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The expectation that a non-equilibrium system evolves to-
ward thermal equilibrium is deeply rooted in our daily ex-
perience and is one of the foundations of statistical 
mechanics (1). On the other hand, as formulated by Poincaré 
and Zermelo, a finite isolated physical system will recur ar-
bitrarily close to its initial state after a sufficiently long but 
finite time (2, 3). The reconciliation of these seemingly con-
tradicting statements is at the heart of the emergence of 
irreversible processes from reversible microscopic mechan-
ics (4). 

The above discussion can be transferred to the quantum 
domain. In analogy to Boltzmann’s conjecture, von Neu-
mann formulated a quasi-ergodic theorem for the evolution 
of the wave function (5) and the equilibration of isolated 
quantum systems grew into an active field of research (6). 
However, a general recurrence theorem can be proven in 
quantum mechanics as well (7, 8), and shows explicitly that 
the wave function returns arbitrary close to its initial state. 
Experimentally, recurrent behavior has been observed only 
in small quantum systems. Examples are the revival dynam-
ics in the Jaynes-Cummings model (9) or few interacting 
atoms in isolated sites of an optical lattice (10, 11). These 
studies accomplished coherent dynamics over long times 
and thereby revealed properties of the underlying Hamilto-
nian spectrum. Enabling recurrent behavior in more com-
plex quantum many-body systems opens a window into 
their long-term coherent evolution by providing a strong 
measurable signal at times far beyond the initial relaxation. 
Further, it is of fundamental interest as it provides insight 
into the emergence of statistical ensembles from coherent 
unitary evolution. 

For larger systems however, it becomes exponentially 

difficult to observe the eigenstates directly, and the com-
plexity of the spectrum of eigenstates leads to exceedingly 
long recurrence times, in general prohibiting their observa-
tion. Nevertheless, for a large class of systems the essential 
dynamical features can be described by effective field theo-
ries with a much simpler structure (12, 13). This reflects the 
distinction between relevant and irrelevant operators in the 
microscopic model and dramatically reduces the complexity 
of the problem from a large number of constituents to a 
much smaller number of populated modes. Within this level 
of description, quantum recurrences manifest through the 
return of observables dominated by these modes. Designing 
the whole system such that the collective excitations follow 
a simple commensurate spectrum makes the observation of 
recurrences feasible, even for many-body systems containing 
thousands of interacting particles. 

Ultracold gases (14) are an ideal starting point to study 
these fundamental phenomena as they can be well isolated 
from the environment and excellent tools are available to 
prepare, manipulate and probe them. 

As a model system we study coherence in one-
dimensional (1D) superfluids. In first approximation, the 
corresponding many-body physics can be mapped to an ef-
fective low-energy description: a bosonic Luttinger liquid 
(15–18) where the collective excitations are free phonons. 
These phonons are directly related to the phase fluctuations 
observed in the interference of two 1D superfluids (19). 

The dephasing of these collective phononic excitations 
leads to a loss of coherence and long range order, proceed-
ing in a light-cone-like fashion (20–23). While the fully 
dephased state is described by a generalized Gibbs ensemble 
(24), the long time behavior crucially depends on the spec-
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trum of the collective phononic modes. In an harmonic lon-
gitudinal confinement with trap frequency ωz , these pho-

non frequencies are non-commensurate ( )ω ω 1 / 2 j z j j= +  

(25), with j being the mode index. If the atoms are confined 
to a box shaped trap, the phonon frequencies become com-
mensurate with ω j j∝ , and recurrences should be observ-

able at short times (26). 
We implement a box-like confinement in an atom chip 

double well setup (27) by adding hard walls to the very weak 
longitudinal harmonic confinement with the help of a blue 
detuned optical dipole potential (28). To observe recurrent 
dynamics we prepare a thermal equilibrium state in a cou-
pled double well potential (29). Typical samples have a line-
ar density of about 70 atoms per μm and, depending on the 
box size, between 2300 and 4800 atoms in each well, result-
ing in an interaction energy per atom close to 1 kHz. The 
tunneling coupling J  is tuned to a regime where the phases 

1,2θ  of the two superfluids lock, creating a system with a 

strongly correlated relative phase field 

( )( )1 2φ  θ θ   cos φ 1= − ≈ . To initiate the non-equilibrium dy-

namics, the coupling is rapidly ramped to zero leaving the 
two gases to evolve independently (Fig. 1). 

