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Quantum phase transitions, transitions between many-body 
ground states, are of extensive interest in research ranging 
from condensed-matter physics to cosmology1–4. Key features 
of the phase transitions include a stage with rapidly growing 
new order, called inflation in cosmology5, followed by the for-
mation of topological defects6–8. How inflation is initiated and 
evolves into topological defects remains a hot topic of debate. 
Ultracold atomic gas offers a pristine and tunable platform 
to investigate quantum critical dynamics9–21. We report the 
observation of coherent inflationary dynamics across a quan-
tum critical point in driven Bose–Einstein condensates. The 
inflation manifests in the exponential growth of density waves 
and populations in well-resolved momentum states. After the 
inflation stage, extended coherent dynamics is evident in both 
real and momentum space. We present an intuitive descrip-
tion of the quantum critical dynamics in our system and 
demonstrate the essential role of phase fluctuations in the 
formation of topological defects.

During a quantum phase transition, a many-body system, origi-
nally prepared in the ground state with macroscopic coherence, is 
suddenly transferred to a metastable state after passing the critical 
point1,6,12. An example shown in Fig. 1 is a ferromagnetic transition 
where the Z2 inversion symmetry is broken. How does the system 
evolve toward the new ground states generally with a different sym-
metry? One can hypothesize two possible scenarios. In the first sce-
nario, fluctuations break the system into locally coherent segments 
that evolve toward the new ground states independently. After relax-
ation, the system forms domains with local coherence2,12. In the sec-
ond scenario, although the macroscopic coherence is maintained, 
the system undergoes a coherent population transfer of particles 
toward lower energy states. Here fluctuations determine the domain 
structure but do not destroy the macroscopic coherence.While both 
scenarios support rapid evolution toward new ground states, the key 
differences are the time and length scales of the coherence in the 
dynamical process.

In this paper, we report the observation of coherent inflationary 
dynamics in an atomic Bose condensate driven across a quantum 
critical point. Our experiment is based on caesium Bose–Einstein 
condensates loaded into a one-dimensional phase-modulated opti-
cal lattice22. The modulation translates the lattice periodically over 
time t with displacement Δ ω=x tsins

2
, where s is the shaking ampli-

tude and ω is the shaking frequency. Shaking hybridizes the ground 
and excited Bloch bands and results in an effective dispersion εq for 
the condensate22, where the lowest energy state at quasi-momen-
tum q =  0 bifurcates into two ground states at +q* and −q* (named 
pseudo-spin up and down), when s exceeds a critical value sc. When 
the system is driven across the critical point in finite time, domains 
of pseudo-spins form in accordance with universal Kibble–Zurek 

scaling21 and excitations within a domain display a roton disper-
sion23; however, a complete understanding of the processes that 
underlie the quantum critical dynamics remains evasive.

To reveal the nature of the quantum phase transition, we exploit 
three schemes to analyse the critical dynamics of the condensate: in 
situ imaging to record the atomic density profile; time-of-flight with 
a focusing technique24 to probe the momentum space distribution 
nq; and pseudo-spin reconstruction to reveal domain structure21. An 
example is shown in Fig. 2. Here we linearly ramp up the shaking 
amplitude and interrupt the ramp at time t after passing the critical 
point to probe the system with the three methods.

We observe two key features indicating coherent evolution. First, 
from in situ images, a density wave emerges about 20 ms after pass-
ing the critical point. Quantified with the density structure factor 
Sq (ref. 25), the density wave shows an almost fixed wavenumber. 
Second, from time-of-flight images, the atomic population forms 
sharp side peaks in individual samples; over repeated measure-
ments, the side peaks average to broader features. These obser-
vations suggest that atoms occupy a coherent superposition of 
well-defined momentum states and the density wave emerges from 
their interference. Although the density wave diminishes after 30 
ms, the persistent narrow momentum peaks in atomic population 
nq suggest a long-lasting coherence. In addition, the period of the 
density waves approximately matches twice the averaged domain 
size. Both features will be further discussed in later paragraphs.

