (t) = x + pt/μ, (8.7.21)

and therefore

VI (τ ) = V
(

x + pτ/μ
)
. (8.7.22)

(Here x and p are the time-independent position and momentum operators in the
Schrödinger picture.)

Because this involves both x and p, the xI (τ ) with different τ s do not
commute with each other. Instead

[xI i (τ ), xI j (τ
′)] = i�

μ

(
τ ′ − τ

)
δi j . (8.7.23)

Therefore the VI (τ ) with different τ s do not commute with each other, and so
this is not an example where the Dyson series is simply the expansion of an
exponential function.

Although the S-matrix is a central concern of particle physics, it is not the
only thing worth calculating. We sometimes need to calculate the expecta-
tion value of a Heisenberg-picture operator OH (t) (which may be given by a
product of operators, all at the same time t), in a state �+

α that is defined by
its appearance at very early times. (This is the problem that particularly con-
cerns us in calculating correlation functions in cosmology, where α is usually
taken as the vacuum state.) This entails a different version of time-dependent
perturbation theory, known as the “in-in” formalism.2 Any Heisenberg-picture

2 J. Schwinger, Proc. Nat. Acad. Sci. USA 46, 1401 (1960); J. Math. Phys. 2, 407 (1961); K. T. Mahan-
thappa, Phys. Rev. 126, 329 (1962); P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4, 1, 12 (1963);
L. V. Keldysh, Soviet Physics JETP 20, 1018 (1965); D. Boyanovsky and H. J. de Vega, Ann. Phys.
307, 335 (2003); B. DeWitt, The Global Approach to Quantum Field Theory (Clarendon Press, Oxford,
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operator can be expressed in terms of the corresponding interaction-picture
operator by

OH (t) = ei Ht/�Oe−i Ht/� = ei Ht/�e−i H0t/�OI (t)e
i H0t/�e−i Ht/�

= �(t)OI (t)�
†(t). (8.7.24)

We use this together with Eqs. (8.7.2) and (8.7.5) to write the expectation
value as(

�+
α ,OH (t)�

+
α

)
=
(
�α,�

†(−∞)�(t)OI (t)�
†(t)�(−∞)�α

)
=
(
�α,U †(t,−∞)OI (t)U (t,−∞)�α

)
. (8.7.25)

Then, using the perturbation series (8.7.13) for U (t,−∞), we have

(
�+
α ,OH (t)�

+
α

)
=
(
�α,

[
T

{
exp

[−i

�

∫ t

−∞
dτ VI (τ )

]}]†

×OI (t)T

{
exp

[−i

�

∫ t

−∞
dτ VI (τ )

]}
�α

)
, (8.7.26)

where T {} has the same meaning as in Eq. (8.7.16); that is, we must time-
order the VI operators in the power series expansion of the exponential.
The adjoint of the first time-ordered product in Eq. (8.7.26) means that the
interaction operators in this part of the expression are not time-ordered, but
anti-time-ordered; that is, the operator first on the left is the one with the ear-
liest argument, and so on. Thus the structure of the “in-in” expectation value
(8.7.26) is very different from that of the Dyson expansion (8.7.16) for the
S-matrix.

8.8 Shallow Bound States

Sometimes when a bound state is sufficiently weakly bound, we can obtain
results for scattering amplitudes just from a knowledge of the binding energy,
with no detailed information about the interaction. For this purpose, we use a
tool known as the Low equation.1

To derive the Low equation, we operate on the Lippmann–Schwinger equation
(8.1.6) with the interaction V , so that

V�±
α = V�α + V [Eα − H0 ± iε]−1V�±

α . (8.8.1)

2003): Section 31. For a review, with applications to cosmological correlations, see S. Weinberg, Phys.
Rev. D72, 043514 (2005) [hep-th/0506236].

1 The equation is named for Francis Low. I have not been able to find a reference to the place where it
was first published.
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We can write the solution of this equation as

V�±
α = T (Eα ± iε)�α (8.8.2)

where T (W ) is the solution of the operator equation

T (W ) = V + V (W − H0)
−1T (W ). (8.8.3)

We recall that the S-matrix is given according to Eqs. (8.1.10) and (8.1.11) as

Sβα = δ(β − α)− 2π iδ(Eβ − Eα) Tβα, (8.8.4)

where

Tβα ≡
(
�β, V�+

α

)
=
(
�β, T (Eα + iε)�α

)
. (8.8.5)

So far, there is nothing new here, except for a little formalism. Now note that
with some elementary algebra, we can write the solution of the operator equation
(8.8.3) as

T (W ) = V + V (W − H)−1V . (8.8.6)

We can evaluate the resolvent operator (W − H)−1 by inserting a sum over
a complete set of independent eigenstates of H . These include the scattering
“in” states �+

α , and any bound states. (We do not include the “out” states �−
α

here, because they are not independent; �−
α can be written as the superposition∫

dβ S∗
αβ�

+
β .) Thus

(
�β, T (W )�α

)
= Vβα +

∫
db

(
�β, V�b

)(
�α, V�b

)∗

W − Eb
+
∫

dγ
Tβγ T ∗

αγ

W − Eγ

,

(8.8.7)

where Vβα ≡
(
�β, V�α

)
, and b labels the properties of the various bound

states, including their total momentum. In particular, setting W = Eα + iε,
Eq. (8.8.7) gives

Tβα = Vβα +
∫

db

(
�β, V�b

)(
�α, V�b

)∗

Eα − Eb
+
∫

dγ
Tβγ T ∗

αγ

Eα − Eγ + iε
. (8.8.8)

(We don’t need the iε in the denominator of the bound state term, since the
energy of any bound state must be outside the spectrum of H0.) Eq. (8.8.8) is
known as the Low equation.

The Low equation is a nonlinear integral equation for Tβα, in which a non-zero
value for Tβα is driven by the first two terms in Eq. (8.8.8). For a shallow bound
state, whose energy is very near the continuum, it is plausible that the bound-
state term in Eq. (8.8.8) will dominate over the potential term, and give Tβγ and
Tαγ particularly large values when Eγ is nearest the bound state energies — that
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is, near the minimum continuum energy — provided these two particles have
� = 0, to avoid suppression of the matrix elements by factors k�. Thus, when α
is a two-particle state with � = 0, and β is a state of two particles of the same
two species as α, it is plausible to limit γ to two-particle states of the same two
species. (I have in mind here the low-energy scattering of a proton and a neutron,
where the shallow bound state is the deuteron, but will continue for a while to
keep the analysis more general.) As in Section 8.4, these two-particle states can
be labeled by their total energy, their total momentum P, their total spin s, their
orbital angular momentum � = 0, their total angular momentum J = s, the 3-
component σ of the total angular momentum (and total spin), and the species of
the two particles. Dropping the labels � = 0, s, and the two species labels, which
will be the same throughout, the free-particle states can be denoted �E,P,σ , and
the scattering “in” states can be denoted �+

E,P,σ . The bound states that contribute
in Eq. (8.8.8) must also have a spin s. If we assume that there is only one such
bound state, we can drop the label s and � = 0, and denote the bound state only
by its total momentum and spin 3-component, as �P,σ , with the energy a fixed
function of P. The relevant matrix elements in the center-of-mass system then
have the form

TE ′,P′,σ ′;E,0,σ = T (E ′, E)δ3(P′)δσ ′,σ , (8.8.9)

and (
�E,0,σ , V�P,σ ′

)
= G(E)δ3(P)δσ ′σ . (8.8.10)

From now on we will understand E as the energy measured relative to the total
rest mass in the two-particle state, so that it is integrated from zero to infinity,
and the bound state energy in the center-of-mass frame is −B, with B the bind-
ing energy. Neglecting the potential term in Eq. (8.8.8), the Low equation now
reads

T (E ′, E) = G(E ′)G∗(E)
E + B

+
∫ ∞

0
d E ′′ T (E ′, E ′′) T ∗(E, E ′′)

E − E ′′ + iε
. (8.8.11)

Now, as we have explained, we are interested in this equation in the case
where E and E ′ are small, comparable in magnitude to the binding energy B. In
this case, it is presumably a good approximation to write

G(E) = √
p(E) g, (8.8.12)

where g is a constant, and p(E) is the momentum of either particle in the center-
of-mass system when the total energy is E . With non-relativistic kinematics,
p(E) = √

2μE , where μ is the reduced mass. The factor p(E) is needed,
because we expect V�0,σ to have matrix elements with two-particle states of
individual momenta p and −p that are analytic in p near p = 0, and as shown in
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Eq. (8.4.9), these two-particle states are given by the states �E,0,σ times a factor
proportional to 1/

√|p|. The Low equation (8.8.11) now reads

T (E ′, E) =
√

p(E ′) p(E) |g|2
E + B

+
∫ ∞

0
d E ′′ T (E ′, E ′′) T ∗(E, E ′′)

E − E ′′ + iε
. (8.8.13)

Inspection of this equation shows that it can be solved with an ansatz

T (E ′, E) = √
p(E ′) p(E) t (E), (8.8.14)

so that Eq. (8.8.13) is satisfied if

t (E) = |g|2
E + B

+
∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
E − E ′ + iε

. (8.8.15)

This can actually be solved exactly. As shown at the end of this section, the
solution for an arbitrary positive function p(E) is

t (E) =
[

E + B

|g|2 + (E + B)2
∫ ∞

0

p(E ′) d E ′

(E ′ + B)2(E ′ − E − iε)

]−1

,

as long as p(E) does not grow too fast as E → ∞. For the case p(E) = √
2μE ,

this gives

t (E) =
[

E + B

|g|2 + π(B − E)

2

√
2μ

B
+ iπ

√
2μE

]−1

. (8.8.16)

We can calculate the coupling g of the bound state to its constituents, by using
the condition that the bound state vector �P,σ is normalized, in the sense that(

�P′,σ ′, �0,σ

)
= δ3(P′)δσ ′σ . (8.8.17)

The bare two-particle state �E,0,σ is an eigenstate of H0 with eigenvalue E ,
while the bound state �0,σ is an eigenstate of H with eigenvalue −B, so(
�E,0,σ , V�P′,σ ′

)
=
(
�E,0,σ , [H − H0]�P′,σ ′

)
= (E + B)

(
�E,0,σ , �P′,σ ′

)
,

or, using Eqs. (8.8.10) and (8.8.12),

(
�E,0,σ , �P,σ ′

)
= δ3(P′)δσ ′σ

g
√

p(E)

E + B
. (8.8.18)

Thus, expanding in bare two-particle states, Eq. (8.8.17) gives

1 = |g|2
∫ ∞

0

p(E) d E

(E + B)2
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and so,2

|g|2 = 1

π

√
2B

μ
. (8.8.19)

Using this in the solution (8.8.16) of the Low equation, we have

t (E) = 1

π
√

2μ

[√
B + i

√
E
]−1

. (8.8.20)

We now have to convert this result into a formula for the � = 0 phase shift.
Eqs. (8.4.7) and (8.4.25) give the center-of-mass scattering amplitude in the
basis used here (suppressing the indices � = 0, s, n, and J = s) as

M0,E,σ ′;0,E,σ = δσ ′σ
[
e2iδ(E) − 1

]
.

Also, comparing Eqs. (8.3.1) and (8.8.4), and using Eq. (8.8.9), we have

δ3(P) MP,E,σ ′;0,E,σ = −2π i TE,0,σ ′;E,P,σ ′ = −2π i T (E, E)δ3(P)δσ ′,σ ,

so Eqs. (8.8.9) and (8.8.14) give

e2iδ(E) − 1 = −2π iT (E, E) = −2π i
√

2μE t (E). (8.8.21)

Using the solution (8.8.20), we have then

e2iδ(E) − 1 = −2i
√

E
[√

B + i
√

E
]−1

. (8.8.22)

Taking the reciprocal, we find that a term −1/2 appears on both sides, so after
canceling this term, we have

cot δ = −√B/E . (8.8.23)

Note that this result is real, and so is consistent with the unitarity of the S-
matrix, a non-trivial consistency condition that would not be satisfied in the
Born approximation. The result (8.8.23) may be compared with the effective
range expansion (7.5.21). Setting E = �2k2/2μ, we have k cot δ = −√

2μB/�,
so the scattering length is

as = �/
√

2μB, (8.8.24)

and the effective range and all higher terms in the expansion are negligible.
These are precise results in the limit of vanishing B and E , with E/B fixed.

2 More generally, if in addition to the continuum the eigenstates of H0 include an elementary particle
state with the same quantum numbers as the bound state, |g| is less than the value given in Eq. (8.8.19)
by a factor 1 − Z , where Z is the probability that an examination of the bound state will find it in
the elementary particle state rather than the two-particle state. The case Z �= 0 is studied in detail by
S. Weinberg, Phys. Rev. 137, B672 (1965).
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As mentioned earlier, the classic application of this calculation is to low-
energy proton–neutron scattering in the state with the same total spin s = 1
as the deuteron. Here μ = mnm p/(mn +m p) 	 m p/2 and B = 2.2246 MeV, so
Eq. (8.8.24) gives as = 4.31 × 10−13 cm. On the other hand, experiment gives
as = 5.41 × 10−13 cm. The measured effective range is not zero, but consid-
erably smaller: reff = 1.75 × 10−13 cm. The range of nuclear forces is of the
order of 10−13 cm, so the accuracy of these predictions is as good as could be
expected.

Incidentally, note that for B → 0, Eq. (8.8.23) gives cot δ → 0, so δ → 90◦,
perhaps plus a multiple of 180◦. This is an exception to the low-energy limits
discussed in Section 7.5.

* * * * *

We return here to the solution of the nonlinear integral equation (8.8.15). We
define a function for general complex z:

f (z) ≡ |g|2
z + B

+
∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
z − E ′ , (8.8.25)

so that

t (E) = f (E + iε). (8.8.26)

We note that − f (z) is analytic in the upper half plane, where it has positive-
definite imaginary part

Im
[

− f (z)
]

= Imz

[ |g|2
|z + B|2 +

∫ ∞

0
d E ′ p(E ′)

|t (E ′)|2
|z − E ′|2

]
. (8.8.27)

The same is then also true of 1/ f (z). A general theorem3 tells us that any such
function must have the representation

f −1(z) = f −1(z0)+ (z − z0) f −1′
(z0)

+ (z − z0)
2
∫ ∞

−∞
d E ′ σ(E ′)

(E ′ − z0)2(E ′ − z)
, (8.8.28)

where σ(E) is real and positive, and z0 is arbitrary. (A formula of this sort
is called a “twice-subtracted dispersion relation.”) It is convenient to choose
z0 = −B. We know that f −1(−B) = 0 and f −1′

(−B) = 1/|g|2, so

f −1(z) = z + B

|g|2 + (z + B)2
∫ ∞

−∞
d E

σ(E)

(E + B)2(E − z)
. (8.8.29)

3 A. Herglotz, Ver. Verhandl. Sachs. Ges. Wiss. Leipzig, Math.-Phys. 63, 501 (1911); J. A. Shohat and J.
D. Tamarkin, The Problem of Moments (American Mathematical Society, New York, 1943), Chapter II.
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Now, what is σ(E)? Let us first tentatively assume that f (z) has no zeroes on
the real axis. Then Eq. (8.8.29) gives

σ(E) = 1

π
Im f −1(E + iε) = − Im f (E + iε)

π | f (E + iε)|2
=
{

p(E) E ≥ 0
0 E ≤ 0

. (8.8.30)

Using this in Eq. (8.8.29) gives

f (z) =
[

z + B

|g|2 + (z + B)2
∫ ∞

0

p(E ′) d E ′

(E ′ + B)2(E ′ − z)

]−1

. (8.8.31)

Setting z = E + iε gives t (E), and taking p(E) = √
2μE then yields

Eq. (8.8.16).
This solution is not unique, for we have assumed above that f (z) has no

zeroes on the real axis. But any other solution will become indistinguishable
from the one found here in the limit as B is taken much smaller than the position
of such zeroes.

Problems

1. Consider a general Hamiltonian H0+V , where H0 is the free-particle energy.
Define a state �0

α by the modified Lippmann–Schwinger equation

�0
α = �α + (Eα − H0)

(Eα − H0)2 + ε2
V �0

α,

where �α is an eigenstate of H0 with eigenvalue Eα, and ε is a positive
infinitesimal quantity. Define

Aβα ≡
(
�β, V�0

α

)
.

(a) Show that Aβα = A∗
αβ for Eβ = Eα.

(b) For the simple case of a non-relativistic particle with energy k2�2/2μ in a
local potential V (x), calculate the asymptotic behavior of the coordinate-

space wave function
(
�x, �

0
k

)
of the state �0

k for x → ∞. Express the

result in terms of matrix elements of A.

2. Consider a separable interaction, whose matrix elements between free-
particle states have the form(

�β, V�α

)
= f (α) f ∗(β),

where f (α) is some general function of the momenta and other quantum
numbers characterizing the free-particle state �α.
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(a) Find an exact solution of the Lippmann–Schwinger equation for the “in”
state in this theory.

(b) Use the result of (a) to calculate the S-matrix.
(c) Verify the unitarity of the S-matrix.

3. The scattering of π+ on protons at energies less than a few hundred MeV
is purely elastic, and receives appreciable contributions only from orbital
angular momenta � = 0 and � = 1.

(a) List all the phase shifts that enter in the amplitude for π+-proton scat-
tering at these low energies. (Recall that the spins of the pion and proton
are zero and 1/2, respectively.)

(b) Give a formula for the differential scattering cross-section in terms of
these phase shifts.

4. Let T (1)
βα be the term in Tβα including contributions of all orders in Vs but

only of first order in Vw, where the total interaction is Vs + Vw . Show that
the complex conjugate of T (1)

βα satisfies a relation of the form

T (1)∗
βα =

∫
dβ ′ dα′ cβαβ ′α′ T (1)

β ′α′ .

Give a formula for the coefficients cβαβ ′α′ in terms of S-matrix elements,
including contributions of all orders in Vs but zeroth order in Vw.

5. By direct calculation, show that the terms of first and second order in
the interaction in time-dependent perturbation theory give the same results
for the S-matrix as the first- and second-order terms in old-fashioned
perturbation theory.

6. Assume isospin conservation, and suppose that the only appreciable phase
shift in the scattering of pions on nucleons is the one with quantum numbers
J = 3/2, � = 1, and T = 3/2. Calculate the differential cross-sections for
the reactions π+ + p → π+ + p, π+ + n → π+ + n, π+ + n → π0 + p,
and π− + n → π− + n in terms of this phase shift.



9
The Canonical Formalism

To carry out calculations in quantum mechanics, we need a formula for the
Hamiltonian as a function of operators whose commutation relations are known.
So far, we have dealt with simple systems, for which it is easy to guess such a
formula. For a system of non-relativistic spinless particles interacting through a
potential V that depends only on particle separations, the classical formula for
the energy suggests that we should take

H =
∑

n

p2
n

2mn
+ V (x1 − x2, x1 − x3, . . . ),

where xn and pn are the position and momentum of the nth particle. We saw in
Section 3.5 that the commutator of the total momentum operator P = ∑

n pn

with the coordinate of the nth particle in any system is given by Eq. (3.5.3), and
from this it was a short jump to guess the commutation relation (3.5.6) of the
momenta and positions of individual particles.

[xni , pmj ] = i�δnmδi j .

But our task can be much harder in more complicated theories, dealing with
velocity-dependent interactions, or interactions of particles with fields, or
interactions of fields with each other.

This problem is generally dealt with by the rules of the canonical formal-
ism. As we will see in Section 9.1, the equations of motion in classical systems
can usually be derived from a function of generalized coordinate variables and
their time-derivatives, known as the Lagrangian. The great advantage of the
Lagrangian formalism, described in Section 9.2, is that it allows us to derive the
existence of conserved quantities from symmetry principles. One of these con-
served quantities is the Hamiltonian, discussed in Section 9.3. The Hamiltonian
is expressed in terms of generalized coordinates and generalized momenta. As
shown in Section 9.4, these variables must satisfy certain commutation relations
in order for the conserved quantities provided by the Lagrangian formalism to
act as the generators of symmetry transformations with which they are asso-
ciated, and in particular for the Hamiltonian to act as the generator of time
translations.

275
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I will illustrate all these points by reference to the theory of non-relativistic
particles in a local potential. In this case, the application of the canonical for-
malism is pretty simple. It becomes more complicated for systems satisfying
a constraint, such as a particle constrained to move on a surface. Constrained
systems are discussed in Section 9.5. An alternative version of the canonical
formalism, the path-integral formalism, is derived in Section 9.6.

9.1 The Lagrangian Formalism

It is common to find that the dynamical equations governed by the general coor-
dinate variables qN (t) describing a classical physical system can be derived from
a variational principle, which states that an integral

I [q] ≡
∫ ∞

−∞
L
(

q(t), q̇(t), t
)

dt (9.1.1)

is stationary with respect to all infinitesimal variations qN (t) �→ qN (t)+δqN (t),
for which all δqN (t) vanish at the endpoints of the integral, t → ±∞. The
function or functional L is known as the Lagrangian of the theory, while the
functional I [q] is called the action. In a theory of particles, N is a compound
index ni , with qN (t) the i th component xni (t) of the position of the nth particle
at time t . In a theory of fields, N is a compound label nx, with qN (t) the value
of the nth field at a position x and time t . We will treat N as a discrete index,
but we will find it easy in Chapter 11 to adapt the formulas we derive here to the
case of fields.

We are here letting L have an explicit dependence on time, to take account of
the possibility that the system is affected by time-dependent external fields, but
in the case of an isolated system L depends on time only through its dependence
on q(t) and q̇(t).

The condition that (9.1.1) should be stationary gives

0 = δ I [q] =
∑

N

∫ ∞

−∞

⎡
⎣∂L

(
q(t), q̇(t), t

)
∂qN (t)

δqN (t)

+
∂L
(

q(t), q̇(t), t
)

∂q̇N (t)
δq̇N (t)

⎤
⎦ dt.

The variation in the time-derivative is the time-derivative of the variation, so
we can integrate the second term by parts. Since the variations vanish at the
endpoints of the integral, the result is
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0 =
∑

N

∫ ∞

−∞

⎡
⎣∂L

(
q(t), q̇(t), t

)
∂qN (t)

− d

dt

∂L
(

q(t), q̇(t), t
)

∂q̇N (t)

⎤
⎦ δqN (t) dt.

