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Statistical mechanics of consciousness: Maximization of information content of
network is associated with conscious awareness
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It is said that complexity lies between order and disorder. In the case of brain activity and physiology in
general, complexity issues are being considered with increased emphasis. We sought to identify features of
brain organization that are optimal for sensory processing, and that may guide the emergence of cognition
and consciousness, by analyzing neurophysiological recordings in conscious and unconscious states. We find
a surprisingly simple result: Normal wakeful states are characterized by the greatest number of possible
configurations of interactions between brain networks, representing highest entropy values. Therefore, the
information content is larger in the network associated to conscious states, suggesting that consciousness could
be the result of an optimization of information processing. These findings help to guide in a more formal sense
inquiry into how consciousness arises from the organization of matter.

DOI: 10.1103/PhysRevE.94.052402

I. INTRODUCTION

How consciousness arises from the organization of matter
is a subject of debate that spans several disciplines, from phi-
losophy to physics. Starting with the most basic experimental
observations, neurophysiological recordings of brain activity
demonstrate fluctuating patterns of cellular interactions, a vari-
ability that allows for a wide range of states, or configurations
of connections of widely distributed networks exchanging
information, and support the flexibility needed to process
sensory inputs and cognition in general. Recent years have seen
a surge in the study of fluctuations in brain coordinated activity,
studies that have raised conceptual frameworks such as that of
metastable dynamics [1,2] and that have motivated interest in
the practical application of assessments of nervous system vari-
ability for clinical purposes [3,4]. In general, the activity of ner-
vous system cells is to a large extent coherent, showing a high
degree of temporal correlation and coordination of the activity
[5,6], and a prominent question is how to describe the organiz-
ing principles of this collective activity, which allow features
associated with consciousness to emerge. What is the optimal
brain organization that allows it to adequately process sensory
stimuli and enable the organism to adapt to its environment?

Previous studies have revealed values of different indica-
tors of brain coordinated activity, such as synchronization,
associated with healthy and pathologic states by comparison
of baseline values and those in, for instance, unconscious states
such as coma and epileptic seizures [4,7–9]. These observa-
tions prompt the question of what physiological organization
underlies the specific values of the synchrony indices found
in normal alert states and other conditions; in other words,
what is special about these values found in conscious states?
We believe that we have provided an answer to this question
in our work. We propose that there will be a certain general
organization of brain cell ensembles that will be optimal for
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conscious awareness. As an extension of previous work [10]
where it was proposed that a general organizing principle of
natural phenomena is the tendency toward maximal—more
probable—distribution of energy [a proposal that can be
encapsulated by the notion of maximization of information
transfer [11,12]), we venture that the brain organization
optimal for conscious awareness will be a manifestation of
the tendency towards a widespread distribution of energy (or,
equivalently, maximal information exchange). Whereas we do
not deal with energy or information in our work, we instead
focus on the number of (micro)states, or combinations of
connected signals derived from specific types of neurophys-
iologic recordings—magnetoencephalography (MEG), scalp
electroencephalography (EEG), or intracranial EEG (iEEG).
We use the term “information” in the intuitive sense that
normally permeates neuroscience: cell ensembles that are
functionally connected to process and exchange information
(but see [13] for a concise review on what information brains
process and what they compute); furthermore, the equivalence
between information exchange and energy transactions has
been the subject of several studies, more specifically in [10]
(see also [12,14,15]). The question then becomes, how do we
capture the nature of these organizations of cell interactions?

We have followed the classic approach in physics when
it comes to understanding collective behaviors of systems
composed of a myriad of units: the assessment of the number
of possible configurations, or microstates, that the system can
adopt. In our study we focus on the collective level of descrip-
tion and assume that coordinated patterns of brain activity
evolve due to interactions of mesoscopic areas [16–18]. Thus
we use several types of brain recordings to inspect not only
superficial cortical activity but also that of deeper structures
in conscious and unconscious states, evaluating the number
of “connections” between these areas and the associated
entropy and complexity. Here we have adopted a connectionist
approach, assuming that the information about conscious states
is encapsulated in a connectivity matrix. We present evidence
that conscious states result from higher entropy and complexity
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in the number of configurations of pairwise connections. In
other words, the number of pairwise channel combinations
is near the maximum of all possible configurations when the
individual is processing sensory inputs in a normal manner
(e.g., with open eyes). Our interpretation is that a greater
number of configurations of interactions allows the brain to
optimally process sensory information, fostering the necessary
variability in brain activity needed to integrate and segregate
sensorimotor patterns associated with conscious awareness.

