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Abstract
Despite the tremendous empirical success of quantum theory there is still widespread disagreement
aboutwhat it can tell us about the nature of theworld. A central question is whether the theory is about
our knowledge of reality, or a direct statement about reality itself. Current interpretations of quantum
theory, regardless of their stance on this question, regard the Born rule as fundamental and add an
independent state update (or ‘collapse’) rule to describe howquantum states change upon
measurement. In this paper we present an alternative perspective and derive a unified probability rule
that subsumes both the Born rule and the collapse rule.We show that thismore fundamental
probability rule can provide a rigorous foundation for informational, or ‘knowledge-based’,
interpretations of quantum theory. Our result requires an assumption of instrument non-
contextuality, a key notion that generalises previous approaches to non-contextuality. Therefore, the
framework also permits one to consider non-contextuality in scenarios with arbitrary causal structure.

Introduction

Knowledge-based, or informational, views of quantum theory are popular for a variety of reasons. Perhaps one
of the strongestmotivations for this perspective comes from the conceptual difficulties that surround quantum
state collapse uponmeasurement. If quantum states are a direct description of reality then this seems to demand
that collapse is a nonlinear, stochastic and temporally ill-defined physical process [1–4]. From a ‘knowledge’
perspective however, collapse is seenmerely as a formof information update, nomore problematic than classical
probabilistic conditioning [5–12].Whilst compelling, there is an obvious problemwith this kind of approach:
classical probabilistic conditioning treatsmultiple consecutive events on a single systemon exactly the same
footing asmultiple events on distinct systems: joint probabilities are defined in exactly the sameway in each case.
Thus, classical joint probabilities can be assigned to events in amanner that is independent of the spatio-
temporal relationships between those events. In quantummechanics however, the Born rule does not assign
joint probabilities to consecutive events [13],figure 1. Thismeans that knowledge-based interpretations, where
one argues that the Born rule is fundamental and the state update rule ‘merely a case of probabilistic
conditioning’, are deeply unsatisfactory. Both rules have to be introduced and justified separately.

In this paperwe aim to provide a solution to this problem and breathe new life into the knowledge-based
view of quantum theory.We present a proof of a unified quantumprobability rule that subsumes both the Born
rule and the state update rule. This rule is useful in a variety of contexts, fromquantum information [14–19] to
quantum causalmodelling [20–23], and non-Markovian dynamics [24–27]. Dubbed the ‘QuantumProcess
Rule’, we prove that one can derive this higher-order, generalised formof the standard quantumprobability rule
from the structure of quantumoperations and a single non-contextuality assumption. This approach is
analagous toGleason’s [28] and related [29–32] derivations of the ordinary Born rule.We also show that using
thismore fundamental approach, where one assigns joint probabilities to arbitrary quantum events, it is possible
to derive both the Born rule and the state update rule. A key conceptual advantage is that state update, or
‘collapse’need no longer be viewed as an ad hoc ingredient, independent and estranged from the core of the
theory.

OPEN ACCESS

RECEIVED

11 September 2017

REVISED

9March 2018

ACCEPTED FOR PUBLICATION

13April 2018

PUBLISHED

4May 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aabe12
https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0002-6547-6005
https://orcid.org/0000-0002-6547-6005
mailto:s.shrapnel@uq.edu.au
mailto:f.costa@uq.edu.au
mailto:g.milburn@uq.du.au
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabe12&domain=pdf&date_stamp=2018-05-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabe12&domain=pdf&date_stamp=2018-05-04
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Results

Measurements and the Born rule
In order to introduce the fewest possible assumptions, we take an explicitly operational perspective. Operational
theories can be phrased in terms of events, which define the results ofmeasurements. Each time ameasurement is
performed on a system, a number of possible events can be observed. The set of all events that can result from a
specificmeasurement is called a context. It is natural when constructing such a theory to assumemeasurement
non-contextuality [6, 30]. Thismeans that operationally indistinguishable events should have the same
mathematical representation in the theory2. Clearly, any probabilistic theory can be formulated in a non-
contextual way by appropriate relabelling of themathematical objects describing events.

In this setting, theminimal task of a physical theory is to non-contextually assign probabilities to such
measurement events. In essence this is the ‘probability rule’ of the theory and also defines the relevant state-
space.One can represent any such non-contextual probability rule (the Born rule being a prime example) by
means of a frame function. This is a function that associates a probability to every event, independently of the
context towhich it belongs, such that probabilities for all events in a given context sumup to one3. Crucially, the
frame function is not a probability distribution over the space of all events, as that would require a normalised
measure over the entire space.

Aswas shown in [29–32], the notion of a frame function can be used to derive the Born rule as the
appropriate non-contextual probability rule to applywhen one identifies events with the results of a
measurement on a quantum system. In this approach, events are identifiedwith quantum effects: for a d-level
quantum system, the full set of quantum effects is defined as     Î≔ { ( ) }E E, 0d d , where  ( )d is
the space of linear operators on a d-dimensional Hilbert spaced. Contexts are described by positive-operator-
valuedmeasures (POVMs), lists of effect operators { }E E, , ...1 2 that sumup to the identity, å =Ej j . The
subscript j labels the list of possiblemeasurement outcomes for a given context.

Assumingmeasurement non-contextuality heremeans that the probability of a particular quantum effect
(equivalently,measurement outcome) is assumed to be independent of the context (POVM) towhich it belongs.
Operationally, thismeans that the probability assigned to a given event does not depend on any extra
information regarding how it was achieved.

