Science

REPORTS

Cite as: Z. Xiang et al., Science
10.1126/science.aap9607 (2018).

Quantum oscillations of electrical resistivity in an

insulator

Z.Xiang', Y. Kasahara?, T. Asaba', B. Lawson"?, C. Tinsman', Lu Chen’, K. Sugimoto*, S. Kawaguchi?, Y. Sato?, G. Li', S. Yao®, Y. L. Chen®, F.

Iga’, John Singleton®, Y. Matsuda®*, Lu Li'*

!Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA. 2Department of Physics, Kyoto University, Kyoto 606-8502, Japan. *Faculty of Applied Science,
Université Chrétienne Bilingue du Congo, Beni, North-Kivu, Democratic Republic of Congo. *Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan.
SNational Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China. ®Department of Physics, Clarendon Laboratory, University of Oxford,
Oxford, OX13PU, UK. ’College of Science, Ibaraki University, Mito 310-8512, Japan. ®National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos,

NM 87545, USA.

*Corresponding author. Email: luli@umich.edu (L.L.); matsuda@scphys.kyoto-u.ac.jp (Y. M.)

In metals, orbital motions of conduction electrons on the Fermi surface are quantized in magnetic fields,
which is manifested by quantum oscillations in electrical resistivity. This Landau quantization is generally
absent in insulators. Here we report a notable exception in an insulator — ytterbium dodecaboride (YbB;.).
The resistivity of YbBi,, which is of a much larger magnitude than the resistivity in metals, exhibits
distinct quantum oscillations. These unconventional oscillations arise from the insulating bulk, even
though the temperature dependence of the oscillation amplitude follows the conventional Fermi liquid
theory of metals with a large effective mass. Quantum oscillations in the magnetic torque are also

observed, albeit with a lighter effective mass.

In Kondo insulators, the hybridization between itinerant
and localized electrons opens an insulating gap, and conse-
quently their resistivity diverges at low-temperature (I, 2).
Recently there has been a lively debate about the nature of
the ground state of Kondo insulator samarium hexaboride
(SmBg) in intense magnetic fields. Although mixed-valence
SmBs is a good insulator (its resistance increasing by five or-
ders of magnitude when cooled down to 300 mK from room
temperature), Landau level (LL) quantization still occurs and
clear quantum oscillations are observed in its magnetization
(the de Haas-van Alphen, or dHVA, effect) (3, 4). The origin
and interpretation of the dHvVA oscillations in SmBs have
been highly controversial, owing to a number of peculiar fea-
tures. First, the oscillations are observed only in magnetiza-
tion, and not in electrical resistivity (the Shubnikov-de Haas,
or SdH, effect). Second, unlike the heavy carriers revealed by
the thermoelectric studies (5), oscillations appear to arise
from quasiparticles with a very light effective mass (m = m,,
m, is the free electron mass) (3). Third, in floating-zone grown
SmBs samples, the dHVA signal exhibits a striking deviation
from the standard Lifshitz-Kosevich (LK) formula in Fermi-
liquid theory (4). These observations point to either a topo-
logically protected surface state (3), or the presence of an un-
conventional Fermi surface in an insulator (4). A number of
intriguing physical origins have been proposed, including ex-
citon-based magnetic breakdown (6, 7), Majorana type
charge-neutral Fermi surfaces (8), a failed superconducting
ground state (9), and spinon Fermi surfaces (10, 1I). A key to
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solving the most fundamental problem, the existence of “a
Fermi surface in an insulator”, lies in clarifying if quantum
oscillations, in particular in charge transport, are observable
in another insulating system.