A more comprehensive analysis of the density wave and the pop-
ulation distribution in momentum space suggests that the system 
evolution can be separated into two stages: inflation and relaxation. 
To see this, we evaluate the density variance ∫δ =n qSd q

2  from in 
situ images as well as the total population in finite momentum 
states Δ = ∑ >N Nq q0  from time-of-flight measurements, where Nq 
is the total atom number in the ±q states. For short times after the 
phase transition, both quantities show a characteristic exponential-
like growth; we name this period the inflation stage (see Fig. 2f). 
After inflation, all atoms relax toward non-zero momentum states 
at = ±q q* while the density wave diminishes. In the following, we 
investigate the two stages separately.

The exponential growth of excitations can be theoretically under-
stood on the basis of dynamical instability of the condensate26. Shortly 
after passing the quantum critical point, the =q 0 state remains mac-
roscopicly occupied, which justifies the Bogliubov approximation. 
Owing to the inverted dispersion, the many-body Hamiltonian can-
not be diagonalized with bosonic field operators27. Instead, we can 
write the Hamiltonian as (Supplementary Information)

∑ λ ι ι ι ι= ℏ ^ ^ + ^ ^
>

†
−
†

−( )H (1)
q

q q q q q
0
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where ι̂ †
q  and ι̂q are the bosonic creation and annihilation operators of 

an inflaton with momentum q and growth rate λ ε μ ε= − + ∕ℏ( )2q q q ,  
μ is the chemical potential and ℏ is the reduced Planck constant. 
It is important to emphasize that only modes with negative kinetic 
energy ε < 0q  acquire the inflationary dynamics. According to the 

Hamiltonian, the excited populations increase exponentially in the 
inflation phase according to (Supplementary Information)

λ+ = +



N t N t( ) 1 (0) 1 cosh2 (2)q q q

and the structure factor ε μ= − ∕ +



( )S t N t( ) ( ) 1q q q  near the critical 

point. This result explains the similar exponential-like growth of 
both observables in Fig. 2f.

To further test the inflation theory, we perform quench experi-
ments by suddenly driving the system across the critical point, and 
measure the growth rate of the population in different momentum 
modes. Right before the quench, we seed a small initial population in 
the desired momentum states ± ′q  by imprinting a sinusoidal phase 
pattern on the condensate δϕ ∕ℏ′q xsin( ). Here δϕ is the seed ampli-
tude and the wavenumber ∕ℏ′q  is externally controlled (see Methods).

After seeding, the condensate quickly grows two side peaks at the 
seeding momentum ± ′q  (Fig. 3a). To extract the growth rate, we mon-
itor the population in the momentum states. The population grows 
exponentially in the beginning but reaches a maximum at a later time 
when the population in the =k 0 state is depleted (Fig. 3b). We fit the 
fast-growing interval right after the quench according to equation (2) 
and compare the growth rate to the prediction (Fig. 3c). Our mea-
sured growth rates qualitatively agree with the Bogoliubov result. We 
find quantitative agreement with our numerical simulation based on 
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Fig. 2 | Development of density waves and momentum space population across the quantum critical point. Density waves and sharp peaks in momentum 
space emerge when we linearly ramp up the shaking amplitude s with a ramp rate s· =  0.64 nm ms–1 across the critical point sc =  13.1 nm at time t =  0. a, Single-
shot in situ images of the condensate. b, Momentum distribution nq from time-of-flight measurement (black). Here nc is the averaged peak density in the 
momentum space of unshaken condensates. Averaging over repeated experiments gives two broad peaks centred around q =  0 (red). c, Domain structure 
from reconstruction21, where = − −j n nz q q* * is the spin density. d, The density structure factor Δ= ∕S n Nq q

2 , extracted from the Fourier transform of the density 
fluctuation Δ = −n x n x n x( ) ( ) ( )  integrated along the y axis. Here N is the total atom number and .  indicates an average over repeated measurements. Peaks 
appear at ±qd =  ± 0.14 qL, with = π ∕q dL  being the lattice momentum and d being the lattice period. e, The averaged population distribution nq  in momentum 
space. The solid black curves in d and e show the instantaneous, theoretical ground-state momenta ± *q . f, Fractional population excited out of =q 0 state (blue 
squares) and the density variance δn2 from integrating the structure factor Sq. The solid lines are guides to the eye. The error bars indicate 1σ standard error.

