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Periodic driving can be used to control the properties of a many-
body state coherently and to realize phases that are not accessible 
in static systems. For example, exposing materials to intense laser 
pulses makes it possible to induce metal–insulator transitions, to 
control magnetic order and to generate transient superconducting 
behaviour well above the static transition temperature1–6. However, 
pinning down the mechanisms underlying these phenomena is often 
difficult because the response of a material to irradiation is governed 
by complex, many-body dynamics. For static systems, extensive 
calculations have been performed to explain phenomena such as high-
temperature superconductivity7. Theoretical analyses of driven many-
body Hamiltonians are more challenging, but approaches have now 
been developed, motivated by recent observations8–10. Here we report 
an experimental quantum simulation in a periodically modulated 
hexagonal lattice and show that antiferromagnetic correlations 
in a fermionic many-body system can be reduced, enhanced or 
even switched to ferromagnetic correlations (sign reversal). We 
demonstrate that the description of the many-body system using 
an effective Floquet–Hamiltonian with a renormalized tunnelling 
energy remains valid in the high-frequency regime by comparing 
the results to measurements in an equivalent static lattice. For near-
resonant driving, the enhancement and sign reversal of correlations 
is explained by a microscopic model of the system in which the 
particle tunnelling and magnetic exchange energies can be controlled 
independently. In combination with the observed sufficiently long 
lifetimes of the correlations in this system, periodic driving thus 
provides an alternative way of investigating unconventional pairing 
in strongly correlated systems experimentally7,9,10.

The increasing demand for high-speed control of magnetic memory 
devices in the terahertz frequency regime has led to efforts to control 
the magnetic properties of materials optically, such as switching from 
antiferromagnetic to ferromagnetic ordering4,5. To engineer suitable 
materials for future applications, it is desirable to gain a better under-
standing of the underlying microscopic processes. In this context, 
experiments using cold atoms provide an ideal platform for investi-
gating driven many-body systems, owing to the slow timescales and the 
prospect of quantitative comparisons to theoretical predictions. So far, 
periodic modulation has been used in such set-ups to engineer effective 
Hamiltonians11,12, which has enabled Hubbard parameters to be renor-
malized and classical magnetism to be studied in the high-frequency 
regime, as well as new features such as topological or spin-dependent 
band structures to be realized13–15. By driving interacting systems16,17, 
charge and spin degrees of freedom can both be influenced by address-
ing density-dependent processes individually18–20. Until now, the meas-
urement of magnetic correlations in driven optical lattices has remained 
an open challenge. An experimental difficulty lies in the heating asso-
ciated with the periodic modulation of a many-body system, which 
can destroy correlations, especially in the near-resonant regime14,21,22.

We perform our experiments using a degenerate Fermi gas consist-
ing of 3.0(2) ×​ 104 (10% systematic error) ultracold 40K atoms pre-
pared in a balanced mixture of two internal states, denoted as ↑​ and ↓​  

(see Methods). The atoms are loaded into an optical superlattice with a 
tunable geometry and anisotropic tunnelling rates, whereby the hori-
zontal links in the x direction (tx) are stronger than those in the y and z 
directions (ty,z; Fig. 1c). In the x–z plane, the lattice consists of hexagonal  
layers, which are stacked in the y direction. We modulate the lattice 
position in the x direction periodically in time with a displacement 
amplitude A at a frequency of ω/(2π​), which is achieved by moving 
the retroreflecting mirror of the optical lattice using a piezoelectric 
actuator (Fig. 1a).

Our system is well described by the driven Fermi–Hubbard model:
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where σĉi
† , σĉi  and σn̂ i  are the fermionic creation, annihilation and num-

ber operators, respectively, at site i =​ (ix, iy, iz) in spin state σ ∈​ {↑​, ↓​}. 
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Figure 1 | Experimental set-up. a, Optical set-up used to create the three-
dimensional lattice geometry. The beams X and Z are interfering, whereas 
X– and ∼Y  are frequency-detuned. A piezoelectric actuator sinusoidally 
modulates the position of the retroreflecting mirror in the x direction.  
b, Lattice potential (colour scale, lighter red corresponds to a lower 
potential depth) in the x–z plane. The lattice consists of A​ and B 
sublattices, and a hexagonal unit cell is superimposed. c, Tight-binding 
representation of the lattice potential in the x–z plane. The system is 
described by a driven Fermi–Hubbard model, with anisotropic tunnelling 
energies tx >​ tz, owing to the shorter length dx of the horizontal bonds. 
Atoms in different spin states (red and blue, arrows) interact via an on-site 
interaction U. In a co-moving frame, the modulation of the lattice position 
(indicated by grey lattices in the background) corresponds to a linear force 
F(τ) in the x direction with an amplitude of ħωK0/dx, which primarily 
influences the horizontal bonds (F(τ) =​ (ħωK0/dx)cos(ωτ)ex; Methods).
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Here, tij denotes the tunnelling rate between nearest neighbours 〈​i, j〉​, 
U the repulsive on-site interaction and Vi an overall harmonic trapping 
potential. The time-dependent force is expressed as fi(τ) =​ 
 mAω2xicos(ωτ), where m is the mass of the atoms and = 〈 〉x x̂i i is the 
x position of the Wannier function on site i. Therefore, the driving is 
used primarily to address the bonds in the x direction (Methods). To 
characterize the many-body state in the lattice, we measure the fraction 
of atoms on doubly occupied sites
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on the horizontal links along the x direction. (Here N is the total num-
ber of atoms, ex is the unit vector in the x direction, which connects the 
sites of the A​ and B sublattices, and Ŝi represents the standard spin 
vector operator on site i.) The observables are averaged spatially over 
the inhomogeneous density distribution in the harmonic trap, which 
has a geometric mean trapping frequency of ω / π =(2 ) 84(2) Hztrap  ,  
and over one oscillation cycle of the periodic modulation, as indicated 
by 〈​…〉​ (see Methods).