We observe the subsequent dynamics by matter-wave in-
terferometry (27) which gives direct access to the spatially 

resolved relative phase ( )φ z  between the two superfluids. 

To study the coherence and long range order we evaluate 
the two-point correlation function (23) 

( ) ( ) ( )( )' cos φ  φ ' ,C z z z z z= − = −  (1) 

with the expectation value taken over many experimental 
realizations. Further, we average over all points ,z z′  within 

the central part of the clouds that fulfill 'z z z= − . 

A typical temporal evolution of the phase correlations in 
a box trap of length 49 μL m=  is shown in Fig. 2A. Before 

the quench at 0t =  the relative phase between the superflu-
ids is locked and correlations are close to unity over the 
whole sample. Immediately after decoupling, this long range 
order decays, reflecting the dephasing of the collective exci-
tations. At the first minimum in Fig. 2B the initial state is 
completely dephased and the system is indistinguishable 
from a thermal state (see inset). For a system with incom-
mensurately spaced modes this dephased state persists for a 
long time, showing the emergence of statistical properties 
from the unitary quantum evolution (22). In our system 
however, mode frequencies are designed to be commensu-
rate and two partial recurrences of phase coherence are 
clearly visible in the subsequent evolution. 

To understand the recurrence time we need to look at 
the dispersion relation of excitations. For a perfect hard-

wall box confinement, 
πω j

c j
L

= , where c  is the speed of 

sound and j is the mode index (28). These modes are not 
only commensurate, but also equally spaced, facilitating a 

recurrence at the earliest possible time 
2π 2
Δω

Lt
c

= =  with 

Δω  being the energy spacing between the modes. At this 
time the lowest lying mode has finished a full rotation 
whereas the higher energy modes have all performed an 
integer number of turns bringing all excitations back to 
their initial configuration. Half way to this full recurrence 
the system rephases to the mirrored initial state. As we ini-
tially start from a nearly flat relative phase profile and our 
observable C  (Eq. 1) is insensitive to the transformation 

( ) ( )φ φz z→ −  this point is equivalent to the full recurrence. 

Therefore, the expected recurrence time for the correlations 

is given by rec
Lt
c

=  (blue and red bars in Fig. 2B), which 

agrees well with the observed peaks in coherence. 
Although two-point correlations return close to the ini-

tial state, the relative phase field does not recur. The time 

evolution of the coherence factor ( )cos φ  shows no recur-

rence (Fig. 2C). It relaxes during the initial dephasing dy-
namics and stays close to zero from then on. This is 
equivalent to observing that the ensemble averaged inter-
ference picture shows no revival of high contrast fringes 
(Fig. 2C, inset). At the time of the recurrences, the interfer-
ence fringes return close to their straight initial state, dis-
playing long range coherence throughout the system; 
however, for each distinct realization they are shifted by a 
random global phase. The reason behind this global phase is 
a small random atom number imbalance between the two 
wells. This imbalance originates from the thermal fluctua-
tions of the initial state, imperfections in the experiment 
and quantum noise relevant for lower temperatures. It leads 
to an inevitable population of the 0k =  mode (30) resulting 
in a global phase accumulation that is different for each 
realization and therefore to vanishing interference contrast 
in the ensemble average. In contrast, the phase correlations 

(Eq. 1) are insensitive to a global offset of the phase ( )φ z , 

and the recurrences of excitations on top of the field can be 
observed. This illustrates that recurrent behavior can be 
hidden below a global phase diffusion, which necessitates 
the measurement of, at least, two-point correlations to re-
veal the underlying coherent dynamics. 

