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When a two-dimensional (2D) electron gas is placed in a 
perpendicular magnetic field, its in-plane transverse conductance 
becomes quantized; this is known as the quantum Hall effect1. 
It arises from the non-trivial topology of the electronic band 
structure of the system, where an integer topological invariant 
(the first Chern number) leads to quantized Hall conductance. 
It has been shown theoretically that the quantum Hall effect can 
be generalized to four spatial dimensions2–4, but so far this has 
not been realized experimentally because experimental systems 
are limited to three spatial dimensions. Here we use tunable 2D 
arrays of photonic waveguides to realize a dynamically generated 
four-dimensional (4D) quantum Hall system experimentally. The 
inter-waveguide separation in the array is constructed in such a 
way that the propagation of light through the device samples over 
momenta in two additional synthetic dimensions, thus realizing 
a 2D topological pump5–8. As a result, the band structure has 4D 
topological invariants (known as second Chern numbers) that 
support a quantized bulk Hall response with 4D symmetry7. In 
a finite-sized system, the 4D topological bulk response is carried 
by localized edge modes that cross the sample when the synthetic 
momenta are modulated. We observe this crossing directly through 
photon pumping of our system from edge to edge and corner to 
corner. These crossings are equivalent to charge pumping across a 
4D system from one three-dimensional hypersurface to the spatially 
opposite one and from one 2D hyperedge to another. Our results 
provide a platform for the study of higher-dimensional topological 
physics.

Topology manifests naturally in solid-state systems. In insulators, 
electrons fill electronic states below the bandgap of the system. These 
states can be mapped mathematically onto abstract shapes that are char-
acterized by a topological invariant. The realization that these topo-
logical invariants manifest as quantized bulk responses, and through 
corresponding topologically protected boundary states, has revolu-
tionized our understanding of material properties. These phenomena 
have been explored in several fields in systems beyond solid-state mate-
rials, including photonic6,8–13 and ultracold atomic14–17 systems.

The introduction of topology into photonics9 has opened up many 
avenues of research. Much of this research has focused on the exper-
imental observation of topologically protected edge states in systems 
such as photonic crystals in the microwave domain10,13, as well as arrays 
of waveguides6,8,11 and integrated ring resonators at optical frequen-
cies12. In these systems, dielectric structures act as lattices for light, 
leading to topological 2D photonic bands. Beyond two dimensions, 
experiments with three-dimensional (3D) lattices have unveiled topo-
logical features18 such as Weyl points19,20.

The study of topological phases can be defined and understood 
mathematically beyond three dimensions, with a hallmark example 
being the 4D quantum Hall effect2–4,7. In 2D quantum Hall systems, 

energy bands are characterized by the first Chern number, which 
quantizes the Hall conductance and therefore counts one-dimensional 
(1D) chiral edge states in the system. In 4D systems, energy bands 
are characterized by another topological invariant—the second Chern 
number2–4,7,21–24. Similarly to the 2D case, the 4D invariant manifests 
through an additional quantized bulk response with 4D hypersurface 
phenomena. Until recently, the latter seemed only of theoretical interest 
because its realization requires four spatial dimensions. The flexibility 
of atomic and photonic systems, however, has inspired proposals to 
include synthetic dimensions to realize higher-dimensional topological 
physics25–28.

The concept of topological pumps lends itself well to synthetic 
dimensions and higher-dimensional physics. Consider a family of 
1D systems parameterized by a momentum in a synthetic orthogonal 
dimension. This momentum is the pump parameter that maps the 1D 
pump to the 2D quantum Hall system with a first Chern number6,8. 
The topological bulk response of the 1D pump matches that of the 2D  
quantum Hall effect: varying the pump parameter generates an  
electromotive force that pushes an integer number of charges per pump 
cycle across the physical dimension5. 1D pumps have recently been 
demonstrated in cold atom16,17 and photonic6,8 experiments.