In a first experiment, we investigate the regime in which the driving 
frequency is much higher than all microscopic energy scales of the 
system, that is, the tunnelling t and interaction energy U ( ω�ħ t U, ). 
In the non-interacting case, the modulation renormalizes the horizon-
tal tunnelling rate by a zeroth-order Bessel function (J0) and the system 
can be described by an effective tunnelling energy

= Jt K t K( ) ( ) (2)x x
eff

0 0 0

where K0 =​ mAωdx/ħ is the normalized driving amplitude, with dx the 
length of the horizontal bonds (Fig. 1c)15. However, it is not clear a priori  
whether this simple description remains accurate in the many-body 
context12. To verify this, we compare our measurements in the driven 
system to results obtained using an experimental quantum simulation 
in a static lattice with a variable tunnelling rate tx. The reliability of our 
experiment as a quantum simulator for the magnetic properties of the 
Hubbard model has previously been benchmarked through quantitative 
comparisons with state-of-the-art numerical calculations23,24. To enter 

the driven regime in the experiment, we ramp up the lattice modulation 
amplitude linearly to a final value K0 within 2 ms, at a frequency of  
ω/(2π​) =​ 6 kHz. Afterwards, we allow for an additional equilibration 
time of 5 ms before the measurement, during which we maintain a fixed 
modulation amplitude.

The resulting double occupancies and spin correlations agree well 
for the driven and static cases, as shown in Fig. 2. This supports the 
validity of the description of the many-body system by an effective 
Hamiltonian with a tunnelling rate t K( )x

eff
0 . For lower tunnelling ener-

gies, the double occupancy decreases as a result of the reduction in the 
bandwidth W. Therefore, for increasing driving amplitude, the system 
enters the Mott regime16. The modulation not only changes the band-
width, but also the anisotropy of the lattice, because the ratio 

/t K t( )x y z
eff

0 ,  decreases for increasing driving amplitude. This effect 
manifests in the spin correlator on the horizontal link, which decreases 
for a weaker anisotropy of the underlying lattice, as observed in previ-
ous measurements25. When driving for longer times, we find that the 
lifetime of correlations is reduced to 14(5) ms at K0 =​ 1.26(4), compared 
to 92(16) ms in the static case. Nevertheless, this allows us to observe 
comparable levels of correlations in the driven and static cases on 
experimental timescales.

Whereas an off-resonant modulation scheme typically leads to a 
renormalization of pre-existing parameters, physics that is not accessible 
in static systems arises for a near-resonant drive. For example, extended 
terms such as density-dependent tunnelling energies can be engi-
neered, which are not present in the single-band Hubbard model18–20.  
To investigate this regime, we set a large on-site interaction close to the 
driving frequency (U ≈​ lħω, l ∈​ Z) and ramp up the modulation at a 
frequency of either 3 kHz or 6 kHz within 3.3 ms or 2 ms, respectively. 
We observe that the effective states in the driven Hamiltonian contain 
a higher fraction of double occupancies if U ≈​ lħω (Fig. 3a).

Strikingly, we find that the magnetic correlations on the horizontal 
links depend on both the sign and magnitude of the modulation detun-
ing δ =​ ħω −​ U (Fig. 3b). For a red-detuned drive (δ <​ 0), correlations 
are increased compared to the static case if |​δ|​ is of the order of a few 
tunnelling energies tx. By contrast, when choosing δ >​ 0, the sign of the 
spin–spin correlator inverts; that is, the system exhibits ferromagnetic 
correlations on neighbouring sites in the x direction. If we set a fixed 
interaction strength and vary the amplitude of the modulation, then 
we find that correlations increase for δ <​ 0 and K0 ≈​ 1.3, before they 
eventually decrease again (Fig. 3c). For δ >​ 0, a critical value of the 
driving strength is required for the system to develop ferromagnetic 
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Figure 2 | Description of the driven system by an effective Hamiltonian in 
the high-frequency regime. a, Double occupancy D as a function of the 
effective horizontal tunnelling energy = Jt K t K( ) ( )x x

eff
0 0 0  for a driven system 

(green), and results obtained from an experimental quantum simulation in a 
static configuration with horizontal tunnelling tx (black). The insets show 
cuts through the non-interacting band structure (E, energy) as a function of 
the quasi-momentum in the x direction qx. The reduction in the bandwidth 
W leads to a lower double occupancy, indicating the crossover to a Mott-
insulating state. b, Spin–spin correlations C as a function of the (effective) 

horizontal tunnelling energy for the driven case (green) and an equivalent 
static configuration (black). The renormalization of the tunnelling energy 
leads to a reduction in lattice anisotropy /t tx y z

eff
,  (see insets), which reduces 

the magnetic correlations on the horizontal link. The transverse tunnelling 
energies are ty/h =​ 125(8) Hz and tz/h =​ 78(8) Hz and the interaction is set to 
U/h =​ 0.93(2) kHz. Horizontal error bars reflect the uncertainty in the lattice 
depth; data points and vertical error bars in a (b) denote the mean and 
standard error of 4 (10) individual measurements at different times within 
one driving period (see Methods).
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correlations. We also study the time dependence of the magnetic prop-
erties, by varying the modulation time after the ramp up of the drive. 
We find that it takes a few milliseconds for correlations to increase or 
change sign, but that they ultimately approach zero when driving for 
long times as a result to heating of the cloud (Extended Data Fig. 1). 
The lifetime of magnetic correlations as extracted from an exponential 
fit to the long-time behaviour changes from 82(34) ms in the static 
case to 12(4) ms at K0 =​ 1.30(3). In addition, we observe the fast dyna
mics within one period of the drive (the so-called micromotion) in our 
measurement regime (Extended Data Fig. 2). Finally, we investigate the 
adiabaticity of the preparation protocol by reverting the driving ramp 
and find that correlations return only partially to their static values 
(Extended Data Fig. 3).

To obtain an understanding of the observed phenomena at the 
microscopic scale, we perform a Floquet analysis on the time-periodic 
Hamiltonian in equation (1) in the near-resonant driving regime with 

ω≈�t U lħ . For that, we switch to a rotating frame with respect to the 
operator
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In this frame, the tunnelling on the horizontal bonds is to lowest order 
in 1/ω described by the effective Hamiltonian
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where ↑ = ↓ and vice versa26–28. Here, the effective tunnelling energy  
is density-dependent: hopping processes that do not change the  
number of double occupancies as described by the operator 

= − − +σ σ σ σ σa n n n nˆ (1 ˆ )(1 ˆ ) ˆ ˆij i j i j  are renormalized by J0(K0). In  
contrast, the creation or annihilation of doublon–holon pairs corre-
sponding to = − − + −σ σ σ σ σb n n n nˆ ( 1) (1 ˆ ) ˆ ˆ (1 ˆ )ij i j i j

l l   become resonantly  
restored with an amplitude txJl(K0) (Fig. 3d). In addition, the effective 
interaction Ueff =​ U −​ lħω =​ −​δl is given by the detuning from the 
l-photon resonance δl. In this picture, we can understand the creation 
of double occupancies for small δl shown in Fig. 3a as the system 
becoming effectively more weakly interacting.