II. METHODS

A. Electrophysiological recordings

Recordings were analyzed from nine subjects. There were
three types of recordings: three epilepsy patients studied with
MEG, one epilepsy patient studied with iEEG, three epilepsy
patients studied with simultaneous iEEG and scalp EEG, and
two nonepileptic subjects studied with scalp EEG. For the
study of seizures versus alert states, the three subjects with
MEG recordings and the one with iEEG were used. Details of
the patients’ epilepsies and seizure types have been presented
in previous studies (MEG patients in [8]; iEEG patient in [19]).
For the study of sleep versus alert states, the three patients with
combined iEEG and scalp EEG have been described previously
(patients 1, 3, and 4 in [20]; the two subjects studied with
scalp EEG alone had been investigated because of a suspected
history of epilepsy, but both were ultimately diagnosed with
syncope, with no evidence of epilepsy found during prolonged
EEG monitoring. In brief, the MEG seizure recordings were
obtained in one patient with primary generalized absence
epilepsy, in one patient with symptomatic generalized epilepsy,
and in one patient with frontal lobe epilepsy. The iEEG
seizure recordings were obtained from a patient with medically
refractory temporal lobe epilepsy as part of the patient’s
routine clinical presurgical investigation. MEG recordings
were obtained using a whole head CTF MEG system (Port
Coquitlam, BC, Canada) with sensors covering the entire cere-
bral cortex (as in scalp EEG), whereas iEEG electrodes were
positioned in various locations including, in the temporal lobe
epilepsy patient, the amygdala and hippocampal structures of
both temporal lobes. EEG recordings were obtained using an
XLTEK EEG system (Oakville, ON, Canada). The details of
the acquisitions varied from patient to patient (e.g., acquisition
rate varied from 200 to 625 Hz) and were taken into consid-
eration for the data analyses. The duration of the recordings
varied as well: For the seizure study, the MEG sample epochs
were of 2 min duration each, with total recording times of
30–40 min; the iEEG patient sample was of 55 min duration.
The sleep study data segments were each 2–4 min in duration,
selected from continuous 24-h recordings. Recordings were
obtained during the course of clinical investigations according
to standard clinical procedures.

B. Data analyses

The preprocessing of data, besides the usual removal
of signals with artifacts and application of filters prior to
estimation of the synchrony index, included the Laplacian
derivation [21] of the scalp EEG recordings. The Lapla-
cian is used to avoid the potential effects of the common

reference electrode on synchronization [22] using the CDS
(current source density) algorithm [23]. Initially a phase
synchrony index was calculated from all possible pairwise
signal combinations, for which we use the standard procedure
of estimating phase differences between two signals from
the instantaneous phases extracted using the analytic signal
concept via the Hilbert transform. To compute the synchrony
index, several central frequencies, as specified in the text and
figure legends, were chosen with a bandpass filter of 2 Hz
on either side; hence, for one value of the central frequency
f , the bandpass is f ± 2 Hz. The central frequencies were
chosen according to the relevant behavioral states and some
analytical limitations—thus for the sleep studies we choose
4 Hz (not lower because the extraction of the instantaneous
phase was not optimal for central frequencies lower than 4).
To see whether similar results were obtained with different
frequencies, we chose others (see figures) provided there was
power at those values. The phase synchrony index (R) was
calculated using a 1-s running window and was obtained
from the phase differences using the mean phase coherence
statistic which is a measure of phase locking and is defined
as R = |〈e(i�θ )〉| where �θ is the phase difference between
two signals. This analytical procedure has been described in
great detail elsewhere [7,8,22]. The calculation of the index R
was done for all possible signal pairs. The mean value of the
R index thus obtained was then estimated for the desired time
length. For instance, for the sleep recordings, the time period
was the whole episode, which was, as noted above, between 2
and 4 min. For the seizure recordings, the periods to obtain the
mean synchrony varied depending on the behavioral condition;
for instance, in Fig. 1(c) the whole ictal event (labeled “Sz”)
and the initial 10-s portion of it (“10 s Sz”) were taken for the
reason explained in the text and figure legend. We note here
that the window to estimate R can vary as needed—here we
used the standard 1 s─ but the absolute magnitude of the
index and the entropy (described below) will be different
depending on the window; however, the relative changes seen
in the entropy will remain constant (we verified this using two
different windows of 10 and ∼300 s, data not shown). Thus,
while the window is not critical, care should be taken to use
the same analytical procedures for all the data sets in each
individual [23].