A 2D topological pump can be subject to two pump parameters, 
corresponding to a 4D quantum Hall system7. In its simplest form, a 
4D quantum Hall system is the sum of two 2D quantum Hall systems 
in disjoint planes7,27,28, residing in the direct product space associated 
with the individual models. Correspondingly, a 2D topological pump 
manifests as the sum of two 1D pumps on orthogonal axes7. Here we 
consider ‘off-diagonal’ pumps in which the hopping is modulated as a 
function of the pump parameters6,8; that is, we study a 2D tight-binding 
model of particles that hop on a lattice described by the Hamiltonian 
(Fig. 1a)
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where cx,y annihilates a particle at site (x, y); φ λ φ= + π +~t t b i( ) cos(2 )i i i i i i , 
with i ∈ {x, y}, are modulated hopping amplitudes in the i direction, 
with bare hopping ~ti and modulation λi amplitudes. The modulation 
frequencies bi are mapped in four dimensions to two magnetic fields 
in the x–v and y–w planes7. The pump parameters φx and φy correspond 
to momenta in the v and w directions, respectively; that is, their mod-
ulation dynamically generates electric-field perturbations in these 
directions. Considering that the pump parameters correspond to addi-
tional synthetic dimensions, we characterize bandgaps of the 2D pump 
with non-trivial second Chern numbers that manifest as a quantized 
bulk response with 4D symmetry7.

We realize such a 2D topological pump using arrays of coupled wave-
guides (Fig. 1b). Each array is constructed to emulate the 2D pump 
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(equation (1) with bx = 1/3 and by = 1/3), using 7 rows and 13 columns. 
The inter-waveguide separation is such that the evanescent coupling 
between nearest-neighbour waveguides is modulated according to 
equation (1), with λx = λy = 1.06 cm−1 and = = . −~ ~t t 1 94 cmx y

1  (at a 
wavelength of 1,550 nm). Nevertheless, the evanescent coupling is a 
function of both separation and wavelength (Methods, Extended Data 
Fig. 1). Therefore, the resulting structure has coupling between wave-
guides beyond its nearest neighbours and the emulated model does not 
decompose into two disjoint 1D pumps. Despite this, the spectrum for 
the device demonstrates gap-traversing boundary states, with both edge 
and corner states (Fig. 1c, Methods, Extended Data Fig. 2).

The appearance of such edge phenomena results from the non-trivial 
4D topology of the 2D pump. The 4D symmetry of the second Chern 
number bulk response generates two types of response: density-type 

and Lorentz-type27–29. The edge bands support the former and the cor-
ner modes the latter (Methods). For clarity, we explain the appearance 
of the topological boundary modes by studying the structure of the 
model described in equation (1). Because this model can be decom-
posed into decoupled 1D pumps, each having gaps with non-trivial 
first Chern numbers5,6,8, we have the following: (a) the spectrum of 
the 2D pump is a Minkowski sum of the spectra of the two 1D pumps, 
E = Ex + Ey; (b) the states of the model are product states of the two 
independent models; and (c) the product bands are associated with 
second Chern numbers that are equal to the product of the individ-
ual first Chern numbers7. The third result leads to non-trivial bulk 
phenomena only when gaps remain open in the summed Minkowski 
spectra. Importantly, the second Chern number and the correspond-
ing 4D symmetry of its associated bulk responses imply that pumping 
will occur in response to a scan of either or both pump parameters φi 
(Methods).

Let us now consider these properties of the model in equation (1) 
in an open geometry. Because each 1D pump has 1D bulk modes and 
zero-dimensional (0D) boundary modes, (a) and (b) above imply 
that the 2D pump states are grouped into three categories: (i) 2D bulk 
modes composed of products of 1D bulk modes; (ii) edge modes com-
posed of products of 1D bulk modes with a 0D boundary; and (iii) 
corner modes that are a product of 0D boundaries. The boundary  
modes (cases (ii) and (iii)) support the quantized second Chern  
number response (Methods). The 1D edge states of the 2D system 
are pumped in response to a single pump parameter and map onto 
3D hypersurface states in four dimensions. The 0D corner states are 
pumped in response to one or both pump parameters and map to 2D 
hypersurface states. These states highlight the hypersurface phenomena 
that are associated with the second Chern number.

Our device does not decompose perfectly into two 1D pumps, owing 
to longer-ranged hopping. Nevertheless, the bulk gaps remain open. As 
a result, the characterization of these gaps by non-trivial second Chern 
numbers implies that the bulk response must remain unchanged. The 
appearance of edge states that traverse the gaps as a function of the 
pump parameters φi supports this response in a finite-sized system. 
Here we probe the behaviour of these states experimentally.