The magnetic properties of the many-body state are altered sub-
stantially in the effective Hamiltonian in equation (3) because at the 
microscopic scale the superexchange process that leads to spin–spin 
interactions involves two virtual hopping processes determined by 
Jl(K0), in which a double occupancy at energy Ueff is created and 
annihilated. Therefore, the exchange energy Jex, which is the energy 
splitting between a spin singlet and triplet state on the horizontal bonds, 
will depend on both the modulation amplitude K0 and the detuning δ.  
It can even change sign for δ >​ 0, because in this case the effective 
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Figure 3 | Enhancement and sign reversal of magnetic correlations 
by near-resonant driving. a, Double occupancy as a function of on-
site interaction U for the static case (black) and for driving frequencies 
of ω/(2π​) =​ 3 kHz (red) or 6 kHz (blue) with a modulation amplitude 
of K0 =​ 1.30(3). Around the resonances (vertical dashed lines), the 
effective states in the driven Hamiltonian contain a higher number of 
double occupancies. Solid lines are (double) Gaussian fits to the data. 
b, Spin–spin correlations on the horizontal link as a function of U 
for the same parameters as in a. For U >​ ħω (red), antiferromagnetic 
correlations are enhanced compared to the static case (black) for a 
broad range of interactions. When U <​ ħω (blue), the correlator changes 
sign and the system develops ferromagnetic correlations. c, Spin–spin 
correlations as a function of driving amplitude K0 for ω/(2π​) =​ 3 kHz 

and U/h =​ 3.8(1) kHz (red) or ω/(2π​) =​ 6 kHz and U/h =​ 4.4(1) kHz 
(blue). For U >​ ħω, antiferromagnetic correlations increase around 
K0 ≈​ 1.3. For ħω >​ U, correlations become ferromagnetic beyond 
a critical modulation amplitude. The tunnelling rates are set to 
(tx, ty, tz)/h =​ (570(110), 125(8), 85(8)) Hz. Data points and error bars 
in a (b and c) denote the mean and standard error of 4 (10) individual 
measurements at different times within one driving period (see Methods). 
d, In the near-resonant case (U ≈​ ħω), the driven system can be described 
by an effective Hamiltonian in which tunnelling processes that do not 
change the number of double occupancies are renormalized by J0(K0) 
(brown). By contrast, the creation of doublon–holon pairs is resonantly 
enhanced and is determined by the first-order Bessel function J1(K0) 
(green). The effective interaction of the system becomes U −​ ħω.
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interaction becomes attractive8–10,29 (Extended Data Fig. 4, Methods). 
We measure Jex between neighbouring sites directly in the experiment 
using our optical lattice with tunable geometry. For that, we disconnect 
individual pairs of sites in the x direction from each other by raising 
the potential barrier in the y and z directions, so that the coupling 
ty,z/h <​ 2 Hz becomes negligible, and measure the exchange energy in 
a Ramsey-type sequence (Fig. 4a)29,30.

The results of the measurements in the off- and near-resonant driving 
regimes for a modulation frequency of ω/(2π​) =​ 8 kHz are shown in  
Fig. 4. In the case of high-frequency modulation with ω� �t U ħx , the 
tunnelling is renormalized according to equation (2) and the exchange 
energy decreases as a function of the driving amplitude as 

≈ /JJ t K U4 ( )xex
2

0
2

0  (Fig. 4b). By contrast, in the near-resonant regime, 
the system is to lowest order described by the tunnelling process in 
equation (3) and we observe an increasing exchange energy as a func-
tion of the modulation strength for δ <​ 0 (Fig. 4c). At K0 ≈​ 1.6 it reaches 
a level about three times higher than in the static case. If δ >​ 0, Jex vani
shes at a critical modulation amplitude of K0 ≈​ 0.7 and changes sign for 
stronger driving. To demonstrate that the exchange becomes negative  
for large K0, we first perform a quarter oscillation in the static double 
well, followed by a sudden switch on of the modulation with K0 >​ 0.7 
(ref. 29). Because the exchange in the driven double well is ferromag-
netic, it inverts its rotation direction on the Bloch sphere, which leads 
to an oscillation phase shifted by π​ compared to the static case (Fig. 4d).

The dependence of the exchange energy on the driving frequency 
and strength provides a microscopic explanation for the phenomena 

observed in the many-body system. In the off-resonant case, the  
magnetic exchange decreases with increasing modulation amplitude, 
which reduces the lattice anisotropy and therefore the correlations  
on the x bonds (Fig. 2b). If the interaction energy U comes close to,  
but is still lower than the driving frequency, then resonant effects  
start to dominate and the magnetic exchange inverts its sign, leading 
to ferromagnetic correlations in the many-body system as observed in 
Fig. 3b, c. For  ωU ħ , the exchange energy increases with K0, which 
can enhance antiferromagnetic correlations for several reasons. First, 
the anisotropy is increased because the ratio /J Jx y z

ex ex
,  becomes larger, 

which makes it more favourable to redistribute entropy onto the weak 
links in the y and z directions24,25. Second, while the exchange is 
increased, the single-particle tunnelling energy is renormalized  
as tx,single =​ txJ0(K0) in the effective Hamiltonian; see equation (3).  
Owing to the isolated nature of the entire system, the reduction of  
tx,single leads to an entropy redistribution in the trap and lowers the 
absolute temperature, which enhances magnetic correlations globally. 
Last, when the ratio Jex/tx,single increases, it becomes more favourable 
for two atoms to pair and form a singlet state in the low filled regions 
of the trap instead of delocalizing far apart9. This process plays an 
important part in the context of high-temperature superconductivity, 
and the independent control of the exchange and tunnelling energies 
opens up the possibility of investigating d-wave pairing in the t–J 
model7. Further theoretical studies will be necessary to determine the 
degree to which these three effects are responsible for the enhancement 
of antiferromagnetic correlations in the many-body system.

