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Foreword:

While I was dealing with a brain injury and finding it difficult to work,

two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with

whom I was recently collaborating), suggested that a new direction might be

good. Steve in particular regarded me as a good writer and suggested that

I try that. I quickly took to Steve’s suggestion. Having only two bodies of

knowledge, myself and physics, I decided to write an autobiography about

my development as a theoretical physicist.

This is not written for any particular audience, but just to give myself a

goal. It will probably have too much physics for a nontechnical reader, and

too little for a physicist, but perhaps there with be different things for each.

Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow

history of where I started and where I got to.

Probably the target audience is theoretical physicists, especially young

ones, who may enjoy comparing my struggles with their own.1 Some dis-

claimers: This is based on my own memories, jogged by the arXiv and IN-

SPIRE. There will surely be errors and omissions. And note the title: this is

about my memories, which will be different for other people. Also, it would

not be possible for me to mention all the authors whose work might intersect

mine, so this should not be treated as a reference work.

One of the most difficult decisions was whether to refer to people by

first name or last. But first names are more subject to ambiguity, so I will

generally go with the latter, even though it feels unnatural with good friends.

1I should mention that in 2009 I did an American Institute of Physics oral history, three
long interviews with historian of physics Dean Rickles. I deliberately avoided rereading it
until I was done, to make it independent. Of course, there is much overlap. I would say
that the interview was more focused on the highlights, while this is more about my whole
development as a physicist. Also, the AIP interview badly needs editing by me, I had not
realized that before.
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I thank Steven Polchinski and Bill Zajc for careful readings of the draft.

I think Stanley Deser and Richard Kass for corrections.

Finally, I owe so much to Dorothy for her support over more than 40

years of our lives together, and especially over the last 21 months.
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1 Early years

1.1 Family history

Whenever I am asked where I am from, I always want to answer ‘Caltech.’

In fact, I did not set foot on the Caltech campus, and barely in the state

of California at all, before graduating from high school in Tucson, Arizona.

But Caltech was so formative in my life that it pales for me next to anything

that came before. However, I will start in the usual way, with a bit of family

history. This gives some context for later life, and may provide unexpected

insights.

In the town of Hawthorne, in Westchester County, New York, you can

find the Joseph Polchinski company, which has sold cemetery monuments

since 1883. It was founded by my great-grandfather, whose name I share.

My father shared the same name, but my grandfather was an ‘Arthur.’ So

I am a ‘Junior.’ Among family I was distinguished as ‘Joey,’ and a few of

them continue to use this even now.
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My father’s grandparents came to the United States around 1870, part

of the vast European migration driven by the combination of starvation and

ambition. One of them, Joseph, was from the region between Poland and

Germany, while the other three were from Ireland. Joseph brought his exper-

tise in stonework with him, founding the monument company and the florist

next door. These supported his family for two generations, before they began

to spread in the usual American way. The monument company is now owned

by another family, but I am always honored to see that they have kept the

name for its historic value.

I know much less about the family of my mother, Joan Thornton. From a

very young age she was raised in a series of foster homes. She ended up with

a warm-hearted German-American family, but she seemed to retain a melan-

choly from her difficult earlier years. I got only some basic history about her,

and she never felt a desire to learn more. She was born in Pennsylvania, but

her final foster family was in the same New York town as Joseph Polchinski’s

family and his monument company. Her ancestry was a mixture of Irish and

other parts of the British Isles.

Growing up in the same small town, my parents Joan Thornton and Joe

Polchinski married in 1951, when Joan was 19 and Joe was 22. I was born

three years later, in 1954, and my sister Cindy three years after. Our family

was a rather typical one for the rising American middle class in the 1950’s.

My father left the family business to earn a degree in accounting. He went

to work for Schenley, a distiller, commuting by train to his job at the Empire

State building. My mother worked for a few years in an office, then became

a full-time homemaker.

Neither of my parents expressed an interest in science. My father did say

that he had wanted to study chemistry but could not because he had not

taken German. But our conversations rarely turned to science. More common

subjects were sports and games, though we did like games like bridge which

had some aspect of mathematics. He was highly competitive, a trait that I
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picked up. In other directions, my father’s reading tended toward history,

and my mother’s toward fiction.

1.2 Early science and math

My own interest in science appeared early. When I was six, my passion was

the How and Why Wonder Books of Science. This was a series of several

dozen books, each centering on a subject such as Dinosaurs, Atomic Energy,

Chemistry, and Rocks and Minerals. Each was 48 pages long, but in a large

format that was packed with information. The figures were hand-drawn but

appealing. I waited eagerly for each new issue. Once I misbehaved rather

badly, playing with an ember from a campfire, and the new issue was taken

away from me for a few days; it was an effective punishment.

A few years later, Isaac Asimov’s books in math and science drove me.

So also did science fiction, by Asimov, Clarke, and many others, giving an

inspiring if unrealistic picture of what science might do. Unfortunately, the

science books and teachers through high school made little impression. At

that level the subject was too purely descriptive.

I remember asking my physics teacher, what is the speed of gravity? He

did not understand the question, even though I drew a diagram illustrating

how you would measure it. Another misunderstanding, at an earlier age, was

a test question, ‘Which is strongest: a) Pressure, b) Electricity, c) Gravity, d)

Magnetism.’ I knew that the question made no sense, but having good test-

taking instincts I knew they wanted the answer ‘Gravity.’ But this could not

be correct: I could lift up my hand even against the gravitational attraction

of the entire earth. So I chose another answer almost randomly, refusing to

make the choice that I knew was wrong. I probably made a token argument

with the teacher, but I was used to losing those. But the smallness of gravity

is indeed one of the principles of physics.2

2In retrospect, gravity could have been correct, depending on the context. Since gravity
is the only force that is always additive, a large enough body of matter will attract with
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One very exciting moment, on the other hand, was reading (no equations

at this level) how an electric field can make a magnetic field, and a magnetic

field can make an electric field, and these two together made a wave that

was the origin of light. So my future in science was clear, even if it took a

few more years to get the details. Thus, from an early age I was drawn to

the basic principles of physics. I am very fortunate that I have been able to

spend my life studying this, and contributing new understandings.

With math, one gets closer to the real subject at a younger age, so the

classes were more interesting. I raced through my courses, meeting the New

Math in fifth grade. This program was a response to Sputnik, and the per-

ception that the US was falling behind the Soviets in science (the How and

Why books likely had the same origin). I can remember the school assembly,

where all the students and their parents learned about this new thing. The

plan was actually rather bizarre. Students would first learn such abstract

notions as sets and operations, only moving on to arithmetic after the theory

was understood. It is hard to believe that anyone thought this was a good

idea, and indeed it faltered in a few years, but it was perfect for me.3

Unfortunately I missed the full benefit of the New Math because we moved

to Tucson, Arizona a year later. My father was looking for a better job, as an

account manager at Merrill Lynch, a stock brokerage, and Tucson was one

of the available openings. Perhaps too my parents were ready to leave the

small town they had grown up in. So the chance to race ahead in math was

delayed a little. I missed another chance around the same time: my father

was second in line among the applicants for a position as business officer at

the Institute for Advanced Study, where my connection with science may

have been accelerated.

Canyon del Oro (CDO), my combined Junior High/High School, was a

great strength. So in the extreme case, gravity does win.
3I have just learned, from Wikipedia, that Richard Feynman was on the California

State Curriculum Commission at just this time, and was one of those to criticize the New
Math.
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new school, and a small one, which would limit me in some ways. But I had

the good fortune that my first math class was with Ed Baceski. Mr. Baceski

loved math, and he made it a game. For example, completing a problem set

would lead to a code to unravel (and you could short circuit the problem set

by working backwards). In retrospect, Baceski was a bit like the new math,

not ideal for the typical student, but great for me and a few others. Early

on he set the Gauss problem, summing 1 to 100, and after I solved a few

of these I was allowed to race on in the textbook on my own. I completed

four years in one, through geometry. My most vivid memory was starting

trigonometry, reading on my own, and not getting the point of this ‘sine’ and

‘cosine.’ But after a couple of days it suddenly fell into place, and it was

wonderful.

The next year, I took Advanced Algebra, the highest level offered in this

small school. It was taught by the football coach, leading to more of the

sorts of disagreements that a student doesn’t win. In retrospect, there might

have been a right way and a wrong way to make such points.

Having run out of math classes, I spent my first high school year com-

muting evenings to the University of Arizona for calculus, driving with my

father or some older students. Unfortunately, this did not go well. Part of

this was the instructor, who contributed little insight or inspiration. One

day we had a substitute, who regaled us with stories about math, and in

particular challenged my precocity with examples of great mathematicians

who had accomplished much more much earlier than I (he could see that I

was full of myself, and needed this). But then it was back to the regular

teacher.

The second problem was that I couldn’t really grasp calculus, just as

earlier I couldn’t get trigonometry for a while. But in this case it took three

years, when I took college physics and found out what calculus was really

for. (Mathematicians might tell you that it has other uses, but they would

be wrong.)
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Disappointed by the class, I decided I could learn math on my own. I

chose a book on group theory. Unfortunately I again seemed to lack the

knack of the subject, and my effort faded. I ended up spending most of my

last two years of high school studying no math. Science was similar. My

small school had no advanced courses, so after racing through the sciences

that were available I found myself with a year of no math or science classes

at all, spending it taking the other required courses to graduate a year early.

1.3 Family

My sister Cindy and I seem as different as two people can be, in personality,

interest, and career. Where my passion was physics, hers was animals, horses

in particular. She took only one year of college, and that was to mollify our

dad. She was then a groom on a large stable near Santa Barbara. Over

the years she has owned horses, bred them, competed on them, and most

recently served as steward at horse shows all over the country.

To support her interests, she also served as a police officer for almost 20

years. This is something I could not imagine doing; for one thing, I can’t

make quick decisions. But she did this with aplomb. Cindy is not academic

in her interests, but she is extremely capable. Yet another difference is that

I have always been shy, working up from extreme shyness when young to

mere introversion today. My sister is the opposite, taking great pleasure in

meeting and talking with people from many walks of life.

In spite of our differences, we have always gotten along well, and she is

a great supporter. She has often told me that she looks forward to traveling

with me to Sweden when I win the Nobel. That is not going to happen, but

I did take her to the LHC a few years ago.

My parents were as helpful as they could be, given that they did not

understand what this alien in their family was doing. My father was the

type who always had to be in charge. When I told him what I was learning

in school, especially later on when we got to relativity, he told me that this
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could not be true. So my father, I am sorry to say, was a bit of a crackpot.

The number of people who have never studied science but still feel qualified

to present their ideas is remarkably large: notably, 99% of them are male.

Indeed, my mother did not have such theories. She did make it a point, many

years later, to tell me that she had been very smart in school. Unfortunately,

the limitations experienced by so many women prevented her from pursuing

this.

1.4 Interests

I did have some stimulation outside of school, notably science fiction, tele-

scopes, and chess. I mentioned science fiction before. It is curious to recall

that this was almost entirely through books. Star Wars was still seven years

away, and with a few exceptions like ‘War of the Worlds’ and ‘2001, A Space

Odyssey,’ there was not a big market for science fiction movies. It is remark-

able how it now dominates.

My interest in telescopes began with the surprise gift of a 4-inch reflector

from my parents when I was 12. This was an excellent idea. Tucson was then

a rather small city, and we lived on the edge, where well-separated houses

trailed off into desert. The seeing (air clarity) and darkness were incredible.

My interest was drawn to picking out galaxies, finding as many of the Mersier

catalog as I could. My interest was mostly visual, I was too young to follow

the science.

After exhausting the potential of the 4-inch, I set out to build an 8-inch

reflector. I did not have a large budget or a lot of mechanical aptitude, so the

results were mixed. I made a creditable mirror, working it against another

glass using progressively finer grit and measuring my progress with the help

of the University of Arizona’s astronomy club. But the mechanical support

was built with whatever wood I could get hold of, patterned on a scaled

picture of the Hale telescope. This worked, and was great for showing off,

but it was well short of the real capacity of an 8-inch. Still, finding the Crab
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Nebula was one of my favorite challenges. Seeing Andromeda was easy even

by eye, and I still can pick it out in Santa Barbara on a good day.

Chess dominated much of my school years. I learned the moves from my

father when I was young (aside from some confusion about the pawns). After

occasional games with my father and a few friends, my interest exploded when

I got to CDO and discovered a group to play with. For the next five years,

at almost every lunch period or other break, we would pull out our boards

and play. As I got better, I played in local tournaments, and in larger ones

in Phoenix. This was a lot of fun, and virtually my only social life. In my

last two years, when I had run out of math and science to study in class, I

spent many hours studying chess books, about chess openings, and attacks,

in particular.

There is an anomaly here, which has always puzzled me. Based on my

progress in physics, first in progressively more advanced courses, then in

original research, and finally in significant discovery, you could say that in

physics I am the analog of a fairly strong Grandmaster. In chess, I started

out as a beginner, and in a few years had worked my way up to the level of

a good recreational player. In my last two years, working nearly full-time

on chess, I expected to continue to improve. Instead, I came to a virtual

standstill.

Chess has a nice numerical system, called ELO. Based on their wins and

losses, each player has a numerical rating. Grouping them, they are desig-

nated

... < D < C < B < A < Expert < Master < Senior Master < Grandmaster.

Roughly speaking (the full theory is more elaborate), if two players are sepa-

rated by M levels, the relative probability that the higher ranked player win

is 3M . When I started out I was a D, a beginner, and after three years I

rose to A. But I never quite reached Expert, much less the promised land of

Master and beyond.

I have always wondered why. Are chess and physics so different, that one
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can be a grandmaster in one, and not even an expert in the other, in spite of

similar efforts? Seeing younger and younger teens achieve grandmaster has

always amazed me.

I got one clue when I ran into a high school chess buddy many years

later. When I had first met Keith Nelson in school, he challenged me to a

game. Having faced such challenges often, I expected a quick victory, but

he beat me. I was sure that with a bit more concentration, I would set

things right. But he beat me again! Over time I won a share of the games,

but he was clearly the better player. So, perhaps twenty years later, I ran

into Keith again. I had not known of his interest in science, but he had in

fact become a professor of experimental chemistry at MIT. And as we began

to reminisce, he astonished me by recounting in detail our first two games,

which I could remember only dimly . Evidently he had phenomenal memory,

at least compared to mine.

Indeed, I have always felt that I did not have an especially good memory.

In one of my first classes in college, the instructor told us that you do not

need a good memory to do physics, because you can derive everything from

first principles. If I had had any doubts that this was the right field for me,

that sealed it!

Beyond the issue of memory, I did not have a real knack for chess. I

was conservative, using a few basic attacks and waiting for the opponent

to make a mistake. I did not like to advance pawns, because the effect

is irreversible. This is not the way that Grandmasters think! Likely with

training I could have done much better, but not been a prodigy. I am curious,

what distinguishes these different mental strengths?

1.5 Traits

One thing I want to do is to recall some of my development as a physicist.

There are a number of traits that have played a role here. Many of these

have already come up in the discussion of my early life.
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To start with, my parents and relatives could see from a very early age

that I was not a normal kid. I could solve puzzles and games at a level far

above my age, and my general knowledge was advanced. So from a young

age, this was my identity: being very smart. It has stayed with me as I have

moved from level to level, all the way to string theory.

On the other hand, I have noted that I was painfully shy all through

school. I tried to keep conversations as short as possible, so as not to bore

people. Only gradually, in college and beyond, did this fade.

I also think I have some lack of common sense. My poor telescope design

was one example. Another was my two year gap in high school math: with

common sense I should have looked for advice. And my approach to chess

also seems to have a lack of common sense.

In a sense, shyness and lack of common sense were two sides of the same

coin. If you talk to other people you learn things. If you don’t, you have

to figure everything out yourself. Even after maturing from shyness to in-

troversion, I tend not to ask questions or seek help. This may be one of the

reasons that my science didn’t really reach its peak until rather late.

2 Caltech, 1971-1975

2.1 Arrival

The information available to college applicants today of course dwarfs what

we had then. For me, the principal sources were Reader’s Digest and the

World Almanac and Book of Facts, but these were enough. A few years

before college, I read a Reader’s Digest article about the famous Caltech

Rose Bowl prank.

The Washington team had planned a show in which several thousand

fans in the stands would manipulate a set of cards, producing stadium-sized

images. This went well until the last two cards, when ‘Huskie’ was replaced

by ‘Beaver,’ and then ‘Washington’ was replaced by ‘Caltech.’ This had
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required an elaborate scheme by the Techers, culminating on the night before

the game, when they replaced the thousands of individualized instructions.

The article also mentioned the unique scientific environment of Caltech.

Having never heard of this place before, I went to my other source, the

Almanac. It had a nice table of colleges, from which I learned that the

student/faculty ratio at Caltech was around 2-1, compared to 20-1 at any

other college. Pranks and top faculty — I was hooked. I never even read

up about other schools — probably a lack of common sense, but it worked

out this time. I applied to Caltech on early decision, and then waited with

bated breath. Coming from a small school in a small state, I had no idea of

where I stood. But when the letter came it was positive, and I sat back and

laughed for a long time. This is what I had been waiting for.

So, in September of 1971, my family drove up from Tucson. This was

a good day’s drive, but my parents both enjoyed driving. And so we rolled

up to my dorm, Blacker House, where I would spend the next four school

years. We said goodby, my mother crying on one of the few occasions I can

remember, and my new life began.

2.2 Zajc

During my first week on campus, I met three remarkable people: Richard

Feynman, Kip Thorne, and William (Bill) Zajc. Feynman had won the Nobel

Prize when I was still in grade school, more than 50 years ago now. Thorne

may win the Nobel Prize next year. Zajc, who is probably least known to

most of you, is a distinguished scientist as well. He led the development of

the PHENIX heavy ion detector at Brookhaven. This may not lead to a

Nobel Prize (though who knows?), but it did reveal a connection between

the entropy in nuclear physics and that in string theory. At the time we met,

Feynman was a star, Thorne was a rising young star, and Zajc was, like me,

a young whippersnapper setting his first steps on the Caltech campus.

Zajc, like me, was in Blacker House, so we met on Day 1. Almost as
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quickly, he had an enormous effect on my life. As I’ve noted, I left high

school with no knowledge of what physics really is. But at Caltech, I was

immersed in it. Zajc was a big part of this. In high school in Wisconsin,

he had already read some of the Feynman lectures, Feynman’s three volume

introduction to physics. In fact, this was to be used as the course for the

‘advanced track’ for introductory physics. So Zajc got to Caltech with a

much clearer picture of what physics was.

Zajc was outgoing (for a Techer), and he loved to talk about physics. I

quickly learned what I had been missing. As Zajc told me amazing facts,

and we worked through some key equations, I could see for the first time how

calculus and physics fit together. I saw that this was what I was designed

for. I had brought my chessboard with me to school, planning to practice an

hour a day, but it was never opened.

For four years Bill and I took most of the same classes, working together

as we learned physics. But as much as the physics, I remember the ways

that Bill, our other friends, and I blew off steam in between. These included

drives for Tommy’s burgers and various sports. A group of us became avid

cyclists, riding to the beach at Santa Monica and exploring LA on rides as

long as a century (100 miles). Our special challenge was the ride to the top

of Mount Wilson.

2.3 Pranks

Exploring the Caltech campus to discover its secrets was another pastime.

At the most benign, this meant wandering the hallways of physics and other

departments to see what went on there. More interesting were the night-

time excursions, clambering into construction sites, negotiating Caltech’s

elaborate steam-tunnel network, or simply applying the knowledge of lock-

picking that had been passed down from generation to generation of Tech

students (the physics building, Bridge, was known to be particularly easy).

Finding some interesting, perhaps historic, piece of scientific equipment was
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a Prize.

In this way we carried out (though not on the scale of the Rose Bowl!)

the kind of pranks that first lured me there. Our most notable one involved

the roof to the library. The Caltech library, at nine stories, loomed over

the campus. It was a natural location for undergraduate activities, which

usually involved throwing, or floating, objects that may or may not have

been flammable, from the roof. The door to the roof was locked, but this

could be picked by the more talented Techers.

Caltech security did not think this was a good thing, and so the lock

was replaced by an ‘unpickable’ one. Indeed, our best locksmiths could not

open it. This was an outrage, and a Plan B was necessary. There was a

ventilation shaft nearby, opening on each floor and then out on the roof.

The frame could be unscrewed, so all that was needed was someone with

no common sense to climb the shaft from the top floor to the roof. Having

a particular talent in this area, late one night I found myself wriggling up

the last twelve feet of the shaft, with 9 stories beneath me and tethered by

a climbing robe that I had never tried. Fortunately it was an easy climb,

aside from a tense moment when I was stuck and unable to move in either

direction. I got to the top and opened the door from the back

Having defeated the unpickable lock, we had to celebrate. We removed

the door from its hinges, and a dozen of us carried it down to the library

basement and then through the underground steam tunnels to the Caltech

security office. The lock-pick experts opened the office and we left the door,

but only after the group of us, including Zajc and me, signed it. This might

seem to be a foolish thing, but we knew that Security understood Techers

and was easy on us; in fact, there ended up being no penalty at all (Warning:

things are different now. Do not attempt.). And there was a nice bonus.

Security replaced the door without removing or covering our signatures. So

as of a few years ago, 40 years after the fact, my signature, Zajc’s, and the

others (with maybe a fake or two) could still be seen on the door to the
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library roof.

2.4 Feynman

I first met Feynman as an idol, not a person. In the courtyard of Dabney

house, next to Blacker, a large bas-relief depicting the great scientists of

history had been built many years before. When Feynman was awarded

the Nobel Prize with Julian Schwinger and Sinichiro Tomonaga in 1965,

the Dabney’s students replaced the dominating figure of Galileo with that

of Feynman. Thus we were surrounded by Feynman all the time, from his

image, his books, and many other reminders. For many of us, Feynman was

who we wanted to be.

I got a chance to meet the man himself before too long. Once a week,

Feynman led Physics X, where freshman and sophomores could ask their

questions about physics, or if we ran out of questions he would talk about

some of his ideas. One example of this was, how do you take the square root

of the Fourier transformation, so that acting on a function twice with the

operation would be the same as the Fourier transform. For those interested,

the answer is in the footnote,4 but try it first. This kind of happy creativity

was fascinating to see. Another question was, what is a negative probability?

Unfortunately, my main contribution to the class was falling asleep one day,

in the front row, which has delighted some of my classmates to this day.

One of the notable sights in Bridge Hall was a pair of small objects, a

miniature page of text and a miniature motor. Both were inspired by Feyn-

man’s lecture ‘There’s Plenty of Room at the Bottom.’ He foresaw the smaller

and smaller scales that physics and technology could reach. In addition to his

powerful calculational ability and his outsized personality, Feynman’s ability

to think far outside the box was awesome. Another example was the idea

of quantum computation, where the ‘Plenty of Room’ comes not from space

4In phase space, the Fourier transformation x → p → −x is a 90◦ rotation. So rotate
by 45◦ (or 225◦, it’s nonunique).

18



but from Hilbert space.

So, many of us wanted to emulate Feynman. As I began to stand out in

my classes, a couple of my classmates proclaimed me the next Feynman. I

was happy to hear this, of course, but I knew better. In contrast to Feynman’s

striking originality, I have always felt myself to be weak in this area. This

is not just me being self-effacing; you can judge it as we go along, but my

impulse has simply been to follow my nose.

I was too shy to take more advantage of the time with Feynman, though

I saw him often on that small campus. I did hear his stories at one faculty

party, some of the same stories that later appeared in his book. Most exciting,

when we were seniors, Zajc and I, along with two other seniors, were asked

to grade Feynman’s junior quantum mechanics homework. My strongest

memory of the class is the very beginning, when he started, not with some

deep principle of nature, or some experiment, but with a review of Gaussian

integrals. Clearly, there was some calculating to be done.

I did get over my shyness one time, to ask him about the infinities that

appear in quantum field theory (QFT): do they have a physical interpreta-

tion? Feynman said ‘no.’ In retrospect, he must have known more, from the

work of Wilson, Weinberg, and others. But perhaps it did not satisfy him,

since he had not derived it himself. But this question tugged on me for the

next eight years, and was my first deep result.5

2.5 Thorne

Kip Thorne was my designated freshman advisor, so we met every quarter.

His first order when I went to his office was ‘Call Me Kip.’ This I could not

do, so I spent the year addressing him without using his name.

Thorne’s office door was covered with interesting artifacts. Most notable

was a bet between Kip and Stephen Hawking, as to whether the radio source

5Zajc reminds me of another interaction we had with him, asking about whether ro-
tating bodies produce gravitational radiation, something we were puzzling over.
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Cygnus X-1 was a black hole: Thorne bet yes, and Hawking no. If yes, it

would be the first confirmed black hole in nature. Actually both wanted, and

expected, the answer to be yes, but Hawking was covering his bet: if he was

disappointed by the black hole, at least he’d win a magazine subscription

from Thorne. But indeed it was soon confirmed.

Thorne was a leader in general relativity, with a particular interest in the

rich astrophysics of black holes. This required a team, so one always saw him

with a group of enthusiastic grad students and postdocs. As we have seen,

when Thorne began black holes were still theoretical, though the theory was

compelling. Soon there was Cygnus X-1, and in time an enormous number

more, from quasars down to collapsed stars. Most recently, Thorne capped

off his remarkable career as one of the leaders of the LIGO project. This

billion dollar experiment gave the first observation of gravitational radiation,

predicted nearly 100 years ago, and the first observation of coalescing black

holes.

I did not have much interaction with Thorne as a student, aside from

auditing his general relativity class. The research was too advanced for an

undergrad. I did have an interesting science/sci-fi interaction with him sev-

eral years later, which I will get to.

2.6 Classes

Thus surrounded by these and many other outstanding scientists, my edu-

cation went forward. The Feynman lectures were one of the highlights of

the first two years. They were not perfect: as with everything Feynman

did, he redid the subject from his own approach. This was inspiring, but

challenging. There was a shortage of examples and calculations, but these

were supplemented by a set of problems authored by two other high level

professors, Robert Leighton and Rochus Vogt.

There were also a variety of other subjects - Astronomy, Chemistry, Ad-

vanced Calculus, Electronics. I took too many courses, this was common at
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Caltech. There was so much to learn, one wanted to cram it all in. Happily,

only one non-science course per quarter was required. In my four years I

did not take much math: advanced calculus, complex variables, and a course

on group theory that I again failed to grasp. I think I was influence by an

offhand remark from Feynman that one did not need to know much math,

but it worked for me.

2.7 Tombrello

Having so much fun in school, I did not want to leave during the summers.

Today, undergraduate research is expected, but back then it was more hit-

or-miss. Happily, Tom Tombrello was there. Tombrello was a nuclear and

atomic physicist, working in particular on measuring the nuclear decay rates

needed to understand the formation of the chemical elements. He was also a

remarkable people person. When he saw that four of the top physics students

(Bill, me, Roland Lee, and Ken Jancaitis) were looking for research projects,

he took all of us on!

