
 

Quantum Holography in a Graphene Flake with an Irregular Boundary
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Electrons in clean macroscopic samples of graphene exhibit an astonishing variety of quantum phases
when strong perpendicular magnetic field is applied. These include integer and fractional quantum Hall
states as well as symmetry broken phases and quantum Hall ferromagnetism. Here we show that
mesoscopic graphene flakes in the regime of strong disorder and magnetic field can exhibit another
remarkable quantum phase described by holographic duality to an extremal black hole in two-dimensional
anti–de Sitter space. This phase of matter can be characterized as a maximally chaotic non-Fermi liquid
since it is described by a complex fermion version of the Sachdev-Ye-Kitaev model known to possess these
remarkable properties.
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Tensions between the laws of quantum mechanics and
classical gravity that are emblematic of the extreme
environments occurring in the early Universe and near
horizons of black holes constitute the most enigmatic
mysteries in modern physics. A promising avenue to
resolve some of the paradoxes encountered in these studies,
such as the black hole information paradox, is the holo-
graphic principle [1]. In holographic duality, quantum
gravity degrees of freedom in a (dþ 1)-dimensional
spacetime “bulk” are represented by a many-body system
defined on its d-dimensional boundary.
Important new insights into these fundamental questions

have been gained recently through the study of the
Sachdev-Ye-Kitaev (SYK) model [2,3], which describes
a system of N fermions in (0þ 1) dimensions subject to
random all-to-all four-fermion interactions and is dual to
dilaton gravity in (1þ 1)-dimensional anti–de Sitter
(AdS2) space [4,5]. Despite being maximally strongly
interacting, this model is, remarkably, exactly solvable in
the limit of large N. It has been shown to exhibit physical
properties characteristic of the black hole, including the
extensive ground state entropy S0 ∼ N, emergent conformal
symmetry at low energy, and fast scrambling of quantum
information that saturates the fundamental bound on the
relevant Lyapunov chaos exponent λT . Extensions of this
model also show interesting behaviors, including unusual
spectral properties [6–8], supersymmetry [9], quantum
phase transitions of an unusual type [10–12], quantum
chaos propagation [13–15], patterns of entanglement
[16,17], and strange metal behavior [18].
In this Letter we propose a simple experimental reali-

zation of the SYK model with complex fermions in a

mesoscopic graphene flake with an irregular boundary and
subject to a strong applied magnetic field. Unlike the earlier
proposals in solid state systems [19,20], which targeted the
Majorana fermion version of the model, our proposed
device does not require superconductivity or advanced
fabrication techniques and should therefore be relatively
straightforward to assemble using only the existing tech-
nologies. The proposed design is illustrated in Fig. 1.
Magnetic field B applied to graphene is known to produce a
variety of interesting quantum phases [21–30]. At the
noninteracting level the field simply reorganizes the sin-
gle-particle electron states into Dirac Landau levels with
energies [31] En ≃�ℏv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðeB=ℏcÞp

and n ¼ 0; 1;…. We
argue that when the graphene flake is sufficiently small and
irregular the electrons in the n ¼ 0 Landau level (LL0) are
generically described by the SYK model. This remarkable
property is rooted in the celebrated Aharonov-Casher
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FIG. 1. Schematic depiction of the proposed device. Irregular
shaped graphene flake in applied magnetic field B forms the
(0þ 1)-dimensional many-body system equivalent to a black
hole in (1þ 1) anti–de Sitter space. Inset: lattice structure of
graphene with A and B sublattices marked and nearest neighbor
vectors denoted by δj.
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construction [32] which implies that, in the absence of
interactions, LL0 remains perfectly sharp even in the
presence of strong disorder that respects the chiral sym-
metry of graphene. As we shall see, a flake with a highly
irregular boundary, illustrated in Fig. 1, is chirally sym-
metric. Electrons in LL0, therefore, remain nearly perfectly
degenerate, despite the fact that their wave functions
acquire random spatial structure. When Coulomb repulsion
is projected onto these highly disordered states, random all-
to-all interactions between the zero modes are generated,
exactly as required to define the SYK model.
The complex fermion SYK model, also known as the