(9.1.2)
This must hold for any infinitesimal functions qN (t) that vanish as t → ±∞, so
for each N and each finite t we must have

∂L
(

q(t), q̇(t)
)

∂qN (t)
= d

dt

∂L
(

q(t), q̇(t), t
)

∂q̇N (t)
. (9.1.3)

For instance, for a classical system consisting of a number of non-relativistic
particles with masses mn , interacting through a potential that depends only on
position, the Newtonian equations of motion are

mnẍni (t) = − ∂V

∂xni (t)
. (9.1.4)

These are just the Lagrangian equations (9.1.3), if we take the Lagrangian as

L =
∑

n

mn

2
ẋ2

n − V . (9.1.5)

One of the nice things about the Lagrangian formalism is that it makes it easy
to use any coordinates we like. For instance, consider a single particle of mass
m moving in two dimensions in a potential V (r) that depends only on the radial
coordinate. Here we can take the qN to be the polar coordinates r and θ , and
write the Lagrangian (9.1.5) as

L = m

2

[
ṙ2 + r2θ̇2

]
− V (r). (9.1.6)

The Lagrangian equations of motion (9.1.3) in these coordinates are

0 = d

dt

∂L

∂ ṙ
− ∂L

∂r
= mr̈ − mr θ̇2 + V ′(r) (9.1.7)

0 = d

dt

∂L

∂θ̇
− ∂L

∂θ
= d

dt

(
mr2θ̇

)
. (9.1.8)

We see in Eq. (9.1.7) the effect of centrifugal force, and in Eq. (9.1.8) the second
law of Kepler, in both cases derived without having to convert the Cartesian
equations of motion (9.1.4) directly into polar coordinates.

A more challenging example of the Lagrangian formalism is provided by the
theory of charged particles in an electromagnetic field, discussed in the next
chapter.
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9.2 Symmetry Principles and Conservation Laws

The great advantage of the Lagrangian formalism is that it provides a simple
connection between symmetry principles and the existence of conserved quanti-
ties. Every continuous symmetry of the action implies the existence of a quantity
that, according to the equations of motion, does not change with time. This gen-
eral result is due to Emmy Noether (1882–1935), and is known as Noether’s
Theorem.1

Consider any infinitesimal transformation of the variables qN (t)

qN → qN + εFN (q), (9.2.1)

where ε is an infinitesimal constant, and the FN are functions of the qs that
depend on the nature of the symmetry in question. This is a symmetry of the
Lagrangian if

0 =
∑

N

[
∂L

∂qN
FN + ∂L

∂q̇N
ḞN

]
. (9.2.2)

Using the Lagrangian equations (9.1.3) of motion in the first term, this is

0 =
∑

N

[(
d

dt

∂L

∂q̇N

)
FN + ∂L

∂q̇N
ḞN

]
= d F

dt
, (9.2.3)

where F is the conserved quantity

F ≡
∑

N

∂L

∂q̇N
FN (q). (9.2.4)

For instance, as long as the potential V depends only on differences of particle
coordinates, the Lagrangian (9.1.5) is invariant under translations

xni → xni + εi (9.2.5)

with the same εi for each particle label n. Then for each i , we have a conserved
quantity, the i th component of the total momentum

Pi =
∑

n

∂L

∂ ẋni
=
∑

n

mn ẋni . (9.2.6)

Similarly, if V is rotationally invariant, then the Lagrangian (9.1.5) is invariant
under the infinitesimal rotations

xn → xn + e × xn, (9.2.7)

1 E. Noether, Nachr. König. Gesell. Wiss. zu Göttingen, Math-phys. Klasse 1918, p. 235.
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with the same infinitesimal 3-vector e for each particle label n. It follows that

d

dt
L = 0 (9.2.8)

where

e · L =
∑

ni

∂L

∂ ẋni
[e × xn]i =

∑
n

mn ẋn · [e × xn].

Recalling that the triple scalar product of any vectors a, b, and c has the
symmetry property a · [b × c] = b · [c × a], we see that

L =
∑

n

mnxn × ẋn. (9.2.9)

This is only the orbital angular momentum, and of course it is not nec-
essarily conserved if the interaction involves the spin operators Sn of the
particles, because in that case the Lagrangian is generally not invariant under
transformations like (9.2.7) unless we also include transformations of the spin.

More generally, we can consider transformations that are not symmetries of
the Lagrangian, but that are symmetries of the action. In this case, instead of
Eq. (9.2.2), we must have∑

N

[
∂L

∂qN
FN + ∂L

∂q̇N
ḞN

]
= dG

dt
(9.2.10)

where G(t) is some function of the qN (t) and q̇N (t), and perhaps also of t ,
that takes equal values (such as zero) at t = ±∞. In this case, by using
the Lagrangian equations of motion, the invariance condition (9.2.10) may be
written as the conservation law

0 = d

dt
[F − G], (9.2.11)

with F again given by Eq. (9.2.4).

9.3 The Hamiltonian Formalism

There is another symmetry, but one that requires special treatment: the symme-
try under translations in time. This symmetry allows us to construct a quantity
known as the Hamiltonian, which is conserved if the Lagrangian has no explicit
dependence on time, and more generally whose time-dependence arises solely
from any explicit time-dependence of the Lagrangian.

The Hamiltonian is defined by

H ≡
∑

N

q̇N
∂L

∂q̇N
− L . (9.3.1)
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Using the Lagrangian equations of motion (9.1.3), its rate of change is

d H

dt
=
∑

N

q̈N
∂L

∂q̇N
+
∑

N

q̇N
∂L

∂qN
− d L

dt
.

But the total rate of change of the Lagrangian is

d L

dt
= ∂L

∂t
+
∑

N

q̈N
∂L

∂q̇N
+
∑

N

q̇N
∂L

∂qN
,

where ∂L/∂t is the rate of change of the Lagrangian due to any explicit time-
dependence, as in the case of time-dependent external fields. Hence

d H

dt
= −∂L

∂t
, (9.3.2)

and in particular the Hamiltonian is conserved for isolated systems, where the
Lagrangian has no explicit time-dependence.

Instead of the second-order differential equations of motion of the Lagrangian
formalism, we can use the Hamiltonian formalism to write the equations of
motion as first-order differential equations for twice as many variables: the qN ,
and their “canonical conjugates,”

pN = ∂L

∂q̇N
. (9.3.3)

For this purpose, we must think of the Hamiltonian as a function H(q, p) of the
qN and pN , with q̇N in Eq. (9.3.1) regarded as a function of the qN and pN given
by solving Eq. (9.3.3) for q̇N . That is, Eq. (9.3.1) should be interpreted as

H(q, p) =
∑

N

q̇N (q, p)pN − L
(

q, q̇(q, p)
)
. (9.3.4)

Then

∂H

∂qN
=
∑

M

∂q̇M

∂qN
pM − ∂L

∂qN
−
∑

M

∂L

∂q̇M

∂q̇M

∂qN
.

The first and third terms cancel according to Eq. (9.3.3), and the Lagrangian
equation of motion (9.1.3) then gives

ṗN = − ∂H

∂qN
. (9.3.5)

Also,

∂H

∂pN
= q̇N +

∑
M

pM
∂q̇M

∂pN
−
∑

M

∂L

∂ ˙qM

∂q̇M

∂pN
.
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Now the second and third terms cancel, leaving us with

q̇N = ∂H

∂pN
. (9.3.6)

Eqs. (9.3.5) and (9.3.6) are the general equations of motion in the Hamiltonian
formalism.

For a very simple example, consider the Lagrangian (9.1.5):

L =
∑

n

mn

2
ẋ2

n − V (x),

where here qni ≡ [xn]i . Eq. (9.3.3) here gives the familiar result pn = mn ẋn ,
which can be solved without much difficulty to give ẋn = pn/mn . The
Hamiltonian (9.3.1) is then

H =
∑

n

1

mn
p2

n − L =
∑

n

1

2mn
p2

n + V (x).

This is the familiar Hamiltonian on which we based our discussion in Chapter 2.
The equations of motion (9.3.5) and (9.3.6) are here

ṗni = − ∂V

∂xni
, ẋni = pni/mn

which together yield the equations of motion (9.1.4).
The Hamiltonian formalism can be used in any coordinate system. For

instance, for the two-dimensional system with Lagrangian (9.1.6), the canonical
conjugates to r and θ are

pr = mṙ , pθ = mr2θ̇ (9.3.7)

and the Hamiltonian is

H = p2
r

2m
+ p2

θ

2mr2
+ V (r). (9.3.8)

According to Eq. (9.3.5), the fact that the Hamiltonian does not depend on θ

tells us immediately that pθ is constant, in agreement with Kepler’s second law.

9.4 Canonical Commutation Relations

Up to this point, our discussion in this chapter has been in classical terms, though
it applies equally well to quantum mechanical operators in the Heisenberg pic-
ture. Now we must make the transition to quantum mechanics by imposing
suitable commutation relations on the qN and pN .
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To motivate these commutation relations, we return to the implementation of
symmetry principles in quantum mechanics. In Section 9.2, we considered a
symmetry of the Lagrangian under an infinitesimal transformation

qN → qN + εFN (q). (9.4.1)

In order to realize this symmetry as a quantum mechanical unitary transforma-
tion

[1 − iεF/�]−1qN [1 − iεF/�] = qN + εFn(q), (9.4.2)

we need an operator F to serve as a generator of the symmetry, in the sense that

[F, qN ] = −i�FN (q). (9.4.3)

(The factor −i/� is extracted from F in Eq. (9.4.2), to maintain an analogy with
the formula (3.5.2) for the unitary operator that represents translations.) We saw
in Section 9.2 that the invariance of the Lagrangian under the transformation
(9.4.1) implies the existence of a conserved quantity (9.2.4), which we can now
write

F =
∑

N

pNFN (q). (9.4.4)

Such operators F satisfy the commutation relation (9.4.3) for all symmetries of
the form (9.4.1) if we impose the canonical commutation relations

[qN (t), pN ′(t)] = i�δN N ′, (9.4.5)

[qN (t), qN ′(t)] = [pN (t), pN ′(t)] = 0. (9.4.6)

The commutation relation of ps with each other in Eq. (9.4.6) is not needed
to obtain Eq. (9.4.3), but with it, in simple cases, the operators (9.4.4) gen-
erate simple transformations of the pN as well as of the qN . For the case of
non-relativistic particles (labeled n) in a translation-invariant potential (where
N is the compound index ni), there is a symmetry under translations, in which
Eq. (9.4.1) takes the form (9.2.5), and the generator (9.2.6) takes the form

P =
∑

n

pn. (9.4.7)

In this case, it is obvious from Eq. (9.4.6) that the pn are all translation-invariant

[P, pn] = 0. (9.4.8)

Likewise, for non-relativistic spinless particles in a rotationally invariant
potential, there is a symmetry under rotations, in which Eq. (9.4.1) takes the
form (9.2.7), and the generator (9.2.9) takes the form

L =
∑

n

xn × pn. (9.4.9)
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(Because this is a cross-product of vectors, it does not involve products of the
same components of position and momentum, so the order of these operators is
here immaterial.) In this case, L acts as a generator of rotations on both positions
and momenta

[Li , xnj ] = i�
∑

k

εi jk xnk, [Li , pnj ] = i�
∑

k

εi jk pnk, (9.4.10)

where as usual εi jk is the totally antisymmetric quantity with ε123 = 1. (To prove
this, write Eq. (9.4.9) as Li = ∑

n εi j ′k′ xnj ′ pnk′ .)
In theories of particles with spin, an operator that involves spins in scalar

combinations such as sn · pm or sn · xm will be rotationally invariant, but will
not commute with the orbital angular momentum L. The spin matrices sn are
defined to satisfy the usual commutation relations,

[sni , sn′ j ] = i�δnn′
∑

k

εi jksnk, [sni , xn′ j ] = [sni , pn′ j ] = 0,

so the operator J ≡ L+∑n sn generates rotations on spins as well as coordinates
and momenta

[Ji , xnj ] = i�
∑

k

εi jk xnk, [Ji , pnj ] = i�
∑

k

εi jk pnk, [Ji , snj ] = i�
∑

k

εi jksnk .

(9.4.11)
Thus J commutes with any rotationally invariant operator.

The symmetry of time-translation invariance again requires special treatment.
We note that, as a consequence of the commutation relations (9.4.5) and (9.4.6),
for any function f (q, p) of the qN and pN , we have

[ f (q, p), qN ] = −i�
∂ f (q, p)

∂pN
, (9.4.12)

[ f (q, p), pN ] = i�
∂ f (q, p)

∂qN
. (9.4.13)

(To prove Eq. (9.4.12), note that if we move qN in the product f (q, p)qN to the
left past all the ps in f (q, p), for each pN in f (q, p) we get a term −i� times
the function f (q, p)with that pN omitted. The sum of these terms is the same as
−i�∂ f (q, p)/∂pN . The proof of Eq. (9.4.13) is similar. The derivatives must be
calculated by removing factors of pN or qN , leaving the order of all other opera-
tors unchanged. For instance ∂q2 p1 p2/∂p1 = q2 p2.) The Hamiltonian equations
of motion (9.3.5) and (9.3.6) thus can be written

ṗN = i

�
[H(q, p), pN ], q̇N = i

�
[H(q, p), qN ], (9.4.14)
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so the Hamiltonian is the generator of time-translations. It follows also that for
any function f (q, p) that does not depend explicitly on time,

ḟ (q, p) = i

�
[H(q, p), f (q, p)]. (9.4.15)

In particular, since P commutes with any translationally invariant Hamilto-
nian, it is conserved in the absence of external fields. The spin matrices in the
Heisenberg picture are defined to have a time-dependence matching Eq. (9.4.14):

ṡn = i

�
[H, sn]. (9.4.16)

From Eqs. (9.4.15) and (9.4.16) we have the same for the total angular
momentum J = L +∑

n sn ,

J̇ = i

�
[H, J], (9.4.17)

so J is conserved if the Hamiltonian is rotationally invariant, as it will be for
isolated systems.

We can generalize Eqs. (9.4.12) and (9.4.13) to give a formula for the
commutator of two functions of both qs and ps:

[ f (q, p), g(q, p)] = i�[ f (q, p), g(q, p)]P (9.4.18)

where [ f (q, p), g(q, p)]P denotes the quantity known in classical dynamics as
the Poisson bracket

[ f (q, p), g(q, p)]P ≡
∑

N

[
∂ f (q, p)

∂qN

∂g(q, p)

∂pN
− ∂g(q, p)

∂qN

∂ f (q, p)

∂pN

]
.

(9.4.19)
(When we move f (q, p) to the right past g(q, p) we get a sum of terms: accord-
ing to Eq. (9.4.12) for each qN in g(q, p) we get a factor −i�∂ f (q, p)/∂pN

times g(q, p) with that qN omitted, which gives the second term in Eq. (9.4.19),
and according to Eq. (9.4.13) for each pN in g(q, p) we get a factor
+i�∂ f (q, p)/∂qN times g(q, p)with that pN omitted, which gives the first term
in Eq. (9.4.19). Again, in quantum mechanics one must specify the order of the
qs and ps in the Poisson bracket, which is best done on a case-by-case basis.)

Commutators have certain algebraic properties:

[ f, g] = −[g, f ] (9.4.20)

[ f, gh] = [ f, g]h + g[ f, h], (9.4.21)

and the Jacobi identity

[ f, [g, h]] + [g, [h, f ]] + [h, [ f, g]] = 0. (9.4.22)
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It is easy to check directly that the Poisson bracket (9.4.19) satisfies the same
algebraic conditions.

As we saw in Section 1.4, on the basis of an analogy with the Poisson brack-
ets of quantum mechanics, Dirac in 1926 generalized the commutation relations
guessed at by Heisenberg to the full set (9.4.5), (9.4.6). But it would be difficult
to argue that this analogy or the canonical formalism itself has the status of a fun-
damental principle of physics, especially since there are physical quantities like
spin to which the canonical formalism does not apply. On the other hand, in the
present state of physics symmetry principles seem as fundamental as anything
we know. That is why in this section the canonical commutation relations have
been motivated by the necessity of constructing quantum mechanical operators
that generate symmetry transformation, rather than by an analogy with Poisson
brackets.

9.5 Constrained Hamiltonian Systems

So far we have considered systems with equal numbers of independent qs and
ps, but in general these canonical variables may be subject to constraints. We
will see an important physical example of such a constrained system in Chap-
ter 11, but for the present we will illustrate the problem with a somewhat
artificial but revealing example: a non-relativistic particle that is constrained to
remain on a surface described by a constraint

f (x) = 0, (9.5.1)

where f (x) is some smooth function of position.
We can take the Lagrangian as

L(x, ẋ) = m

2
ẋ2 − V (x)+ λ f (x), (9.5.2)

where V (x) is a local potential, and λ is an additional coordinate. The
Lagrangian equations of motion for x are

mẍ = −∇V + λ∇ f = 0. (9.5.3)

Also, since no time-derivative of λ appears in the Lagrangian, the equation of
motion for λ just says that ∂L/∂λ = 0, which yields the constraint (9.5.1). (Note
that ∇ f (x) is in the direction of the normal to the surface (9.5.1) at x, because
for any direction u tangent to this surface at x, and any infinitesimal ε, both
f (x+εu) and f (x) must vanish, so f (x+εu)− f (x) = εu ·∇ f (x) = 0. Hence
Eq. (9.5.3) embodies the physical requirement that constraining the particle to
the surface (9.5.1) can only produce forces normal to this surface.)

Eq. (9.5.1) is what is known as a primary constraint, imposed directly by
the nature of the system. There is also a secondary constraint, imposed by the
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condition that the primary constraint remains satisfied as the particle moves: For
all x on the surface,

d f

dt
= ẋ · ∇ f (x) = 0. (9.5.4)

Then there is also the condition that this secondary constraint remains satisfied:

ẍ · ∇ f = 0. (9.5.5)

(Since Eq. (9.5.4) holds for all x, the term
∑

i j ẋi ẋ j∂i∂ j f in the time-derivative
of ẋ ·∇ f vanishes.) Eq. (9.5.5) is not counted as a new constraint, because it just
serves to determine λ. Using the equation of motion (9.5.3) in Eq. (9.5.5) gives

λ = ∇ f · ∇V

(∇ f )2
, (9.5.6)

so the equation of motion becomes

mẍ = −∇V + ∇ f
∇ f · ∇V

(∇ f )2
. (9.5.7)

It is easy to check that this equation depends only on the surface to which the
particle is constrained, not to the particular function f (x) whose vanishing is
used to describe this constraint. That is, if we introduce a new function g(x) =
G
(

f (x)
)

, where G is any smooth function of f with G(0) = 0, then from the

equation of motion with g(x) in place of f (x), we can derive the equation of
motion in the form (9.5.7) involving f .

Since ∂L/∂λ̇ = 0, the Hamiltonian for this system is simply

H(x,p) = p · x − L ,

where

p = mẋ.

Using the constraint (9.5.1), this is simply

H(x,p) = p2

2m
+ V (x). (9.5.8)

But we cannot here impose the usual canonical commutation relations [xi , p j ] =
i�δi j , because this would be inconsistent with both the primary constraint (9.5.1)
and the secondary constraint (9.5.4), which now reads

p · ∇ f = 0. (9.5.9)

So what commutation rules should we use?
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A general answer was suggested by Dirac1 for a large class of constrained
Hamiltonian systems. Suppose there are a number of primary and secondary
constraints, which can be expressed in the form

χr (q, p) = 0. (9.5.10)

For instance, in the problem discussed above, there are two χs, with

χ1 = f (x), χ2 = p · ∇ f (x). (9.5.11)

Dirac distinguished two cases, distinguished by the properties of the matrix

Crs(q, p) ≡ [χr (q, p), χs(q, p)]P , (9.5.12)

where [ f, g]P denotes the Poisson bracket, defined by Eq. (9.4.19):

[ f (q, p), g(q, p)]P ≡
∑

N

[
∂ f (q, p)

∂qN

∂g(q, p)

∂pN
− ∂g(q, p)

∂qN

∂ f (q, p)

∂pN

]
,

(9.5.13)

with the constraints applied only after the partial derivatives are calculated. Con-
straints for which there exists some us for which

∑
s Crsus = 0 for all r are

called first-class constraints, and must be dealt with by imposing conditions
that reduce the number of independent variables. (For instance, in the example
of a particle constrained to a surface, if we kept λ as an independent variable
instead of imposing the condition (9.5.6), then the constraints in this example
would be first class. We will see another example of a first-class constraint in
Chapter 11, eliminated by a choice of gauge for the electromagnetic potentials.)
When this has been done, the constraints are of the second class, defined by the
condition that

Det C �= 0, (9.5.14)

so that the matrix C has an inverse C−1. Dirac proposed that in a theory with
only second-class constraints, instead of commutators being given by i� times
the Poisson bracket, as in Eq. (9.4.18), they are given by

[ f (q, p), g(q, p)] = i�[ f (q, p), g(q, p)]D, (9.5.15)

where [ f (q, p), g(q, p)]D is the Dirac bracket2

[ f (q, p), g(q, p)]D ≡ [ f (q, p), g(q, p)]P

−
∑

rs

[ f (q, p), χr (q, p)]PC−1
rs (q, p)[χs(q, p), g(q, p)]P . (9.5.16)

1 P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964).
2 There are various circumstances in which Eq. (9.5.15) can be derived from the usual canonical commu-

tation relations for a reduced set of canonical variables; see T. Maskawa and H. Nakajima, Prog. Theor.
Phys. 56, 1295 (1976); S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press,
Cambridge, 1995), Appendix to Chapter 7.
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In particular, in place of the usual canonical commutation relations, Dirac’s
proposal requires that

[qN , pM ] = i�

[
δN M −

∑
rs

∂χr

∂pN
C−1

rs

∂χs

∂qM

]
, (9.5.17)

and

[qN , qM ] = i�
∑

rs

∂χr

∂pN
C−1

rs

∂χs

∂pM
, (9.5.18)

[pN , pM ] = i�
∑

rs

∂χr

∂qN
C−1

rs

∂χs

∂qM
. (9.5.19)

(Where the Dirac bracket involves non-commuting operators, it is necessary to
be careful with their ordering. Once again, this has to be dealt with on a case-by-
case basis.) Conversely, the general commutation relation (9.5.15) follows from
Eqs. (9.5.17)–(9.5.19).

