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In this Letter we show that communication when restricted to a single information carrier (i.e., single
particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand,
quantum systems can surpass this limitation. We show that communication bounded to the exchange of a
single quantum particle (in superposition of different spatial locations) can result in “two-way signaling,”
which is impossible in classical physics. We quantify the discrepancy between classical and quantum
scenarios by the probability of winning a game played by distant players. We generalize our result to an
arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero
as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to
win the game with certainty.
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Introduction.—Generally speaking, communication is
the process of transmitting a message (information) from
a sender to a receiver [1]. We usually think of sending
physical information, i.e., a message embodied in an
information carrier and sent as a signal, such as voltage
signals, speech, video, or radar. In the classical world,
physical systems that carry information obey the laws of
classical physics. For example, electromagnetic signals
propagate in space according to Maxwell’s equations; thus,
the speed of information transfer is fundamentally limited
to that of light. Similarly, in radio communications,
information flows from a radio emitter to the radio receiver
but not vice versa, as it follows from the causality principle.
In other words, abilities and limitations of communication
and information processing in general are governed by the
laws of physics. From that perspective, quantum physics
together with its counterintuitive principles allows for novel
possibilities that are not permissible in the classical world.
Encoding, transmitting, and decoding information carried
by quantum systems enables distant parties to beat the
limits fundamentally imposed by the laws of classical
physics. The most prominent examples include quantum
communication complexity [2,3], quantum key distribution
[4,5], quantum teleportation [6], and many others.
In this Letter we further investigate the discrepancy

between classical and quantum information processing. We
analyze the model of communication that is restricted to
(a) a single information carrier (i.e., single particle), and
(b) the finite speed of propagation. We show that the model
suffers from fundamental limitations when restricted to

classical systems (particles). On the other hand, quantum
mechanics allows for a novel possibility, i.e., to put
particles in superposition of spatially distinct locations,
which turns out to be a more powerful resource for
communication (as compared to its classical counterpart).
In particular, we show that communication restricted to the
exchange of a single quantum particle that is coherently
distributed at different spatial locations can result in a “two-
way” signaling, which is essentially impossible by using
classical resources. Based on the model, we introduce a
simple game played by distant players that are supposed to
accomplish a certain task by exchanging (limited) commu-
nication. We show that the probability to win the game is
bounded and strictly lower than 1 for all classical strategies.
In contrast, quantum information carriers in (spatial) super-
positions enable players to accomplish the task with
certainty. Unlike many quantum information protocols
based on entanglement and quantum correlations between
different parties, our task involves only a single quantum
particle and it is based solely on the superposition principle.
In this respect our findings are similar to recent proposals
exploring quantum superpositions for information process-
ing purposes, such as “quantum acausal processes” [7],
superposition of orders [8] and directions [9], quantum
combs [10], quantum switch [11], and quantum causal
models [12]. Some of these novel phenomena have been
demonstrated in recent experiments [13,14].
Two-way communication with a single particle.—

Consider a classical model of communication where two
agents Alice and Bob are located at a distance d from each
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other and they are allowed to communicate via a single
information carrier. Here as a carrier, we think of a particle
or object that can travel with the finite speed bounded by c.
For simplicity, we assume that the speed of information
transfer matches the maximal value c. For example, if Alice
holds the particle, she can imprint the message in it and
send it to Bob. The message needs d=c time to arrive at
Bob’s side. We assume that the communication channel is
open for a certain time window of d=c ≤ τ ≤ d=cþ ϵ,
where ϵ ≥ 0 is a small constant. The time window τ is set
such that the particle has enough time to arrive at Bob’s
side, but not to come back to Alice. This is what we mean
when we refer to limited communication, i.e., within the
time window τ, A and B can exchange only a “one-way”
communication. At time t ¼ 0, A and B are given the input
variables x and y by the referee and they are asked to reveal
the output variables a and b at the later time t ¼ τ. If we
represent the communication in the space-time diagram
[see Fig. 1(a)], it is clear that there are only two possible
options: i.e., if the particle was in possession of Alice at
t ¼ 0, she can encode her input in it and send it to Bob, but
she gets no information on Bob’s input, or vice versa. In the
formalism of causal diagrams [12], there are two possible
causal relations between the variables x, y, a, b as shown in
Fig. 1(b). Therefore, the probability distribution pðabjxyÞ
is a classical mixture of one-way signaling distributions,
i.e.,

