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Traditional computational methods for studying quantum many-body systems are “forward methods,”
which take quantum models, i.e., Hamiltonians, as input and produce ground states as output. However,
such forward methods often limit one’s perspective to a small fraction of the space of possible
Hamiltonians. We introduce an alternative computational “inverse method,” the eigenstate-to-Hamiltonian
construction (EHC), that allows us to better understand the vast space of quantum models describing
strongly correlated systems. EHC takes as input a wave function jψTi and produces as output Hamiltonians
for which jψTi is an eigenstate. This is accomplished by computing the quantum covariance matrix, a
quantum mechanical generalization of a classical covariance matrix. EHC is widely applicable to a number
of models and, in this work, we consider seven different examples. Using the EHC method, we construct a
parent Hamiltonian with a new type of antiferromagnetic ground state, a parent Hamiltonian with two
different targeted degenerate ground states, and large classes of parent Hamiltonians with the same ground
states as well-known quantum models, such as the Majumdar-Ghosh model, the XX chain, the Heisenberg
chain, the Kitaev chain, and a 2D BdG model. EHC gives an alternative inverse approach for studying
quantum many-body phenomena.
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I. INTRODUCTION

Our understanding of quantummany-body physics comes
primarily from the use of “forward methods.” In the forward
method approach, shown in Fig. 1(a), a quantum model
describing a material, e.g., a model Hamiltonian, is solved.
Often, solving each Hamiltonian is difficult, requiring
expensive numerics or complex analytic approaches. This
restricts our attention to a few representative Hamiltonians or
materials that support particular properties or interesting
physics. However, the space of quantum models is vast and
high dimensional. The forward approach provides a limited
perspective by restricting our focus to a small fraction of this
space. The entire space, though, almost certainly contains a
myriad of interesting physical Hamiltonians corresponding
to undiscovered phases, unknown exactly solvable points,
and Hamiltonians with desirable properties.
While determining the ground-state properties from a

Hamiltonian is difficult, understanding interesting physics

from simple prototypical wave functions is more straight-
forward. For this reason, wave functions such as resonating
valence bond (RVB) states [1,2], projected BCS states
[2–4], and Laughlin wave functions [5,6] have been widely
used to understand spin liquids, high-temperature super-
conductivity, and fractional quantum Hall physics in
situations where Hamiltonian methods have not been
feasible. Since these prototypical wave functions are easier
to work with, one can consider using them as inputs for
an “inverse method” approach for constructing parent
Hamiltonians that have these wave functions as ground
states. In fact, parent Hamiltonians have already been
constructed in a variety of contexts and include, among
others [7–16], RVB parent Hamiltonians on a Kagome
lattice [17–19], matrix product state parent Hamiltonians
for one-dimensional systems [20–22], and Haldane pseu-
dopotentials for a 2D electron gas [23,24]. However, the
methods for constructing parent Hamiltonians are wave-
function specific, normally produce one or a small number
of parent Hamiltonians, and often result in unphysical
models. To overcome these limitations, we developed a
novel inverse method that automates the construction of
parent Hamiltonians from wave functions by searching
for models in a large space of “physically reasonable”
Hamiltonians. More broadly, inverse methods have been
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successful in applications such as solving machine-learning
problems [25], targeting many-particle ordering in classical
materials [26–41], and promoting certain properties in
quantum many-body systems [42–47].
Our new inverse method, eigenstate-to-Hamiltonian

construction (EHC), takes as input a target wave function
and a target space of Hamiltonians and produces as output
the Hamiltonians within the target space for which the wave
function is an eigenstate [see Fig. 1(b)]. EHC can be readily
implemented with existing numerical tools. The key step of
the method is the evaluation and analysis of the quantum
covariance matrix (QCM) [see Eq. (1)]. The wave functions
provided as input to EHC need only be represented in such
a way that the QCM can be determined, such as numeri-
cally through the density matrix renormalization group
(DMRG) [48] or variational Monte Carlo (VMC) [49]. We
show that EHC can be implemented in an efficient manner,
with the procedure scaling quadratically in the number of
variational parameters in the target space of Hamiltonians
being considered.
EHC helps solve an important general problem that has

been actively pursued for decades, finding Hamiltonians
with interesting ground-state physics, by using the inverse
approach of constructing parent Hamiltonians from wave
functions. As described above, parent Hamiltonians have
been constructed, with significant effort, in many specific
contexts to better understand physical systems ranging
from spin liquids to fractional quantum Hall systems. EHC
replaces the insight required to find parent Hamiltonians
with an efficient and general approach that can automate
their discovery.
While this paper focuses on describing the method and

demonstrating its approach through a number of simple
illustrative examples, it is important to note that there are
many known interesting wave functions that this method
could be fruitfully applied to in the future. Examples range
from the projective symmetry group (PSG) wave func-
tions [50–53], which span a large number of spin liquid
phases, to Gutzwiller-projected wave functions, which are
heavily used in variational studies of unconventional
superconductivity [3,4,54], to wave functions for fractional

Chern insulators [55]. Finding physically realistic parent
Hamiltonians for these wave functions could lead to
important breakthroughs in spin liquid physics, high-
temperature superconductivity, and topological phases of
matter. There are also a myriad of other potential uses for
the EHC framework in fields such as quantum material
design, cold-atom quantum simulation, and quantum
computing. For example, the EHC framework could help
cold-atom experimentalists find Hamiltonians for specific
quantum ground states that are constructible within the
hardware constraints of their experiment.
After explaining the method, we discuss three broad

applications of EHC. In each application, we discover some
unexpected relations between wave functions and the space
of Hamiltonians.