This proposal satisfies a number of necessary conditions on commutators.
First, the Dirac bracket has the same algebraic properties (9.4.20)–(9.4.22) as
commutators:

[ f, g]D = −[g, f ]D (9.5.20)

[ f, gh]D = [ f, g]Dh + g[ f, h]D, (9.5.21)

[ f, [g, h]D]D + [g, [h, f ]D]D + [h, [ f, g]D]D = 0. (9.5.22)

Further, the assumption (9.5.15) is consistent with the constraints. Note that the
Dirac bracket of any constraint function, say χr (q, p), with any other function
g(q, p) is given by Eqs. (9.5.12) and (9.5.16) as

[χr , g]D = [χr , g]P −
∑
r ′s

Crr ′C−1
r ′,s[χs, g]P = 0, (9.5.23)

so that Eq. (9.5.15) is consistent with the condition that the operator χr vanishes.
Let’s see how this works for the above example of a particle constrained to a

surface. The Poisson bracket of the constraint functions (9.5.11) is

C12 = −C21 = [χ1, χ2]D = (∇ f )2, (9.5.24)

and of course C11 = C22 = 0, so the inverse C-matrix has elements

C−1
12 = −C−1

21 = −(∇ f )−2, C−1
11 = C−1

22 = 0. (9.5.25)

Thus (9.5.17) gives

[xi , p j ] = i�
[
δi j − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]
. (9.5.26)
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Also, since χ1 does not depend on p, Eq. (9.5.18) here gives

[xi , x j ] = 0. (9.5.27)

It takes a little more effort to calculate the commutator of the ps. According to
Eq. (9.5.19), we have

[pi , p j ] = −i�
[
∂ f

∂xi
(∇ f )−2 ∂

∂x j
(p · ∇ f )− i ↔ j

]
.

Since both (p·∇ f ) and f vanish on the surface to which x and p are constrained,
their gradients are both in the same direction, normal to this surface, so the
product of the derivatives with respect to x j and xi is symmetrical in i and j .
The two terms in square brackets thus cancel, so that

[pi , p j ] = 0. (9.5.28)

The difference between these commutation relations and the usual ones is the
presence of the second term in Eq. (9.5.26), which is needed for the commutator
of p · ∇ f with xi to be consistent with the vanishing of p · ∇ f .

We can now work out the equations of motion in this example. Because
the Hamiltonian H is the generator of time-translations, we must as usual
have Ȯ = (i/�)[H,O] for any operator O. Using the commutation relations
(9.5.26)–(9.5.28) and Eq. (9.5.8) for H , we have

ẋi = 1

2m
[p2, xi ] = 1

m
p j

[
δi j − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]
,

and since p · ∇ f = 0, this gives simply

ẋ = p/m. (9.5.29)

On the other hand,

ṗ j = i

�
[V (x), p j ] = −∂V

∂xi

[
δi j − ∂ f

∂xi
(∇ f )−2 ∂ f

∂x j

]

or in other words,

ṗ = −∇V + ∇ f
∇ f · ∇V

(∇ f )2
. (9.5.30)

Thus Dirac’s assumption (9.5.15) yields the same equations of motion (9.5.7) as
provided by the classical Lagrangian for this model.
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9.6 The Path-Integral Formalism

In his Ph.D. thesis,1 Richard Feynman (1918–1988) proposed a formalism,
according to which the amplitude for a transition between one configuration of
a set of particles at an initial time to another configuration at a final time is given
by an integral over all the paths that particles can take in going from the initial
to the final configuration. Feynman seems to have intended this path-integral
formalism as an alternative to the usual formulation of quantum mechanics, but
as later realized, it can be derived from the usual canonical formalism.

Let us consider a set of Heisenberg-picture operators QN (t) and their
canonical conjugates PN (t), satisfying the usual commutation relations (9.4.5)
and (9.4.6):

[QN (t), PM(t)] = i�δN M , (9.6.1)

[QN (t), QM(t)] = [PN (t), PM(t)] = 0. (9.6.2)

(We are now using upper case letters to distinguish the operators from their
eigenvalues, which are denoted with lower case letters.) We can introduce a
complete orthonormal set of eigenvectors of all the QN (t):

QN (t)�q,t = qN�q,t , (9.6.3)(
�q ′,t , �q,t

)
= δ(q − q ′) ≡

∏
N

δ(qN − q ′
N ). (9.6.4)

Suppose we want to calculate the probability amplitude
(
�q ′,t ′, �q,t

)
for the

system to go from a state in which the QN (t) have eigenvalues qN to a state
in which the QN (t ′) have eigenvalues q ′

N , where t ′ > t . For this purpose, we
introduce into the time interval from t to t ′ a large number N of times τn , with
t ′ > τ1 > τ2 > · · · > τN > t , and use the completeness of the states �q,τ to
write(

�q ′,t ′, �q,t

)
=
∫

dq1 dq2 · · · dqN
(
�q ′,t ′, �q1,τ1

)(
�q1,τ1, �q2,τ2

)
· · ·

×
(
�qN ,tN , �q,t

)
, (9.6.5)

where
∫

dqn is an abbreviation for
∏

N

∫
dqN ,n . (The subscripts on the qs in

Eq. (9.6.5) are values of the index n, labeling different times, rather than values
of the index N , which labels different canonical variables.) So now we need to

calculate the scalar product
(
�q ′,τ ′, �q,τ

)
for a general q ′ and q (not necessarily

related to the q and q ′ in Eq. (9.6.5)) when τ ′ is very slightly larger than τ .

1 R. P. Feynman, The Principle of Least Action in Quantum Mechanics (Princeton University, 1942;
University Microfilms Publication No. 2948, Ann Arbor). Also see R. P. Feynman and A. R. Hibbs,
Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
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For this purpose, we recall that the Heisenberg picture operators have a time-
dependence given by

QN (τ
′) = ei H(τ ′−τ)/�QN (τ )e

−i H(τ ′−τ)/�, (9.6.6)

so

�q ′,τ ′ = ei H(τ ′−τ)/��q ′,τ , (9.6.7)

and therefore (
�q ′,τ ′, �q,τ

)
=
(
�q ′,τ , e−i H(τ ′−τ)/��q,τ

)
. (9.6.8)

Now, the Hamiltonian H may be written as a function of the Schrödinger picture
operators QN and PN , or since the Hamiltonian commutes with itself, it can just
as well be written as the same function of QN (τ ) and PN (τ ) for any τ . To
evaluate the matrix element (9.6.8) we need to insert a complete orthonormal
set of eigenstates of the PN (t) to the right of the exponential(

�q ′,τ ′, �q,τ

)
=
∫

dp
(
�q ′,τ , exp

[
−i H

(
Q(τ ), P(τ )

)
(τ ′ − τ)/�

]
�p,τ

)
×
(
�p,τ , �q,τ

)
,

where
∫

dp ≡ ∏
N

∫
dpN , and

PN (τ )�p,τ = pN�p,τ , (9.6.9)

(
�p′,τ , �p,τ

)
= δ(p − p′) ≡

∏
N

δ(pN − p′
N ). (9.6.10)

We can always use the commutation relations (9.6.1) and (9.6.2) to write
the Hamiltonian in a form with all Qs to the left of all Ps, in which case
the operators Q(τ ) and P(τ ) in the Hamiltonian can be replaced with their
eigenvalues:2

(
�q ′,τ ′, �q,τ

)
=
∫

dp exp
[

− i H(q ′, p)(τ ′ − τ)/�
]

×
(
�q ′,τ , �p,τ

) (
�p,τ , �q,τ

)
. (9.6.11)

Just as for ordinary plane waves, the scalar products remaining in Eq. (9.6.11)
take the simple form

(
�q ′,τ , �p,τ

)
=
∏

N

eipN q ′
N /�√

2π�
,
(
�p,τ , �q,τ

)
=
∏

N

e−i pN qN /�
√

2π�

2 Because H appears in the exponential, this is only valid for infinitesimal τ ′ − τ , in which case the
exponential is a linear function of H .



292 9 The Canonical Formalism

so Eq.(9.6.11) now reads(
�q ′,τ ′, �q,τ

)
=
∫ ∏

N

dpN

2π�
exp

[
−i H(q ′, p)(τ ′−τ)/�+i

∑
N

pN (q
′
N−qN )/�

]
,

or in the form in which we need it in Eq. (9.6.5),(
�qn ,τn , �qn+1,τn+1

)
=
∫ ∏

N

dpN ,n

2π�

× exp

[
− i

�
H(qn, pn)(τn − τn+1)+ i

�
∑

N

pN ,n(qN ,n − qN ,n+1)

]
, (9.6.12)

with the understanding that

q0 = q ′, τ0 = t ′, qn+1 = q, τn+1 = τ.

We can now use Eq. (9.6.12) for the matrix elements in Eq. (9.6.5), which
gives

(
�q ′,t ′, �q,t

)
=
∫ [∏

N

N∏
n=1

dqN ,n

][∫ ∏
N

N∏
n=0

dpN ,n

2π�

]

× exp

[
− i

�

N∑
n=0

H(qn, pn)(τn − τn+1)+ i

�
∑

N

N∑
n=0

pN ,n(qN ,n − qN ,n+1)

]
.

(9.6.13)

We can introduce c-number functions qN (τ ) and pN (τ ) that interpolate between
the τn , in such a way that

qN (τn) = qN ,n, pN (τn) = pN ,n. (9.6.14)

Further, we can take the difference of successive τ s to be an infinitesimal dτ :

τn−1 − τn = dτ, (9.6.15)

so that, to first order in dτ ,

qN ,n − qN ,n+1 = q̇N (τn)dτ, H(qn, pn)(τn − τn+1) = H(q(τn), p(τn))dτ,

and therefore Eq. (9.6.13) may be written(
�q ′,t ′, �q,t

)
=
∫

q(t)=q; q(t ′)=q ′

∏
τ

dq(τ )
∫ ∏

τ

dp(τ )

2π�

× exp

[
i

�

∫ t ′

t
dτ

(∑
N

pN (τ )q̇N (τ )− H
(

q(τ ), p(τ )
))]

,

(9.6.16)
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where ∫ ∏
τ

dq(τ )
∫ ∏

τ

dp(τ )

2π�
≡
∫ ∏

N

N∏
n=1

dqN ,n

∫ ∏
N

N∏
n=0

dpN ,n

2π�
.

That is, this is a path integral, an integral over all functions qN (τ ) and pN (τ ),
with qN (τ ) constrained by the conditions that qN (t) = qN and qN (t ′) = q ′

N .
One of the nice things about the path-integral formalism is that it allows an

easy passage from quantum mechanics to the classical limit. In macroscopic
systems, we generally have∫ t ′

t
dτ

(∑
N

pN (τ )q̇N (τ )− H
(

q(τ ), p(τ )
))

� �.

The phase of the exponential in Eq. (9.6.16) is then very large, so that the expo-
nential oscillates very rapidly, killing all contributions to the path integral except
from paths where the phase is stationary with respect to small variations in the
path. The condition that the phase is stationary with respect to variations of the
qN (τ ) that leave the values at the initial and final times unchanged is that

0 =
∫ t ′

t

[∑
N

pN (τ )δq̇N (τ )− ∂H

∂qN (τ )
δqN (τ )

]

=
∫ t ′

t

[
−
∑

N

ṗN (τ )− ∂H

∂qN (τ )

]
δqN (τ )

so

ṗN = − ∂H

∂qN
.

Also, the condition that the phase is stationary with respect to arbitrary variations
of the pN (τ ) is that

q̇N = ∂H

∂pN
.

Of course, we recognize these as the classical equations of motion.
Feynman was motivated in part by the aim of expressing transition prob-

abilities in quantum mechanics in terms of the Lagrangian rather than the
Hamiltonian. (As discussed in Section 8.7, in Lorentz invariant theories the
Lagrangian unlike the Hamiltonian is typically the integral of a scalar density.)
But the integrand of the integral in the exponential in Eq. (9.6.16) is not the
Lagrangian, because pN (t) here is an independent integration variable, not the
quantity ∂L/∂q̇N . There is one commonly encountered case in which the inte-
gral over p(τ ) can be evaluated by simply setting pN = ∂L/∂q̇N , so that the
integrand really is the Lagrangian. This is the case in which the Hamiltonian
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is the sum of a term of second order in the ps, with constant coefficients, plus
possible terms of first and zeroth order in the ps, so that the exponential is a
Gaussian function of the ps. The integral of a Gaussian function is given in
general by the formula∫ ∞

−∞

∏
r

dξr exp

{
i

[
1

2

∑
rs

Krsξrξs +
∑

r

Lrξr + M

]}

= [
Det(K/2iπ)

]−1/2
exp

{
i

[
1

2

∑
rs

Krsξ0rξ0s +
∑

r

Lrξ0r + M

]}
,

(9.6.17)

where ξ0r is the value of ξr at which the argument of the exponential is
stationary: ∑

s

Krsξ0s + Lr = 0. (9.6.18)

The value of pN (τ ) at which the integrand in Eq. (9.6.16) is stationary satisfies
the condition that

q̇N (τ ) =
∂H

(
q(τ ), p(τ )

)
∂pN (τ )

, (9.6.19)

whose solution makes
∑

N pN (τ )q̇N (τ ) − H
(

q(τ ), p(τ )
)

equal to the

Lagrangian. So the integral over the ps in Eq. (9.6.16) gives

(
�q ′,t ′, �q,t

)
= C

∫
q(t)=q; q(t ′)=q ′

∏
τ

dq(τ ) exp

[
i

�

∫ t ′

t
dτ L

(
q(τ ), q̇(τ )

)]
,

(9.6.20)

with C a constant of proportionality that is independent of q and q ′, and inde-
pendent of the terms in the Hamiltonian that are linear in or independent of the
ps. It does however depend on the time interval t ′ − t , and on its splitting into
N +1 segments of length dτ . For instance, for a non-relativistic particle moving
in a potential in D dimensions, the term in the Hamiltonian that is quadratic in
p is p2/2m, which according to Eq. (9.6.17) is all we need in order to calculate
C . In this case3

C =
[

1

2π�

∫ ∞

−∞
dp exp

(
− i p2dτ

2m�

)](N+1)D

=
[ m

2iπ�dτ

](N+1)D/2
.

(9.6.21)

3 Feynman and Hibbs, ref. 1, give an indirect argument for this result, rather than obtaining it from the
integral over ps, which does not appear in their book.
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The remaining path integration in Eq. (9.6.20) is generally not easy. The cases
where it can be done easily are that of a free particle (or free field), or a particle
in a harmonic oscillator potential, for which the Lagrangian is quadratic in q̇N

and qN . Here again, with a quadratic Lagrangian, the integral can be done up
to a constant factor by setting q(t) equal to the function for which the integral
of the Lagrangian is stationary with respect to small variations in the functions
qN (τ ) for which qN (t ′) = q ′

N and qN (t) = qN are fixed — that is, for which
qN (τ ) satisfies the classical equations of motion

d

dτ

∂L(τ )

∂q̇N (τ )
= ∂L(τ )

∂qN (τ )
,

with qN (t ′) = q ′
N and qN (t) = qN . For instance, for a free particle in D dimen-

sions, we have L = mẋ2/2, and the solution of the classical equations of motion
has constant velocity

ẋ(τ ) =
(

x′ − x
t ′ − t

)
.

Hence Eq. (9.6.20) gives(
�x′,t ′, �x,t

)
= BC exp

(
im(x′ − x)2

2(t ′ − t)�

)
, (9.6.22)

where B is, like C , a constant independent of x′ and x. A rather tedious
calculation along the lines of our calculation of C gives4

B = N−D/2
( m

2iπ�dτ

)−DN /2

so, since Ndτ = t ′ − t ,

BC =
(

m

2iπ�(t ′ − t)

)D/2

. (9.6.23)

We can check this, by noting that (9.6.22) must approach the delta function
δD(x′ − x) in the limit as t ′ → t . That is, for any smooth function f (x), in this
limit we must have∫

d Dx

(
m

2iπ�(t ′ − t)

)D/2

exp

(
im(x′ − x)2

2(t ′ − t)�

)
f (x) → f (x′).

For t ′ → t the exponential varies very rapidly with x except at x = x′, so the
integral can be done by setting the argument of f equal to x′, and all we need to
show is that ∫

d Dx

(
m

2iπ�(t ′ − t)

)D/2

exp

(
im(x′ − x)2

2(t ′ − t)�

)
= 1,

4 Feynman and Hibbs, ref. 1 pp. 43-44.
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which follows from the standard formula for the integrals of Gaussian func-
tions. The x′ dependence of the matrix element (9.6.22) can be understood by
noting that this matrix element is nothing but the wave function of the state �x,τ ,
defined as an eigenstate of the x(τ ), in a basis in which the x(t ′) are diagonal.
Thus this matrix element must satisfy the Schrödinger equation

−
(
�2∇′2

2m

)(
�x′,t ′, �x,t

)
= i�

∂

∂t ′
(
�x′,t ′, �x,t

)
,

and it does. Thus the path-integral formalism allows us to find the solution of
the Schrödinger equation, without ever writing down the Schrödinger equation.

In an experiment in which a particle is made to pass from a point x on one side
of a screen in which there are several holes to a point x′ on the other side, there is
not just one trajectory x(τ ) for which the action

∫
L(τ )dτ is stationary, but a tra-

jectory for each hole. The path-integral formalism thus allows us to understand
the interference pattern produced in such an experiment without wave mechan-
ics, but instead as a consequence of the superposition of contributions of several
possible classical paths.

More generally, for non-quadratic Lagrangians, the path integral (9.6.20) can-
not be calculated analytically. One way of dealing with this problem is to expand
in powers of the non-quadratic part of the Lagrangian, which yields a Lagrangian
version of time-dependent perturbation theory. The other approach is to divide
the range of integration from t to t ′ into a finite number of segments of duration
�τ , and calculate the integral of exp(i L(τ )�τ)/� over particle coordinates at
each segment end numerically. In quantum field theories one would also have
to represent space as a lattice of points, and integrate over fields numerically
at each point in the spacetime lattice. This approach can reveal features of a
problem that are not accessible through perturbation theory.5

Problems

1. Consider the theory of a single particle with Lagrangian

L = m

2
ẋ2 + ẋ · f(x)− V (x),

where f(x) and V (x) are arbitrary vector and scalar functions of position.

• Find the equation of motion satisfied by x.
• Find the Hamiltonian, as a function of x and its canonical conjugate p.

5 For applications of lattice methods to field theory, see M. Creutz, Quarks, Gluons, and Lattices (Cam-
bridge University Press, Cambridge, 1985); T. DeGrand and C. DeTar, Lattice Methods for Quantum
Chromodynamics (World Scientific Press, Singapore, 2006).
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• What is the Schrödinger equation satisfied by the coordinate-space wave
function ψ(x, t)?

2. Show that Poisson brackets and Dirac brackets both satisfy the Jacobi
identity.

3. Consider a one-dimensional harmonic oscillator, with Hamiltonian

H = p2

2m
+ mω2x2

2
.

Use the path-integral formalism to calculate the probability amplitude for a
transition from a position x at time t to a position x ′ at time t ′ > t .



10
Charged Particles in

Electromagnetic Fields

In this chapter we take up the problem of charged non-relativistic particles in
an external electromagnetic field — that is, a field produced by some macro-
scopic system whose quantum fluctuations are negligible. This problem is of
great physical importance in itself, and it also provides an example in which the
canonical commutation relations are somewhat surprising.

10.1 Canonical Formalism for Charged Particles

Consider a set of non-relativistic spinless particles with masses mn and charges
en , in a classical external electric field E(x, t) and magnetic field B(x, t). (Effects
of spin are considered in Section 10.3.) Because it is easy, we will also include
in the theory a local potential V depending on some or all of the various particle
coordinates. The equations of motion of the particles are

mn ẍn(t) = en

[
E
(

xn(t), t
)

+ 1

c
ẋn(t)× B

(
xn(t), t

)]
− ∇nV

(
x(t)

)
. (10.1.1)

It is not possible to write a Lagrangian for this system directly in terms of E
and B; instead we must introduce a vector potential A(x, t) and scalar potential
φ(x, t), for which

E = −1

c
Ȧ − ∇φ, B = ∇ × A. (10.1.2)

(This is always possible, because E and B satisfy the homogeneous Maxwell
equations ∇ × E + Ḃ/c = 0 and ∇ · B = 0.)

Let us tentatively take the Lagrangian as

L(t) =
∑

n

[mn

2
ẋ2

n(t)− enφ
(

xn(t), t
)

+ en

c
ẋn(t) · A

(
xn(t), t

)]
− V(x),

(10.1.3)

and check whether it gives the right equations of motion (10.1.1). Here φ and A
are external fields, not dynamical variables. (They will become dynamical vari-
ables when we quantize the electromagnetic field in the next chapter.) Therefore
we are concerned here with the differential equations (9.1.3) only where the

298
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qN (t) are the coordinates xni (t). For the Lagrangian (10.1.3), we have (leaving
the time argument of xn to be understood)

∂L(t)

∂xni
= −en

∂φ(xn, t)

∂xni
+ en

c

∑
j

ẋn j
∂A j (xn, t)

∂xni
− ∂V(x)

∂xni
, (10.1.4)

∂L(t)

∂ ẋni
= mnẋni + en

c
Ai (xn, t), (10.1.5)

and so
d

dt

∂L(t)

∂ ẋni
= mnẍni + en

c

∂Ai (xn, t)

∂t
+ en

c

∑
j

∂Ai (xn, t)

∂xnj
ẋn j . (10.1.6)

The equations of motion (9.1.3) are then

mnẍni = −en
∂φ(xn, t)

∂xni
− en

c

∂Ai (xn, t)

∂t

+en

c

∑
j

ẋn j

[
∂A j (xn, t)

∂xni
− ∂Ai (xn, t)

∂xnj

]
− ∂V(x)

∂xni
. (10.1.7)

We recognize that, according to Eq. (10.1.2), the coefficients of en in the first
two terms on the right add up to give the electric field. Also, the sum in the third
term on the right is∑

j

ẋn j

[
∂A j (xn, t)

∂xni
− ∂Ai (xn, t)

∂xnj

]
=
∑

jk

ẋn jεi jk[∇ × A(xn, t)]k

= [ẋn × B(xn, t)]i ,

where as usual εi jk is the totally antisymmetric tensor with ε123 = 1. Hence the
equation of motion (10.1.7) derived from this Lagrangian is indeed the same as
Eq. (10.1.1).