To confirm the scaling of the recurrence time with the 
size of the system, we vary the length of the box potential by 
changing the position of the dipole trap walls. As the system 
size is increased the recurrence is shifted to later times (Fig. 
3A). For this comparison the time axis was rescaled by the 
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theoretical prediction for the speed of sound to make meas-
urements with slightly different atomic densities compara-
ble. Extracting the exact times of the first and second 
recurrence by fitting the peaks in the data (28) reveals the 
linear scaling with L  (Fig. 3B). 

Although the first two recurrences are clearly visible, for 
all these measurements the height of the recurrences is rap-
idly damped (see Fig. 2, A and B) and observing a third re-
currence becomes infeasible in most cases. To probe the 
decay of the recurrences in more detail, we studied the evo-
lution for different initial temperatures in the 49 μL m=  

trap. Increasing the initial temperature, the height of the 
observed recurrence with respect to the correlations of the 
initial state decreases rapidly (Fig. 4). The temperatures for 
this analysis are extracted from the full distribution func-
tions of interference contrasts (31) for the completely 
dephased state in between the recurrences (28). 

To understand the origin of this damping with tempera-
ture we considered different theoretical descriptions of our 
system. We first investigated the low-energy effective de-
scription by solving the Luttinger liquid Hamiltonian 
(dashed lines in Fig. 4) . This model describes the free prop-
agation of phononic excitations on top of a stationary back-
ground density. For a homogeneous background it would 
give perfect recurrences of phase coherence. For the com-
parison to the experimental data we consider an inhomoge-
neous background density that reflects our box-like 
potential. In addition, we took into account the typical 
spread in total particle number and particle number imbal-
ance between the wells, measured independently for the 
respective samples (28). The shot-to-shot fluctuations of the 
speed of sound induced by this spread together with the 
inhomogeneous background density constitute the only 
source of damping within the model. Although the recur-
rence times are well described as seen in Fig. 3B, the damp-
ing in this description is too weak to explain the 
experimental observations even for the lowest temperatures. 

As a second model (solid lines in Fig. 4) we numerically 
simulated the dynamics using the Gross-Pitaevskii equation 
for finite temperature initial states (28). This description 
goes beyond the free phononic excitations of the Luttinger 
liquid and takes interactions between these quasi-particles 
into account. It agrees well with our experimental findings 
(Fig. 4). This shows that physics beyond the low-energy de-
scription becomes relevant and indicates that phonon-
phonon interactions are responsible for the observed damp-
ing. As the temperature is increased these processes get 
more important as higher energy modes are populated. 

This illustrates that the observation of recurrences ena-
bles insight into the non-equilibrium dynamics of quantum 
many-body systems (32). Their shape and magnitude are 
sensitive probes into coherent dynamics far beyond the time 

scales of the initial relaxation. This makes them a versatile 
tool for the verification of coherence in quantum simulators 
and to test the regimes of validity for approximate models. 
Moreover, the long coherent evolution probed through re-
currences magnifies the effects of small perturbations whose 
influence on the short term dynamics are negligible. In our 
model case, the decay of recurrences clearly shows that 
physics beyond the Luttinger liquid sets in rather fast. A 
combined study looking at recurrences and mode occupa-
tions will shed light onto the fundamental quantum pro-
cesses in the relaxation of 1D systems. 
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Fig. 1. Schematics of the experiment and the measurement 
process. (A) Two coupled 1D superfluids ( )1 2ψ  in a double well potential 

are taken out of equilibrium by a sudden quench of the tunneling 
coupling J  to zero. Along the longitudinal direction z  the system is 
confined to a box shaped potential of variable length L . (B) The 
evolution of the decoupled system is measured through matter-wave 
interference in time-of-flight. A typical interference picture showing the 
atomic density n  is given. A sinusoidal function is fitted to the local 
interference fringes for each position z. On the left we show an example 
of such a fit (red) for one slice (blue) indicated by the dashed line in the 
image; the x  coordinate being the spatial direction of the double well 
separation. This gives access to the spatially resolved relative phase 
( ) ( ) ( )1 2φ θ θz z z= −  between the two superfluids (bottom). 
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Fig. 2. Dynamics after decoupling. (A) Temporal 
evolution of the phase correlation function ( ),C z t  