0.0 0.5 1.0 1.5 2.0
K0

0

50

100

150

0.0 0.5 1.0 1.5

K0

0

200

400

–400

–200

0 3 6 9 12
0.0

evol (ms)

0.2

0.4

0.6

S
in

gl
et

 fr
ac

tio
n

c d

J ex
/h

 (H
z)

|J
ex

|/
h 

(H
z)

a b|s〉

|t〉

1
2

3

Jex
Jex

π/2

evol

π/2

Figure 4 | Magnetic exchange energy for off- and near-resonant driving. 
a, The exchange Jex is measured by preparing local singlet states |​s〉​ on 
isolated double wells. In a Ramsey-type sequence, a superposition between 
the singlet |​s〉​ and triplet |​t〉​ states is first created by performing a π​/2 pulse 
(red arrow) with a magnetic field gradient. The exchange oscillation (green 
arrow; the solid component represents the one-quarter-oscillation 
evolution time used in d) is then triggered by suddenly lowering the 
barrier in the double well. Finally, after a variable evolution time τevol, a 
second π​/2 pulse (blue arrow) is applied and the final singlet fraction is 
measured, which oscillates at a frequency |​Jex|​. b, Magnetic exchange in the 
off-resonant driving regime for ω/(2π​) =​ 8 kHz, tx/h =​ 350(50) Hz and 
U/h =​ 2.1(1) kHz as a function of driving amplitude. Jex decreases with K0 
as expected for a renormalized tunnelling rate tx

eff . c, Exchange energy for 
near-resonant modulation with ω/(2π​) =​ 8 kHz, tx/h =​ 640(90) Hz and 
U/h =​ 9.1(1) kHz (red) or U/h =​ 6.5(1) kHz (blue) as a function of K0. Red-

detuned driving (U >​ ħω) enhances the magnetic exchange for increasing 
driving amplitude. For U <​ ħω, Jex vanishes at a critical value K0 ≈​ 0.7 and 
becomes negative for stronger driving (open symbols). The sign of the 
exchange is measured as shown in d. For K0 ≈​ 0.7, the oscillation is too 
slow to determine the sign of Jex. Mean values in b and c are derived from a 
sinusoidal fit to the data; errors denote the standard deviation obtained 
from a resampling method (see Methods). d, Sign change of the exchange 
energy for U <​ ħω, as indicated by the singlet fraction. The singlet fraction 
is shown as a function of evolution time, with U/h =​ 6.5(1) kHz in the 
static case (black, grey) or after a sudden switch on of the modulation with 
K0 =​ 0.88(1) (cyan) or K0 =​ 1.31(2) (brown) after a quarter exchange 
oscillation, and with the other parameters as in c. Owing to the sign 
reversal of Jex, the rotation direction on the Bloch sphere is reversed. Solid 
lines are damped sinusoidal fits to the data. Error bars denote the standard 
deviation of 3 measurements.
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Having shown that near-resonant driving can be used to increase 
or reverse the sign of magnetic correlations, the low-energy scales in 
systems of cold atoms enable further investigations of the timescales 
involved and the possible existence of pre-thermalized states in future 
experiments21. Remarkably, the lifetime of correlations in the driven 
many-body system was found to be sufficiently long that they could 
be observed even in the near-resonant driving regime. To investigate 
this further, the entropy increase could be studied systematically as 
a function of the energy scales involved and the connectivity of the 
underlying lattice geometry. Furthermore, by additionally imprinting 
complex phases on the density-assisted tunnelling energies, dynamical 
gauge fields and anyonic statistics could be engineered26.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Optical lattice. The tunable three-dimensional optical lattice is created by a com-
bination of four orthogonal, retroreflected laser beams of wavelength 
λ =​ 1,064 nm, as shown in Fig. 1a. Whereas the X– and ∼Y  beams are interfering 
and actively phase-locked to ϕ =​ 0.00(3)π​, the X and Z beams are non-interfering, 
owing to a frequency detuning. Our optical set-up is described by the following 
potential31:

¯

˜

θ

α ϕ

= − + / −

− −

−

V x y z V kx V kx

V ky V kz

V V kx kz

( , , ) cos ( 2) cos ( )
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2 cos( )cos( )cos( )
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with k =​ 2π​/λ and ¯ ˜VX X Y Z, , ,  the lattice depths in units of the recoil energy ER =​  
h2/(2mλ2) of each laser beam in the three directions x, y and z (h is the Planck 
constant and m the mass of the atoms). The lattice potential is adjusted to fix 
θ =​ 1.000(2)π​. We calibrate the visibility of the interference term α =​ 0.92(1) with 
amplitude modulation of the lattice depth for different configurations of the opti-
cal potential using a 87Rb Bose–Einstein condensate. To calibrate the individual 
lattice depths ¯ ˜VX X Y Z, , ,  we perform Raman–Nath diffraction on the Bose–Einstein 
condensate. For the calculation of tight-binding parameters, we include a system-
atic error of 3% for all lattice depths.
Preparation of the degenerate Fermi gas in the optical lattice. The starting point 
of our experiment is a balanced mixture of the F =​ 9/2, mF =​ −​9/2 and F =​ 9/2, 
mF =​ −​7/2 hyperfine states of 40K, confined in an optical harmonic trap. We evapo
ratively cool the mixture to a quantum degenerate cloud with a repulsive s-wave 
scattering length of 115.6(8)a0 (a0 denotes the Bohr radius). After the evaporation, 
we end up with about 3.0(2) ×​ 104 (10% systematic error) atoms at a temperature 
of T/TF =​ 0.07(1) (TF denotes the Fermi temperature, see Extended Data Table 1 
for details). Afterwards, we either keep a mixture of the F =​ 9/2, mF =​ −​9/2 and 
F =​ 9/2, mF =​ −​7/2 hyperfine states to access attractive or weak repulsive interac-
tions with scattering lengths −​3,000a0 <​ a <​ 150a0 (measurements in Figs 2 and 4b  
and for the initial preparation of isolated double wells in Fig. 4), or transfer the 
F =​ 9/2, mF =​ −​7/2 state to the F =​ 9/2, mF =​ −​5/2 state with a radio-frequency 
sweep to access large repulsive scattering lengths above 200a0 (measurements in 
Figs 3 and 4c, d). For this mixture, we obtain temperatures of T/TF =​ 0.12(2) in the 
harmonic trap. The interactions can be tuned via two magnetic Feshbach reso-
nances located at a field of 202.1 G (for mF =​ −​9/2 and mF =​ −​7/2) or 224.2 G (for 
mF =​ −​9/2 and mF =​ −​5/2). From this point, two distinct schemes are used to 
prepare atoms either in a three-dimensional hexagonal lattice (Figs 2, 3) or in 
isolated double wells (Fig. 4). To load a many-body state into the hexagonal lattice, 
we first ramp up the power of all lattice beams in 50 ms to an intermediate value. 
In this configuration, the tunnelling energies are close to the final configuration 
with (tx, ty, tz)/h =​ (550(30), 143(8), 156(9)) Hz, but the horizontal link across the 
hexagonal unit cell still has a finite value of 70(3) Hz. In addition, the mean trap 
frequency is only ω̄ = 68(2) Hztrap . In the second step, we ramp up the power in 
all beams in 20 ms to the final configuration (Extended Data Table 1). To load 
isolated double wells, we first tune the interactions to a large attractive value of  
−​3,000(600)a0; see ref. 20 for more details. In short, the atoms are first loaded into 
the lowest band of a checkerboard configuration with ¯ ˜ =V E[0, 3, 7, 3]X X Y Z, , , R  
using an S-shaped lattice ramp of 200 ms. Owing to the large attractive interactions 
during the loading process, 68(3)% of the atoms form double occupancies. In  
the second step, we tune the scattering length to 115.6(8)a0 and split each lattice 
site by linearly increasing ¯VX  and decreasing VX to a ¯ ˜ =V E[30, 0, 30, 30]X X Y Z, , , R  
cubic configuration within 10 ms. During the splitting process, the double  
occupancies in the checkerboard lattice are transformed into singlet states 
| 〉 = |↑ ↓〉 − |↓ ↑〉 /s ( , , ) 2 in the cubic lattice.
Detection methods. The detection scheme of double occupancies and nearest- 
neighbour spin–spin correlations follows closely the procedure used in previous 
work25,32. To characterize the atomic state, we first freeze the evolution by quen
ching the lattice to ¯ ˜ =V E[30, 0, 30, 30]X X Y Z, , , R  within 100 μ​s. To detect double 
occupancies, we ramp the magnetic field close to the magnetic Feshbach resonance 
of the mF =​ −​9/2 and mF =​ −​7/2 mixture. We then selectively transfer one of the 
atoms sitting on doubly occupied sites from the mF =​ −​7/2 state to the mF =​ −​5/2 
state, or vice versa, via a radio-frequency sweep by using the interaction shift. The 
number of atoms in the different Zeeman sublevels can then be determined by 
applying a Stern–Gerlach pulse during the time-of-flight imaging. For the meas-
urement of spin–spin correlations, we apply a magnetic-field gradient after the 
lattice freeze. This leads to coherent oscillations between the magnetic singlet state  
| 〉 = |↑ ↓〉− |↓ ↑〉 /s ( , , ) 2   and triplet state | 〉 = |↑ ↓〉 + |↓ ↑〉 /t ( , , ) 2    on neighbour
ing sites in the x direction. The singlet fraction ps can be determined by merging  
adjacent lattice sites by going to a ¯ ˜ =V E[0, 30, 30, 30]X X Y Z, , , R  checkerboard  
configuration within 10 ms. This procedure transforms the singlet into a double 