This was heaven: four of us sharing a basement office in Bridge, with

a modest stipend, talking physics all day and unwinding at night. And

Tombrello did not just put the four of us on some large project. We each

had our own problem (which might be part of some larger collaboration),

coming from Tom’s many interests. Over time I worked on estimation of

waveguide shapes, calculating nuclear decay rates, and finding methods to

study intermediate energy atomic collisions. He even showed one of my plots

to Hawking when he was visiting Caltech.

Tombrello was one of the rare physicists who did both theory and experi-

ment. He used the Van de Graff generator to study nuclear interactions, and

so I got some time learning to run that. He also guided my senior thesis,

attempting to zone-refine gallium in order to detect solar neutrinos.

Tombrello told me I should follow his path, and that of Fermi, doing

both experiment and theory. But I was set on theory by nature. I remember
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spending a few hours moving some lead blocks with Tom, and thinking I

did not want to spend my career moving lead blocks. But of course theory

has its own drudgery, such as searching for factors of two. But I may have

disabused Tom when I managed to break both the multi-channel analyzer

and some expensive glassware on my senior project.

Even after graduation, Tombrello kept in touch. He sent me a copy

of Hawking’s information paradox paper, written while a guest at Caltech,

together with a note ‘Joe, you should work on this!’ He was right, but it

took me a few years to get there.

Tombrello took a break after the four of us graduated, but several years

later he instituted Physics 11 as a regular undergraduate research course.

Tom passed away unexpectedly a few years ago. At his memorial, it was

remarkable to hear about all the aspects of his life. The number of people

he had affected, and especially his talent for bringing people together, were

wonderful to hear about.

2.8 QFT, GR, QCD

Senior year, physics got even more interesting. I took QFT from Frautschi,

and General Relativity from Thorne. I did not end up with a good grasp

of either subject. These days it is rather routine for seniors in theoretical

physics to take these courses, but the subjects then were more difficult.

QFT was undergoing rapid development, and the textbooks had not yet

caught up. The two volumes of Bjorken and Drell were the text of general

choice. This was a beautiful book when it was written, but ten eventful years

had gone by, and a new text was needed.

General Relativity did have a new text, and that was the problem. Charles

Misner, Thorne, and John Wheeler had just rewritten the subject in an epic

text known widely as the Big Black Book. Unfortunately, it was almost

impossible to learn from, especially by me. It was intended to present the

subject in a geometric way, which most people would take as a good thing,
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but it went too far, so that it seemed like reading pictures. Robert Wald,

several years later, presented the geometric story in a more conventional way.

For me, Weinberg’s book, following particle physics as much as possible, was

ideal, and I learned this way as a grad student. Weinberg explicitly down-

graded the role of geometry in gravity, never even mentioning black holes.6

In field theory we had a notable guest lecture from David Politzer, a

new member of the department. Three years earlier, David Gross and Frank

Wilczek from Princeton, and Politzer from Harvard, had discovered the prin-

ciple of asymptotic freedom. This showed that due to quantum loops, the

interaction strength of the strong nuclear force could grow larger at larger

distances. This then explained how the weak force seen between quarks at

high energy was consistent with quark confinement at long distances. Thus

they had determined the nature of the strong nuclear force, so-called QCD,

and established QFT as the correct framework for particle physics.

Unfortunately, no one at Caltech had been working on this. Feynman

and Gell-Mann each liked to follow their own directions, though ironically

asymptotic freedom explained the relation between Feynman’s partons and

Gell-Mann’s quarks. So Politzer was the first direct connection with the new

physics.

Another source of particle physics excitement was the discovery of a new

long-lived heavy particle, something that had not been seen before, the J/ψ.

This was big enough news that even the undergrads knew they should attend

the colloquium. After the observation was described, various faculty mem-

bers put forth their theories. Feynman thought it might be free quarks, while

a young professor, Glennys Farrar, proposed that it was a bound state of the

charmed quark with its antiquark. Fairly quickly, the latter was confirmed.

In fact, the existence of the charmed quark, as well as its mass and other

properties, had been correctly predicted by Sheldon Glashow, John Iliopou-

6It occurs to me that even today, our most precise description of black holes is gauge
theory, not geometry.
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los, and Luciano Maiani several years earlier, a great success of theory.

For nonspecialists, here is a handy list of acronyms:

AdS/CFT: equivalence between quantum gravity in a certain curved

space and a supersymmetry gauge theory in one less dimension.

AdS/CM: use of AdS/CFT to model strongly coupled condense

matter systems.

AdS/QCD: use of AdS/CFT to model strongly interaction nuclear

system.

BFSS: matrix theory, exact description of M theory.

BHC: black hole complementarity.

BPS: partially supersymmetric state.

CGHS: a model of gravity in two dimensions.

GR: general relativity. Gravity arising from the curvature of space and

time.

GUTs: grand unification.

KKLT: first full model of stabilized string vacua.

QCD: quantum chromodynamics. The theory of the strong nuclear

force. The ‘chromo’ comes from Gell-Mann’s whimsical labeling of the three

kinds of quark as red, green, and blue.

QED: quantum electrodynamics. The quantum theory of electromag-

netism.

QFT: quantum field theory. Quantum theory in which the basic variables

are fields. Confirmed in 1971 as the basic framework of quantum mechanics

and matter. The particles appear from the solutions for the quantum me-

chanics of the fields.

SUSY: supersymmetry.
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3 Berkeley, 1975-1980

3.1 Moving on

After four years, it was time to choose a graduate school. I knew that I

wanted to do theoretical physics, and my choices came down to Berkeley,

Stanford, Harvard, and Princeton. I tried to be scientific about my choice,

but had a strong leaning for Berkeley: several friends, including Zajc, were

going there and I liked California. Also, I had a nice Hertz fellowship, which

at the time was restricted to a small number of schools, including Berkeley.

At the time, Hertz had a strong defense orientation. One might think

that liberal Berkeley would be ruled out, but it also had a close connection

with nearby Lawrence Livermore Lab, designer of nuclear weapons. I took

the fellowship and went to Berkeley. Participation in defense was not at all

mandatory, aside from a pledge to aid the US in time of need. My own

connection was limited to a one-day tour of Lawrence Livermore (but only

outside the security fence, because I did not have a security clearance).

There was one off-note in my grad school search. Paul Martin, the Har-

vard physics chair, was passing through and stopped to do some recruiting.

His main argument that I should go to Harvard was that East Coast physics

was better than West Coast physics. I had never heard of such a thing,

Berkeley after all had a great history. So I did not take this seriously, and

off to Berkeley it was. If he had been more direct, things might have gone

differently.

3.2 Finding a major, and the East-West divide

I was one of those students who thought he had to learn everything before

starting research. Retaking QFT and relativity were essential, of course.

Field theory was taught again from Bjorken and Drell. So I learned the

equations this time, but I still thought that the basic principles were not

clear. At least relativity was taught from Weinberg, so I got that subject
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down, though from the point of view of a particle theorist, not a relativist.

I had a vague notion that I should learn more about the other possible

majors, but I really knew that I was going to end up in particle physics. And

so somewhat belatedly I began to look for an advisor. And then I learned

what the Harvard recruiter was saying. With Caltech, the dominance of two

charismatic professors, Feynman and Gell-Mann, had slowed the reaction to

the discovery of asymptotic freedom and all that it implies. At Berkeley,

another charismatic professor had the same effect.

In 1948, Feynman, Schwinger, Tomonaga, and Dyson had found the cor-

rect theory that incorporated quantum mechanics, special relativity, and

electromagnetism. The theory, known as quantum electrodynamics (QED),

was based on the principle of QFT. It made predictions of enormous accu-

racy. Thus it was natural to look for the same kind of theory for the nuclear

force. It would have to be much stronger: the coupling constant in QED is

a convenient 1/137, for the strong force it would need to be around 1.

But this did not seem to work, to describe the strong force in this way.

Thus it was that throughout the 1960’s there was a search for new ap-

proaches.7 One idea that attracted wide attention was the bootstrap: the

idea that one did not need fields, but just a few principles like Lorentz invari-

ance and crossing. This idea was suggested by some of the data, in particular

the presence of a large spectrum of massive excited states. The leader of the

bootstrap program was Geoffrey Chew, of Berkeley. He was said to be reli-

gious in his fervor for the idea. Even notoriously strong willed field theorists

such as David Gross and Steven Weinberg, who went through Berkeley as

grad student or postdoc, were afraid to mention QFT.

The bootstrap did lead to some interesting work. It was elaborated into

the Dual Resonance model, which in turn led to string theory. But this was

the solution to the wrong problem, and too soon. Thus, when asymptotic

7It is interesting to look back at the 1967 Solvay meeting. The speculations were fairly
radical, like breakdown of spacetime inside the nucleus. Few were near the mark.
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freedom was discovered and the strong interaction was understood, the work

was done not at Berkeley, but on the East Coast. Even four years later, when

I was looking for an advisor, there was almost no one working on QFT. One

prospective advisor told me ‘You should have gone to Harvard.’ Another

told me he had stopped supervising students. But fortunately there was one

choice.

3.3 Mandelstam

If Geoff Chew was the spiritual leader of the bootstrap, Stanley Mandelstam

was its engine, solving the difficult problems that were required. When the

world tilted from the bootstrap to QFT, it took Mandelstam a little while

to catch up, but when he did he did it in his own powerful fashion. It was

never Mandelstam’s style to start with some easy problem to learn from. He

chose the most important, and most difficult, problems.8

The problem that he focused on in QCD was the nature of quark con-

finement. The fundamental fields of QCD, the quarks and gluons, are not

seen directly in experiment. Rather, we see mesons and hadrons, which are

bound states of the quarks. Somehow the quarks are prevented from escaping

to be seen as individual particles. Asymptotic freedom points to the idea:

the growing coupling at long distance binds the quarks. But a more explicit

demonstration was needed.

The idea that Mandelstam hit upon was suggested by superconductiv-

ity. In superconductors, the Meissner effect repels magnetic fields from the

superconductor. If one inserted a magnetic source into a superconductor, it

would be confined into a tube and grow linearly. So what was needed to

confine quarks, which are electric sources, was a ‘dual superconductor,’ with

electric and magnetic fields interchanged. Indeed, this suggested a duality

symmetry, the equivalence of electric and magnetic theories under change of

8Whether by inclination or by example, I tend to be the same way. Frank Wilczek once
told me, ‘Joe, an important problem doesn’t have to be hard!’
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variables.

So Mandelstam seemed like the only choice, and I asked him if I could do

research with him. He hesitated, probably because he had just taken on two

other students, but then agreed.

Students are generally started off with a warmup problem. This is for the

student to get oriented to the advisor’s research, and for the advisor to gauge

the student. But as Mandelstam only worked on the hardest problems, he

naturally gave the same to his students. My warmup was to find a QFT that

had both electrically and magnetically charged particles. This is an contrast

to the known theory of QED, which has only electric charges.

I was unable to solve this problem, and I gave Mandelstam an argument

why it was impossible. In a theory with both electric and magnetic charges,

Dirac showed that quantum mechanics requires the electric charge e and the

magnetic charge g had to be quantized, eg = 2π. For QED, e = 1/
√

137 is

very small, and so we can use perturbation theory, expanding around e = 0.

But when e goes to zero, g goes to infinity. In this limit, we had no way to

calculate, or even to know if the theory made sense.

In fact there is a solution, though I don’t know if this is what Mandelstam

had in mind. It requires the electric and magnetic objects to be different:

the electric charges would be ordinary field quanta, but the magnetic charges

would be solitons — sort of like bound states of many particles. I am not

sure if this was within the intended bounds of the problem, but it involved

too many new ideas for me.

In fact, it now seems that every quantum theory with electric charges

also has magnetic charges. I may not have been the first to enunciate this

principle, but I have made frequent use of it, especially with D-branes, and

I will of course return to that. What about ordinary QED? I would bet,

at high odds, that it does in fact have magnetic charges. But it is unlikely

that either side of the bet could ever collect, because one needs to get to the

Planck scale to be sure.
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So Mandelstam gave me another project, which was intended to be my

thesis. This was to construct the ’t Hooft vortex operator. Like the earlier

problem, it was a part of Mandelstam’s broader program to understand con-

finement in terms of electric-magnetic duality. Ken Wilson had shown that

one could distinguish different states in a gauge theory, in particular the con-

fining state, by measuring a certain operator. This operator, defined as the

integral of the vector potential along a one-dimensional path, had come to

be known as the Wilson loop. Gerard ’t Hooft, who was pursuing the idea

of confinement from duality independently of Mandelstam, noted that there

should be a dual to the Wilson operator, with the electric potential replaced

by a magnetic potential. It was my goal to fill in the details of this.

So I met with Mandelstam to discuss this about once a week for a year.

Mandelstam was always generous with his time. But he was a difficult advi-

sor, because his thinking was deep, but his explanations were often oracular.

So I was never sure if I was making progress. Sometimes, in response to a

question, he would turn to the blackboard and just think for several minutes

before responding. I never knew whether this meant that this was a good

question or a dumb one.

I have always thought that my project was unsuccessful. But on reviewing

it for the first time in a very long while, I realized that I had basically

solved the problem. One needed an operator whose physics effect was only

in one dimension, and which also had a singular gauge piece acting in three

dimensions. But I also had a lot of irrelevant stuff mixed in. I had not really

mastered path integrals, which had not made it into the standard texts.

So I was using canonical methods, which were very clumsy for this kind of

problem.

Rather strikingly, my central problem was not clearly solved until 25

years later, by Anton Kapustin. This required several new ideas, such as

conformal invariance, that had not yet been applied. He was also able to

treat the nonabelian case. This was typical of Mandelstam, how far ahead
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he was in much of his thinking. Another example, the first paper that one

studies in the Langlands program today is the first paper that Mandelstam

gave me to read 40 years ago.

Another striking example was eleven-dimensional supergravity. I have

this distinct memory that on several occasions we would be discussing QFT

and quark confinement, and Mandelstam would make some remark about

eleven-dimensional supergravity or string theory. This was a bit mind-

blowing for someone struggling with four-dimensional QFT, and for whom

string theory was assumed to be an artifact from the past. I did not know

what to make of this, so I just waited for Mandelstam to come back to

earth. But a few years later string theory was back in the center of things,

so Mandelstam was as usual well ahead of time.

3.4 Colleagues and visitors

Mandelstam’s two other grad students at that time were Susan Elma Moore

and Omer Kaymakcalan. Each of Mandelstam’s students had a different

project, but all were connected in various ways through QFT and QCD.

Susan’s project was to find variational states of heavy quarks, based on a

Wilson loop model of the states. In his own work, Mandelstam was never

following the herd, and he guided his students the same way. This could be

challenging, as I have noted. In Moore’s case, after writing her dissertation

she changed fields — first spending some time trying acting, and then ending

up as a doctor.

Kaymakcalan’s graduate project was to understand the non-abelian prop-

erties of the Higgs phase. After his thesis, Omer went to Syracuse and worked

on various projects with the members of the Syracuse group. Several of his

papers, dealing with chiral Lagrangians, proton decay, and strongly coupled

Higgs dynamics, were well-cited. Sadly, Kaymakcalan was diagnosed with

cancer at around this time, and passed away shortly after.

One notable classmate was Dan Friedan. Friedan stunned me, and I think
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everyone else, at his Ph.D. seminar, when he showed that Einstein’s equation,

the basic equation of general relativity, could be reinterpreted in terms of one

of the basic objects in QFT, the β function that governs the energy scale. I

did not see what this could possibly mean, but a few years later it showed up

as one of the key ideas in string theory. (I don’t think that this connection

was known to Friedan at the time — at least it is not mentioned in his thesis).

He also taught me a key idea in QFT, one that did not appear in textbooks at

the time. This was the idea that one could separate operators into ‘relevant,’

‘irrelevant,’ and ‘marginal’ operators, which is central in organizing QFT.

Friedan had also had some difficulty finding an advisor, but he had solved

the problem by having a nominal physics advisor but working in fact with

Isidor Singer, from the math department.9 Singer was a famous geometer,

best known for the Atiyah-Singer index theorem. He was beginning to take a

strong interest in QFT, recognizing that it was going to lead to rich connec-

tions between math and physics (a development that would soon accelerate

with string theory). So he was always happy to talk about QFT, and was a

good sounding board for me.

Another helpful professor was Korkut Bardacki. Like Mandelstam, he

was in the middle of making the transition from dual models to QFT. Not

as deep as Mandelstam (few are), but some times clarity is more useful than

depth. Two other professors I recall mostly for their advice: my strongest

memory of David Jackson, whose famous text I will come back to much later,

was that “It is not enough to be smart, you have to work hard.” It was good

advice, and much-needed given my lack of common sense. The other was

Robert Cahn, a new professor at LBL, the lab affiliated with Berkeley. He

also helped to fill the gaps in my common sense, especially when it can to

finding my next job. Also, a growing group of postdocs at LBL focused

on field theory and particle phenomenology, including Howie Haber, Eliezer

9Another Berkeley student from that era, Andy Strominger (who we will hear much
more about later), solved the problem by transferring to MIT.
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Rabinovici, and Ian Hinchliffe. They added some liveliness.

Visiting speakers brought in new ideas that were missing at Berkeley, and

these are still some of my strongest memories. Steven Shenker, a student at

Cornell and already a deep and broad thinker, taught me key things about

quantum field theory and lattice gauge theories. Sidney Coleman, the famed

quantum field theorist and pedagog from Harvard, spoke about magnetic

monopoles, and I was please to see that I had independently found some of

his results. Lenny Susskind from Stanford, about whom we will hear much

more, spoke about ‘Hot Quark Soup.’ The connection between QFT and

high temperature was largely new to me, but the Feynman-like presentation

was the most memorable part. Another Stanford visitor, the postdoc Stuart

Raby, brought the idea of technicolor, strong coupling instead of a Higgs

field.

One final visitor was Edward Witten, a postdoc at Harvard. Witten asked

me probing questions about Mandelstam’s program. This was startling to

me, first because he was the first person I’d met who understood Mandel-

stam’s unconventional and technical approach, and second because he un-

derstood it better than I did after years of study. I would learn that this was

a common reaction to Witten.

3.5 Dorothy

This is intended as a scientific autobiography, not a personal one. I have

included personal bits only to give general background. But of course I

have to tell you about Dorothy, who I met the year I arrived at Berkeley,

and married five years later when I graduated. Dorothy had several Caltech

connections, including a brother and a former boyfriend. She started as

a student at Occidental College, near Caltech, but we did not meet until

we were both grad students at Berkeley, she in the German department.

We actually met through another Caltech connection, who was now also at

Berkeley and active in organizing volleyball games and parties. I decided that
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I liked her, and spent several difficult months convincing her of the same. So

a few days after turning in my dissertation, I was in Hawaii, where most of

Dorothy’s family lived, and we were married.

Tom Tombrello, whenever we met, would remind me what a good choice

I had made in Dorothy. Although I had learned a few social skills at Caltech,

I still had many rough edges. Having Dorothy straightened many of these

out.

I was always afraid of her asking me why I loved her, because the first

answer that came to mind was always that she was the sanest person I knew.

It seemed not so romantic, though she had many other wonderful features.

But having been around for a while now, I think that in making a list of

qualities in a spouse, being the sanest person you know should be near the

top.10 So, while we each worked our way through grad school, we unwound

with food, volleyball, skiing, and friends and family.

3.6 Other physics

In between working on Mandelstam’s project, I spent most of my time trying

to understand what this quantum field theory is. I read whatever references I

could find. There was a short text that had been written by F. Mandl. This

nicely complemented Bjorken and Drell, leaving out many of the technical

questions to focus on the physics. A book by Nishijima was also good for

some points. Notable was “PCT, Spin and Statistics, and All That,” by

Streater and Wightman, to which I will return.

For renormalization theory, the cancellation of infinities that is needed to

get the physics out, the classic source was Bogoliubov and Shirkov, which was

massive and very technical. Renormalization was presented much the same

way in Bogoliubov and Shirkov and in Bjorken and Drell. It was basically

a combinatoric argument, summing up the Feynman graphs at each order

10Her answer for me was, ‘because you make me laugh.’ I guess laughter is a good
complement to sanity.
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and showing that the infinities in each cancels. But as an illustration of the

difficulty, a previous version of the proof worked for six or fewer loops, but

failed for seven. It bothered me that such a key principle depended on such

a complicated thread, especially after Friedan and Shenker had shown me

that much of renormalization was just dimensional analysis.

But there were plenty of new wonders in QFT, while this one festered. ’t

Hooft and Polyakov discovered magnetic monopoles in QFT, and Polyakov

and his collaborators discovered instantons and their nonperturbative ef-

fects. Coleman (rediscovering earlier work in condensed matter) showed that

bosons and fermions, the two kinds of quantum statistics, could be turned

into one another in 1+1 dimensions. He also provided wonderful reviews

of these and other QFT topics (spontaneous symmetry breaking, large N ,

topological solitons, ...). His lectures, first presented over several years at the

Erice summer school, and them collected in his text ‘Aspects of Symmetry,’

did much to bridge the pedagogical gap during the 70’s. The papers of Steven

Weinberg, beautiful for their clear and systematic presentations, were also a

great resource.

3.7 And moving on

After five years, it was time to write a dissertation. In theoretical physics,

the custom was simply to combine one’s published papers, often written

with one’s advisor or others, and insert some amount of overview. But I

had a problem: I had written no papers at all (the undergrad papers under

Tombrello didn’t count). This is extremely rare. The only similar example

is the great Ken Wilson, who went years without publishing. But he was

busy recasting the nature of QFT. I was simply suffering from a lack of

common sense and of any collaborative instinct, and an advisor who was

much the same. Somehow I cobbled together 130 pages about what I had

understood about vortex operators, and related issues of field theory. But it

is not something that anyone else would benefit from.
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Dorothy had two more years to finish her own Ph.D., so my first choice

was Stanford, though I applied to the several dozen departments that did

this kind of physics. Not having written any papers was not a fatal flaw.

The letters of recommendation from faculty really carry more information.

I am sure too that phone calls from my ‘godfather,’ Bob Cahn, played a

role in allaying concern about this applicant with no papers. So I ended

up with my desired position, though not before some agonizing weeks while

higher-ranked candidates made their choices.

In all, this was a chastening time for me. I was used to being at the top of

things. But quite a few of my cohort had already published significant work

(some with their advisors, but many on their own), including Dan Friedan,

Steve Shenker, Mark Wise, John Preskill (the selections for the prestigious

Harvard Junior fellowship), Larry Yaffe, Steve Parke, Subhash Gupta, with

Edward Witten a few years older. Most of these have become good friends,

and some collaborators, but at the time it was a difficult experience.

The postdoc period is valuable for giving young people exposure to dif-

ferent approaches to physics. For me, with my native lack of sense, my next

two stops, at Stanford and Harvard, were particularly important.

4 SLAC/Stanford, 1980-1982

4.1 Starting out at SLAC

My postdoctoral appointment was actually at the Stanford Linear Acceler-

ator Center, SLAC, about two miles from the physics building. Although

this was an experimental lab, at the time most of the theorists were housed

there as well. The theory director was Sid Drell, co-author of the QFT text

that I had spent so much time studying. My first meeting with Drell was

a near-repeat of my first meeting with Thorne nine years earlier: “Hello,

Professor Drell.” “WHAT DID YOU CALL ME?” And so he was Sid

from then on. Sid was very involved in arms control at that time, but did
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some physics in collaboration with his colleagues Helen Quinn and Marvin

Weinstein on a variant form of lattice gauge theory. Their interests were

not close to mine, but they were a friendly group and good to talk to. Stan

Brodsky was another faculty member who was fun and energetic, but whose

interests then were different from mine. But 20 years later I would remember

it, and it would lead to a nice body of papers. There was also Fred Gilman,

who had mentored Mark Wise to the Junior fellowship, but whose interest

in weak interaction phenomenology was not near mine.

I should also mention Stephen Parke, another postdoc who went on to

important work. We talked physics and socialized a lot, but did not work

together — it would have been natural, but my collaborative sense was not

yet developed. Some other members of the postdoc group, though more

phenomenological, were Geoff Bodwin, Eve Kovacs, and Tom Weiler.

The postdoc years are a chance to learn new things. One should generally

not just continue working on their dissertation problem. So of course, this is

just what I did, for a while. I believed that I could prove what Mandelstam

wanted to show, that quarks were confined with infinite strength. I had stud-

ied several important results in QFT where things could be proven exactly.

Coleman’s theorem, forbidding spontaneous symmetry breaking in 1+1 di-

mensions, was a prime example. I had the idea that in 3+1 dimensions, a

similar mechanism would forbid free quarks. Streater and Wightman, prov-

ing the PCT theorem (parity× charge conjugation×time symmetry) and the

spin-statistics theorem, gave further examples of the power of rigor.

I did get one little paper out of this. I was very interested in ’t Hooft’s

classification of possible phases of the electric and magnetic fluxes. A lattice

gauge theory model had appeared that seemed to contradict this classifica-

tion. This should not be, and indeed, a closer look revealed that the modified

theory had twice as many conserved fluxes as normal, two electric and two

magnetic. When these were taken into account, ’t Hooft’s conditions were

properly satisfied. The moral was that one had to be sure to include all
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conserved quantities to understand the phases.

This was a nice little paper, though not especially significant. Still, it

should have gotten more than three citations in 35 years. But it would take

me a while to realize that it is important not just to write papers but to give

talks about them — not only to get attention, but to be forced to clarify

your work, think it through, and get valuable feedback. Even eight years

later, I gave no talks about the first D-brane paper. If I had, history might

have moved faster.

But after a few months, I had not made real progress. Moreover, I came

to realize that trying to prove things was not generally a profitable approach

in QFT. It had seemed like a good idea. With the basic nature of QFT

still apparently mysterious, making things rigorous would seem to provide a

desirable base. But as I looked at other proofs, I realized that in many cases,

what one could understand was often far greater than what one could prove.

One example was Polyakov’s argument that in 2+1 dimensions, instantons

lead to quark confinement. The argument takes a few lines, and is convincing.

But the proof, due to Gopfert and Mack in 1981, ran to 100 pages. For

confinement in 3+1 dimensions, it seemed likely that the proof would have

to be much longer. My interest was the physics, the simple physics argument,

not the 100 page details. Also, an argument by ’t Hooft showed that proving

confinement might be difficult. He was studying the phase structure of QCD.

He pointed out that if one could have a phase transition between states of

free and confined quarks, as seemed to be the case, then there could not

be a simple principle that said that quarks are always confined. So I was

not completely without common sense, and started looking around for other

directions.

4.2 Susskind

About once a week, a whirlwind would settle on SLAC. Lenny Susskind and

his group of visitors and senior postdocs (Willy Fischler, Peter Nilles, and
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Stuart Raby) would meet in Susskind small office and talk physics for most

of the day. Unlike most of the theorists, who were at SLAC, Susskind was

officially at Stanford, but he had a SLAC office as well.

Where I was the extreme introvert, Susskind was the extreme extrovert.

Even when I learned how to collaborate, my style was still to talk, perhaps

for an hour, and then go away for a few days to think about things. Susskind,

on the other hand, seemed to be able to work by talking, without a break,

and to make progress in this way. In the many years that I have known him,

he has almost always been surrounded by young people, talking through his

current puzzle.