Here we present quantum oscillation studies of YbBy,, an-
other cubic-structured rare-earth intermetallic compound.
YbB:»; has long been known as a mixed valence Kondo insula-
tor (12-14). It behaves as a monovalent metal with localized
magnetic moments at room temperature, whereas a nonmag-
netic insulating ground state develops at low temperatures.
The opening of a narrow energy gap of 10-15 meV at the Fermi
level has been confirmed by many experiments (15-17) and is
attributed to the hybridization between the itinerant 5d and
the localized 4f electrons. The mean valence of Yb ions in
YbBy; is +2.9 (I8), close to 4/ (+3) configuration. Therefore,
the f-electrons are mostly localized and the crystalline electric
field (CEF) ground state is well defined. In contrast, as the
mean valence of Sm ions in SmBs is +2.6 (19), f~electrons are
more itinerant and the CEF scheme is not well defined.
Therefore, the electronic structure of YbBy; is much simpler
than that of SmBs. Furthermore, early calculations in YbBy,
predicted the existence of topological surface states owing to
mirror-symmetry protection (20).

YbB:» single crystals are grown in a floating-zone furnace
[Section 1 of (21)]. Using the experimental setup shown in Fig,.
1A, magnetic torque and magnetoresistance (MR) are meas-
ured up to 45 T simultaneously [Section 2 of (21)]. The tem-
perature dependence of the resistivity (Fig. 1B) confirms an
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increase of five orders of magnitude from room temperature
to 50 mK. The resistivity has a weak temperature dependence
below 2.2 K, resembling the resistive “plateau” well known in
SmBs at T < 3.5 K (22). This “plateau” is an indication of the
existence of extended in-gap states. Fitting with the thermal
activation model of resistivity, o(7) = poexp(A/2ksT), reveals
a two-gap feature with the gap width 12.5 meV (20 K < T < 40
K) and 4.7 meV (6 K < T < 12.5 K), respectively (Fig. 1B, inset),
consistent with previous transport results (23). Upon apply-
ing the magnetic field, the negative slope of the o(T) curve is
preserved up to 45 T with no hints of metallic behavior (Fig.
1C), indicating that the ground state is still gapped (see fig.
S5 for more information).

The field dependence of the magnetic torque in the insu-
lating state of YbBy, is shown in Fig. 1D. We observe a step-
increase at 20 T followed by a decrease at 28 T. These features
are weak metamagnetic transitions and/or crossovers that
could potentially be related to the predicted field-induced
staggered magnetism in Kondo insulators (24). Above ap-
proximately 37.5 T, the dHvA oscillations are clearly resolved
(Fig. 1D). We note that the dHVA oscillations appear well be-
low the insulator-metal (I-M) transition field in our YbBy,
samples, which is determined to be 45.3 T-47.0 T by pulsed
field studies [see Sections 4 and 5 of (21)]. Fast Fourier Trans-
form (FFT) on the ¢=11.3° torque curve gives a dHVA fre-
quency of F = 720 T (Fig. 1D, inset).

In Fig. 2A the MR data at ¢ = 27.7° is plotted between 11.5
T and 45 T. Given the zero-field resistivity 0(0) = 4.67 Q cm
of this sample at 350 mK, a significant negative MR ({o(H) -
0(0)}/p(0)) of -95.9% is achieved at 45 T (a detailed angular
dependence of MR is shown in fig. S3). The negative MR is a
hallmark of Kondo insulators that results from field suppres-
sion of the hybridization gap (25-28). We note that the nega-
tive MR in YbB,, is much larger than that in SmBs (29, 30).
This is probably a consequence of the larger effective Landé
g-factor in YbB;,, which increases the influence of the mag-
netic field (17, 28). As H increases, MR displays wiggle-like
features at around 16 T and 28 T. These wiggles do not arise
from quantum oscillations because their positions are obvi-
ously temperature dependent (fig. S7); instead they are likely
to be field-induced transitions/crossovers. The feature at 28
T is probably linked to the Kkink feature in the magnetic
torque [Section 6 of (21)].