occupancy in the single well, which can again be measured as outlined above. The 
triplet fraction pt is obtained by applying a π​ pulse with the magnetic-field gra-
dient and subsequently measuring the singlet fraction. The spin–spin correlation 
is then obtained as = − 〈 〉 − 〈 〉 = − /+ +C S S S S p pˆ ˆ ˆ ˆ ( ) 2i

x
i
x

i
y

i
y

1 1 s t . We average all 
observables over one period T =​ 2π​/ω of the drive to be insensitive to the micro-
motion. For that, we vary slightly the total duration of the modulation between 
different measurements by multiples of T/4 to sample different phases of the 
modulation cycle. For the measurement of double occupancies in the hexagonal 
lattice (Figs 2a, 3a) we sample four different times during the modulation cycle, 
whereas for the magnetic correlations (Figs 2b, 3b, c, Extended Data Figs 1, 2) 
we measure for five different times and take each data point two or three times 
(see captions for the exact number of measurements). For the measurements  
performed in the isolated double wells (Fig. 4) the observables were not averaged 
over one driving period because we have experimentally verified that no fast 
dynamics could be observed in this configuration. This can be explained by ħω 
being much larger than t.
Periodic driving. The periodic driving is implemented as in previous work20. In 
brief, a piezo-electric actuator enables a controlled phase shift of the reflected X 
and X̄  lattice beams with respect to the incoming beams. To access the driven 
regime, we modulate the lattice position by a sinusoidal movement of the mirror 
position for the retroreflecting lattice beam at frequency ω/(2π​). We choose the 
modulation to be along the direction of the horizontal bonds such that V(x, y, z, τ) ≡​  
V(x −​ Acos(ωτ), y, z). We linearly ramp up a sinusoidal modulation and then 
maintain a fixed displacement amplitude A. During the modulation we ensure 
the correct phase relation ϕ =​ 0.0(1)π​ between the two interfering X and Z lattice 
beams by modulating the phase of the respective incoming beams at the same 
frequency using acousto-optical modulators. In addition, this phase modulation 
is used to calibrate the phase and amplitude of the mirror displacement. In our 
set-up, the piezo modulation also leads to a residual periodic reduction in the 
interference amplitude of the lattice by at most 2%. For the lattice configurations 
used in our experiments, this shifts the mean tunnelling energy tx down by about 
2.5% and introduces a modulation of the tunnelling energy at twice the driving 
frequency 2ω/(2π​) with an amplitude of δ​t =​ 0.025tx. The effect of the modulation 
is negligible because its amplitude has to be compared to the driving frequency. 
The effective driving strength is δ​t/(ħω), which is always less than 3 ×​ 10−3 in our 
case. In addition, we have verified that our experimental findings are not affected 
by the launching phase of the drive. The amplitude of the lattice displacement A 
is related to the normalized driving amplitude directly: K0 =​ mAωdx/ħ, where dx 
is the distance between the two sites along the x direction. For our lattice potential, 
dx ≠​ λ/2 and must be calculated for each individual configuration. To this end, 
we determine the Wannier functions located on the left and right sides of the bond 
considered, which are derived as the eigenstates of the band-projected position 
operator. The distance dx is then evaluated as the difference between the eigenval-
ues of two neighbouring Wannier states, and is given in Extended Data Table 1  
for all lattice configurations. In addition, because the lattice geometry in the x–z 
plane is not an ideal brick configuration, the bonds connecting two sites in the z 
direction are also slightly affected by the drive. The effective driving strength  
can be determined by the projected bond length on the modulation direction, 
which for our case is the x displacement λ= / −d d2x x

vert  between neighbouring 
sites in the vertical z direction. The modulation amplitude is then 

