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We show that under certain conditions an axisymmetric rotating spacetime contains a ring of points in
the equatorial plane, where a particle at rest with respect to an asymptotic static observer remains at rest in a
static orbit. We illustrate the emergence of such orbits for boson stars. Further examples are wormholes,
hairy black holes, and Kerr-Newman solutions.

DOI: 10.1103/PhysRevLett.120.201103

Introduction.—Our understanding of the properties of
spacetimes largely rests on the analysis of their geodesics.
Therefore, the study of geodesics has been a focus of
gravity research from its early beginnings. Indeed, describ-
ing the motion of particles and light, geodesics rapidly
established general relativity, predicting the observed
orbital precession of Mercury and the deflection of light
by the sun.
In recent years, the study of the orbits of stars around Sgr

A� has provided strong evidence for a supermassive
compact central object at the center of the Milky Way,
while observations with the Event Horizon Telescope
(EHT) should soon provide us with an image of this object,
i.e., presumably the shadow of a supermassive black
hole [1].
The orbits around Kerr black holes are well known [2]. In

contrast, much less is known about the orbits in spacetimes
of other compact rotating objects, such as boson stars,
wormholes, or hairy black holes. If such objects were to
represent serious contenders for compact astrophysical
objects, the presence of unique signatures—not present
for Kerr black holes—would be highly valuable for their
possible identification.
Here we would like to point out such a feature, which is

found in a number of rotating non-Kerr spacetimes. To this
end, let us consider a spacetime with a gravitational
potential, which has a minimum somewhere in a physically
accessible region (e.g., outside an event horizon). Since the
spacetime is rotating, there is frame dragging. Thus a zero
angular momentum particle would be rotating along with
the spacetime, and so would a particle with positive angular
momentum. However, a particle with negative angular
momentum might just stand still with respect to an
asymptotic static observer, if its angular momentum would
have precisely the right value, and its radial location would
correspond to a minimum in the potential.
In the following we briefly recall the geodesic equations

in the equatorial plane for a general rotating metric and
analyze the conditions necessary to have such static orbits,
where massive particles initially at rest remain at rest for all

times. In particular, we exemplify this mechanism for
rotating boson stars, and point out further examples of
spacetimes with static orbits, before we conclude.
Equatorial geodesics.—Consider an axisymmetric, rotat-

ing spacetime, possessing two killing vector fields, ξ ¼ ∂t
and η ¼ ∂φ, satisfying the Ricci circularity condition [3]

ξμRμ½αξβηγ� ¼ 0 ¼ ημRμ½αξβηγ�: ð1Þ

(The minimally coupled matter fields that warp these
spacetimes according to Einstein’s field equations do not
need to share these isometries.) Then the metric can be put
in the Papapetrou form, and on the equatorial plane the line
element can be chosen as

ds2 ¼ −Adt2 − 2BdtdφþDdr2 þ Cdφ2; ð2Þ

where A, B, C, and D are then only functions of the radial
coordinate r. The action of a test particle moving in this
spacetime is given by

S ¼ 1

2

Z
gμνuμuνdτ; ð3Þ

which yields the equations of motion in the equatorial
plane. The coordinates t and φ are cyclic, leading to two
first integrals, identified as the energy per unit mass and the
angular momentum per unit mass of the test particle as
measured at spatial infinity, namely,

E ¼ A_tþ B _φ; L ¼ −B_tþ C _φ: ð4Þ

For the equation of motion for the r coordinate we can
employ the four-velocity norm instead, uμuμ ¼ −1, which
yields

_r2 ¼ C
ΔD

ðE − VþÞðE − V−Þ; ð5Þ

with the effective potential
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V� ¼ BL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðCþ L2Þ

p
C

; ð6Þ

and Δ ¼ ACþ B2. Note that in the absence of ergoregions
V− is always negative. For our purposes it will be sufficient
in the following to only consider Vþ. From Eq. (4) we can
similarly obtain