pðabjxyÞ ¼ λpAðajxÞpA≺BðbjxyaÞ
þ ð1 − λÞpBðbjyÞpB≺AðajxybÞ; ð1Þ

where symbol ≺ denotes the direction of signaling; e.g.,
A≺B denotes the case of A sending her particle to B. The
probability distribution (1) is completely characterized by a
the “so-called” classical polytope [15], and its facets are
represented by the Bell’s-like inequalities which impose the
limits on classical models. For the case of binary inputs x,
y ¼ 0, 1 and binary outputs a, b ¼ 0, 1, there are only two
inequivalent inequalities [16],

pða ¼ y; b ¼ xÞ ≤ 1

2
; ð2Þ

pðxða ⊕ yÞ ¼ yðb ⊕ xÞ ¼ 0Þ ≤ 3

4
; ð3Þ

known as two variants of the “guess your neighbor’s input”
(GYNI) game [17]. Here x and y are uniformly distributed,
i.e., pðx; yÞ ¼ 1=4. We will focus on Eq. (2) which, when
translated into the language of communication games,
results in the requirement of computing the neighbor’s
input. More precisely, for given inputs x and y, A and B are
asked to reveal the outputs a ¼ y and b ¼ x, respectively.
Clearly, in the classical scenario, the probability of success
is bounded by Eq. (2).
In contrast to the classical case, quantum mechanics

allows us to put the particle in superposition of different
spatial locations. Let A and B share a single quantum
particle prepared in a superposition of their two distinct
locations, i.e., ∝ jparticle withAi þ jparticle withBi. For
the sake of simplicity of notation, we will use the second
quantization formalism. Thus, the initial state of the system
is given by

jψiin ¼
1ffiffiffi
2

p ðj0iAj1iB þ j1iAj0iBÞ ¼
1ffiffiffi
2

p ðâ† þ b̂†Þj0iAj0iB;

ð4Þ
where, for example, j1iAj0iB indicates that particle is
localized with Alice, whereas Bob has zero (vacuum)
particles in possession. The operators â† and b̂† are the
standard ladder operators that create the particle on A’s and
B’s side, respectively. Note that we use ladder operators just
for convenience, and as long as we are dealing with a single
particle, our results are completely independent of the
distinguishability property or the type of particle used.
After receiving their inputs at time t ¼ 0, the players will
encode them by adding a local phase to the state, i.e., â† →
ð−1Þxâ† and b̂† → ð−1Þyb̂†. Thus, the initial state is
transformed into

jψiin →
1ffiffiffi
2

p ½ð−1Þxâ† þ ð−1Þyb̂†�j0iAj0iB: ð5Þ

Immediately after the encoding (practically at time t ≈ 0),
each player sends its part of the particle to the partner. In
addition, a unitary device is placed right in the middle
between A and B (at the distance d=2, see Fig. 2), such that
the particle, when sent from A to B, is “half-reflected” and
“half-transmitted” in a coherent way. A similar situation is
found if the particle is sent from B to A. The unitary device
serves as a communication channel, and it can be realized
in practice by putting a simple potential barrier for material
particles or an ordinary beam splitter for the case of single
photons. In other words, the unitary device transforms the
modes in the following way:

FIG. 1. (a) Space-time diagram. Within the time window τ
either A signals to B or B to A. (b) Causal diagram. There are two
possible causal relations between variables x, y, a, b; i.e., either x
influences a and b, a influences b (in general, a can be generated
in past of b, i.e., at time t ¼ 0), whereas y influences b only (left)
or vice versa (right).
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â† →
1ffiffiffi
2

p ðâ† þ b̂†Þ; b̂† →
1ffiffiffi
2

p ðâ† − b̂†Þ: ð6Þ

Finally, after exchanging the communication (at time τ), the
final state reads

jψif ¼

8>>>><
>>>>:

j1iAj0iB; x ¼ 0; y ¼ 0;

j0iAj1iB; x ¼ 0; y ¼ 1;