To calculate energy levels, we need to construct a Hamiltonian. According to
Eq. (10.1.5), here the time-derivative of the coordinate is a function of both the
coordinate and its canonical conjugate:

ẋn = 1

mn

[
pn − en

c
A(xn, t)

]
. (10.1.8)

Eq. (9.3.1) then gives the Hamiltonian as

H(x,p.t) =
∑

n

1

mn
pn ·

[
pn − en

c
A(xn, t)

]

−
∑

n

{
1

2mn

[
pn − en

c
A(xn, t)

]2 − enφ
(

xn, t
)

+en

c

[
pn − en

mnc
A(xn, t)

]
· A
(

xn, t
)}

+ V(x),
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or more simply

H(x,p, t) =
∑

n

1

2mn

[
pn − en

c
A(xn, t)

]2 +
∑

n

enφ
(

xn, t
)

+ V(x). (10.1.9)

If we now used Eq. (10.1.8) to write the first term as
∑

n ẋ2
n/2mn , then it would

appear as if the dynamics of these particles was unaffected by the vector poten-
tial, but this is wrong; in using the Hamiltonian to derive dynamical equations,
we must consider it as in Eq. (9.3.4), as a function of the xn and pn , and not as a
function of the xn and ẋn . In particular, it is pn and not mn ẋn that appears in the
canonical commutation relations

[xni , pmj ] = i�δnmδi j , (10.1.10)

[xni , xmj ] = [pni , pmj ] = 0. (10.1.11)

We will use this Hamiltonian and these commutation relations in Section 10.3
to find the energy levels of a charged particle in a uniform magnetic field.

10.2 Gauge Invariance

Different vector and scalar potentials can yield the same electric and magnetic
fields. Specifically, inspection of Eqs. (10.1.2) shows that we can change the
potentials by a gauge transformation

A(x, t) �→ A′(x, t) = A(x, t)+ ∇α(x, t), (10.2.1)

φ(x, t) �→ φ′(x, t) = φ(x, t)− 1

c

∂

∂t
α(x, t) (10.2.2)

(where α(x, t) is an arbitrary real function), with no change in the electric and
magnetic fields. It is therefore striking that, although the Lagrangian (10.1.3)
depends on the specific choice of vector and scalar potentials, the equations of
motion derived from this Lagrangian depend only on the electric and magnetic
fields. We can understand this by noting that, under the transformation (10.2.1),
(10.2.2), the Lagrangian is transformed to

L(t) �→ L ′(t) = L(t)+
∑

n

en

c

[
∂α(xn, t)

∂t
+ ẋn · ∇nα(xn, t)

]

= L(t)+ d

dt

∑
n

en

c
α(xn, t). (10.2.3)

The Lagrangian is thus not gauge-invariant, but the action
∫

dt L(t) is gauge-
invariant (provided we take α(x, t) to vanish for t → ±∞), and since the field
equations are the statement that the action is stationary with respect to small
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variations of the dynamical parameters that vanish as t → ±∞, they too are
gauge-invariant.

The Hamiltonian, though, is not gauge-invariant. If we make the change
of gauge (10.2.1), (10.2.2) in the Hamiltonian (10.1.9), we obtain a new
Hamiltonian:

H ′(x,p, t) =
∑

n

1

2mn

[
pn − en

c
A(xn, t)− en

c
∇α(xn, t)

]2

+
∑

n

enφ
(

xn, t
)

−
∑

n

en

c

α(xn, t)

dt
+ V(x). (10.2.4)

Now, according to the commutation relations (10.1.10), (10.1.11), we can define
a unitary operator

U (t) ≡ exp

[
i
∑

n

en

�c
α(xn, t)

]
, (10.2.5)

for which

U (t)pn(t)U
−1(t) = pn(t)− en

c
∇α(xn, t). (10.2.6)

The Hamiltonian (10.2.4) in the new gauge may therefore be expressed as

H ′(x,p, t) = U (t)H(x,p, t)U−1(t)+ i�
[

d

dt
U (t)

]
U−1(t), (10.2.7)

with the second term on the right providing the next-to-last term in Eq. (10.2.4).
(We are taking the xn and pn here as time-independent operators in the
Schrödinger picture, which allows us to write the time-derivative in the sec-
ond term in Eq. (10.2.7) as d/dt instead of ∂/∂t .) It is then easy to see that, if
�(t) satisfies the time-dependent Schrödinger equation in the original gauge

i�
d

dt
�(t) = H(t)�(t), (10.2.8)

then the unitarily transformed state vector

� ′(t) ≡ U (t)�(t) (10.2.9)

satisfies the time-dependent Schrödinger equation in the new gauge:

i�
d

dt
� ′(t) = U (t)H(t)�(t)+ i�

[
d

dt
U (t)

]
�(t) = H ′(t)� ′(t). (10.2.10)

Recall that xn is the operator that multiplies the coordinate-space wave function
with the nth coordinate vector, so the transformation (10.2.9) is a position-
dependent change of phase of the coordinate-space wave functions, with no
change in the probability density in coordinate space.
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It is of special interest to consider the effect of a gauge transformation on the
energy eigenvalues of the Hamiltonian in the case of time-independent electric
and magnetic fields, for which the Hamiltonian is time-independent. To keep
the fields time-independent, we will take the gauge transformation to be also
time-independent.1 In this case, Eq. (10.2.7) is just a unitary transformation,
H ′ = U HU−1, so if � is an eigenstate of H with eigenvalue E , then � ′ = U�

is an eigenstate of H ′ with the same eigenvalue E . In cases where energies are
well defined, they are gauge-invariant.

10.3 Landau Energy Levels

As an example of the use of the theory of charged particles in an electromagnetic
field described in previous sections, we will now take up a classic problem first
treated in 1930 by Lev Landau (1908–1968): the quantum theory of motion
in two dimensions of an electron in a uniform magnetic field.1 Since electrons
have spin, we must add a term −μes ·B/(�/2) to the Hamiltonian, where μe is a
parameter known as the magnetic moment of the electron. The Hamiltonian for
an electron (with charge −e) in a general electromagnetic field is then

H = 1

2me

(
p + e

c
A(x, t)

)2 − eφ(x, t)− 2μe

�
s · B(x, t). (10.3.1)

We are here neglecting any interaction between electrons, so that it is adequate
to consider one electron at a time. We assume that the magnetic field is in the
+z-direction, and has a constant value Bz . We also include an electric field along
the z-direction, which depends only on z, and has the function of confining the
electron in this direction, whether to a thin sheet or to the whole thickness of a
slab of material. We can then take the vector and scalar potentials to have the
form

Ay = x Bz, Ax = Az = 0, φ = φ(z). (10.3.2)

(This choice is of course not unique, but as shown in Section 10.2, the eigen-
values of the Hamiltonian are independent of the choice of potentials giving the
assumed electric and magnetic fields.) With these potentials, the Hamiltonian
(10.3.1) takes the form

H = 1

2me

(
p2

x + (py + eBz x/c)2 + p2
z

)− eφ(z)− 2μesz Bz/�. (10.3.3)

This Hamiltonian commutes with the operators py and sz , and with

1 The transformed fields will also be time-independent if we let α(x, t) = λt , with λ independent of x
and t . This amounts to a change of an arbitrary additive constant in the electrostatic potential, and shifts
all energies in a system of total charge Q by the same amount, −λQ/c.

1 L. Landau, Zeit. f. Physik 64, 629 (1930).
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H ≡ p2
z

2me
− eφ(z), (10.3.4)

so we can look for states � that are eigenstates of all these operators

H� = E�, sz� = ±�
2
�, py� = �ky�, (10.3.5)

as well as

H� = E�. (10.3.6)

The Schrödinger equation (10.3.6) then reads

1

2me

(
p2

x + (�ky + eBz x/c)2
)
� = (E − E ± μe Bz)�. (10.3.7)

We can put this it a more familiar form, by writing it as[
1

2me
p2

x + meω
2

2
(x − x0)

2

]
� = (E − E ± μe Bz)�, (10.3.8)

where

ω = eBz

mec
, x0 = −�kyc

eBz
. (10.3.9)

(The parameter ω is the circular frequency of classical electron orbits in a mag-
netic field Bz , and is therefore known as the cyclotron frequency.) Of course,
we recognize Eq, (10.3.8) as the Schrödinger equation for a harmonic oscillator,
discussed in Section 2.5. (Even though px in Eq. (10.3.7) is not simply equal to
meẋ , it does satisfy the commutation relation [x, px ] = i�, and therefore acts as
the differential operator −i�∂/∂x on the coordinate-space wave function, just
as for the ordinary harmonic oscillator.) The presence of x0 in Eq. (10.3.8) has
no effect on the energy eigenvalues, as it can be absorbed into a redefinition of
the coordinate, x �→ x ′ = x − x0. So the energies are given by

E = E ∓ μe Bz + �ω
(

n + 1

2

)
, (10.3.10)

where n = 0, 1, 2, . . . .
This takes an interesting form if we use the actual value of the electron

magnetic moment

μe = −e�(1 + δ)

2mec
, (10.3.11)

where δ = 0.001165923(8) is a small radiative correction. Eq. (10.3.10) then
reads

E = E + �ω
(

n + 1

2
± 1 + δ

2

)
. (10.3.12)
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We observe a near degeneracy: In the approximation δ 	 0, for a given E and
ky we have one state with energy E , and two states each with energies E + �ω,
E + 2�ω, etc.

Because the energies (10.3.12) do not depend on ky , these energy levels
exhibit a very large further degree of degeneracy. Suppose the electrons are con-
fined in a square slab, with −Lx/2 ≤ x ≤ Lx/2 and −L y/2 ≤ y ≤ L y/2. The
harmonic oscillator wave functions (2.5.13) extend around x0 in the x-direction
over a microscopic distance 	 (�/meω)

1/2, which we assume to be very much
less than Lx , so x0 in Eq. (10.3.8) must have |x0| < Lx/2, which according
to Eq. (10.3.9) gives |ky| < eBz Lx/2�c. As in Eq. (1.1.1), the wave number
ky can only take values 2πny/L y , where ny is a positive or negative integer,
so the number of states with a given n, E , and sz , satisfying the condition that
|ky| is less than eBz Lx/2�c, is the number of positive or negative integers with
magnitude less than (eBz Lx/2�c)(L y/2π), which is

Ny = eBz A

2π�c
, (10.3.13)

where A = Lx L y is the area of the slab.
To go further, we need to make some assumption about the term H in the

Hamiltonian that governs the z-dependence of the wave function, given by
Eq. (10.3.4). We will concentrate on the simplest case, assuming that we are
dealing with a slab of metal so thin in the z-direction that the eigenvalues E of
H are very far apart, so that we can assume that all conduction electrons are in
the eigenstate of H with lowest energy E0.

If we assume that all of the harmonic oscillator states are occupied by elec-
trons up to a maximum energy EF (the Fermi energy less E0), then the total
number of conduction electrons will be

N = 2

( EF

�ω

)
Ny = EF me A

π�2
. (10.3.14)

Without a magnetic field, we would have just the same relation between the
Fermi energy and the number N/A of electrons per area:

N = 2

(
Lx

2π

)(
L y

2π

)∫ √
2meEF/�

0
2πk dk = EF me A

π�2
.

Where the magnetic field makes a difference is in the quantization of the
energy levels. According to Eq. (10.3.12) (with δ = 0), if all the energy levels
(10.3.12) up to some maximum energy are completely filled, then the par-
tial Fermi energy EF must be a whole number multiple of �ω, which is not
necessarily true of the value of EF given according to Eq. (10.3.14) for a par-
ticular number per area N/A of conduction electrons. When the partial Fermi
energy EF is not a whole number multiple of �ω, the highest of the harmonic
oscillator energy levels is not completely filled. Specifically, if [EF/�ω] is the
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largest integer less than or equal to EF/�ω, then all of the energy levels up to
�ω[EF/�ω] will be fully occupied, and the fraction f of the next highest energy
level that is occupied will be given by the condition that([ EF

�ω

]
+ f

)
�ω = EF ,

or in other words

f = EF

�ω
−
[ EF

�ω

]
. (10.3.15)

As the magnetic field increases, the ratio EF/�ω decreases as 1/Bz , so f
decreases until EF/�ω is an integer, where f = 0. With a continued increase
in Bz , the occupancy f will jump up from zero to nearly one, and then decrease
to zero again when EF/�ω equals the next lowest integer, and so on. Many prop-
erties of the metal therefore show a periodicity in 1/Bz , with a period equal to
the decrease in 1/Bz required for EF/�ω to decrease by one unit:

�

(
1

Bz

)
= �e

mecEF
. (10.3.16)

The observed periodicities in electrical resistivity and magnetic susceptibility
are known as the Shubnikow–de Haas effect and the de Haas–van Alphen effect,
respectively. By measuring such periodicities for various magnetic field orien-
tations, it is possible to determine the relation between electron energies and
momenta in a crystal.

Similar periodicities are also seen in slabs with a finite thickness in the z-
direction, in which many different eigenstates of H are occupied. Here the
eigenvalues E are functions of the z-component kz of the Bloch wave number,
and the oscillations are associated with maxima or minima in E(kz).

10.4 The Aharonov–Bohm Effect

As emphasized in Section 10.1, even though in classical physics the introduction
of vector and scalar potentials is a mere mathematical convenience, in quan-
tum mechanics it is essential. This is vividly demonstrated by the existence of
an effect predicted by Aharonov and Bohm,1 in which the vector potential can
have measurable effects on a charged particle, even though the magnetic field
vanishes everywhere along the particle’s path.

First let’s consider how to calculate the wave function of an electron (ignor-
ing spin effects) of energy E in a static electromagnetic field, in a case where
the scale of length over which the field varies appreciably is large compared

1 Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
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with the electron wavelength. In this case we can use the eikonal approxima-
tion described in Section 7.10, with a Hamiltonian given by Eq. (10.1.9) for
charge −e and with no non-electromagnetic potential V:

H(x,p) = 1

2me

[
p + e

c
A(x)

]2 − eφ(x). (10.4.1)

We must construct ray paths, defined by the Hamiltonian equations (7.10.4).
which for the Hamiltonian (10.4.1) read

dxi

dτ
= 1

me

[
pi + e

c
Ai (x)

]
, (10.4.2)

dpi

dτ
= − e

mec

∑
j

[
p j + e

c
A j (x)

] ∂A j (x)
∂xi

+ e
∂φ(x)
∂xi

, (10.4.3)

where τ parameterizes the path through phase space. Initial conditions on the
wave function are specified on an initial surface, on which to leading order the
phase of the wave function is constant, say S0/�; p is normal to this surface;
and the Hamiltonian H equals the electron energy E , so that Eqs. (10.4.2) and
(10.4.3) give H = E along any path. At any point x, the phase S(x)/� of the
wave function is given by constructing a ray path that starts at τ = 0 on the
initial surface and reaches x at τ = τx, and calculating the integral

S(x) =
∫ τx

0
p(τ ) · dx(τ )

dτ
dτ. (10.4.4)

In our case, using Eq. (10.4.2) and setting the Hamiltonian (10.4.1) equal to E ,
this gives

S(x) =
∫ τx

0

[
−e

c
A(τ ) · dx

dτ
+ 2

(
E + eφ(x(τ ))

)]
dτ. (10.4.5)

The wave function at x will be of the form N (x) exp(i S(x)/�)), where N (x) is
a slowly varying real amplitude whose only dependence on initial conditions is
that it is proportional to the value of the amplitude at the point where the ray
path to x intersects the initial surface.

Now suppose that by some arrangement of fields, screens, and/or beam split-
ters, a single coherent beam of electrons is split into two parts, so that there are
two ray paths to a detector at x. The wave function at x will take the form

ψ(x) = N1(x) exp
(

i S1(x)/�
)

+ N2(x) exp
(

i S2(x)/�
)
, (10.4.6)

where the subscripts 1 and 2 denote the two paths to the detector. The probability
density at x then depends on the difference of the phases:

|ψ(x)|2 = N 2
1 (x)+ N 2

2 (x)+ 2N1(x)N2(x) cos
(
[S1(x)− S2(x)]/�

)
. (10.4.7)
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The phase difference appearing here may be written as an integral over a curve
C12 that goes from the initial surface to x along path 1 and then back to the initial
surface on path 2.

1

�

[
S1(x)− S2(x)

]
= 1

�

∮
C12

[
−e

c
A(τ ) · dx(τ )

dτ
+ 2

(
E + eφ(x(τ ))

)]
dτ.

(10.4.8)

According to the Stokes’ theorem, the first term in the phase difference is
proportional to the magnetic flux through the surface A12 bounded by C12:

− e

�c

∮
C12

A(τ ) · dx(τ )
dτ

dτ = − e

�c

∫
A12

B · n̂ d A, (10.4.9)

where n̂ is the unit vector normal to the surface. The Aharonov–Bohm effect
has been described here in a time-independent context, but we can also consider
it to be the effect of the changing magnetic field seen in the rest frame of the
electron. In this sense, we can regard Eq. (10.4.9) as an example of the Berry
phase discussed in Section 6.7.

In the particular case considered by Aharonov and Bohm, a magnetic solenoid
is inserted between paths 1 and 2, carrying a magnetic flux� that is entirely con-
tained within the solenoid. By the same argument as given in Section 10.1, the
ray paths are only affected by the electric and magnetic fields along the paths,
and so are unaffected by the solenoid. But the vector potential of the solenoid
does extend outside it, and this contributes a term −e�/�c to the phase dif-
ference, even though the magnetic field of the solenoid vanishes along both
ray paths. There are other contributions to the phase difference, but the con-
tribution of the solenoid can be observed by changing its flux �, while making
no other change to the system. As shown by Eq. (10.4.7), the electron prob-
ability density at the detector will be periodic in �, with a period 2π�c/e =
4.14 × 10−7Gauss cm2. This effect has been observed in a long series of
experiments.2

Problems

1. Consider a system in an external electromagnetic field. Suppose that the part
of the Lagrangian that depends on the scalar potential φ and vector potential
A takes the form

2 R. G. Chambers, Phys. Rev. Lett. 5, 3 (1960); H. A. Fowler, L. Marton, J. A. Simpson, and J. A. Suddeth,
J. Appl. Phys. 22, 1153 (1961); H. Boersch, H. Hamisch, K. Grohmann, and D. Wohlleben,Z. Phys. 165,
79 (1961); G. Möllenstedt and W. Bayh, Phys. B1 18, 299 (1962); A. Tomomura, T. Matsuda, R. Suzuki,
et al., Phys. Rev. Lett. 48, 1443 (1982).
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L int(t) =
∫

d3x [−ρ(x, t)φ(x, t)+ J(x, t) · A(x, t)] ,

where ρ and J depend on the matter variables but not on φ or A. What
condition must be satisfied by ρ and J for the action to be gauge-invariant?

2. Consider a homogeneous rectangular slab of metal, with edges Lx , L y , and
Lz . Assume that the electric potential φ vanishes within the slab, and that the
wave functions of conduction electrons in the slab satisfy periodic boundary
conditions at the slab faces. Suppose that the slab is in a constant magnetic
field in the z-direction that is strong enough so that the cyclotron frequency
ω is very much larger than �/me L2

z . Suppose that there are ne conduction
electrons per unit volume in the slab. Calculate the maximum energy of
individual conduction electrons, in the limit ωme L2

z/� → ∞.

3. Consider an non-relativistic electron in an external electromagnetic field.
Calculate the commutators of different components of its velocity.



11
The Quantum Theory of Radiation

We now come back to the problem that gave rise to quantum theory at the
beginning of the twentieth century — the nature of electromagnetic radiation.

11.1 The Euler–Lagrange Equations

In order to quantize the electromagnetic field, we will work with a Lagrangian
that leads to Maxwell’s equations. But before introducing this Lagrangian, it
will be helpful first to explain in general terms how in field theories the field
equations can be derived from a Lagrangian.

The canonical variables qN (t) in general field theories are fields ψn(x, t), for
which N is a compound index, including a discrete label n indicating the type
of field and a spatial coordinate x. Correspondingly, the Lagrangian L(t) is a
functional of ψn(x, t) and ψ̇n(x, t), depending on the form of all of the func-
tions ψn(x, t) and ψ̇n(x, t) for all x, but at a fixed time t . In consequence, the
partial derivatives with respect to qN and q̇N in the equations of motion must
be interpreted as functional derivatives with respect to ψn(x, t) and ψ̇n(x, t), so
that these equations read

∂

∂t

(
δL(t)

δψ̇n(x, t)

)
= δL(t)

δψn(x, t)
, (11.1.1)

where the functional derivatives δL/δψ̇n and δL/δψn are defined so that the
change in the Lagrangian produced by independent infinitesimal changes in
δψn(x, t) and δψ̇n(x, t) at a fixed time t is

δL(t) =
∑

n

∫
d3x

∑
n

[
δL(t)

δψn(x, t)
δψn(x, t)+ δL(t)

δψ̇n(x, t)
δψ̇n(x, t)

]
.

(11.1.2)
Likewise, the canonical conjugate to ψn(x, t) is

πn(x, t) = δL(t)

δψ̇n(x, t)
, (11.1.3)
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and in a theory with no constraints, the canonical commutation relations are

[ψn(x, t), πm(y, t)] = i�δnmδ
3(x − y), (11.1.4)

[ψn(x, t), ψm(y, t)] = [πn(x, t), πm(y, t)] = 0. (11.1.5)

Typically (though not always), the Lagrangian in a field theory will be an
integral of a local Lagrangian density L:

L(t) =
∫

d3x L
(
ψ(x, t),∇ψ(x, t), ψ̇(x, t)

)
. (11.1.6)

The variation of the Lagrangian action due to an infinitesimal change in the ψn

and their space and time derivatives is

δ L(t) =
∑

n

∫
d3x

∑
n

[
∂L
∂ψn

δψn +
∑

i

∂L
∂(∂iψn)

∂

∂xi
δψn + ∂L

∂ψ̇n

∂

∂t
δψn

]
.