A frame function for quantum effects is defined as amapping from the set of all effects to the unit interval:

  [ ] ( )f : 0, 1 , 1d

Figure 1.Quantumprobability rules. (a)TheBorn rule assigns probabilities tomeasurements ondistinct systems: for a stateρ, and
measurement operatorsEA,B, the probability is r= Ä( ) [( ) · ]P E E E E, TrA B A B . (b)For two consecutivemeasurements on the same
system, one cannot apply theBorn rulewithoutfirst updating the state. The state update rule, defined as   r r r r= ( ) ( )TrA AA

for a completely positivemapA describing thefirstmeasurement, is typically introduced as an independent axiom in the theory.

2
In someworks, a distinction ismade between operational and ontological versions of non-contextuality [33–35], where the latter are used

to rule out hidden-variablemodels. Although the expression ‘measurement non-contextuality’was introduced in the ontological setting
[33], we here use it in the operational sense (corresponding to the simple expression ‘non-contextuality’used in [6, 30]). The addition of
‘measurement’ ismade here in order to distinguish the notion from ‘instrument non-contextuality,’ a termwe introduce in the next section.
3
The term frame function used in this paper is distinct fromGleason’s original use of the term. InGleason’s terminology, we are here

considering a positive frame function ofweight one. This is in accordance with the definition of a frame function in [29, 30].
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satisfying

å =( ) ( )f E 1 2
j

j

for any set = ¼{ }X E E, ,1 2 , ÎEj d such that

å = ( )E . 3
j

j

Using this definition, the task then is to prove that for each frame function, f, there is a unit-trace positive
operator ρ such that r=( ) ( )f E ETrj j

4.
Theproof in [30] follows three simple steps. First, oneproves linearity of the frame functionover thefield of non-

negative rational numbers, then extension to full linearity is obtainedbyproving continuity of the frame function.
Then, as the frame functionhas beenproved tobe linear, it canbe recast as arising froman innerproduct. In
particular, using theHilbert–Schmidt innerproduct on theoperator space  ( ), the frame function canbewritten
as r=( ) ( )f E ETr for somepositive semidefinite, unit-trace operatorρ. This both characterises theBorn rule and
also defines thedensity operator as the appropriate object to represent the quantumstate.

Aswe have noted, the above proof does not tell us how to assign probabilities to consecutive events. That is,
assumingwe know the state of a quantum systemprior tomeasurement, the Born rule alone does not tell us how
to update this state followingmeasurement. To remedy this situation, we nowwish to provide a similar proof for
a probability rule that can subsume both the Born rule and the state update rule.

Instruments and the quantumprocess rule
Weconsidermore general operational primitives than those of [30] and instead consider local regionswhere one can
performactions that are associatedwithoutcomes. The class of allowed local actions is broad: one canperform
measurements, realise transformations, or even add anddiscard ancillary systems. Such actions can also be associated
with local outcomes andwedefine aparticular single case outcome, associated to a given action, as the relevant event.
The event thusnow labels not only the outcomebut also any concurrent transformation to the local system.

Just as with effects in the traditional approaches, we assume aminimal operational labelling for
transformations: different interactions of the systemwith an environment, that cannot be distinguished by
looking at the system alone, will be assigned the same label.

If we consider a particular run of an experiment therewill in general be a collection of such events that occur,
one for each local region. One can associate a joint probability to this set of events, and, given enough runs of an
experiment, one can empirically verify probability assignments for each possible permutation of events.

Formally, an event in regionA is represented by a completely positive trace-non-increasing (CP)map
 A A:A

I O, where input and output spaces are the spaces of linear operators over input and outputHilbert
spaces of the local region,  º ( )AI

AI ,  º ( )AO
AO respectively (here identifiedwith the corresponding

matrix spaces) [36], see figure 2.Wewrite ≔ ( )L A A,A
I O for the set of linearmaps fromAI toAO.We denote

the set of CPmaps associated to each region, Ì LCPX X .
Wedemand completepositivity because inprinciple it should bepossible to performarbitrary quantum

operations in the local region.This includes performingoperations on a subsystem that is part of a larger system.
Completepositivitymeans that, for arbitrary dimensions of an ancillary system ¢A , themap  Ä¢A A transforms
positive operators into positive operators,where  ¢A is the identitymapon ¢A . Tracenon-increasingmeans that
 r r( )Tr Tr for all operatorsρ. ACPmapcanbedecomposed as r r= å =( ) †K Kj

m
j j1 , where theKraus

operators  K :j A AI O, j=1,K,m, satisfy å =
†K Kj

m
j j1 for a tracenon-increasingmap [37, 38].

The context for each set of CPmaps is nowno longer a POVMbut rather a quantum instrument [39]. An
instrument thus represents the collection of all possible events that can be observed given a specific choice of
local action. Given a local regionA, an instrument is formally defined as a set IA of CPmaps that sumup to a
completely positive trace-preserving (CPTP)map:



å r r=
Î

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

I

Tr Tr . 4A

A A

Weare now in a position to define the relevant frame function and derive the appropriate probability rule for
this scenario. Just as the Born rule tells us how to calculate the probability of a particular outcome given the
relevantmeasurement operator, theQuantumProcess Rule should tell us how to assign a joint probability to
each possible collection of local events given the relevant instruments.We assume ‘instrument’non-
contextuality, rather than ‘measurement’non-contextuality. That is, the joint probability for a set of events, one
for each region, is independent of the particular context (set of instruments) towhich they belong, see figure 3.