CoherentInc

oherent

Fig. 1 | Paradigms of dynamics crossing a ferromagnetic quantum critical 
point. Two scenarios describing the quantum phase transition. Left, in the 
incoherent picture, the system is broken into locally coherent segments by 
fluctuations. Each segment evolves independently toward a new ground state. 
Particles eventually rethermalize at the energy minima to form domains. 
Right, in the coherent scenario, the system evolves toward the new ground 
states with macroscopic coherence extending beyond the domain size.
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the Gross–Piteavskii equation that incorporates the depletion of the 
condensate (Supplementary Information). In particular, we confirm 
that only modes ≤q  0.4 qL with kinetic energy ε < 0q  exponentially 
grow and the fastest growth appears at momentum ≈ ±q q*. Here 

= πℏ∕q dL
 is the lattice momentum with d being the lattice period.

Remarkably, in the absence of seeding, the sample spontaneously 
grows momentum peaks near ±q* with a growth rate very close to that 
seeded at a similar momentum (Fig. 3c and the inset). For unseeded 
samples, many momentum modes can, in principle, be populated by 
quantum or thermal fluctuations and then amplified by inflation. The 

dominance of the modes near ±q* can be understood since they have 
the highest growth rate and become dominant during inflation.

Following the inflation stage, the condensates display persistent 
coherent dynamics in both time-of-flight and in situ measurements 
(Fig. 4). After the rapid growth of the population at seeded momentum  
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Fig. 4 | Coherent quantum critical dynamics. The condensates are seeded 
at momentum q′  =  0.13 qL and quenched from shaking amplitude =sc 13.1 nm 
to =s  25 nm . a, Coherent oscillations in momentum space (top: experiment; 
bottom: numerical calculation). The green solid lines indicate the position 
of ± *q . b, Line cuts of the experimental data at t =  0 and 14 ms (black dot). 
The solid red lines are from numerical calculations. The experimental 
peaks in both cuts show similar root-mean-square radii of σ =  0.026 qL and 
0.028 qL from Gaussian fits. The numerical calculation shows σ′  =  0.015 
qL, determined by the sample size. c, Oscillation of the density wave and 
the domain structure at =t 14 ms. Both density waves and domains appear 
aligned with the seed pattern (green dashed line). d, Amplitude (black 
squares) and phase (green triangles) of the density wave are compared 
with the numerical calculation (solid lines). A settling time τ =  20 ms is 
extracted from the decay of the envelope function (blue dashed line). The 
error bars indicate 1σ standard error.
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Fig. 3 | Growth of excitations during the inflation phase. We quench the 
seeded condensates from shaking amplitude =sc 13.1 nm to =s 25 nm, where 
the new ground states are at ± *q  =  ± 0.24 qL. a, At =t 0, we quickly imprint 
a phase modulation in 20 μ s on the condensate with a seeding momentum 
q′  =  0.26 qL (left). Subsequent time-of-flight measurements reveal two side 
peaks emerging at ± ′q  (right). b, The fractional population in both side peaks 

∕′N Nq  evolves for different seeding momentum: q′  =  0.19 (triangles), 0.30 
(circles), 0.33 (squares), 0.36 (inverted triangles) and 0.40 qL (diamonds), 
from blue to red. The solid lines are fits using equation (2) to extract the 
growth rate λ ′q . c, The growth rates for seeded (black) and unseeded 
experiments (orange star) are compared with Bogoliubov theory (black line) 
and numerical simulation (red line). The inset shows a comparison of the 
growth for the seeded experiment with q′  =  0.19 qL (blue) and the unseeded 
quench experiment (orange). The error bars indicate 1σ standard error.
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± ′q , the system generates higher order harmonics at ± ′ ± ′ . . .q q2 , 3 ,  
and the atomic populations are coherentlyʹ transferred between 
these momentum states. The emergence of higher harmonics is due 
to nonlinear mixing of the matter waves and can be well described 
based on our numerical model. An example at t =  14 ms shows mul-
tiple side peaks that conform to the simulation. Intriguingly, the indi-
vidual momentum peaks are as narrow as the zero momentum peak 
of the original condensate; the widths are limited only by the detec-
tion resolution. A narrow momentum peak indicates long coherence 
length based on uncertainty principle. By comparing our measure-
ment with the simulation, we conclude that the lower bound of the 
coherence length is 15 μ m, which is much greater than the average 
domain size of 4.1(1) μ m (Supplementary Information).