Although our personalities were very different, our interest in physics was

much the same: we wanted to understand the basic principles. Neither of us

were drawn to mathematics for its own sake: we used only enough to solve

the problem at hand. Of course my own approach was still developing, and

was surely influenced by Susskind.11

4.3 Supersymmetry

What Susskind and his friends were excited about when I got there was

supersymmetry. So I will start with a short review of grand unification and

supersymmetry.

Both the strong and the weak nuclear forces had been understood around

the time I got to Caltech. Together with QED, these three forces (or four,

if you count the Higgs field as a force) seemed to account for all of particle

physics, a theory known as the ‘standard model.’ Of course, there was still

gravity, but it is extremely weak on particle scales, and could be neglected at

first. All three particle forces were based on the framework of QFT, and more

specifically on gauge theories. These were like electromagnetism, but with

11Dimitri Skliros recently noted that my work on perturbative string theory reminded
him of Chern. Indeed, a short book by Chern was one of the few math books that I
enjoyed, and even then I was not able to finish it.
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the fields extended to matrices: 3× 3 for the strong force, and 2× 2 + 1× 1

for the combined weak and electromagnetic interactions.

The similarity of these forces suggested some more unified origin. Georgi

and Glashow, in 1974, noted that the three forces fit nicely into a 5 × 5

matrix, so called Grand Unification (GUTs). Moreover it made at least two

predictions. One was the ratio of electromagnetic and weak forces, the weak

mixing angle, which came out to pretty good accuracy. The other prediction

was proton decay. The baryon number is a symmetry of the Standard Model,

but not of the additional fields needed for 5 × 5. These fields mediate such

processes as qq → q̄l, turning three quarks into a lepton. This had not been

seen, but seemed within reach.

Supersymmetry (SUSY) was another idea, which nicely complemented

GUTs. With GUTs, there could be symmetries within spin 0 (scalar), spin

1/2 (fermions), and spin 1 (gauge fields), but not between different spins.

A complete theory might be expected to relate different spins. A theorem

showed that this was consistent with QFT — not a trivial result — and so

this was beginning to be explored right around the time I was finishing at

Berkeley.

SUSY actually solved at least three problems with GUTs. First, the weak

mixing angle was a little bit off with GUTs. With SUSY added, it came out

better. Second, searches for proton decay were starting to exclude the GUT

prediction, but with SUSY the energy scale was higher and so the decay

rate much slower. The third problem was more theoretical. In the standard

model, all the interactions are dimensionless except the one that gives mass

to the Higgs field. Quantum corrections (loop effects) will naturally generate

a large scale for the Higgs, such as the GUT scale, much higher than the

scale of the standard model where it is expected. But supersymmetry can

lead to cancellations that do not follow from symmetry alone, and might

cancel the mass correction to the Higgs. Of course, SUSY implied twice as

many particles as had been seen, but this was consistent with supersymmetry
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breaking.

A narration from the future: For the most part I am writing this chrono-

logically, but this requires a comment. As we all know, the last 40 years have

so far not discovered supersymmetry. In fact, the only ‘fundamental’ discov-

ery, in my narrow sense of the word, is the cosmological constant, which I

will get to. But for now we will relive the glorious time in the past, when all

things seemed possible.

4.4 D-terms

It was this cancellation of quantum corrections that drew the attention if

many theorists, including Susskind and his friends. The latter’s particular

interest was the D-term, a sort of special mass term in supersymmetric the-

ories (the F term is the more common one).12 Witten had shown that the

corrections to the D-term canceled for any supersymmetric theory that was

embedded in a non-Abelian theory at high energy. If this was the whole

story, it would imply that physics at low energy depended on the spectrum

at much higher energies. This was not normally seem in QFT, and might

have important consequences.

So Susskind and friends hung out in his office thinking about how to

calculate the quantum corrections to the D-term. They were happy to have

a newcomer listening in. I had taught myself how to do some of the main

calculations in SUSY, it was clearly an exciting direction. And after a bit

I was able to go from skulking to making suggestions. Before long we had

solved the problem, and I had made substantial contributions.

The result was that the condition for the correction to D to vanish was

simply that the sum of the charges of all the particles in the spectrum vanish,

Tr(Q) = 0. This was a simple result, just five pages. It meant that some

new high-energy/low-energy connection was not needed. It was my first real

12The nonspecialist should not confuse this with the D of D-brane! Note that the font
is different. D is short for Dirichlet, while as far as I know the D was an arbitrarily chosen
label.
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contribution to theoretical physics, and my first exposure to doing science

collaboratively.

4.5 SUSY breaking

A few months later, Raby, Nilles, and Fischler left for faculty positions.

Susskind and I continued to talk regularly, but neither of us had a particular

project in mind. This changed when Mark Wise gave a talk at SLAC. Mark,

along with Mark Claudson and Luis Alvarez-Gaume, and in parallel with

several other groups, was constructing realistic supersymmetric models of

physics.

Susskind saw that their model was a good place to study the relations

between three important scales. The first was the observed weak interaction

scale. The second was the boson-fermion energy difference. This could not

be too much larger than the weak scale, if the cancellations were to hold.

The third scale was that set by the spontaneous breaking of supersymmetry.

What Susskind noted was that in Wise’s model, the boson-fermion difference

and the supersymmetry breaking scale are not the same but differed by a

parameter α = SUSY/boson-fermion. Susskind asked Wise if the parameter

could be large, and Wise said it could.

Susskind wanted to know whether this situation was really stable, or

whether quantum corrections would destroy the separation of scales. Happily,

I was able to make substantial contributions. This kind of problem, with

physics at several scales, is today routine, but at the time was rather new.

But all my time thinking about QFT had prepared me for it.13

So we carried out the analysis, and indeed found that the multi-scale

structure was stable. This meant that whatever was responsible for the

boson-fermion splitting at visible energies could actually arise at a much

higher scale, such as (weak × GUT)1/2, or even (weak × Planck)1/2. Indeed,

13A few years later, Steven Weinberg commented that he could tell which parts of the
paper were by me and which by Susskind. I was pleased because he had greatly influenced
my understanding of the subject.
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the idea of connecting SUSY with gravity led to much work in the following

years.

One of the pleasures of the project was writing up the paper. Susskind

is my only collaborator who has done this in real time, the two of us sitting

in his living room, each with a small glass of wine, writing the paper line by

line.

After this, I wanted to work out some more explicit models. But Susskind,

having understood the key point, was not interested in details. So I wrote

two papers on my own. They dealt with the spectra of gauge fermions, and

of the scalar potential, in the models we had studied. Looking back on these

early papers, I remember some nice bits, that I am still pleased by today.

We did spend some time trying to make a lattice theory of SUSY. We

tried a number of approaches, and I had thirty or forty pages of a paper

written, but the two structures, SUSY and the lattice, did not want to come

together and we did not finish it. Some of these ideas have been rediscovered

and taken further, but they do not seem to be the best way to capture the

rich strong-coupling dynamics of SUSY.

So the next papers Susskind wrote, the year after I left, were about grav-

ity. This included his famous paper with Tom Banks and Michael Peskin,

showing that black hole information loss, as suggested by Stephen Hawking,

would imply large energy nonconservation.

4.6 Times up!

Two years, the standard term at the time for a postdoc, was really only 1.25

in postdoc years, because one had to apply for one’s next job in the Fall.

At that point I had three papers: a condensation of my Ph.D. dissertation

(written just as I was leaving Berkeley), my little-known lattice phase paper,

and my D-term paper with five authors. Unimpressive even for a first-time

applicant, much less a second-timer. But again, I seem to have impressed

my letter writers enough to get a position at Harvard. I wanted to spend a
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few years on the East Coast, to be exposed to new ideas and new people.

Dorothy had just finished her Ph.D. In her field it was typical to next

do a few years of short-term teaching. She applied, and got a short term

position teaching German at MIT.

So shortly after our wedding, we came back from Berkeley and hopped

into our Datsun B210 for the drive east. Along the way we spent several

weeks at the Aspen Center for Physics. As anyone who has been there

knows, it is a remarkable combination of science and recreation. I met many

excellent scientists there for the first time. I actually wrote a paper there, in

collaboration with Mary K. Gaillard, Larry Hall, Bruno Zumino, Francisco

del Aguila, and Graham Ross, a distinguished and varied group. We spent

the time at Aspen discussing our common interest, the mass scales of super-

symmetry breaking models, and after two weeks we felt that we had enough

that we could write it up.

Sidney Coleman, my soon-to-be supervisor, was also at Aspen then, so

we got an early start on discussions of QFT. Sidney was an avid walker

and hiker, a frequent visitor to Aspen, and so gave some of us first-timers

advice on reaching the nearest 14,000 foot peak. This nearly led to Dorothy,

me, Tom Weiler, and Lawrence Hall tumbling off Castle Peak with a large

boulder, when we misinterpreted his instructions.

After Aspen, we had a memorable trip east: a hot drive through the Mid-

west (which Dorothy still jokes nearly led to a divorce), spectacular thunder-

heads not familiar to Californians, staying with my collaborator Raby and

his wife in Ann Arbor, a drive across Niagara Falls, and a stay with Peter

Galison (Junior Fellow in particle physics and history) while getting settled

in Cambridge.
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5 Harvard, 1982-1984

5.1 Wise

I start with Mark Wise, my effective mentor. Mark was a great physicist and

a wonderful person. As a student, he had already done important work on

weak interaction physics, and as a postdoc he would have important results

on supersymmetry and on cosmology. As a person, he was generous and self-

effacing, and had a great sense of fun. When he turned 60 a few years ago, a

time when most prominent scientists are celebrated by a major conference,

Mark insisted that his be celebrated by renting a skating rink and going

curling.

My first meeting with Wise went something like this: “So you’re Polchin-

ski. We’ve been hearing about this guy who doesn’t write any papers. Let’s

write a paper.” And we did. Unlike Mandelstam, and Susskind, and I sup-

posed myself, Wise did not insist that every paper be Important. Of course,

many were, but he was happy to think about any physics puzzle. His puzzle

here had to do with the masses of the bosons and fermions in theories of bro-

ken supersymmetry. They need not be equal, but in many models there was

a sum rule on the masses-squared, roughly
∑

i b
2
i =

∑
j f

2
j . This had been

shown in tree-level models and a few others, and the question was how gen-

eral it was. So we analyzed the problem — it was a good blend of our skills

— and found that the sum rule applied to first order in the supersymmetry

breaking but exactly in the other interactions.

It was a nice result, finished, refereed, and in print two months after my

arrival. However, it did not have much impact, as it did not apply to the

most interesting models. In fact, it has received only three citations in 35

years, something that Wise chuckles over whenever we meet. But apparently

I passed, and he said we should look for a bigger problem.
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5.2 Coleman

There were only three tenured professors of high energy physics at Harvard,

with Steven Weinberg having left for Austin.14 Glashow did not interact

much with students, so Sidney Coleman and Howard Georgi each supervised

half the students and postdocs, meeting weekly as the ‘Coleman family’ and

the ‘Georgi family.’ Both were delightful people, interested in the students

and postdocs and generous with their time, though I believe that Georgi was

much more burdened by administration. As a rather formal student, I was

in the Coleman family. But we could, and did, cross over to the other family

when it was interesting.

Coleman was as much a delight in person as in his writing. He came to

the office promptly at 1 pm each day, and stayed late. He was always ready

to talk, but the highlight of the week was the family meeting. This might

be a student or postdoc presenting his work for critique, or Coleman himself

holding forth on some point, or a general discussion.

Coleman often took students and postdocs walking in the area, or hiking

up Mount Monadnock in New Hampshire. He also had us over frequently

for dinner. He was fond of telling us that in the last year he had just gotten

married, bought his first house, learned to ride a bike, and been diagnosed

with diabetes. I went with him on one of his early bike outings, helping him

negotiate some of the difficult Cambridge turns.

I thought that it was unfortunate that Coleman did not get involved

in supersymmetry, because it meant that we could not look forward to his

insights on the subject. But perhaps he felt that there were enough people

working on it already, and there were still interesting questions for him in pure

QFT. Indeed, in the time I was there he expanded his overview of magnetic

monopoles, worked with a student on the ’t Hooft anomaly cancellation, and

discovered a surprising new class of topological solitons.

14On Weinberg’s blocky 1980 office computer was a sign Contrary to appearances, this
is not Steven Weinberg. The suspect was Paul Ginsparg.
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This last has been widely influential for possible particle and cosmolog-

ical models. I had a tiny role in it. Coleman was happily describing the

construction, which was based on a charge he labeled q, and he was con-

stantly referring to q as he described this round object. And then he said,

‘I just need a good name for it.’ Having listened to him at length, the only

possible name came to mind at once: Q-ball (as in ‘cue ball’), and so it

became.

5.3 The kids run the circus

Sometimes, one gets a group of young people who are so outstanding that

they run the show. Such it was here. Sidney was excellent, but not interested

in the latest sensation. But this was more than made up by the students and

postdocs. I still marvel over the excellence of that group, many of whom are

still leaders today.

So in this section I am simply going to list the members of this outstanding

group (those whom I remember), where they are now, and what they do.

Untenured faculty: John Preskill (Caltech), Lawence Hall (Berkeley, phe-

nomenology)

Junior fellows: Mark Wise (Caltech), Paul Ginsparg (Cornell, QFT and

creator of arXiv), Laurence Kraus (Arizona State, cosmology and public

speaker/writer), Luis Alvarez-Gaume (CERN, fields and strings), Peter Gal-

ison (Harvard, physics and history)

Postdocs:15 Tadeusz Balaban (Rutgers, mathematical physics), Steven

King (Southampton, phenomenology), Steven Sharpe (Washington, lattice),

and me

Grad students:16 Robert Brandenberger (McGill, cosmology), Andrew

15The difference between a junior fellow and a postdoc is that the fellows got free lunches
at the law school, and once a week they had fancy dinners, capped off with excellent wine,
chocolate, and cigars. But I’m not bitter, really. I don’t even like cigars.

16I have not included some that I did not know at the time, such as Boris Shraiman,
Catherine Kallin, and Subir Sachdev.
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Cohen (Boston, strings and phenomenology), Ben Grinstein (San Diego, phe-

nomenology), David Kaplan (Washington, QFT and nuclear), Greg Kilcup

(Ohio State, lattice), David Kosower (Saclay, amplitudes), Anish Manohar

(San Diego, phenomenology), Robert Mawhinney (South Florida, lattice),

Ian McArthur (Western Australia, string theory), Greg Moore (Rutgers,

mathematical physics and strings), Ann Nelson (Washington, phenomenol-

ogy), Phil Nelson (Penn, mathematical physics and biology), Stephen Della

Pietra (Renaissance, mathematical physics), Lisa Randall (Harvard, phe-

nomenology), Jacques Distler (Austin, mathematical physics and strings),

Richard Woodard (Florida, relativity).

It seems to me that this is a group of young people that has rarely been

equaled. With all of them I can recall discussions of physics and other fun

times. We will see many of them later in this and other chapters.

5.4 Low energy supergravity

Early attempts at constructing supersymmetric models were based on classi-

cal string actions. A Fayet-Iliopoulos D-term allowed for a simple means of

SUSY breaking. Unfortunately, it did not seem to give the right symmetry

breaking and spectrum.

The idea that supersymmetry could be broken at a much higher scale,

as put forward by Susskind and me and several other groups around that

time, allowed for other possibilities. The focus was on supergravity models,

assuming the highest possible SUSY breaking scale. It was exciting to be

thinking about a coupling between particle physics and (super)gravity, but

it was very indirect. The gravitational field was very weak, and so played no

direct role other than setting a scale.

So Wise, his previous collaborator Alvarez-Gaume, and I set out to build

a realistic model along these lines. We began with the simplest possible as-

sumptions: (1) Begin with the standard model. (2) Extend to SUSY: this

adds a field of opposite spin for each one present, and an extra Higgs mul-
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tiplet. (3) Add soft SUSY breaking. Soft breaking means that one includes

all gauge invariant terms with positive mass-squared. (4) This leaves dozens

of parameters, so we adopted a simplifying assumption that had been intro-

duced by Weinberg. The SUSY breaking was taken to be the same for all

scalar fields. Weinberg came to this from a guess about unification. From

the later context of string theory, one can say that it was not well-motivated,

but it did make things simple, and we followed it.

So, take this starting point, set the renormalization group running, and

over a wide range of parameter space with no further choices, out came the

standard model. The trickiest part was that one needed exactly one scalar, a

Higgs, to get a negative potential and break its symmetry. But this happened

automatically: a loop of a heavy fermions generates a negative mass-squared

for a scalar coupled to it. The heaviest fermion was the top, so the scalar

most strongly coupled to it broke its symmetry. It was very elegant: a large

class of the simplest SUSY models flows exactly to the standard model plus

broken SUSY.17

We followed this up with more detailed studies of the electric dipole mo-

ment and (with student Ben Grinstein) the decays of W and Z bosons.

5.5 Renormalization and effective Lagrangians

From Susskind, Wise, Coleman, and others, I had learned how to work on a

variety of physical questions, and put aside the more formal ones that I had

been drawn to as a student. But the questions were still there, and one day

came roaring back. John Preskill was teaching QFT, and I was sitting in the

back, auditing the lectures on renormalization. At the end of the discussion

17I have to make an apology here. Several groups were making supergravity models,
but we asked a slightly different question. Rather than a specific high energy model, we
integrated out the high energy theory, replacing it with soft SUSY breaking subject to
Weinberg’s assumption. So we did not pay too much attention to the specific models.
But the nicest part of the result, the symmetry breaking from the top mass, had been
discovered and published first by Luis Ibanez and Graham Ross. We should have cited it,
but we did not learn about it until after our paper was published.
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of the cancelation of the infinities, he said, ‘I think there should be a better

way to do this.’ And instantly I knew there was.

Again, what bothered me was that the proofs that renormalization works

seemed extremely combinatoric and technical, but the results in the end came

down to statements of dimensional analysis. What I realized was that things

would become nearly trivial if, instead of describing the path integral order

by order in perturbation theory, as nearly always done, we described it scale-

by-scale in energy. As soon as I thought those words, I knew I could prove

them. Of course, I mentioned earlier having put aside proofs, but this was a

special case.

It took just three weeks for me to work out the proof and write it up.

Probably it would have been better to take a little longer and make it a bit

clearer, but I was afraid of being scooped — probably silly, but you never

know. I think I presented it fairly well — first the idea, then a 2-component

model, then a precise statement of what was needed to be proved, and finally

the proof. What made this proof clearly different is that it did not need graph

combinatorics or Weinberg’s theorem.18

Organizing the path integral scale by scale is messy: one has a differential

equation that has to include, not just the small number of normalizable

couplings, but the full infinite nonrenormalizable set. But this point of view

was much more flexible than the traditional quantum field theory. In many

situations one only knows what the theory is up to some energy — that is,

it is an effective field theory — and this makes that notion precise.

This work was very exciting for me. For the first time, I felt that I had

changed the way that people think about the world. Of course, aside from

the details of the proof, most of the ideas were already known, especially

from the work of Wilson and of Weinberg.19 And in the next few years the

18Weinberg’s theorem was an intricate statement about the high energy limits of mul-
tiloop integrals. I had nothing against Weinberg, or his theorem which I had spent much
time studying. But I wanted an argument that depended only on dimensional analysis.

19The notable field theorist Edouard Brezin was visiting when I presented my talk. I was
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idea of an effective field theory would become universal.

My paper thanked three names for inspiration. The first was Dan Friedan,

for teaching me about the idea of effective field theory. The second was John

Preskill, for his comment in class. If not for that, I might never have put

together what I knew. The third was C. Arabica. I am disappointed that

no reader of the paper has ever asked who that is. In fact, C. Arabica is the

caffeine plant. I was distinctly buzzed that day in John’s class, and that too

played an essential role.

This work led me also to discussions with Tadeusz Balaban, a postdoc

in Arthur Jaffe’s group. Balaban was in the middle of proving asymptotic

freedom, which he eventually did over the span of several Communications

in Mathematical Physics adding up to 300 pages. One could say that it is

a landmark result, but it is almost unknown. It is another example where a

convincing one page physics argument can require orders of magnitude more

to prove.

5.6 Monopole catalysis

I am not going to discuss every paper I’ve written, but only those that have

some story. The paper that I wrote right after the the one on renormalization

did not have much impact, but there are a couple of stories.

Over the years, a number of physicists have commented to me that my

papers are distinctive, in that many of them are written not to discover new

things, but to explain what we already know in a new way. The renormal-

ization paper is a prime example. It is not that I always set out to do this,

but that I have to understand things, and can’t proceed if I don’t. My next

paper was of the same type.

Grand unified theories like SU(5) will have magnetic monopoles, as shown

happy that he followed and appreciated the subtleties of the argument, and also when he
informed me he had heard Wilson say that he regarded his own work as a proof. I agreed,
though not many others would have seen the point: once you say to work scale-by-scale,
the rest is just bookkeeping.
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by ’t Hooft and Polyakov. These are soliton states, not pointlike but with a

size set by the GUT scale. We know that baryon number is not conserved

in GUT theories, so there should be baryon-number violating scattering pro-

cesses involving monopoles. The surprise, as shown by Valery Rubakov and

Curt Callan, was that the rate for this process was determined not by the

GUT size, but by the much larger baryonic size.

This conflicted with my understanding of soliton amplitudes. The sym-

metry (anomaly) argument of Rubakov and Callan was too indirect for me,

but eventually I found a toy model that allowed me to understand the details

of the process, and see that they were right. Normally I have a pretty good

intuition for QFT, but Rubakov has twice done things that I thought were

impossible.

The other came a few years later, also with baryon number violation. ’t

Hooft had shown that instantons could violate baryon number, but it was

very slow, taking more than the lifetime of the universe. This seemed like a

simple calculation with the Euclidean path integral. But Rubakov and col-

laborators showed that if you heat the system up, then rather than the very

slow Euclidean tunneling process, you could move thermally with little sup-

pression. Again this seemed to conflict with my intuition, and again I wrote

a paper, with collaborators Michael Dine, Willy Fischler, Olaf Lechtenfeld,

and Bunji Sakita, to explain it to ourselves.

So don’t bet with Valary Rubakov on quantum field theory! (Another

surprise from Rubakov and collaborators was the ‘braneworld,’ well before it

became popular).

5.7 Phenomenology

I had chosen a fortunate time to be a postdoc at Harvard, and do my one

stint of phenomenology at a place where the lines between theory and phe-

nomenology where particularly thin. During the time I was there, I had the

excitement of seeing the discovery of the 40 GeV top quark, supersymme-
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try, and the ζ8.3. The less credulous readers will point out that the top was

discovered more then ten years later at 170 GeV, supersymmetry has not

been found, and what is the ζ8.3 anyway? Such was life in the Wild West (or

should I say Alternate Truth?) days of particle physics.

The culture at Harvard seemed to be that one expected most new ex-

perimental observations to be wrong, so you should write your papers about

them before they are withdrawn. There were even a couple of maxims about

this from Howard Georgi: “Not more than one half of an idea per paper,” and

“Don’t hide your light under a bushel basket.” The latter was apparently a

Biblical injunction against slow publication.

In the case of the 40 GeV top quark, our result actually appeared at

the same time as the experiment, and did not agree with it. At the 4th

annual Supersymmetric Unification workshop in Philidelphia, Carlo Rubbia

presented his evidence for the discovery of a 40 GeV top quark at CERN.

I reported on our minimal SUGRA model. It favored a heavy top, around

150 GeV, though this was rough because other parameters could be tuned. I

said in my talk that our result argued against the 40 GeV top, but the ideas

of a random theorist had no weight compared to an experimental result.

This result was soon withdrawn, I believe due to a better understanding of

the statistics. But our model also did not last long. The very minimum

assumptions that we had made put an upper bound on the superpartner

masses, which was soon ruled out.

Shortly after, Rubbia reported evidence for several monojet candidates,

just a single jet with unbalanced momentum. The missing momentum could

be carried by various kinds of new particles, particularly a gluino or squark

pair. Assuming that we were seeing superpartners, the first question was

whether they were squarks or gluinos. Lawrence Hall and I realized that for

high-scale SUSY breaking, the RG flow would have a large effect on these.

In particular, squarks would gain mass but not gluinos, so the latter would

almost certainly be lighter. A nice prediction, but spoiled by the fact that
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the monojets were found to be misidentified standard model particles.

The third observation was at the Crystal Ball detector at DESY. This

was designed to study bottom-antibottom states Υ, . . ., around 10 GeV. It

reported several events at 8.3 GeV, produced in the process Υ→ γ+ζ. There

was no obvious candidate; it might be a light Higgs, or even a colored state.

A puzzle was that the ζ was produced at very different rates in different

states Υ,Υ′. Stephen Sharpe, Ted Barnes, and I thought that this might be

a wavefunction effect, and set out to calculate the relativistic wavefunctions;

Pantaleone, Peskin, and Tye did this independently. It was a fun calculation,

one that I had never done before. It did not solve the problem, but this went

away by itself when it was realized that the apparent events were actually

due to a flaw in the detector.

So, two exciting years of ambulance chasing. But it was good: I learned

a lot of physics that I would not have learned otherwise.

5.8 Time to grow up

It had been a great two years on the East Coast. I had learned a lot of new

physics, and new ways to do physics, and had written a couple of significant

papers. I had met a large number of excellent scientists, both at Harvard

and on various visits around the East, many of whom I still interact with to

this day. Now it was time for the next step, a faculty position.

Job openings in physics are often cyclic, driven largely by the economy.

At this time, the job market was not good. But I was confident, based on

my work in the past two years.

In fact, I had turned down a faculty job the year before. At Harvard,

Princeton, and a few other places, it was understood that untenured faculty

were glorified postdocs. There was no expectation of a later promotion to

tenure. So from my perspective, all it meant was teaching and less time for

research. I think this startled them, few if any had turned it down before.

But I was aware that I had been slow to get into research, and now that I
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was making progress I did not want to cut it short. Also, I had a two-body

problem. Dorothy’s MIT position was over, and the next position she found

was at Urbana-Champaign. So I wanted time free to visit her.

We had our two-body problem again, so we each looked at the jobs that

were advertised in our field, and there was very little overlap. Dorothy had

an excellent opportunity to remain at UC, moving from her temporary job to

a tenure track position. John Kogut, lattice gauge theorist at UC, believed

that he could bring me in on a spousal hire. If I had been a condensed

matter theorist that would have been great, but there was virtually no one

in high energy theory, and I would have felt tremendously isolated. For me,

there was a possibility of an untenured position at Princeton, and perhaps

something at SLAC, but there was nothing for Dorothy at either one.

Fortunately, Texas came to the rescue, with a position for me in Wein-

berg’s group, and a lecturer’s position in German with the promise of a later

tenure track job. This was neither of our first choices, and not one that we

had expected, but it was an excellent compromise. Texas had a long history

in German, going back to its early settlers, and had a large department.

6 Austin part 1, 1984-1988

I have been dividing each section according to where I worked at the time.

My stay in Austin ran for eight years, which would make for a much longer

section. After some thought, I have come up with an event that singles out

the midpoint of my time in Austin: it is when I started my book on string

theory. So this separates Parts 1 and 2.

6.1 The group

Austin had a strong history in theoretical physics. Alfred Schild, an early

relativist who had recently passed away, had been a leader of the group.