4
Henceforthwe omit the subscript j for notational convenience.
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As for [30], the non-contextuality assumption is formalised by requiring that probabilities are given by a
frame function. Each ‘frame’ is now a collection of instruments, one per region, rather than a single POVM.

Definition 1.A frame function, f, for a set of local non-intersecting regionsX=A,B,C, ..., is defined by:

1. f is a function from the Cartesian product of the set of CPmaps associated to each region, Ì LCPX X , to the
unit interval:

´ ´  [ ] ( )f : CP CP CP ... 0, 1 5A B C

2. f is normalised for all sets of CPmaps,X , that form instruments IX ,

  






å =
Î
Î
Î

( ) ( )
I

I

I

f , , , ... 1 6A B C

...

A A

B B

C C

Figure 2. Local region. A local regionA is defined by an input (AI ) and an output (AO)Hilbert space. An event is represented by a
completely positivemapA.

Figure 3. Instrument non-contextuality. Operations are performed in distinct local regions. OperationA in regionA corresponds
to a shared outcome of two different instruments, I1 and I ;2 B in regionB to a shared outcome of instruments I3 and I4.
Instrument non-contextuality implies the joint probability  ( )P ,A B for the two events is independent of whether instrument I1

or I2 was used in RegionA, andwhether instrument I3 or I4 was used in region B.

4
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Wenow show that this definition is sufficient to derive the newprobability rule. As in [30]we first prove
linearity of the frame function.

Theorem1.The frame function f is a convex-multilinear functional on ´ ´ ´CP CP CP ...A B C

By convex-multilinear wemean:

   

     

 

+ -

= + -

[ ( ) ]
[ ] ( ) [ ]

( )

f p p

pf p f

p

1 , , , ...

, , , ... 1 , , , ...

0 1

A A B C

A B C A B C

1 2

1 2

and similarly for all other regions B C, , ...

Proof.Wefix instruments at all regions, except for regionA, to be instruments with a single CPTPmap
each: , , ...B C

Consider two instruments applied in regionA:

  

  

=

= +

{ }
{ }

I

I

, , ,

, .

A A A A

A A A A
1 1 2 3

2 1 2 3

The frame function constraints imply:

     

    

+ + =

+ + =

[ ] [ ] [ ]
[( ) ] [ ]

f f f

f f

, , ... , , .. , , .. 1

, , ... , , ... 1.

A B A B A B

A A B A B

1 2 3

1 2 3

Therefore

   

  

+

= +

[ ] [ ]
[( ) ]

f f

f

, , ... , , ..

, , ...

A B A B

A A B

1 2

1 2

and thuswe have additivity for CP, trace non-increasingmaps.
We next prove homogeneity of the frame function for the rational numbers between 0 and 1. Take two

integers   În m1 , and aCP, trace-non-increasingmap. By convertingmultiplications by integers
into sums, from additivity of the frame functionwe have:




 

 

å

å å

å

=

= =

= =

=

= =

=

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

( )

( )

n

m
f

n

m
f

m

n

m
f

m
f

m

f
m

f
n

m

1
. 7

j

m

j

m

i

n

i

n

1

1 1

1

Therefore, having additivity and homogeneity, we have proved the convex linearity of f for rational numbers
between 0 and 1.

Convex linearity of the frame function on the real interval [0, 1] can be established using the ‘squeeze
theorem’ of elementary calculus [40]. Define two sequences of positive rationals, { }an increasing and { }bn

decreasingwith <a b 1n n , that converge to the same real number c. Then, for anyCPmapA, themap
 -≔ ( )c an

A
n

A is alsoCP. Thus,fixing allmaps in other regions to beCPTP,we have



  = +

( )
( ) ( ) ( )

f c

f a f f a

, ...

, ... , ... , ... .

A

n
A

n
A

n
A

Similarly, we have that  ( ) ( )f c f b, ... , ...A
n

A . This implies

   ( ) ( ) ( ) ( )a f f c b f, ... , ... , ... . 8n
A A

n
A

Because ( )a f , ...n
A and ( )b f , ...n

A both converge to ( )cf , ...A , equation (8) implies

 =( ) ( ) ( )f c cf, ... , ... 9A A

by the ‘squeeze theorem’.
We have thus proved that f is linear onCPA and, with similar steps, linearity can be proved for CPB, CPC, ...

which concludes the proof. ,
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Just as in ordinary quantummechanics a state is defined as a linear functional over effects (POVMelements),
we can define amultilinear functional over sets of events (CPmaps) as a process, in accordance with the
terminology of [20, 22, 41–48].

We next use the fact that a linear functional can be expressed bymeans of an inner product. This enables us
to derive a new probability rule using our frame function, and also gives the appropriate form for thematrix
representation of a process.

First consider that because each convex spaceCPX contains a basis of the entire linear space LX,X=A,B, ...,
the frame function f can be extended by linearity to amultilinear function on the spaces LA, LB, LC, ... Again by
linear extension, this defines a unique linear function on the product space Ä Ä ÄL L L ...A B C

Next, it is easy to show that a natural inner product between any two linearmapsA, A ä LA is defined as
follows (see the appendix for details):

   å t t
m

m m( ) ≔ [ ( ) ( )] ( )†, Tr , 10A A A A

where tm m=
-{ }d

0
12
is aHilbert–Schmidt basis for the d-dimensional input space:  t Îm ( )AI ,

t t=m m
† , t t d=m n mn( )Tr .

