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Abstract – We propose a quantum harmonic oscillator as a model for the market force which
draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic
equation governing our model is transformed into a Schrödinger equation, the solution of which
features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution,
which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Ex-
change (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic
process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting
errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an eco-
nomic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency,
which sheds light on the relationship between finance and econophysics literature.
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Introduction. – In recent years extensive research has
been devoted to investigating stock return distributions
for asset pricing, risk management, and asset allocation
purposes. One important model of stock price evolution
is the geometric Brownian motion (GBM), which assumes
that the logarithm of a stock price follows a Brownian mo-
tion with drift and results in a Gaussian distribution for
log stock returns. However, empirical evidence illustrates
that the distribution of stock returns has non-Gaussian
properties including negative skewness and positive excess
kurtosis [1,2]. To describe the characteristics of stock re-
turn distribution better, many models have been proposed
such as the variance gamma model [3], Laplace distribu-
tion model [4], and Heston model [5].

As an alternative to traditional stock return mod-
els, an increasing number of quantum models have also
been applied to study the stochastic dynamics of stock
prices [1,6–16]. Some of these studies successfully capture

(a)E-mail: mychoi@snu.ac.kr

non-Gaussian properties of the stock return distribution:
For instance, Ataullah et al. regarded stock returns as a
particle evolving in a finite square potential well [1] and
Meng et al. analyzed the Chinese stock index by means
of quantum Brownian motion [16]. The advantage of such
quantum models over the traditional stock return models
lies in the incorporation of market conditions on the stock
returns, which is captured by the potential term in the
Hamiltonian. Given these features of quantum models,
however, few provide the rationale of choosing potential
wells and the economic explanation of physics concepts.

Besides deviations from the Gaussian distribution, an-
other consensus on stock return behavior is that relatively
high or low stock returns will dissipate as investors exploit
excess profits. This implies that there exists a market force
which draws a stock return from short-run fluctuations
to long-run equilibrium, which is supported by the evi-
dence of mean reversion in stock returns [17]. To capture
this market force, we take, among potentials in quantum
models, the harmonic potential; this should give a good
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description since any potential approximates to the har-
monic potential near the equilibrium. Specifically, the
harmonic potential determines a location-dependent drift
term in the stochastic process, with the restoring force
proportional to the displacement from the equilibrium.
We then consider the Fokker-Planck (FP) equation for the
probability density function (PDF) of stock returns, which
is converted to a time-independent Schrödinger equation.
The well-known mathematical analysis of the Schrödinger
equation facilitates an analytic solution for the PDF of
stock returns, which features discrete (“quantized”) eigen-
values and eigenfunctions. In this paper, we use the term
“quantum” to indicate the mathematical description of
stock prices, rather than the real quantum nature. Our
model outperforms the traditional models, such as the
GBM and the Heston model, in fitting the empirical dis-
tribution of FTSE All Share Index returns.

There is literature in which derivative pricing was in-
vestigated by means of eigenfunction expansion [18,19].
For instance, Davydov and Linetsky unbundled contin-
gent claims into portfolios of primitive securities called
eigensecurities. The pricing problem was reduced to a reg-
ular Sturm-Liouville problem, the solutions of which form
a complete orthonormal basis in the Hilbert space [18].
This is to be contrasted with the physics framework of this
paper in which we present the application of the eigenfunc-
tion expansion. The Schrödinger equation to which the FP
equation is converted takes the form of a Sturm-Liouville
equation; on the other hand, the harmonic potential is cho-
sen for a good reason, i.e., as a good approximation near
the equilibrium. Furthermore, unlike Davydov and Linet-
sky who used eigenfunctions simply as a mathematical
tool, we provide an interpretation of the eigenspectrum in
the context of economics and finance. For example, eigen-
states can be regarded as different uncertainty regimes in
finance, and the eigenenergy of each state as the degree
of investors’ collective trading activities, i.e., the pressure
on stock prices. The difference in eigenenergies between
two states corresponds to the barrier for the stock to over-
come and to transmit to higher uncertainty regimes. We
also explain the relationship among holding periods, speed
of price adjustment, and return volatility in line with fi-
nance literature. It is noteworthy that this correspondence
between concepts of stock returns and quantum physics
has nothing to do with the inherent quantum nature or
the interpretational problem in quantum mechanics; how-
ever, they provide a heuristic way of thinking about typical
questions in the finance area.