Together with the dynamics in momentum space, density waves 
in seeded samples also display coherent oscillations in quench exper-
iments (Fig. 4c). The density wave appears aligned to the imprinted 
pattern, and its phase displays multiple alternations (Fig. 4d) that 
are synchronized with oscillations of the population in momentum 
space. The contrast of the density wave oscillates and slowly decays 
with a time constant of τ =  20 ms. Both the alternation and the decay 
are in good agreement with our simulation. Finally, we find that 
domains are fully formed as early as =t 14 ms, and remain constant 
afterward. Importantly, the domain structure is deterministic in the 
seeded experiments, and the domain walls line up with the density 
wave yielding a domain size half the period of the density wave.

The observed coherent dynamics can be understood on the basis 
of a simple physical picture. Phase imprinting across the conden-
sate locally breaks the inversion symmetry by inserting a current 

ϕ= ℏ ′j x( )
m

, where ϕ x( ) is the phase of the condensate wavefunc-
tion. Within one period of the imprinted phase pattern, the sign 
of the local momentum flips twice, resulting in two neighbour-
ing domains with opposite momenta. After the momentum kick, 
atoms in neighboring domains can flow toward or away from each 
other determined by the group velocity ε= ∕v x q( ) d dg q , leading to 
the observed density peaks and troughs. Since density waves cost 
energy in a Bose–Einstein condensate with repulsive interactions, 
the atom flow reverses after half an oscillation period, yielding the 
phase alternation of the density wave.

The decisive role of phase imprinting in the real- and momentum-
space dynamics and domain structure indicates the importance of 
phase fluctuations in quantum critical dynamics. In addition to the 
emergence of density waves and atomic occupation in well-resolved 
momentum states, we present strong evidence supporting the coherent 
scenario of the quantum phase transition in our system. Furthermore, 
the phase imprinting technique can find new applications in engineer-
ing desired structures of domain walls, which will enable future study 
on the dynamics and interactions of topological defects.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0011-x.
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Methods
Lattice loading. We utilize three-dimensional Bose–Einstein condensates of 30,000 
caesium atoms confined in an optical dipole trap. The trap is tightly confined in the 
gravity direction with a trapping frequency of π×2 226 Hz. Trapping frequencies 
in the two in-plane directions are π×2 6 and π×2 9 Hz. The s-wave scattering 
length is 2.6 nm. We adiabatically load the Bose–Einstein condensate into a one-
dimensional optical lattice with a depth of 8.9 ER and period d =  532 nm, where 
ER =  ×h  1.3 kHz is the recoil energy.

Shaken lattice. We periodically translate the lattice by sinusoidally modulating the 
phase of one of the lattice beams. The shaking frequency is fixed to ω =  π×2 8 kHz, 
which is 2π×0.87 kHz above the gap at zero momentum between the ground and 
the first excited Bloch band in the lattice.

Phase imprinting. We imprint the phase pattern across the condensate  
using a digital micromirror device with a 795 nm laser. To ensure a sinusoidal 
modulation, we set a grating pattern on the digital micromirror device with 
twice the desired period πℏ∕ ′q2  and let only the ± 1 orders from the  
diffraction pass in the Fourier plane. The diffracted beams interfere on the 
atoms, giving a clean sinusoidally varying potential. The imprinting pulse lasts 
for 20 to 40 µs, which is very short compared with the condensate and  
lattice timescale.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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