One can also represent this inner product in amore convenient (and familiar) formby representing theCP
maps associated to each region asChoi–Jamiolkowski (CJ)matrices [49, 50]. Recall, a CPmap associated to a
regionA, where input and output spaces are the spaces of linear operators over input and outputHilbert spaces,

 º ( )AI
AI ,  º ( )AO

AO , respectively, can be represented as amatrix5:

å= ñá Ä ñá∣ ∣ [ (∣ ∣) ] ( )M l j j l , 11A
j l

A A TI O

where T denotes transposition in a chosen basis and ñ ={∣ }j j
d

1
AI is an orthonormal basis inAI .We show in the

appendix that the inner product (10) can be expressed as

  =( ) ( ) ( )†M N, Tr 12A A A A

and it is independent of the choice ofHilbert–Schmidt basis.
This inner product determines an isomorphismbetween elements of Ä Ä ÄL L L ...A B C and linear

functionals on the same space.We can thus define a trace rule that allows one to determine the joint probability
for a set of CPmaps, one for each region:

 

  = Ä Ä

= Ä Ä

( )
( )

[( ) · ] ( )

f

M M W

, , ...

, ...

Tr ... , 13

A B

f
A B

A B
f
AB ...

where Î Ä Ä ÄL L L ...f
A B C is the linearmap that uniquely defines f andWf

AB ... is its CJ representation,
called the processmatrix. (In the following, wewill drop the subscript f.)

Positivity and normalisation of the frame function, equations (5) and (6) respectively, impose constraints on
the operatorsW that define valid processes. The set of processmatrices, together with the expression (13) for the
frame function, defines theQuantumProcess Rule. As discussed in [20], the set ofmatrices characterised by
positivity, equation (5), is further restricted if one assumes that local operations can be extended to act on
additionalmultipartite quantum states shared among the regions. The overall result can be summarised as
follows:

Theorem2.Given a set of regions =X A B, , ...where arbitrary quantum operations can be performed, any
instrument non-contextual probability assignment, expressed through a frame function as per definition 1,must be
given by theQuantumProcess Rule, equation (13), where the processmatrix W satisfies the conditions

Ä Ä ⋅ =[( ) ] ( )Tr M M ... W 1 14A B AB...

" = ( )M Ms.t. Tr 15X
X

X X
O

I

and



Ä Ä

"
[( ) · ]

( )
M M W

M

Tr ... 0

0. 16

A B AB

X

...

If one additionally assumes that each operation in region X can be extended to act on an additional input space ¢XI ,

with an arbitarymultipartite state r ¢ ¢A B ...I I shared across the regions, then the process matrixmust be positive
semidefinite, W 0, a strictly stronger condition than equation (16).

5
This definition alignswith the convention in [20]. Other definitions, differing by a transpose or partial transpose, do not change the

representation of the inner product.
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Property (15) is the CJ representation of the trace-preserving condition; therefore, the normalisation
constraint says that CPTPmaps can be performedwith unit probability. The resulting constraint on process
matrices differs from the analogous one for densitymatrices, r =Tr 1. In addition to an analogous affine
constraint, =W dTr O with dO the product of all output dimensions,Whas to satisfy further linear constraints.
We refer to appendix B of [42] for an explicit characterisation of such constraints.

Recovering the state update andBorn rule
Let us recapitulate the rationale so far: it was shown in [30] that if we accept the structure of quantum
measurements, we can identify quantumprobabilities as themost general non-contextual probability
assignments.Whereas this approach only considers a singlemeasurement/event—or atmostmeasurements of
separate quantum systems—in the quantumprocess approach outlined abovewe derive a general rule to assign
joint probabilities to an arbitrary number of events. The ordinary Born rule is thus recovered from the general
one in the case where a single region is considered—inwhich case instruments reduce to POVMs and process
matrices reduce to densitymatrices [20].

We are in particular interested in the situationwhere two consecutivemeasurements are performed on a
single quantum system.Gleason-type derivations of quantumprobabilities do not tell us how to assign joint
probabilities to two such events: onemust introduce an additional ingredient—the state update rule. If the
statistics for thefirstmeasurement are described by a densitymatrix ρ, and the firstmeasurement is described by
aCPmap, one calculates the probabilities for the secondmeasurement, given the outcome of the first is
known, by applying the Born rule to the updated state [51]






å

å
r r

r
r

r

r
= = =

=

 ( )
( )

( )
( )

†

†

K K

K KTr Tr
. 17

j

m
j j

j

m
j j

1

1

(Note that theupdate rule doesnotdependon theparticular decompositionof intoKrausoperators ={ }Kj j
m

1.) In
anoperational perspective, rule (17) is seen as aquantumanalogueof classical knowledgeupdate.Within thequantum
process framework, this ismore thanananalogy: theupdate rule isderived from the joint probability assignment.

Tomake the argument rigorous, we should remark again that the quantum frame function is not a
normalised probabilitymeasure over the entire space of potential events. Formally, the frame function defines a
parametrised probability for observing aCPmapX given an instrument IX in regionsX=A, ...:

  = Î
=

( ∣ ) ( )
( )

I IP f, ... , ... , ... if , ...

0 otherwise. 18

A A A A A

(This defines a conditional probability if amarginal ( )IP , ...A is assigned.)Even though the inclusionof instruments
is necessary to define (18) as a classical probability,wewill omit them in the following for notational convenience.