This paper consists of five sections: In the second sec-
tion we propose the quantum-harmonic-oscillator model.
The third section presents the methodology and data. In
the fourth section we mainly explain economic implica-
tions of the physics concept. Finally, the fifth section con-
cludes the paper.

Quantum harmonic oscillator. – Let us consider a
standard Wiener process Wt and the following stochastic

differential equation:

dx = v(x, t)dt + σ(x, t)dWt. (1)

Introducing the PDF ρ(x, t) of the random variable x
at time t, we obtain the FP equation from eq. (1) [20]:

∂

∂t
ρ(x, t) =

∂2

∂x2 [D(x, t)ρ(x, t)] +
∂

∂x

[
ρ(x, t)

∂V (x, t)
∂x

]
,

(2)
where D(x, t) ≡ σ2(x, t)/2 is the diffusion coefficient and
V (x, t) is the external potential determining the drift term
according to v(x, t) ≡ −∂V (x, t)/∂x. In the simple case of
constant D and time-independent potential V (x), eq. (2)
can be expressed in terms of the FP operator:

∂

∂t
ρ(x, t) =

[
∂2V

∂x2 +
∂V

∂x

∂

∂x
+ D

∂2

∂x2

]
ρ(x, t) ≡ L̂ρ(x, t).

(3)
Note that the operator L̂ is non-Hermitian because of

the first derivative. This can be remedied by transforming
the FP equation in eq. (3) to a Schrödinger equation with
a Hermitian Hamiltonian. To achieve this, we introduce a
new function [21]:

φ(x, t) ≡ ρ(x, t)√
ρs(x)

, (4)

where ρs(x) is the stationary solution of eq. (2) [22]:

ρs(x) =
1
C

e−V (x)/D (5)

with the normalization constant C ≡ ∫ +∞
−∞ dx e−V (x)/D.

Then the FP operator in eq. (3) leads to L̂ρ(x, t) =
−√

ρs(x)Ĥφ(x, t), where the Hermitian Hamiltonian op-
erator Ĥ is given by

Ĥ = −1
2

∂2V

∂x2 +
1

4D

(
∂V

∂x

)2

− D
∂2

∂x2 . (6)

The FP equation is now expressed as the time-
dependent Schrödinger equation in imaginary time τ =
−ih̄t:

ih̄
∂

∂τ
φ(x, τ) = Ĥφ(x, τ) = − h̄2

2m

∂2

∂x2 φ(x, τ)+U(x)φ(x, τ)

(7)
with the mass m ≡ h̄2/2D and effective potential [23]

U(x) ≡ −1
2

∂2V (x)
∂x2 +

1
4D

[
∂V (x)

∂x

]2

. (8)

The general solution of eq. (7) takes the form

φ(x, τ) =
∞∑

n=0

Anφn(x) exp
(

− i

h̄
Enτ

)
, (9)

where An is the amplitude of the (normalized) so-
lution φn(x) of the time-independent Schrödinger
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equation: Ĥφn(x) = Enφn(x) with eigenenergy En. The
solution of the FP equation thus reads

ρ(x, t) =
√

ρs(x)
∞∑

n=0

Anφn(x) exp(−Ent), (10)

where the amplitude is determined by the initial PDF
ρ(x, 0) according to

An =
∫ ∞

−∞
dxφ∗

n(x)[ρs(x)]−1/2ρ(x, 0).

Note that eq. (7) describes the dynamics of a parti-
cle of mass m in the potential U(x). The Taylor expan-
sion of U(x) around the equilibrium point x0, defined by
dU/dx|x0 = 0, reads

U(x) =
∞∑

n=0

1
n!

dnU

dxn

∣∣∣∣
x0

(x − x0)n. (11)

In case that deviations from the equilibrium are small,
we may neglect terms of higher order in x − x0 and write

U(x) = U(0) +
1
2
kx2 (12)

with k ≡ d2U/dx2|0, where we have taken x0 ≡ 0 without
loss of generality. In this way, U(x) is described by a
harmonic potential and the system reduces to a harmonic
oscillator.