Integrating by parts, this is

δ L(t) =
∫

d3x
∑

n

[(
∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

)
δψn + ∂L

∂ψ̇n

∂

∂t
δψn

]
.

This may be expressed as formulas for the variational derivatives of the
Lagrangian

δL

δψn
= ∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

(11.1.7)

δL

δψ̇n
= ∂L
∂ψ̇n

. (11.1.8)

The equations of motion (11.1.1) then take the form of the Euler–Lagrange field
equations

∂L
∂ψn

−
∑

i

∂

∂xi

∂L
∂(∂iψn)

= ∂

∂t

∂L
∂ψ̇n

. (11.1.9)

(In relativistically invariant theories it is convenient to write this as

∂L
∂ψn

=
∑
μ

∂

∂xμ
∂L

∂(∂μψn)
. (11.1.10)

Here μ is a four-component index, summed over the values i = 1, 2, 3 and 0,
with xi = xi and x0 = ct .) Similarly, in theories with a local Lagrangian density,
the field variable (11.1.3) that is canonically conjugate to ψn(x, t) is:

πn = δL

δψ̇n
= ∂L
∂ψ̇n

. (11.1.11)
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11.2 The Lagrangian for Electrodynamics

The electric field E(x, t) and magnetic field B(x, t) are governed by the
inhomogeneous Maxwell equations:1

∇ × B − 1

c

∂E
∂t

= 4π

c
J, ∇ · E = 4πρ, (11.2.1)

as well as the homogeneous Maxwell equations, already encountered in
Section 10.1:

∇ × E + 1

c

∂B
∂t

= 0, ∇ · B = 0. (11.2.2)

Here ρ(x, t) is the electric charge density, defined so that the electric charge
within any volume is the integral of ρ over that volume, and J(x, t) is the electric
current density, defined so that the charge per second passing through a small
area is the component of J normal to the area, times the area. They satisfy the
charge conservation condition

∂ρ

∂t
+ ∇ · J = 0, (11.2.3)

which is needed for the consistency of Eqs. (11.2.1). For instance, for a set of
non-relativistic point particles with charges en and coordinate vectors xn(t), the
charge and current densities are

ρ(x, t) =
∑

n

enδ
3
(

x−xn(t)
)
, J(x, t) =

∑
n

en ẋn(t) δ
3
(

x−xn(t)
)
. (11.2.4)

It is easy to see that these satisfy the conservation condition (11.2.3), by use of
the relation

∂

∂t
δ3
(

x − xn(t)
)

= −ẋn(t) · ∇δ3
(

x − xn(t)
)
.

As in Section 10.1, to construct a Lagrangian for electromagnetism, we need
to express the electric and magnetic fields in terms of a vector potential A(x, t)
and a scalar potential φ(x, t):

E = −1

c
Ȧ − ∇φ, B = ∇ × A, (11.2.5)

so that the homogeneous Maxwell equations (11.2.2) are automatically satisfied.
We saw in Eq. (10.1.3) that the term in the Lagrangian for the interaction of a
set of non-relativistic particles with an electromagnetic field is

1 The factor 4π appears here because in this book we are using unrationalized units for electric charges
and currents, so that the electric field produced by a charge e at a distance r is e/r2 rather than e/4πr2.
These are sometimes called Gaussian units.
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L int(t) =
∑

n

[
−enφ

(
xn(t), t

)
+ en

c
ẋn(t) · A

(
xn(t), t

)]
.

This can be expressed as the integral of a local density

L int(t) =
∫

d3x Lint(x, t), (11.2.6)

where

Lint(x, t) = −ρ(x, t)φ(x, t)+ 1

c
J(x, t) · A(x, t). (11.2.7)

We will take this as the interaction Lagrangian density for any sort of charges
and currents.

To (11.2.7), we must add a Lagrangian density L0 for the electromagnetic
fields themselves, so that the part of the Lagrangian that involves electromag-
netic fields is the integral of the density

Lem = L0 + Lint. (11.2.8)

As we will now see, the electromagnetic field Lagrangian that yields the correct
Maxwell equations is

L0 = 1

8π

[
E2 − B2

]
, (11.2.9)

with E and B expressed in terms of A and φ by means of Eq. (11.2.5). The total
Lagrangian for the system is

L(t) =
∫

d3x Lem(x, t)+ Lmat(t), (11.2.10)

where Lmat(t) depends only on the matter coordinates and their rates of change,
but not on the electromagnetic potentials, and therefore plays no role in
determining the electromagnetic field equations.

The derivatives of the Lagrangian density with respect to the potentials and
their derivatives are then

∂Lem

∂(∂ j Ai )
= − 1

4π

∑
k

εk ji Bk,
∂Lem

∂ Ȧi
= − 1

4πc
Ei ,

∂Lem

∂Ai
= 1

c
Ji , (11.2.11)

∂Lem

∂(∂iφ)
= − 1

4π
Ei ,

∂Lem

∂φ̇
= 0,

∂Lem

∂φ
= −ρ, (11.2.12)

where i, j, k run over the three coordinate axes 1, 2, 3, and as before εk ji is
the totally antisymmetric quantity with ε123 = +1. It is then easy to see that the
inhomogeneous Maxwell equations (11.2.1) are the same as the Euler–Lagrange
equations (11.1.9) for Ai and φ:
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∂Lem

∂Ai
−
∑

j

∂

∂x j

∂Lem

∂(∂ j Ai )
= d

dt

∂Lem

∂ Ȧi
,

∂Lem

∂φ
−
∑

i

∂

∂xi

∂Lem

∂(∂iφ)
= d

dt

∂Lem

∂φ̇
.

(11.2.13)

So Lem can indeed be taken as the Lagrangian density for the electromagnetic
fields. Of course, we could multiply the whole Lagrangian L for matter and radi-
ation with an arbitrary constant factor, and still get the same electromagnetic
field equations and particle equations of motion. As we will see, the normaliza-
tion here of L is chosen to give sensible results for the energies of photons and
charged particles.

11.3 Commutation Relations for Electrodynamics

From Eqs. (11.2.12) and (11.2.11), we see that the canonical conjugates to Ai

and φ are1

!φ ≡ ∂L
∂φ̇

= 0, (11.3.1)

!i ≡ ∂L
∂ Ȧi

= − 1

4πc
Ei = 1

4πc

[
1

c
Ȧ + ∇φ

]
i

. (11.3.2)

The constraint (11.3.1) is clearly inconsistent with the usual commutation rule
[φ(x, t),!φ(y, t)] = i�δ3(x − y). Also, the field equation for E tells us that !i

is subject to a further constraint

∇ · � = −ρ/c. (11.3.3)

Eq. (11.3.3) is inconsistent with the usual canonical commutation relations,
which would require that [Ai (x, t),! j (y, t)] = i�δi jδ

3(x−y), and that Ai (x, t)
commutes with ρ(y, t).

In the language of Dirac described in Section 9.5, the constraints (11.3.1) and
(11.3.3) are “first class,” because the Poisson bracket of !φ and ∇ · � + ρ/c
vanishes. On the other hand (and not unrelated to the presence of first-class con-
straints), gauge invariance gives us a freedom to impose additional conditions
on the dynamical variables. There are various possibilities, but the most com-
mon choice is Coulomb gauge, in which we impose the condition that the vector
potential is solenoidal:

∇ · A = 0. (11.3.4)

1 I am using an upper case letter for the canonical conjugate to Ai , in order to distinguish the Heisenberg
picture operators Ai and !i from their counterparts in the interaction picture, which in Section 11.5
will be denoted ai and πi .
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(Note that this can always be done, because if ∇ · A does not vanish, then it can
be made to vanish by a gauge transformation (10.2.1), (10.2.2):

A �→ A′ = A + ∇α, φ �→ φ′ = φ − α̇/c,

with ∇2α = −∇ · A, which makes ∇ · A′ = 0.) With the gauge choice (11.3.4),
the field equation ∇ · E = 4πρ gives ∇2φ = −4πρ, so φ is not an independent
field variable, but a function of x and of the matter coordinates at the same time:2

φ(x, t) =
∫

d3 y
ρ(y, t)

|x − y| =
∑

n

en

|x − xn(t)| . (11.3.5)

So now we don’t need to worry about the vanishing of the !φ . We do still
have two constraints, (11.3.3) and (11.3.4), which in line with the notation of
Section 9.5, we will write as χ1 = χ2 = 0, where

χ1 = ∇ · A, χ2 = ∇ · � + ρ/c. (11.3.6)

As in Section 9.5, we define a matrix

Crx,sy ≡ [χr (x), χs(y)]P , (11.3.7)

where [· · · , · · · ]P denotes the Poisson bracket (9.4.19). (Recall that the Pois-
son bracket is what the commutators would be, aside from a factor i�, if the
canonical commutation relations applied here.) This “matrix” has elements

C1x,2y = −C2y,1x =
∑

i j

δi j
∂2

∂xi∂y j
δ3(x − y) = −∇2δ3(x − y), (11.3.8)

C1x,1y = C2x,2y = 0. (11.3.9)

This has a matrix inverse

C−1
1x,2y = −C−1

2y,1x = − 1

4π |x − y| , (11.3.10)

C−1
1x,1y = C−1

2x,2y = 0, (11.3.11)

in the sense that∫
d3 y

(
0 C1x,2y

C2x,1y 0

) (
0 C−1

1y,2z

C−1
2y,1z 0

)
=
(
δ3(x − z) 0

0 δ3(x − z)

)
.

(11.3.12)

2 Here we are using the relation ∇2|y − z|−1 = −4πδ3(y − z). It is easy to check that this quantity
vanishes for y �= z, because d/dr(r2 d/dr(1/r)) = 0. But Gauss’ theorem tells us that its integral over
a ball centered on z equals the integral of (d/dr)(1/r) over the surface of the ball, which is −4π .
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That is, ∫
d3 y C1x,2yC−1

2y,1z =
∫

d3 y
[−∇2δ3(x − y)

] [ 1

4π |y − z|
]

=
∫

d3 y
[
δ3(x − y)

] [−∇2 1

4π |y − z|
]

= δ3(x − z),

and likewise for
∫

d3 y C2x,1yC−1
1y,2z. We also note the Poisson brackets

[Ai (x, t), χ2x′(t)]P = ∂

∂x ′
i

δ3(x − x′), [Ai (x, t), χ1x′(t)]P = 0,

[χ1y′(t),! j (y, t)]P = ∂

∂y′
j

δ3(y′ − y), [χ2y′(t),! j (y, t)]P = 0.

Then according to Eqs. (9.5.17)–(9.5.19), the commutators of the canonical
variables are

[Ai (x, t),! j (y, t)] = i�
[
δi jδ

3(x − y)−
∫

d3x ′
∫

d3 y′ [Ai (x, t), χ2x′(t)]P

× C−1
2x′,1y′ [χ1y′(t),! j (y, t)]P

]

= i�
[
δi jδ

3(x − y)−
∫

d3x ′
∫

d3 y′
[
∂

∂x ′
i

δ3(x − x′)
]

×
[

1

4π |x′ − y′|
][

∂

∂y′
j

δ3(y − y′)

]]

= i�
[
δi jδ

3(x − y)− ∂2

∂xi∂y j

1

4π |x − y|
]

(11.3.13)

[Ai (x, t), A j (y, t)] = [!i (x, t),! j (y, t)] = 0. (11.3.14)

There is an awkward feature about the canonical commutation relations in
Coulomb gauge, that we have not yet uncovered. Although the commutators of
the particle coordinates xnj with Ai and !i all vanish, the particle momenta pnj

have non-vanishing commutators with !i . According to the Dirac prescription
and Eqs. (11.3.8)–(11.3.11), this commutator is

[!i (x, t), pnj (t)] = −i�
∫

d3 y
∫

d3z [!i (x, t), χ1y(t)]P C−1
1y,2z[χ2z(t), pnj (t)]P

= −i�
∫

d3 y
∫

d3z

[
− ∂

∂yi
δ3(x − y)

] [ −1

4π |y − z|
] [

1

c

∂

∂xnj
ρ(z)

]

= i�en

4πc

∂2

∂xi∂xnj

1

|x − xn(t)| . (11.3.15)
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We can avoid this complication by introducing as a replacement for � its
solenoidal part

�⊥ ≡ � − 1

4πc
∇φ = 1

4πc2
Ȧ, (11.3.16)

for which

∇ · �⊥ = 0. (11.3.17)

The Dirac bracket of the term −∇φ/4πc with pnj is just the Poisson bracket, so[
∂

∂xi
φ(x, t), pnj (t)

]
= i�en

∂2

∂xi∂xnj

1

|x − xn(t)| . (11.3.18)

So we see that

[�⊥(x, t), pnj (t)] = 0. (11.3.19)

Also, since φ has vanishing Poisson brackets with χ1 and χ2, it has vanishing
commutators with A and �, and so the commutators of the components of �⊥
with each other and with A are the same as for �:

[Ai (x, t),!⊥
j (y, t)] = i�

[
δi jδ

3(x − y)− ∂2

∂xi∂y j

1

4π |x − y|
]
(11.3.20)

[Ai (x, t), A j (y, t)] = [!⊥
i (x, t),!⊥

j (y, t)] = 0. (11.3.21)

Note that these commutation relations are consistent with the vanishing of the
divergences of both A and �⊥.

11.4 The Hamiltonian for Electrodynamics

Now let us construct the Hamiltonian for this theory. In Coulomb gauge, because
φ is no longer an independent physical variable, the total Hamiltonian is

H =
∫

d3x
[
� · Ȧ − L0

]+ Hmat (11.4.1)

where L0 is the purely electromagnetic Lagrangian density (11.2.9), and Hmat is
the Hamiltonian for matter, now including its interaction with electromagnetism.
Because ∇ · A = 0, we can replace � in the first term with �⊥, and then use
Eq. (11.3.16) to replace Ȧ with 4πc2�⊥. We can also use Eqs. (11.3.16) and
(11.2.5) to replace E in L0 with −4πc�⊥:

H =
∫

d3x

[
4πc2[�⊥]2 − 1

8π
[4πc�⊥ + ∇φ]2 + 1

8π
(∇ × A)2

]
+ Hmat.
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Integrating by parts gives
∫

d3x �⊥ · ∇φ = 0 and

− 1

8π

∫
d3x (∇φ)2 = 1

8π

∫
d3x φ∇2φ = −1

2

∫
d3x ρφ.

The Hamiltonian is then

H =
∫

d3x

[
2πc2[�⊥]2 + 1

8π
(∇ × A)2

]
+ H ′

mat, (11.4.2)

where

H ′
mat = Hmat − 1

2

∫
d3x ρφ. (11.4.3)

For instance, in the case where the matter consists of non-relativistic charged
point particles in a general local potential V , Eq. (10.1.9) gives

Hmat =
∑

n

1

2mn

[
pn − en

c
A(xn, t)

]2 +
∑

n

enφ(xn, t)+ V(x),

and furthermore, here1

φ(x, t) =
∑

m

em

|x − xm(t)| ,
∫

d3x ρ(x, t)φ(x, t) =
∑
n �=m

enem

|xn − xm(t)| .

Hence,

H ′
mat =

∑
n

1

2mn

[
pn − en

c
A(xn)

]2 + 1

2

∑
n �=m

enem

|xn − xm | + V(x). (11.4.4)

(Time arguments are suppressed here.) We recognize the second term as the
usual Coulomb energy of a set of charged point particles. The factor 1/2 in
this term arises from the combination of a term

∫
d3xρφ in Hmat and the term

−(1/2)
∫

d3xρφ in Eq. (11.4.3). This factor serves to eliminate double counting;
for instance, for two particles, the sum over n and m includes both a term with
n = 1, m = 2, and an equal term with n = 2, m = 1.

Let’s check that we recover Maxwell’s equations from this Hamiltonian.
Using the commutators (11.3.20) and (11.3.21) and Eq. (11.3.17), the Hamil-
tonian equations of motion for A and � are

Ȧi = i

�
[H, Ai ] = 4πc2!⊥

i , (11.4.5)

1 In imposing the restriction n �= m on the sum over n and m , we are dropping an infinite c-number term
in the Hamiltonian, which only shifts all energies by the same amount, and has no effect on rates of
change derived from the Hamiltonian.



318 11 The Quantum Theory of Radiation

!̇⊥
i = i

�
[H,!⊥

i ] = − 1

4π
(∇ × ∇ × A)i

+
∑

n

en

mnc

(
pnj − en

c
A j (xn)

) [
δ3(x − xn)δi j − ∂2

∂xi∂xnj

1

4π |x − xn|
]
.

(11.4.6)

(The expression in the last factor of the last term in Eq. (11.4.6) arises from
the commutator (11.3.20). In Eq. (11.4.5) and in the first term of Eq. (11.4.6)
we do not need to keep the second term in this commutator, because �⊥ and
∇ × A both have zero divergence.) To make contact with Maxwell’s equations,
we recall that, according to Eq. (10.1.8), we have pn − enA(xn)/c = mnẋn .
Hence Eqs. (11.4.5) and (11.4.6) give

Ä = −c2∇ × B + 4πcJ − c∇φ̇,
or in other words,

Ė = c∇ × B − 4πJ,

which is the same as the first of the inhomogeneous Maxwell equations (11.2.1).
In Coulomb gauge the other inhomogeneous Maxwell equation ∇ · E = 4πρ
just follows directly from the formula (11.2.5) for E in terms of Ȧ and ∇φ,
together with the constraint (11.3.4) and Eq. (11.3.5) for φ. The two homoge-
neous Maxwell equations (11.2.2) follow directly from the definition (11.2.5)
for the fields in terms of the potentials. So the Hamiltonian (11.4.2) together
with the commutation relations (11.3.20) and (11.3.21) do indeed complete the
set of Maxwell equations.

11.5 Interaction Picture

In order to use the time-dependent perturbation theory described in Section 8.7,
it is necessary to split the Hamiltonian H into a term H0 that will be treated to
all orders, plus a term V in which we expand:

H = H0 + V . (11.5.1)

In order to calculate the rates for radiative transitions between otherwise stable
states of atoms or molecules, we split the Hamiltonian H given by Eqs. (11.4.2)
and (11.4.4) into

H0 = H0 γ + H0 mat (11.5.2)

H0 γ =
∫

d3x

[
2πc2[�⊥]2 + 1

8π
(∇ × A)2

]
, (11.5.3)



11.5 Interaction Picture 319

H0 mat =
∑

n

p2
n

2mn
+ 1

2

∑
n �=m

enem

|xn − xm | + V(x), (11.5.4)

plus a term V consisting of the terms in (11.4.4) involving the vector potential:

V = −
∑

n

en

mnc
A(xn) · pn +

∑
n

e2
n

2mnc2
A2(xn). (11.5.5)

In the first term in V we have replaced A(xn) · pn + pn · A(xn) with 2A(xn) · pn ,
which is allowed because, in Coulomb gauge,

A(xn) · pn − pn · A(xn) = i�∇ · A(xn) = 0.