Sachdev-Ye (SY) model [2,33–35], is defined by the
second-quantized Hamiltonian

HSY ¼
X

ij;kl

Jij;klc
†
i c

†
jckcl − μ

X

j

c†jcj; ð1Þ

where c†j creates a spinless fermion, Jij;kl are zero-mean
complex random variables satisfying Jij;kl ¼ J�kl;ij and
Jij;kl ¼ −Jji;kl ¼ −Jij;lk and μ denotes the chemical poten-
tial. In what follows we derive the effective low-energy
Hamiltonian for electrons in LL0 of a graphene flake with
an irregular boundary and show that, under a broad range of
conditions, it is given by Eq. (1). The system, therefore,
realizes the SY model.
At the noninteracting level a flake of graphene is

described by a simple tight-binding Hamiltonian [31]

H0 ¼ −t
X

r;δ

ða†rbrþδ þ H:c:Þ; ð2Þ

where a†r ðb†rþδÞ denotes the creation operator of the
electron on the subblatice A (B) of the honeycomb lattice.

These satisfy the canonical anticommutation relations
fa†r ; ar0g ¼ fb†r ; br0g ¼ δrr0 appropriate for fermion oper-
ators. r extends over the sites in sublattice A, while δ
denotes the 3 nearest neighbor vectors (inset Fig. 1).
t ¼ 2.7 eV is the tunneling amplitude [36]. For simplicity,
we first ignore electron spin but reintroduce it later. The
chiral symmetry χ is generated by setting ðar; brÞ →
ð−ar; brÞ for all r, which has the effect of flipping the
sign of the Hamiltonian H0 → −H0.
Magnetic field B is incorporated in the Hamiltonian (2)

by means of the standard Peierls substitution, which
replaces t → tr;rþδ ¼ t exp ½−iðe=ℏcÞ R rþδ

r A · dl�, where
A is the vector potential B ¼ ∇ × A. In the presence of
χ the Aharonov-Casher construction [32] implies N ¼ NΦ
exact zero modes in the spectrum of H0, where
NΦ ¼ SB=Φ0 denotes the number of magnetic flux quanta
Φ0 ¼ hc=e piercing the area S of the flake. It is clear that a
flake with an arbitrary shape described by H0 respects χ,
which underlies the robustness of LL0 invoked above.
Hopping t0 between second neighbor sites and random

on-site potential are examples of perturbations that break χ
and are therefore expected to broaden LL0. These effects
can be modeled by adding toHSY defined in Eq. (1) a term

H2 ¼
X

ij

Kijc
†
i cj; ð3Þ

which describes a small (undesirable) hybridization
between the states in LL0 that will generically be present
in any realistic experimental realization. We discuss the
effect of these terms below.
In Fig. 2(a) we show the single-particle energy spectrum

of H0 for a graphene flake with a shape depicted in the
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FIG. 2. Electronic properties of an irregular graphene flake in the absence of interactions. (a) Single-particle energy levels ϵj of the
Hamiltonian H0 as a function of the magnetic flux Φ ¼ SB through the flake. The flake used for this calculation, depicted in the inset,
consists of 1952 carbon atoms with equal number of A and B sites. The energy spectrum, calculated here in the Landau gauge A ¼ Bxŷ
and with open boundary conditions, shows the same generic features irrespective of the detailed flake geometry. (b) Typical wave
function amplitudes of the eigenstatesΦjðrÞ belonging to LL0 atΦ ¼ 40Φ0 and the edge modes. The numerals above each panel denote
the energy ϵj of the state in eV, scale bar shows the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

.
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inset. As a function of increasing magnetic field B we
observe new levels joining the zero-energy manifold LL0

such that the number of zero modes follows N ≃ NΦ in
accordance with the Aharonov-Casher argument. Higher
Landau levels and topologically protected edge modes are
also visible. Despite the randomness introduced by the
irregular boundary LL0 remains sharp as expected on the
basis of the arguments presented above. This is the key
feature in our construction of the SY Hamiltonian which
guarantees that theH2 term defined above vanishes as long
as the chiral symmetry is respected. In the presence of e-e
repulsion the leading term in the effective description of
LL0 will therefore be a four-fermion interaction which we
discuss next.
Electron wave functions ΦjðrÞ belonging to LL0 exhibit

random spatial structure [Fig. 2(b)] owing to the irregular
confining geometry imposed by the shape of the flake.
From the knowledge of the wave functions it is straightfor-
ward to evaluate the corresponding interaction matrix
elements (Supplemental Material, Sec. A [37]) between
the zero modes. The leading many-body Hamiltonian for
electrons in LL0 will thus have the form of Eq. (1) with

Jij;kl¼
1

2

X

r1;r2

½Φiðr1ÞΦjðr2Þ��Vðr1−r2Þ½Φkðr1ÞΦlðr2Þ�; ð4Þ

where VðrÞ ¼ ðe2=ϵrÞe−r=λTF is the screened Coulomb
potential with Thomas-Fermi length λTF and dielectric
constant ϵ. The summation extends over all sites of the
honeycomb lattice. It is to be noted that only the part of
Jij;kl antisymmetric in ði; jÞ and ðk; lÞ contributes to the
many-body Hamiltonian (1) so in the following we assume
that Jij;kl has been properly antisymmetrized.
We numerically evaluated Jij;kl for various values of λTF.