(I) Hamiltonian discovery: The most straightforward
application of EHC is to discover new, simpler, or
more experimentally accessible parent Hamiltonians
for wave functions without known simple parent
Hamiltonians. To illustrate this procedure, we pro-
vide as input to EHC a uniform superposition of
frustrated spin configurations and automatically find
Hamiltonians with this state as an exact ground state.

(II) State collision: A second application of EHC is to the
study of degenerate ground states.Herewe introduce a
generalized form of EHC, called degenerate eigen-
state-to-Hamiltonian construction (DEHC), that re-
ceives as input many wave functions and finds spaces
of Hamiltonians for which those wave functions are
degenerate eigenstates. DEHC can be used to identify
level crossingswhere twopotential phases collideor to
identify Hamiltonians with topological degeneracy.
We illustrate this approach by colliding the ground
states of the Majumdar-Ghosh model [56,57] and the
XXZ0 two-leg ladder [58], which are singlet dimer
states and projected three-coloring states, respectively.

(III) Phase expansion: As a final application, we show
how to use EHC to take a known ground-state wave
function and expand the region of Hamiltonian space
over which this wave function is a ground state.
Surprisingly, we discover that many previously
known models are in fact special points in large
spaces of nontrivial Hamiltonians with identical
ground states. We show examples of this procedure
by expanding the ground-state phase diagram of the
XX chain, the Heisenberg chain, the Kitaev chain,
and a 2D BdG model.

Altogether, in applications (I)–(III), we use seven differ-
ent types of wave functions as input to EHC and in each
case are able to successfully construct new nontrivial parent
Hamiltonians.

II. METHOD

In this section, we introduce our new method, the EHC.
EHC takes as input both a target state jψTi and a “target

Forward method Inverse method

Ground state Target state

HamiltoniansHamiltonian

(a) (b)

FIG. 1. (a)A typical forwardmethod used in quantummechanics
finds the ground state jψ0i of a single Hamiltonian Ĥ. (b) We
introduce a new inverse method, EHC, that finds Hamiltonian(s)
Ĥ1; Ĥ2;… from a target state jψTi, with the property that jψTi is an
energy eigenstate of these Hamiltonian(s).
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space” of Hamiltonians ĤT and produces as output the
space of Hamiltonians that contains jψTi as an energy
eigenstate, which we call the “eigenstate space” of
Hamiltonians. Within the eigenstate space, it is possible
for the state jψTi to be a ground state in a particular region,
which we call the “ground-state manifold.” This hierarchy
of Hamiltonian spaces is depicted in Fig. 2.
The target space of Hamiltonians ĤT is a subspace of the

vector space of all possible Hamiltonians. The possible states
of a finite system ofN quantumdegrees of freedomwith local
dimension d, e.g., d ¼ 2 for s ¼ 1=2 spins, form a complex
vector space of dimensiondN . The possibleHamiltonians that
can act on this system are all dN × dN Hermitian operators,
which form a real vector space of dimension ðdNÞ2 ¼ d2N .
The target space is a small dT-dimensional physically mean-
ingful subspace of Hamiltonian space that we choose when

using the EHC method. In particular, we define our target
space by choosing a basis of dT ≪ d2N Hermitian operators
fĥagdTa¼1. Defined this way, the target space contains
Hamiltonians of the form ĤT ¼ PdT

a¼1 Jaĥa with real Ja.
While any set of linearly independent Hermitian operators can
be used to define the target space, some natural choices for
operators include local one- and two-site operators.
The central tool used in EHC is the quantum covariance

matrix (QCM), a dT × dT matrix whose matrix elements are
given by

ðCTÞab ¼ hĥaĥbiT − hĥaiThĥbiT; ð1Þ

where hÔiT ≡ hψT jÔjψTi=hψT jψTi and a; b ¼ 1;…; dT .
The QCM is a quantum-mechanical generalization of a
classical covariance matrix, where statistical expectation
values of random variables under a probability distribution
are replaced by quantum expectation values of Hermitian
operators under a wave function. It can be easily shown that
CT is Hermitian and positive semidefinite. Most impor-
tantly, CT can be used to compute the energy variance of
the target state for Hamiltonians in the target space:

σ2T ¼ hĤ2
TiT − hĤTi2T ¼

XdT
a¼1

XdT
b¼1

JaðCTÞabJb ≥ 0: ð2Þ

From Eq. (2), one can see that an eigenvector of CT with
zero eigenvalue corresponds to a vector of coupling
constants J̃a and, therefore, a Hamiltonian H̃ ¼ P

aJ̃aĥa
with zero energy-variance under the target state jψTi.
Simply by computing the null space of the QCM,
we are able to find the eigenstate space of Hamiltonians
for jψTi.
There are three general cases for the dimensionality of

the null space of the QCM. (1) In the case of a one-
dimensional null space, there is a single null vector, and,
therefore, a uniquely specified Hamiltonian [59–61] in the
target space, for which the target state jψTi is an eigenstate.
(2) In the case of a many-dimensional null space, there is a
multidimensional space of Hamiltonians, which includes
any Hamiltonian that can be constructed from a linear
combination of the null vectors, which have jψTi as an

All Hamiltonians 

Target 
space 

Target space Eigenstate space  
       of 
       

Eigenstate 
   space 

Ground state 
  manifold 

FIG. 2. All Hamiltonians of a finite-dimensional quantum system form a real vector space of Hermitian operators (shown in red). EHC
is performed in a target space of Hamiltonians, a physically meaningful subspace of the entire vector space chosen by the user (shown in
blue). The output of EHC is the eigenstate space, a subspace of the target space consisting of Hamiltonians that contain a target wave
function jψTi as an energy eigenstate (shown in green). Using ground-state methods, one can further map out the ground-state manifold,
the region in eigenstate space where the target state jψTi is a ground state (shown in white).