Phase synchronization for specific frequencies is calculated
for each pair of channels and a “connectivity” matrix S is
obtained, whose entries are the average values of the synchrony
index during a certain time period for each pairwise configu-
ration. From this matrix, a Boolean connectivity matrix B is
calculated, with 0 entry if the corresponding synchrony index is
lower than a threshold, and 1 if higher. We define two channels
as “connected” if the corresponding entry in matrix B is 1. Then
we use the combinations of connected channels as a “complex-
ity” measure. The total number of possible pairs of channels
given a specific channel montage is given by the binomial
coefficient N = Nc!/2!(Nc − 2)! where Nc is the total number
of channels in the recording montage, normally 144–146 in the
case of MEG sensors, and between 19 and 35 with iEEG and
scalp EEG. For instance, in our MEG recordings we have Nc =
144; thus N = 10 296 possible pairs of connected sensors are
obtained. For each subject we calculate p, the number of
connected pairs of signals in the different behavioral states,
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FIG. 1. Graphs representing the entropy of the number of pairwise configurations of signals in epileptic patients during conscious (baseline)
and unconscious (generalized seizure) states. Derived from MEG recordings in a patient with primary generalized epilepsy, (a) shows entropy
associated with a normal alert period (baseline, Base) and a generalized absence seizure (Sz), estimated from synchrony values at two central
frequencies (defined in Methods) of 5 and 12 Hz. The continuous curves, in this and other graphs here and in Fig. 2, are obtained from the
equation shown in Methods, S = N ln(N/N–p) − pln(p/N − p), and represent the possible entropy values of all possible numbers of pairwise
combinations, yielding an inverted U. Note that here as well as in all generalized seizures analyzed, the entropy values associated with alert,
baseline conditions were closer to the maximum (top of the curve) than those associated with the seizures. (b) Entropy values of two seizures
and their corresponding baseline (Base) activity (computed using a time period of 30–40 min before the ictus) in a patient with secondary
(symptomatic) generalized epilepsy (MEG recordings). (c), derived from iEEG recordings in a patient with temporal lobe epilepsy, shows the
entropy during the alert state (Baseline), during the initial 10 s of the seizure when the patient was still responsive and alert (10 s Sz), and during
the rest of the seizure when it became generalized and the patient was unresponsive (Sz). Note that when the ictus has not yet generalized, the
entropy is similar to that of normal alertness. (d), another example of a nongeneralized seizure in a patient with frontal lobe epilepsy (MEG
recordings).

using the aforementioned threshold of the synchrony index
(which varies for each subject), and estimate C, the number of
possible combinations of those p pairs, using the binomial co-
efficient again: C = N !/p!(N − p)! where N is the aforesaid
value. In sum, all these calculations represent the relatively
simple combinatorial problem we are trying to solve: Given a
maximum total of N pairs of connected signals, in how many
ways can our experimental observation of p connected pairs
(that is, the number of 1’s in matrix B) be arranged. We then
compute the entropy and Lempel-Ziv complexity associated
with those p pairs. The entropy estimation does not provide any
further information, as the main, crucial result is the number
of configurations, C. However, we have done it since it is a
standard manner to quantify the complexity of the number of
microstates.

We note here that to assess entropy we assume that
the different pairwise configurations are equiprobable; thus
the entropy is reduced to the logarithm of the number of
states, S = lnC (see notation in the main text). However, the

estimation of C (the combinations of connections between
diverse signals), is not feasible due to the large number of
sensors; for example, for 35 sensors, the total possible number
of pairwise connections is [144,2] = 10 296; then if we find
in the experiment that, say, 2000 pairs are connected, the
computation of [10296, 2000] has too large numbers for
numerical manipulations, as they cannot be represented as
conventional floating point values in, for instance, MATLAB.
To overcome this difficulty, we used the well-known Stirling
approximation for large n: ln(n!) = n ln n − n. The Stirling
approximation is frequently used in statistical mechanics to
simplify entropy-related computations. Using this approxima-
tion, and after some basic algebra, the equation for entropy
reads S = N ln(N/N − p)–pln(p/N − p), where N is the
total number of possible pairs of channels and p the number of
connected pairs of signals in each experiment (see Results for
details and notation). Because this equation is derived from
the Shannon entropy, it indicates the information content of
the system as well [24].
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In addition to entropy, we used another measure of complex-
ity, the Lempel-Ziv (LZ) complexity, based in the Kolmogorov
deterministic complexity [25]. This complexity measures the
amount of nonredundant information in a string by estimating
the minimal size of the “vocabulary” necessary to describe the
string [26]. Strings with high LZ complexity require a large
number of different patterns (“words”) to be reproduced, while
strings with low complexity can be largely compressed with a
few patterns employed to eliminate redundancy with no loss of
information. For this purpose, values of the matrix B (defined
in Results) were placed in a one-dimensional vector and its LZ
complexity determined.