We also need to introduce interaction picture operators, whose time-
dependence is governed by H0 instead of H . For the interaction picture
vector potential a and the solenoidal part π⊥ of its canonical conjugate, the
time-dependence can be found in the interaction picture by calculating their
commutators with H0γ , in the same way as we did for the Heisenberg picture
operators in the previous section. The results will obviously be the same, except
that now there is no contribution from the interaction V, and so we find just
Eqs. (11.4.5) and (11.4.6), but with all terms involving the charges en dropped:

ȧ = 4πc2π⊥, (11.5.6)

π̇⊥ = − 1

4π
∇ × ∇ × a. (11.5.7)

The interaction picture operators are related to the corresponding Heisenberg
picture operators at t = 0 by a unitary transformation

a(x, t) = ei H0t/�A(x, 0)e−i H0t/�, π⊥(x, t) = ei H0t/��⊥(x, 0)e−i H0t/�,
(11.5.8)

so these operators satisfy the same time-independent conditions as the Heisen-
berg picture operators:

∇ · a = ∇ · π⊥ = 0. (11.5.9)

In consequence, ∇×∇×a = −∇2a. By eliminating π⊥ from Eqs. (11.5.6) and
(11.5.7), we find a wave equation for a:

ä = c2∇2a. (11.5.10)

The general Hermitian solution of Eqs. (11.5.9) and (11.5.10) may be
expressed as a Fourier integral

a(x, t) =
∫

d3k
[
eik·xe−i |k|ctα(k)+ e−ik·xei |k|ctα†(k)

]
, (11.5.11)
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where the operator α(k) is subject to the condition

k · α(k) = 0. (11.5.12)

Eq. (11.5.6) then gives the solenoidal part of the canonical conjugate to a as

π⊥(x, t) = − i

4πc

∫
|k| d3k

[
eik·xe−i |k|ctα(k)− e−ik·xei |k|ctα†(k)

]
,

(11.5.13)

We need to work out the commutators of the operators α(k) and their Her-
mitian adjoints. Again, since the interaction picture operators are related to the
corresponding Heisenberg picture operators at t = 0 by a unitary transforma-
tion, they must satisfy the same equal-time commutation relations (11.3.20),
(11.3.21) as the Heisenberg picture operators:

[ai (x, t), π⊥
j (y, t)] = i�

[
δi jδ

3(x − y)− ∂2

∂xi∂y j

1

4π |x − y|
]

(11.5.14)

[ai (x, t), a j (y, t)] = [π⊥
i (x, t), π⊥

j (y, t)] = 0, (11.5.15)

and both a and π⊥ commute with all matter coordinates and momenta. From
Eqs. (11.5.11) and (11.5.13), we find the commutator of ai (x, t) and π⊥

j (y, t):

[ai (x, t), π⊥
j (y, t)] = i

4πc

∫
d3k

∫
d3k ′|k′|

[
ei(k·x−k′·y)eict (−|k|+|k′|)[αi (k), α

†
j (k

′)]

− ei(−k·x+k′·y)eict (|k|−|k′|)[α†
i (k), α j (k′)] − ei(k·x+k′·y)eict (−|k|−|k′|)[αi (k), α j (k′)]

+ ei(−k·x−k′·y)eict (|k|+|k′|)[α†
i (k), α

†
j (k

′)]
]
. (11.5.16)

Eq. (11.5.14) shows that this must be time-independent, so the terms with
positive-definite or negative-definite frequency must both vanish, and therefore

[αi (k), α j (k′)] = [α†
i (k), α

†
j (k

′)] = 0. (11.5.17)

To calculate the remaining commutators, we use the Fourier transforms

δ3(x − y) =
∫

d3k

(2π)3
eik·(x−y),

1

4π |x − y| =
∫

d3k

(2π)3|k|2 eik·(x−y),

and re-write Eq. (11.5.14) as

[ai (x, t), π⊥
j (y, t)] = i�

∫
d3k

(2π)3
eik·(x−y)

[
δi j − ki k j

|k|2
]
. (11.5.18)

Comparing this with the first two terms in Eq. (11.5.16), we see that

[αi (k), α
†
j (k

′)] = 4πc�
2|k|(2π)3

δ3(k − k′)
[
δi j − ki k j

|k|2
]
. (11.5.19)
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The commutation relations (11.5.15) then follow automatically.
Like any vector perpendicular to a given k, the operator α(k) may

be expressed as a linear combination of any two independent vectors
e(k̂,±1)perpendicular to k:

α(k) =
√

4πc�
2|k|(2π)3

∑
±

e(k̂,±1)a(k,±1), (11.5.20)

with the factor
√

4πc/2|k|(2π)3 inserted to simplify the commutation rela-
tions that will be found of the operators a(k,±1). For instance, for k in the
z-direction, we can take

e(ẑ,±1) = 1√
2

(
1,±i, 0

)
(11.5.21)

and for k in any other direction, we take ei (k̂,±1) = ∑
j Ri j (ẑ)e j (ẑ,±1), where

Ri j (k̂) is the rotation matrix that takes the z-direction into the direction of k. It
follows that for any k, we have

k · e(k̂, σ ) = 0, e(k̂, σ ) · e∗(k̂, σ ′) = δσσ ′ . (11.5.22)

Also, ∑
σ

ei (k̂, σ )e
∗
j (k̂, σ ) = δi j − k̂i k̂ j . (11.5.23)

(It is easiest to prove Eqs. (11.5.22) and (11.5.23) by direct calculation in the
case where k̂ is in the z-direction, and then note that these equations pre-
serve their form under rotations.) The commutation relations (11.5.18) are then
satisfied if

[a(k, σ ), a†(k′, σ ′)] = δσ ′σ δ
3(k − k′). (11.5.24)

Also, the commutation relations (11.5.17) are satisfied if

[a(k, σ ), a(k′, σ ′)] = [a†(k, σ ), a†(k′, σ ′)] = 0. (11.5.25)

The Hamiltonian H0γ for the free electromagnetic field can be calculated in
the interaction picture by setting t = 0 in Eq. (11.5.3), and then applying the
unitary transformation (11.5.8), which gives a Hamiltonian of the same form:

H0 γ =
∫

d3x

[
2πc2[π⊥]2 + 1

8π
(∇ × a)2

]
. (11.5.26)

We can uncover the physical significance of the operator a(k, σ ) and a†(k, σ )
by expressing the free-field Hamiltonian H0γ in terms of these operators. They
appear in the formulas for a(x, t) and π⊥(x, t):
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a(x, t) = √
4πc�

∑
σ

∫
d3k√

2k(2π)3

[
eik·xe−ictke(k, σ )a(k, σ )+ H.c.

]
(11.5.27)

π⊥(x, t) = −i

√
4πc�
4πc

∑
σ

∫
k d3k√
2k(2π)3

[
eik·xe−ictke(k, σ )a(k, σ )− H.c.

]
,

(11.5.28)

where k ≡ |k|, and “H.c.” denotes the Hermitian conjugate of the preceding
term. The integral over x in Eq. (11.5.26) gives delta functions for the wave
numbers times (2π)3. We then have∫

d3x (∇ × a)2 = 2πc�
∑
σ ′σ

∫
k d3k

[
e∗(k̂, σ ) · e(k̂, σ ′)a†(k, σ )a(k, σ ′)

+ e∗(k̂, σ ′) · e(k̂, σ )a(k, σ )a†(k, σ ′)+ e(k̂, σ ) · e(−k̂, σ ′)a(k, σ )a(−k, σ ′)e−2ickt

+ e∗(k̂, σ ) · e∗(−k̂, σ ′)a†(k, σ )a†(−k, σ ′)e2ickt
]
,

∫
d3x (π⊥)2 = − �

8πc

∑
σ ′σ

∫
k d3k

[
− e∗(k̂, σ ) · e(k̂, σ ′)a†(k, σ )a(k, σ ′)

− e∗(k̂, σ ′) · e(k̂, σ )a(k, σ )a†(k, σ ′)+ e(k̂, σ ) · e(−k̂, σ ′)a(k, σ )a(−k, σ ′)e−2ickt

+ e∗(k̂, σ ) · e∗(−k̂, σ ′)a†(k, σ )a†(−k, σ ′)e2ickt
]
.

When we add the two terms in Eq. (11.5.26), we see that the time-dependent
terms cancel (as they must, since H0 γ commutes with itself). This is just as well,
since e(k̂, σ ) · e(−k̂, σ ) depends on how we choose the rotations that take ẑ into
k̂ and −k̂. On the other hand, the two terms in Eq. (11.5.26) make equal contri-
butions to the time-independent terms. These remaining terms can be evaluated
using Eq. (11.5.22), which gives e∗(k̂, σ ) · e(k̂, σ ′) = δσ ′σ , and we find

H0 γ = 1

2

∑
σ

∫
d3k �ck

[
a†(k, σ ) a(k, σ )+ a(k, σ ) a†(k, σ )

]
. (11.5.29)

The physical interpretation of this result is described in the next section.

11.6 Photons

According to the commutation relations (11.5.24) and (11.5.25), the com-
mutators of the unperturbed electromagnetic Hamiltonian (11.5.29) with the
operators a†(k, σ ) and a(k, σ ) are

[H0γ , a†(k, σ )] = �ck a†(k, σ ), (11.6.1)

[H0γ , a(k, σ )] = −�ck a(k, σ ). (11.6.2)



11.6 Photons 323

Hence a†(k, σ ) and a(k, σ ) are raising and lowering operators for the energy.
That is, if � is an eigenstate of H0γ with eigenvalue E , then a†(k, σ )� is an
eigenstate with energy E + �ck, and a(k, σ )� is an eigenstate with energy
E − �ck.

Although not compelled by the formalism of quantum mechanics, we are led
by the stability of matter to assume that there is a state �0 of lowest energy. The
only way to avoid having a state a(k, σ )�0 of energy that is lower by an amount
�ck is to suppose that

a(k, σ )�0 = 0. (11.6.3)

We can find the energy of the state �0 by using the commutation relations
(11.5.24) to write Eq. (11.5.29) as

H0γ =
∑
σ

∫
d3k a†(k, σ )a(k, σ )+ E0, (11.6.4)

where E0 is the infinite constant

E0 =
∫

d3k
�ck

2
δ3(k − k). (11.6.5)

We can give this a meaning of sorts by putting the system in a box of volume �.
Then δ3(k − k) becomes �/(2π)3, so we have an energy per volume

E0/� = (2π)−3
∫

d3k
�ck

2
. (11.6.6)

This energy may be attributed to the unavoidable quantum fluctuations in the
electromagnetic field. As shown by Eq. (11.5.18) and (11.5.6), it is not possible
for the vector potential at any point in space to vanish (or take any definite fixed
value) for a finite time interval; if the field vanishes at one moment, then its rate
of change at that moment cannot take any definite value, including zero. The
energy density (11.6.6) has no effect in ordinary laboratory experiments, as it
inheres in space itself, and space cannot normally be created or destroyed, but it
does affect gravitation, and hence influences the expansion of the universe and
the formation of large bodies like galaxy clusters. Needless to say, an infinite
result is not allowed by observation. Even if we cut off the integral at the high-
est wave number probed in laboratory experiments, say 1015 cm−1, the result
is larger than allowed by observation by a factor roughly 1056. The energy due
to fluctuations in the electromagnetic field and other bosonic fields can be can-
celed by the negative energy of fluctuations in fermionic fields, but we know of
no reason why this cancelation should be exact, or even precise enough to bring
the vacuum energy down to a value in line with observation. Since E0/� was
known to be vastly smaller than the value estimated from vacuum fluctuations
at accessible scales, for decades most physicists who thought at all about this
problem simply assumed that some fundamental principle would be discovered
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that imposes on any theory the condition that makes E0/� vanish. This possi-
bility was ruled out by the discovery1 in 1998 that the expansion of the universe
is accelerating, in a way that indicates a value of E0/� about three times larger
than the energy density in matter. This remains a fundamental problem for mod-
ern physics,2 but it can be ignored as long as we do not deal with effects of
gravitation.

We can now construct states spanning what is called Fock space:

�k1,σ1;k2,σ2;...;kn ,σn ∝ a†(k1, σ1) a†(k2, σ2) · · · a†(kn, σn)�0, (11.6.7)

which according to Eq. (11.6.1) (and dropping the term E0) has the energy

�ck1 + �ck2 + · · · + �ckn.

We interpret this as a state of n photons, with energies �ck1, �ck2, . . . �ckn .
To work out the momentum of these states, we note that according to the

general results of Section 9.4, the operator that generates the infinitesimal
translation ai (x, t) �→ ai (x − ε, t) is given by Eq. (9.4.4) as

ε · Pγ = −
∑

i

∫
d3x π⊥

i (x, t) (ε · ∇) ai (x, t). (11.6.8)

(That is, the sum over N in Eq. (9.4.4) is replaced with a sum over the vector
index i and an integral over the argument x of the field.) Using the commutation
relations (11.5.14) and (11.5.15), we have

[Pγ , ai (x, t)] = i�∇ai (x, t), [Pγ , π
⊥
i (x, t)] = i�∇π⊥

i (x, t). (11.6.9)

(The second term in square brackets in Eq. (11.5.14) does not contribute because
∇ · a = 0 and ∇ · π⊥ = 0.) Then Pγ commutes with H0 γ as it does with
the integral over x of any function of ai (x, t) and π⊥

i (x, t) and their gradients.
Inserting Eqs. (11.5.11) and (11.5.13) in Eq. (11.6.9) gives

[Pγ , a(k, σ )] = −�k a(k, σ ), [Pγ , a†(k, σ )] = �k a†(k, σ ). (11.6.10)

Assuming that the state �0 is translation-invariant, this tells us that the states
(11.6.7) have momentum

�k1 + �k2 + · · · �kn.

So we can interpret these states as consisting of n photons, each with a momen-
tum �k and an energy �ck. Because the energy E of a photon is related to its
momentum p by E = c|p|, the photon is a particle of mass zero.

1 This is the independent result of two teams: The Supernova Cosmology Project [S. Perlmutter et al.,
Astrophys. J. 517, 565 (1999). Also see S. Perlmutter et al., Nature 391, 51 (1998).] and the High-z
Supernova Search Team [A. G. Riess et al., Astron. J. 116, 1009 (1998). Also see B. Schmidt et al.,
Astrophys. J. 507, 46 (1998).]

2 For a review, see S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
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By using the commutation relations (11.5.24), we see that the operators
a(k, σ ) and a†(k, σ ) acting on the states (11.6.7) have the effect

a(k, σ )�k1,σ1;k2,σ2;...;kn ,σn ∝
n∑

r=1

δ3(k−kr )δσσr�k1,σ1;k2,σ2;...kr−1,σr−1;kr+1,σr+1;...;kn ,σn

(11.6.11)

a†(k, σ )�k1,σ1;k2,σ2;...;kn ,σn ∝ �k,σ ;k1,σ1;k2,σ2;...;kn ,σn . (11.6.12)

Thus a(k, σ ) and a†(k, σ ) respectively annihilate and create a photon of
momentum �k and spin index σ .

Now we must consider the physical significance of the σ label carried by each
photon. For this purpose, we need to work out the properties of the operators
a(k, σ ) under rotations. Let us consider a wave vector k in the z-direction ẑ,
and limit ourselves to rotations that leave ẑ invariant. According to Eq. (4.1.4),
under a rotation represented by an orthogonal matrix Ri j , a vector like α(kẑ)
undergoes the transformation

U−1(R)αi (kẑ)U (R) =
∑

j

Ri jα j (kẑ). (11.6.13)

Inserting the decomposition (11.5.20), this gives∑
σ

ei (ẑ, σ )U
−1(R)a(kẑ, σ )U (R) =

∑
σ

∑
j

Ri j e j (ẑ, σ )a(kẑ, σ ).

The rotations that leave ẑ invariant have the form

Ri j (θ) =
⎛
⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ .

A simple calculation shows that∑
j

Ri j (θ) e j (ẑ, σ ) = e−iσθei (ẑ, σ ), (11.6.14)

so by equating the coefficients of ei (ẑ, σ ), we have

U−1(R)a(kẑ, σ )U (R) = e−iσθa(kẑ, σ ). (11.6.15)

Now, for infinitesimal θ , Ri j = δi j + ωi j , where the non-vanishing elements of
ωi j are ωxy = −ωyx = −θ , so according to Eq. (4.1.7) and (4.1.11),

U (θ) → 1 − (i/�)θ Jz,

and Eq. (11.6.15) becomes

(i/�)[Jz, a(kẑ, σ )] = −iσa(kẑ, σ ).
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Taking the adjoint gives

[Jz, a†(kẑ, σ )] = �σa†(kẑ, σ ).

Assuming that the no-photon state is rotationally invariant, the one-photon state
�kẑ,σ ≡ a†(kẑ, σ )�0 satisfies

Jz�kẑ,σ = �σ�kẑ,σ . (11.6.16)

There is nothing special about the z-direction, so we can conclude that a general
one photon state �k,σ has a value �σ for the helicity, the angular momentum J· k̂
in the direction of motion. For this reason, the photon is said to be a particle of
spin one, but it is a peculiarity of massless particles that the state with J · k̂ = 0
is missing. In classical terms, photons with helicity ±1 make up a beam of left-
or right-circularly polarized light.

Of course, photons do not have to be circularly polarized. In the general case,
a photon of momentum �k is a superposition

�k,ξ ≡
(
ξ+a†(k,+)+ ξ−a†(k,−)

)
�0 γ ,

where ξ± are a pair of generally complex numbers with |ξ+|2 + |ξ−|2 = 1. Such
a state is associated with a polarization vector

ei (k̂, ξ) ≡ ξ+ei (k̂,+)+ ξ−ei (k̂,−),
in the sense that(

�0 γ , a(x, t)�k,ξ

)
=

√
4πc�

(2π)3/2
√

2k
eik·xe−ickt e(k̂, ξ).

Circular polarization is the extreme case where either ξ+ or ξ− vanishes, and the
photon has definite helicity. In the opposite extreme case, |ξ−| = |ξ+| = 1/

√
2,

the polarization vector is real up to an over-all phase, and we have the case of
linear polarization. For instance, with ξ± = e∓iζ /

√
2, the polarization vector

for k in the z-direction is e(ẑ, ξ) = (cos ζ, sin ζ, 0). The intermediate case in
which |ξ+| and |ξ−| are unequal but neither vanishes is the case of elliptical
polarization.

It is characteristic of massless particles that they come in only two states, with
helicity ±� j , where j can be an integer or half integer. We have seen that j = 1
for photons; the quantization of the gravitational field shows that for gravitons,
j = 2.

Because a(k, σ ) and a†(k, σ ) do not commute, it is not possible to find eigen-
states of both operators. But the a(k, σ ) commute with each other for all k
and σ , so we can find states �A that are eigenstates of all these annihilation
operators:

a(k, σ )�A = A(k, σ )�A, (11.6.17)
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with A an arbitrary complex function of k and σ . These are called coherent
states. In a coherent state, the expectation value of the electromagnetic field
(10.5.11) is(

�A, a(x, t)�A
)

(
�A,�A

) =
∫

d3k
∑
σ

√
4πc�

2|k|(2π)3

[
eik·xe−ic|k|t e(k, σ )A(k, σ )

+e−ik·xeic|k|t e∗(k, σ )A∗(k, σ )
]
. (11.6.18)

(We have here used the defining property of the adjoint, that
(
�, a†�

)
=(

a�,�
)

.) The coherent state �A appears classically as if the electromagnetic

vector potential has this value. This state contains an unlimited number of pho-
tons, for if �A were a superposition of states (11.6.7) with some maximum
number N of photons, then a(k, σ )�A would be a superposition of states with
a maximum number N − 1 of photons, and could not possibly be proportional
to �A.

11.7 Radiative Transition Rates

We now want to calculate the rate of atomic or molecular transitions a → b+γ ,
where �a and �b are eigenstates of the matter Hamiltonian (11.5.4):

H0 mat�a = Ea�a, H0 mat�b = Eb�b. (11.7.1)

Both �a and �b are zero-photon states, with

a(k, σ )�a = a(k, σ )�b = 0, (11.7.2)

for any photon wave number k and helicity σ . Hence the final state of the radia-
tive decay process, containing a photon with a particular wave number k and
helicity σ , may be expressed as

�b,γ = �−3/2a†(k, σ )�b. (11.7.3)

The factor �−3/2 is inserted here so that the scalar product of these states
involves a delta function for momenta rather than wave numbers; that is, using
Eqs. (11.7.2), (11.7.3), and (11.5.24)(

�b′,γ ′, �b,γ

)
= �−3δ3(k′ − k)

(
�b′, �b

)
= δ3(�k′ − �k)

(
�b′, �b

)
.

The S-matrix element for the transition a → b + γ is given to first order in
the interaction V by Eq. (8.6.2) [or by Eq. (8.7.14), using (�bγ , V (τ )�a) =
exp(−i(Ea − Eb − �ck)τ/�)(�bγ , V (0)�a)], as
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Sbγ,a = −2π iδ(Ea − Eb − �ck)(�bγ , V (0)�a)

= −2π i�−3/2δ(Ea − Eb − �ck)(�b, a(k, σ )V (0)�a). (11.7.4)

The interaction V at τ = 0 is given by Eq. (11.5.5), which can be written
in terms of interaction-picture operators since they are the same as Heisenberg
picture operators at τ = 0:

V = −
∑

n

en

mnc
a(xn) · pn +

∑
n

e2
n

2mnc2
a2(xn). (11.7.5)

(We now are dropping the time argument τ = 0.) The a2 term in Eq. (11.7.5) can
only create or destroy two photons, or leave the number of photons unchanged,
so it can be dropped, leaving us with

Sbγ,a = 2π i�−3/2δ(Ea − Eb − �ck)
∑

n

en

mnc

(
�b, a(k, σ )a(xn) · pn�a

)
.

We insert Eq. (11.5.27) and use the commutation relations (11.5.24) and
(11.5.25) to write this as

Sbγ,a = 2π i
√

4πc�√
2k(2π�)3

δ(Ea − Eb − �ck)e∗(k̂, σ ) ·
∑

n

en

mnc

(
�b, e−ik·xn pn�a

)
.

(11.7.6)
Of course, momentum as well as energy is conserved in the decay process.

To see how this works, and for reasons that will become clear later, let us define
relative particle coordinates xn as

xn ≡ xn − X (11.7.7)

where X is the center-of-mass coordinate, and M is the total mass

X ≡
∑

n

mnxn/M, M ≡
∑

n

mn. (11.7.8)

(Of course, the xn are not independent, but are subject to a constraint∑
n mnxn = 0.) Thus the matrix element in Eq. (11.7.6) may be written as(

�b, e−ik·xn pn�a

)
=
(
�b, e−ik·xn pn�a

)
(11.7.9)

where

�b ≡ eik·X�b. (11.7.10)

Note that [P, eik·X] = �keik·X, so the operator eik·X just has the effect of a
Galilean transformation of the state, that shifts its momentum by �k:

P�b = (pb + �k)�b. (11.7.11)
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The operator P commutes with xn and with pn , so the matrix element (11.7.9)
vanishes unless pb + �k = pa , and can therefore be written(

�b, e−ik·xn pn�a

)
= δ3(pb + �k − pa)Dn ba(k̂), (11.7.12)

with Dn ba(k̂) free of delta functions. (We write Dn ba(k̂) as a function of k̂ rather
than of k, because the value of k = |k| is fixed by energy conservation.)

To see how the calculation of this function works in practice, note that in
coordinate space the wave functions representing the states �a and �b take the
form (2π�)−3/2 exp(ipa · X/�)ψa(x) and (2π�)−3/2 exp(ipb · X/�)ψb(x), so the
matrix element is(
�b, e−ik·xn pn�a

)

= (2π�)−3
∫

d3 X
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
exp(−ipb · X/�)ψ∗

b (x)

× exp(−ik · xn) exp(−ik · X)(−i�∇n) exp(ipa · X/�)ψa(x).

We will work in the center-of-mass frame, so pa = 0, and the X-dependent
factors can be combined into a single exponential. The integral over X then
gives(

�b, e−ik·xn pn�a

)
= δ3(pb + �k)

×
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)e
−ik·xn (−i�∇n)ψa(x).

Comparing this with Eq. (11.7.12) for pa = 0, we have

Dn ba(k̂) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)e
−ik·xn (−i�∇n)ψa(x).

(11.7.13)
Returning now to the calculation of the S-matrix element, we can put together

Eqs. (11.7.6), (11.7.9), and (11.7.12), and find

Sbγ,a = δ(Ea − Eb − �ck) δ3(pa − pb − �k) Mbγ,a, (11.7.14)

where

Mbγ,a = 2π i
√

4πc�√
2k(2π�)3

e∗(k̂, σ ) ·
∑

n

en

mnc
Dn ba(k̂). (11.7.15)

The rate for the decay a → b + γ in the center-of-mass frame (where pa = 0
and pb = −�k), with k̂ in an infinitesimal solid angle d�, is then given by
Eq. (8.2.13) as

d� = 1

2π�
|Mβα|2μ�kd�, (11.7.16)
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where μ is given by Eq. (8.2.11), which in the usual case where Eb ≈ Mc2 �
�ck gives

μ ≡ Eb�ck

c2(Eb + �ck)
	 �k

c
. (11.7.17)

Using Eqs. (11.7.15) and (11.7.17) in Eq. (11.7.16) then gives

d�(k̂, σ ) = k

2π�

∣∣∣∣∣e∗(k̂, σ ) ·
∑

n

en

mnc
Dn ba(k̂)

∣∣∣∣∣
2

d�. (11.7.18)

When photon polarization is not measured, the transition rate is the sum of this
over σ . Using Eq. (11.5.23), this is

d�(k̂) ≡
∑
σ

d�(k̂, σ ) = k

2π�
∑
nmi j

enem

mnmmc2
Dnabi (k̂)D∗

mabj (k̂)
[
δi j − k̂i k̂ j

]
d�.