There was Bryce Dewitt, one of the first to develop quantum gravity, and a
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proponent of the many worlds interpretation of quantum mechanics. John

Wheeler had gone to Austin when he reached Princeton’s mandatory retire-

ment age (and he returned a few years later, when they changed their rule).

George Sudarshan, co-discoverer of the V-A theory of the week interaction

was there, as was Yuval Ne’eman, co-discoverer of the SU(3) color symmetry

of the strong interaction. Duane Dicus, phenomenology and cosmology, and

Richard Matzner, relativity, were also good colleagues.

A few years earlier, Weinberg and his wife Louise were looking to solve

a two-body problem, and Austin was looking for ways to spend more of its

oil money. So Weinberg and Louise were soon in Austin. Steve’s salary

was a subject of much speculation, but he never spoke of it. He also had an

agreement that he could hire four faculty colleagues, with ample postdoc and

student support. His first three hires were Phillip Candelas (a relativist who

would very soon be one of the leaders of the first superstring revolution),20

Willy Fischler (my collaborator at Stanford, and one of the inventors of the

invisible axion), and me. Vadim Kaplunovsky would join a few years later.

Weinberg had always been rather solitary. For example, most of his

papers were single-author. But he was proud of his group. He instituted

a weekly family meeting, as at Harvard, and he took his whole group to the

faculty club every week. He tended to hold court at lunch, and I used to joke

that he had three subjects of conversation: English history, Israeli politics,

and DOS versus Windows. On the last, Steve was a notably text-oriented

thinker; for example, he used very few figures in his books and papers, so he

was one of the last DOS holdouts.

There was also a remarkably good group of grad students there, for a

place rather out of the way. Perhaps the very low tuition, the same for

in-state, out-of-state, and international, played a role. Indeed, there were

many international students. The students added greatly to the energy in

20Looking at the record, I see that Candelas was at Austin before Weinberg, so there
must have been some negotiation that he would count as one of Weinberg’s group
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the group. Finally there was Adele Traverso, the group secretary. She was

delightful but tough-minded, making sure to dress down each new group

member for any infraction, so they would know who was in charge.

All in all, it was an exciting place to be.

6.2 Weinberg and physics

I had studied Weinberg’s relativity book and papers at length, and heard

some talks, but did not interact with him until Austin. I am embarrassed to

say that my first impression of him was that he was a little slow: in talking

with him, he seemed to get stuck on things that seemed obvious. But before

long I realized that this was part of his genius. By not assuming things that

everyone else took for granted, he would time and again discover possibilities

that had been overlooked.

A minor example, which he was working on when I arrived, was ‘quasi-

Riemannian geometry.’ When gravity is written in terms of a connection,

the curvature appears both in the metric and in the vierbein. Normally these

are essentially the same, but he asked what happens if they are independent

fields. As far as I know, this did not lead to much, though it did foresee some

aspects of string compactification. But more interesting examples will come

up later.

Weinberg’s focus on his physics was famous. When he needed to learn

something that I might know, he would question me in detail. But when my

knowledge was exhausted, and I changed the subject, his eyes would visibly

glaze over, and I knew that the meeting had ended. Many others had the

same experience.

But I held nothing against him for this: this is what made him great.

Even with his public interactions and other distractions that came with the

1979 Nobel, he continued to be creative. In the years after getting the Prize,

Weinberg published five papers with more than 1000 citations, including one

with more than 3400. And over time I had ample opportunity to interact
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with him, as did all the group members and most notably the students.

6.3 String theory

Just as I was getting settled in Austin, the first superstring revolution struck.

I had known very little about string theory before. When I went back to

Caltech for a conference, John Schwarz told me I should read his latest

papers. I tried, but it was all written in a noncovariant way, which I could

not get past. Lenny told me that there was a new formulation of strings

by Polyakov, which was more covariant, but it was a lot to absorb. And

Witten was starting to write papers that hinted at string theory, such as

his work with Alveraz-Gaume on anomalies in higher dimensions, and his

work on equivalence of different string actions under bosonization, which he

presented at the same GUTS meeting where Rubbia and I spoke.

But it all came to a head in the fall of 1984, when Green and Schwarz

found a new anomaly cancelation mechanism, Gross, Harvey, Martinec, and

Rohm found the heterotic string, and Candelas, Horowitz, Strominger, and

Witten found the Calabi-Yau solutions. Together, these gave a close con-

nection between string theory and the standard model. I had spent the last

several years on unification. My work was focused on supersymmetry, but I

also informed myself about GUTs and Kaluza-Klein theory. Together they

implied unification between fermions and bosons, between different gauge

groups, and between gauge fields and gravity, while constraining the spec-

trum of particles. Moreover these three ideas were nicely compatible with one

another, and it was plausible that they were all part of some larger structure.

But there was one thing missing, even when all were taken together.

Each had a lot of arbitrariness, in choice of gauge field, matter spectrum,

masses, and coupling constants. A unified theory should have a uniqueness,

and it was hard to see how this could come out of these frameworks. But

string theory apparently did this. For example, there is no free gravitational

coupling constant; rather, its value is determined by the value of the dilaton
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field. All other constants would be determined in the same way, as the values

of fields, which are determined in part by field equations. So this does not

solve everything, but rather transmutes it, from freedom in the theory to

freedom in solving the field equations of a fixed theory.21 This is the kind of

progress one normally sees in physics, with equations that are often written

in a few lines like Maxwell’s or Einstein’s, but have many solutions. But we

will return to this later.

Looking over the papers I wrote while in Austin, the earlier characteriza-

tion of my work still fits. Most of them seem to be written not to discover

new things, but to explain what we already know, perhaps in a clearer way.

This led to a lot of fairly forgettable papers, but also some nice ones, though

none that changed the direction of the field.

As I was learning string theory I first zeroed in on the question, why

are strings forced to live in the critical dimension, 26 for bosons, when we

knew that there were string solitons in any dimension, such as 4. Of course

I realized that the stringy solitons were an effective description, valid only

at long distance, while the critical strings presumably had zero width. But

I guess I thought there should be some unified description of critical and

solitonic strings. But after a few months I got stuck and moved on to greener

pastures. Several years later, Andy Strominger was visiting and we started

thinking about the puzzle again. This time we were clearer minded, and we

found a nice construction in terms of conformal symmetry, which has been

somewhat useful.

My next bit of self-pedagogy was the Polyakov path integral. Previous

string amplitudes were based on light-cone calculations, but the Polyakov

theory promised a covariant starting point. So I carried out the path inte-

gral: a straightforward exercise, but useful. My favorite part of it was that

it allowed me to apply it to the amplitude with no particles (vertex opera-

tors), thus determining the cosmological constant (which was nonzero in this

21Tom Banks emphasized this to me.
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bosonic theory) and the finite-temperature partition function. So I could

connect some interesting physics to the Polyakov calculation. Several later

papers also will make novel use of vacuum amplitudes.22

I had several followup papers with Andy Cohen, Greg Moore, and Phil

Nelson, three of the outstanding students from my Harvard stay. We had

talked a lot then, but did not write a paper together until meeting at a

conference and finding a common interest in the Polyakov path intergral.

Our first project was to construct off-shell string amplitudes. We thought

we had succeeded, but I don’t think that we had gotten the gauge symmetry

right, since we now know that only physical amplitudes are gauge invariant.

Our most explicit example, where the ingoing and outgoing strings were

contracted down to points, I think were in fact what we now interpret as

D(−1)-branes, D-instantons. This began ten years of getting close to D-

branes and not getting the point. Another paper with Moore and Nelson

was an extension of the Polyakov path integral to the supersymmetric case,

but here I was more of a follower.23

6.4 Hughes, Liu, and Cai

I had remained a postdoc for as long as possible, but now I had responsi-

bilities. Supervising graduate students turned out to be a great thing. The

common pattern with a student was that I would suggest an idea and we

would meet weekly. Usually the idea turned out to be too hard for the stu-

dent, so we would end up working together. I am pleased that with almost

all of my students I ended up writing one or or more significant papers. So

the students got a great research experience, and many times I got to work

out good ideas that I otherwise might have let slide.

My first three students were Jim Hughes, Jun Liu, and Yunhai Cai. The

22In passing I mention two other papers from this period on Polyakov path integral
technology, one on the vertex operators and one on the factorization of the amplitudes.

23In order to participate in the projects, I had to go to the computer center and get access
to something called ‘bitnet,’ which would allow us to communicate via our computers.
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nine students that I supervised in Austin happened to come in groups of

three, so I always think of them that way. Each had their own projects,

but they often ended up collaborating. Jun and Yunhai both came to Austin

through the CUSPEA program run by T. D. Lee. This brought large numbers

of excellent students from China to many US institutions for graduate work.

SUSY phenomenology was based on brokenN = 1 supersymmetry. There

was an argument that one could not, staying within four dimensions, have a

partial breaking such as N = 2 to N = 1. But I knew this had to be false, by

construction. It was known that there were vortex solutions in which N = 2

broke to N = 1, found by Lancaster. These were not counterexamples yet,

because they also involved Lorentz breaking from D to D−2. But by taking

the low-energy limit, this became D − 2 → D − 2 while N = 2 → N = 1,

violating the argument. Of course, I am talking about BPS states, a universal

idea now, but at the time it was rather new, and usually applied to monopoles

rather than vortices.

So I gave Jim the problem of working out the four-dimensional action that

breaks N = 2 to N = 1, with two dimensions as a warmup. As would be

the pattern with many of my students, this was too hard for him, but turned

into a great joint project.24 It was educational for both of us, learning the

Volkov-Akulov treatment of nonlinear broken supersymmetry and the Green-

Schwarz action. Although this was an explicitly QFT problem, it used many

ideas from string theory.

Jim and I worked out the D = 4 → D = 2 case, and then with Jun we

extended it to D = 6 → D = 4.25 As we noted there, there were several

24According to the acknowledgements, the problem was suggested by Luca Mezincescu,
a postdoc recently arrived from Romania. I do not remember this, and do not know why
he was not part of the collaboration. I think that early on I collaborated more easily with
students than with postdocs, and I conjectured that this was because they were better at
doing what I told them to do.

25Jun was formally a student of Weinberg, but did all of his work with Jim and me, so
I have always thought of him as my own student. But many students did get very good
ideas from Weinberg.
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applications: 1) we completed the construction of D = 4,N = 2 → N = 1

SUSY;26 2) We had found a new and more general form of the Green-Schwarz

action, based on a scalar field rather than a vector field; 3) This allowed us

to construct supersymmetric membrane actions, 3-branes in D=6 being the

case we studied.

I had a bad trait, sometimes, of not following through on my ideas. Hav-

ing solved the original puzzle, we moved to new directions, such as writing

the string field equation in terms of the renormalization group. These were

fun, but not so notable. But Bershoeff, Sezgin and Townsend classified all

possible supermembranes, finding that the maximum, 2-branes in 11 dimen-

sions, was the same as the maximum dimension of supergravity. This led to

parallel activity for several years, string theory and membrane theory, with

little communication between them. Membranes could not be quantized the

same way as strings, and so most string theorists, myself included, assumed

that they were an aberrant offshoot of the real theory.27 But those whose

expertise was supergravity knew that there was something important there.

Only with the second superstring revolution, eight years later, did the whole

dual picture become clear.

With Yunhai, again the goal was to explain more completely something

that was already known. The open superstring theory was shown by Green

and Schwarz to be consistent only if the gauge group was SO(32). They

showed this by a calculation in the effective field theory of N = 1, D =

10 supergravity, where there was an anomaly unless the gauge group was

SO(32). But it should be possible to understand the anomaly in terms of

26A short explanation of how the no-go theorem could be violated is that the Haag-
Lopuszansky-Sohnius argument on which it is based constrains possible symmetries of the
S-matrix, but the action could have additional charges.

27Michael Duff made the drive from Texas A&M to Austin to give us a review of mem-
brane theory. In my wise-guy way I told him that I had only been joking when I invented
supermembranes. To which he aptly replied ‘Many a true word is spoken in jest,’ an adage
that apparently goes back to Chaucer. So be careful trading quips with Brits. And he
was right about the physics, too.
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the fundamental string theory, not just the low energy approximation. This

is what Yunhai and I set out to do. The key terms in the string path integral

were again of my favorite type, the vacuum graphs. Here there were three, the

cylinder, the disk with a crosscap, and the sphere with two crosscaps. These

summed to (N − 32)2(∞). The infinity was from the volume of spacetime,

times a normalization.

The three factors in the expansion of the square are from the graphs,

with N counting the Chan-Paton factors at the boundary. It was natural to

interpret this as the vacuum-to-vacuum amplitude for the dilaton. This was

correct for the NS-NS (boson-squared) sector of the integrals, but there was

an equal contribution from the R-R (fermi-fermi) sector for which there was

no corresponding particle. This had to be a nondynamical 10-form field. We

now know this as the form carried by the D9 brane.

I have two regrets about this work. First, the authors of the paper are

“Joseph Polchinski and Yunhai Cai.” In high energy theory the convention

is nearly universally alphabetical. In this case, this started as a joint project,

and Yunhai made some good comments and some calculations, but it quickly

went much farther than the original idea. I was still rather solitary in how I

worked, and when things got really interesting I would race through to the

end. This happened here, so I ended up with a long paper written almost

entirely by myself. So I did not see any other way to sign the paper. But this

would do Yunhai no good, either pedagogically or when he went to apply

for jobs. Of course, the right thing was to slow down just a little and give

Yunhai a piece of the project that was his own. But I can say that I did

learn, and became a good advisor before long.

The second regret is that I never gave a talk about the result: my shyness

speaking about my work still lingered (I think that I rarely felt that my

work was important enough). I was at a string meeting in downtown Santa

Barbara around that time, and did not ask to speak. When I told Michael
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Green about the result, he said I should have spoken.28 Indeed, the paper

has received over 400 citations. But, like quite a few of my papers from that

period (including the two with Jim and Jun), it got rather few at first, but

then exploded after the second superstring revolution. Perhaps if I had been

less shy about speaking, physics would have moved faster.

Jim, Jun, and Yunhai each did a few postdocs and then moved on to

other things. Jim is at Microsoft, Jun got a second Ph.D. in finance and

is now a professor in this field at UCLA, and Yunhai became a magnet

designer at SLAC. Even after the first superstring revolution, there were no

jobs for string theorists. There was widespread doubt about string theory

as physics, so that only a handful of places were willing to hire in it. It

would be best at least if one had accomplishments both in string theory and

in ‘normal’ physics. Only after the second superstring revolution, when the

web of connections emerged, did most departments feel that it should have

a string theorist or two. Personally, I think young people should work on

a wide range of problems, but I suppose that this is harder now as things

become more specialized.

6.5 More fun with physics, colleagues, and students

Conformal symmetry came to the attention of many of us through the Polyakov

path integral, where it is part of the symmetry algebra. A conformal trans-

formation is like a position-dependent scale transformation, and there was

lore that any scale invariant theory would be conformally invariant as well.

The argument for this seemed weak: the conformal algebra had more ele-

ments and so should have fewer invariants. So I set out to find the truth.

There was previous literature on this, for classical field theory. But scale and

conformal dimensions typically received quantum corrections, so I wanted a

28This conference is famous for its banquet, which was so slow that one table phoned
out for some pizzas to be delivered. It is also known for its after-dinner speech, in which
Frank Wilczek explained why he should get the Nobel Prize, which he did fifteen years
later.
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quantum argument.

In 1+1 dimensions it turned out to be quite easy to give a proof, using an

important result by Zamolodchikov. He had shown that the scale transfor-

mation was monotonic, and a small twist of that gave the result that scaling

implies conformal invariance. There were technical conditions, the most im-

portant being unitarity; without this there would be exceptions. I tried to

find an argument in other dimensions, especially 3+1, but failed. I could find

neither a proof nor a counterexample. This work attracted little attention at

the time: particularly relevant to string theory. But in later years there was

renewed interest in such questions, and I will return to it then.

Most discussions of strings at the time dealt with low-lying states, small

loops. But one could imagine highly excited states that were very long,

perhaps spanning the universe. Cosmology could even lead to such strings

being produced. Witten had recently considered this for the superstring and

found several obstacles to their being produced. I will return to this later, but

for now it was still interesting just to see how strings behave under various

conditions.

An interesting question was, what happens if two strings cross? Do they

pass through one another, or do they reconnect? My colleague Matzner was

studying this question for cosmic strings from GUTS. He found that in this

case, where strings were classical, they always reconnected. But for funda-

mental strings the answer would be more quantum mechanical, a probability

for each outcome, and it was an interesting exercise to work it out. So the

simplest way to address the question was to introduce some large periodic

dimensions to wrap the long strings, and turn the problem into an S-matrix

that was readily obtained. For my newest student, Jin Dai, I gave the same

problem with open strings. Here there were two processes, an open string

breaking in two (or the reverse), or a closed string breaking off from an open

string. The calculations were done, a good warmup for Jin. They had mod-

est relevance when cosmic strings came back for a while, but it mainly was
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‘fun with strings.’

Before moving on, I should mention what my colleagues were doing. Each

of us was working on strings in their own way, and I benefited from all of

them. Phillip Candelas was by far the most successful then, as one of the

discoverers of Calabi-Yau spaces, a simple connection between string theory

and the standard model. I should have understood his work better, but our

approaches could hardly be more opposite, his geometric and mine field the-

oretic, with a minimum of geometry (wrapping a line in a periodic dimension

was about my limit). While I was there he discovered mirror symmetry and

also the first hint that all Calabi-Yau spaces might be connected through

nonperturbative effects. These were fascinating, but I did not have the tools

to follow.

Weinberg was trying to learn string theory much as I was, looking for

simple calculations to do. I do not know why we did not work together, I

guess neither of us played well with others (though I improved with time).

But I did find his work interesting. His first paper was to work out in detail

the forms of the vertex operators, with attention to the normalizations and

unitarity. His second was the bosonic open string theory, showing that it was

finite for N = 213 = 8192 Chan-Paton states (though there would be higher

corrections), the analog of the N = 32 that Yunhai and I studied. But string

theory did not hold Weinberg’s interest. I think it was because he wanted

to derive the theory using the same principles as served him so well in QFT,

but strings seemed to have new aspects that did not resonate so well with

him. A conference talk he gave, ‘Strings without Strings’, reminded me of

his earlier philosophy that geometry is not central to general relativity.

Most early string work focused on supersymmetric states, where the dili-

ton would vanish order by order in string perturbation theory. But soon

we would have to deal with states of broken supersymmetry, and the dila-

ton energy would have to involve cancellation between different orders. This

would be easy to work out in field theory, but was clumsy without string field
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theory. So Fischler, with Susskind, showed how it worked, cancelling string

amplitudes against loop divergences.

So I learned a lot from my colleagues even when not working with them. I

should also mention Clifford Burgess, Anamaria Font, and Fernando Quevedo,

three of the international students, who independently wrote a very nice

treatment of the low-energy effective action of the superstring. All went on

to successful careers in theory, with Fernando recently finishing a term as

Director of the International Centre for Theoretical Physics in Trieste.29

7 Austin part 2, 1988-1992

7.1 The book

So in the summer of 1988, having realized that I would never be a great

scientist, I decided to write a book.

This may come as a surprise. Weren’t things going so well? Certainly

the problems that I was working on were fun, and occasionally I got positive

feedback from others I respected. But I did not have a feeling that I was

moving science forward. The great excitement of the day was connecting the

heterotic string to the observed standard model, and I did not seem to have

the particular tools for this. In fact, when I look back, I seemed to have

worked almost entirely on what looked like oddities as compared to the real

problem. The only string paper that was fairly well-cited at the time was

my first, on the Polyakov path integral, and that was almost all pedagogical.

Meanwhile, many others were making what looked like major progress.

Certainly, the most notable of these was Edward Witten. For nearly ten

years he had driven high energy theory forward with new ideas, the way that

Feynman, Gell-Mann, Weinberg, Polyakov, and ’t Hooft had done earlier.

29I will not try to make a comprehensive list as I did for Harvard, it would be too hard.
I will mentions those I worked with in the text, but here are just a few others - Carlos
Ordonez, Don Marolf and Scott Thomas (two who got away), and Brian Warr (who died
too soon).
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I recall the pleasure, even before string theory came along, of reading each

new paper by Witten and learning unexpected new aspects of quantum field

theory. But at the same time, it was overwhelming.

In Feynman’s Nobel speech, he tells the story of poor Slotnick, whose just-

finished Ph.D. dissertation Feynman had reproduced, and more, in a single

night. Not surprisingly, Slotnick never wrote another paper. And stories

had it that Feynman affected others the same way. I have earlier mentioned

that first meeting with Witten, which was a little bit like Slotnick’s meeting

with Feynman. But I don’t think that Edward has ever shown the highly

competitive streak of Feynman; instead, he is competing with history. But

each new paper from him gave me the joy of reading, and the question, “why

am I needed?”

On a smaller scale, I must have had some of this effect on my classmates at

Caltech. But science is large, and they found their own directions. Happily,

theoretical physics also turned out to be large, but I didn’t know it then.

Before going on with the book, a few more bits of schadenfreude for you. I

had recently seen the movie Amadeus, which (a bit inaccurately) described

Salieri’s torment at being unable to match Mozart’s genius. So I empathized

with Salieri. I also put a picture of Witten on the back of my office door, to

desensitize myself for when we met. (Yes, I was such a goof).

The reason for my book was that I had just taught a one-year string course

based on the Polyakov path integral. Green, Schwarz, and Witten (GSW)

had just written a two-volume book on string theory but it did not include

the Polyakov path integral, using mainly the older light-cone methods. I

thought that in a year I could transcribe my course notes, avoiding too much

repetition with GSW. People seemed to enjoy my writing, and I enjoyed it,

though I did not account for how the effort would scale between a paper

and a book. And I kept wanting to improve things, and string theory kept

moving, and it ended up taking nine years. During this time I spent about

30% of each year on it, mostly in the summer. There was a break of a year
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when D-branes hit, but the next year I knew that I had to finish, and spent

almost the whole year on it.

Having admitted to channeling Salieri, I can also tell you about chan-

nelling Michelangelo. In the Michelangelo story, I cringed at the years that

he spent on his commitment to making Pope Julius’s tomb. How could he

have wasted so much of his creative life? It was only long after finishing my

book that I realized that I had done exactly the same thing.

I will not make much mention of the book as we go along. It just did

not intersect much with the rest of my life, even my research. That seems

surprising, but the book lagged the research. Just picture me slaving away,

30% of my time. But there is one bit of missed physics, right at the beginning,

which I have always regretted. I was thinking again about the monopole

catalysis problem, trying to improve the theory. I had an unusual effective

field theory, with the effective fields lighter than the monopole but heavier

than the others. I realized that this would arise in many situations, like

heavy-light quarks, and even proton-electron. So I asked Mark Wise if he

had seen this before. He said it was very interesting, and we should work

it out. But I had just started the book, and was not ready to pause. So I

left this to Wise and Nathan Isgur. The resulting Heavy Quark Theory was

very useful. So Wise and I joke that he gave me some projects when I got to

Harvard, and later I paid him back.

Finally, three influences. Steve Weinberg, for setting the bar with his

beautiful gravitation book, which I hoped to match. Initially we talked about

collaborating on a book, but it would have been very difficult melding my

non-historic approach with his. The second influence was Edward Witten,

for the reasons given above. The third was Jan Haag, who was our live-in

nanny when my first son was one. She was an interesting woman who had

traveled the world, and planned to write her own autobiography. So I figured

that if my nanny could write an autobiography, then so could I.
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7.2 Fun with duality

Reflecting now on my work in that period, I was doing in string theory much

of what I had done in QFT as a student, trying to understand what the

theory really was. Point particles in quantum field theory had been studied

for a century. Infinitely thin relativistic strings were new. What special

properties might they have?

A striking phenomenon special to strings was T -duality. If you put a

particle in a box and make the box smaller and smaller, all that happens is

that the excited states get heavier and heavier due to the momentum quan-

tization. But for strings, after the box gets small enough, lighter and lighter

states appear in the spectrum, and there is a perfect symmetry between a

very large and very small box. Apparently there was a minimum length,

something one might expect in the ultimate short distance theory. It was

also an example of duality, the equivalence between the quantum theories of

the large box and the small, but one that was visible even at weak coupling.

And in more current parlance, it was an example of emergent space.

Almost all of the attention to this subject had been for the closed bosonic

string (as a warmup) and the heterotic string, as the putative theory of the

real world. But there were other string theories, the open and unoriented

bosonic theories and the SUSY Type I, Type IIA, and Type IIB theories.

And I had two new students, Rob Leigh and Jin Dai, who needed problems.

Initially I divided the strings between them, but before long it became one

big project.

The IIA/IIB case was quickly solved: they are T -dual to each other,

meaning that they are the same theory in different limits. The duality trans-

formation flips the sign of one fermion, which flipped the IIA and IIB strings.

It was a nice result, though later we learned that Dine, Huet, and Seiberg

(DHS) had found this a few months earlier. But the rest of our papers were

orthogonal.

The other cases were harder. We found that the T -duality flipped the nor-
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mal Neumann boundary condition with the fixed Dirichlet condition. This

change in the boundary condition meant that on the open string, the end-

points were no longer free to move in some directions, while the interiors,

and the closed strings, were still free. After some thought, we realized that

the string endpoints had to be stuck to some lower dimensional object, with

any dimension obtainable depending on the number of T -duals.30

So this was rather remarkable: starting with a theory of open and closed

strings, one finds in the limit of a very small space a new large space, with

closed and open strings, but also these new objects, one for each Chan-Paton

factor. Moreover, we reasoned that due to gravity, these objects could not

be rigid, and we identified the excitations in the string spectrum. So they

were not stuck in the form given by T -duality, but could take any shape

and number. The term p-branes had just been coined by Achucarro, Evans,

Townsend, and Wiltshire to describe the membranes of supergravity,31 so we

called our new branes Dirichlet branes, or D-branes for short, to distinguish

them. The fact that a T -duality produced something (the D-brane) from

nothing (empty space) was nicely resolved by realizing that empty space was

actually full of space-filling D9-branes.

The T-duality of the unoriented strings led to new puzzles, and a new

object. We can think of T -duality as acting on the left- and right-movers as

(xL, xR) → (−xL, xR), while the unoriented theory is defined by projecting

on the orientation (xL, xR) → (xR, xL). Conjugating orientation reversal by

T , we get (xL, xR) → (−xR,−xL). This new operation is equivalent to a

world-sheet reflection times a spacetime reflection. The unoriented space is

thus T -dual to an oriented string theory on a half-space. This new kind of

boundary we christened an orientifold, because it was constructed from the

product of an orbifold and an orientation reversal.

30Petr Horava and Mike Green were both interested in these new T -dualities at around
the same time, with Horava’s work in particular overlapping some of ours.

31The word brane, which first appeared in the title of that 1987 paper, has now appeared
in 8,500 titles.

70



I seem to like simple compound constructions (Q-ball, D-brane, orien-

tifold, and later enhancon and discretuum). I have a certain pride that other

people would have discovered all these things, but by naming them I have

put my stamp on them. But orientifold was almost a joke, such a clumsy

word for something I thought that no one would ever find interesting. So

today I give a private chuckle whenever I hear it.