III. RESULTS

Guided by proposals that consciousness requires medium
values of certain features of cell assemblies, e.g., not too high
or low synchrony or correlations [5,4], or halfway between
order and disorder [27], we chose to study the number
of possible configurations the brain can adopt in different
behavioral conditions. Our basic approach consists in the
estimation of the number of possible pairwise connections
between recorded brain signals. Signals included MEG, iEEG,
and scalp EEG recordings; details can be found in Methods. We
are limited to pairwise combinations of the signals because of
the manner in which phase synchrony is computed—as phase
differences between two signals—and we use phase synchro-
nization as the means to determine connectivity between the
two signals. Once the number of connected signals is known,
we estimate the entropy of those pairwise combinations. The
results obtained with recordings acquired during conscious
states are compared with those acquired during unconscious
states, which included sleep (all stages) and epileptic seizures.
To determine connectivity, we use an accepted approach of
computing a phase synchronization index (details in Methods).
It must be noted that, while many studies use the words
synchrony and connectivity as synonymous, in reality phase
synchrony analysis reveals only a correlation between the
phases of the oscillations between two signals, and not a
real connectivity which depends on other factors such as
anatomical connections and the precision of spike firing
in anatomically connected cells. Nevertheless, due to the
unfeasibility of an accurate, realistic estimation of connectivity
which would necessitate individual cell recordings from entire
cell ensembles as well as structural connectivity details, we
use an accepted version under the assumption that the phase
relations may represent, at least, some aspect of a functional
connectivity. Hence, in order to evaluate interactions (connec-
tions), we take each sensor as one “unit,” and define a pair of
signals as connected if the phase synchrony index is larger than
a threshold. The threshold is determined for each individual,
and is the average synchrony index in the most normal alert
state, the “awake eyes-open” condition, when the individual
is fully alert and processing the sensorium in a regular
fashion. Because our data include the three aforementioned
recording methodologies, we have the opportunity to assess
the reproducibility of the results in various types of recordings.
While we work at the signal level we will make the reasonable
assumption that the MEG and scalp EEG sensors record
cortical activity underlying those sensors and thus throughout

the text we will use the terms “brain signals” or “brain areas”
and “brain networks” as synonymous. The iEEG, obviously,
records signals at the source level. Note that we are not
interested in the specific pattern of connectivity among brain
areas, but rather in the global states [28].

Figure 1 depicts the entropy (S), which, assuming equiprob-
able states, is the logarithm of the number of states, S = lnC

(see Methods for the estimation of entropy using very large C
values) in three epileptic patients. We note that this equation
using the natural logarithm allows for a calculation of both
the Gibbs and the Shannon entropy, if needed, which differ
from S by a constant multiplicative factor k (the Boltzmann
constant) and 1/(ln2), respectively. The entropy data points are
graphed on the curve that represents the entropy of all points
in the binomial distribution, where the maximum number of
configurations (that is, maximum entropy) occurs in the middle
of the graph. Note in Fig. 1 that during conscious states, when
patients are not having generalized seizures with loss of aware-
ness, the entropy is close to the maximum, whereas entropy is
lower (more distant from the top) for the seizure states. The val-
ues during the seizures fall on the right-hand side of the graph
because, due to the higher synchrony during ictal (seizure)
events such that the number of coupled channels (note that the
x axis is the number of connected signals) is larger than during
interictal (between seizures) activity, there are fewer pairwise
configurations and thus lower entropy. This phenomenon
seems associated with the level of consciousness since when
the seizures are not generalized [Figs. 1(c) and 1(d)], and the
patients remain responsive and conscious, the entropy values
are similar to those of interictal (baseline) activity. Where in
the curve the data points are located depends of course on the
synchrony index. Because seizures had higher synchrony than
interictal periods (“baseline”), the number of coupled signals
is greater and the number of combinations is lower.