We thus consider small deviations from the equilibrium
and resort to the quantum harmonic oscillator (QHO),
which is described by eq. (7) with the effective potential
in the form of eq. (12). Specifically, taking the harmonic
potential V (x) = γx2, we obtain the effective potential in
the harmonic form as well:

U(x) = −γ +
1
2
mω2x2 (13)

with γ = ω
√

mD/2. It is well known that the n-th eigen-
function of the harmonic oscillator is given by

φn(x) =
1√
2nn!

(mω

πh̄

)1/4
Hn

(√
mω

h̄
x

)

× exp
(
−mω

2h̄
x2

)
(14)

with the corresponding eigenenergy

En =
(

n +
1
2

)
h̄ω − γ = nh̄ω, (15)

where Hn is the n-th Hermite polynomial [24].
With eq. (5) given by

ρs(x) =
√

mω

πh̄
exp

(
−mω

h̄
x2

)
,

we finally obtain the solution of the FP equation

ρ(x, t) =
∞∑

n=0

An√
2nn!

√
mω

πh̄
exp(−Ent)

× Hn

(√
mω

h̄
x

)
exp

(
−mω

h̄
x2

)
. (16)

Note that this solution takes the form of a mixed
χ-distribution:

ρ(x, t) =
∞∑

n=0

Cn(t) ρn(x) (17)

with Cn(t) = (An/
√

2nn!)
√

mω/πh̄ e−Ent and ρn(x) =
Hn(

√
mω/h̄x)e−(mω/h̄)x2

. For example, we have ρ0(x) ∝
f(

√
2mω/h̄x; 1), ρ1(x) ∝ f(

√
2mω/h̄x; 2), ρ2(x) ∝

f(
√

2mω/h̄x; 3) − f(
√

2mω/h̄x; 1), etc. with f(x; k) =
21−k/2

Γ(k/2) xk−1 e−x2/2, where k is the degree of freedom and
Γ(z) is the Gamma function.

Classically, F ≡ −dU/dx = −kx corresponds to the
restoring force, which pushes the particle out of the equi-
librium position back to the equilibrium one. Further,
ω ≡ √

k/m gives the angular frequency of the harmonic
oscillator. A higher value of ω leads to faster adjustment
to the long-run equilibrium from short-run fluctuations.
To understand these physics concepts in the financial con-
text, we may think of x as the deviation of a log stock
return from its long-run equilibrium. The mass m can
then be regarded as the firm-specific characteristics that
determine the speed of price adjustment, such as the mar-
ket capitalization and trading volumes [11,15,25]. Further,
the spring constant k can be considered as common mar-
ket conditions. This analogy is consistent with the fact
that even with the common market force pushing tem-
porarily high or low returns back to the equilibrium, dif-
ferent speeds of price adjustment can be observed across
firms [26].

It is of interest that in classical mechanics, the particle
position is given by a deterministic function of time t, gov-
erned by Newton’s law of motion; in the aforementioned
financial context, this is analogous to the behavior of stock
prices with zero volatility that yields a deterministic tra-
jectory. In reality, however, stock price evolution appears
indeed random. Such random fluctuations are mathemati-
cally taken into account by quantum fluctuations inherent
in the Schrödinger equation formulation and the corre-
sponding probabilistic description is useful in probing the
“random evolution” of stock prices.

Since En = nh̄ω, terms of n ≥ 1 in the summation of
eqs. (16) or (17) decays exponentially with time t. In par-
ticular, in the limit t → ∞, only the ground-state (n = 0)
term survives. As a result, the initial memory gets lost
and deviation x of log stock returns from the equilibrium
follows, regardless of the initial distribution, exactly the
Gaussian distribution, in which case the model reduces to
the GBM for the price process. At finite time t, on the
other hand, the incorporation of excited states (n ≥ 1)
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Table 1: Summary statistics of stock returns for different holding periods (τ ).