−j0iAj1iB; x ¼ 1; y ¼ 0;

−j1iAj0iB; x ¼ 1; y ¼ 1:

ð7Þ

At the last stage, the players perform the measurement, and
A will find the particle in her possession whenever the
parity of the inputs s ¼ x ⊕ y ¼ 0, whereas the particle is
located at Bob’s side for s ¼ 1. Therefore, the players can
read the parity of inputs perfectly, from which they can
easily extract the value of the neighbor’s input, i.e., a ¼
s ⊕ x ¼ y for A, and b ¼ s ⊕ y ¼ x for B. Thus they win
the game with certainty. Since A and B beat the bound (2) it
is clear that the resulting probability distribution pðabjxyÞ
is a two-way signaling distribution.
N-partite game.—Let us considerN players A0;…; AN−1

located at the vertices of a regular polygon, with each of
them at a distance d=2 from the polygon center. Here we set
N to be a prime number. As before, the players share a
single particle that can be communicated during the time
window d=c ≤ τ ≤ d=cþ ϵ. Furthermore, let us assume
that the particle has to be communicated through the center
of the polygon (we will analyze a more general situation by
the end of this chapter) so that it has enough time to be
exchanged between two players at most. At t ¼ 0 the
players are given the set of inputs x0;…; xN−1 ∈
f0;…; N − 1g and they are asked to reveal the binary
outputs a0;…; aN−1 ∈ fyes; nog at time t ¼ τ. The input

string X ¼ ðx0;…; xN−1Þ is defined by two integers ðn;mÞ,
i.e., xk ¼ nkþmðmod NÞ, with ðn;mÞ picked randomly
from the set n;m ¼ 0;…; N − 1 (with probability 1=N2).
The referee asks each player, say Ak, to answer the
following question: Does the given input string X satisfies
n ¼ k?
After exchanging communication, at time τ the players are

supposed to reveal their answers. In order to win the game,
only one player has to answer with “yes” (n ¼ k is true
for one k only), while the rest shall answer with “no.” Our
goal here is to show that the best classical strategy reveals
at most 1=N chance to win the game, whereas quantum
strategy allows players to win the game with certainty.
Before we proceed further, let us examine the simplest

example of N ¼ 2. In such a case, the set of inputs reduces
to x0 ¼ m and x1 ¼ nþm, where n, m ¼ 0, 1 are
randomly picked with probability 1=2. Clearly, the parity
of inputs satisfies s ¼ x0 þ x1 ¼ nðmod 2Þ. The set of
questions reduces to “Q0: Is s ¼ 0?” and “Q1∶ Is s ¼ 1?”
which is completely equivalent to the bipartite GYNI game
discussed earlier, with the classical probability of success
of 1=2. Interestingly, even without communication the
players achieve the same probability of success (e.g., they
agree to output s ¼ 0 always). The reason for that are the
rules of the game; i.e., they win the game if and only if they
both possess the information on parity s, which is the joint
property of inputs. Therefore, one round (one-way) com-
munication does not help to increase the probability of
success. However, as we will see later, for the case of N-
partite game, more rounds of communication, indeed will
help to boost the probability of success.
In the classical case, it is clear that within the time