_φ ¼ B
Δ
ðE − VφÞ; ð7Þ

where for convenience we introduce an angular poten-
tial Vφ ¼ −AL=B.
Orbits starting from rest.—The Lense-Thirring effect

makes it interesting to analyze what happens to particles
which are initially at rest. To accomplish this, the particle
must be placed at a point, where E ¼ Vþ ¼ Vφ, so that
both _r and _φ are zero. At this point,

ffiffiffiffi
A

p
jrst ¼ E; Bjrst ¼ −EL: ð8Þ

Let us now take a rotating boson star as an example to
illustrate such orbits of massive particles starting from rest.
(See, e.g., Ref. [4] for a recent review on boson stars. Orbits
in boson star spacetimes have been considered, e.g., in
Refs. [5–10].) For the particular example, we choose a
boson star without self-interaction with a boson mass
mb ¼

ffiffiffiffiffiffiffi
1.1

p
, a boson frequency ωs ¼ 0.84, and a rotational

quantum number m ¼ 1.
Figure 1 shows the effective potential Vþ together with

the angular potential Vφ for two values of the particle
angular momentum L, for which Eqs. (8) hold. Thus the
particle energy E is such that the particle starts from rest,
and the domain of its radial motion corresponds to the
horizontal line. When the motion starts from rest for a radial
coordinate rst < rmin, where rmin denotes the minimum of
the potential, the particle is pushed away from the center
and engages in the semiorbit, corotating with the star,
having the largest angular velocity (absolute value) at the

apocenter and being at rest at the pericenter. When the
motion starts from rest for a radial coordinate rst > rmin, the
particle is pulled towards the center and retains a pointy
petal orbit, counterrotating with respect to the star and
having the largest angular velocity (absolute value) at the
pericenter, while being at rest at the apocenter. Note, that
the occurrence of semiorbits and pointy petal orbits was
observed in Refs. [6,9].
Orbits remaining at rest.—We illustrate several orbits

starting from rest in Fig. 2 for the same boson star solution.
These orbits start at different values of the radial coordinate
always from φ ¼ 0, and are evolved for the same amount of
elapsed proper time Δτ. Besides the orbits, the oscillating
behavior of _φ is also exhibited (versus the proper time)
in Fig. 2.
As we increase the starting value of r, the orbits change

from corotating semiorbits to counterrotating pointy petal
orbits. Clearly, in between there arises a critical value of r,
rst ¼ 1.675 337 3. At this value a static particle remains
static for all times. Therefore rst represents the static orbit
ring. The occurrence of this static ring is seen from the
figure. The closer the particle starts from the static orbit ring
the smaller is its angular displacement during the time Δτ,
and the smaller is its radial amplitude around the critical
point rst ¼ 1.675 337 3. Thus, in the limit r → rst, the
particle remains at rest.
In this case the above conditions [Eq. (8)] are met

together with the circular orbit condition, namely,
∂rVþ ¼ 0. But then instead of exhibiting circular motion
the particle will remain at rest in a static orbit at a distance
rst from the center. Since the relations [Eq. (8)] combined
with the circular orbit condition yield ∂rVþ ¼ ∂rA=ð2EÞ, a
sufficient and necessary condition for a spacetime to allow
for a stable (unstable) static orbit ring in its equatorial plane
is therefore that its metric component gtt presents a
maximum (minimum) anywhere in this plane, ∂rA¼0,
where gtt < 0.
Figure 2 also shows, that the static orbits (red circle) are

located in the star’s interior, i.e., inside the radius where the

FIG. 1. Effective potential Vþ (red) and angular potential Vφ (blue). The horizontal solid lines (black) represent the particle energy E.
The intersection points with the potentials delimit the radial domain of the bound orbit. The vertical dashed lines (black) indicate the
location of the maximum value of the boson field. Left: Particle with L ¼ 0.01. Its starting rest position is located to the left of the
minimum of Vþ. Right: Particle with L ¼ 0.5. Its starting rest position is located to the right of the minimum of Vþ.
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scalar field assumes its maximum value (black circle).
Thus, if a particle is at rest at rst with respect to an
asymptotic static observer, it will remain at rest at all times,
provided only the gravitational interaction between this
particle and the boson star is taken into account.
To guarantee that this feature is independent of the

chosen parametrization, we need to assure that dφ=dr ¼
_φ=_r ¼ 0 at this point. In order to do so, we analyze this
ratio at a point near the static radius by obtaining the ratio of
the respective radially perturbed quantities, namely, δ _φ=δ_r.
We define