(11.7.19)
It is frequently possible to make a great simplification in these results. A typ-

ical value of the energy �ck emitted in the transition is ≈ e2/r , where r is a
typical separation of particles from the center-of-mass. Hence the argument of
the exponential exp(−ik · xn) in Eqs. (11.7.12) and (11.7.13) is of the order
kr ≈ e2/�c 	 1/137. Since this is small, as long as Dn ba(k̂) does not vanish,
it is a good approximation to set the argument of the exponential exp(−ik · xn)

equal to zero, so that here

Dnab(k̂) = (b|pn|a) (11.7.20)

with the reduced matrix element (b|pn|a) defined by Eq. (11.7.12) as just the
matrix element of pn without the delta function:(

�b, pn�a

)
= δ3(pa − pb − �k)(b|pn|a). (11.7.21)

In coordinate-space calculations, we have

(b|pn|a) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)(−i�∇n)ψa(x).

(11.7.22)
Because the reduced matrix element is now independent of the direction of k̂,
Eq. (11.7.19) gives the angular dependence of the transition rate explicitly:

d�(k̂) = k

2π�
∑
nmi j

enem

mnmmc2
(b|pni |a)(b|pmj |a)∗

[
δi j − k̂i k̂ j

]
d�. (11.7.23)
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We can therefore integrate Eq. (11.7.19) over the directions k̂, and find the total
radiative decay rate

� = 4k

3�

∣∣∣∣∣
∑

n

en

mnc
(b|pn|a)

∣∣∣∣∣
2

. (11.7.24)

We have seen this formula before, though in a somewhat different form,
involving matrix elements of coordinates rather than momenta. To see the
connection, note that

[H0 mat, xn] = −i�
[

pn

mn
− P

M

]
.

Because we are in the center-of-mass frame, with P�a = 0, we can drop
the second term in the square brackets, and write the matrix element in
Eq. (11.7.22) as(

�b, pn�a

)
= imn

�

(
�b , [H0 mat, xn]�a

)
= imn

�
(Eb − Ea)

(
�b xn�a

)
.

Because the state �b has momentum pb + �k = pa = 0, its energy Eb is not
precisely equal to Eb, but rather to Eb minus the actual recoil kinetic energy
(�k)2/2M . In any non-relativistic system, this recoil energy will be very small
compared with the energy splitting Eb − Ea = �ck, because Ea − Eb � Mc2.
Hence we can take Eb − Ea 	 �ck, so that(

�b, pn�a

)
= ickmn

(
�b, xn�a

)
. (11.7.25)

Of course, momentum is still conserved here, so we can write(
�b, xn�a

)
= δ3(pb + �ck)(b|xn|a) (11.7.26)

and by the same argument that led to Eq. (11.7.22)

(b|xn|a) =
∫ (∏

m

d3xm

)
δ3

(∑
m

mmxm/M

)
ψ∗

b (x)xnψa(x). (11.7.27)

So Eq. (11.7.24) may be written

� = 4ω3

3c3�

∣∣∣∣∣
∑

n

en(b|xn|a)
∣∣∣∣∣
2

, (11.7.28)

where ω ≡ ck. The operator
∑

n enxn is the electric dipole operator, so this is
called electric dipole radiation.

This formula is a slight generalization of Eq. (1.4.5), which was derived in
1925 by Heisenberg on the basis of an analogy with radiation by a classical
charged oscillator. As discussed in Section 6.5, the same result was re-derived
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by Dirac in 1926 on the basis of the calculation of stimulated emission in a clas-
sical light wave, together with the Einstein relation (1.2.16) between the rates of
stimulated and spontaneous emission. The derivation given here, due originally
to Dirac in 1927,1 was the first that showed how photons are created through the
interaction of a quantized electromagnetic field with a material system.

The operators pn and xn are spatial vectors, and therefore as shown in
Eq. (4.4.6) behave under rotations like operators with j = 1. According to the
rules for addition of angular momentum described in Section 4.3, such opera-
tors have zero matrix elements between the states �a and �b unless the angular
momenta � ja and � jb of these states satisfy | ja − jb| ≤ 1, with ja and jb not both
zero. Also, these operators change sign under a reflection of space coordinates,
so these matrix elements vanish unless the states a and b have opposite parity.
Thus for instance, aside from small effects involving electron spin, the formula
(11.7.28) can be used to calculate the rate of single photon emission in transi-
tions in hydrogen such as the Lyman α transition 2p → 1s, but not 3d → 1s or
3p → 2p.

To calculate the rates for single photon emission in such transitions, we
must include higher terms in the expansion of the exponential in Eq. (11.7.13).
Suppose we have a transition in which the matrix elements (�b, pn�a) and
(�b, xn�a) all vanish. In this case we can try to calculate the transition
rate by including the first-order term in the expansion of the exponential in
Eq. (11.7.13), so that in place of Eq. (11.7.20) we have

Dnabi (k̂) = −i
∑

j

k j (b|xnj pni |a), (11.7.29)

with the reduced matrix element of any operator O that commutes with the total
particle momentum defined by

(�b,O�a) = δ3(pb + �k − pa) (b|O|a). (11.7.30)

The differential decay rate (11.7.19) can then be written

d�(k̂) = k3

2π�
∑

nmi jkl

enem

mnmmc2
(b|xnk pni |a)(b|xml pmj |a)∗k̂k k̂l

[
δi j − k̂i k̂ j

]
d�.

(11.7.31)
To integrate over the directions of k̂, we now need the formula2∫

d� k̂i k̂ j k̂k k̂l = 4π

15

[
δi jδkl + δikδ jl + δilδ jk

]
,

1 P. A. M. Dirac, Proc. Roy. Soc. Lond. A114, 710 (1927).
2 The right-hand sides of these formulas are, up to a constant factor, the unique combinations of Kronecker

deltas that are symmetric in the indices. The numerical coefficients can be calculated by noting that if
we contract all pairs of indices, the integral must equal 4π .
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as well as the previously used formula∫
d� k̂k k̂l = 4π

3
δkl .

The decay rate is then

� = 2k3

15�
∑

nmi jkl

enem

mnmmc2
(b|xnk pni |a)(b|xml pmj |b)∗

[
4δi jδkl − δikδ jl − δ jkδil

]
.

(11.7.32)
It is helpful to decompose the final factor into a term symmetric in i and k and
in j and l, and a term antisymmetric in i and k and in j and l:

4δi jδkl − δikδ jl − δ jkδil = 3

2

(
δi jδkl + δk jδil − 2

3
δikδ jl

)
+ 5

2

(
δi jδkl − δk jδil

)
.

(11.7.33)
Correspondingly, the rate (11.7.32) may be expressed as

� = 2k3

15�
∑

i j

[
3

4
|(b|Qi j |a)|2 + 5

4
|(b|Mi j |a)|2

]
, (11.7.34)

where

(b|Qi j |a) ≡
∑

n

en

mn

[
(b|xni pnj |a)+ (b|xnj pni |a)− 2

3
δi j

∑
l

(b|xnl pnl |a)
]
,

(11.7.35)

(b|Mi j |a) ≡
∑

n

en

mn

[
(b|xni pnj |a)− (b|xnj pni |a)

]
. (11.7.36)

The reduced matrix elements (b|Qi j |a) and (b|Mi j |a) are known as the elec-
tric quadrupole (E2) and magnetic dipole (M1) matrix elements. The operators
involved transform under rotations as operators with j = 2 and j = 1, so these
matrix elements vanish unless the following selection rules are satisfied:

E2 : | ja − jb| ≤ 2 ≤ ja + jb, M1 : | ja − jb| ≤ 1 ≤ ja + jb. (11.7.37)

Also, unlike the electric dipole case, these matrix elements vanish unless the
states a and b have the same parity. Thus for instance, in hydrogen the transi-
tions 3d → 2s and 3d → 1s are dominated by the electric quadrupole matrix
element, while the transition 3p → 2p receives contributions from both the
electric quadrupole and magnetic dipole matrix elements.

The formulas (11.7.35) and (11.7.36) for the E2 and M1 matrix elements can
be put in a more useful form. In the same way that we derived Eq. (11.7.25), it
is easy to show that the E2 matrix element is

(b|Qi j |a) = ick
∑

n

en

[
(b|xni xnj |a)− 1

3
(b|x2

n|a)
]
. (11.7.38)
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We cannot use this trick for the M1 matrix element, but we note instead that

(b|Mi j |a) =
∑

l

εi jk

∑
n

en

mn
(b|Lnk |a), (11.7.39)

where Ln is the orbital angular momentum xn × pn of the nth particle.
So far, we have ignored any spin of the charged particles, but to the accuracy

of this calculation, we now need also to include the effects of magnetic moments.
As noted in Eq. (10.3.1), the effect of magnetic moments is to add a term to the
interaction

�V = −
∑

n

μn ·
(
∇ × a(xn)

)
, (11.7.40)

where (for any spin) μn = μnSn/sn , with Sn the spin operator of the nth particle,
and μn the quantity known as the nth particle’s magnetic moment. Following the
same analysis that led to Eq. (11.7.34), we find that the effect of this addition of
Eq. (11.7.40) is to replace Eq. (11.7.39) with

(b|Mi j |a) =
∑

k

εi jk

∑
n

en

mn
(b|Lnk + gn Snk |a), (11.7.41)

where gn is the gyromagnetic ratio, a dimensionless constant generally of order
unity, defined by μn = engnsn/2mn , or in other words, μn = engnSn/2mn . (For
electrons, g = 2.002322 . . . .) For instance, in the important transition of the 1s
state of the hydrogen atom with total (electron plus nucleon) spin equal to one
into the 1s state with total spin zero, which produces photons with a wavelength
of 21 cm, the rate is dominated by the M1 matrix element, arising entirely from
the second term in Eq. (11.7.41).

This analysis can be continued. The matrix element for a transition that does
not satisfy the selection rules for electric dipole, electric quadrupole, or mag-
netic dipole moments can be calculated by including terms in the exponential in
Eq. (11.7.12) or (11.7.13) of higher than first order in k ·xn . But there is one kind
of transition that is forbidden to all orders in k · xn — single photon transitions
between states with ja = jb = 0. This rule follows immediately from the con-
servation of the component of angular momentum along the direction k̂. Where
ja = jb = 0, the states a and b necessarily have value zero for this component
(or any component) of angular momentum, while the photon can only have a
value � or −� for this component. Thus, for instance, the decay of the charged
spinless meson K + into the charged spinless meson π+ and a single photon is
absolutely forbidden.
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Problems

1. Calculate the rates for emission of photons in the transitions 3d → 2p and
2p → 1s in hydrogen. Give formulas and numerical values. You can use the
facts that the proton is much heavier than the electron, and the wavelength
of the photon emitted in these processes is much larger than the atomic size,
and neglect electron spin.

2. What power of the photon wave number appears in the rate for single photon
emission in the decay of the 4 f state of hydrogen into the 3s, 3p, and 3d
states?

3. Consider the theory of a real scalar field ϕ(x, t), interacting with a set of
particles with coordinates xn(t). Take the Lagrangian as

L(t) = 1

2

∫
d3x

[(
∂ϕ(x, t)

∂t

)2

− c2
(
∇ϕ(x, t)

)2 − μ2ϕ2(x, t)

]

−
∑

n

gnϕ(xn(t), t)+
∑

n

mn

2

(
ẋn(t)

)2 − V
(

x(t)
)
,

where μ, mn , and gn are real parameters, and V is a real local function of the
differences of the particle coordinates.

(a) Find the field equations and commutation rules for ϕ.
(b) Find the Hamiltonian for the whole system.
(c) Express ϕ in the interaction picture in terms of operators that create and

destroy the quanta of the scalar field.
(d) Calculate the energy and momentum of these quanta.
(e) Give a general formula for the rate of emission per solid angle of a sin-

gle ϕ quantum in a transition between eigenstates of the matter part of
the Hamiltonian (that is, the part of the Hamiltonian involving only the
coordinates xn and their canonical conjugates).

(f) Integrate this formula over solid angles in the case where the wavelength
of the emitted quanta is much larger than the size of the initial and final
particle system. What are the selection rules for these transitions?

4. Express the coherent state �A as a superposition of states (11.6.7) with
definite numbers of photons.



12
Entanglement

There is a troubling weirdness about quantum mechanics. Perhaps its weird-
est feature is entanglement, the need to describe even systems that extend over
macroscopic distances in ways that are inconsistent with classical ideas.

12.1 Paradoxes of Entanglement

Einstein had from the beginning resisted the idea that quantum mechanics could
provide a complete description of reality. His reservations were crystallized in
a 1935 paper1 with Boris Podolsky (1896–1966) and Nathan Rosen (1909–
1995). They considered an experiment in which two particles that move along
the x-axis with coordinates x1 and x2 and momenta p1 and p2 were somehow
produced in an eigenstate of the observables x1 − x2 and p1 + p2: specifically,
p1 + p2 has an eigenvalue zero, and x2 −x1 = x0, where x0 is some length that is
taken to be macroscopically large, much too large for particles 1 and 2 to exert
any influence on each other. Quantum mechanics itself presents no obstacle to
this, for these two observables commute. Indeed, we can easily write the wave
function for such a state:

ψ(x1, x2) =
∫ ∞

−∞
dk exp[ik(x1 − x2 + x0)] = 2πδ(x1 − x2 + x0). (12.1.1)

Of course, this wave function is not normalizable, but this is just the usual
problem with continuum wave functions; the wave function (12.1.1) can be
approximated arbitrarily closely with a normalizable wave function, such as

exp(−κ(x1 + x2)
2)

∫ ∞

−∞
dk exp[ik(x1 − x2 + x0)] exp

(
− L2(k − k0)

2
)
,

with L and κ both very small.
Einstein et al. imagined that an observer who studies particle 1 measures its

momentum, and finds a value �k1. The momentum of particle 2 is then known
to be −�k1, up to an arbitrarily small uncertainty. But suppose that the observer

1 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

336
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then measures the position of particle 1, finding a position x1, in which case
the position of particle 2 would have to be x1 + x0. We understand that the
measurement of the position of particle 1 can interfere with its momentum, so
that after the second measurement the momentum of particle 1 no longer has a
definite value. But how can the second measurement interfere with the momen-
tum of particle 2, if the particles are far apart? And if it does not, then after
both measurements particle 2 must have both a definite position and a definite
momentum, contradicting the fact that these observables do not commute.

Einstein et al. made no attempt to describe how to construct such a state,
but one can imagine that two particles that are originally bound in some sort
of unstable molecule at rest fly apart freely in opposite directions, with equal
and opposite momenta, until their separation becomes macroscopically large. If
they have the initial separation x init

1 − x init
2 , then (assuming that the particles have

equal mass m), after a time t their separation will be

x1 − x2 = x init
1 − x init

2 + (p1 − p2)t/m.

We cannot actually take the initial separation x init
1 − x init

2 to be precisely known,
because then the relative momentum p1 − p2 will be entirely uncertain, making
the separation x1 − x2 soon also uncertain. If we take the initial separation to
be known within an uncertainty �|x init

1 − x init
2 | = L , then the uncertainty in the

relative momentum will be at least of order �/L , and after a time t the uncer-
tainty in the separation will be at least of order L +�t/mL . This has a minimum
when L = √

�t/m, at which the uncertainty in x1 − x2 is also of order
√
�t/m.

But this does not obviate the Einstein–Podolsky–Rosen paradox, because if the
first measurement determines k2 as accurately as we like, and the second mea-
surement determines x2 to an accuracy of about

√
�t/m, the product of these

uncertainties can be as small as we like, contradicting the uncertainty principle.
The way out of this dilemma within quantum mechanics is to suppose that the

second measurement, which gives particle 1 a definite position, does indeed pre-
vent particle 2 from having a definite momentum, even though the two particles
are far apart. The states of the two particles are said to be entangled.

The problem posed by Einstein, Rosen, and Podolsky was made sharper by
David Bohm2 (1917–1992). A system of zero total angular momentum decays
into two particles, each with spin 1/2. Using the Clebsch–Gordan coefficients
for combining spin 1/2 and spin 1/2 to make spin zero, the spin state vector is
then

� = 1√
2

[
�↑↓ −�↓↑

]
, (12.1.2)

2 D. Bohm, Quantum Theory (Prentice Hall, Inc., New York, 1951), Chapter XXII. Also see D. Bohm
and Y. Aharonov, Phys. Rev. 108, 1070 (1957).
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where the two arrows indicate the signs of the z-component of the two particles’
spins. After a long time, the particles are far apart, and then measurements are
made of the spin components of particle 1. If the z-component of the spin of par-
ticle 1 is measured, it must have a value �/2 or −�/2, and then the z-component
of the spin of particle 2 must correspondingly have a value −�/2 or +�/2,
respectively. This not mysterious — the particles were once in contact, so it
is not surprising that the z-components of their spins are strongly correlated.
Following this measurement, suppose that the x-component of the spin of par-
ticle 1 is measured. It will be found to have the value �/2 or −�/2, and the
z-component of particle 1’s spin will no longer have a definite value. Also,
because the system has zero total angular momentum, the spin of particle 2 will
then have x-component −�/2 or �/2, and its z-component will not have a defi-
nite value. There is no problem in understanding the change in the spin state of
particle 1; measuring one spin component of this particle naturally affects other
spin components. But if particle 1 and particle 2 are very far apart, then how can
a measurement of the spin state of particle 1 affect the spin state of particle 2?
And if it does not, then are we to conclude that the spin of particle 2 has definite
values for both its z and its x-components, even though these components do
not commute? The only way to preserve consistency with quantum mechanics
is to suppose that while the first measurement puts the system in a state where
the first and second particles’ spin z-components are definite, the second mea-
surement puts the system in a state where it is only the x-component of the first
and second particles’ spin that have definite values. Though the particles are far
apart, their spins remain entangled.

The existence of entanglement in quantum mechanics naturally raises the
question whether a measurement of one part of an entangled system can be
used to send messages to another part, with no limitation set by the finite speed
of light. No, it can’t. In the Einstein–Podolsky–Rosen case, there is no way
that an observer of particle 2 can tell that it does or does not have a definite
momentum — if she measures the momentum she gets some value, but she does
not know whether there is any other value she could have gotten. Even if this
experiment is repeated many times, the observer of particle 2 cannot tell what
measurements have been made on particle 1. She measures various values for
the momentum of particle 2, but she can’t know whether this is because the posi-
tion of particle 1 was measured, or whether particle 1 was in a superposition of
momentum eigenstates to begin with.

This can be put in very general terms, at least for systems like those con-
sidered by Bohm, in which the measured quantities take only discrete values.
Suppose such a system is in a state

� =
∑
nm

ψnm �n ⊗�m (12.1.3)
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where the direct-products �n ⊗�m are a complete orthonormal set of state vec-
tors that are seen by one observer, Alice, to be the states �n , and by a distant
observer Bob to be the states �m . The coefficient ψnm is a complex wave func-
tion, a function of the indices n and m normalized so that

∑
nm |ψnm|2 = 1.

For instance, in the Bohm case, Eq. (12.1.2) is of the form (12.1.3), with
ψ↑↓ = −ψ↓↑ = 1/

√
2 and ψ↑↑ = ψ↓↓ = 0. The state of the system is entangled

if ψnm is not simply a product of a function of n and a function of m. Now, sup-
pose that Bob chooses to perform a measurement that puts his part of the system
in any one of a set of state vectors

∑
m u(r)m �m , where the u(r) are a complete set

of orthonormal vectors, with∑
n

u(r)∗n u(s)n = δrs,
∑

r

u(r)∗n u(r)m = δnm . (12.1.4)

And suppose that Alice performs a measurement that puts her part of the system
in one of the states �n . The probability that Alice will find that her part of the
system is in a state �n for some particular n and that Bob will find that his part
of the system is in a state

∑
m u(r)m �m for some particular r is

P(n, r) =
∣∣∣∣∣
∑

m

u(r)m ψnm

∣∣∣∣∣
2

. (12.1.5)

Hence, since Alice does not know what result Bob gets, the probability that she
finds that her part of the system is in a particular state �n will be

P(n) =
∑

r

P(n, r) =
∑

r

∣∣∣∣∣
∑

m

u(r)m ψnm

∣∣∣∣∣
2

. (12.1.6)

Can Alice use this (if necessary by repeated measurement) to tell what it is that
Bob is measuring? No, because the second equation (12.1.4) allows this to be
written

P(n) =
∑

m

|ψnm |2 . (12.1.7)

Since this does not depend on the u(r)m , it carries no information about what Bob
chooses to measure, or even whether he has made a measurement.

The same is also true if Alice allows the state vector to evolve for a time t
with any sort of Hamiltonian H , and then measures the probability that her part
of the system is in a state �n . This probability is

P(n, t) =
∑

r

∣∣∣∣∣
∑
mn′

u(r)m Unn′ψn′m

∣∣∣∣∣
2

=
∣∣∣∣∣
∑
mn′

Unn′ψn′m

∣∣∣∣∣
2

, (12.1.8)
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where U is the matrix Unn′ =
(
�n, exp(−i Ht)�n′

)
. This is again independent

of what Bob chooses to measure, ruling out the possibility of using entan-
glement for faster-than-light communication. But this is a special feature of
quantum mechanics, arising from the linearity of the time-development oper-
ator exp(−i Ht). Any attempt to generalize quantum mechanics by allowing
small nonlinearities in the evolution of state vectors risks the introduction of
instantaneous communication between separated observers.3

Of course, Bob’s measurement does change the wave function for the part
of the system observed by Alice – it just doesn’t change the results of Alice’s
measurements. If it were possible for Alice to probe this wave function, other
than by making measurements, then faster-than-light communication could be
possible. As mentioned in Section 3.7, the phenomenon of entanglement thus
poses an obstacle to any interpretation of quantum mechanics that attributes to
the wave function or the state vector any physical significance other than as a
means of predicting the results of measurements.