Expression (18) defines an ordinary, classical probabilitymeasure, which lets us use all themachinery of
classical probability theory. In particular, the conditional probability to observeB in regionB, given thatA

is observed in regionA, can be calculated from the joint probability distribution:

 
 



å

=

=
Ä

Ä

= ~
Î

( ∣ ) ( )
( )

[( ) · ]
[( ) · ]

( ) ( )
I

P
P

P

M M W

M M W

M W

,

Tr

Tr

Tr , 19

B A
B A

A

A B

M
A B

B
M

B B

A

wherewe introduced the conditional processmatrix [44]



å
Ä

Ä

~

Î
⎡⎣ ⎤⎦( )

≔
[( ) · ]

·
( )

I

W
M W

M M W

Tr

Tr
. 20M

A A
A B

A
M

B
A I O

B B

Relevant to the ordinary state update rule is the case whereA precedes temporallyB, and the evolution
between the two events is trivial. This scenario is described by the processmatrix (see, e.g., [22])

 r= Ä Ä[[ ]] ( )W , 21A A B BI O I O

 å ñá Ä ñá[[ ]] ≔ ∣ ∣ ∣ ∣ ( )j l j l , 22A B

jl

A BO I O I

where ρ is the densitymatrix describing the input state of regionA. A straightforward calculation shows that, in
this case, the conditional processmatrix reduces to
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 


 
r
r

r= Ä º Ä~ 
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )W
Tr

, 23M

A

A

B
B BA

I

O A O

which is the processmatrix description of regionB receiving a state described by the densitymatrix r A.

Conditioning versus updating
Some clarification at this pointmight be helpful regarding the distinction between probabilistic conditioning and
knowledge update (see, e.g., [52] for amore detailed discussion). In classical probability theory, the rules for
probabilistic conditioning simply follow from the axioms of the theory. These axioms can be assumed, as in
Kolmogorov’s approach, or derived from requirements on howone should consistently assign degrees of belief,
for example throughDutch book arguments [53] or theorems like that of Savage [54]. A consequence of
probabilistic conditioning is Bayes’ theorem for inverting conditional probabilities:

=( ∣ ) ( ∣ ) ( )
( )

P A B P B A
P A

P B
.

Importantly, this rule does not involve updating knowledge given new information: all information is contained
in the joint probability P(A,B), which is unchanged by the application of the theorem.

Knowledge update, on the other hand, refers to the process of updating one’s belief following the acquisition
of newdata. This process is not encoded in the axioms of probability theory and requires extra assumptions. For
example, if one assumes that all data values that were not observed can be discarded, one arrives at Bayes rule:

= =( ) ( ∣ )P A P A B b ,new old

where b is the observed value of the variableB. Implicit in this rule is the counterfactual assumption that values
that are not observed are known to be false. Thus, applying Bayes theorem, one arrives at the standard form for
Bayes updating:

=
=
=

( ) ( ) ( ∣ )
( )

P A P A
P B b A

P B b
.new old

old

old

In the quantum case, such counterfactual assumptions are known to be problematic [55]6. In our approach,
no such assumption is necessary, because the primitive object is the joint probability. From this perspective, the
‘state update’ rule is not an update at all, but rather an application of probabilistic conditioning. This insight
distinguishes this approach fromother attempts to leverage Bayesian arguments to justify an informational
interpretation of quantum theory [21, 23].

Discussion

In this workwe have shown that it is possible to use aGleason-type approach to derive a quantumprobability
rule that subsumes both the Born rule and the state update rule. By using the structure of local quantum
operations and a reasonable non-contextuality assumptionwe have derived both the new rule and the
appropriate object to represent the arbitrary background structure, or process. The central feature of the
probability rule is linearity. In contrast to previous derivations, where linearity was assumed [17, 20], here we
have shown that it can be derived from the assumption of non-contextuality alone7.

Our demonstration that the state update, or ‘collapse’ rule can be regarded as non-fundamental offers a new
perspective on a variety of foundational questions. In particular, informational interpretations of wavefunction
collapse can nowbe given a rigorous foundation: state update can be viewed as a case of classical probabilistic
conditioning. Thework here also presents the opportunity to extend no-go theorems for non-contextual hidden
variablemodels to scenarios involvingmore general causal structures [56].

Finally, a key advantage of the approach presented here is that it does not presuppose any a priori distinction
between space-like and time-like separated events. Therefore, it avoids conceptual difficulties associatedwith
the non-covariant nature of the state update rule. It is thus a promising direction for research aimed at
developing a fully relativistic version of the formalism that encodes space-time symmetries.

6
That is not to say that one can not apply counterfactual reasoning successfully in the case of single quantum contexts. Indeed, it is only

when one extends the requirement to a joint probability over all contexts that such counterfactual reasoning becomes problematic.
7
Obtaining linearity of the probability rule via an extension ofGleason’s theoremwas suggested, but not proved, in the supplementary

methods of [20].
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Appendix. Inner product for linearmaps

Herewe construct the inner product on the space of linearmaps     = { ( ) ( )}L :A A AI O and derive its
CJ representation. Recall that, given an inner product y fá ñ∣ on aHilbert space and an arbitrary basis that is
orthonormal with respect to this product, dá ñ =∣e ej k jk, one defines theHilbert–Schmidt scalar product for
operators  s r Î ( ), as

år s r s r sá ñ =( ) ≔ ( )∣ ( ) ( ) ( )†e e, Tr , 24
k k kHS

wherewemomentarily abandon theDirac notation and represent explicitly the action of an operator on a vector
as   rÎ Î( )v v . Note that theHilbert–Schmidt inner product does not depend onwhich basis is used in
its definition, as long as it is orthonormal with respect to the underlyingHilbert space inner product.