Vþ ¼ Eþ δVþ; Vφ ¼ Eþ δVφ; A¼ Ast þ δA;

B¼ Bst þ δB; C¼ Cstþ δC; D¼Dstþ δD: ð9Þ
From Eqs. (5) and (7) we see that

δ _φ

δ_r
∝

δVφffiffiffiffiffiffiffiffiffi
δVþ

p ¼ δA=E − δBE=Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δA=ð2EÞp ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rst

p
: ð10Þ

Let us now consider circumstances, under which such
static rings may occur. Clearly, stars whose density maxi-
mum is located away from the center represent possible
candidates, with rotating boson stars providing the perfect
stage for this phenomenon to occur: They only interact
gravitationally with ordinary matter and their energy
density distribution is toroidal when rotating.

To pinpoint the presence of this phenomenon, let us
inspect the gtt component of several rotating spacetimes. In
Fig. 3 we compare the gtt component of three rotating
spacetimes, all of which contain a complex scalar field: a
boson star, a traversable wormhole immersed in bosonic
matter, and a hairy black hole. The boson star features a
local maximum of gtt, corresponding to a local minimum of
the effective potential Vþ, where a test particle might be
trapped at rest. The solution depicted corresponds to the
one analyzed above. However, this feature is rather generic
for boson star solutions, arising also for quartic and sextic
self-interaction potentials [11–13] as well as for rotation-
ally and radially excited boson stars [14].
The rotating wormhole solution contains a phantom field

besides the complex scalar field, which in the example
depicted is noninteracting [15]. Such solutions represent
rotating generalizations of the wormhole solutions studied
in Ref. [16]. The metric function gtt exhibited in Fig. 3
contains three local extrema, two symmetric maxima, and a
minimum at the throat (at r ¼ 0). It is thus possible to have
particles at (unstable) rest exactly at the throat in between
the two universes and also at (stable) rest at a certain
position �rst in each of the universes.
Rotating black holes carrying complex scalar field hair

arise for a noninteracting boson field as well as in the case
of self-interaction [17–19]. As seen in the figure, for a

FIG. 2. Orbits of massive particles released from rest at different values of the radial coordinate r (and φ ¼ 0) and evolved for the
proper time interval Δτ ¼ 180. The closer the starting point r is to the static ring rst (red circle), the smaller is the amplitude in _φ. The
maximum of the scalar field is also indicated (black ring).

FIG. 3. The gtt component for three different systems containing bosonic matter. Left: A pure rotating boson star (without self-
interaction). Center: A traversable rotating wormhole immersed in bosonic matter. Right: A rotating black hole with scalar hair.
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sufficiently small horizon radius, the metric function gtt
features both a local maximum and a local minimum,
possessing thus two static orbit rings, one stable and one
unstable, respectively. The hairy black hole depicted is
based on a quartic potential [18]. Note, that the radial
coordinate in the figure is shifted such that the horizon
radius is located at rH ¼ 0.
The static orbit ring, however, is not an exclusive feature

of spacetimes warped by a spin-0 field. The gtt component
of the well-known Kerr-Newman solution also contains a
local maximum at rst ¼ Q2=M. Not only is this radius
independent of the angular momentum but it is also present
at the same location in the nonrotating Reissner-Nordström
solution. Surprisingly, the authors could not find any
reference to these findings in the literature. We emphasize
that the equations of motion are geodesics, namely, for test
particles without electric charge. The close relation
between gtt and the energy per unit mass of the orbiting
particle, Eq. (8), demands a more careful analysis for these
spacetimes. The only possible observational scenario is that
of a naked singularity, where the static ring is always
present, whether there is rotation or not. However, when the
solution is a black hole, the static ring is always hidden
behind the event horizon. Static rings are located behind
both horizons if J2 ≥ α2 − α4, where J is the black hole’s
angular momentum and α ¼ Q=M. By writing J2 ¼
α2ð1 − α2Þ þ δ, with δ ≥ 0, we obtain α2 ≤ 1 −

ffiffiffi
δ

p
as a

further constraint on the charge. The static ring is also
found in the presence of charged black holes in higher
dimensions. The five-dimensional Breckenridge-Myers-
Peet-Vafa (BMPV) spacetime (for details on the geodesics
see Refs. [20–22]) possesses two orthogonal rings (para-
metrized by φ and ψ) at rst ¼ ffiffiffi