The resulting Js are complex valued random variables
satisfying

Jij;kl ¼ 0; jJij;klj2 ¼
1

2N3
J2; ð5Þ

where J measures the interaction strength and the bar
denotes averaging over randomness introduced by the
irregular confining geometry. Figure 3(a) shows the
statistical distribution of Jij;kl calculated for the nearest-
neighbor interactions VðrÞ ¼ V1

P
δδr;δ and the single-

particle wave functions ΦjðrÞ depicted in Fig. 2(b). The
distribution of Jij;kl shows the expected randomness with
some deviations from the ideal Gaussian.
To ascertain the effect of these deviations and to prove

that the low-energy fermions in the graphene flake are
described by the SY model we next perform numerical
diagonalization of the many-body Hamiltonian (1) with
coupling constants Jij;kl obtained as described above. We
then calculate various physical observables and compare
them to the results obtained with random independent Jij;kl.

Figure 3(b) shows the thermal entropy SðTÞ of the flake.
Comparison to the entropy calculated with random
Gaussian Jij;kl indicates no significant difference. It is to
be noted that while the SY model is known to exhibit
nonzero ground state entropy per particle in the thermo-
dynamic limit, SðTÞ still vanishes as T → 0 for any finite
N [38].
Many-body energy level statistics provide another useful

tool to validate our hypothesis that LL0 electrons in the
graphene flake behave according to the SY model. We thus
arrange the energy eigenvalues En of the many-body
Hamiltonian (1) in increasing order and form ratios of
the subsequent levels rn ¼ ðEnþ1 − EnÞ=ðEn − En−1Þ.
According to the random matrix theory applied to the
SY model [6] probability distributions PðfrngÞ are given
by different Gaussian ensembles, depending on Nðmod 4Þ

(b)

(a)

Graphene

Random Gaussian

T/J

FIG. 3. Statistical properties of the coupling constants and the
thermal entropy. (a) Histogram of jJij;klj as calculated from
Eq. (4) with V1 ¼ 1 for the graphene flake depicted in Fig. 2 and
N ¼ 16, compared to the Gaussian distribution (orange line) with
the same variance 0.000805V1. Inset shows the histogram of real
and imaginary components of Jij;kl. The mirror symmetry about
the horizontal follows from the Hermiticity property
Jij;kl ¼ J�kl;ij. (b) Entropy SðTÞ of the SY Hamiltonian (1)
calculated with Js shown in panel (a).
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and the eigenvalue q of the total charge operator Q ¼P
jðc†jcj − 1=2Þ as summarized in Table I. Here GOE,

GUE, and GSE stand for Gaussian orthogonal, unitary, and
symplectic ensembles, respectively, and

PðrÞ ¼ 1

Z
ðrþ r2Þβ

ð1þ rþ r2Þ1þ3β=2 ; ð6Þ

with constants Z and β listed in Table I. Since HSY
commutes with Q it can be block diagonalized in sectors
with definite charge eigenvalue q. As emphasized in
Ref. [6] the level statistics analysis must be performed
separately for each q sector. Note that q has integer (half-
integer) values for N even (odd) and this is why the
neutrality condition q ¼ 0 can be met only for even values
of N. Also note that q ¼ 0 corresponds to N=2 particles.
Figure 4 shows our results for the level statistics

performed for a graphene flake with N ¼ 14 through 18
and various values of q. The obtained level spacing
distributions are seen to unambiguously follow the pre-
diction of the random matrix theory for the SY model
summarized in Table I. We are thus led to conclude that
interacting electrons in LL0 of a graphene flake with an
irregular boundary indeed exhibit spectral properties char-
acteristic of the SY model.
In the rest of this Letter we discuss various aspects of the