ED

VMC

MPS1 2

Diagonalize

3

FIG. 3. The steps of EHC. (1) Represent the target state jψTi
numerically using, for example, MPS, VMC, or ED techniques.
(2) Compute the QCM CT given by Eq. (1). (3) Diagonalize the
QCM numerically to obtain the eigendecomposition CT ¼
UDU†. The columns of U are eigenvectors of CT and the
diagonal entries of D are their corresponding eigenvalues. The
null vectors, i.e., eigenvectors with zero eigenvalue, correspond
to the coupling constants of Hamiltonians with jψTi as an energy
eigenstate. The CT matrix depicted is the QCM for the XX chain
ground state used in our phase expansion example.
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eigenstate. The null vectors obtained from numerical
decompositions are often in poor representations that are
difficult to interpret. To overcome this issue, we use an
algorithm, described in Ref. [62], which heuristically
generates the sparsest basis for the null space. This ensures
that each Hamiltonian corresponding to a basis vector in
our eigenstate space is constructed from only a small
number of distinct Hermitian operators ĥa. While we find
this decomposition fruitful in understanding the resulting
Hamiltonians, it is still an important open problem to
determine other useful ways of representing the vectors in
the null space. (3) Finally, in the case when the QCM has
no null space, the target state jψTi is not an eigenstate
of any Hamiltonian within the chosen target space of
Hamiltonians. Nonetheless, the smallest eigenvalues of
the QCM still potentially contain useful information.
Eigenvectors of the QCM with small eigenvalues corre-
spond to Hamiltonians with small variance under the target
state jψTi. This means that the lowest eigenvectors of the
QCM represent Hamiltonians under which the target
wave function jψTi is “close” to an eigenstate. It will be
important future work to better understand the implications
of this.
EHC is a simple, noniterative, and remarkably efficient

procedure [see Fig. 3] that only requires the computation of
d2T þ dT expectation values of correlation functions hĥaĥbiT
and observables hĥaiT . Standard numerical methods for
computing such expectation values, such as VMC,
DMRG, or exact diagonalization (ED), can be used to
evaluate the entries of the QCM. For our specific calcula-
tions, we used DMRG, i.e., matrix product state (MPS)
methods, and VMC.
When using DMRG, we represent the target state jψTi as

a MPS, and the Hermitian operators ĥa as low-bond-
dimension matrix product operators (MPOs). This allows
us to efficiently evaluate hĥaĥbiT and hĥaiT with standard
methods, by contracting the MPS jψTi with the ĥaĥb and
ĥa MPOs. We performed our MPS calculations on finite-
size systems of up to N ¼ 32 sites and were able to
compute all of the entries of the QCM to machine precision.
With VMC, we estimated the expectation values of

observables Ô ∈ fĥaĥb; ĥag under the variational target
wave function jψTi,

hÔiT ¼ hψT jÔjψTi
hψT jψTi

¼
X
R

jhψT jRij2P
R0 jhψT jR0ij2

hRjÔjψTi
hRjψTi

;

by sampling configurations jRi from the probability
distribution ∝ jhψT jRij2 with Metropolis Markov chain
Monte Carlo and computing OðRÞ≡ hRjÔjψTi=hRjψTi
[63]. The OðRÞ can be concurrently evaluated during the
Markov chain sampling, which means the entries of the
QCM have reduced relative statistical noise. Alternatively,
with VMC, one can also generate the QCM from a Ns × dT

sample matrix Msa ¼ hRsjĥajψTi=hRsjψTi for fjRsigNs
s¼1

sampled from ∝ jhψT jRij2. The sample matrix can be
computed more efficiently than the QCM directly, requiring
calculating dT observables per sample instead of d2T .
Moreover, similar to principal component analysis, one
can perform singular value decomposition on an appropri-
ately shifted sample matrix to learn about the eigenvectors
of the QCM [64].
We empirically found that even though VMC produces a

noisy statistical estimate of the QCM, we can still robustly
identify properties of the QCM. Interestingly, the dimen-
sionality of the null space has significantly lower statistical
noise than the numerical entries of the null vectors.
Finally, in addition to EHC, we developed a generalized

form of the method for finding a space of Hamiltonians
with multiple target wave functions jψT;1i; jψT;2i;… as
degenerate energy eigenstates, called “degenerate eigen-
state-to-Hamiltonian construction,” that we discuss in the
Supplemental Material [65].