Wemove a step further and, based on theHilbert–Schmidt inner product, define an inner product for the
space LA of linearmaps. For this purpose, we select a basis ofHermitianmatrices for the input space that is
orthonormal with respect to theHilbert–Schmidt product (calledHilbert–Schmidt basis):

 t

t t
t t d

Î

=

=

m

m m

m n mn

( )

( )

†

,

,

Tr .

AI

The inner product between any two linearmaps,  is then defined in analogy to equation (24) and coincides
with the inner product introduced in themain text:

   

 

å

å

t t

t t=
m

m m

m
m m

( ) ≔ ( ( ) ( ))

[ ( ) ( )] ( )†

, ,

Tr , 25

S HS

where the subscript S stands for ‘superoperator’. Note that, just as for equation (24), the RHS of equation (25)
can be rewritten as a superoperator trace and is thus independent of the choice of basis.

Next, wewant to relate the superoperator inner product to theCJ representation. Reintroducing theDirac
notation, theCJ inner product between operators is defined as

 å ñá Ä ñá
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥≔ ∣ ∣ (∣ ∣) ( )M j k j k , 26

jk

A A

T

I O

 ( ) ≔ ( ) ( )†M N, Tr . 27CJ

Note that the inner product keeps the same form if definition (26) is replaced by its transpose.We can thus
re-write it as

 

 

 

 

å

å

å

= ñá Ä ñá ñá Ä ñá

= á ñá ñ ñá ñá

= ñá ñá

( )
[∣ ∣ (∣ ∣) ] ∣ ∣ (∣ ∣)

∣ ∣ [ (∣ ∣) (∣ ∣)]

[ (∣ ∣) (∣ ∣)] ( )

†

†

†

j k j k m n m n

j m n k j k m n

m k m k

,

Tr

Tr

Tr . 28

jkmn

A A A A

jkmn

mk

CJ

I O I O

To see how this relates to the superoperator inner product, we need to recall two useful facts.
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Lemma3.Given aHilbert space, the swap operator    Ä  ÄS: , defined by its action
y f f yñ ñ = ñ ñ∣ ∣ ∣ ∣S , can bewritten as

å t t= Ä
m

m m ( )S 29

for an arbitraryHilbert–Schmidt basis  t Ìm{ } ( ).

Proof.Viewed as an operator, S can be decomposedwith respect to a basis ñ{∣ }j of theHilbert space as
= å ñá Ä ñá∣ ∣ ∣ ∣S k m m kkm . On the other hand, viewed as a vector on the linear space of operators   Ä( ), S

can be decomposedwith respect to theHilbert–Schmidt basis as

å t t t t= Ä Ä
mn

m n m n[( ) · ] ( )S STr . 30

The components in the above representation are given by

å

å

t t t t

t t

t t d

Ä = Ä ñá Ä ñá

= á ñá ñ

= =

m n m n

m n

m n mn

[( ) · ] [( ) · (∣ ∣ ∣ ∣)]

∣ ∣ ∣ ∣

( )

S k m m k

m k k m

Tr Tr

Tr .

km

km

Plugging this into the decomposition (30), we obtain equation (29). ,

This lemma can be used to prove the completeness relation

*å t t d dá ñ á ñ =
m

m m∣ ∣ ∣ ∣ ( )m k n r . 31mn kr

Indeed, using t t=m m
† , we have

*å

å

t t

t t

d d

á ñ á ñ

= á á Ä ñ ñ

= á á ñ ñ =

m
m m

m
m m

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

m k n r

k n m r

k n S m r .mn kr

Wecan now re-write the superoperator inner product:

*

   

 

 

å

å å

å

t t

t t

=

= á ñ á ñ ñá ñá

= ñá ñá

m
m m

m
m m

( ) [ ( ) ( )]

∣ ∣ ∣ ∣ (∣ ∣) (∣ ∣)

[ (∣ ∣) (∣ ∣)]

†

†

†

m k n r m k n r

m k m k

, Tr

Tr

Tr .

mknr

km

S

Comparing this with equation (28), we conclude that    =( ) ( ), ,CJ S.

ORCID iDs

Sally Shrapnel https://orcid.org/0000-0001-8407-7176
FabioCosta https://orcid.org/0000-0002-6547-6005

References

[1] Ghirardi GC, Rimini A andWeber T 1986Unified dynamics formicroscopic andmacroscopic systems Phys. Rev.D 34 470
[2] TumulkaR 2006On spontaneouswave function collapse and quantum field theory Proc. R. Soc.A 462 1897–908
[3] Bassi A, LochanK, Satin S, Singh TP andUlbrichtH 2013Models of wave-function collapse, underlying theories, and experimental

testsRev.Mod. Phys. 85 471–527
[4] GisinN 2017Collapse.What else? arXiv:1701.08300
[5] OzawaM1997Quantum state reduction and the quantumBayes principleQuantumCommunication, Computing, andMeasurement

(Berlin: Springer) pp 233–41
[6] FuchsCA 2002Quantummechanics as quantum information (and only a littlemore) arXiv:quant-ph/0205039
[7] Caves CM, FuchsCA and Schack R 2002Quantumprobabilities as Bayesian probabilities Phys. Rev.A 65 022305
[8] WisemanHMandMilburnG J 2009QuantumMeasurement andControl (Cambridge: CambridgeUniversity Press)
[9] TimpsonCG2013Quantum Information Theory and the Foundations of QuantumMechanics (Oxford: OxfordUniversity Press)
[10] Hellmann F, KamińskiWandKostecki R P 2016Quantum collapse rules from themaximum relative entropy principleNew J. Phys. 18