window τ only a single one-way communication between
two players can occur (during τ the particle can cover
distance d; thus, it can travel from one vertex to the polygon
center and from there to an arbitrary vertex). For example,
Ak can keep the particle at t ¼ 0 and send his input to Al.
Now, since Al has in possession xk ¼ nkþm and
xl ¼ nlþm, he can simply find the difference xk − xl ¼
nðk − lÞ and from there he can extract the value of n ¼
ðxk − xlÞðk − lÞ−1 (N is chosen to be a prime number; thus,
the division modulo N is well defined). Therefore, Al can
verify n ¼ l with certainty. Nevertheless, the rest of N − 1
players do not have any information on inputs of the other
players. Therefore, they have to check n ¼ k solely on their
inputs xk ¼ nkþm (here k ≠ l). Since they are missing the
information on m, they can only guess the value of n (in
order to validate n ¼ k). One of the best strategies for them
is simply to answer “no” always. In this way they can
achieve 1=N probability to win the game. The other
potential strategy is to fix one player who will always
reveal “yes” and the other ones shall answer with no. Again
they achieve the same chance of 1=N to win the game.
Interestingly, in this particular case, they do not have to
exchange any communication.

FIG. 2. Communication with a single quantum particle. The
particle is prepared in superposition of two spatial locations A and
B. At time t ¼ 0 Alice and Bob encode their inputs and send their
“parts of the particle” to the partner. On the way, the particle hits
the unitary device (e.g., potential barrier) and gets half-reflected
and half-transmitted in a coherent way (see main text). (a) If the
parity of inputs is s ¼ 0, the transformation U deterministically
guides the particle to Alice’s location. (b) An analogous situation
where s ¼ 1 and the particle deterministically ends at Bob’s
location.
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Now we turn to quantum strategy. A single particle is
prepared in equally weighted superposition of N different
locations, i.e., jψiin ¼ ð1= ffiffiffiffi

N
p ÞPN−1

k¼0 â
†
kj0i0…j0iN−1.

Here, â†k labels the operator creating the particle at the
kth player’s location, i.e., â†kj0ik ¼ j1ik. After getting their
inputs, the players encode them into local phases
â†k → ωxk â†k, where ω ¼ e2πi=N and xk ¼ nkþm. In the
next step, each of them sends his or her “part” of the
particle towards the polygon center, where the particle hits
the unitary device that coherently “splits” the particle into
N different directions

â†k →
XN−1

l¼0

Uklâ
†
l : ð8Þ

Here, U is a discrete Fourier transformation, i.e.,
Ukl ¼ ð1= ffiffiffiffi

N
p Þω−kl. In other words, the particle sent from

Ak to the polygon center is partially reflected (with
probability 1=N) and goes back to the sender, and it is
partially scattered into N − 1 different directions (each with
probability 1=N) pointing towards other N − 1 players
(vertices of the polygon). The simple calculation shows that
the final state (after transformation) is given by

jψif ¼ ωmâ†nj0i0…j0iN−1 ¼ ωmj0i0…j1in…j0iN−1: ð9Þ

Thus, at time t ¼ τ, only the nth player will find the particle
in his possession. He is the only one who shall answer with
yes to the posed questionQn. The rest of players do not find
the particle located at their positions; therefore, they shall
answer with no. In this way they win the game with
certainty.
A slightly more general situation one finds if the

communication is not bounded to go through the center
of polygon; e.g., players can send the particle in any
possible direction. Since the particle travels with the speed
of c, during the time window τ ¼ d=c it can pass the
distance of at most dm ¼ d. Assume that the particle was
located at Ak at t ¼ 0. In such case, the optimal classical
strategy of exchanging as much information as possible
between players is to send the particle along the edges of a
polygon. In this way, up to kmax players will acquire
information on the input string X, where kmax ¼
⌊1= sin ðπ=NÞ⌋. Here ⌊:⌋ denotes the integer part function.
Nevertheless, the remaining N − kmax players will have no
information about X. As before, they can choose to output
no always. In such a case, they achieve the probability
of success kmax=N ¼ ⌊1= sin ðπ=NÞ⌋=N → ð1=πÞ, when
N → þ∞. Recall that in a single round of one-way
communication (particle traveling through the polygon
center), only one player gets the full knowledge on the
input string X; thus, the winning probability is 1=N. As we
have shown, this bound is achievable even without com-
munication. However, in this case where more players get