= /K d d K( )x x0
vert vert

0 . The values for dx
vert are given in Extended Data Table 1 for our 

lattice configurations.
Calibration of the on-site interactions. The extension of the Wannier function 
can be similar to the scattering length for strong interactions in the optical poten-
tials realized in our measurements. Thus, the actual on-site interaction strength U 
may be altered compared to the value calculated by using the non-interacting 
Wannier functions, as observed in previous experiments20,33. We therefore deter-
mine U experimentally by driving the lattice at a frequency ω/(2π​) and measure 
the number of double occupancies as a function of U. Double occupancies are 
maximally created either for ħω =​ U in a connected lattice (Figs 2, 3) or for 
ω= + + /ħ U t U( 16 ) 22 2  in the isolated double wells (Fig. 4). In the hexagonal 

lattice, the resonance position agrees within the uncertainty of the numerical value 
for U determined from the Wannier function, as shown in Fig. 3a. However, a 
substantial difference is observed in the isolated double wells. To account for this 
effect, we parameterize U by U(a) =​ αa(1 −​ a/ac), where α is given by the non- 
interacting Wannier functions and ac is a higher-order correction that depends on 
the lattice depth. For the isolated double wells, we find ac =​ 4,800(300)a0, which 
leads to a reduction in U of about 10% with respect to the calculated value for the 
datasets shown in Fig. 4c. Accordingly, this correction is incorporated into all 
interaction strengths given for the isolated double wells.
Validity of tight-binding approximation and higher band effects. When deriving 
the tight-binding Hamiltonian of the driven Fermi–Hubbard model in equation (1),  

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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we assume that the Wannier functions are not modified by the modulation. 
However, for large driving amplitudes a substantial tilt is applied to the lattice in 
the co-moving frame, which introduces an energy bias ħωK0 between neighbour-
ing sites (see also Fig. 1). As a result, the Wannier functions will be modified by 
the admixture of higher-band Wannier functions of the untilted lattice. This will 
in turn lead to different tight-binding parameters tx and U at any given time within 
the modulation cycle. To estimate the corrections that result from the change in 
the Wannier functions, we consider a cut through the tilted lattice potential in the 
x direction of the modulation. This potential can be very well approximated 
around the horizontal bonds by a lattice with a relative phase θ ≠​ π​ between the 
lattice beams X̄  and X (see equation (4)). The approximation in this step is to 
assume that all lattice sites in a given sublattice (A​ or B) are at equal energy. This 
is well justified for our lattice geometry because the tunnelling energy across the 
hexagon is zero and so the Wannier functions on the A​ sublattice, for example, 
are not influenced by the B sites to their left. Because the discrete spatial perio-
dicity is restored in the lattice potential with θ ≠​ π​, we can compute the Wannier 
functions for any given energy bias and calculate the corresponding tight-binding 
parameters. The modulated lattice potential can then be described by a tight- 
binding Hamiltonian as in equation (1), where in addition to the oscillating force 
f(τ) the Hubbard parameters tx(τ) and UA,B(τ) become time- and sublattice- 
dependent. We decompose the parameters into their Fourier components, which 
take the form

τ ω ω ωτ

τ ω ω ωτ

ω ωτ

τ τ ω

= = + δ + δ +

= = + δ + δ

+ δ +

= + π/

�

�
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B A

t t K t K t K

U U K U K U K

U K
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The expansion of tx(τ) features only even harmonics of ω because tx(τ) =​ tx(τ +​ π​/ω).  
The main effect of the modulation is a shift in the static tunnelling energy by  
δ​t0(K0, ω), which is given in Extended Data Table 1 for the maximum driving 
amplitude and frequency in each lattice configuration. Note that even though the 
relative change in the tunnelling energy is around 10%–20% for large values of K0, 
the absolute change is much smaller because the hopping amplitude is renormalized  
by the Bessel function J0(K0) or J1(K0), depending on the frequency regime.  
On the other hand, we find that the shift in the mean value of U is much smaller, 
and even for the strongest driving we have δ​U0(K0, ω)/U <​ 6 ×​ 10−3. The second 
effect is a modulation of tx and U, which is negligible because it has to be compared 
to the driving frequency. The dimensionless modulation strength for the  
lowest Fourier components will be given by ω ω= δ /K t K ħ( , ) (2 )t

0 2 0  and 
ω ω= δ /K U K ħ( , ) ( )U

0 1 0 . Even for the maximum values of K0 and ω, we find 
< × −K 6 10t

0
3 and < .K 0 02U

0  for all of our lattice geometries. We also performed 
a numerical simulation of the two-site Hubbard model including all of the above 
modifications, in which we use a Trotter decomposition to evaluate the quasi- 
energy spectrum (see also Methods section ‘Theoretical treatment of the driven 
double well’ and Extended Data Fig. 4). We have found that even for the largest 
driving amplitudes used in the measurement of the exchange energy (see Fig. 4), Jex 
is modified by at most 10 Hz in the off-resonant driving regime (compare to 
Extended Data Fig. 4b) and 60 Hz in the near-resonant case (Extended Data Fig. 4d),  
which is caused mainly by the shift in the mean value of tx. This change is still 
smaller than or comparable to the uncertainty on the exchange energy that results 
from an imprecise calibration of the Hubbard parameters in the lattice, which is 
around 70 Hz.
Measurement of magnetic exchange. The exchange energy is measured in a 
Ramsey-type protocol in isolated double wells. After preparing singlet states on 
adjacent sites in a deep cubic lattice with ¯ ˜ =V E[30, 0, 30, 30]X X Y Z, , , R  as outlined 
above, we perform a π​/2 pulse with a magnetic-field gradient to generate a coher-
ent superposition between the singlet and triplet states. After this, we first ramp 
the magnetic field, the interfering lattice VX and the driving amplitude K0 to the 
desired value within 2 ms. In the next step, we trigger an exchange oscillation by 
suddenly lowering the barrier in the double well by decreasing ¯VX  to the desired 
value within 100 μ​s. After a variable evolution time τevol in the driven system, we 
freeze the dynamics again by increasing ¯VX to 30ER within 100 μ​s, revert the ramps 
of the magnetic field, the interfering lattice VX and the driving amplitude K0, and 
perform a second π​/2 pulse with a magnetic-field gradient. Finally, we measure 
the fraction of singlet states on adjacent sites, which after the evolution is 
ps(τevol) =​ [1 −​ cos(Jexτevol/ħ)]/2. In the experiment, we vary the evolution time 
τevol and measure the singlet fraction for each modulation amplitude K0 for not 
fewer than 9 different values of τevol, with at least 27 individual measurements in 
total. We fit the data with a function ps(τevol) =​ α[1 −​ cos(Jexτevol/ħ)]exp(−​βτ) +​ γ 
and extract the exchange from the fitted frequency. To estimate the error, we use a 

resampling method that assumes a normal distribution of measurement results at 
each evolution time. The standard deviation of the distribution is determined by 
the measured standard deviation or, if we measured the singlet fraction at this 
τevol only once, by the residual from the fitted curve. Afterwards, we randomly 
sample a value for the singlet fraction at each evolution time and refit the result-
ing dataset. At the same time, the initialization values of the fit parameters Jex and 
β are varied by ±​10%. This procedure is repeated 1,000 times and the 
mean ±​ standard deviation of the resulting distribution of frequencies determines 
the asymmetric error bars for the fitted exchange frequency, as shown in Fig. 4. 
To demonstrate the sign change of the magnetic exchange for  ωU ħ  (Fig. 4d), 
we first let the system evolve for a time τ0 with a non-driven exchange Jex