013022

10

New J. Phys. 20 (2018) 053010 S Shrapnel et al

https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0001-8407-7176
https://orcid.org/0000-0002-6547-6005
https://orcid.org/0000-0002-6547-6005
https://orcid.org/0000-0002-6547-6005
https://orcid.org/0000-0002-6547-6005
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1098/rspa.2005.1636
https://doi.org/10.1098/rspa.2005.1636
https://doi.org/10.1098/rspa.2005.1636
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
http://arxiv.org/abs/1701.08300
http://arxiv.org/abs/quant-ph/0205039
https://doi.org/10.1103/PhysRevA.65.022305
https://doi.org/10.1088/1367-2630/18/1/013022
https://doi.org/10.1088/1367-2630/18/1/013022


[11] MerminND2017WhyQBism is not theCopenhagen interpretation andwhat JohnBellmight have thought of itQuantum (Un)
speakables II (Berlin: Springer)

[12] Brukner C 2017On theQuantummeasurement problemQuantum (Un)speakables II (Berlin: Springer)
[13] LeiferMS 2006Quantumdynamics as an analog of conditional probabilityPhys. Rev.A 74 042310
[14] Gutoski G andWatrous J 2006Toward a general theory of quantumgamesProc. 39thACMSTOC (SanDiego, CA, 11–13 June, 2007)

pp 565–74
[15] Chiribella G, D’ArianoGMandPerinotti P 2008Quantum circuit architecture Phys. Rev. Lett. 101 060401
[16] Chiribella G, D’ArianoGMandPerinotti P 2008Memory effects in quantum channel discrimination Phys. Rev. Lett. 101 180501
[17] Chiribella G, D’ArianoGMandPerinotti P 2009Theoretical framework for quantumnetworks Phys. Rev.A 80 022339
[18] Bisio A, Chiribella G,D’ArianoG and Perinotti P 2011Quantumnetworks: general theory and applicationsActa Phys. Slovaca. Rev.

Tutorials 61 273–390
[19] Bisio A,D’ArianoGM, Perinotti P and SedlákM2014Optimal processing of reversible quantum channels Phys. Lett.A 378 1797–808
[20] OreshkovO,Costa F andBruknerČ 2012Quantum correlations with no causal orderNat. Commun. 3 1092
[21] LeiferMS and Spekkens RW2013Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference Phys.

Rev.A 88 052130
[22] Costa F and Shrapnel S 2016Quantum causalmodellingNew J. Phys. 18 063032
[23] Allen J-MA, Barrett J, HorsmanDC, LeeCMand Spekkens RW2017Quantum common causes and quantum causalmodelsPhys.

Rev.X 7 031021
[24] ModiK 2012Operational approach to open dynamics and quantifying initial correlations Sci. Rep. 2 581
[25] RingbauerM,WoodC J,ModiK, Gilchrist A,White AG and Fedrizzi A 2015Characterizing quantumdynamics with initial system-

environment correlationsPhys. Rev. Lett. 114 090402
[26] Pollock FA, Rodríguez-Rosario C, FrauenheimT, PaternostroMandModi K 2018Non-Markovian quantumprocesses: complete

framework and efficient characterization Phys. Rev.A 97 012127
[27] Milz S, Pollock FA andModiK 2016Reconstructing open quantum systemdynamics with limited control arXiv:1610.02152
[28] GleasonA 1957Measures on the closed subspaces of aHilbert space J.Math.Mech. 6 885–93
[29] Busch P 2003Quantum states and generalized observables: a simple proof ofGleasonʼs theorem Phys. Rev. Lett. 91 120403
[30] Caves CM, FuchsCA,ManneKK andRenes JM2004Gleason-type derivations of the quantumprobability rule for generalized

measurements Found. Phys. 34 193–209
[31] Barnett SM,Cresser J D, Jeffers J and PeggDT 2014Quantumprobability rule: a generalization of the theorems ofGleason andBusch

New J. Phys. 16 043025
[32] HallM J 2016Comment on ‘Gleason-type theorem for projectivemeasurements, including qubits’ by F.DeZela arXiv:1611.00613
[33] Spekkens RW2005Contextuality for preparations, transformations, and unsharpmeasurements Phys. Rev.A 71 052108
[34] MazurekMD, PuseyMF, Kunjwal R, ReschK J and Spekkens RW2016An experimental test of noncontextuality without unphysical

idealizationsNat. Commun. 7 11780
[35] SchmidD and Spekkens RW2018Contextual advantage for state discrimination Phys. Rev.X 8 011015
[36] NielsenMandChuang I 2000QuantumComputation andQuantum Information (Cambridge: CambridgeUniversity Press)
[37] Hellwig KE andKrausK 1969 Pure operations andmeasurementsCommun.Math. Phys. 11 214–20
[38] Hellwig KE andKrausK 1970Operations andmeasurements. IICommun.Math. Phys. 16 142–7
[39] Davies E and Lewis J 1970An operational approach to quantumprobabilityCommun.Math. Phys. 17 239–60
[40] Smith RT andMintonRB1955Calculus (NewYork:McGraw-Hill)
[41] BruknerČ 2014Quantum causalityNat. Phys. 10 259–63
[42] AraújoM, Branciard C,Costa F, Feix A, Giarmatzi C andBruknerČ 2015Witnessing causal nonseparabilityNew J. Phys. 17 102001
[43] Feix A, AraújoMandBruknerČ 2015Quantum superposition of the order of parties as a communication resource Phys. Rev.A 92