We observe similar trends in the case of sleep. Figure 2
depicts some examples. Note how during wakefulness the
entropy is closer to the maximum of the curve, whereas the
deeper the sleep stage, the more distant from the maximum the
values are. The deepest sleep stage, slow wave 3–4 (“sws3–4”),
has consistently the lowest entropy. Interestingly, the entropy
during REM sleep is very close, in most cases, to the normal,
alert state. This result may not be as surprising as it sounds if
we consider the mental activity during REM episodes that are
normally associated with dreams. It is worth noting too that in
recordings taken when the subjects had their eyes closed, the
entropy is much lower than during the eyes-open condition,
and sometimes it is as low as during slow wave 3–4 sleep. The
results for two central frequencies (4 and 8 Hz) are shown in
Figs. 2(a) and 2(c), to demonstrate that it is not always the
case of high synchrony having lower entropy; sometimes it is
lower synchrony (e.g., results at 8 Hz) that resulted in fewer
channel combinations and thus lower entropy as compared
to fully alert states. In Figs. 1 and 2 we have shown results
with iEEG and MEG (Fig. 1) or iEEG and scalp EEG (Fig. 2)
recordings to demonstrate that the same qualitative results
are obtained with these three recordings techniques. Thus
these results do not depend on recording methodology. Shown
in Fig. 3 is an example of the time course of the entropy
before and during an ictal event, where the fluctuations in the
entropy magnitude can be seen; in particular during a specific
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FIG. 2. Same graph types as in Fig. 1, using sleep recordings. In each subject, data samples were of 2–4 min duration during wakefulness
with eyes open (awake) or eyes closed (Eyecl), and sleep stages slow wave 2 (Sws2), slow wave 3–4 (“Sws3–4”) and rapid eye movement
(REM). (a) Results derived from iEEG recordings in a subject investigated with bilateral frontal and temporal electrodes and simultaneous
scalp EEG. Entropy estimated from synchrony values at two central frequencies of 4 and 8 Hz. As occurred in the patient recordings shown
in Fig. 1, the baseline, alert state (in this case labeled “awake”) is closer to the top of the curve, having greater entropy. The deepest sleep
stage, slow wave 3–4 (sws3–4), has the lowest entropy. (b) Same subject but using the scalp EEG recordings for the calculations, showing a
similar trend (evaluated at central frequency of 4 Hz). (c) Results derived from a different subject investigated with right frontal electrodes and
simultaneous scalp EEG, with synchrony evaluated at two central frequencies of 4 and 8 Hz using the iEEG signals. Note that the eyes closed
(Eyecl) condition has lower entropy than that of the normal alert state with open eyes. Depending on the frequency of analysis, the entropy
in “Eyecl” falls toward the left or right side of the curve; e.g., at 8 Hz, because the synchrony is higher (more coupled channels) due to alpha
waves at 8–10 Hz and the entropy is reduced due to fewer combinations of connections, as occurs similarly during seizures (Fig. 1). (d) Same
subject but using the scalp EEG signals, showing results similar to those obtained with iEEG (evaluated at central frequency of 4 Hz).

state the magnitudes remain relatively constant, although some
fluctuations are evident.

FIG. 3. Time course of the entropy of the number of configura-
tions of connected MEG signals before, during, and after a generalized
absence seizure. MEG signal from one channel is shown at top, the
ictus (Sz) occurs towards the end of the ∼2-min recording. Notice
the drop in entropy during the seizure.

Hence, we have demonstrated that the specific values of
the synchrony index R in fully alert states represent the
largest number of combinations (microstates; see Discussion)
of pairwise signal configurations. This method solves the
potential problem of the interpretation of the different R values
obtained with various recording techniques. For example, in
our experiments, average values in baseline conditions are
0.248 ± 0.2 for MEG, 0.428 ± 0.04 for iEEG, and 0.46 ±
0.05 for scalp EEG; nevertheless, in our study the number
of combinations are “normalized” to the number of recording
sensors and show a final result (the entropy) that is independent
of the structure and synchrony magnitudes of the recording
methodology. The main idea derived from these results is
represented in Fig. 4.

To further explore whether the decrease in entropy has a
parallel with a decrease in other forms of complexity, the
Lempel-Ziv complexity of the number of configurations was
assessed. Tables I and II illustrate the Lempel-Ziv complexity
estimated for the B matrices, where a complementary result can
be seen: Unconscious states have lower values of complexity.
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FIG. 4. Proposed general scheme of the relation between global
brain connectivity and behavioral states. Normal alertness resides
at the top of the curve representing the number of configurations
of connections the system can adopt, or the associated entropy.
The maximization of the configurations (microstates) provides the
variability in brain activity needed for normal sensorimotor action.
Abnormal, or unconscious states, are located farther from the top,
and are characterized by either a large or small number of connected
networks, therefore exhibiting a lower number of microstates (hence
lower entropy) that are not optimal for sensorimotor processing.

A decrease of complexity in the raw electrophysiological
signals was obtained too (data not shown); hence this
may be a phenomenon observable at different levels of
description.

IV. DISCUSSION

Our attempts at seeking features of brain organization that
allow for adequate processing of sensory stimuli have provided
evidence that a greater number of possible configurations
of interactions between brain networks is associated with
alert states, representing high entropy associated with the
number of those combinations, whereas lower entropy (and
thus fewer combinations of connections) is characteristic of
either unconscious states or altered states of alertness (eyes
closed). This observation reflects a relatively simple general
organizing principle at this collective level of description,
which results in the emergence of properties associated with
consciousness.