the full knowledge on X, the probability of success grows
with the number of communication rounds kmax ≥ 2 and
the players start to benefit from communication. A simple
calculation shows that the minimal number of players
needed to exceed the threshold is N ≥ 7 (N is prime).
Fock space perspective.—The Fock space formulation

presented here gives a good way to analyze the protocol
from the information-theoretic perspective. We examine
N ¼ 2 in details; the generalization to N > 2 is straightfor-
ward. First, we divide the protocol into three parts:
(a) encoding of inputs into a resource state, (b) transmission
through the communication channel, and (c) decoding.
Classically, the inputs are encoded into memory of an
information carrier (particle), which we label via the set of
states Σ ¼ f⊥; a1; a2;…g. Here ⊥ denotes the “vacuum
state,” which formally captures the situation of no-particle
present. For arbitrary encoding function E, we have
Eð⊥Þ ¼ ⊥, meaning that no information can be stored
in vacuum. Classically, a resource state ρab is a probability
distribution (shared randomness) on Σ × Σ. Since Alice and
Bob share a single carrier, there is a restriction on ρab; i.e.,
we have a nonzero support for ρ⊥b and ρa⊥ only (meaning,
the carrier is located at A or B). Therefore, in the most
general case, ρab is as a mixture ρab ¼ λδ⊥;arb þ ð1 − λÞ×
δ⊥;bra, where ra, rb are some distributions on Σ. Now, for
given inputs x and y, the players choose certain encodings
Ax, By∶Σ ↦ Σ, which map the resource state into ~ρab¼
λδ⊥;arByðbÞ þð1−λÞδ⊥;brAxðaÞ ¼ λρðyÞ þð1−λÞρðxÞ. Thus, in
every single run, the encoded state contains information on
one input only (either ρðxÞ or ρðyÞ), but never both of them
simultaneously, for arbitrary encoding. Here we used
Axð⊥Þ ¼ ⊥ and Byð⊥Þ ¼ ⊥. Finally, after passing ~ρ trough
a (memoryless) communication channel C, we get the final
state ρout ¼ λCðρðyÞÞ þ ð1 − λÞCðρðxÞÞ, which means that
the final distribution (after decoding) is a mixture of one-
way signaling distributions given by Eq. (1).
On the other hand, the resource state in quantum scenario

is a “coherent mixture” given by Eq. (4). After encoding,
the global state (5) contains the information on both inputs
simultaneously, which in turn enables two-way signaling
[after sending the state through a suitable communication
channel (6)]. Similarly to the classical case, zero informa-
tion can be stored in the vacuum state, i.e., Uj0i ¼ j0i, for
any encoding unitary U. Nevertheless, the possibility of
having a resource state in superposition of two classical
alternatives (i.e., ρ⊥b and ρa⊥) essentially enables for
quantum advantage.
Conclusions.—In this Letter we have investigated the

power of quantum superpositions for communication
purposes. Interestingly, we have shown that a single
quantum particle prepared in superposition of different
spatial locations can be a stronger resource for communi-
cation (as compared to the classical counterpart).
Furthermore, we show in the Supplemental Material [18]
that our scheme shows a remarkable resistance to arbitrary
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type of noise. One may notice that our framework does not
assume (a priori) the use of quantum entanglement, in
contrast to the majority of known quantum information
tasks and protocols. Nevertheless, when formulated in the
second quantization language, our resource state jψiin ¼
ð1= ffiffiffiffi

N
p ÞPN−1

k¼0 a
†
kj0i0…j0iN−1 is exactly the W state [21],

which is known to be a highly entangled state (particle-
vacuum entanglement). Thus, our results shed new light on
entanglement in Fock space (mode entanglement) [22] and
its applications for quantum information purposes.

The authors thank Časlav Brukner and Ämin Baumeler
for helpful comments.

[1] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).
[2] G. Brassard, Found. Phys. 33, 1593 (2003).
[3] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev.

Mod. Phys. 82, 665 (2010).
[4] C. H. Bennett and G. Brassard, Theor. Comput. Sci. 560, 7

(2014).
[5] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[6] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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