(0) until a 
quarter exchange oscillation has been performed, that is, τ = π/J 2ex

(0)
0 . After that, 

we suddenly switch on the sinusoidal modulation at the desired value of K0, which 
projects the system onto a Hamiltonian with a negative Jex. Therefore, the system 
changes its sense of rotation on the Bloch sphere (Fig. 4a) and the singlet fraction 
after a variable total evolution time τevol >​ τ0 is given by ps(τevol) =​ {1 +​ sgn(Jex) ×  
sin[|​Jex|​(τevol −​ τ0)/ħ]}/2.
Theoretical treatment of the driven double well. We perform both analytic and 
numerical studies on the driven double well, as described in earlier work20. In this 
context, we use Floquet’s theorem to derive an effective static Hamiltonian in a 
high-frequency expansion. In the following, we include terms up to order 1/ω, 
as given in appendix A in ref. 20. In the off-resonant case, the term proportional 
to 1/ω vanishes, such that the effect of the modulation is a pure renormalization 
of the tunnelling by a zeroth-order Bessel function t →​ tJ0(K0). Therefore, the 
exchange energy defined as the energy difference between the triplet and singlet 
state becomes
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In the case of near-resonant driving ( ω≈�t U ħ ), we can express the Hamiltonian 
in terms of t, U and the detuning δ =​ ħω −​ U, and we consider terms up to orders 
O(t2/U, tδ/U, δ2/U). In this regime, the single-particle tunnelling t0 =​ tJ0(K0) is 
renormalized as for the off-resonant case. On the other hand, the density-assisted 
tunnelling that changes the number of double occupancies is given by t1 =​ tJ1(K0). 
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which reproduces the Heisenberg limit in equation (5) for the case of no driving 
(K0 =​ 0). For large detunings ( δ ω� �t U ħ, ), the exchange takes the form
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The leading term of this expansion is proportional to J K( )1
2

0  and changes sign 
with the detuning δ. This explains the switch to a ferromagnetic exchange for 
U <​ ħω beyond a certain driving strength. In addition to the analytic derivation 
of the effective Hamiltonian, we also perform a numerical simulation of the 
two-site Hubbard model. We use a Trotter decomposition to evaluate the  
evolution operator over one period, from which we extract the spectrum  
(for details see ref. 20). A comparison of the numerical and analytic results for 
the experimental parameters is shown in Extended Data Fig. 4. For all of the 
derivations above, we assume that the static double well can simply be 
described by the tunnelling t and the on-site interaction U. However, if the 
Wannier functions on the two sites have a substantial overlap, then the descrip-
tion needs to be extended to a two-band Hubbard model. In this case, higher- 
order corrections such as density-assisted tunnelling δ​t, as well as  
nearest-neighbour interactions, direct exchange and correlated pair tunnelling 
V (the last three are all equal for the two-band Fermi–Hubbard model), become 
important (see appendix A.1 in ref. 20). For the experimental parameters in 
the off-resonant case (Fig. 4b), the values of these higher-order corrections are 
V/h =​ 2.4(7) Hz and δ​t/h =​ 22(3) Hz in the static lattice. In the near-resonant 
driving regime (Fig. 4c), interactions are stronger and the corrections increase 
to V/h =​ 26(8)  Hz and δ​t/h =​ 120(10)  Hz for U/h =​ 6.5(1)  kHz, and 
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V/h =​ 40(10) Hz and δ​t/h =​ 170(20) Hz for U/h =​ 9.1(1) kHz. To lowest order, 
the density-assisted tunnelling will increase the effective tunnelling to t +​ δ​t, 
and V decreases the exchange interaction by 2V, in both the static and driven 
cases.
Data availability. All data files are available from the corresponding author on 
request. Source Data for Figs 2–4 and Extended Data Figs 1–3 are provided with 
the online version of the paper.
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Extended Data Figure 1 | Time dependence of magnetic correlations 
for near-resonant driving. Nearest-neighbour spin–spin correlator C for 
the same lattice configuration as in Fig. 3, as a function of the modulation 
time after the ramp up of the drive. The data allow us to compare the 
formation and decay of magnetic correlations for two specific sets of 
interactions and modulation frequencies with the level of correlations 
in the static case (black). For a driving strength of K0 =​ 1.30(3) and with 
U/h =​ 3.8(1) kHz and ω/(2π​) =​ 3 kHz (red), antiferromagnetic correlations 
increase with time and reach a level higher than the static case (black, 
U/h =​ 3.8(1) kHz). If the interaction is smaller than the driving frequency 
(blue, U/h =​ 4.4(1) kHz, ω/(2π​) =​ 6 kHz), then the correlations switch sign 
and become ferromagnetic after a few milliseconds. For long times, the 
correlations in each configuration decrease as a result of heating in the 
lattice. Solid lines show exponential fits of the full data in the static case 
(grey) and to modulation times longer than 4 ms in the driven lattice for 
U >​ ħω (red). The difference between the data and the dashed component 
of the fit (red) indicates an initial increase in the correlations. The 
extracted lifetimes decrease from 82(34) ms without drive to 12(4) ms at 
K0 =​ 1.30(3). All measurements are averaged over one modulation cycle. 
Data points and error bars denote the mean and standard error of 13 
individual measurements at different times within one driving period  
(see Methods).
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Extended Data Figure 2 | Micromotion for near-resonant driving.  
a, b, Nearest-neighbour spin–spin correlator C for the lattice configuration 
in Fig. 3 and K0 =​ 1.30(3), as a function of modulation time after the ramp 
up of the drive, sampled within one oscillation period. We observe 
substantial micromotion both for the case of enhanced antiferromagnetic 
correlations (a; U/h =​ 3.8(1) kHz and ω/(2π​) =​ 3 kHz) and for 
ferromagnetic correlations (b; U/h =​ 4.4(1) kHz and ω/(2π​) =​ 6 kHz). For a 
different set of parameters in the measurement of the micromotion it 
should be also possible to switch between antiferromagnetic and 
ferromagnetic correlations within one driving cycle. The open symbols 
represent a reference measurement in the static case with all other 
parameters being equal. Solid lines are sinusoidal fits to the data, which 
results in a fitted frequency of . − .