III. RESULTS AND DISCUSSION

With a few illustrative examples, we demonstrate three
applications of the EHC method—Hamiltonian discovery,
state collision, and phase expansion. Additional examples
of phase expansion on the Heisenberg chain and the Kitaev
chain are discussed in the Supplemental Material [65].
A brief summary of our results using the EHC method is
shown in Table I.

TABLE I. A summary of the results of EHC calculations
performed in this work. Target states and a target space of
Hamiltonians of dimension dT are provided as input to EHC. The
output of EHC is an eigenstate space of Hamiltonians (Dim. e.s.
space stands for dimension of eigenstate space). Ground-state
methods were used to map out the ground-state manifold, but
often could only provide a lower bound on the dimensionality of
the manifold (Dim. g.s. manifold stands for dimension of ground
state manifold). The first row is our Hamiltonian discovery result,
the next three rows are our state collision results, and the last rows
are our phase expansion results. The phase expansion results for
the ground states of the Kitaev chain, Heisenberg chain, and
Majumdar-Ghosh model, jψ�

KCi, jψHi, and jψ�
SDi, respectively,

were obtained for length N ¼ 12 chains and are discussed in the
Supplemental Material [65].

Target state(s) dT Dim. e.s. space Dim. g.s. manifold

jψUFIi 111 21 ≥ 3

jψ�
SDi 8 4 4

jψm;l
P3Ci 8 3 3

jψ�
SDi & jψm;l

P3Ci 8 2 2
jψXXi 198 22 ≥ 3
jψBCSi 408 16 ≥ 2

jψ�
KCi 210 77 ≥ 22

jψHi 198 39 ≥ 3

jψ�
SDi 198 108 ≥ 36
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A. Hamiltonian discovery

In this section, we investigate a new type of wave
function and use the EHC method to construct a parent
Hamiltonian for which it is a ground state.
We choose a quantum state that is derived from classical

magnetically frustrated spin configurations. As shown in
Fig. 4(a), an Ising antiferromagnet on a triangle-tiled lattice
exhibits geometric frustration, which results in a large
ground-state degeneracy. The simplest such model is the
antiferromagnetic Ising model on the triangular two-leg
ladder: ĤI ¼

P
N
i¼1 ðσziσziþ1 þ 1

2
σziσ

z
iþ2Þ. This model con-

tains combinatorially many ground-state spin configura-
tions chosen so that each triangle has exactly two up or two
down spins. We analyze a new type of wave function,
called the uniform frustrated Ising (UFI) state jψUFIi,
shown in Fig. 4(b), which is an equal superposition of
the ĤI ground-state spin configurations. We use the UFI
state as the target state in EHC and discover Hamiltonians
for which it is the ground state. While we do not study the
properties of this state, our consideration of it is inspired by
other wave functions that are uniform superpositions of
ordered states, such as the uniform RVB state [1,2] and
uniform dimer states [66–68], which have played important
roles in spin liquid physics. We represented our target wave
function jψTi ¼ jψUFIi numerically as a MPS for finite
periodic ladders of size N ¼ 8, 12, 16.
In addition to the target wave function jψTi, EHC needs

a target space of physically meaningful Hamiltonians ĤT ¼PdT
a¼1 Jaĥa in which to search for parent Hamiltonians. For

our target space of Hamiltonians, we considered a large
dT ¼ 111 dimensional space of Hamiltonians spanned by
periodic, local operators made from products of Pauli
matrices on up to three sites separated spatially up to a
distance of three sites away on the ladder. Some operators
in this target space include

ĥ1 ≡
XN
i¼1

σxi ĥ5 ≡
XN
i¼1

σxi σ
y
iþ1

ĥ28 ≡
XN
i¼1

σziσ
x
iþ3 ĥ66 ≡

XN
i¼1

σxi σ
z
iþ1σ

z
iþ3: ð3Þ

Using the finite MPS representation of jψUFIi, we
computed the 111 × 111 QCM for the target space defined
by the operators ĥ1;…; ĥ111. We identified 21 null vectors
of the QCM. These correspond to a space of 21
Hamiltonians with jψUFIi as an eigenstate, which includes
the Ising model ĤI . Here, we focus on two nontrivial
operators in this space:

Ĥð1Þ
UFI ¼

XN
i¼1

1

2
σziσ

z
iþ2 þ σziσ

z
iþ3 þ σxi σ

z
iþ1σ

z
iþ2 − σzi−2σ

x
i σ

z
iþ1

Ĥð2Þ
UFI ¼

XN
i¼1

1

2
σziσ

z
iþ2 þ σziσ

z
iþ3 þ σzi−2σ

z
i−1σ

x
i − σzi−1σ

x
i σ

z
iþ2;

which contain Ising interactions within and between
triangles on the ladder, as well as off-diagonal three-site
interactions of the form σxσzσz between triangles. These
operators exist in four-site unit cells. We found that the UFI
state is an E ¼ −N=2 energy eigenstate of these operators.
Other operators in the eigenstate space are discussed in the
Supplemental Material [65].
Using DMRG and ED for ladders of N ¼ 8, 12, 16, 20

sites, we studied the ground-state manifold of the
Hamiltonian:

JĤI þ J1Ĥ
ð1Þ
UFI þ J2Ĥ

ð2Þ
UFI: ð4Þ

Interestingly, for J > 0 and 0 < J1=J ¼ J2=J < Jc=J, we
found that the UFI state is a ground state of Eq. (4), where
Jc=J depends on system size (Jc=J ≈ 0.25, 0.20, 0.175 for
N ¼ 8, 12, 16, respectively). Moreover, for the system sizes
studied, we determined empirically that, for this range of
parameters, jψUFIi exists in a degenerate ground-state
manifold containing 5þ N=4 states. Ultimately, our results
show that there is a family of quantum models adiabatically
connected to the antiferromagnetic Ising two-leg ladder
with the UFI state as a ground sate.