The most striking result in Fig. 2A are the oscillations that
appear in the MR under strong magnetic fields. From 40.8 T
up to 45 T, two valleys and one peak in total can be clearly
observed (Fig. 2A, upper inset). The FFT on the MR oscilla-
tions in this field regime yields a clear frequency peak at F =
913 T Fig. 2A, lower inset). With the magnetic field direction
close to the crystal axes, up to four oscillation periods can be
seen (Fig. 2B). The overall SAH patterns are almost identical
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for $=11.3° and ¢ =78.4°, whereas there is a small valley
position shift between ¢ =18.3° and ¢ = 70.5°. This suggests

an axis of symmetry along [101] direction for the SAH oscilla-
tions, which is consistent with the cubic structure of YbBi,
crystal (fig. S10). The fact that the valleys in dpo/dH in Fig. 2B
are approximatly uniformly spaced as a function of 1/H pro-
vides strong evidence that the SAH oscillations have a single
dominating frequency. These overall patterns of the SAH os-
cillations, as well as those of the dHVA oscillations, are well
reproduced between different YbB,, samples [Section 3 of
2n].

The observation of the SAH oscillations is reinforced by
the T-dependence of oscillation amplitudes. The evolution of
the high-field wiggle features in both MR and torque data
show the typical behavior of quantum oscillations, with 7-in-
dependent positions of the dominant peaks/valleys within
the uncertainty, and an attenuated amplitude from base tem-
perature up to 1.5 K (figs. S7 and S8). The T-dependent am-
plitudes of normalized oscillatory torque (Fig. 3A) and
oscillatory MR (Fig. 3, B and C) are fitted using the conven-
tional LK formula (31). The fittings are reasonably good down
to 60 mK, indicating that the LK expression, based on the
Fermi liquid framework, appears to be valid in the Kondo in-
sulator YbB,. The agreement with the LK description con-
firms that the features we resolve are quantum oscillations
rather than successive field-induced Lifshitz transitions.

The SAH oscillations are much more suppressed at higher
T compared to dHVA oscillations at the same angle (Fig. 3, A
and B), revealing a heavier effective mass in the electrical
transport channel. The effective masses of the quasiparticles
estimated from the dHVA and SdH oscillations at the same
tilt angle are approximately 6.6 m, and 14.6 m,, respectively.
Therefore it is unlikely that both types of oscillations origi-
nate from the same band. Indeed the SAH and dHVA frequen-
cies have different angle dependences (Fig. 4). The dHvVA
frequencies F can be tracked by a two-dimensional (2D)

. 1 . .
Fermi surface model ( F « —9 ) with the in-plane cross sec-
cos

tion area Ao = 6.67 nm™ (solid line in Fig. 4). Given the lack
of dHVA oscillations observed above =20° (figs. S3 and S9),
this inverse sinusoidal dependence can be explained by either
a 2D Fermi cylinder, or a heavily elongated 3D Fermi pocket.
On the other hand, the angular dependence of the SAH fre-
quencies displays a clearly nonmonotonic behavior: a fre-
quency maximum appears at 6 ~ 15-20° from the crystal axes,
resulting in an “M”-shape with a local dip at A || [100] and a
fast decrease in the frequency beyond the maximum. The 2D
Fermi surface model apparently can not describe this behav-
ior. Our attempt to model the SAH frequencies (Fig. 4, dashed
lines, and figs. S1 and S10) points to hyperbolic “neck” orbits
[Section 8 of (21)].
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The amplitude of the quantum oscillations is determined
by a combination of temperature, band curvature, Dingle and
spin factors. Assuming Dingle and spin factors do not depend
on the band, the oscillation amplitude of the light band with
the 2D character should be much larger than that of the
heavy band with the 3D character. As the observed SAH os-
cillations arise from a relatively heavy band (m* = 15 m,), it
is highly unusual that the oscillations observed in the dHvA
effect, which detects the orbits from a much lighter band (m*
~ 6.6 m,), are not present in the SAH effect. The Section 11 of
(21) will discuss the possible origins of the dHVA oscillations,
based on either surface state (32), or charge-neutral Fermi
surface (10), or a minority phase. Further, based on the sym-
metry analysis and other tests in a even stronger magnetic
field, we note that the bulk SAH oscillations do not arise from
metallic impurity phases [Section 7, 9 and 10 of (21)], or from
a minority portion of sample which has alower I-M transition
field [Section 4 and 5 of (21)].