after decoupling in a 49 μm  long box potential. (B) A 
cut at 27.3 μcz m=  with the error bars giving the 68% 
confidence interval obtained from a bootstrap. The 
first and second recurrence are clearly visible and 
occur at the expected times /rect L c=  and 2 rect , as 
indicated by the vertical blue and red bars 
respectively. The distance cz  is chosen such that it is 
considerably smaller than the size of the system but 
long enough that the correlations after the initial 
dephasing are low; this is to facilitate a high 
recurrence visibility. The inset shows the phase 
correlation function at the first (blue) and second 
(red) recurrence and compares them to the 
correlations in between the recurrences (green) and 
the correlations in the initial state (orange). The 
corresponding points in (B) are colored accordingly. A 
thermal fit to the correlations in between the 
recurrences is given by the solid black line. (C) 
Evolution of the coherence factor ( )cos φ  in the center 

of the trap at 0z = , showing no sign of a recurrence 
(see main text for details). Owing to the near 
homogeneity of the system the behavior is similar 
over the whole sample. Therefore, in contrast to the 
phase correlation function the averaged interference 
picture shows no recurrent behavior as shown in the 
inset (integrated along the z-axis). 
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Fig. 4. Temperature dependence of the recurrence 
height. The data points represent measurements of 
the height recH  of the first (blue) and second (red) 
recurrence in a box of length 49 μL m=  for different 
effective temperatures effT  of the relative degrees of 

freedom. The height is extracted from fitting the peaks 
of the correlation function at 27.3 μcz m=  and the error 
bars give the 68% confidence interval obtained from a 
bootstrap. A fit of the full distribution function of 
measured interference contrasts at / 2rect t=  gives the 
effective temperature. The solid lines are results of 
GPE simulations analyzed in the same way as the 
experiment. The shaded area indicates the 
uncertainty caused by the limited experimental 
statistics (1 σ  deviation). The dashed lines are the 
predictions of the Luttinger liquid model for the 
experimental parameters (28). The experimental 
shot-to-shot fluctuations of the atom number as well 
as the inhomogeneous confinement are incorporated 
in both theoretical calculations and constitute the only 
source of damping in the Luttinger liquid model. 
 

Fig. 3. Comparison of the recurrences for different 
box lengths. (A) Phase correlations for three different 
box lengths 38, 49,L =  and 60 μm  (top to bottom). The 
time axis is rescaled with the theoretical prediction for 
the speed of sound c. (B) Recurrence time over the 
box length extracted from the phase correlations at 

27.3 μcz m=  (28). For each box length the time of the 
first (blue) and second (red) recurrence is plotted and 
compared to the ideal linear scaling (dashed lines). 
The error bars give the 68% confidence interval 
obtained from a bootstrap whereas the shaded bars 
indicate the predictions of the Luttinger liquid model 
for our particular trap (28). The vertical extension of 
the bars corresponds to the uncertainty of the 
decoupling time whereas the horizontal extension is 
chosen arbitrarily. 

on F
ebruary 22, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://www.sciencemag.org/
http://science.sciencemag.org/


Recurrences in an isolated quantum many-body system
Bernhard Rauer, Sebastian Erne, Thomas Schweigler, Federica Cataldini, Mohammadamin Tajik and Jörg Schmiedmayer

published online February 22, 2018

ARTICLE TOOLS http://science.sciencemag.org/content/early/2018/02/21/science.aan7938

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/02/21/science.aan7938.DC1

REFERENCES

http://science.sciencemag.org/content/early/2018/02/21/science.aan7938#BIBL
This article cites 45 articles, 4 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

registered trademark of AAAS.
 is aScienceAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. The title 

Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on F
ebruary 22, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/early/2018/02/21/science.aan7938
http://science.sciencemag.org/content/suppl/2018/02/21/science.aan7938.DC1
http://science.sciencemag.org/content/early/2018/02/21/science.aan7938#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

	Recurrences in an isolated quantum many-body system