τ No. of obs. Mean Std. Skewness Excess kurtosis
1 1746 0.0508 3.3070 −0.1540 7.0114
5 1742 0.0549 1.3824 −0.6503 5.6287
20 1727 0.0534 0.6545 −1.2350 4.0501

Table 2: Parameter estimates.

Models τ

1 5 20

GBM μ 0.0704 0.0738 0.0703
σ2 0.0433 0.0378 0.0339

Heston θ 1.558×10−4 1.513×10−4 1.383×10−4

QHO

C0 0.1708 0.3658 0.7506
C1 0.0035 0.0157 0.0646
C2 0.0208 0.0299 0.0517
C3 −0.0021 −0.0086 −0.0361
C4 0.0047 0.0064 0.0096
mω 9.666×10−36 4.434×10−35 1.866×10−34

increases the thickness of the tail, displaying leptokurtic.
The mixture of even and odd states leads to asymmetry
of the distribution, which captures skewness. Therefore
the excited states serve to capture the stylized facts of log
stock returns, i.e., skewness and kurtosis. Note that the
exponential decay takes the form of exp(−Ent), thus the
inverse value of E1 serves as a cut-off time of the stock
market. When t > E−1

1 , the contributions of upper levels
become much less important. Given a finite time t, the
contribution of the n-th excited state decreases exponen-
tially as n is increased. We thus need to consider only
a few eigenstates of small n, which makes it feasible to
manage eq. (16) for the fitting purpose.

Empirical analysis. – This section demonstrates that
the probability distribution derived from our model is fully
compatible with empirical data. Specifically, we fit ρ(x, t)
in the previous section to the PDF of returns on the FTSE
All Shares Index. The fitting procedure consists of two
steps: First, we estimate parameters in ρ(x, t) by mini-
mizing an error function, i.e., Cramér-von Mises statistic
T3. Second, we assess the goodness-of-fit with Cramér
statistic T0 to check how well the observed data match
the theoretical model with the estimated parameters.

We obtain the daily FTSE All Share Index from the
Bloomberg database, restricting the time span from 15
November, 2007 to 21 September, 2014. This period is
of interest, as it covers the global financial crisis, the Eu-
ropean sovereign debt crisis, and post-recession periods.
Different holding periods including day, week, and month
are considered for robustness, and then all annualized for
consistency of units:

x ≡ Rt =
252.5

τ
ln

(
St+τ

St

)
, (18)

where τ is the holding period equal to 1, 5, or 20 trading
days, and St is the closing price of the FTSE All Share
Index.

Table 1 summarizes the statistics of stock returns, which
are leptokurtic with negative skewness. It is thus mani-
fested that returns do not follow a Gaussian distribution.

We estimate the parameter set Θ that minimizes the
distance between the theoretical distribution and the em-
pirical PDF, which is measured by the Cramér-von Mises
statistic [1,27]:

T3(Θ) =
1

12M
+

M∑
j=1

[
F (rj ; Θ) − j − 1/2

M

]2

, (19)

where rj ≡ Rj − R̄ is the j-th ordered centered return
with R̄ being the historical average return used as a proxy
for the long-run equilibrium, M is the total number of
observations and F (rj ; Θ) is the accumulated area under
the probability density below the j-th ordered centered
return for given parameter set Θ.

As remarked in the previous section, the amplitudes of
the 6th and higher eigenstates are rather small and neg-
ligible. We thus consider only the first five eigenstates
(0 ≤ n ≤ 4). There are in total six undetermined param-
eters, which are the amplitudes of five eigenstates, Cn for
n = 0, 1, 2, 3, and 4, and an additional one mω appearing
as a whole in the PDF given by eq. (17). We also esti-
mate the parameters of the GBM and the Heston model.
Estimated parameters are presented in table 2.

Next we assess the extent to which the models actually
reflect the data through the Cramér goodness-of-fit test.
The test statistic is of the form

T0 =
20∑

i=1

(N5i − E5i)2

E5i
, (20)
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Table 3: Cramér goodness-of-fit tests.