With the advent of the “Big Data” era and the related
torrent of empirical observations emphasizing the exhaustive
scrutiny of elementary biological processes, the search for

TABLE I. Values of Lempel-Ziv (LZ) complexity and entropy
(S, normalized) derived from the string of connections (details in
Methods) in conscious (baseline) and unconscious (seizure) states,
in four patients. Note lower complexity and entropy during seizures
in patients 1–3; patient 4 [Fig. 1(d)] did not have fully generalized
seizures.

LZ Complexity S (normalized)

Patient 1 Baseline 0.7 0.94
Seizure 0.2 0.31

Patient 2 Baseline 0.61 0.94
Seizure 0.39 0.79

Patient 3 Baseline 0.86 0.94
Seizure 0.71 0.41

Patient 4 Baseline 0.61 0.9
Seizure 0.61 0.99

organizing principles that result in the emergence of biological
phenomena seems more crucial than ever lest we drown in the
flood of data. Following the notion that “one of the principal
objects of research [ . . . ] is to find the point of view from
which the subject appears in its greatest simplicity” [29], we
tried to uncover relatively simple laws that capture the bounds
in the global organization of a biological system that enable
it to become adaptable (i.e., responsive) to an environment,
or, in neuroscientific terms, the features of optimal brain
organization (in terms of connections) that allow brains to
adequately process sensory stimuli. We focused on the global
states and did not investigate specific patterns of connectivity
between brain areas as a variety of other studies have assessed
these inter-regional interactions in conscious and unconscious
states [30,31]. The fact that our results are similar, independent
of recording methodology, demonstrates the robustness of the
analysis. On that note, it is fair to remark that, while we have
used the term “connectivity,” in reality the analysis reveals only
correlation between phases of oscillation, as already discussed
in Results.

The present study can be considered an extension of
previous work where it was proposed that a general organizing
principle of natural phenomena is the tendency toward a
maximal, or more probable, distribution of energy [10] as
dictated by the second principle of thermodynamics, which
can be encapsulated by the notion of the maximization of
information transfer [11]. As well, the notions of information
and energy exchange are conceptually related: “The common
currency paying for all biological information is energy flow”
[12,14]. In the final analysis, information exchange implies
energy exchange; hence we interpret information exchange
as energy redistribution as proposed in [10], even though
our study is focused not on energy considerations but on the
number of states. Other studies have assessed the importance
of brain synchronization to optimally transfer information [32–
34]. We interpret our observation that the number of pairwise
channel combinations—that we take as connections between
brain networks—occurs near the maximum of possible con-
figurations in periods with normal alertness, as that greater
number of configurations of interactions represents the most
probable distribution of energy and information resulting in
conscious awareness. The configuration entropy we calculate
measures the information content of the functional network,
and has been used in other works for the purpose of quantifying
information [24]. As an example, during an epileptic seizure
almost all nodes are connected (high synchrony values between
electrode signals), and the associated functional network has
low information content. The same is true for networks
having most nodes disconnected. Somewhere in the middle
between these two extremes lies a region of high information
content.

One somewhat surprising result is the low entropy during
the eyes-closed condition. One could argue that having the
eyes closed does not change the conscious state much, and yet
we observe reduced entropy as compared with the eyes-open
condition. Hence our observations may indicate not only states
of consciousness but also optimality of sensory processing—
considering the great importance of visual processing in
humans, interrupting visual inputs to the brain should result
in considerable changes in its dynamics, and a well-known
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TABLE II. Values of Lempel-Ziv (LZ) complexity derived from the string of connections in different sleep stages. The entropy (S,
normalized as in Table I) is shown in the last column for the intracerebral recordings (iEEG). When both recordings were obtained in a
subject, both iEEG and scalp EEG data were analyzed (subjects 3 and 5 did not have iEEG recordings, denoted as N/A). The LZ complexity
is consistently lower, regardless of recording methodology, in the deepest sleep stage (SWS 3–4). These results parallel those of entropy
estimation (as also shown in Fig. 2).

iEEG-LZ complexity Scalp-LZ complexity iEEG-S (normalized)