The waveguide array (Fig. 1b) is fabricated using femtosecond-laser 
writing30,31 in such a way that each single-mode waveguide couples 
evanescently to its neighbours. When light is injected into the array, 
it excites eigenmodes according to their spatial overlap with the input 
beam. The diffraction of light through the array is governed by the 
paraxial Schrödinger equation, i∂zψ = H(z)ψ, in which the time- 
evolution coordinate t in the usual Schrödinger equation is replaced 
by the distance of propagation z; ψ represents the tight-binding wave-
function and H(z) is the Hamiltonian. Therefore, the diffraction of 
light through the array mimics the time evolution of the wavefunction 
of a quantum particle. Consequently, time-dependent pumping means 
adiabatically varying φi along the waveguide axis6,8: φi → φi(z).

We demonstrate experimentally the appearance of edge modes in 
the structure and their behaviour under scans of the pump parameters. 
We start by studying a structure with straight waveguides, which is 
therefore invariant in z. We inject light into two different waveguides 
in the array: one along the left edge and one along the bottom edge. 
The output light is collected after a diffraction length of 15 cm. Light 
stays confined largely to the injected edge (it mostly excites the topo-
logical localized edge bands; Fig. 2a, b). Additionally, it spreads across 
the whole edge, implying dispersive bands of edge modes (such as the 
bands that cross the gaps in Fig. 1c), in accordance with the expected 
density-type response (Methods). The light stays confined to a single 
edge as a result of the weak coupling between states on adjoining edges; 
that is, the long-range coupling does not break the orientation that is 
associated with the two orthogonal 1D topological pumps embedded 
in the system. Some of the edge states (case (ii) above) that we excite 
have the same energies as bulk states in the open system geometry 
(Methods). These long-lived resonances further demonstrate that the 
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Figure 1 | 2D topological pump and its band structure. a, Schematic of 
the lattice model (equation (1)) with a 3 × 3 unit cell, that is, bx = 1/3 and 
by = 1/3, resulting in three different hopping amplitudes (solid, dashed and 
dotted lines) in each direction, which can be modulated using the pump 
parameters φx and φy. b, Illustration of the 2D (7 × 13) array of waveguides 
with z-dependent spacing. Light is injected into the input facet, is pumped 
across the array during its propagation (owing to the topological nature of 
the 2D pump) and is collected on the other side using an InGaAs CCD 
camera. c, Calculated band structure for a similar device, consisting of a 
70 × 70 array of coupled waveguides, where energy E is plotted along the 
path φx = φy (larger dimensions chosen for clarity) at a wavelength of 
1,550 nm, normalized by the bare hopping amplitude ~t . Bulk modes are 
shown in grey, edge modes in red and orange, and corner modes in black. 
The insets show representative wavefunctions for each type of mode. For 
our choice of pump parameters, the edge modes (red and orange) form 
wedges owing to their degeneracy. The corner modes vanish into the bulk 
bands along their pump path and weakly hybridize with bulk modes. We 
perform pumping experiments to study the properties of these boundary 
states, in which φx and φy are scanned between 0.477π and 2.19π (vertical 
dashed lines; arrows indicate the pumping direction); see Figs 2 and 3.
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long-range coupling is a small perturbation of the decoupled model 
in equation (1).

Having established that we can excite the edge modes of the 2D 
pump, we demonstrate their behaviour under scans of the pump 
parameters φi. We implement edge pumping by allowing the positions 
of the waveguides to ‘wiggle’ by varying φi as a function of z (Fig. 1b). 
We vary these pump parameters within the range [0.477π, 2.19π] 
because localized edge modes exist at these values (a full pumping cycle 
is not necessary to observe edge pumping from one side of the system 
to the other). We fabricate separate arrays that correspond to two sce-
narios: (1) pumping in only the x direction; and (2) pumping in both 
the x and y directions. In case (1), we see that when light is injected at 
the left edge, it is pumped to the right edge (Fig. 2c); however, when it 
is injected at the bottom, it is not pumped to the top because φy is not 
pumped (Fig. 2d). In case (2), we observe that the edge states pump 
both from left to right (Fig. 2e) and bottom to top (Fig. 2f). We injected 
light with several different input wavefunctions along the edge in ques-
tion (including single and double waveguide inputs), which resulted 
in different amounts of overlap of the input wavefunction with each 
of the edge bands; clear pumping was observed in each case. These 