B. State collision

In this section, we consider many wave functions at the
same time and use our inverse method to construct parent
Hamiltonians that have all of them as degenerate ground
states.
Naively, one might attempt to solve this problem by

applying the EHC method repeatedly, once for each wave
function, and combining the results. However, this
approach would only reveal where in Hamiltonian space
the wave functions are simultaneous eigenstates, but not
where they are degenerate eigenstates. To properly solve
this problem, one needs to use the generalization of EHC
for degenerate wave functions, DEHC, to find the appro-
priate eigenstate space. In the following example, we apply
DEHC to a triangular two-leg ladder system and search for

(b)(a)

FIG. 4. (a) For a classical Ising antiferromagnetic triangle, all
three bond energies cannot be simultaneously minimized, leading
to a sixfold ground-state degeneracy. (b) The uniform frustrated
Ising (UFI) state is a uniform superposition of the ground states of
an antiferromagnetic Ising model on a lattice of triangles. In this
case, we consider the UFI state on a triangular two-leg ladder.
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the eigenstate space where two singlet dimer states and all
“projected three-coloring states” are degenerate.
The singlet dimer states are jψ�

SDi ¼ ðjψ1;2ψ3;4…
ψN−1;Ni � jψ2;3ψ4;5…ψN;1iÞ=

ffiffiffi
2

p
, where jψ i;ji≡ ðj↑i↓ji−

j↓i↑jiÞ=
ffiffiffi
2

p
is a singlet dimer between sites i and j. The

states jψ�
SDi are the two degenerate ground states of the

periodic Majumdar-Ghosh model [56,57].
The projected three-coloring states [58] are projected

product states of the form jψm;l
P3Ci≡ PSz¼mð⊗N

i¼1 jniiÞ,
where jnii≡ ðj↑ii þ ωni j↓iiÞ=

ffiffiffi
2

p
with ni ∈ f0; 1; 2g and

ω≡ ei2π=3. Each triangle of the two-leg ladder is three-
colored so that ni; niþ1; niþ2 are different for every i. The
operator PSz¼m projects onto the Sz-sector with magneti-
zation m. The parameter l labels the two possible three-
colorings of the two-leg ladder. There are 2N linearly
independent projected three-coloring states jψm;l

P3Ci.
As input to DEHC, we provide a dT ¼ 8 dimensional

target space of Hamiltonians spanned by local two-site
exchange and Ising interactions on even and odd sites. The
first four operators, which act on even sites, are

ĥ1 ≡
XN=2

i¼1

X
ρ¼x;y

Sρ2iS
ρ
2iþ1 ĥ2 ≡

XN=2

i¼1

Sz2iS
z
2iþ1

ĥ3 ≡
XN=2

i¼1

X
ρ¼x;y

Sρ2iS
ρ
2iþ2 ĥ4 ≡

XN=2

i¼1

Sz2iS
z
2iþ2; ð5Þ

where Sρi ¼ σρi =2 are spin-1=2 operators. The other four
act on odd sites. Also provided as input to DEHC are all
2N þ 2 projected three-coloring and singlet dimer states.
From a single DEHC calculation, we found the following

two-dimensional space of Hamiltonians for which the
singlet dimer states and projected three-coloring states
are degenerate eigenstates:

K1

�XN
i¼1

Ĥði;1Þ
XXZ0þ

1

2

XN
i¼1

Ĥði;2Þ
XXZ0

�
þK2

XN
i¼1

ð−1ÞiĤði;2Þ
XXZ0 ð6Þ

with parameters K1 and K2 defining the space, where

Ĥði;rÞ
XXZ0 ≡ Sxi S

x
iþr þ Syi S

y
iþr − 1

2
SziS

z
iþr [69]. This space of

Hamiltonians is where the two sets of states “collide”
and become degenerate with one another.
To better understand the Hamiltonians surrounding this

“collision region,” we performed two more DEHC calcu-
lations, one with only the singlet dimer states as input and
one with only the projected 3-coloring states as input. In
both cases, we considered the same eight-dimensional
target space of Hamiltonians described above.
From one calculation, we found that the singlet dimer

states jψ�
SDi are degenerate energy eigenstates of a four-

dimensional space of Hamiltonians

XN
i¼1

X
ρ¼x;y

�
Jxy

�
Sρi S

ρ
iþ1 þ

1

2
Sρi S

ρ
iþ2

�
þ ð−1ÞiδxySρi Sρiþ2

�

þ
XN
i¼1

�
Jz

�
SziS

z
iþ1 þ

1

2
SziS

z
iþ2

�
þ ð−1ÞiδzSzi Sziþ2

�
; ð7Þ

with parameters Jxy, Jz, δxy, δz defining the space.
From the other calculation, we found that the projected