The last T -duality we did not quite get right. The Type I superstring had

both D-branes and orientifolds, but we had mistakenly concluded that these

were stuck together into a single object. This would be true for the minimal

D-brane number (1
2

from the orientifolding), but with a higher number they

had degrees of freedom that could move. But in all this was pretty nice for

a ten-page paper.

You might think that with this great set of insights I had made it, and

I did not need to write that darn book (which was on hold anyway, because

I was suffering from research-withdrawal after 4 months of writing). But I

did not appreciate what I had done. I thought that the next step had to

be finding the D-branes of the heterotic string, since this was assumed to be

the real theory. A nice argument by Dixon, Kaplunovsky, and Vafa showed

that the standard model could not be obtained from the Type I or Type

IIA,B theories. But if I had any imagination, I would have realized that

with the new possibilities from D-branes, the argument no longer held. But

I persisted, fruitlessly, in trying to find heterotic D-branes.

I gave zero talks about the paper, my lack of confidence and common

sense stopping me. I had forgotten Georgi’s maxim, “Don’t hide your light

under a bushel basket.” Had I given a few talks, someone in the audience,

or even just the effort of writing the talk, might have led to the missing

connections. I have mused over the fact that my paper with Yunhai had

shown that the D9-brane sourced a 10-form RR potential, and the paper

with Jin and Rob had shown that all the different Dp-branes were connected

by T-duality. But it took me six years to put these two together. Or more

71



precisely, perhaps I knew the connection implicitly, but did not know what

it meant; I needed someone to ask the right question.

As it was, the paper got two citations in its first five years. But there was

one very nice and important paper, written by Leigh entirely on his own,

working out the effective field theory for the D-branes. Leigh went on to

some outstanding work, in strings, particle physics, and QFT, and is now a

professor at Champaign-Urbana. Dai works in the IT industry in Shanghai,

currently with a startup, and has over 100 patents filed.

By the way, the title of this section was my intended title for the paper.

But Rob is a serious guy and vetoed it, so we ended up with “New connections

between string theories.” Keeping score, of the five string theories, K. S.

Narain had shown that the two heterotic theories were T -dual, we and DHS

had found that the type II theories were T -dual, and we found that the

type I theory was dual to type II, but with the ground state of type I dual

to an excited state of type II, with D-branes. The fact that type I theory

was dual to type II with D-branes meant that the D-branes were BPS states,

something whose significance may not have been clear, but soon would be. By

considering all the excitations of the D-branes, one could conclude that these

were intrinsic excitations of the type II theory. The last connection, between

heterotic and type I-II, would come not from a perturbative T -duality, but

from a nonperturbative one.

7.3 Cosmological constant

I think I first heard about the cosmological constant (CC) problem during

a lecture by Sidney Coleman on spontaneous symmetry breaking. Of course

the classic Einstein story was well-known, but the full quantum problem,

though known long ago to Pauli, had not penetrated into most discussions of

QFT. But as Coleman explained, spontaneous symmetry breaking pointed

up the reality of the vacuum, and that the ground state was not the most

symmetric state. So it would naturally have an energy of order the spon-
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taneous symmetry breaking scale. Moreover, even if canceled classically, it

would get large quantum corrections.

I gave this a lot of thought as a postdoc, understanding why it was so hard

to solve. Each particle generated a large quantum contribution to the vacuum

energy, and somehow all these would have to cancel perfectly. Normally one

would need a symmetry to enforce this. Supersymmetry could do it, but

it is a broken symmetry, so the cancellation should be inexact. One might

also look for a dynamical mechanism, whereby the CC backreacts on the

matter fields so that they cancel. But gravity is an irrelevant interaction

(in the renormalization group sense). This means that a quantum effect at

length l acts on spacetime at the much longer and weaker scale l2/lP (with

lP the Planck scale), much too small to cancel the CC. In effect, what was

needed was for some way for long-distance physics to feed back into the

short-distance action.

Most string theorists, having seen such remarkable properties as T-duality,

expected that string theory had some trick that we had not yet figured out.

So, like the renormalization problem before, the CC was one of the big ques-

tions that I always kept in mind. When I wrote my first string paper, on

the Polyakov path integral, my first calculation was the cosmological con-

stant.32 It showed no particular suppression, although this was just for the

toy bosonic theory. But even with (broken) supersymmetry, studied by oth-

ers, no suppression emerged.33

At this time some new ideas emerged. These had nothing to do with

string theory, but pure quantum gravity. They led to great excitement for

32More precisely, what I was calculating was the dilaton potential, rather than a con-
stant. There was a tendency to conflate these in the early papers, with the expectation
that higher order effects would fix the dilaton and produce a constant.

33A very nice paper by Rob Myers showed that the special values of 10 dimensions and
zero vacuum energy were not actually required in string theory. With Shanta de Alwis, a
postdoc who had come to work on Weinberg’s generalized gravity, and Rolf Schimmrigk,
a student of Candelas, we tried to generalize this to give small values of the cosmological
constant and the SUSY breaking, with limited success.
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two or three years, and then it dissipated. Today it is not even mentioned to

students, it is one of those subjects they can save some energy not learning.

I had thought this would be a good story to tell, but I have found it

difficult. It is not so much fun to remember ideas that rather thoroughly

did not work, even after great promise. So I will try to be brief. Actually,

there are two stories. One, due to Coleman, was based on axion wormholes.

The second, due to Hawking (and also Duff and P. van Nieuwenhuizen, and

Aurilia, Nicolai, and Townsend) was based on four-form potentials.

The essentials of the Coleman story: Quantum gravity plus axions give

wormhole solutions connecting different points of spacetime. At first sight,

passing through these wormholes would destroy information, but Coleman,

Giddings, and Strominger argued that summing over all configurations in the

path integral made the wormhole (baby universe) coherent but random. All

the constants of nature would get random contributions, but if one measured

the constant repeatedly the same value would be found everywhere. But

by considering the full path integral, with arbitrarily many de Sitter regions

coupled through arbitrarily many wormholes, Coleman found that the path

integral was infinitely peaked at zero cosmological constant, Λ, ee
1/GΛ → ∞

as g → 0.

This was remarkable. And it fit the idea that long distance physics needed

to feed back to the short distance action, the large Euclidean de Sitter space

acting back on the baby universe action. But there was also doubt. The

double positive double exponential was not like anything in field theory.

One would like to derive the path integral from a Hamiltonian, and this

would normally lead to minus signs, or even phases from the determinant.

Several groups looked at this, including Willy Fischler, Igor Klebanov, Lenny

Susskind, and me. Besides finding no evidence for a peak at zero CC, we

fulfilled Lenny’s ambition of getting the word Googolplexus into the title of

a paper (the number of states needed to get a small CC). And those who

studied the predictions for other constants of nature found that they were
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unphysical, or ambiguous.34

After a couple of years, the subject was dropped as uninteresting, and

even now it is painful for me to try to reconstruct the arguments. I imagined

that some features of this idea might return in the future, but they do not

seemed to have. I will return to this in around 16 years, book-time.

Hawking’s idea was simpler, in that it used the quantum mechanics of

de Sitter space but without the wormholes. He did add one more degree of

freedom, a 4-form field strength. In four dimensions, such a field is nondy-

namical: it would be constant over all of spacetime, but with an arbitrary

value. If its value is integrated over the path integral, this will pick out a

zero for the CC by a calculation similar to that for Coleman, but now with

a single exponential e1/GΛ.

But there was another problem. Even if all else worked, the mechanism

would lead to an empty universe. A universe with excitations, especially

a highly excited universe like ours, would be exponentially suppressed. So

Fischler, my student Daniel Morgan, and I wanted to see if there was a

process by which energy could appear from virtually nothing by tunneling.35

This had already been argued by Farhi and Guth, based on a path integral

saddle point, but there were subtleties. We confirmed it in a Hamiltonian

treatment, but the effect was probably too small for our purpose.36

There was one other new CC idea out there, the anthropic principle. As

soon as you go beyond the standard model to some form of unification, it

often happens that there are mechanisms that allow the constants of nature

to vary. We’ve seen two above, the 4-form field and the Euclidean wormhole.

34A fun, but ultimately uninstructive, toy model of quantum gravity was to treat the
string worldsheet as a 1+1 dimensional spacetime.

35Daniel also had some nice single-author papers, on forms of the renormalization group
(showing Weinberg’s and mine to be equivalent), and looking at the behavior of black
holes with cutoffs. He went into public science policy after graduation.

36There was another problem, which did not appear until much later. Note the resem-
blance between the D=4 4-form and the D=10 10-form of my work with Cai. Hawking’s
form should be interpreted as a D-brane field, and therefore quantized, rather than the
continuous value needed to cancel the CC.
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Other possibilities would be a slowly rolling scalar (Banks), a downward

rippling scalar (Abbott) or membrane (Brown and Teitelboim), or any kind

of complicated potential with many minima. In these conditions, it may be

that the constants of nature differ over time or space, or in branches of the

wavefunction.

Weinberg, building on ideas of Linde and Banks, essentially said that this

is all you need. Under these conditions, essentially all observers will see a

very small cosmological constant. The argument is that for observers, or any

kind of organized structure, to form, there had to be a lot of space (bits),

and a lot of time (events), and this requires the CC to be very small. So if

this ‘constant’ is actually some sort of variable, the observers will only exist

in the few regions of small CC.

One of Weinberg’s striking abilities was to take some new idea, even a

very radical one, and turn it into a calculation that could be tested. By

replacing ‘observer’ with ‘galaxy’, he could show that the CC could be no

larger than around 100 times the matter density, a large improvement over

the prediction that it was set by the Planck scale 10120 or the weak scale

1060.

This was remarkable to me, and upsetting. This problem that I was

spending much of my time on, which was supposed to be the clue as to the

nature of quantum gravity, did not need a solution, it was nearly automatic.

But it required giving up the idea that the constants of nature, the lifetime

goal for me and for my colleagues, was possible: it depended on details of

astrophysics and partly even biology.

But Weinberg had a prediction: the CC had no reason to be exactly zero.

Rather, it should be given by some random number less than 100 times the

mass density. Of course, the observed upper bound was already pushing

down by 1 or 2 orders of magnitude, but 1 or 2 was much better than 60 or

120, and one could imagine a refined calculation.

And there were already some signs of a nonzero CC, such as the age

76



problem (stars apparently older than the universe), which would be solved

if there were a nonzero CC. So I spent the next ten years hoping that the

evidence for this would go away. I do not know how many others were in the

same state. To me, Weinberg’s argument was so clear, and should have been

known to everyone. But I had the benefit of talking to Weinberg in person,

as well as my long history of unsuccessful attempts. Most others would find

it easier to continue their denial.

My fretting would have been much better spent asking, does string theory

produce the dynamics needed for Weinberg’s argument? Fortunately, the

question was still there for Raphael Bousso and me ten years later. It was a

measure of the general ‘anthropic denial’ that no one else asked this question

first. And it is a tribute to Weinberg for his unique way of doing science,

even asking questions that others might fear.

7.4 Science fiction and science

Around this time, I saw a very interesting preprint by Kip Thorne and collab-

orators. General relativity has solutions with closed timelike curves, where

an observer could return to a past event. They had a scheme for constructing

these. Start with a wormhole with both ends near a point.37 Then, boost one

for a long time before bringing it back to rest. Due to time dilation, the times

are shifted: an observer who enters the unboosted end leaves the boosted end

in the past. Thorne, Morris, and Yurtsever wanted to see whether physics

could make sense in such a space, perhaps even having observable conse-

quences.

As a veteran reader of science fiction, I was well aware of the grandfather

paradox, and I was sure that Thorne was as well. The observer could go

far into the past and then kill his grandfather before he himself had been

conceived. So he would not have existed to start the process and kill his

37We are now talking about wormholes that exist along the time direction, as opposed
to the earlier wormholes that exist only for an instant.
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grandfather. But there is a lot of free will involve here, so it did not make

for a sharp argument. But I realized that one could easily do away with

that. You can just replace the observer with a billiard ball, aimed so that it

travels from the past through the future wormhole, and then leaves the past

wormhole in just such a way as to intersect its previous path and knock it

off course. Then it will never be there to pass through the wormhole. So

there seems to be no consistent answer to whether the ball passed through

the wormhole.

So I sent Thorne a message with this, and he got excited. His next paper

was about motion in wormhole spaces. He had a possible solution to the

conflict. If the ball was deflected just a little bit, then after passing through

the wormhole it could meet its former past at just the right place to make

it all consistent. He acknowledged me prominently for my note, which felt

very good. But I wondered whether Thorne would be taken seriously after

writing such papers, especially while he was trying to get the billion dollar

LIGO project approved.

I have named a number of things, but I do not have many things named

for me. The Polchinski equation is just a refinement of Wilson’s. So the

Polchinski paradox, a science fiction motivated idea for which I wrote no

papers, seems to be my claim to fame.

My other bit of science fiction was due to Weinberg. In his characteristic

way, he had asked the question, how do we know that quantum mechanics is

linear? So he designed a generalized theory with nonlinearity, satisfying cer-

tain consistency conditions. This could be compared with experiment, and

he found that any nonlinearity had to be extremely small. I was studying

the structure of his model, and realized that the EPR problem was no longer

avoided: information could be sent faster than light (Gisin discovered this

as well). One could find a variant theory that avoided this, but the conse-

quence was that different branches of the wavefunction could communicate.

I summarized this by saying that Weinberg’s original theory allowed us to
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build EPR-phones, which send messages faster than light, while the modified

theory allowed us to construct Everett-phones, which can communicate be-

tween different branches of the wavefunction. A few months later, this made

it into a column in Fantasy and Science Fiction.

7.5 Short stories

7.5.1 Nonperturbative strings

String theory, impressive as it was, was still just a perturbation theory. Find-

ing the complete description was one of the big questions. Even for the stan-

dard model, we knew that nonperturbative effects led to rich physics and

were essential to confinement, chiral symmetry breaking, and more. With

quantum gravity added in, we could expect much more excitement in a non-

perturbative theory.

The simplest guess would be to copy the structure of particle physics, re-

placing quantum field theory with some sort of string field theory. Effectively,

this amounted to breaking the string worldsheet up into pieces corresponding

to string propagators and interactions, which would follow from a string field

action. But what worked for particles may not have been the right thing for

strings. The classical action for closed strings required a sum over an infi-

nite number of terms. Even worse, the quantum theory required an infinite

number of additional terms at each order in ~. Effectively, the amplitudes

were being put into the action by hand — it seemed to me more like an ef-

fective theory, or an action for a composite object like a hadron. There were

some nice constructions in this approach, like Witten’s open string action,

Sen’s soliton solutions, and Zwiebach’s BV symmetry, but it did not seem

like enough.

A different direction that came up at this time was a solvable matrix

quantum mechanics, found by Gross and Migdal, Douglas and Shenker, and

Brezin and Kazakov, which was equivalent to string theory in 1+1 dimen-

sions. In this low dimension, the only degree of freedom was a scalar, but
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the model was still rich enough to be interesting. In effect this was an early

version of holography, a connection that Polyakov in particular emphasized

later, with AdS/CFT. This was fascinating for me, and I wrote six or seven

papers on it. These were mostly about the connection between the 1+1

dimensional space and the matrix model, including the emergence of space

and gravity, the finding of all classical solutions and some of their interesting

properties, the attempt to go beyond 1+1 dimensions, and some issues about

the nonperturbative definition.

The most interesting lesson from this system came from Steve Shenker,

who showed that nonperturbative effects scaled as e−C/g, where g is the closed

string coupling and C a constant. In quantum field theory, nonperturbative

effects scale as e−C/g
2
. So string theory had stronger nonperturbative effects

than quantum field theory. What could they be? Perhaps I should have read

my own papers.

7.5.2 Working with Bryce

Bryce Dewitt had strong opinions. He was fun to talk with, about topology

change (he was against), about the many world interpretation (he was for),

and more. I had the fun of joining a project with him.

Bryce, with the help of a large team of postdocs and students (Jorge de

Lyra, See Kit Foong, Timothy Gallivan, Rob Harrington, Arie Kapulkin, and

Eric Myers), was trying to directly answer the question of whether quantum

gravity might be nonperturbatively renormalizable by directly integrating

the path integral on the lattice. It was not clear that what he was doing

made renormalization group sense, but it was Bryce’s characteristic way to

choose his direction and plow through it. Anyway, it was a hard question,

and perhaps one would learn something in this way.

At least Bryce had made things easier by replacing the metric with an

O(2, 1)/O(2) sigma model, with a lattice action he had determined through

some reasoning of his own. So the path integral involved two fields in four
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dimensions. I noticed that for his specific action, the theory could be fac-

torized into a free field and a self-interacting one. So half the integral could

be done by hand, with half still having to be done numerically. This allowed

for a lot of checks, and I was able to debug some of the team’s long com-

puter calculations using very simple ones. Most notable was one case where

there was a large discrepancy. I realized that there was a Schwinger term

that needed to be included, and then the numbers fell right in line. Bryce

commented that he had never believed in Schwinger terms until he saw them

in the numerical data.

And there was a conclusion: there was no high energy fixed point. I won-

der whether there might be a useful confrontation between this and asymp-

totic safety.

7.5.3 Fermi liquids

When I first learned about the Fermi liquid theory, I was puzzled by how one

could neglect the electromagnetic interaction. This was driven home even

more when I taught graduate quantum mechanics using Davydov’s book,

which went through BCS superconductivity in detail. It was claimed that

one could calculate things like the gap with great accuracy, while ignoring

seemingly much larger effects. It was said that this worked because we were

working with quasiparticles, not electrons.

I had never encountered this word quasiparticle in QFT, and I did not

know of any such method that would allow one to just ignore an interaction.

All I knew was effective field theory, so I tried that, and it worked. The finite

fermion density was unfamiliar for a relativistic theorist, but putting in the

proper scaling made it just right. All interactions were irrelevant except

the one producing the superconducting condensate, which was marginally

relevant. So superconductivity was due to asymptotic freedom, just like

confinement. What I had done was well-known in terms of the Fermi liquid

theory, but expressing it in the language of effective field theory made it more
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transparent to field theorists.

In my typical way, I was not planning to give any talks about this, or

write a paper. But I was co-organizing the 1992 TASI with Jeff Harvey, and

it was suggested that I give a couple of impromptu lectures. So I gave one

lecture on how effective field theory works, including a very efficient summary

of my renormalization proof. The second explained how Fermi liquid theory

fit in this framework, including the treatment of the BCS theory. This has

been a fairly valuable review, and I almost did not write it. I should not hide

my light under a bushel basket!

At the same time, the problem of high temperature superconductivity

was a great puzzle. Its low energy behavior, such as the conductivity, did

not fit the Fermi theory. The low energy interactions were larger, but there

was no other stable low energy field theory known. So I thought, maybe my

new understanding of Fermi liquids would solve the problem. I worked at it

for several months, trying several things, but eventually decided that I had

little to contribute. It seems that it is still a puzzle.

7.6 Students

Finally, let me remember my third triad of grad students, Eric Smith, Djordje

Minic, and Makoto Natsuume. All three of them began working with me in

Austin but finished after I moved to UCSB. Eric and Makoto came with me,

while Djordje stayed with his wife in Austin. All of them worked on varied

subjects. For most of you, this will be just a laundry list that you can skip.

But I remember many of these projects with pleasure, and am happy to see

that all these students are still doing science.

Smith’s first project was to show that T duality held for a class of time-

dependent solutions, something that had not been obvious in the literature.

He then worked out the light-cone action and spectrum for the 1+1 dimen-

sional string theory. We talked about my work on condensed matter, and he

followed some of his own ideas and moved more in that direction. He is now
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at the Santa Fe Institute.

Minic wrote a couple of papers with me and a postdoc Zhu Yang on

solutions to the 1+1 dimensional string theory. He then worked with Duane

Dicus on quark dynamics, on his own on the Luttinger liquid, and with

Shyamoli Chadhuri on 1+1 dimensional string black holes. It was a tough

time to get a job, and Minic went through many postdocs before getting a

faculty position at Virginia Tech, where he has been very successful. He and

his wife Joy made many sacrifices, but his enthusiasm for physics was great,

and it is wonderful that it worked out for them.

My first project for Natsuume was a follow up on my work with Stro-

minger on noncritical strings, showing that the effective field theory could be

derived from a renormalizable one, and so confirming our construction. The

second was a bit of speculation, seeing if he could make a generalization of

the string S-matrix to higher dimensional objects (not much success). On his

own, he did nice work on the S-matrix of 1+1 dimensional string theory. He

also worked out some challenging α′ corrections to the string theory black

hole. And together, he and I understood gravity in the 1+1 dimensional

string theory. Makoto ended up at KEK. Besides his research, Natsuume

has written a number of popular and pedagogical books on string theory and

AdS/CFT in Japanese.

7.7 Farewell to Austin

Dorothy and I were happy in Austin. Our two sons were born there, Steven

in 1986 and Daniel in 1989, and were growing up with Texas accents (though

they could drop these when they were just with us). We enjoyed life in

Austin, apart from the weather. And both of us were in departments that

we could thrive in. So we were in no hurry to look elsewhere, and a few times

I got feelers but was not interested.

But California was still home to us. Though we were each born about

2500 miles away, in opposite directions, we met in California, and each of
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us had many formative experiences there. So if opportunities for both of us

were available, we would be very tempted. But Dorothy’s field in particular,

German linguistics, was very small, and there were no prospects for openings

in sight.

And then UC Santa Barbara came through. Universities back then were

not as responsive to two-body problems as they are now. But UCSB had a

drive to grow to the top. Dorothy’s position was not as ideal as at Austin,

going to a smaller department with interests less in tune with her own. But

she could pursue her research, and over time she was able to build an impres-

sive program. Of course it put us closer to our families. And for me, it was

a great opportunity, with excellent colleagues and a position at the Institute

for Theoretical Physics, where I could focus on science.

So we did not hesitate for long. For me the most painful part was telling

Weinberg. He is a great man, and he was proud of the group he had built.

8 D-branes and orientifolds, 1992-1995

8.1 UCSB and ITP

The University of California at Santa Barbara had one of the leading string

theory groups in the world, with Andy Strominger and Gary Horowitz, two

of the discoverers of Calabi-Yau compactification, Mark Srednicki, one of the

inventors of the invisible axion and a creative thinker in particle physics and

quantum theory, Steve Giddings, one of the young leaders in string theory,

and now me. It was probably the largest and strongest string group in the

world, outside of New Jersey. Of course, New Jersey had Princeton/IAS

(Witten, Polyakov, Gross, Klebanov, Migdal, Wilczek, Nappi, Callan, Ver-

linde) and also Rutgers (Banks, Shenker, Seiberg, Friedan, Zamolodchikov).

I have always been astonished to think about the growth of UCSB physics,

from becoming a university in 1944 to being a department that in some

measures is as high as fifth in the country. All the other top departments
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have been around since at least the previous century. The coup by the gang of

four, Jim Hartle (relativity), Ray Sawyer (particle physics), Doug Scalapino

(numerical condensed matter), and Bob Sugar (lattice gauge theory), did not

start this, but it greatly accelerated it.

In 1978, the High Energy program director at the National Science Foun-

dation, Boris Kayser, saw a need to enhance collaboration between physicists

at different institutions and in different fields, and also to support postdocs

who were leaving physics for lack of support.38 He persuaded his superiors to

fund this, to the tune of around a million dollars per year. There was a call

for proposals, and the story, as told by the winners, is that all the established

departments said, ‘we know what to do with the money, give it to us.’ But

UCSB’s gang of four had a unique idea, to use the funds to bring scientists

from around the world to interact for as long as six months, rather than the

typical week-long conference. There would be time to conceive new projects

and carry out the collaboration there. And the outstanding Walter Kohn

agreed to come to UCSB to be the first director.

The NSF liked the UCSB proposal the best, but it wanted to see a

greater contribution from UCSB. So the gang proposed that UCSB would

contribute four faculty positions, a huge bargaining chip that no other group

could match. These ‘Permanent Members’ would mentor the postdocs and

help design and run the scientific programs. But they had to convince their

new chancellor, Robert Huttenback, to back them. Huttenback, just arrived

from Caltech, knew about the competition because Murray Gell-Mann had

boasted to him that Caltech’s proposal would dominate UCSB’s. So Hut-

tenback gave the gang what they asked for, and UCSB got the Institute for

Theoretical Physics (ITP), and the gang of four became the Founders. And

so my position exists because of Murray’s boast.

The first four PM’s were Frank Wilczek and Tony Zee, both broad particle

38I am repeating this second hand, and may get corrected. I hope that the best bits are
true.
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theorists, Jim Langer, condensed matter, and Doug Eardley, gravity. By the

time I arrived, Wilczek had moved to the IAS and Langer had become ITP

Director. Kohn had become a regular member of the physics department

after finishing his 5-year term as Director, Robert Schrieffer had moved to

Florida State after finishing the next 5-year term as Director, and Jim Langer

had become the third Director. I was the replacement for Wilczek,39 and

Matthew Fisher replaced Langer as PM the next year.

For its first fifteen years, the ITP operated on the 6th floor of Ellison, the

rest of which housed History, Geography, and Political Science. The whole

institute, every office, could be seen from the point in the middle, with one

corridor on the left, one on the right, and one perpendicular. I liked the

coziness of that, but it had long outgrown its space. A year after I arrived,

the University completed a dedicated ITP building, soon named for Walter

Kohn. With a beautiful design by Michael Graves, right across from the cliffs

above the Pacific, it nearly doubled the ITP’s capacity.

8.2 Information loss

The format at ITP was the same for its first 20 years: two programs in

the first half of the year and two in the second, each running for 5 months.

Typically there would be one program from each of the three main subfields

— high energy, condensed matter, and astrophysics — while the fourth might

be a new direction, an interdisciplinary area, or a second subject from one

of the main areas. It was also possible to have a one month miniprogram,

scheduled on shorter notice, if something new came up.

At the start of 1993, shortly after I arrived, the two areas were high

energy physics and relativity. The respective subjects were Nonperturbative

String Theory and Small Scale Structure of Spacetime. Effectively this was

39There is a history of the IAS with title “Who Got Einstein’s Office?” Wilczek did
not get the office, but he did negotiate to get Einstein’s house when he moved there. And
I got Wilczek’s office at the ITP. So at one point, the tentative title of this memoir was
“Who got the office of the guy who got Einstein’s house?”
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to be one double-size program, bringing together string theorist and general

relativists. What it developed into was a giant program on the black hole

information paradox.

When Hawking’s paper first appeared, my reaction was the same as most

quantum field theorists. When we burn a lump of coal, the disorder in-

creases monotonically, so the entropy is maximized at the end. But this is

the coarse-grained thermodynamic entropy. If we look at the microscopic

quantum state, for coal that starts out in a pure state, the final state must

also be pure and the microscopic van Neumann entropy must end up zero.

Hawking was saying that for black holes, even the microscopic disorder in-

creased monotonically, so that the final state was no longer pure but mixed,

meaning that information had been lost and the Schrodinger evolution of

quantum mechanics had to be modified.