results show that an electromotive force applied in the v and w direc-
tions induces pumping of edge bands from one 3D (v, w, y) hyperplane 
to the opposite one in the x direction, and from one 3D (v, w, x) hyper-
plane to the opposite one in the y direction, as implied by the 4D Hall 
bulk density-type response (Methods).

We examine the pumping of states at the corners of the arrays for 
the same range of φx and φy as for edge states. The presence of the cor-
ner modes (black in Fig. 1c) support the Lorentz-type bulk response 
(Methods). Depending on the values of φx and φy, the corner modes 
can either be in the bandgap or overlap with bulk modes where they 
can hybridize to form long-lived resonances. In the experiment, the 
bottom-left-corner mode is directly excited and pumped along the 
bottom edge, in conjunction with it being the boundary mode of the 
1D pump that crosses edge to edge (Fig. 3a, b). Interestingly, when we 
scan φx and φy simultaneously, the bottom-left-corner mode is pumped 
mostly to the top-right corner (Fig. 3c) despite any hybridization with 
bulk modes. Such diagonal pumping under a concurrent φi scan agrees 
with the 4D symmetry of the second Chern number bulk response, that 
is, with the Lorentz-type transverse response (Methods). The photonic 
diagonal pumping through bulk bands is expected in the decoupled 
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Figure 2 | Edge-to-edge pumping. Images of the output facet of 
waveguide arrays after z = 15 cm of propagation are shown. a, b, Device 
with no pumping, corresponding to a model with φx = φy = 0.477π (see 
Fig. 1). Light that is injected at the centre of the left (a) or bottom (b) edges  
excites the topological edge bands and spreads out along the edge.  
c, d, Pumping of φx (from 0.477π to 2.19π while φy is held constant at 
0.477π) causes the light injected at the left edge to be pumped to the right 
(c); no such pumping is observed when light is injected at the bottom 
edge (d). e, f, When φx and φy are simultaneously pumped (from 0.477π 

to 2.19π), light injected at the left (e) and bottom (f) edges pumps from 
left to right and bottom to top, respectively. Light in the bulk arises from 
imperfect coupling to edge states and from deviations from adiabaticity. 
The yellow dashed circles indicate the injection sites at the input facet 
(z = 0) and the red arrows indicate the direction of pumping. These results 
demonstrate that edge bands exist in the structure and appear on opposite 
sides of the device as a function of the pump parameters, in accordance 
with the density-type bulk response that is implied by the 4D Hall-type 
band structure of the system.

a b c

Figure 3 | Corner-to-corner pumping. Images and devices are similar to 
those described in Fig. 2. a, With no pumping, so light stays confined to 
the corner. b, Light is pumped from the bottom-left corner to the bottom-
right corner via φx. c, When φx and φy are both pumped, the corner state 
is pumped from bottom-left to top-right. The corner state passes through 

the bulk band and remains localized because it is a long-lived resonance, 
not in the bandgap (Methods). Its appearance on the diagonally opposite 
corner is in accordance with the Lorentz-type response that is implied by 
the 4D Hall-type band structure of the system.
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model (equation (1)), in which each constituent 1D pump is charac-
terized by its own first Chern number and therefore the corner modes 
manifest as the fully bound joint product of the protected topology at 
the boundary of the 2D pump. This in turn means that in our set-up 
the corner modes only weakly hybridize with the bulk and the pumping 
is carried by long-lived resonances. We note that topological corner 
modes are unique in the sense that they have two fewer dimensions 
than the physical dimension of the system (conventional topological 
modes have one fewer dimension). The appearance and demonstration  
of such modes has recently been reported in inversion-symmetry- 
protected 2D systems32,33.