three-coloring states jψm;l
P3Ci are degenerate eigenstates of a

three-dimensional space of Hamiltonians

JXXZ0
XN
i¼1

Ĥði;1Þ
XXZ0 þ ϵe

XN=2

i¼1

Ĥð2i;2Þ
XXZ0 þ ϵo

XN=2

i¼1

Ĥð2iþ1;2Þ
XXZ0 ; ð8Þ

where JXXZ0, ϵe, ϵo are the three parameters defining the
space.
Informed by our inverse method calculations, we could

effectively map out the ground-state manifolds of the
singlet dimer states and the projected three-coloring
states by performing DMRG on the models defined by
Eqs. (6)–(8) on finite-size ladders of size N ¼ 12, 16, and
32. Because of the low dimensionality of the Hamiltonian
spaces considered in this example, we are able to visualize
how the singlet dimer and projected three-coloring parent
Hamiltonians “collide” in Hamiltonian space. A visualiza-
tion of this collision, shown in two different ways, is
depicted in Fig. 5.
Figure 5(a) shows the ground-state manifold of the

singlet dimer states jψ�
SDi contained in a three-dimensional

projection of their four-dimensional eigenstate space.
Figure 5(b) shows the ground-state manifold of the pro-
jected three-coloring states jψm;l

P3Ci contained in their three-
dimensional eigenstate space. The combined eigenstate
space, where jψ�

SDi and jψm;l
P3Ci are degenerate energy

eigenstates, is depicted in purple in both Figs. 5(a)
and 5(b). From DMRG and ED, we found that the collision
region occurs for the set of parameters K1 > 0 and −1=2 ≤
K2=K1 ≤ 1=2 [70]. The collision region appears as a line
segment in Fig. 5(a) and as a triangular region in Fig. 5(b).
Note that the singlet dimer eigenstate space can be

constructed from an anisotropic generalization of a known
space of “block operators” described by Ref. [71], which
we discuss in the Supplemental Material [65]. Similarly, the
projected three-coloring eigenstate space is largely made up
of a known space of triangle-tiled Hamiltonians described
by Ref. [58].

C. Phase expansion

In this section, we show with two examples, the XX
chain and a 2D BDG model, how EHC can be used to
expand the zero-temperature phase diagram about a known
Hamiltonian Ĥ0 to find a nontrivial many-dimensional
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manifold of Hamiltonians with the same ground-state wave
function as Ĥ0.
When phase expanding from Ĥ0, there are generically two

classes of new Hamiltonians one might find: Hamiltonians
that commute with Ĥ0 and those that do not. Adding Ĥ0-
commuting Hamiltonians to Ĥ0 not only preserves the target
state jψTi as an eigenstate, but actually preserve all eigen-
states and only acts to shift the eigenvalues. These
Hamiltonians can be the result of conserved quantities, such
as totalSz. In our phase expansion results, we, unsurprisingly,
find such Hamiltonians. However, surprisingly, we also find

non-Ĥ0-commuting Hamiltonians with jψTi as an eigen-
state. Adding such Hamiltonians to Ĥ0 preserves the target
state jψTi as an energy eigenstate while modifying other
eigenstates. For example, in the XX chain and Heisenberg
chain (see Supplemental Material [65]), we find new
Hamiltonians that do not commute with their respective Ĥ0.
The periodic XX chain, ĤXX¼

P
N
n¼1ðSxnSxnþ1þSynS

y
nþ1Þ,

has an antiferromagnetic ground state jψXXi. We represent
jψXXi as a MPS, which we obtain by performing DMRG on
periodic XX chains of length N ¼ 12. Because a priori we
do not know what a possible expanded phase diagram of
jψXXimight look like, we considered a large target space of
Hamiltonians spanned by dT ¼ 3ðN

2
Þ ¼ 3NðN − 1Þ=2 ¼

198 two-site spin operators of the form

Sxi S
x
j Syi S

y
j SziS

z
j; ð9Þ

where 1 ≤ i < j ≤ N. Note that these operators are simple
and physically reasonable in that they only involve two-site
spin interactions, though they are nonlocal for spins
arranged on a chain. One can easily see that the original
Hamiltonian ĤXX is contained in this target space.
Using a MPS representation of jψXXi, we computed the

QCM for the target space given by Eq. (9), which is
depicted in Fig. 3, and found that its null space was spanned
by 22 null vectors for N ¼ 12, where 12 were related to
total Sz conservation (see Supplemental Material for details
[65]) and 4 appeared to be from finite-size effects. The
remaining 6 null vectors corresponded to a space of
Hamiltonians

Ĥðc;ϵÞ
XX ≡XN

n¼1

ϵnfðcÞðnÞðSxnSxnþ1 þ ϵSynS
y
nþ1Þ; ð10Þ

where ϵ ¼ �1 and fðcÞðnÞ ¼ 1, sinð2πn=NÞ, cosð2πn=NÞ,
for c ¼ 0, 1, 2, respectively. These operators correspond to
particular types of sinusoidally modulated and anisotropic
XX chain interactions. Note that jψXXi is a zero-energy

eigenstate of all of these operators, except for Ĥð0;þÞ
XX ¼ĤXX.