So the naive reaction was that Hawking had mixed up the coarse-grained

and microscopic descriptions, and a more careful treatment of the quantum

state would find Hawking’s mistake. I first learned why Hawking’s paradox is

so difficult from a talk in Austin by Susskind, who had started thinking about

the problem around the time I left SLAC. As he explained, the difference

between the coal and the black hole is that the black hole had an event

horizon. So with the coal, a quantum degree of freedom could rattle around

for a while inside and then escape, but for a black hole, once it fell past the

horizon there was no escape.

I am not sure why this problem rose to prominence just when it did. I

think Lenny’s talks had introduced many string theorists to the difficulty and

importance of the problem. Also, Callan, Giddings, Harvey, and Strominger

(CGHS) had recently presented a seemingly solvable two dimensional model

of black holes, which allowed explicit studies of the problem. This was prob-

ably the most active subject of the program. But it seemed that there were

ambiguities in the definition of the model, so Jeff Harvey said that it was

like a Rorschach test: you could get whatever you expected.
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That ITP workshop did not solve the problem. The first big step forward

was seven years later, with AdS/CFT, and even today there are key issues

to resolve. But it did succeed in communicating what the problem was and

what the possible resolutions might be. Essentially, almost all ideas fell into

one of three categories: a) information is lost in the way that Hawking ar-

gued; b) information escapes from the black hole interior, seemingly requiring

traveling faster than light; c) black holes do not evaporate all the way, but

end up as Planckian remnants. Each of these seemed to have unacceptable

consequences.

At the conference at the end of the program, I ran a discussion in which

I took a vote as to which alternative people expected. There were a few

‘remnants’ and a few ‘none of the above,’ but the bulk broke down 60-40 for

information escape versus information loss. This just reflected the fact that

the audience was 60% field theory/string theory and 40% general relativity.

The former were more ready to give up relativity, and the latter to give up

quantum mechanics. As for myself I was a natural agnostic, going back and

forth among the possibilities, looking for a resolution.

Another highlight of the conference was Susskind, who gave two talks. At

the start of the week he introduced the idea of black hole complementarity,

but by the end of the week he had refined it so much that he insisted on

speaking again, and the organizers (me, mostly) extended the session.

Looking at my own work from this period (I do rely heavily on INSPIRE

to make up for my memory), the program led me to several papers about the

information problem: 1) Constructions of string theory black holes, with Gid-

dings, Harvey, Shenker, and Strominger; 2) An argument (with Strominger,

who later expanded it) that models where degrees of freedom from the black

hole interior escape into baby universes do not actually destroy information,

but are examples of remnants. This was similar to the Coleman-Giddings-

Strominger analysis of baby universes; 3) With Lowe, Susskind, Thorlacius,

and Uglum, a project initiated by David Lowe to determine whether string
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theory is local. If it were nonlocal, there might be no information problem.

Lenny interpreted our result as saying that it was indeed nonlocal. I thought

that it was inconclusive: it was not clear whether we were looking at the

right observables. This is still an open question. We also analyzed the Nice

Slice, a coordinate system first introduced by Robert Wald, where slices pass

into the black hole but never get near the singularity.

8.3 Working with Matthew

Things were about to change in a big way, but first a little condensed matter

interlude. Matthew Fisher, newly arrived at the ITP, and Charley Kane,

an assistant professor at Penn, were interested in the edge currents in the

fractional quantum Hall system. Even for the simplest case of 2
3
, there was a

discrepancy between the observations, which showed charges moving only in

one direction, and the theory, which had charges moving in both directions.

Fisher and Kane had the idea that disorder in the system would produce an

interaction between the right- and left-movers, which would then flow to a

new phase.

They did not see how to solve the resulting Hamiltonian, but thought

that I might have some ideas. It resembled a conformal field theory such as

one encounters with strings, but there were two complications: the disorder,

and the absence of Lorentz invariance. But surprisingly, a bit of fiddling

revealed an unexpected symmetry, which allowed the model to be solved. It

had the desired feature that currents moved only in one direction, but also

an unexpected feature: a neutral mode moving in the opposite direction.

This was one of my few measurable predictions. Unfortunately the neutral

mode did not seem to be there. Apparently it was observed recently, more

than 20 years after the prediction, but the story was more complicated. I did

learn that in condensed matter, authors are not determined alphabetically

but often younger to older. And I did not meet Kane at the time, Fisher

was the intermediary, but he has become quite distinguished for his work on
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topological insulators.

8.4 Strings ’95

This was a slow time in string theory. The excitement from the first super-

string revolution had passed, and many directions had been explored without

clear result. But beneath the surface, something was brewing. Besides D-

branes and supermembranes, there were the black branes of Horowitz and

Strominger, the weak/strong duality conjecture of Font, Ibanez, Lüst, and

Quevedo, the 5-brane conjectures of Duff and Strominger, the study of du-

ality effective actions and spectra by Schwarz and Sen, and in gauge theory

the tests by Vafa and Witten and by Seiberg, and more. All of these were

weak/strong dualities, dubbed S-duality by Font et al., as opposed to the

easy T -dualities. But in the ‘fog of war,’ the connections between these dif-

ferent strands were not obvious. As Andy Strominger has reminded me, he,

Gary Horowitz and I had lunch together nearly every day for three years,

without realizing that their black p-branes and my Dp-branes were the same.

One thing that did strike me was Seiberg’s paper on strongly coupled

N = 1 gauge theories. His N = 2 papers with Witten a few months later

have been much more extensively followed up, because the higher symmetry

allows more calculations. But I was impressed that even for the presumably

more physical N = 1 theories one could do exact calculations. I could not

have done what Seiberg did. I would have needed to see something proven,

probably this would require first figuring out what cutoff to use, and this

would get nowhere. But what Seiberg said was that if a strong coupling

duality passed several nontrivial tests, it had to be for a reason, and duality

should be the default. He wanted to know what was true, not what could be

proved. And as more dualities were found, they formed consistent webs.

For myself, I revisited D-branes a bit. With fellow aficionado Michael

Green we looked at a possible new interpretation of D-branes, but it went

nowhere. I also thought about Shenker’s argument that nonperturbative
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string effects should be of order e−C/g, and realized that D−1 branes (D-

instantons) were exactly of this order. This was a bit nontrivial: one had

to realize that D-objects were independent, so one had to sum not only over

string worldsheets, but also over D-brane degrees of freedom. I also gave a set

of Le Houches lectures entitled “What is String Theory?” These consisted of

several introductory chapters from my book (remember that?), and some of

the recent attempts to go further. I included a short section on the various

duality ideas noted above.

When Strings ’95 began at the University of Southern California that

March, there was some feeling of gloom. This was both professional and

scientific. The first problem was that there were large numbers of excel-

lent postdocs who were not getting jobs. The organizers ran a session at

which the postdocs could express their unhappiness. Somehow I was asked

to moderate, but I had no ideas to offer. The scientific problem was the

post-revolution slowdown noted above, as well as the lack of prospects for

experiment. Susskind addressed these in his after dinner speech. His theme

was that we did not need experiment, that we could figure string theory out

without it. He supported this by looking at various past theoretical dis-

coveries, and showing how they could have been reached by thought alone.

But I was not convinced that we could have figured out quantum mechanics

without experiment.

However, one of Susskind’s points has stayed with me. He said that

he wanted to know the mathematics of the equations, not the mathematics

of the solutions. Techniques for solving a problem, as in geometry, can be

much more elaborate than those originally needed to define the problem. Like

Susskind, I always wanted to find the simplest example that would make a

point.

The irony was that both problems had been transformed just two days

earlier, when the second superstring revolution began. Everyone had heard

Witten’s talk, but the full magnitude of it took some time to absorb. My
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recollection is that the talk began with Witten saying that the organizers

had asked the speakers to think about big questions, so he was going to give

the strong coupling behavior for every string theory in every dimension. The

strategy was remarkably simple (he noted that he was building on recent

work of Hull and Townsend). Essentially, assume that weak/strong duality

(S-duality) is true and see if this is consistent, as Seiberg and others had

recently done to great effect in SUSY gauge theories.

Taking any of the five known string theories in ten dimensions, there was

a dilaton field φ and an effective action S(gµν , φ, . . .). Duality would mean

that under φ→ −φ, perhaps with some other changes of variable, the action

would again be that of some string theory. Indeed, this worked for the Type

IIB string — it was dual to itself. For the heterotic SO(32) string, the dual

theory was the Type I theory (and vice versa), which had the same gauge

groups and supersymmetries. Type IIA theory threw a bit of a curve: the

strongly coupled limit is eleven-dimensional supergravity. Finally, the dual

of heterotic E8×E8 was a puzzle in the initial talk, but Witten and Petr Ho-

rava soon identified it as eleven-dimensional supergravity on an orbifold. For

each of the five ten-dimensional string theories, and eleven-dimensional super-

gravity, there was a unique candidate strong coupling dual. Moreover, these

dualities extended to BPS excited states, and to lower dimensional states,

in a highly connected and consistent way. And combining these S-dualities

with the T -dualities, it seemed that all string theories were connected.40 It

was rather overwhelming, for me and the rest of the audience. Even Witten

described his conjectures as shaky, as compared to T -duality. But just in

the previous year the work of Seiberg and Witten had finally made this kind

of reasoning convincing in supersymmetric gauge theories, and so it did not

take long to believe this for the more mysterious regime of strings.

40In his talk, Witten introduced the term ‘M theory’ to denote the eleven-dimensional
theory dual to Type IIA and heterotic E8 × E8. The ‘M’ might turn out to be mystery,
magic, or membrane, when the theory was better known. BFSS (9.2) would add ‘matrix.’
The term M theory is refer also the full quantum theory, with all the dual limits.
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At the end of Witten’s talk, Mike Green and I looked at each other and

said ‘that looks like D-branes.’ For me what was most striking was that

the e−C/g effects that I discussed above occurred extensively in Witten’s

dualities. But there were a lot of things to think about. Witten’s talk ran

to roughly 60 slides, and there was so much in it that was new. I ended up

with a list of 14 homework problems just to understand the talk. There was

a disproportionate number of questions about K3’s, as there had been in the

talk. And the open string questions were near the end, in the talk and in the

list.

8.5 D-branes

The start of the second superstring revolution did not go well for me. Count-

ing Witten’s talk as day zero, day two was my ineffective discussion with the

postdocs. (My one conference talk, on day -1, was a review of the black hole

information problem). On day 14 I arrived at the ICTP in Trieste to give a

set of spring school lectures on string theory. My plan had been largely to

repeat my lectures ‘What is String Theory?’ from Le Houches. These had

gone well when I presented them eight months earlier, but now they felt years

out of date. I did not have the time to absorb the new understanding. A set

of lectures on D-branes would have been great, but their significance still had

not emerged. So I did repeat the earlier lectures, feeling quite depressed as

other speakers like Seiberg and Sen were zooming forward into the new era.

Between this and the jet lag I slept very badly, so one time I fell asleep during

my own lecture. (If you find this hard to believe, you can ask Seiberg.)

But I gradually caught up. With Shyamoli Chaudhuri I studied dualities

in some models she had developed, heterotic string compactifications with

maximal supersymmetries. With my first UCSB student, Eric Gimon, I

studied type I string compactifications. Both projects had some K3’s in

them — I was doing my homework. And I had gotten past my natural

skepticism, after seeing weak/strong predictions work.
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By August I had learned enough that I could give reviews of string duality

to nonexperts, and I was at the Yukawa Institute for Theoretical Physics to

present one. My former student Natsuume had just returned to Japan, and

gave me an extended tour of Kyoto, including a traditional bath house and

many scenic points.41 But the most interesting part of the trip was going to

a tiny laundromat in Kyoto by myself. After loading the washer, I spent a

little time looking at the Japanese magazines, and then sat down to do some

physics. Next up was the homework about open strings. And immediately I

ran into a problem.

The weak/strong duality between heterotic SO(32) strings and Type I

strings from Witten’s talk passed basic tests like the action, but overall it

had been little studied. These strings were less clearly connected to phe-

nomenology, and had the additional complications of orientation reversal

and open strings. One of the first checks would be putting the system on a

small circle, do a T-duality on both sides, and see if it made sense. And it

didn’t: there was a range of parameter space where both sides were weakly

coupled. But this would be a contradiction: two different results for the same

theory.

When I got back to the ITP, I emailed Witten and said that I thought

there was an inconsistency with his conjecture. So we first did some calcu-

lations of non-BPS states (the BPS states are automatic and do not provide

a test), and there were indeed states in the heterotic theory which did not

seem to have images in Type I. We figured out what the problem had to

be. Because of the Type I orientifolding, the T-dual Type I′ theory was not

translation invariant. But that would mean that the dilaton is a function

of position, and with a nonzero mean value it could still blow up in places,

producing additional states. So we calculated this and it worked exactly.

It was an unconventional calculation, with discontinuities along eight-

41Though I always had the feeling that I was embarrassing Makoto, as when I wandered
off the usual paths, or lost my train ticket and had to try to explain to the conductor
where I was supposed to be.
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dimensional planes. I referred to these as D8-branes, and Witten asked, ‘How

can these be D8-branes, they are supersymmetric?’ And I explained that D-

branes are BPS states, carrying Ramond-Ramond (R-R) charges. Witten

seemed astonished, and said that I should write this up (I don’t thing we

met in person, and don’t recall whether his astonishment was conveyed by

phone or email). So I dropped everything and wrote.

The paper took just a little over a week to write. Most of it was a

careful presentation of what was in the papers with Cai, and Dai and Leigh.

But there was one new calculation that I felt was needed. D-branes whose

dimension sum to six form an electric-magnetic pair, and so their charges

had to satisfy the Dirac-Nepomechie-Teitelboim quantization, qq′ = 2πn for

integer n. Otherwise, the theory could not be consistently quantized. The

calculation was of my favorite kind, a vacuum amplitude, but now with

a cylinder bounded by two D-branes. On my first pass through, n came

out to be π
√

2, and on my second it was 1/
√

2. Either of these would be

inconsistent, but these are the standard kind of error that one gets with a

new calculation. On the third it was exactly n = 1. The D-branes exactly

saturated the quantized charges, strongly suggesting that these were the

sources of R-R fields, which previously had no weakly coupled limit and were

just identified as charged singularities.

Even as I was doing this, I started getting messages from people who had

heard from Witten that I was writing an important new paper. And so I

began to realize that I had finally, at the ripe old age of 41, done something

that had changed the direction of science. More than that, it was a shock

wave, for me and the rest of the field. I had been living with D-branes for eight

years, but never taking it too seriously because of the lack of heterotic D-

branes (still true at weak coupling, but now they were needed to understand

strong coupling). But for almost everyone else, it was a new thing: string

theory was no longer just string theory, it had D-branes as well. These made

many new calculations possible, and rather suddenly string theory became
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D-brane theory. Of course, two years later it became AdS/CFT theory, which

is still our most complete picture.42

For eight years, D-branes had belonged to me and a few other fans, but

now it was out in the world for everyone. Within weeks, people found impli-

cations that I had never expected. Witten used them to calculate the bound

states of strings and branes. Douglas, and Witten, connected D-branes to

instantons. Witten and I finished our paper, which also demonstrated the du-

ality between type I D1-branes and heterotic strings. Strominger determined

the rules for branes to end on other branes. Townsend, and Schwarz, worked

out the connection between D-branes and the eleven-dimensional M2-branes

(the M now added by Witten to denote the eleven-dimensional theory). Vafa,

with Bershadsky and Sadov and with Ooguri, did something topological with

them that I did not understand and did not fully approve of.43 Bachas de-

termined the scattering amplitudes for D-branes. Strominger and I wrote

a paper on D-branes and Calabi-Yau manifolds which was mostly his (he

is always generous); my main contribution was an early study of brane cre-

ation at brane crossings. And, a few days into the new year, Strominger and

Vafa (SV) used D-branes to give a statistical interpretation to the black hole

entropy for the first time.

You might wonder, how long had I known the answer to Witten’s ques-

tion? I had known that D9-branes were BPS states that coupled to R-R

fields since my work with Cai, and that all Dp-branes were equivalent under

T -duality since my work with Dai and Leigh. But I think that I only fully

connected them when Witten asked the question.

42My history has not had much about my personal life, but hear is an odd note. My
son Steven was playing roller hockey, and a coach was needed. I had no aptitude for this,
but neither did anyone else, so I volunteered. This was very stressful for me, an it came
at the same time as the D-branes. What I remember is that the coaching consumed much
more of my attention and energy than the D-branes.

43I have told Vafa that one of my life goals is to understand one of his papers, but no
success yet.
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8.6 Family time

This may seem like an odd point for this change of subject. But in fact it is

fitting, because just as my physics career was taking this spectacular jump,

most of my mental energy was actually being spent on coaching Steven and

Daniel’s roller hockey team.

Both Dorothy and I were mostly unathletic before college, her from going

to Catholic schools and me from general nerdiness. But in college we both

enjoyed sports, and we met playing volleyball in our first graduate year.

When our first son, Steven, came along this accelerated. From the age of

one or so he wanted me to be throwing or kicking a ball to him all the time.

Daniel seemed more easygoing, but he also joined in, and so life for us largely

centered on sports.

Steven started playing roller hockey when he was six, and after a few

years I was asked to coach. This did not come naturally to me. Even teaching

physics had always made me anxious, and here I had no expertise. I took

it on, and so spent the quarter mostly figuring that out. But this was the

exact same time D-branes came along: somehow it all worked out.

Just to finish this subject, even Dorothy started playing roller hockey.

For a while, all four of us were on the same team. Eventually, I switched to

biking in the heights around Santa Barbara, Steven switched to ice hockey,

and Daniel to wrestling and martial arts.44

The whole family graduated from Berkeley, in spite of Paul Martin’s

advice. Steven graduated in Economics and Statistics. After several years

working in the financial industry, he is pursuing work in Psychology. Daniel

graduated in Molecular and Cell Biology, became a Doctor of Pharmacy at

UC San Fransisco, and is now a Pharmacist at the Stanford Medical Center.

44Though Dorothy and I have tunneled to a new fixed point, pickleball.
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9 The CC and the discretuum, 1996-2000

9.1 Following up

So next came a lot of lectures and colloquia. D-branes were a fun story to

tell: basically just systematic application of T -duality, and from it one gets

so much, but it was all new to most people. Right after I wrote my D-brane

paper, I gave a lecture series at the ITP, transcribed by Clifford Johnson and

Shyamoli Chadhuri; a few months later I gave an expanded version of this

at TASI. For the colloquia, the most notable point was the duality diagram

(shown). This emphasized that the five string theories and M theory are

connected, and each is the limit of the moduli space of a single quantum

theory. The theories are supposed to depict dual theories close together,

separated alternately by S and T dualities. But I somehow switched the two

heterotic theories, both in the colloquia and in my book.45

So what to work on next? Looking at INSPIRE, I see that my next

three papers, besides the reviews, were about orientifolds and K3’s. This

is more geometric than I would normally like, but orientifolds were a bit of

fun that was richer than D-branes alone. And K3’s, the simplest Calabi-Yau

manifolds, had an orbifold limit that satisfied my preference for no curvature.

So Gimon and I finished his paper, which was rather more extensive than

when it began before D-branes.46 Berkooz, Leigh, Schwarz, Seiberg, Witten,

and I made a study of six-dimensional K3 solutions that I think began as a

collaboration with Edward and then grew when other groups were working

on the same problems. My last paper was single-author again about K3

puzzles, which I liked because I got to use an idea of Michael Douglas of

using D-branes as probes.

45At Fermilab, one of the audience, presumably a hunter, said that the diagram looked
like a deerskin, so I always think of it as the deerskin diagram.

46Gimon also had two nice papers on this subject with Clifford Johnson. He went on
to postdocs at Caltech, Princeton, and Berkeley, writing quite a few nice papers. He now
works on energy policy, sustainability, and philanthropy.
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M - theory
SO(32) heterotic

E   xE    heterotic8 8

Type IIA

Type IIB
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d = 11

Figure 1: The duality diagram, with SO(32) and E8×E8 accidentally trans-
posed. Correctly drawn, the edges alternate between S-dualities and T-
dualities.

Strings 96 was held at Santa Barbara. Strominger had said to me a

year earlier, “We should run Strings next year,” by which he meant “Joe,

you should run Strings next year.” My light teaching load made it hard

to object, though I have never been a good organizer. But with the ITP

postdocs (Shyamoli Chaudhuri, Clifford Johnson, and Katrin Becker) and

especially the excellent ITP staff, it went well. But I was not happy with my

own talk. I felt that I should have some ringing program for the future, after

my world-changing paper of eight months earlier, but all I had was some

subtle inconsistencies of certain orientifolds.

I recall two notable events from the meeting. The first was an email

signed Steven Hawking, with title I Have Changed My Mind. Information is

Not Lost. But this was a spoof, and soon we heard from the real Hawking,

with title Why I Have Not Changed My Mind. The second event was the

announcement of Matrix theory, by Banks, Fischler, Shenker, and Susskind
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98 (BFSS). I believe that Susskind claimed that they had discovered it at

the meeting (and I think he once again demanded a second talk).

9.2 Revolutions three and four

Almost immediately after my D-brane paper, Strominger came to me excited

that he would be able to calculate the microscopic density of states of black

holes. Having learned GR from Weinberg, I had not given this question

much thought, but Strominger, a more gravitational physicist, told me that

this was just as important as the information problem. His calculation was

just off by a constant, and he was looking for help. This was all too new to

me, and I had nothing to contribute. But he found Vafa, who had the right

tools, and they got the first precise counting of black hole states. They had

connected string theory to a new aspect of quantum gravity.

Gary Horowitz also had a long-standing interest in the black hole entropy.

He kept coming back to the question, how do we count the states for ordinary

Schwarzschild black holes, not just the highly supersymmetric Strominger-

Vafa black holes. We could not get as sharp and answer as SV, but we did

get a crude but useful result, extending an idea of Susskind. Imagine turning

down the string coupling for a black hole. The black hole gets smaller, and

eventually reaches the string length. At that point, one should match the

black hole density of states to that of the weakly coupled D-branes and

strings. This gave a correspondence principle, matching the approximate

counting for various black holes. In a follow-up we studied the transitions of

long strings to black holes.

After the successes of black hole state counting, it was natural to think

about comparing the dynamics of black holes and D-branes, with an eye

on understanding Hawking radiation and eventually information. Douglas,

Strominger, and I, working at Aspen, studied branes as dynamical probes,

interacting with clumps of D-branes and also with the dual black hole. These

agreed up to one loop, a dynamical correspondence between D-branes and

100



black holes. At two loops they disagreed. We looked for many solutions to

this, but I think in the end we must have been calculating a quantity that

was BPS only up to one loop, an issue that was confusing in the early days of

duality. In any event, the comparison of the dynamics of D-branes and black

holes became an active issue around then, and the unexpected agreements

between the two sides was one of the clues that led Maldacena to AdS/CFT.

The BFSS matrix model, presented at Strings 16, was fascinating. It

combined D-branes, eleven-dimensional supergravity, and matrix models into

what was argued to be a complete description of M theory, the mysterious

theory that lived in eleven-dimensions and was dual to string theory. There

was, at the time, a bit of confusion about what this meant. Now we would

understand it as a duality, two distinct descriptions of the same theory that

are weakly coupled in distinct regimes. But the way the theory was presented,

many of us interpreted it more as a weak-weak duality, where one obtained

the dual gravitational interaction from an explicit calculation in the matrix

theory.

Thus it was interesting to see how far the calculations of BFSS could be

taken. The BFSS construction treated the longitudinal and transverse direc-

tions differently, but they had to combine in a Lorentz invariant way. The

initial calculations of graviton scattering were all for transverse momenta.

Longitudinal processes were harder, involving instantons rather than loops

in the matrix theory. But we had a new postdoc, Philippe Pouliot, who had

some experience with instantons, and together we found that the instanton

matched the longitudinal process. This was fun for me, my first detailed

instanton calculation, and a foothold into M-theory.

Two other postdocs, the sisters Katrin and Melanie Becker, were also

extending the BFSS calculations, from one loop to two. It was the kind

of hard calculation that they enjoyed. Arkady Tseytlin and I joined in to

understand how the result should match on to the gravitational theory. We

found that again they matched.
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The BFSS theory was unusual in several ways, one of which was the need

for infinite dimensional matrices. Susskind argued that even for matrices of

finite dimensional N , there was a physical interpretation of the theory and

its dual. The longitudinal direction becomes periodic, with quantized charge

N . This was an interesting quantum system, a periodic null direction, and

with my second UCSB student, Simeon Hellerman, we unraveled some of

its subtleties. I would have liked to take these subjects further, but other

obligations intervened.

I see the second superstring revolution as five waves in succession: the first

four were Witten’s Strings talk (and the preceding Hull-Townsend paper), D-

branes, the SV black hole counting, and the BFSS matrix model. AdS/CFT

would be the fifth and crowning glory. Each built on the ones before it, and

each greatly expanded our understanding of string theory.

9.3 Ch-ch-changes

I had taken a year off from the book, but it had reached the point where I

had to finish, no matter what. And so I resolved to do nothing else until I

was done. People tell me that I was a zombie during this period, that they

knew that there was no point in trying to talk to me.

To give myself discipline, I wrote down the number of pages I wrote each

day. The list has been tacked to my office bulletin board for twenty years,

but I had not looked at it in that time, until writing this chapter. When I

did I was stunned. In nine years, I had written what is now volume 1, less

than half the present book. This is consistent with Candelas’s maxim, it is

never too late to give up on a book. And I think I would have, if I had not

told everyone that I was writing it. At least the superstring revolution did

not make things a lot worse. There was a chapter on Superstring Duality,

and one on D-branes, but after giving colloquia and lectures these were easy

to write. Then there was just a section each for black hole entropy and on

Matrix theory, just to give an idea, and a paragraph on AdS/CFT, which
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just made the deadline.

One reason for the time spent on volume 1 was that I rewrote the first

few chapters several times. I reduced the amount about BRST symmetry,

which had seemed like it might be the key principle at the beginning, and

correspondingly I added to the conformal field theory. I had the idea that

I would write a book so clear that a student would pick it up one night, be

unable to put it down, and in the morning they would know string theory. I

never got it to a point that satisfied me, but people seem to find it useful.

According to my tally, it took 83 days of writing, spread over 6 months,

to produce the 500 page Volume 2: a little over 3 days per week for 6 months.

This does not include the time spent researching the many subjects in the

book, most of which I had not worked on myself. There were also three

short breaks, to finish the papers with Becker, Becker, and Tseytlen, with

Horowitz, and with Hellerman. I had some life: the record shows a four day

family trip to the Sequoia forest and the Kern river, and I continued to coach

my sons’ hockey teams. But I am sure that I was usually a zombie.

The decision to split the book in two came during this period, when the

length became clear. The overall title, simply ‘String Theory,’ had been in

place for a long time. Initially I had used ‘A Modern Introduction to String

Theory,’ signifying the use of the Polyakov description, but I realized how

quickly such a title could look dated. Though if I were to write it today, it is

not obvious how else to start. I also started using ‘Joe’s Big Book of String’

as an informal title very early; I should have fought harder to make this the

official title.