052326
[44] OreshkovO andGiarmatzi C 2016Causal and causally separable processesNew J. Phys. 18 093020
[45] BranciardC, AraújoM, Feix A, Costa F, Costa F andBruknerČ 2016The simplest causal inequalities and their violationNew J. Phys. 18

013008
[46] BaumannV andBruknerČ 2016Appearance of causality in processmatrices when performing fixed-basismeasurements for two

partiesPhys. Rev.A 93 062324
[47] OreshkovO andCerfN J 2016Operational quantum theorywithout predefined timeNew J. Phys. 18 073037
[48] Abbott AA,Giarmatzi C, Costa F andBranciard C 2016Multipartite causal correlations: polytopes and inequalitiesPhys. Rev.A 94

032131
[49] ChoiM-D1975Completely positive linearmaps on complexmatrices Linear Algebra Appl. 10 285–90
[50] Jamiołkowski A 1972 Linear transformations which preserve trace and positive semidefiniteness of operatorsRep.Math. Phys. 3 275–8
[51] KrausK 1971General state changes in quantum theoryAnn. Phys. 64 311–35
[52] CatichaA andGiffinA 2006Updating probabilitiesAIPConf. Proc. 872 31–42
[53] DeFinetti B 1990Theory of Probability (NewYork:Wiley)
[54] Savage L J 1954The Foundations of Statistics (Wiley Publications in Statistics) (NewYork:Wiley)
[55] ŻukowskiM andBruknerČ 2014Quantumnon-locality—it ain’t necessarily so... J. Phys. A:Math. Theor. 47 424009
[56] Shrapnel S andCosta F 2017Causation does not explain contextuality arXiv:1708.00137

11

New J. Phys. 20 (2018) 053010 S Shrapnel et al

https://doi.org/10.1103/PhysRevA.74.042310
https://doi.org/10.1145/1250790.1250873
https://doi.org/10.1145/1250790.1250873
https://doi.org/10.1145/1250790.1250873
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.2478/v10155-011-0003-9
https://doi.org/10.2478/v10155-011-0003-9
https://doi.org/10.2478/v10155-011-0003-9
https://doi.org/10.1016/j.physleta.2014.04.042
https://doi.org/10.1016/j.physleta.2014.04.042
https://doi.org/10.1016/j.physleta.2014.04.042
https://doi.org/10.1038/ncomms2076
https://doi.org/10.1103/PhysRevA.88.052130
https://doi.org/10.1088/1367-2630/18/6/063032
https://doi.org/10.1103/PhysRevX.7.031021
https://doi.org/10.1038/srep00581
https://doi.org/10.1103/PhysRevLett.114.090402
https://doi.org/10.1103/PhysRevA.97.012127
http://arxiv.org/abs/1610.02152
https://doi.org/10.1512/iumj.1957.6.56050
https://doi.org/10.1512/iumj.1957.6.56050
https://doi.org/10.1512/iumj.1957.6.56050
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1023/B:FOOP.0000019581.00318.a5
https://doi.org/10.1023/B:FOOP.0000019581.00318.a5
https://doi.org/10.1023/B:FOOP.0000019581.00318.a5
https://doi.org/10.1088/1367-2630/16/4/043025
http://arxiv.org/abs/1611.00613
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1038/ncomms11780
https://doi.org/10.1103/PhysRevX.8.011015
https://doi.org/10.1007/BF01645807
https://doi.org/10.1007/BF01645807
https://doi.org/10.1007/BF01645807
https://doi.org/10.1007/BF01646620
https://doi.org/10.1007/BF01646620
https://doi.org/10.1007/BF01646620
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1007/BF01647093
https://doi.org/10.1038/nphys2930
https://doi.org/10.1038/nphys2930
https://doi.org/10.1038/nphys2930
https://doi.org/10.1088/1367-2630/17/10/102001
https://doi.org/10.1103/PhysRevA.92.052326
https://doi.org/10.1103/PhysRevA.92.052326
https://doi.org/10.1088/1367-2630/18/9/093020
https://doi.org/10.1088/1367-2630/18/1/013008
https://doi.org/10.1088/1367-2630/18/1/013008
https://doi.org/10.1103/PhysRevA.93.062324
https://doi.org/10.1088/1367-2630/18/7/073037
https://doi.org/10.1103/PhysRevA.94.032131
https://doi.org/10.1103/PhysRevA.94.032131
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0003-4916(71)90108-4
https://doi.org/10.1016/0003-4916(71)90108-4
https://doi.org/10.1016/0003-4916(71)90108-4
https://doi.org/10.1063/1.2423258
https://doi.org/10.1063/1.2423258
https://doi.org/10.1063/1.2423258
https://doi.org/10.1088/1751-8113/47/42/424009
http://arxiv.org/abs/1708.00137

	Introduction
	Results
	Measurements and the Born rule
	Instruments and the quantum process rule
	Recovering the state update and Born rule
	Conditioning versus updating

	Discussion
	Acknowledgments
	Appendix. Inner product for linear maps
	Here we construct the inner product on the space of linear maps LA=M:L(HAI)→L(HAO) and derive its CJ representation. Recall that, given an inner product 〈ψ∣ϕ〉 on a Hilbert space H and an arbitrary basis that is orthonormal with respect to this product, 〈e

	References