Also, the four operators Ĥðc;ϵÞ
XX for c ¼ 1, 2 and ϵ ¼ �1 do

not commute with ĤXX. In fact, the six operators in Eq. (10)
do not commute with one another except in ϵ ¼ �1 pairs,

so that ½Ĥðc;þÞ
XX ; Ĥðc;−Þ

XX � ¼ 0 for all c.
Next, informed by the results of EHC, we mapped out

the ground-state manifold of jψXXi by performing ground-
state calculations on Hamiltonians in the space described
by Eq. (10) [72]. We find a highly nontrivial ground-state
manifold for the Hamiltonian

X
c¼0;1;2

X
ϵ¼�1

Jc;ϵĤ
ðc;ϵÞ
XX ð11Þ

defined by the six parameters J0;�, J1;�, J2;�. We analyzed
the ground-state manifold empirically by considering two-
and three-dimensional projections of this space subject

Eigenstate
space

Ground state 
manifold

GS manifold

Eigenstate 
space

(a)

Eigenstate space

GS manifold

Eigenstate space

GS manifold

(b)

FIG. 5. State collision example. Collision of the singlet dimer
states jψ�

SDi and the projected three-coloring states jψm;l
P3Ci from

(a) the perspective of the singlet dimer eigenstate space, which is
given by Eq. (7) with Jxy ¼ 1 and is shown in green, and (b) the
perspective of the projected three-coloring eigenstate space,
which is given by Eq. (8) and is shown in teal. The space where
all of the states are degenerate eigenstates is given by Eq. (6) and
is shown in purple; it appears as a line in (a) and a plane in (b).
The collision region, where all states are degenerate ground
states, occurs on the indicated line segment in (a) and in the
indicated triangular region in (b).
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to the constraint J0;þ ¼ 1. For example, for finite-size
systems we found the following (approximate) two-
dimensional regions where jψXXi was the ground state:
jJ0;−j þ jJc;ϵj≲ 1 for c ¼ 1, 2 and ϵ ¼ �1; jJc;−j þ
jJc;þj≲ 1 for c ¼ 1, 2; and ðJ1;ϵ1Þ2 þ ðJ2;ϵ2Þ2 ≲ 1 for ϵ1,
ϵ2 ¼ �1. We also observed an example of a three-
dimensional ground-state manifold for jψXXi with the

approximate shape of a tetrahedron, depicted in Fig. 6(b).
The tetrahedronlike manifold has end points at approx-
imately ðJ0;−;J1;þ;J1;−Þ¼ð−1;−1;−1Þ;ð1;1;−1Þ;ð1;−1;1Þ;
ð−1;1;1Þ in coupling constant space. One implication of
our results is that the ground state of the XX chain is robust
to specific sinusoidally modulated XX-like perturbations.
Note that the Hamiltonians found in Eq. (11) are related to a
mapping discussed in Ref. [73].
Finally, we discuss an application of the EHC method to

a two-dimensional system using VMC to calculate the
QCM. In this example, we performed phase expansion on
the ground state of the following BdG Hamiltonian on an
L × L square lattice

ĤBdG ¼ −
X
ðx;yÞ;σ

ðc†ðx;yÞ;σcðxþ1;yÞ;σ þ c†ðx;yÞ;σcðx;yþ1Þ;σ þ H:c:Þ

þ
X
ðx;yÞ

ðcðx;yÞ;↑cðx;yÞ;↓ þ H:c:Þ;

where ðx; yÞ indicates the coordinates of a site in the lattice.
This model is the parent Hamiltonian of the s-wave BCS
wave function jψBCSi ¼

Q
kðuk þ vkc

†
k↑c

†
−k↓Þj0i with BCS

parameters uk, vk defined in the standard way and
Δk ¼ Δ ¼ t ¼ 1, μ ¼ 0.
The target space provided as input to EHC was spanned

by all possible one- and two-site operators of the form
X
σ

nðx;yÞσ; nðx;yÞ↑nðx;yÞ↓;
X
σ

ðc†ðx;yÞσcðx0;y0Þσ þ H:c:Þ;

ðcðx;yÞ↑cðx0;y0Þ↓ þ H:c:Þ;
X
σ;σ0

nðx;yÞσnðx0;y0Þσ0 :

In our calculations, we considered an N ¼ 4 × 4 ¼ 16 site
system, which made the dimension of this target space
dT ¼ 408.
Using VMC, we numerically estimated the QCM for the

N ¼ 16 site BCS state in this target space. The eigenstate
space produced by the EHC method contained 16 oper-
ators. One interesting Hamiltonian in this space is the
staggered s-wave pairing operator

Ĥs ¼
X
ðx;yÞ

ð−1Þxþyðcðx;yÞ;↑cðx;yÞ;↓ þ H:c:Þ: ð12Þ

The s-wave BCS state jψBCSi is a zero-energy eigenstate of
this operator. Numerically, we determined that jψBCSi is
actually the ground state of the phase expanded model
tĤBdG þ ΔsĤs for t > 0 and −1 ≤ Δs=t ≤ 1, even for large
system sizes. An alternative approach for constructing
parent Hamiltonians from BCS ground states is given
in Ref. [7].
Other examples of phase expansion for the Kitaev chain,

Heisenberg chain, and Majumdar-Ghosh model are dis-
cussed in the Supplemental Material [65]. A visualization
of the QCMs computed in our phase expansion results and

Eigenstate 
   space 

Ground state 
manifold 

Target 
space 

(a)

(b)