+ .4 8 kHz0 4
1 9  (a) or . − .

+ .7 6 kHz1 7
3 9  (b). Error bars 

denote the standard error of 10 independent measurements.
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Extended Data Figure 3 | Adiabaticity of the modulation ramp in the 
many-body system. a, Starting from the static lattice, the modulation 
amplitude is ramped up and subsequently kept at a fixed value to allow for 
a 5 ms equilibration time. The ramp up time depends on the chosen 
configuration and is 3.333 ms (2 ms) for a modulation frequency of  
ω/(2π​) =​ 3 kHz (6 kHz). We start the detection of nearest-neighbour spin–
spin correlations C in the effective Hamiltonian Heff by quenching the 
tunnelling to zero as we ramp up the lattice depth in all directions during 
the modulation within 100 μ​s. To estimate the adiabaticity of the final 
state, we perform a second type of measurement in which we revert the 
driving ramp and subsequently wait an additional 5 ms before the 
detection in the reverted static Hamiltonian H R

st
( ). If the ramp scheme of 

the modulation is fully adiabiatic, we expect a reversal of the correlations 
to their static value. b, The nearest-neighbour spin–spin correlator C is 
plotted against the modulation amplitude in the off-resonant driving 
regime (U/h =​ 0.93(2) kHz, ω/(2π​) =​ 6 kHz). The filled green circles are 
measured in the modulated system (same data as in Fig. 2b) and the open 
green circles after ramping off the modulation. The correlations no longer 
reach the level of the static case at K0 =​ 0 after reverting the ramp. We 
attribute this to some extent to a reduced lifetime of correlations, which is 
found to be 14(5) ms at K0 =​ 1.26(4), compared to 92(16) ms in the static 
case. c, Spin–spin correlator for different driving strengths K0 in the near-
resonant regime for U <​ ħω (blue; U =​ 4.4(1) kHz, ω/(2π​) =​ 6 kHz) and in 
the regime of enhanced antiferromagnetic correlations (red; 
U/h =​ 3.8(1) kHz, ω/(2π​) =​ 3 kHz). Filled data points represent the 
effective states in the modulated system and open data points are measured 
after ramping off the modulation. Again, correlations do not reach the 
static value after reverting the driving ramp, owing to the finite lifetime 
(see also Extended Data Fig. 1). Data points and error bars denote the 
mean and standard error of 10 individual measurements at different times 
within one driving period (see Methods).
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Extended Data Figure 4 | Analytical and numerical treatment of a 
driven double well. a, Quasi-energy spectrum for two particles in a double 
well as a function of the onsite interaction U for off-resonant driving 
(t/h =​ 350 Hz, K0 =​ 1.5, ω/(2π​) =​ 8 kHz). Each of the four Floquet states 
representing the quasi-energy spectrum is shown in a distinct colour. The 
grey lines show the energy spectrum without modulation. For �U t, the 
ground state is the spin singlet |​s〉​ and the first excited state is the triplet |​t〉​.  
To lowest order, the driving renormalizes the tunnelling by a zeroth-order 
Bessel function → = ≈ .Jt t K t K t( ) ( ) 0 51x x x x

eff
0 0 0 . b, Calculated exchange 

energy Jex,off-res (see Methods), defined as the energy difference between 
the spin singlet and triplet states (see a), as a function of the driving 
amplitude K0 for an off-resonant modulation (t/h =​ 350 Hz, U/h =​ 2.1 kHz, 
ω/(2π​) =​ 8 kHz; compare with Fig. 4b). The dashed line is the analytical 
result derived from a high-frequency expansion of the effective 
Hamiltonian; the solid line is the result of a numerical calculation. The 
exchange energy is reduced to small values as the tunnelling is 
renormalized by the zeroth-order Bessel function J0(K0). For large 
modulation amplitudes, deviations from the result obtained from an 
expansion up to order 1/ω can be observed. Here, the exchange already 
becomes weakly ferromagnetic owing to the finite value of the interaction. 
c, Floquet spectrum of the double-well system as a function of the 
interactions U for near-resonant driving (t/h =​ 640 Hz, K0 =​ 0.8,  
ω/(2π​) =​ 8 kHz). The grey lines show the energy spectrum without 
periodic modulation. The drive couples the singlet state to a state that 
contains double occupancy, which leads to an avoided crossing at U ≈​ ħω. 
As a result, a gap opens that is to lowest order given by 4J1(K0).  
d, Dependence of the exchange energy Jex,res on the modulation amplitude 
in the near-resonant regime for two different detunings with t/h =​ 640 Hz 
and ω/(2π​) =​ 8 kHz (blue, U/h =​ 6.5 kHz; red, U/h =​ 9.1 kHz; compare with 
Fig. 4c). The dashed line is the analytical result (see Methods) derived 
from a high-frequency expansion of the effective Hamiltonian; the solid 
line is the result of a numerical calculation. For U >​ ħω the exchange 
energy is greatly increased, whereas for U <​ ħω it changes sign to 
ferromagnetic behaviour. In both driving regimes, the analytical result is in 
very good agreement with the numerics. Our measurements of the 
exchange energy in Fig. 4 agree well on a qualitative level with the 
theoretical expectation.
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Extended Data Table 1 | Summary of experimental parameters

Values given for Fig. 2 correspond to the initial static configuration with K0 =​ 0. The initial temperature is measured before loading the atoms into the lattice. dx is the length of the horizontal bonds;  
dx

vert is the horizontal distance between two sites that form the vertical bonds in the z direction, which results from a non-rectangular unit cell. The effective modulation amplitude is given by the 
projection of each bond on the x direction. δ​t0 describes the change in the mean value of tx in the driven lattice due to a time-dependent modification of the Wannier functions. The values given here are 
upper bounds corresponding to the maximum modulation amplitude K0

max and frequency ωmax used in each lattice configuration (see Methods for further details).
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