τ GBM p-value Heston p-value QHO p-value
1 236.96 0.0000 43.35 0.0007 22.82 0.0633
5 138.05 0.0000 57.95 0.0004 15.63 0.3362
20 186.76 0.0000 148.79 0.0000 20.99 0.1090
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Fig. 1: (Colour online) PDF of log returns x in the GBM (blue), the Heston model (black), and our QHO model (red), for the
holding period τ = 1 (a), 5 (b), and 20 (c). The empirical data are also plotted (histogram).
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Fig. 2: (Colour online) Residual plots corresponding to fig. 1.

where N5i and E5i are the numbers of observations falling
between the 5(i−1)-th and the 5i-th percentiles of the em-
pirical PDF and of the fitted distribution, respectively.
The asymptotic distribution of T0 is a χ2(n−k−1) distri-
bution, where n is the number of percentiles and k the
number of parameters.

The null hypothesis of the Cramér goodness-of-fit test
is that data come from the fitted distribution. If T0 is
larger than the critical value, the null hypothesis can be re-
jected1. According to table 3, we reject the null hypothesis
for the GBM and the Heston model since all the p-values
are smaller than 0.01. In case of the QHO model, the p-
value of daily data is larger than 0.05 and the p-values of
weekly and monthly data are well above 0.1. Thus one
may not reject the null hypothesis that data come from
the distribution of the QHO model. In short, the QHO
model provides the best fit among the three models.

Discussion. – We plot in fig. 1 the fitted PDF of each
model along with the empirical distribution, and in fig. 2

1Note that the degree of freedom is 17 for the GBM, 18 for the
Heston model, and 14 for our QHO model. There are six param-
eters in the QHO model. However, since they should satisfy one
constraint, the number of free parameters reduces to five.

the fitting error of each model. They demonstrate that our
QHO model results in the smallest fitting errors, thus visu-
ally confirming that our model provides a more adequate
description of the empirical distribution. Specifically, the
GBM severely understates and overstates the probabil-
ity density of log returns around zero and in the moder-
ate positive and negative ranges, respectively; the Heston
model exaggerates the probability density of small positive
or negative returns, and this exaggeration becomes worse
as the holding period increases. In contrast, the fitting
error of the QHO model remains small in any range of log
returns and is affected little by the holding period. To-
gether with the goodness-of-fit statistics shown in table 3,
we conclude that the QHO approach outperforms the tra-
ditional stock return models.

The sources of such good fit are i) the incorporation
of the market uncertainty, which was modeled purely as
a random walk in the traditional stock return models,
through the properties of wave functions and ii) the con-
sideration of the market force which draws short-run fluc-
tuations to the long-run equilibrium through the QHO.

As addressed in the second section, the solution of the
Schrödinger equation is expressed as a linear combination
of eigenfunctions corresponding to discrete eigenstates.
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Table 4: Probabilities of five low-lying eigenstates.

τ P0 P1 P2 P3 P4 mω

1 0.9842 0.0004 0.0145 0.0001 0.0008 9.666×10−36

5 0.9907 0.0018 0.0066 0.0005 0.0003 4.434×10−35

20 0.9856 0.0073 0.0047 0.0023 0.0001 1.866×10−34

Eigenstates are associated with a set of discrete values
of physical quantities, such as energy levels. For the n-th
eigenstate, the energy En and variance σ2

n are given by lin-
ear functions of the quantum number n: En = nh̄ω and
σ2

n = (2n + 1)(h̄/2mω). The most stable eigenstate is the
ground state (n = 0), with the lowest energy and variance.
In order for a particle to transit to an excited state at a
higher energy level, it must absorb energy enough to make
a quantum jump to that excited state, which also has a
larger variance.

If we regard the variance of the quantum state as the
level of market uncertainty, i.e., the stock market volatil-
ity, and the energy as the degree of investors’ collective
trading activities, i.e., the pressure on stock prices, then
the QHO model is commensurate with the study in ex-
isting finance literature. For instance, it was argued that
accumulated price pressure exceeding some threshold can
induce large price movements and that the stock market
volatility could exhibit a quantum change [28], which is
consistent with the properties of the QHO model. In par-
ticular, higher market uncertainty corresponds to a higher
energy level. Therefore the market tends to limit high
volatility by putting a high energy threshold on it.