problem relevant to the laboratory realization. Electrons in
graphene possess spin which we so far ignored. Given the
weak spin-orbit coupling in graphene we may model the
noninteracting system by two copies of the Hamiltonian
Eq. (2) plus the Zeeman term, H ¼ H0 þ g�μBB · Stot,
where Stot is the total spin operator and μB ¼ 5.78 ×
10−5 eV=T is the Bohr magneton. For graphene on the
SiO2 or hBN substrate we may take g� ≃ 2 which gives the
bare Zeeman splitting ΔESðBÞ ≃ 0.12 meV=T, or about
2.4 meV at B ¼ 20 T. We expect this relatively small spin
splitting to be significantly enhanced by the exchange
effect of the Coulomb repulsion. The strength of the
exchange splitting ΔEC ≃ 8.8 meV=T is estimated in the
Supplemental Material, Sec. A [37]. For such a large spin
splitting one may focus on a partially filled LL0 for a single
spin projection and disregard the other. The spinless model
considered so far should therefore serve as an excellent
approximation of the physical system in the strong field.

Disorder that breaks chiral symmetry will inevitably be
present in real graphene samples. Such disorder tends to
broaden LL0 and compete with the interaction effects that
underlie the SY physics. It is known that bilinear terms H2

that arise from such disorder constitute a relevant pertur-
bation to HSY and drive the system towards a disordered
Fermi liquid (dFL) ground state. In the Supplemental
Material, Sec. B [37] we analyze the symmetry-breaking
effects and estimate their strength in realistic situations. We
conclude that in carefully prepared samples a significant
window should remain open at nonzero temperatures and
frequencies in which the system exhibits behavior charac-
teristic of the SY model.
An ideal sample to observe the SY physics is a graphene

flake with a highly irregular boundary and clean interior.
These conditions promote random spatial structure of the
electron wave functions and preserve degeneracy of LL0.
Disordered wave functions give rise to random interaction
matrix elements Jij;kl while near degeneracy of states in
LL0 guarantees that the two-fermion term H2 remains
small. To observe signatures of the emergent black hole the

N=14 
q=0

N=15 
q=1/2

N=16 
q=0

N=17 
q=1/2

N=18 
q=0

GSE GUE

GUE GSE

GOE N=16 
q=1

GUE

FIG. 4. Many-body level statistics for the interacting electrons
in LL0 of the graphene flake. Blue bars show the calculated
distributions for the graphene flake. Orange, green and red curves
indicate the expected distributions given by Eq. (6) for GOE,
GUE, and GSE, respectively. To obtain smooth distributions,
results for N ¼ 14; 15; ð16Þ have been averaged over 8 (4)
distinct flake geometry realizations while N ¼ 17, 18 reflect a
single realization.

TABLE I. Gaussian ensembles for the SY model. The relevant
probability distributions are given by Eq. (6) with Z ¼
ð8=27Þ; ð4π=81 ffiffiffi

3
p Þ; ð4π=729 ffiffiffi

3
p Þ and β ¼ 1, 2, 4 for GOE,

GUE, and GSE, respectively.

Nðmod 4Þ 0 1 2 3

q ¼ 0 GOE GSE
q ≠ 0 GUE GUE GUE GUE
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LL0 degeneracy N ¼ SB=Φ0 must be reasonably large—
numerical simulations indicate that N ≳ 10 is required for
the system to start showing the characteristic spectral
features. Aiming at N ≃ 100, which is well beyond what
one can conceivably simulate on a computer, implies the
characteristic sample size L ≃

ffiffiffi
S

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NΦ0=B

p
≃ 150 nm

at B ¼ 20 T. Signatures of the SY physics can be observed
spectroscopically, e.g., by the differential tunneling con-
ductance gðVÞ ¼ dI=dV which is predicted [19] to exhibit
a characteristic square-root divergence gðVÞ ∼ jVj−1=2 in
the SY regime at large N, easily distinguishable from the
dFL behavior gðVÞ∼ const at small V. We predict that a
tunneling experiment will observe the SY behavior when
the chemical potential of the flake is tuned to lie in LL0 and
dFL behavior for all LLn with n ≠ 0. We also expect the
two-terminal conductance across the flake to show inter-
esting behavior in the SY regime but we defer a detailed
discussion of this to future work.
In the limit of a large flake the irregular boundary will

eventually become unimportant for the electrons in the bulk
interior and the system should undergo a crossover to a
more conventional “clean” phenomenology characteristic
of graphene in applied magnetic field. The exact nature of
this crossover poses an interesting theoretical as well as
experimental problem which we also leave to future study.
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lating discussions. The work was supported by NSERC,
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