Subject 1 Alert eyes open 0.81 1.01 0.99
SWS 2 0.42 1.0 0.49

SWS 3–4 0.018 0.0 0.0
REM 0.73 0.96 0.73

Subject 2 Alert eyes open 0.94 1.06 0.99
Alert eyes closed 0.94 0.85 0.76

SWS 3–4 0.33 0.22 0.3
Subject 3 Alert eyes open N/A N/A N/A

SWS 2 N/A 1.07 N/A
SWS 3–4 N/A 0.97 N/A

REM N/A 1.07 N/A
Subject 4 Alert eyes open 0.88 1.0 0.7

Alert eyes closed 0.55 1.0 0.74
SWS 2 0.57 0.98 0.79
SWS 3 0.05 0.0 0.01
REM 0.6 1.06 0.84

Subject 5 Alert eyes open N/A 0.97 N/A
SWS 1 N/A 1.08 N/A
SWS 2 N/A 1.04 N/A

SWS 3–4 N/A 0.8 N/A
REM N/A 1.12 N/A

alteration is the surge of alpha waves in parieto-occipital areas.
In this sense, the method may prove useful in practical, clinical
applications. Interesting too is the relatively high entropy
associated with REM episodes, perhaps a reflection of the
partial awareness during dreams.

It has been proposed that aspects of awareness emerge when
certain levels of complexity are reached [35]. It is then possible
that the organization (complexity) needed for consciousness
to arise requires the maximum number of configurations
that allow for a greater variety of interactions between cell
assemblies because this structure leads to optimal segregation
and integration of information, two fundamental aspects of
brain information processing [36]. Of course, anatomical
connections among brain circuitries impose constraints as to
the possible arrangements of interactions. Our results help cast
the study of consciousness and cognition into more of a physics
framework that may provide insight into simple principles
guiding the emergence of conscious awareness, and perhaps
the proposed thermodynamics for a network of connected
neurons [5] can be extended to explain cognition. Some
classical studies [37] have already characterized biological
order in terms of functions of the number of states of a
system. It is tempting to link our observations with the typical
chemical equilibrium that, despite being composed of a myriad
of microstates, when viewed at the macroscopic level produces
some useful laws, such as the law of mass action describing
chemical balance, and thus the perspective we develop here
may help guide research to uncover organizing principles in
the neurosciences. In physics, microstates that yield the same
macrostate form an ensemble. A system tends to approach
the most probable state, maximizing entropy under present

constraints, and the resulting macrostate will be represented
by the maximum number of microstates. Hence, the macrostate
with higher entropy (see scheme in Fig. 4) we have defined,
composed of many microstates (the possible combinations of
connections between diverse networks, our C variable defined
in Results), can be thought of as an ensemble characterized by
the largest number of configurations. Here we define an ensem-
ble of microstates as all possible configurations of connectivity
leading to the same macrostate (having the same number of
connected pair of signals, p). The entropy of this macrostate,
given by the logarithm of the number of combinations (our C),
is the number of microstates that are compatible with the given
macrostate (assuming all microstates have same statistical
weight). In neurophysiological terms, each microstate repre-
sents a different connectivity pattern and thus is associated
with, in principle, different behaviors or cognitive processes.
The macrostate that we find associated with wakeful normal
states (eyes open) is the most probable because it has the largest
entropy (largest number of combinations of connections).
While many elementary cellular microscopic processes are
far from equilibrium (e.g., ionic gradients), at the macroscopic
level the system tends towards equilibrium, as most natural
phenomena remain in near-equilibrium conditions [38]. At the
same time, the ensemble of microstates associated with normal
sensory processing features the most varied configurations and
therefore offers the variability needed to optimally process
sensory inputs. In this sense, our results support current views
on the metastability of brain states [1,2] in that the states should
not be too stable for efficient information processing; hence the
larger the number of possible interactions, the more variability
is possible.
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The results are not only related to this notion of metastabil-
ity, but as well to the information integrated theory (IIT [36])
and to the global workspace theory (GWT [39]) because in the
final analysis all of these three theories have as an underlying
notion the need for a substantial number of microstates, or
configuration of cell connections, in order to increase the
integrated information (consciousness increases in proportion
to the system’s repertoire of states as posited by the IIT), to
broadly broadcast activity to many different cell networks (the
GWT claims that widespread distribution of information leads
to conscious awareness), and to avoid becoming stuck in one
stable activity pattern (metastability). Each theory has aspects
which, obviously, we cannot cover in depth now, but our results
may shed light on a possible mechanistic common aspect.

Additionally, the results support computational and the-
oretical studies showing that patterns of organized activity
arise from the maximization of fluctuations in synchrony [40],
and that transitions between conscious states are achieved
by just varying the probability of connections in neural nets
[41]. In general, our observations highlight the fundamental
importance of fluctuations in neuronal activity as the source of
healthy brain dynamics [3]. More specifically, our results have
a precise parallel with the work of Hudetz et al. [18], where
they graph a dispersion index versus an activation level [their
Fig. 7(b)] and propose that consciousness resides at the top
of the curve, and anesthetic states and seizures to lower and
higher activation levels, respectively, as we show in Figs. 1
and 2. Their “activation level” could correspond to the number
of signals that take part in the combinations (our x axes in
the graphs), and their “dispersion index” to our number of
combinations (the y axes). Other studies have proposed as well
that consciousness requires medium values of certain features
of cell assemblies [5,36,42].