In conclusion, we have observed topological edge pumping associ-
ated with the 4D quantum Hall effect in a 2D photonic system using 
synthetic dimensions. These observations imply that the system is char-
acterized by a non-zero second Chern number. Boundary phenomena  
provide an independent observation of the physics implied by the  
second Chern number of the system, in addition to the measurement 
of the quantized nonlinear bulk response in a similar model using cold 
atoms34. The realization of 4D quantum Hall physics opens up the pos-
sibility of realizing many new physical effects and of answering several 
open questions, including: whether a bulk measurement of the second 
Chern number can be realized in photonics via the nonlinear response 
to synthetic fields; whether arbitrarily high spatial dimensionality can 
be realized; whether interactions can lead to 4D fractional Hall physics 
when using synthetic dimensions; and whether there are other physical 
quantities that are quantized in four dimensions that can be measured 
directly using synthetic dimensions. Because photonic systems natu-
rally allow for non-Hermitian Hamiltonians (which arise from gain and 
loss), another question is how non-Hermiticity and topological gaps 
associated with non-zero second Chern number interact. We expect 
that experimental access to 4D quantum Hall physics will open up 
many other directions for research.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Experimental specifications. The experiments were conducted using arrays 
of evanescently coupled waveguides fabricated in borosilicate glass using  
femtosecond-laser-writing technology30,31. The waveguides are all identical in 
refractive index and dimension, but the inter-waveguide separation was modu-
lated to realize the off-diagonal 2D model (equation (1)). In all cases, we observe 
the output image (after 15 cm of propagation) over a range of wavelengths (1,510–
1,590 nm) in increments of 5 nm, and then average the output intensities over all 
wavelengths (Figs 2, 3). We note that the bandgap remains open over this range. We 
perform the averaging over wavelength to minimize sensitive interference effects 
due to fabrication imperfections.
Model implementation with waveguide arrays. The diffraction of paraxial light 
through the structures is governed by the paraxial Schrödinger equation30,35:

ψ ψ ψ∂ =− ∇ −
∆i

k
k n

n
1

2z
0

2 0

0

where the wavefunction ψ(x, y, z) corresponds to the electric-field envelope, 
ψ ω= −E Ex y z x y z ik z i t ˆ( , , ) ( , , )exp( )0 0  , ∇ =∂ +∂x y

2 2 2  is the transverse Laplacian,  
Δn(x, y, z) is the change in refractive index relative to the background index n0, 
and k0 = 2πn0/λ is the wavenumber in the background medium. For an array of 
single-mode, weakly coupled waveguides, the evolution generated by the paraxial 
Schrödinger equation can be described using tight-binding theory, whereby light 
hops between the bound modes of adjacent waveguides. The hopping amplitude 
t associated with a given waveguide separation can be obtained by numerically 
computing the two lowest eigenvalues E1 and E2 of the full equation for a system 
consisting of two waveguides; the hopping amplitude is then t = (E1 − E2)/2.

To perform this computation for our waveguides, we used a best-fitting  
Gaussian model for the variation in the waveguide refractive index: 

σ σ∆ = δ − / − /( )n x y n x y( , ) exp x y
2 2 2 2 , with δn = 2.8 × 10−3, σx = 3.50 μm and 

σy = 5.35 μm. These parameters were obtained by calibrating over a set of 1D test 
arrays. Using this profile and a background index of n0 = 1.473, we obtain a model of 
the form t(s) = Aexp(−γs) for the dependence of the hopping amplitudes on the 
waveguide separation s. Here A = A(λ) and γ = γ(λ) are wavelength-dependent 
parameters plotted in Extended Data Fig. 1. We obtain these parameters by comput-
ing the couplings along the x and y directions separately for different values of s 
(15–35 μm) at wavelengths of 1,450–1,650 nm and then fitting the average of the x 
and y couplings to a model of the form given above for the hopping amplitudes. We 
then used this model to solve for the waveguide spacings that are required to imple-
ment the modulated hopping amplitudes defined by the Hamiltonian in equation (1).