And after the writing, there was another six months of drudgery: proof

reading, checking equations, designing exercises, making copyeditor’s correc-

tions, writing a glossary, references, and an index. And at each step I had to

go through all 800 pages. The index at least was fun. There is a right way

to do an index, which is to go over each page and see if there is anything on

the page that a reader would need to find. But finally I was done.
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I had fallen short on my easy-reading goal, and I also fell short on my

goal of no typos. I had gone through every equation, but I have to face the

fact that being detail oriented is not one of my strengths. And it is especially

hard to keep consistent notation on an 800 page book with many interlocking

subjects. So there are now more than 400 errata, at least 200 coming from

Bank’s then-student Lubos Motl.

Finally, I had planned to include a proof of the finiteness of superstring

theory. I think I had done a good job explaining why the bosonic string is

finite, modulo the tachyon. But there was no proof in the literature, and

after a few attempts I realized that it was beyond me in any reasonable time.

Indeed, this was done only recently, by Witten, in several long papers.

Earlier I mentioned Heavy Quark Theory as a missed opportunity from

working on my book. A second one was the chance to work more with

Simeon Hellermen. He was an outstanding student, with a unique approach

to life (for example, his current seminars consist of 3000 slides, shown in

stop motion). We wrote two papers getting into Matrix theory, but then I

had to go into zombie mode for a year at a key time for him. He wrote two

nice papers with Sean Carroll (then an ITP postdoc) and Mark Trodden on

domain walls. He then went on to postdocs at SLAC/Stanford and the IAS

and then a faculty position at IPMU in Tokyo, writing novel papers all the

way.47

I don’t recall any particular celebration, just a chance to get back to work

and catch up with all the latest excitement. The royalties started coming in,

which was a nice bonus but of course not the reason I wrote the book. Years

before, David Jackson had a party, and showed us the house in the Berkeley

hills that his E&M book had paid for. Some time later, in Florida, Pierre

Ramond showed me the nice telescope that he had bought with the royalties

of is quantum field theory book. Well, over time, my book paid for a BMW,

47 Hellermen was the kind of wiseacre who would tell me that going to Stanford was a
step up for him. And I was the kind of wiseacre who would respond “Yes, and I’m the
one who had to lie to get you in there.” It was a comeback worthy of Sidney Coleman.
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including taxes: the root mean square of the house and the telescope.

So freedom from the book was the first big change. At about the same

time, David Gross arrived to become the new ITP director, the second big

change. After Kohn’s five years, and Schrieffer’s five years, Jim Langer had

stayed for seven years to try to find his successor, and then Jim Hartle became

interim director, and continued the search. Their patience was rewarded

when David Gross accepted.

I had not known Gross very well before, but his reputation as a force of

nature was quickly justified. The ITP had been running in its original mode

for 19 years, and was still regarded as a model for the world. But there was

a need for renewal, and Gross came in with a bang. Right from the start

there were changes. An espresso maker was the first symbolic step, but then

there were new programs for graduate students, physicists doing research

at universities with heavy teaching loads, high school teachers, artists, and

journalists, and new or expanded areas of science such as biophysics, math-

ematical physics, and geophysics.

Most significantly, he reorganized the programs. These had been running

on the same 2×2×5 month annual schedule since the beginning. But the new

building was not being fully utilized. Also, it did not make sense that every

program should have the same length: some fields and subfields are bigger

than others. And changes in families and universities made the idealized five

month stay impractical. So programs became 50% larger, but with variable

length. It took a while to convince the staff, some had spent years with the

old system, but Gross gets his way. And we still had Boris Kayser at the

NSF to help fund the expansion (but never enough with the NSF). So there

was a new feeling of excitement.

The third big change was Strominger moving to Harvard (where his father

taught Chemistry).48 The second superstring revolution had set off a wave of

48I have to confess that at all my stops I have had the good fortune to be associated
with someone of vision — Weinberg, Strominger, Gross — because that is a quality that
I do not believe I could learn. So trading Gross for Strominger satisfied my personal
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reshuffling. Departments could tell that there was something exciting going

on, even if they were not sure what it was. And a large backlog of excellent

grad students got jobs.

9.4 AdS/CFT

While I was finishing the book, the fifth wave of the revolution struck,

AdS/CFT. But I was in the perfect place. A program, ‘Dualities in String

Theory,’ was scheduled for January to June, 1998, and Maldacena’s paper

appeared just a month before. Moreover, he was attending the program,

and spoke about his work in the second week. Neither the paper nor the

talk produced an immediate sensation. It was too new. We had internal-

ized field-field dualities, and string-string dualities, but string-field dualities?

How could the degrees of freedom match?

So, like many, I went through the Kubler-Ross stages for dualities: disbe-

lief, contradiction, testing, and acceptance. The immediate contradiction was

that string theory had many more degrees of freedom than field theory. But

the large N of the field theory made many things possible. More specifically,

it seemed that one could find non-supersymmetric string states that had no

analog in the field theory. But a closer look identified them as bound states.

And after a few such checks, duality became the simplest explanation for

what was happening. Having come to this point of view, it bothered me that

for a long time people would say that AdS/CFT is just a conjecture, rather

than a duality. Of course, dualities are almost all conjectures, but ‘duality’

indicates the further tests above. And AdS/CFT was rapidly subjected to

an enormous number of tests, without contradiction.

I got a slow start on AdS/CFT while I finished my book. But I was used

to that. I usually went into a new area slowly, while I tried to understand

what was really going on. For this reason, I have rarely had to worry about

being scooped; if someone else can solve the problem, I am not needed.

conservation law.
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With AdS/CFT there was a UV/IR connection, where the AdS radial

coordinate scaled as the energy of the CFT. What puzzled me and postdoc

Amanda Peet was that different arguments gave different powers of the string

coupling g in the AdS-distance/CFT-energy relation. What we realized was

that the different relations came from using different probes, with different

masses. If the probes were labeled by their size rather than their energy,

then the AdS/CFT relation became uniform. So it was a size-inverse size

relation, rather that size-energy.

The next exercise was to obtain the flat spacetime S-matrix as a limit

of the AdS S-matrix. This was a straightforward limiting process, though it

required a non-’tHooftian large-N limit. Coincidentally, Susskind published

the same result on the same day, though I think that his had a broader scope.

This got us talking about AdS/CFT, and he told me about a paradox

he was puzzling over. If one has a quantum scattering at the center of AdS,

the energy density at the boundary cannot change before a light-travel time.

But at that time it has to change instantaneously to a new distribution.

This seems acausal, but it is not, it is perfectly consistent with quantum

field theory. So we analyzed the bulk and boundary causality, introducing

‘precursor’ for boundary operators that represent bulk states in the interior,

a term that is in wide use now. But the idea went back to the year before, to

Banks, Douglas, Horowitz, and Martinec (BDHM) and to Balasubramanian,

Kraus, Lawrence, and Trivedi (BKLT).49

9.5 Strassler

One of the great experiences I had at the ITP was having a visitor come into

my office, explain to me the solution to an important problem, and ask me

to help them work it out.

49The initial paper with Susskind was withdrawn, and a longer paper that included
Susskind’s student Nicolaos Toumbas among the authors was submitted. There was noth-
ing wrong with the original draft, Susskind just wanted to submit an expanded explanation.
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But first some backstory. Kallosh and Linde had found new solutions to

supergravity. These had negative energy singularities and repelled massive

objects, so KL named them ‘repulsons.’ Postdocs Peet and Johnson and

I, with the aid of AdS/CFT, deduced that the singularity should expand

into a nonsingular shell of branes. This was a satisfying result, and allowed

me to tell relativists that the reason they could not resolve the repulson

problem was because they didn’t have enough branes. We named this shell

an enhaćon, for its enhanced gauge symmetry.

So Matt Strassler came into my office with a singularity that he needed

resolved. He was interested in four-dimensional AdS duals to confining the-

ories. These could readily be obtained by giving masses to some or all of

the CFT scalars, leading to N = 0, 1, or 2 SUSY; he called these 0∗, 1∗,

and 2∗ SUSY QCD. The problem was that these seemed to lead to singular

solutions, whose properties could not be calculated. Strassler thought that

the same ideas that had worked for the repulson might work here as well.

In fact, he recognized the key idea even before he spoke with me, the

D3-branes blew up into D5-branes by a beautiful mechanism that had been

discovered by Rob Myers. So Strassler had a rather complete picture of both

sides of the duality even when he first came into my office. For example,

he knew that there would have to be NS-5 branes, and bound states, as

well. My main contribution was to identify a small parameter, gN/n2, where

n was the number of probe branes, that allowed calculations. In the end

it was a nice picture, with a lot of physics in it. It was also a very long

paper, which has never been published. Strassler is a perfectionist, and we

got stuck on one thing, getting the U(1) gauge factor straight. Impressively,

in the same year he found a completely different solution to a very similar

problem. With Klebanov, he found a solution that was purely geometric,

without brane sources.

I was pleased to have several more opportunities to work with Strassler:

the combination of our different points of view was productive. One project
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began from my memory from SLAC, of Stan Brodsky’s work on hard scatter-

ing, where all the constituents of a hadron scatter together: it is suppressed,

but still power law in field theory. Could AdS/CFT reproduce this? Nor-

mally one would expect soft scattering in the string description, but the

warping of space converted this to the power law of the field theory. Because

our first paper had run so long, I insisted that we publish in Phys. Lett.,

with its 4-page limit, but it still took a while.

We then extended this to deep inelastic scattering, scattering a hard probe

against a hadron. This was the basic process by which the internal properties

of hadrons were seen. Of course, strings had a very different internal struc-

ture, and correspondingly the scattering was very different. Between weak

and strong gauge coupling there was a transition from the operator product

dominated by parton operators to one dominated by hadrons. I had heard

about these things in the early days of QCD. Now we could have our own toy

with AdS/CFT, and understand what was the same and what was different.

Our last project, a few years later, was understanding the Regge behavior,

sα(t) at large s and fixed t. In flat-space string scattering, the Regge trajectory

α(t) is linear in t. Many years earlier, Charles Thorn had told me that in

QCD, the trajectory is linear in the timelike region of t negative, but then

bends over toward a constant at spacelike t. These two regions were referred

to as the soft and hard (or BFKL) pomerons. So my motivation was to

understand this in AdS/CFT. The other collaborators, now including Rich

Brower and Chung-I Tan, may have had other motivations. And it worked

nicely, thanks to the warping. The soft pomeron came from the IR region

of AdS, and the hard pomeron came from the UV region. So once again

AdS/CFT gave a nice way to think about QCD physics.

I also had a nice but little-known follow-up with Susskind. He wanted to

understand how the string dual of a gauge theory could have local currents,

which are impossible in normal string theories. This discussion came up

when we were both at the 60th birthday celebration for John Schwarz, and
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we solved it there. As with many aspects of nonconformal field theory duals,

it was the warping of the bulk that was responsible. But I most remember a

bit of grandstanding by Susskind, who asked Mimi Schwarz (John’s mother,

and not a scientist), to adjudicate an issue in the discussion. He was making

the point (convincingly) that the issue was so clear that he could explain it

to Mimi. So we added her name to the acknowledgements.

9.6 Bousso

In 1998, strong evidence was found for a cosmological constant, surprising

almost every theorist. One might have expected string theorists to drop

everything and think about this, but there was little reaction. Certainly a

large part of this was that AdS/CFT had just been found, transforming fun-

damental theory. We needed to understand the theory better before applying

it.

My own reaction was different, from my interactions with Weinberg. I

had half-expected the CC, and had feared it. Indeed, when the evidence

started to come in, I told our postdoc, Sean Carroll, that if the CC turned

out to be there, he could have my office. It would mean that the anthropic

principle was here, and I would have to give up physics. I make a lot of

comments like this that I do not remember — unfortunate, otherwise this

memoir would be funnier. But Sean remembered, and as he introduced me

at a meeting two years later, he asked when he was going to get the office.

Others were also unsurprised, including Linde, Kallosh, Susskind, Banks,

Bousso, Silverstein, and Kachru. Notably, these were all on the West Coast.

It was a new version of the East Coast/West Coast divide. Those on the

East expected an elegant theory, with vanishing cosmological constant and

perhaps even a unique ground state; perhaps some small effect would explain

away the CC. Those on the West Coast were not so caught up in these myths,

though I would prefer if they were true.50

50David Gross, having moved from East to West just at this time, was in an odd state:
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I thought it might be a good idea to see whether string theory had

the right microphysics to allow Weinberg’s solution, but I put it off. Then

Raphael Bousso, a former student of Hawking, now a postdoc at Stanford,

came to town. He was interested in the same question, and goaded me to

think about it with him. First, it was clear that the old idea of Hawking, Duff-

van Nieuwenhuizen, and Aurilia-Nicolai-Townsend of a continuously variable

four-form potential could not work in string theory. In string theory, the

forms are the charges of space-filling D-branes and so are quantized. The

old ideas of Abbott and Brown-Teitelboim used discrete charges, but they

needed implausibly small quanta and large charges, 1060 with SUSY and 10120

without, to get a small enough CC. And they did not have a mechanism to

get matter.

Bousso and I realized that in string theory there were typically multiple

fluxes, which could be incommensurate depending on the topologies. In this

way, much smaller individual charges could combine in many ways. With

100 fluxes, a typical number for a Calabi-Yau compactification, charges of

order 10 would give us 10100 states. This produced a spectrum much more

disordered than the single-flux case, which we named a ‘discretuum’ to con-

trast with ‘continuum.’ With large compact dimensions, as few as four fluxes

might work in large-dimension models.

Most of this came from one or two conversations. But when Bousso came

back a few months later, he had a complete draft. He had added an important

part of the story, the cosmology that allowed the theory to explore all these

states. It was just Linde’s eternal chaotic inflation: given any de Sitter state,

all the rest would eventually be produced by expansion and tunneling. I had

always assumed that such a thing would not be part of string theory, but in

fact it arose quite naturally.

Of course, at the time we wrote our paper, no de Sitter solutions were

known, we were just working with a simplified model. But this was a natural

he knew the truth, but could only speak it when pretending to be someone else.
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consequence of string theorists starting with the simplest SUSY solutions,

which have negative CC, and working toward the more generic ones. Now

that the second superstring revolution had given us a more complete picture

of the theory, young West Coast theorists would soon fill in this gap. For a

while, there was lore that string theory only allowed negative CC, but not

on the West Coast.

Bousso’s draft had one more important point. As discussed earlier, many

ideas for a vanishing CC led to a spacetime without matter. But for his (and

Linde’s) picture this was no problem. Tunneling could readily produce ex-

cited states of the inflationary potential, which would then decay to ordinary

matter in the usual way. So, with a few details soon to be filled in, string

theory produced the small nonzero cosmological constant seen in nature.

It was great being at the ITP. In quick succession, two outstanding young

people brought me important ideas and asked me to work with them. And

each was perfectly complementary: Strassler’s particle physics and field the-

ory, Bousso’s relativity and cosmology, and my string theory. Indeed, it was

an embarrassment of riches. Bousso came in with his draft a few weeks after

Strassler came in with his idea. I knew that I could not work on two such

intense projects at the same time, so Bousso had to wait for what turned out

to be a couple of months.

Even worse for Bousso was my aversion to any mention of the anthropic

principle. By the end it was down to one mention in the introduction, and one

in the final paragraph. Even to get me to sign for this much was difficult, but

he had a trump card. We had just offered him a senior postdoctoral position

at ITP, and he said that he would accept only if I agreed to be on the paper.

If not for my obstruction, the paper would have looked much more like the

later and more open treatment by Susskind.

It was not that Bousso and I disagreed in any way about the physics.

Just the opposite: I thought it was so compelling that even experimentalists

would realize that they were measuring random numbers, and be discouraged.
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I did not want to be the cause of that. But of course I overestimated both

the credence that experimentalists gave to theorists, and the ability to make

progress even with such obstacles. As Bousso and Susskind both knew, it is

wrong to suppress what you know. Georgi again: “Do not hide your light

under a bushel basket.” As far as I know, this is the first paper written about

string theory and the anthropic principle, a real illustration of the power of

anthropic denial.

10 After the end of physics, 2001-2007

10.1 Bena, Grana, Frey

Having told Carroll that I would give up physics if a cosmological constant

were found, how could I go on? Well, I had just taken on three new grad

students after finishing my book, and I had to take care of them. And, we

still needed to see if all those de Sitter vacua were there. And there were all

these cool things about AdS/CFT to look at. So life went on, and Carroll

did not get the office.

Iosif Bena, originally from Romania, was perhaps my most independent

student. I think he is the only one I did not write a paper with while they

were a student, although we did work together later. I gave him only one

project, to work out the precursor (§9.4) for spaces that were less symmetric

than AdS. We might call this “non-AdS/non-CFT dualities,” or today simply

“gauge-gravity duals.” I wanted to verify that conformal symmetry was

not essential, so he did the general Dp case, without benefit of conformal

symmetry. I think that my only advice, beyond the idea, was that he speak

more slowly and check his work. He then took an interest in my model

with Strassler, extending our D3 → D5 polarization to many other brane

systems, each with their own peculiarities. He went on to postdocs at USC

and Princeton, and then a faculty position at Saclay, where he is an expert

in supergravity solutions and their many applications.
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When Mariana Grana, from Argentina, was first reading string theory

with me, she seemed to have a particular interest in how the Calabi-Yau

solutions of Candelas, Horowitz, Strominger, and Witten were fixed by the

N = 1 SUSY conditions. I had always wanted to do such a calculation,

ever since Strominger had told me how much money he had made from it.

So rederiving my solution with Strassler in this way was a great exercise,

which we then extended to many other examples.51 She then, entirely on

her own, went on to find the effective low energy supersymmetry breaking

for branes in fluxes, an important and technically difficult exercise. So she

became an expert in flux compactifications in string theory, writing one of

the classic reviews.52 After Santa Barbara, Ecole Polytechnic, and Ecole

Normale Superieure, she ended up at Saclay, just as Bena had, where their

strengths are nicely complementary.

Andrew Frey, from Wake Forest, also started out with a project from

the work with Strassler. The N = 1∗ theory had an infinite number of

supersymmetric vacua labeled by D5 and NS5 quantum numbers. Different

vacua could be connected by domain walls. Strassler and I had looked at

some examples, but Frey found the general case. He got the surprising result

that not every pair of solutions was connected directly; in some cases, one had

to go through multiple steps. Another, more senior, group at the same time

missed this. Beyond this, he was active and broad at UCSB. He and I wrote

a paper on N = 3 warped compactifications,53 which I was interested in

only as an oddity, SUSY’s usually coming in powers of 2. He also had work

on N = 1 SUSY, on BPS states, dilaton stabilization, a careful study of

Lorentz breaking in warped space (my suggestion), instabilities of the KKLT

model, and new warped solutions. Several of these involved other students,

51Just a few years ago, at my 60th birthday, Grana told me that when I first suggested
this, she thought it sounded boring, but it developed into her life’s work.

52When I was writing a report for the Ecole Polytechnic, I noted that her review was
the most highly cited paper written there, over a period of years.

53Warped compactifications, string realizations of the Randall-Sundrum idea, were de-
veloped by Strominger and by K. Becker and M. Becker.

114



including Grana, Matthew Lippert, Brook Williams, Anupam Mazumdar,

and a postdoc Alex Buchel. After postdocs at Caltech and McGill he is now

on the faculty at Winnipeg, and has moved more toward particle astrophysics.

10.2 Silverstein and Kachru

One of the great things about the ITP is getting to work with remarkable

young people at key stages in their careers. The period after the second

superstring revolution was particularly fruitful. I have already written about

Strassler and Bousso, and now Eva Silverstein and Shamit Kachru arrived

in early 2001 to run an ITP program, along with local Steve Giddings. The

program was nominally about M-theory. For many of us, the focus was to

move on from the highly supersymmetric situations used to understand the

theory to less symmetric and more physical ones.

In particle physics, Randall and Sundrum had shown that in five-dimensional

theories, warped compactifications gave a new mechanism to produce a large

gauge hierarchy in four dimensions. This had led to widespread interest in

the phenomenology of such higher dimensional theories. Thus, it was very

natural to ask whether these models might be more closely connected to

string theory. Herman Verlinde had already pointed out that T-duals of

N = 4 string theories naturally led to warped compactifications. Giddings,

Kachru and I showed that this could be extended to N = 1. In particular, it

automatically accounted for the stabilization of the hierarchy: it arose from

the quantization of the fluxes. Many of the fields could be stabilized, but not

all. To stabilize the Kähler moduli would require nonperturbative effects.

At this point, there was still no example of a de Sitter vacuum of string

theory, much less the enormous number that would be needed to explain the

cosmological constant via the discretuum. There was even a widely quoted

no-go theorem by Maldacena and Nunez, and earlier by de Wit, Smit, and

Hari Dass. If this were true generally, it would mean that either the cosmo-

logical constant would have to be wrong, or string theory would. This result
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was widely quoted. But the West Coast group working on the problem knew

that it was nonsense. The no-go theorem held only for classical backgrounds.

One might as well claim that atoms don’t exist, because they are classically

unstable. There were other exceptions as well, such as noncritical dimensions

as in work of Myers.33

So the group of us discussed this problem intensely. Already at Strings

2001 in Mumbai, which had been held in January, Silverstein had delineated

some of the key features needed. In particular, there was a universal instabil-

ity to be dealt with, from the radius of the compact space. Taking account

of scaling from ten dimensions to four, all interactions went to zero as the

radius went to infinity. In order to obtain a de Sitter solution, one needed

at least three terms to give a potential with a stable positive minimum. At

the ITP Silverstein completed a model with a stablized radius, taking as her

three ingredients orientifolds, fluxes, and a noncritical dimensionality.

It took a couple of years more to stabilize all the moduli, but Kachru,

with a series of collaborators, found completely stabilized de Sitter solutions,

using branes, fluxes, and D-brane instantons. This started with his work

with Giddings and me, then with Pearson and H. Verlinde, and ended up

with Kallosh, Linde, and Trivedi (KKLT). And so with this, people began to

take seriously the possibility of a large set of de Sitter solutions, aptly named

the string landscape by Susskind.54

At the ITP program, I also worked with Silverstein and her student Al-

lan Adams on a different project. Ashoke Sen had shown that open string

tachyons represented the decays of unstable D-branes, and he was able to

describe the decay using open string field theory. Closed string tachyons

would be much more complicated: rather than decays of branes in a fixed

spacetime, they would represent decays of spacetime itself. Also, the closed

string field theory was much less tractable. But we were able to sort many

54For many years, the size of the landscape has been crudely estimated as 10500, based
on large Calabi-Yau’s. But Taylor and Wang have recently shown that there is an F-theory
geometry of dimension 10272,000.
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things out.

Tachyons like that of the bosonic string, which fill space, presumably

have no stable final state. But we realized that there were closed string

tachyons that were localized just like the open string ones, in spacetimes

that are flat except for conical singularities. And so for these we could make

sense through a combination of linear sigma models at short distance and

the spacetime field equations at large distance. The result was rather simple:

the singularities just spread out in an expanding shell.

10.3 Pauli, Heisenberg, Dirac

Around this time, the centennials for four of the founders of quantum me-

chanics were celebrated — Fermi, Pauli, Heisenberg, and Dirac. I missed

Fermi’s, but spoke at the other three. It was fun to review some of the his-

tory of each of them, and to notice how modern some of their ideas were. I

think my talk for Pauli was not so interesting. My theme in Zurich was just

to look at all the parts of the standard model that Fermi was responsible for,

with a rather silly graphic of miniature Pauli’s labeling each one. But it was

interesting hearing some of the other speakers, notably the historian Norbert

Straumann. It was from him that I learned of Pauli’s unpublished interest

in the cosmological constant — had I known earlier, the story leading from

Pauli to the multiverse would have made a more interesting talk.

The other two talks had a bit more heft. With Heisenberg, the theme

was unification, from his Worldformula to our M-theory. Heisenberg actually

had presented his ideas at Caltech when I was a student there. It seemed

very crude at the time, just fermions with a nonlinear interaction. He also

wanted some modification of the uncertainty principle so as to produce a

minimum length. But in retrospect, he was only a few steps away from Matrix

theory: just introduce a matrix structure to get nonlinear commutators, and

supersymmetrize. Another foresighted idea was the S-matrix. This leads to
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another connection, Heisenberg → Chew → Veneziano → strings.55

The lecture for Dirac was in Tallahassee, Florida, where Dirac retired,

and where I got to meet his daughter, Monica. I started with a review of

Dirac’s remarkable career even after quantum mechanics, and quoted his very

modern point of view,

One must be prepared to follow up the consequences of theory,

and feel that one just has to accept the consequences no matter

where they lead.

For him it led to antimatter, and for me it led to the string landscape and

the multiverse. It also led Dirac to magnetic monopoles. The main part

of my talk was about this, proposing two principles: (1) In any theoretical

framework that requires charge to be quantized, there will exist magnetic

monopoles, and (2) In any fully unified theory, for every gauge field there

will exist electric and magnetic sources with the minimum relative Dirac

quantum. I illustrated this with five examples: grand unification, Kaluza-

Klein theory, lattice gauge theory, the Kalb-Ramond theory, and D-branes.

So I argued that magnetic monopoles are our most certain prediction about

physics beyond the standard model, though unfortunately the scale is not

predicted. Notably, the nonobservation of magnetic monopoles led Dirac to

recant on his quote, but he should have been more patient: we have only

explored a tiny range of scales.56

55At my talk in Munich, Helmut Rechenberg, curator of the Werner Heisenberg archive,
informed me that this chain was even more direct than I had guessed. As early as 1954,
Heisenberg wrote in a letter that in Urbana he had met a particularly nice younger physicist
with the name Chew, and they continued to correspond.

56One of the smaller detectors at the LHC is MoEDAL, searching for magnetic
monopoles. When it was proposed I was asked to write in support, based on this lec-
ture, and I was happy to oblige.
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10.4 More odds and ends

Here are a few papers from this period that I do not want to forget, but are

not worth a full section.

10.4.1 Crunching with Horowitz

The ekpyrotic idea, a universe bouncing at a brane, arose at around this

time. One of the arguments for a consistent bounce was the example of

the resolution of singularities in string theory. Liu, Moore, and Seiberg had

studied the toy model of a null orbifold, and found that the singularity in

amplitudes was resolved. But this ignored the back-reaction. Of course, the

well-understood string singularities were timelike, and the ekpyrotic singu-

larity was spacelike, so the issues with backreaction would be more severe.

Horowitz and I studied the backreaction both using general relativity and

string theory, and concluded that a single particle caused the spacetime to

collapse to a strong curvature singularity, even in regions arbitrarily far from

the particle. This was not surprising: intuitively, a bounce would require

infinite fine-tuning. This did not rule out all possibilities for a bounce, but

emphasized the contrived nature of the idea.

10.4.2 Emergent gravity?

I tend to be skeptical, both with my own work and that of others. I guess,

having thought hard about various problems, I am always wary about new

claims about them. I am not always right — I have mentioned Rubakov

as one who surprised me twice — but I should have an item on my CV

for ‘Papers prevented.’ Certainly the Weinberg-Witten theorem, restricting

emergent gravity, provided one of those potential alarm bells. Of course,

AdS/CFT had shown that the theorem had an exception, but that required

a whole extra dimension.