μ
p

, where μ is again a
parameter that depends only on the mass and charge.
Conclusions.—We have shown that under specific con-

ditions a rotating spacetime may possess a ring in the
equatorial plane, where massive particles initially at rest
with respect to an asymptotic static observer remain at rest.
It is worth mentioning that this phenomenon of static
orbits is a purely inertial one. (This is in contrast to the
equilibrium positions found for charged particles orbiting
charged black holes).
The physical conditions to be met in order to allow for

such static orbits require, that besides a precise balance
between the angular momentum and the frame dragging,
the gravitational potential contained in the metric compo-
nent gtt should possess a minimum, such that a particle
sitting at the corresponding radius rst is neither pulled
towards the center nor pushed away from it. Clearly, the
extremum of gtt and the extremum of the effective potential
must therefore coincide at rst.
Let us note that somewhat similar conditions are found

for null geodesics [8]. Here, the presence of so-called static
light points, requires furthermore that their spatial location
coincides with the onset or termination of an ergoregion,
Ajrst ¼ 0, and that the photons have zero energy.

While we have exemplified our analysis in detail for
boson stars, we have shown, that static orbits arise not only
for boson stars but also for Ellis wormholes immersed in
rotating bosonic matter, as well as for hairy black holes or
Kerr-Newman solutions.
While one might argue that it might be unlikely to expect

nature to produce such a fine tuned scenario, we have
verified that geodesics followed by particles initially at rest
near the (stable) static radius are characterized by slow
motion. The closer they start from rst the smaller are their
maximal radial and angular velocities. This opens the
possibility of observing this phenomenon, if rotating
compact objects such as the above examples were to indeed
exist in nature.
Therefore, observing static, or quasistatic, astrophysical

objects in a region which otherwise indicates the presence
of a strong gravitational field could offer support for the
presence of a type of compact object that differs from Kerr
black holes.
The static ring resides in the realms of the strong

gravitational regime. Any electromagnetic radiation origi-
nating from astronomical objects in this region would be
severely distorted. Nevertheless, objects surrounding the
near horizon region of a Kerr black hole are expected
to be highly relativistic, so that their light would be both
strongly blueshifted and redshifted depending on their
orbital position as a consequence of the Doppler effect.
Additionally, the image of the black hole’s shadow would
be rapidly changing as a result of the sources’ motion.
Continuous observation should allow us to identify such
objects. On the other hand, static or quasistatic objects
would not provide this radiation signature. With the advent
of the EHT, such observations that could allow us to
discriminate between different types of compact objects are
to be expected shortly.
Furthermore, spacetimes containing the static ring might

imprint specific gravitationalwave signatures to bemeasured
with the next generations of interferometers. Unfortunately,
due to the coupling of different harmonic indices, the degree
of complexity in treating rotating spacetimes perturbatively
is very high. For instance, only recently the quasinormal
modes of theKerr-Newmanblackholewere reported [23]. To
date we are still lacking a more easily accessible approach to
the subject, which we hope will arise in the near future.
Moreover, one might wonder whether a point particle would
emit gravitational waves while sitting at rest at the static ring.
One could naively argue that in being static with respect to an
observer at spatial infinity, the quadrupole moment of the
system is constant. Yet, the particle is indeed moving,
counterrotating with respect to the spacetime in a perfect
manner so that its kinetics cancels out.
Accretion disks are important test beds for the various

black hole candidates in the strong gravitational regime.
One way to possibly distinguish between Kerr black holes,
hairy black holes, and boson stars is to measure the iron Kα
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line in the x-ray reflection spectrum of the disk [24,25].
Around ordinary black holes, fluid viscosity causes par-
ticles to slow down and be gradually pulled towards the
event horizon. As illustrated here for rotating boson stars,
when the static ring is present, slowly moving particles tend
to oscillate around it, instead of approaching the center. In
this sense, the static ring might also leave its marks on
accretion disks.
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