There are several notable features in the SAH oscillations
we observed. The effective masses obtained from LK fittings
are large, in agreement with the nature of a Kondo insulator
in which strong electron correlations make the quasiparticles
heavy. Even in the insulating state, a finite electronic specific
heat coefficient v is observed in YbBy; (33). Interestingly, as-
suming a spherical Fermi surface with %» ~ 0.156 A (F = 800
T) and effective mass m* = 15 m, obtained from the SAH os-
cillations, the value of v is calculated to be 7.6 mJ/mol K2,
comparable to the observed value of v ~ 8 mJ/mol K> at 39 T
(33). The background resistivity o still has a magnitude of
more than 100 mQ cm above 40 T, which is well beyond that
of normal metals (34). Indeed if we estimate the mean free
path ¢ by considering a spherical Fermi surface with m* = 15
m. and setting p = 0.4 Q cm (Fig. 2A), we will obtain an un-
physically short mean free path, ¢~ 0.01 nm.

Unconventional quantum oscillations have been proposed
in insulators with hybridization gaps (6-11, 35, 36). However,
our discovery of quantum oscillations in charge transport can
not be effectively interpreted by the theories that either in-
voke charge-neutral quasiparticles (7-9) or associate the os-
cillations with the grand canonical potential (6). More
importantly, all these theories of exotic quantum oscillations
predict that in a gapped system the temperature dependence
of the oscillation amplitude deviates from the conventional
LK-formula at certain elevated temperatures. In contrast, our
observations show that in YbB;, the LK formula works from
T =15K (0.13 meV) down to T = 60 mK (0.0052 meV), i.e, a
range of energy lower than both the hybridization gap width
and the cyclotron energy of charge carriers at a field of =40
T [Section 11 of (2I)]. Recent theories suggest an emergent
neutral Fermi sea can exist in a mixed-valence gapped system
and exhibit both dHvA and SdH oscillations (10, 1), which
may shed light on the exotic SAH oscillations we resolved,
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although a deviation from LK formula is still required in this
scenario. A proper theory is yet to be established to describe
the quantum oscillations observed in YbB;, under high mag-
netic field.
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Fig. 1. Electrical transport and magnetic torque measurements in YbBi,. (A) Sketch of the experimental setup
[for details see (21)] and the definition of tilt angle ¢ with respect to the magnetic field. Inset: Photograph of a YbBu
single crystal (sample N2) mounted onto a cantilever beam magnetometer, with four gold wires attached to the
crystallographic (001) surface for the transport measurement. (B) Resistivity of two YbBy, single crystals plotted as
afunction of temperature. The inset shows the Arrhenius plot, Inp vs. 1/T. According to the thermal activation model,
the slope of the Arrhenius plot equals A/2kg, with A the bandgap width and kg the Boltzmann constant. Linear fitting
in two different temperature ranges, 20 K< T <40 Kand 6 K< T < 2.5 K, yields two characteristic gap widths, 12.5
meV and 4.7 meV, respectively. (C) Resistivity of YbBi> sample N2 under different magnetic fields from O Tto 45T,
plotted against temperature. Hollow and solid symbols are data takenin 3He cryostat at ¢ =7.4° and in dilution fridge

at ¢ =8.5°, respectively. Solid lines are guides to the eye. (D) Magnetic torque in YbB;; measured at T =350 mK and
at two different tile angles, ¢ =-6.8° and ¢ =11.3°. Both exhibit strong quantum oscillations under high magnetic
fields. The amplitude of the oscillatory part of magnetic torque at ¢=11.3° is ~6 x 108 N . m at the highest field,