There is a useful measure of entanglement, known as the entanglement
entropy. In a pure state like (12.1.3), the von Neumann entropy (3.3.38) of course
vanishes. But if Alice does not know anything about what Bob observes, then
for her the system is in any of the normalized states �(m) = ∑

n ψnm�n/P1/2
m

with probabilities Pm = ∑
n |ψnm |2. Alice’s density matrix is therefore

ρA =
∑

m

Pm[�(m)�(m)†] =
∑
mnn′

ψnmψ
∗
n′m[�n�

†
n′ ]. (12.1.9)

This has the entropy

SA = −kB
∑

r

p(A)
r ln p(A)

r , (12.1.10)

where the p(A)
r are the eigenvalues of the matrix appearing in Eq. (12.1.9):

Ann′ ≡
∑

m

ψnmψ
∗
n′m . (12.1.11)

Note that in the absence of entanglement we would have ψnm = ψnϕm with∑
n |ψn|2 = ∑

m |ϕm |2 = 1, so in this case Ann′ = ψnψ
∗
n′ , which has eigenvalues

one and zero. This would give SA = 0, so a non-zero value of SA is indeed a
sign of entanglement.

The entanglement entropy is also gender-neutral. If Bob does not know
anything about what Alice observes, then for him the density matrix is

ρB =
∑
nmm′

ψnmψ
∗
nm′ [�m�

†
m′ ]. (12.1.12)

3 N. Gisin, Helv. Phys. Acta 62. 363 (1989); J. Polchinski, Phys. Rev. Lett. 66, 397 (1991).
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This has the entropy

SB = −kB
∑

s

p(B)s ln p(B)s (12.1.13)

where the p(B)s are the eigenvalues of the matrix appearing in Eq. (12.1.12):

Bmm′ ≡
∑

n

ψnmψ
∗
nm′ . (12.1.14)

It is easy to see that the matrices Ann′ and Bmm′ have the same eigenvalues. In a
matrix notation, where ψ is the matrix with components ψnm , we have

A = ψψ†, B = ψTψ∗.

Both matrices are Hermitian, so their eigenvalues are real. It follows that if A
has an eigenvector v, then ψTv∗ is an eigenvector of B with the same eigen-
value, and if B has an eigenvector w, then ψw∗ is an eigenvector of A with the
same eigenvalue. With the eigenvalues of A and B being equal, the entanglement
entropies SA and SB are also equal.

12.2 The Bell Inequalities

It might be supposed that the weird entanglement encountered in quantum
mechanics could be avoided by a modification of quantum mechanics, based on
the introduction of local hidden variables. Suppose that in the situation described
by Bohm, the two-electron state is not (12.1.2), but instead is an ensemble of
possible states, characterized by some parameter or set of parameters collec-
tively called λ, such that the value of the component of the first particle’s spin
in any direction â is a definite function (�/2)S(â, λ), where S(â, λ) can only
take the values ±1. Both experience and the conservation of angular momentum
then tell us that the component of the second particle’s spin in the same direc-
tion will be −(�/2)S(â, λ). The parameter λ is fixed before the two particles
separate from each other, so no non-locality is involved, but in order to imitate
the probabilistic features of quantum mechanics, the value of λ is taken to be
random, with some probability density ρ(λ), about which it is only necessary to
assume that ρ(λ) ≥ 0 and

∫
ρ(λ) dλ = 1. The correlation between the spins of

the two particles can be expressed as the average value of the product of the â
component of the spin of particle 1 and the b̂ component of the spin of particle 2:

〈
(s1 · â) (s2 · b̂)

〉
= −�2

4

∫
dλ ρ(λ)S(â, λ)S(b̂, λ), (12.2.1)
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where â and b̂ are any two unit vectors. In quantum mechanics, the spin of
particle 1 is an operator satisfying1

(s1 · â) (s1 · b̂) = �2

4
â · b̂ + i

�
2

(
â × b̂

)
· s1, (12.2.2)

so in the state (12.1.2), in which s2 = −s1 and s1 has zero expectation value, the
average of the product of spin components is〈

(s1 · â) (s2 · b̂)
〉

QM
= −�2

4
â · b̂. (12.2.3)

There is no obstacle to constructing a function S and a probability density
ρ for which (12.2.1) and (12.2.3) are equal for any single pair of directions â
and b̂. So it is not possible experimentally to distinguish between local hidden
variable theories and quantum mechanics by studying spin components in just
two directions. But in a 1964 paper2 John Bell (1928–1990) was able to show
that such a conflict does exist when one considers spin components for three
different directions â, b̂, and ĉ. In this case, the correlation functions (12.2.1)
satisfy inequalities that are not in general satisfied by the quantum mechanical
expectation values (12.2.3).

To see this, we note that according to the general properties of local hidden
variable theories assumed above,〈

(s1 · â) (s2 · b̂)
〉
− 〈

(s1 · â) (s2 · ĉ)
〉

= −�2

4

∫
ρ(λ)dλ

[
S(â, λ)S(b̂, λ)− S(â, λ)S(ĉ, λ)

]
. (12.2.4)

Since S2(b̂, λ) = 1, this can be written〈
(s1 · â) (s2 · b̂)

〉
− 〈

(s1 · â) (s2 · ĉ)
〉

= −�2

4

∫
ρ(λ)dλ S(â, λ) S(b̂, λ)

[
1 − S(b̂, λ)S(ĉ, λ)

]
. (12.2.5)

The absolute value of an integral is at most equal to the integral of the absolute
value, so∣∣∣〈(s1 · â) (s2 · b̂)

〉
− 〈

(s1 · â) (s2 · ĉ)
〉∣∣∣ ≤ �2

4

∫
ρ(λ)dλ

[
1 − S(b̂, λ)S(ĉ, λ)

]
,

1 The easiest way to see this is to recall that the spin operator s for spin 1/2 may be represented as (�/2)σ ,
where the components of σ are the Pauli matrices (4.2.18). Direct calculation shows that these matrices
satisfy the multiplication rule σiσ j = δi j 1+i

∑
k εi jkσk , from which Eq. (12.2.2) immediately follows.

2 J. S. Bell, Physics 1, 195 (1964). This journal is no longer published; the article by Bell can be found
in the collection Quantum Theory and Measurement, eds. J. A. Wheeler and W. Zurek (Princeton
University Press, Princeton, NJ, 1983).
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and therefore∣∣∣〈(s1 · â) (s2 · b̂)
〉
− 〈

(s1 · â) (s2 · ĉ)
〉∣∣∣ ≤ �2

4
+
〈
(s1 · b̂) (s2 · ĉ)

〉
. (12.2.6)

This is the original Bell inequality.
The important thing is that, at least for some choices of the directions â, b̂, and

ĉ, this inequality is not satisfied by the quantum mechanical correlation function
(12.2.3). For instance, suppose we take

b̂ · â = 0, ĉ = [â + b̂]/√2. (12.2.7)

Then for the quantum mechanical correlation function (12.2.3), the left-hand
side of the inequality (12.2.6) is∣∣∣∣〈(s1 · â) (s2 · b̂)

〉
QM

− 〈
(s1 · â) (s2 · ĉ)

〉
QM

∣∣∣∣ = �2

4
√

2
, (12.2.8)

while the right-hand side is

�2

4
+
〈
(s1 · b̂) (s2 · ĉ)

〉
QM

= �2

4
− �2

4
√

2
. (12.2.9)

Needless to say, the quantity (12.2.8) is greater, not less, than the quan-

tity (12.2.9). So measurement of the correlation functions
〈
(s1 · â) (s2 · b̂)

〉
,〈

(s1 · â) (s2 · ĉ)
〉
, and

〈
(s1 · b̂) (s2 · ĉ)

〉
can provide a clear verdict between the

predictions of quantum mechanics and those of any local hidden variable
theory.

Not only can experiment deliver such a verdict; it has done so. The exper-
iments, carried out by Alain Aspect and his collaborators,3 actually tested a
generalization of the original Bell inequality. Consider any quantity Sn(â) for
a particle n that (like the electron spin component â · sn in units of �/2) can
only take the values ±1. In a local hidden variable theory the measured value of
Sn(â) will be a definite function Sn(â, λ) of some parameter or set of parameters
λ whose value is fixed before the particles separate, with a probability ρ(λ) dλ
of getting a value between λ and λ + dλ. The correlation between the value of
S1(â) for particle 1 and the value of S2(b̂) for particle 2 is the average of the
product: 〈

S1(â) S2(b̂)
〉
=
∫

dλ ρ(λ) S1(â, λ) S2(b̂, λ). (12.2.10)

3 A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982); A. Aspect,
J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982). The discussion here mostly follows the
second of these papers.
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Consider the quantity〈
S1(â) S2(b̂)

〉
−
〈
S1(â) S2(b̂

′)
〉
+
〈
S1(â

′) S2(b̂)
〉
+
〈
S1(â

′) S2(b̂
′)
〉

=
∫

dλ ρ(λ)
[

S1(â, λ) S2(b̂, λ)− S1(â, λ) S2(b̂
′, λ)

+S1(â
′, λ) S2(b̂, λ)+ S1(â

′, λ) S2(b̂
′, λ)

]
for four different directions, â, b̂, â′, b̂′. For any given λ, each product S1S2 in
the square brackets can only have the value ±1, so the sum can only have the
value4 0, +2, or −2. The average must therefore satisfy the inequality∣∣∣〈S1(â) S2(b̂)

〉
−
〈
S1(â) S2(b̂

′)
〉
+
〈
S1(â

′) S2(b̂)
〉
+
〈
S1(â

′) S2(b̂
′)
〉∣∣∣ ≤ 2.

(12.2.11)

Note that this inequality holds for a wider class of theories than the original Bell
inequality (12.2.6), because in its derivation we did not need to use the previous
assumption that S2(â, λ) = −S1(â, λ) for all directions â.

For the inequality (12.2.11) to be of use in distinguishing hidden variable the-
ories from quantum mechanics, the value of the left-hand-side given by quantum
mechanics must violate the inequality. To calculate this value, we need of course
to specify a particular experimental arrangement. Following an earlier sugges-
tion by Clauser et al.,5 Aspect et al. measured photon polarization correlations
in a two-photon transition that had been previously studied by Kocher and Com-
mins.6 The two photons are emitted in a cascade decay in calcium atoms, the first
from a state with j = 0 and even parity to a short-lived intermediate state with
j = 1 and odd parity, and the second from that state to another state with j = 0
and even parity. These photons are directed into polarizers. One polarizer sends
photon 1 into one photomultiplier if it has linear polarization along a direction
â (orthogonal to the photon direction k̂), in which case a value S1(â) = +1
is recorded, and into a different photomultiplier if it is linearly polarized along
a direction orthogonal to both â and k̂, in which case a value S1(â) = −1 is
recorded. Similarly, the other polarizer sends photon 2 into one photomultiplier

4 It is not possible for the sum in the integrand to have the value +4 for any λ, because in order for the first
three terms to have the value +1 it would be necessary to have S1(â, λ) = S2(b̂, λ) = −S2(b̂

′, λ) =
S1(â

′, λ), which would make the fourth term equal to −1, and the sum equal to +2 rather than +4.
Similarly, it is not possible for the sum to have the value −4 for any λ, because in order for the first
three terms to have the value −1 it would be necessary to have S1(â, λ) = −S2(b̂, λ) = S2(b̂

′, λ) =
S1(â

′, λ), which would make the fourth term equal to +1, and the sum equal to −2 rather than −4.
5 J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969). For a review

of various versions of Bell inequalities and their experimental tests, see J. F. Clauser and A. Shimony,
Rep. Prog. Phys. 41, 1881 (1978).

6 C. A. Kocher and E. D. Commins, Phys. Rev. Lett. 18, 575 (1967).
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if it has linear polarization along a direction b̂ (orthogonal to the photon direc-
tion −k̂), in which case a value S2(b̂) = +1 is recorded, and into a different
photomultiplier if it is linearly polarized along a direction orthogonal to both b̂
and −k̂, in which case a value S2(b̂) = −1 is recorded. The polarizers can be
rotated so that either â is replaced with â′ or b̂ is replaced with b̂′ or both. Since
the two-photon transition is between atomic states with j = 0, the amplitude
for the transition must be a scalar function of the two polarizations, and since
the initial and final atomic states have even parity the scalar k̂ · (e1 × e2) is ruled
out, so the amplitude must be proportional to e1 · e2, and the probability of parti-
cle 1 having polarization in the direction â and particle 2 having polarization in
the direction b̂ is therefore (â · b̂)2/2. (The factor 1/2 is fixed by the condition
that the sum over two orthogonal directions of â and of b̂ must be unity.) By
adding S1(â)S2(b̂) for the four possibilities S1(â) = ±1, S2(b̂) = ±1 weighted
with these probabilities, we see that the quantum mechanical expectation value
of S1(â) times S2(b̂) is

〈
S1(â)S2(b̂)

〉
QM

= 1

2

(
cos2 θab − sin2 θab − sin2 θab + cos2 θab

) = cos 2θab,

(12.2.12)

where θab is the angle between â and b̂. Thus in quantum mechanics, the left-
hand side of Eq. (12.2.11) is〈

S1(â) S2(b̂)
〉

QM
−
〈
S1(â) S2(b̂

′)
〉

QM
+
〈
S1(â

′) S2(b̂)
〉

QM
+
〈
S1(â

′) S2(b̂
′)
〉

QM

= cos 2θab − cos 2θab′ + cos 2θa′b + cos 2θa′b′ . (12.2.13)

This is a maximum7 if θab = θa′b = θa′b′ = 22.5◦ and θab′ = 67.5◦, in which case〈
S1(â) S2(b̂)

〉
QM

−
〈
S1(â) S2(b̂

′)
〉

QM
+
〈
S1(â

′) S2(b̂)
〉

QM
+
〈
S1(â

′) S2(b̂
′)
〉

QM

= 2
√

2 = 2.828.

Because the polarizers in this experiment were not perfectly efficient, the
expected value was only 2.70 ± 0.05. The experimental result for the left-hand
side of Eq. (12.2.11) was 2.697 ± 0.0515, in good agreement with quantum
mechanics, and in clear disagreement with the inequality (12.2.11) satisfied by
all local hidden variable theories.

7 All the directions â, b̂, â′, and b̂′ are normal to k̂, so they all lie in the same plane. The maximum value
of (12.2.13) is achieved by putting them in an order such that θab′ = θab +θa′b +θa′b′ , and then setting
the derivatives of the expression (12.2.13) with respect to θab and θa′b and θa′b′ all equal to zero.
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12.3 Quantum Computation

In recent years much attention has been given to the opportunities provided for
computation by quantum mechanics.1 This section will give only a brief glimpse
of the capabilities of quantum computers, and their limitations.

It is the existence of entanglement in quantum mechanics that provides a
possibility of calculations with quantum computers that in a classical computer
would require exponentially greater resources. The working memory of a quan-
tum computer may be considered to consist of n qbits, elements like atoms of
total angular momentum 1/2 or electric currents in superconducting loops, for
which some physical quantity, such as the z-component of the angular momen-
tum or the direction of the current, can only take two values. We will label
these two values with an index s, that only takes the values 0 and 1, and define
�s1s2...sn as the normalized state vector in which the qbits take values s1, s2, ...
sn . The general state of the memory is then

� =
∑

s1s2...sn

ψs1s2...sn�s1s2...sn , (12.3.1)

where the ψs1s2...sn are complex numbers, subject to the normalization condition∑
s1s2...sn

∣∣ψs1s2...sn

∣∣2 = 1. (12.3.2)

Since the moduli of the ψs1s2...sn are subject to this condition, and the over-all
phase of ψs1s2...sn is irrelevant, there are 2n − 1 independent coefficients ψs1s2...sn ,
so a quantum computer with n qbits has a memory that can contain 2n − 1
independent complex numbers, in the sense that this is the information on which
the computer can act during calculations. (As we shall see, this information is
not in general available to be read out from the memory.)

This may be compared with a classical digital computer. The state of a clas-
sical memory containing n bits is just a string of n zeroes and ones, which can
be regarded as the binary expression of a single integer taking a value between 0
and 2n − 1. It is the comparison of a quantum memory containing 2n − 1 uncon-
strained complex numbers and a classical memory containing a single integer
between 0 and 2n − 1 that makes the difference between quantum and classical
computers. A classical digital computer can do anything a quantum computer
can do, but at the cost of needing an exponentially larger memory.

As with a classical computer, we can think of the indices s1, s2, ... sn on ψ

and � as a string of zeroes and ones, and replace them with a single integer ν
between zero and 2n − 1 whose binary expansion is s1s2 . . . sn . (For instance, in

1 See, e.g, N. D. Mermin, Quantum Computer Science – An Introduction (Cambridge Univer-
sity Press, Cambridge, 2007). For an online review of quantum computation, see J. Preskill,
www.theory.caltech.edu/people/preskill/ph229/#lecture.
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the case n = 2, we would define �0 ≡ �00, �1 ≡ �01, �2 ≡ �10, �3 ≡ �11.)
We can thus write Eq. (12.3.1) as

� =
2n−1∑
ν=0

ψ(ν)�ν, (12.3.3)

and think of ψ(ν) as a single complex-valued function of the integer ν.
By exposing the n qbits to various external influences, it is possible in princi-

ple to act on their state vector with an operator of the form exp(−i Ht/�) where
H is any sort of Hermitian operator, and in this way subject the state vector to
any unitary transformation � → U� we like. The effect on the wave function
will be

ψ(ν) �→
2n−1∑
μ=0

Uμνψ(μ) (12.3.4)

where Uμν is some more-or-less arbitrary unitary matrix. In this way, a quantum
computer can convert functions into other functions. For example, the construc-
tion of an algorithm for finding the prime factors of large integers2 makes use of
a unitary transformation with

Uμν = 2−n/2 exp
(

2iπμν/2n
)
, (12.3.5)

by which ψ(ν) is converted to its Fourier transform:

ψ(ν) �→ 2−n/2
2n−1∑
μ=0

exp
(

2iπμν/2n
)
ψ(μ). (12.3.6)

This is unitary, because for μ and μ′ integers between 0 and 2n − 1, we have

2n−1∑
ν=0

UμνU
∗
μ′ν = 2−n

2n−1∑
ν=0

exp
(

2iπ(μ− μ′)ν/2n
)

= δμμ′ .

In order not to lose the advantages of quantum computers, it is necessary to build
up such useful unitary transformations out of “gates” — unitary transformations
that act on no more than a fixed number of qbits at a time. For instance, ref. 2
shows that it is possible to construct the unitary transformation (12.3.5) by using
gates of just two kinds: A gate R j that acts on the two states of the j th qbit with
a unitary matrix

R j : 1√
2

(
1 1
1 −1

)
,

2 P. W. Shor, J. Sci. Statist. Comput. 26, 1484 (1997).
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and a gate Si j that acts on the four states of the j th and kth qbits (with j < k):

Sjk :

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(iπ2 j−k)

⎞
⎟⎟⎠ ,

in which the rows and columns correspond to the two-qbit states with indices
00, 01, 10, and 11, in that order.

Quantum computation is subject to limitations, both intrinsic and extrinsic.
It faces intrinsic limitations in reading out the contents of the memory of a
quantum computer. For a memory in a general state (12.3.3) with unknown coef-
ficients ψ(ν), no single measurement of the state of each qbit can by itself tell us
anything precise about the values of these coefficients. Even if we repeat identi-
cal computations many times and measure the state of each qbit each time, we
only learn the values of the moduli |ψ(ν)|. On the other hand, if we know that a
computation has put the memory into one of the basis states �ν , then we can find
the integer ν by measuring the state of each qbit. In particular, in factoring large
numbers into products of primes, the output is a set of numbers, represented by
states �ν , and there is no problem in finding these numbers by a measurement
of the state of each qbit.

More general measurements are also possible. If we know that a quantum
computation has put the memory in a state for which

2n−1∑
ν=0

Ar
μνψ(ν) = arψ(μ)

with some set of Hermitian matrices Ar , then by appropriate measurements we
can find the eigenvalues ar . (The previously mentioned example, where a com-
putation leaves the memory in a state �ν , is just the case where these matrices
are Aν

μ′μ = νδνμ′δνμ.)
Another intrinsic limitation: because of the linearity of the operations U

that can be carried out on the contents of a memory register, there are some
things that can be done easily with a classical computer that cannot be done
with a quantum computer. One of them is copying the contents of one mem-
ory register into another register.3 The state of two independent registers can
be represented as a direct product, � ⊗ �, where � and � are the states of
the two registers. (That is, if � = ∑

ν ψ(ν)�ν and � = ∑
μ φ(μ)�μ, then

� ⊗ � = ∑
νμ ψ(ν)φ(μ)�νμ.) A copying operator U would be one with the

property that

U (� ⊗�0) = � ⊗�, (12.3.7)

3 W. R. Wooters and W. H. Zurek, Nature 299, 802 (1982); D. Dicks, Phys. Lett. A 92, 271 1982).
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where � is an arbitrary state of the first register and �0 is some fixed “empty”
state of the second register. If this is true for any �, it must be true when � is a
sum �A +�B , so

U
(
(�A +�B)⊗�0

)
= (�A +�B)⊗ (�A +�B)

= �A ⊗�A +�A ⊗�B +�B ⊗�A +�B ⊗�B .

(12.3.8)

But if U is linear, then

U
(
(�A +�B)⊗�0

)
= U

(
�A ⊗�0

)
+U

(
�B ⊗�0

)
= �A ⊗�A +�B ⊗�B,

(12.3.9)
in contradiction with Eq. (12.3.8).

The extrinsic limitation on quantum computation is the necessity of maintain-
ing the entanglement of the qbits during a computation. A disentangled state, in
whichψs1...sn is a product of functions of the indices, can contain only n−1 rather
than 2n − 1 independent complex numbers, so that the advantage of quantum
computers over classical computers is lost. It remains to be seen whether entan-
glement can be maintained well enough for many qbits to allow the development
of useful quantum computers.
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functions, 216–220
spherical components of vectors, 179
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theorem, 71
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