Eigenstate 
   space 

Ground state 
manifold 

FIG. 6. Phase expansion schematic and example. (a) Schematic
representing the expansion of a phase diagram about a known
Hamiltonian Ĥ0, which has a known ground state jψTi. Shown is
the target space (blue) provided as input to the EHC method, the
eigenstate space (green) of jψTi produced as the output of EHC and
the expanded ground-state manifold (white) of jψTi. (b) Numerical
results for the phase expansion about the Hamiltonian ĤXX with
ground state jψXXi. Shown is a three-dimensional projection (green)
of the six-dimensional eigenstate space of jψXXi, given by Eq. (11)
with J0;þ ¼ 1 and J2;� ¼ 0 and the ground-statemanifold of jψXXi
(white), which almost has the shape of a tetrahedron. For simplicity
of visualization, here, we plot a tetrahedron, which containsmost of
the ground-state manifold, though it ignores a small curved region
that extends slightly beyond the tetrahedron.
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their spectra are shown in Fig. 7. Note that, for each QCM
considered, there are many eigenvalues that are zero to
numerical precision, which are separated by many orders of
magnitude from the nonzero eigenvalues. We note that for
frustration-free models, such as the Kitaev chain and
Majumdar-Ghosh model, we found eigenstate spaces that
were much higher dimensional than for the other models
we considered.

IV. SUMMARY

We have developed the EHC, which is an efficient inverse
method that can be used to produce spaces of physically
meaningful parent Hamiltonians from wave functions.

Analogous to variational wave function approaches to the
forward problem,EHC is a variationalHamiltonian approach
that finds parent Hamiltonians from a class of models. We
anticipate that it will play a similarly important role in
strongly correlated physics.
The key to the EHC method is computing the QCM [see

Eq. (1)], from which parent Hamiltonians can be found.
Even though, for the examples presented in this work, we
computed the QCM using VMC and DMRG, one can
certainly compute the QCM using various other analytical,
numerical, and experimental approaches. For example, one
can compute the QCM in the context of sign-problem-free
Hamiltonians using quantum Monte Carlo.
We have described some sample applications of EHC

in which we revealed some interesting and unforeseen
structure of Hamiltonian space. We demonstrated how to
find new types of Hamiltonians with EHC by automatically
constructing parent Hamiltonians for a uniform super-
position of frustrated Ising spin configurations. The dis-
covered parent Hamiltonians are nontrivial quantum
models that are adiabatically connected to the degenerate
ground-state manifold of the classical Ising antiferromag-
net. This example clearly illustrates how the EHC method
can quickly and with minimal theoretical ingenuity produce
parent Hamiltonians that might otherwise take significant
effort or insight to discover.
We also showed how the degenerate version of EHC,

DEHC, can find regions of Hamiltonian space where many
wave functions are degenerate, which allows one to auto-
matically identify level crossings or topological degener-
acies between different states. We demonstrated this by
finding the space where singlet dimer states and three-
coloring states “collide,” resulting in a highly degenerate
ground-state manifold corresponding to a first-order quan-
tum phase transition.
Finally, we showed how to use EHC to expand the phase

diagram of known model Hamiltonians, such as the XX
chain, the Kitaev chain, the Heisenberg chain, and a 2D
s-wave BdG model. In doing so, we showed that these
specific models are actually special points in Hamiltonian
space and that their ground states are shared with surround-
ing Hamiltonians in large, nontrivial regions in this space.

V. CONCLUSIONS

The EHC approach fits into a broader class of tech-
niques, such as machine-learning approaches, for automat-
ing physical understanding that previously required
significant insight. Moreover, given the relation between
the QCM and covariance matrices used in statistics, data
science, and machine learning, one might expect methods
developed in those contexts, such as principal component
analysis, to be applicable to EHC and quantum systems.
The standard approach to condensed matter physics is to

take a Hamiltonian and determine emergent properties
represented by its ground state(s). Historically, this has

FIG. 7. A summary of phase expansion results obtained in this
work. In each row, we show the target state(s) provided as input to
EHC (and DEHC), the QCMs CT [and DQCMs DT (see
Supplemental Material [65])] we calculated, and their spectra
on a log scale. The eigenvectors of a QCM (or DQCM) are
vectors of coupling constants that correspond to Hamiltonians
with variance σ2T under the target state jψTi. The QCM for jψBCSi
in the bottom row was statistically estimated using variational
Monte Carlo, while the others were computed with matrix
product states.
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been difficult because of the exponential computational
complexity in determining the exact ground-state wave
function. In this work, we invert this approach, demon-
strating a new approach to condensed matter physics.
Starting with wave functions with desired properties, we
find Hamiltonians with these ground states in time quad-
ratic in the dimension of the local Hamiltonian space
explored by EHC. This new perspective asks us to consider
more broadly the structure of the larger phase space of
physically meaningful Hamiltonians.
EHC is a general tool that allows both theorists and

experimentalists to construct Hamiltonians that have inter-
esting physics or targeted properties in their ground states.
Example uses might include targeting ground states in
cold-atom systems, as well as applications to spin liquids,
fractional quantum Hall physics, unconventional super-
conductivity, many-body localization, frustrated magnet-
ism, and continuum ab initio approaches. EHC is a key step
toward the long-term goal of material design of strongly
correlated materials.
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Note Added.—In the final stages of preparing this manu-
script, a post to the Journal Club for Condensed Matter
Physics [75] brought to our attention the existence of a
recent preprint [76] that independently developed a similar
approach based on the quantum covariance matrix.
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