To provide a clearer picture of the waveguide configurations used in our pho-
tonic system, we include an illustration of a 1D pump in Extended Data Fig. 1b. 
Varying the waveguide spacings along the propagation direction allows us to  
control the hopping amplitudes in a way that implements a sweep of the pump 
parameter φx. To obtain the full 2D array, we consider additional copies of such  
a structure stacked vertically along the y direction, with the vertical spacings  
determined by the hopping amplitudes associated with the y direction.
The decoupled model. Here we examine how the bulk response in an analogous 
electronic system (that is, one in which states are filled up to a given Fermi level) 
explains the behaviour of the boundary states. The model in equation (1) decom-
poses along the x and y directions into a sum of two independent off-diagonal 
Harper models, Hx(φx) and Hy(φy) (compare with equation (1))6–8,36

φ φ φ φ= +H H H( , ) ( ) ( ) (2)x y x x y y

Each Hi(φi) is a one-parameter family of 1D Hamiltonians, that is, a 1D topologi-
cal pump. Treating the parameter φi as a Bloch momentum associated with an 
additional spatial dimension ∈~i v w{ , }, we perform a dimensional extension of 
this model and obtain a model that describes the 4D integer quantum Hall system 
on a lattice with nearest-neighbour hopping in the i direction and next-near-
est-neighbour hopping in the ~i  direction37,38.

For b = 1/3, the spectrum of the 1D pump (2D quantum Hall) system consists 
of three bands (Extended Data Fig. 2a). Each band n has an associated non-zero 
first Chern number (denoted ν1 in ref. 34) of

∫ν φ φ=
π
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which is an integral over the Berry curvature (also known as the Chern density) 
of the filled nth band
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where we have defined the spectral projector Pn onto all states in the nth band. 
Energy gaps in the 2D Hall effect are also characterized by first Chern numbers. 
The first Chern number of a spectral gap is the sum of first Chern numbers of the 
bands below that gap in energy. The first Chern number of the bandgap manifests 
through the quantization of the Hall conductance in response to an applied 
in-plane electric field; for example, in our case ν= / ∑I e h E( )x v n n

2 , where Ix 
denotes the current density along the x direction, Ev is an electric field along the v 
direction, and the sum is over all filled bands. This quantized bulk response has 
corresponding edge states; that is, gapless boundary states appear in a finite sample 
(as many as the sum of the Chern numbers of bands below a given gap) and carry 
the transverse quantized conductance39.

As discussed in the main text, the eigenstates of the full Hamiltonian (equations 
(1) and (2)) are tensor products of the eigenstates of the two independent Harper 
models |ψmn〉 = |ψm〉 ⊗ |ψn〉, where m enumerates the states in the x–v plane and 
n those in the y–w plane. Their associated energies are Emn = Em + En, so that each 
pair of bands from the decoupled models yields a band of the 2D pump (4D quan-
tum Hall) model. Therefore, in a finite system, because each constituent 1D pump 
has bulk and boundary modes, the tensor product eigenstates can be categorized as 
bulk–bulk, bulk–boundary and boundary–boundary. A colour-coded illustration 
of the resulting band structure is shown in Extended Data Fig. 2b.

The resulting Minkowski sum spectrum is not always gapped: depending on 
the amplitudes ~ti and λi, the joint spectrum may not be gapped. Consequently, if 
the gaps are closed, then we can no longer discuss the topology of the combined 
spectrum because any small perturbation will mix the states from the different 
bands. When the spectral gaps are open, the bulk–boundary and boundary–
boundary modes lie for some φi at energies within the gaps and for others at ener-
gies in the bulk bands. Therefore, the boundary–boundary (2D corner) modes that 
overlap with the bulk are generally expected to become finite-lifetime resonances  
upon the introduction of higher-neighbour hoppings that destroy the tensor  
product structure of the eigenstates. Nonetheless, the in-gap bulk–boundary and 
boundary–boundary modes are protected for arbitrary perturbations that do not 
close the gap and are the surface states associated with a non-zero second Chern 
number.
Second Chern number. Let us consider an energy Ej in the jth gap of the 2D pump 
(4D quantum Hall) system (Extended Data Fig. 2b). The second Chern number 
(denoted ν2 in ref. 34) associated with this gap is
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where Pj(k) is the projector onto the subspace spanned by the eigenstates at Bloch 
momentum k = (φx, φy, kx, ky) with energies below the gap. The subscripts of k 
mark the vector component. Using the decomposition of H discussed above, Vj 
can be written in terms of the first Chern numbers νn of the Harper models as7