corresponding to an effective transverse magnetization of ~1.4 x 10 A- m? (1.51 x 10" pg). Inset: FFT on the
magnetic torque signal with ¢ =11.3° reveals a major peak at F =720 T and its harmonics.
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Fig. 2. Resistivity and electrical oscillations in intense magnetic fields in YbB,. (A) Resistivity of sample N2 as a
function of magnetic field measured up to 45 T taken at T =350 mK at a tilt angle ¢ =27.7°. Quantum oscillations are

clearly observed at high magnetic field beyond 40.8 T. The extrema are marked by arrows. Upper inset: first magnetic
field derivative of resistance has two prominent valleys and one peak. Lower inset: FFT on the magnetoresistance
data presented between poH = 40.5 T and 45 T. A single peak frequency of F =913 T is resolved. (B) Field derivative
of sample resistivity at four different tilt angles. Dotted lines mark the approximately evenly spaced valleys of SdH
oscillation. Three to four periods in total can be observed, depending on the field orientation. The oscillation pattern
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at ¢ isrepeated at 90°—¢ , consistent with the cubic symmetry of crystal structure.
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Fig. 3. Effective mass fitting on dHvA and SdH oscillations in YbBi,. (A) Normalized dHVA oscillation amplitude
A+ as a function of temperature. Hollow circles and solid circles are the data taken in 3He cryostat at ¢ =8.5° and in

portable dilution fridge at ¢ =7.4°, respectively. The LK model fitting using parameters m*=6.6 m., B=404T s

presented by solid line based on the 3He cryostat data. In comparison, the LK fitting based on the portable dilution
fridge data gives m* = 6.7 me, B = 41.9 T, presented in the dashed line. (B and C) Temperature dependence of
normalized SdH amplitude Ap/po. (B) is taken at the same tilt angle as in (A), and (C) is taken at a tilt angle close to
that in Fig. 2A. Hollow and solid symbols are data measured in portable 3He cryostat and dilution fridge, respectively.
Here po is the zero-field resistivity at corresponding temperatures. Solid lines are fittings based on the LK formula,
with parameters shown in each panel. According to the fittings, SdH effective mass exhibits a weak anisotropy
between ¢=8° [(B), m* = 14.6 m.) and ¢ =27° ((C), m* = 15.0 m.]. In all three panels, the quantum oscillation

amplitudes (raw data shown in fig. S5) are taken as the averaged value of an adjacent peak and valley obtained after
subtracting a polynomial background from the raw data, and the effective magnetic field for each data sets is an
inverse average of the peak and valley positions. [Details of the background subtraction and the determination of the
B parameters in the LK fittings are presented in Section 6 of (21)]. The error bars on the temperature are estimated
based on the magnetoresistance effect on the ruthenium oxide thermometer above 11.4 T.
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Fig. 4. Angular dependence of
quantum oscillation frequencies.
The frequencies of the quantum
oscillations appearing at high field in
YbBi12. Magnetic field H is rotated in
a plane perpendicular to the current
direction, and the effective tilt angle
0 is defined as the angle between H
and the equivalent crystal axes
[001]/1100] in a cubic structure.
Circles are dHvA frequencies
obtained from FFT (green) and the
slope of a linear fitting of the LL
index versus inverse magnetic field
(blue). The solid line is a calculation
using two-dimensional (2D) Fermi
surface model: F = Fp/cose with Fp =
700 T. Up triangles (red) and down
triangles  (brown) are  SdH
frequencies acquired from the FFT
and from the linear fitting of the LL
index plot, respectively. The dashed
line is the fitting by a hyperboloid
model representing a Fermi surface
neck region with the principle axis
along the [001] direction, whereas
the dash-dot lines are simulation for
the high-angle data points using an
oblate spheroid model with the
principle axis along [001] direction.
For the detailed parameters in these
models, see Section 8 of (21). The
error bars come from the difference
between different sampling
windows for the FFT results, and
fromthe linear fitting error for the LL
analysis.
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