One general picture of our work is that we are proposing
to define states of consciousness in terms amenable for a
statistical mechanics approach. We first have to consider the
macrostate related with consciousness. Our basic assumption
in this work is that a macrostate is defined by the total

number of connected regions (the microstates, all observed
connected pairs of signals, our p variable). In other words,
connectivity defines the macrostate, and different macrostates
represent different states of consciousness, such as normal
alertness, seizures, or different sleep stages. This constitutes
an approximation to brain dynamics where only interactions
between brain regions are taken into consideration, but the
internal dynamics of those regions are not taken into account.
That is, our approach is purely “connectionist” and it is useful
to distinguish between conscious states, whereas to capture
other processes in brain dynamics will require the use of
different relevant variables.

In sum, along with others, we consider cognition and
consciousness not a static property but a dynamic process
with constant flux of energy, or information exchange [10].
Even though we have talked above about a macrostate, this
should not be taken as a fixed state; rather it contains dynamic
processes represented by the microstates, the rearrangements
of connections among brain cell ensembles. The emergent fea-
tures of cognitive phenomena that can be termed “conscious”
arise once an efficient web of connections endowed with
certain complexity (due to number and coordinated activities
of the constituents) appears. The fact that values of phase
synchrony during fully alert states gave us the largest entropy
of the number of pairwise signal combinations explains in part
the neurophysiological organization underlying these specific
values of the quantification of brain synchrony. Studies at this
level of description may help to understand how consciousness
arises from organization of matter. In our view, consciousness
can be considered as an emergent property of the organization
of the (embodied) nervous system, especially a consequence
of the most probable distribution that maximizes information
content of brain functional networks.
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[22] R. Guevara, J. L. Pérez Velazquez, V. Nenadovic, R. Wennberg,

G. Senjanovic, and L. Garcı́a Dominguez, Neuroinformatics 3,
301 (2005).

[23] J. Kayser and C. E. Tenke, Clin. Neurophysiol. 117, 369
(2006).

[24] F. Rieke, D. Warland, R. Ruyter van Steveninck, and W. Bialek,
(MIT Press, Cambridge, 1997).

[25] A. N. Kolmogorov, Probl. Inf. Transm. (Engl. Transl.) 1, 1
(1965).

[26] A. Lempel and J. Ziv, IEEE Trans. Inf. Theory 22, 75
(1976).

[27] G. Tononi, G. M. Edelman, and O. Sporns, Trends Cognit. Sci.
2, 474 (1998).

[28] J. L. Perez Velazquez, R. Guevara Erra, R. Wennberg, and
L. Garcia Dominguez, in Coordinated Activity in the Brain:
Measurements and Relevance to Brain Function and Behaviour,
edited by J. L. Perez Velazquez and R. Wennberg (Springer,
Berlin, 2009), Chap. 1.

[29] J. W. Gibbs, Scientific Papers of J. W. Gibbs—Thermodynamics
(Longmans, Green and Company, London, 1906).

[30] D. Dumermuth and G. Lehmann, Eur. Neurol. 20, 429 (1981).
[31] K. Wang, M. L. Steyn-Ross, D. A. Steyn-Ross, M. T. Wilson,

and J. W. Sleigh, Front. Syst. Neurosci. 8, 215 (2014).
[32] A. Buehlmann and G. Deco, PLoS Comput. Biol. 6, e1000934

(2010).
[33] S. A. Neymotin, K. M. Jacobs, A. A. Fenton, and W. W. Lytton,

J. Comput. Neurosci. 30, 69 (2011).
[34] S. A. Neymotin, H. Lee, A. A. Fenton, and W. W. Lytton,

J. Clin. Neurophysiol. 27, 438 (2010).
[35] M. Gell-Mann, Ann. N. Y. Acad. Sci. 929, 41 (2001).
[36] G. Tononi, BMC Neurosci. 5, 42 (2004).
[37] H. J. Morowitz, Bull. Math. Biophys. 17, 81 (1955).
[38] I. Prigogine, Introduction to Thermodynamics of Irreversible

Processes (Wiley Interscience, New York, 1955).
[39] B. J. Baars, A Cognitive Theory of Consciousness (Cambridge

University Press, Cambridge, 1988).
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