∑ ν ν=
Ε<

Vj
m n E

n
xv

m
yw

band pairs , with mn j

where νn
xv and νm

yw are the first Chern numbers associated with the nth band in the 
x–v plane and mth band in the y–w plane, respectively. Combining this result with 
the first Chern numbers shown in Extended Data Fig. 2a, the second Chern num-
bers associated with the lower and upper gaps of the 2D pump (4D quantum Hall) 
Hamiltonian are V = +1 and −1, respectively. Although the Hamiltonian that 
governs our photonic system does not decompose in the way discussed above, 
owing to the presence of higher-neighbour couplings, the upper and lower gaps 
remain open (see Fig. 1) and, as a result, the associated second Chern numbers 
remain unchanged.
Bulk responses and their corresponding edge phenomena. Measuring the second 
Chern number via the bulk response directly requires both an external electric and 
magnetic field to be applied. However, the presence of the second Chern number 
implies the presence of surface states, irrespective of the application of external 
fields. In this section, we explain the relationship between the presence of the 
surface states in the model and the second Chern number, from the point of view 
of topological pumping.

The second Chern number of the jth bandgap has an associated quantized  
nonlinear bulk response

Φ
ε=α αβγδ βγ δ

V
I e

h
B E

2
j 2

0

where Iα denotes the current density along the α direction, Φ0 is the flux quantum, 
Eδ is an electric-field perturbation along the δ direction, Bβγ is a magnetic-field  
perturbation in the β–γ plane, and εαβγδ is a Levi–Civita symbol that highlights 
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the 4D non-commutative nature of the response. The second Chern number Vj 
is defined as the sum over all bands up to the jth of a 4D volume integral over a 
generalized 4D Berry curvature of the given band.

In our spinless case, we can write the 4D Berry curvature in terms of the 2D 
Berry curvatures that exist in the two orthogonal planes associated with the inde-
pendent models6,8,27–29. Let us consider these orthogonal planes to be x–v and y–w. 
In addition, for the choice of boundary conditions in our experiment, let us focus 
on the responses in the direction α = x and study their bulk–edge correspondence. 
The responses in the α = y direction will be similar. Having fixed the response 
direction, there are various choices for the orientation of the perturbing fields in 
four dimensions. These can be split into density-type responses and Lorentz-type 
responses.
Density-type response. Consider the case where the extrinsic perturbing field Bβγ 
is set in a plane for which there is a non-trivial Berry curvature from the under-
lying model. For responses in the α = x direction, this occurs when βγ = yw. 
Correspondingly, the orientation of the electric-field perturbation is δ = v. Owing 
to the non-trivial intrinsic Berry curvature in the x–v plane, Ev also generates a 2D 
quantum Hall-like response, and the bulk response is

ν
Φ

= = =

= +� V

I I I

I e
h

nE e
h

E B

0v y w

x
xv

v j v yw
2 2

0

where νxv contains the sum over first Chern numbers of filled bands. It is now 
apparent why we denote this response as ‘density-like’. The bulk response has a 2D 
quantum Hall-like response, multiplied by a particle-density factor �n that results 
from the integration over the 4D volume. The second Chern number response here 
can be understood40 to be a Streda formula correction to �n.

To support such a response in finite-sized systems, the corresponding edge 
phenomena must manifest a band of modes that traverse the gap. The density of 
this edge band is modulated by the magnetic-field perturbation. In addition, from 
the response to Ev we conclude that the in-gap band is dispersive with respect to kv. 
Repeating this argument for the density-type response in the y direction, we expect 
an additional in-gap band that is dispersive with respect to kw.

In 2D topological pumping, we generate the electric field Ev using Faraday’s law 
of induction, that is, by modulating φx. Correspondingly, the density-type quan-
tized 4D quantum Hall response implies that within a full 0–2π cycle of φx a band 
of states (corresponding to �n) must cross the gap and appear νxv times on either 
side of the x-direction open boundary conditions. The density of this band is 
modulated by the external magnetic-field perturbation and thus accommodates 
the density-type second Chern number response. Following the same arguments, 
similar bands must appear upon scans of φy to support the response in the α = y 
direction. In the photonic experiment, we excite these edge bands directly (as well 
as, inevitably, in-bulk bands) and show that they truly carry modes from one side 
of the sample to the other in both the x and y directions.