Note that the probability for the particle in an eigen-
state is proportional to the square of the amplitude of that
eigenstate. Accordingly, Pn ≡ N−1|Cn|2 with the normal-
ization factor N ≡ ∑4

k=0 |Ck|2 represents the probability
of a stock return residing in the n-th eigenstate. Table 4
presents the probability Pn computed for n = 0 to 4. It is
shown that the ground state (n = 0), following the Gaus-
sian distribution, has a probability higher than 90 percent
regardless of the holding period. This indicates that the
stock market tends to be bounded mostly at the smallest
uncertainty level. In other words, it has a small possibil-
ity to be in the eigenstates with higher volatility, which is
compatible with the stylized fact that there is an equilib-
rium level to which volatility will eventually return in the
long run [29].

Although the ground state takes the largest probability,
we still observe nuances of probabilities across different
holding periods. In table 4, as the holding period in-
creases, the probabilities of odd states also increase while
those of even states decrease. This makes it possible
to explain the properties of moments, shown in table 1:
The presence of odd states accounts for the asymmetry of
the distribution. A more asymmetric distribution with a
larger skewness (longer holding period) would thus have
larger probabilities of odd states. On the other hand, even

states, which are symmetric, contribute to the fat tail and
lead to a higher kurtosis. Therefore we find that returns
in longer holding periods have lower probabilities of even
states and are less leptokurtic with lower excess kurtosis.

The disparity across different holding periods has its ori-
gin in the parameter ω which characterizes the harmonic
oscillator. Since m can be thought of as the market cap-
italization (or firm-specific characteristics in general), it
is persistent for different holding periods of one stock in-
dex. Therefore, in line with the evidence in table 2, the
parameter ω increases as the stock is held for longer pe-
riod. Since ω is the angular frequency measuring the rate
of oscillations around the equilibrium, we can regard ω as
the speed of mean reversion of stock returns. During short
holding periods when investors aim to speculate in stocks,
greater information disparity and the resulting bias lead to
price overreaction, thus retarding the price reversion pro-
cess and leading to a lower speed of mean reversion, and
vice versa for long holding periods. On the other hand,
a lower mean reversion speed results in a more volatile
distribution [30]. This helps to explain the negative re-
lationship between the holding period and stock return
volatility, which keeps parallel with Atkins and Dyl [31].

Conclusion. – Considering that the market always
draws back the stock return from short-run fluctuations to
the long-run equilibrium, we have proposed a model based
on a QHO and demonstrated empirical evidence with the
FTSE All Share Index. It has been found that our model
based on a QHO outperforms the traditional stochastic
process models, leading to smaller fitting errors and bet-
ter goodness-of-fit statistics. The incorporation of market
uncertainty through the properties of wave functions is one
of the sources of such excellent performance. The model
shows that stock returns follow a mixed χ distribution,
among which the ground state is Gaussian and the ex-
cited states contribute to non-Gaussian features. We also
provide the economic analogies of physics concepts: While
the eigenstates correspond to uncertainty regimes, the dif-
ference in the eigenenergy between two states represents
the barrier between the two regimes. It is thus concluded
that characteristic features of QHO are indeed relevant
although the model has been derived from the stochastic
equation for a Wiener process, without regard to quantum
mechanics in physics.

One can think of extensions of our approach to various
other problems. An example is to apply it to international
comparison, e.g., the US vs. China, which gives an insight
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on the difference between the two markets. There exists
10% daily return limitation in the Chinese stock market,
in which case the infinite square well might serve as a more
proper potential. Another extension involves application
to returns of different portfolios, e.g., large vs. small, value
vs. growth, etc. Other than the stock returns, it is also
feasible to model the interest rate through the quantum
approach and apply it to the bond market. Further, our
model can also be applied to risk management, e.g., com-
puting Value at Risk based on the PDF of the quantum
harmonic oscillator and comparing it with that from his-
torical simulations or extreme-value theory.
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