From the above discussion, it is apparent that the observation of edge-to-edge 
pumping implies that a full band spectrum supports density-type second Chern 
bulk responses, and it suffices to see these responses as a function of scans of φx 

and φy. In terms of edge physics, adding a perturbing Byw field is not illustrative: 
the intrinsic field has already set up the conditions (via the density response) for a 
current that arises from both the first and second Chern numbers.
Lorentz-type responses. Consider the case where the extrinsic perturbing field 
Bβγ is set in a plane for which there is no Berry curvature from the underlying 
model. For responses in the α = x direction, this occurs when βγ ∈ {vy, vw}. 
Correspondingly, the orientation of the electric-field perturbation is δ ∈ {w, y}. 
We are interested in 2D topological pumping, that is, in generating the electric  
field using Faraday’s law of induction; consequently, we do not apply the electric- 
field perturbation in the y direction. Because we cannot apply a Bvw perturbation 
between the two dynamical axes of the pump, we are left with the response

Φ
ε= VI e

h
B Ex j xvyw vy w

2

0

Because Ew is generated by pumping φy, this response means that Vj charge- 
carrier modes must appear within the gap every 1/Bvy cycles on each side of the 
x axis.

In the 2D model, the Lorentz-type magnetic-field perturbation enters (in the 
correct gauge) as a spatial modulation of the model, by changing the modulated 
hopping:

φ λ φ

φ λ φ

→ + π + π +

→ + π +

~

~
t t b x B y
t t b y

( ) cos(2 2 )
( ) cos(2 )

x x x x x vy x

y y y y y y

In the y–w plane, a first Chern number bulk response occurs as a function of scans 
of φy, leading to a gradual change in the coordinate y. Therefore, owing to the mag-
netic-field perturbation Bvy, as φy is scanned a slow modulation of the potential in 
the x direction also occurs.

This is a slow modulation that would mean that 1/Bvy cycles of φy generate in the 
same time a full scan of φx from 0 to 2π (see also the bulk-pumping experiment in 
cold atoms34). In a finite-sized system, this Lorentz-type bulk response implies that 
boundary modes must appear and cross the gap in response to a joint modulation 
of both pump parameters φx and φy: this is precisely the corner mode shown in 
black in Fig. 1c and Extended Data Fig. 2b, and for these gaps |Vj| = 1.
Data availability. The data that support the findings of this study are available 
from the corresponding authors on reasonable request.
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Extended Data Figure 1 | Waveguide coupling parameters and 
illustration of a 1D pump. a, The overall scale A (dashed red line) and 
exponential decay prefactor γ (solid orange line) that describe the inter-
waveguide coupling as a function of their separation s: t(s) = Aexp(−γs). 
The parameters were obtained using a thorough calibration procedure (see 
Methods) and are plotted as a function of wavelength. b, An additional 

illustration of the waveguide spacing used to implement our topological 
pump. To simplify the diagram, we show a 1D waveguide array, which 
corresponds to an implementation of a 1D pump. This configuration 
can be thought of as resulting from a constant y slice through the full 2D 
waveguide array.
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Extended Data Figure 2 | Nearest-neighbour band structure obtained 
from two decoupled models. See equation (2). a, Finite-sample band 
structure (energy E versus pump parameter) for a single Harper model 
aligned along the x direction. Boundary modes highlighted in orange 
(red) are localized on the left (right) end of the 1D sample. The first Chern 
number associated with each bulk band is also shown. b, Band structure 
for the fully separable 2D pump taken along the path φx = φy for a system 
that decomposes into two independent Harper models. Each band in b 

is obtained by summing a pair of bands from a. The resulting bands can 
be classified by the types of state that appear in the sum: bulk–bulk (2D 
bulk), bulk–boundary (2D edge) or boundary–boundary (2D corner). 
These types are respectively coloured grey, red or orange, and black. As a 
function of φi, the edge modes form ‘dispersive’ bands that thread through 
the 2D bulk gaps. The corner modes thread between the edge bands and 
are therefore forced to cross 2D bulk bands along their φi trajectory.
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