A model by Zhang and Hu, which appeared to get a 3+1 dimensional

graviton from the boundary of a 4+1 dimensional quantum Hall system, had
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to be understood. So with a grad student, Henriette Elvang, we studied this

model to see how it might have evaded the theorem. Their idea was to take

parallel copies of the quantum hall system, e.g. in the 12 and 34 directions,

and sum to give an SU(2) symmetry. Then turning on a magnetic field, there

would be a potential that would lead to massless degrees of freedom on the

3+1 dimensional boundary. Moreover, one could get any massless spin, in

particular two. Note that this is not holographic but anti-holographic: the

field theory lived on the higher dimensional space, and the would-be graviton

would live on the boundary.

To analyze this, we first took a large-N limit so that the massless degrees

of freedom lived in flat space. We then found that the spectrum was not that

of a 3+1 dimensional space, but a cone of 1+1 dimensional theories. For

example, the low energy density of states was larger. So the system might

be interesting, but it was not Lorentz invariant, and not gravity.

Henriette went on to work with Gary Horowitz and has been very suc-

cessful in gravity and field theory. She is now a professor at Michigan. At the

time I had too many students to take on, and I felt that Gary was a better fit

for Henriette. I tend to give my students rather ill-defined problems, trusting

that there is some gem underneath; this often works out, but a student who

likes to calculate would be better off with Gary.57

10.4.3 Integrability

Our postdoc Radu Roiban, my former student Bena, and I were discussing

whether we might be able to get an analytic understanding of confinement,

at least at large N and perhaps with SUSY. Our idea was to use AdS/CFT

to rewrite the boundary 4-d field theory in terms of the 2-d string world-sheet

(the string action would be complicated, because the conformal invariance

57Two other students whom I had to pass up earlier with Don Marolf, who worked with
Bryce Dewitt and is now my own colleague and collaborator, and Scott Thomas, who
worked with Willy Fischler and is now a leader in particle phenomenology. But I think
each of these did better than they would have with me as their advisor.
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was broken). We would then hope to use two-dimensional methods to solve

the theory.

As a warmup, we studied the conformal AdS5×S5 theory. We knew that

there was a method due to Luscher and Pohlmeyer to find infinite symmetry

algebras for a wide class of nonlinear sigma models. Indeed, as we were

working on this we learned that Mandal, Suryanarayana and Wadia had

recently found this for the bosonic AdS5 × S5 string. So we generalized this

to the superstring, and this also worked.

Having an infinite dimensional symmetry seemed like it would enable us to

do many new calculations. But we quickly learned that this kind of algebra,

the Yangian, was different from the usual algebras of physics, and we still had

a lot of work ahead. We also learned that this same method, integrability,

had been applied a few months earlier by Minahan and Zarembo on the CFT

side of the theory, where we were on the AdS side. So integrability became an

active area, and Roiban ended up as one of the 26 joint authors of a massive

review.

My own further attempts were not so successful. It was not my way to

learn the necessary technical machinery for this subject. I figured, ‘this is

a symmetry, I know all about symmetries,’ and set out to figure this out,

with the help of my latest student Nelia Mann. We both worked quite hard,

and were able to do a few interesting calculations, but in the end it was

not a good approach. One of my limitations is that I am best working on

problems where the physics and the math are close together. When one has

to start dealing with objects whose physical content is not evident, I lose my

way. But Nelia went on to write several nice papers with other students and

postdocs, worked with Jeff Harvey on pomeron phenomenology at Chicago,

and is now a junior faculty member at Union College.
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10.5 Gross, Kavli, Nobel, and the Future

This section is a bit outside the main flow here. But I had to explain how

ITP programs suddenly became KITP programs, and one thing led to an-

other. The original ITP had grown more than 50% under Gross, taking full

advantage of the new building. Over time he brought in three new perma-

nent members (Lars Bildsten, replacing Doug Eardley, Leon Balents replacing

Matthew Fisher, and Boris Shraiman representing a new effort in Biophysics.

This led to an increased presence in astrophysics and biophysics, and be-

fore long even the new building was too small. And so Gross went looking for

a donor, and came back with Fred Kavli. I do not know how they connected,

or the details of their negotiations: Gross keeps his cards close to his chest.

But in the end, we had the funds to build a nice extension of the building,

ending up with perhaps 2.5 times the size of the original ITP before 1993.

Moreover, it made the building more connected and added many new public

and working areas. So in 2002, the ITP became the KITP. At first it seemed

strange, but after a few years ITP seemed naked without the K.

We had hoped to raise enough to enlarge the building and begin an en-

dowment, but construction prices were rising fast. We did expect though

that this was a beginning of a relationship with Kavli, that would lead to

an endowment in the future. So it was a bit of a shock when, a year later,

Kavli gave an equal donation to establish a Kavli institute in astrophysics at

Stanford: we were being franchised! Over time there were 20 Kavli institutes.

We did get some additional Kavli support, but still need an endowment to

protect our activities from the indefiniteness of NSF support.

But we did have the new building, which was a beautiful and stimulating

place to work. To celebrate, in October 2004 we had a three day conference

in Gross’s grand style, bringing together the leaders of all areas of physics to

discuss the future. And delightfully, two days before the conference Gross,

Wilczek, and Politzer received the Nobel Prize. So the meeting became a

celebration, for 25 years of the (K)ITP, for the new building, and for David’s
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long-awaited Prize. Wilczek also attended, expressing his satisfaction at

winning his first Nobel Prize.

10.6 Cosmic strings

One of the discoverers of the Higgs mechanism, Tom Kibble also pioneered

the idea of topological defects in cosmology. For example, solitonic strings

could form at a phase transition and then expand with the expansion of the

universe, growing to a cosmic length. Early in the first superstring revolution,

Witten noted that fundamental strings might do the same. If so, they would

be a spectacular observational signature.

But Witten noted that there were several obstacles to this. Fundamental

strings generally had tensions close to the Planck scale, which would lead to

excessive fluctuations in the CMB.58 Also, there were potential instabilities.

Heterotic strings carry axion charge, so the strings will actually bound axion

domain walls, producing a confining potential that prevents their growth.

Type I strings were unstable against rapidly breaking up into small open

strings. And type II strings were confined by NS5-brane instantons.

But at a KITP program on string cosmology in 2003, Silverstein was

giving a talk about superstring vacua, and made reference to F strings and

D strings (fundamental and Dirichlet). For cosmologist Ed Copeland, the

idea of having two kinds of cosmic string, and their bound states, was a

novel one, and he became excited about the possibilities. I was aware of the

problems with this idea, but it was a good time to revisit it, with the first

fully compactified theory in KKLT, and its cosmology in KKLMMT. And

indeed, the problems potentially went away.

First, KKLT was a warped compactification, reducing the scale of the

string tension: it could easily fit with the constraints. Further, any of the

58For heterotic strings there was a simple relation between the string tension, the gauge
coupling, and the Planck scale, µ = g2/16π2G. This was too large by several orders of
magnitude.
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instabilities might be suppressed due to separation in the compact dimen-

sions, or warping. And Tye and collaborators had shown that cosmic strings

arose naturally in KKLMMT-like brane inflation models. So Copeland and

I, together with brane maven Rob Myers, worked out the phenomenology of

these potential strings.

Like Copeland, I became quite excited by this: a potential direct signature

of physics near the Planck scale. And so this became a large part of my

research for the next few years. The first major question was, if cosmic

strings were found, could we distinguish fundamental strings from field theory

solitons? Indeed we could. As we noted in our discussion of Matzner in §6.5,

when two strings cross each other, if they are solitons then their ends always

reconnect, a classical process. But for two fundamental strings, the crossing

is a quantum process: the strings may reconnect, or pass through. I had

worked this out as an exercise many years before for the bosonic string,

in part with Jin Dai. Now, with visiting KITP grad fellows Nick Jones and

Mark Jackson, I extended this to supersymmetric F- and D-strings, and their

bound states. So if cosmic strings were ever found, we could indeed make

direct measurements of properties at the string scale.

But, following this up, the job would not be quite so simple. What we

would measure would likely be some correlators on string networks. These

had been studied numerically, and different groups had gotten radically dif-

ferent results. One key quantity was the typical radius of the string loops that

broke off from the main network; these were the main source of the gravita-

tional waves emitted from the network. Remarkably, estimates ranged from

the horizon scale (the only obvious scale in the problem) down to the Planck

scale, for what was a well-posed classical problem. So with my latest student

Jorge Rocha, and in part with a visiting postdoc Florian Dubath, we made

a scaling model which explained why there were actually two scales: there

was an infrared divergence. We tried to get more detail out of this, but im-

proved numerical methods from the Tufts group eventually gave the sharpest
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picture, and if cosmic strings are found these simulations will be essential.

I think that Jorge was more interested in working on black holes than on

cosmic strings. Fortunately I found him a good black hole problem before he

left. This was to study the dual of an N = 4 theory coupled to another field

that could carry away energy. In this way, one could study decaying black

holes even in AdS. I think this was the first study of such a hybrid system.

(Jorge is back in Spain, and still happily working on black holes).

At this point, it seemed that we had to wait for the experimentalists.

Unfortunately, so far improved measurements from WMAP and then from

Planck have only lowered the upper bound on cosmic strings. But it was

good to have an opportunity to think about observation.59

Thinking about cosmic strings led to a surprising observation: open het-

erotic strings could actually exist, in the SO(32) theory but not in the E8×E8.

This came from thinking about a general classification of strings. Originally,

cosmic strings were referred to as ‘global’ or ‘local.’ Global strings had fluxes

running in their cores, and local strings did not. But from thinking about all

the examples that arose in string theory, I realized that there were two more,

‘Aharonov-Bohm’ (AB) and quasi-AB. Further, the right way to distinguish

these was not by what was in their cores (which could, after all, depend

on duality), but by their properties at long distance, which controlled their

stability. Thus, global strings had a long-range axion field, and so were con-

fined. Local strings could break into short open strings. AB strings were

stable due to discrete symmetries, unless the same charges were carried by

massless fields (quasi-AB), in which case they could tunnel and then expand

in the perpendicular direction.

Applying this classification to the heterotic string, one finds that for the

SO(32) string, it can be any of local, AB, or quasi-AB, depending on the

compactification. The E8 × E8 string had to be global. The puzzle of an

59A couple of times, the observations of apparently paired galaxies, produced by the
gravitational field of a cosmic string, have led to some excitement. But they have so far
always turned out to be coincidences.
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open heterotic string is that the degrees of freedom moving on the two sides

are very different, and had no consistent boundary condition. Indeed, what

happens is that when a worldsheet field on the SO(32) string reaches the

boundary, it does not reflect but rather leaves the string and becomes a

spacetime degree of freedom. This odd picture could be described explicitly

in open string field theory. Unfortunately, I have never found anything useful

to do with it. David Morrison did notice that I had posted it, coincidentally,

on the tenth anniversary of the D-brane paper.60

10.7 Down time

The last few years in this period were a bit of a down time for me. Certainly

I had plenty of fun and joy, and some good physics. But also I had extended

periods of anxiety. Sometimes these just plagued the early hours of sleep,

but other times they took over the day, and my work. One that I remember

clearly was my induction into the National Academy of Sciences in 2005.

This should have been a time of great celebration, and there was some, but

throughout I was filled with an ill-defined anxiety.

Part of this was still a hangover from finding the anthropic principle

in string theory. I feared that most of the routes to the discovery of the

fundamental theory were blocked by it. Also, this was the time of the well-

publicized anti-string books. I got caught up in this because Rosalind Reid,

a KITP visiting journalist who was editor at American Scientist, asked me to

review the book by Smolin. I felt that it was a good thing to do: many people,

including some of our colleagues from other fields, were taking it uncritically.

I tried to use it as an opportunity to present the positive argument for string

theory, but I do not think that I was very effective. As Mark Twain said,

60Morrison came to UCSB from Duke about ten years ago, with a joint position in math
and physics. He plays a unique role in tying these subjects together. He and I have an
ongoing friendly dispute about whether I know much math (I claim not). I think that the
difference goes back to Susskind’s distinction between the mathematics of the equations
and the mathematics of the solutions, where I care only about the former.
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“A lie can travel halfway around the world while the truth is putting on its

shoes.” Smolin tried to avoid outright lies, but my reaction to reading the

book, which I wish I had stated more directly, was “This is not the way a

scientist writes.” Facts were twisted to create the impression desired, rather

than being a way to reach truth.

Beyond this, I think that my anxiety was a long-standing aspect of my

biology, going back even to my childhood shyness. I think that many of

the decisions I have made over time have been driven more by anxiety than

by positive emotions. Matthew Fisher, who had some experience here, was

a strong believer in the value and effectiveness of psychiatric drugs. And

indeed, after some experimentation, a small regular dose of Lexapro has kept

me balanced. So one can say that the anthropic principle drove me to drugs.

But one must follow science where it leads.

Over the years, I have noted one visiting speaker prepare with a dose of

Adderall, and one with a dose of Valium (and offer one to me also). A doctor

has told me that half her colleagues are on Lexapro, it is an occupational

hazard for high-functioning people. And, following the lead of Paul Erdos,

who is said to have written all of his 1500(!) papers under the influence of

stimulants, I tried working a few times with Adderall. I had a couple of very

effective days, but overall did not like its effect.

11 Before the firewall, 2007-2011

11.1 Quantum gravity: wormholes, black hole models,
bubbles of nothing, loops

Having spent most of the last few years on cosmic strings, AdS/QCD, inte-

grability, and other odds and ends, I wanted to focus more on the fundamen-

tal question, ‘what is quantum gravity.’ Even with the anthropic principle

looming, the problem of finding the theory of quantum gravity remained one

that needed to be solved. Solving this might lead to any number of wonders.
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Moreover, it was the kind of problem that might be solved by theoretical rea-

soning alone. And, we had this remarkable tool, AdS/CFT, or more generally

gauge/gravity duality, which we had certainly not applied to its fullest.

The first order of business was sorting out the old confusion about the

Euclidean wormholes of Coleman: do they appear in the path integral for

quantum gravity? This came up when Nima Arkani-Hamed was visiting,

and he was interested in the possibility that such wormholes might allow

us to study other parts of the string landscape. With grad student Jacopo

Orgera, we first found Euclidean wormholes in spacetimes with known field

theory duals; this was really the hard part. Then, extending an argument

by Rey, wormholes would violate cluster decomposition in a way that was

inconsistent with the dual field theory. (Several people suggested that this

might be corrected by adding nonlocal operators to the dual field theory, but

that would only produce nonlocality at the boundary). So our conclusion

was that these solutions did not appear in the path integral for the evolution

in quantum gravity. This was supported by the observation that all the

solutions we could find had actions that were less than the BPS action.61

According to INSPIRE, it was at this point more than ten years since

I had written a paper on black holes and the information problem. Like

many of those who had worked on this, I regarded it as essentially solved by

gauge/gravity duality, in the BFSS matrix form and in the AdS/CFT form.

Of the three options — information loss, information emission, and remnants

— only emission was consistent with duality to gauge theory. There remained

the question, how does the information escape? But this seemed to fit nicely

with the principle of black hole complementarity, enunciated by Susskind,

Preskill, and ’t Hooft: the information could be both inside the black hole

and outside, as long as no single observer could see both copies. And various

61At an event where we were both a bit inebriated, Andy Strominger told me that he
thought this paper was a negative contribution to physics. I found this hilarious, and
remind him of it at every opportunity, but it reflected Andy’s very positive point of view,
that every wormhole must be good for something.
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thought experiments supported this.

Still, our understanding seemed to be incomplete. For example, we only

had a nonperturbative construction of the CFT side of the duality. We could

in principle calculate the black hole S-matrix by making a duality to the

CFT and solving numerically. But in the bulk regime, where the black hole

radius was large compared to the Planck length, it seemed that there should

be a nonperturbative construction in the bulk. So even though I was not

actively working on the problem, I was often thinking about it. The 2001

paper by Maldacena, recasting the problem in terms of the long-range two

point function, struck me as a particularly clear way to formulate it.

Thus, a nice paper by Festuccia and Liu (FL) caught my eye. They

wanted to make a toy model of the CFT which captured what seemed to be

the main feature of the black hole as discussed by Maldacena. That is, at

infinite N the long-term behavior of the black hole two-point function falls

off exponentially forever, but at finite N there is a minimum, past which the

two-point function is disordered. FL argued that this behavior could be seen

even in the weakly coupled limit on the CFT side.

FL’s argument was based on truncation to a simple subset of graphs.

With postdoc Norihiro Iizuka, we wanted to find a solvable model that ex-

hibited this behavior. After some experimentation, we found a matrix model

that worked. In particular, we showed that at N →∞, there was a range of

parameters for which the asymptotic two-point function fell exponentially, as

with a black hole, while the finite-N correlators had to exhibit exponential

decay and then disorder.

Perhaps the most notable thing about this paper is that it is the only

time that I have used Mathematica, in this case to solve a nonlinear recur-

sion equation.62 This is aside from a few simple integrals, and even there I

preferred Gradshteyn and Ryzhik. I guess I’m a Luddite (Dorothy, who is

62Prior to that, I used Fortran to get a mass spectrum on one paper with Wise. He was
impressed.
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my IT manager as well as my wife, would agree), but until recently I have

always been more accurate than the students and postdocs with which I was

working. Up until now, I was able to find problems that did not need more.

In a follow-up, with postdoc Takuya Okuda, we found a larger set of

models, including a simple one that could be solved analytically at large

N . We were also able to obtain the 1/N2 correction, each of us doing it

a different way: Nori by direct Feynman sum, Takuya by sum over Young

tableaux, and me using loop equations. Unfortunately, this was complicated

enough that we could not see getting the general term, or summing for an

exact expression.

One other paper from this period dealt with the stability of nonsuper-

symmetric orbifolds in AdS. With Horowitz and Orgera, we addressed the

question of whether any nonsupersymmetric vacua could be stable.63 We fo-

cused on nonsupersymmetric orbifolds (the same as Adams, Silverstein, and

I had looked at in unwarped spaces). These had tachyons at weak coupling

but not at strong, but we suspected that there would still be some instabil-

ity. Indeed, it was the Witten bubble of nothing, now wrapped around the

twisted direction of the orbifold.

One final note in this section is a comment on loop quantum gravity.

It was widely believed by those working in that field that it predicted vi-

olations of Lorentz invariance at high energy. But for those familiar with

quantum field theory, this did not make sense: renormalization would spread

the symmetry breaking to all operators allowed by dimensional analysis, and

these included relevant operators visible at low energy. I had thought about

writing this argument out, as had several others, but did not care to get

caught up in it. Fortunately Collins, Perez, Sudarsky, Urrutia and Vucetich

(CPSUV) did write out the argument, which I think had a large impact. So

I was happy.

63Orgera had started out as Gross’s student, but I took over when Gross became busy
with the Nobel, and we wrote two nice papers together. After his Ph.D. he returned to
the private sector in Italy.
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Gambini and Pullin, two of the original authors of the loop Lorentz-

breaking idea, wrote a paper proposing two ways to evade the CPSUV argu-

ment. So I studied the paper, and found that it failed to do what it intended.

One of the models depended on being on a Euclidean lattice, and the other

depended on the Lorentz symmetry being weak at all scales. I did realized

that there was a way to make it work, though: supersymmetry! (I then

looked around and found that Nibbelink, Pospelov, Jain, and Ralston had

already noted this). So if Lorentz violation is found, we can say that SUSY

is predicted, though not the reverse.

11.2 Understanding AdS/CFT

Any AdS string theory will have at least three scales: the Planck scale lp,

the string scale ls, and the AdS scale l. In order to have a spacetime that

is smooth on the string and Planck scales, l must be much larger than the

others. In terms of the dual CFT, these correspond to a large number of

fields N and large dimension for all nontrivial operators of spin three or

more (since these spins cannot appear in the low energy field theory). It

seemed plausible that the reverse was true as well: any CFT with a large

gap above two in its operator spectrum, and a large number of fields, would

have a spacetime dual.

I had a chance to clarify this when Joao Penedones came to the KITP as a

postdoc. He first worked with Giddings and student Michael (Mirah) Gary to

expand on my work on the flat space limit of AdS scattering. This was very

nicely done, and it seemed to me that it could be applied to a proof of the

sufficiency of large N and a large gap of dimensions in generating spacetime.

So, with my students Idse Heemskerk and Jamie Sully, we investigated the

simplest CFT model and the simplest nontrivial observable, the four-point

function.

We solved for the most general CFT with the given spectrum of states by

solving the bootstrap equation. On the AdS side, we then found the most
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general Hamiltonian, with given spins and dimensions. There was a one-to-

one match between the possible bulk actions and the possible CFT’s: there

were no CFT’s with large N and a gap that did not have a candidate bulk

dual. Here, Penedones’s calculational abilities were essential, the first (but

not the last) exception to my record of beating the computers. We would

have liked to take this further, but our approach of counting was clumsy and

difficult to generalize. But we could say we had proven one nontrivial aspect

of AdS/CFT.

I had thought that the idea that many fields and a large gap were sufficient

to give a large spacetime was general lore, and I thought that it came from

Tom Banks, who generally contributes such deep insights. But I checked with

him and he denied it. So is seems that this idea was immaculately conceived.

With Heemskerk we looked at other ways to understand AdS/CFT. We

figured that the scale-radius relation should be interpreted in a Wilson renor-

malization group form, so the bulk fields should be integrated out a radius

at a time. There were other papers with an RG interpretation for the radius,

but I think we were different than most (Faulkner, Liu, and Rangamani was

very similar) in being more faithfully Wilsonian. Our formalism reflected the

fact that double-trace operators arise necessarily even in the planar limit - a

surprise to us.64

In the end, our paper struck me as a new formalism, but not a new

insight into the nature of AdS/CFT. However, it turned out to be useful in

AdS/Condensed Matter (AdS/CM) studies. Indeed, almost all of my work

at this time was based on AdS/CFT, and this connected all of physics, from

black holes to condensed matter to conformal field theory. So in writing this,

I have to separate the subjects for clarity, but sometimes the right separation

is not clear.

64Some time later, with another student Eric Mintun, we applied this to higher spin
theories.
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11.3 AdS/CM

I had some small history in condensed matter physics, with my interpretation

of Fermi liquids, my dabbling in non-Fermi liquids, and my brief collaboration

with Charlie Kane and Matthew Fisher.65 With AdS/CFT, I thought about

ways that it might produce a non-Fermi liquid. Around 2003, I recall that

Matthew Fisher announced that high Tc was about to be solved. He had his

own new idea in mind, but I responded, “Yes, and AdS/CFT will solve it.”

But so far neither of our approaches has succeeded.

It was Subir Sachdev, together with Christopher Herzog, Pavel Kovtun,

Dam Son, Sean Hartnoll, and Markus Muller, who first found a useful role

for AdS/CM. Sachdev was the world expert on quantum critical phenomena,

critical points that sit at zero temperature, but with an interesting approach

to that zero. AdS gave one of the few tools for studying such a strongly

coupled fixed point, and moreover high-Tc seemed to lie close to such a point.

But, having tried AdS/CM before, I was happy to sit back and let the large

group of excited young people go with it.

But, as we have seen, being at KITP means that lively visitors were always

pulling me in new directions. In this case, it was a month-long ‘miniprogram’

on AdS/CM in summer 2009. This program was designed and run by Sean

Hartnoll. When he took it to the KITP advisory board in early 2008, there

were only around six papers on the subject, mostly by him, but it was clearly

a good thing to run, and by the time it ran a year later it was one of our most

oversubscribed programs. Sachdev and I signed on as co-organizers to give

the program some heft, since Hartnoll was just a postdoc. But because I was

running a five month string theory program just before then, I got Hartnoll

to agree to do all the work. I think that he was peeved when I stuck to my

word, especially as Sachdev seemed to have the same deal.

65To date I have not collaborated with any Nobel laureate, even though I have been a
colleague for 28 years combined with Weinberg and Gross. I guess our styles are a bit
different, though our goals are much the same. But this drought is likely to be broken
soon, when Kane receives the Prize for topological insulators.
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But it was an outstanding program, and it pulled me back into the sub-

ject. First, with Hartnoll, Silverstein, and David Tong, we studied back-

grounds with Lifshitz symmetry, in a probe limit for the charged fields in

a thermal background. I was skeptical that a probe approximation could

capture high-Tc, but it was notable that for Lifshitz dimension z = 2 one

obtained the correct anomalous dimension for the conductivity. I think my

main focus in the project was the interesting RG flows.

A different approach to high-Tc/CFT, due to Thomas Faulkner, Hong

Liu, John McGreevy, and David Vegh, was based on an AdS2 × Rd−1 black

hole. In trying to understand their construction, I realized that it separated

into a short distance part that was universal, and a long distance part that

was not. Faulkner, who had just joined KITP as a postdoc after getting his

Ph.D. from MIT, was thinking along similar lines. We realized that there

was a simple way to extract the universal behavior, which one could think of

as an IR AdS4 space (the dimension relevant to high Tc) coupled to a d=3

UV field theory that had no bulk dual. So we called it ‘semiholographic,’

since only part of the CFT had a bulk dual. Working this out led to a lot of

interesting issues both for renormalization and for condensed matter.66

Yet another approach, with Kristan Jensen, Kachru, Andreas Karch, and

Silverstein, looked at models with branes moving in two directions, corre-

sponding to a lattice of fixed charges coupled to itinerant charges. This

simulated the marginal Fermi liquid phenomenology of high-Tc. As with

many other AdS/CM attempts, the effect of backreaction was not fully con-

trolled. Much work on AdS/CM was ‘phenomenological,’ meaning that one

postulated a bulk theory without a known CFT dual. We preferred ‘top-

down’ constructions, with a known dual theory. But there was a downside:

such theories had extra fields, in particular scalars, that were prone to insta-

bilities. For example, there was what Silverstein called ‘Fermi sea-sickness,’

66I had never thought that I would write a paper about spin-orbit couplings. I always
thought that they were an annoying breaking of symmetry, not knowing that they had
become the key to topological insulators.
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where scalars that were supposed to remain at the origin became tachyonic,

and developed expectation values.

With my latest grad student Ahmed Almheiri,67 I looked at an alterna-

tive approach to stable top-down Fermi and non-Fermi liquids. Working on

AdS/CM seemed to dismay Almheiri, he wanted to work on quantum grav-

ity, but I told him it was a good project. After all, everything was dual. The

idea was simply to take a familiar duality like AdS5 × S5 or AdS4 × S7 and

turn on magnetic fields carrying S5 or S7 charges. Using a magnetic field for

the symmetry breaking tended to be more stable than breaking by scalars

or electric fields. This idea originated from d’Hoker and Kraus, who studied

one example; we looked at the general case in the search for stability. It was

a fun system to work out. We found that in a neighborhood near the space

of supersymmetric values of the charge, there were stable solutions (modulo

a possible fix for the dilaton). In our first draft we missed one instability, so

this was completed by Donos, Gauntlett, and Pantelidou; this reduced but

did not eliminate the region of stability.

One last condensed matter motivated idea, with Silverstein, was to rein-

terpret a vacuum state as a finite density theory in higher dimensions. For

example, the F1+NS5 system, is normally interpreted as a vacuum of a field

theory in two dimensions. Instead, the F1 strings could be interpreted as

excitations in the NS5 vacuum, so the state would be six-dimensional. Of

course by T-dualities and compactifications one could vary the dimension.

Our main goal was to find holographic systems with the kind of ‘2kF ’ singu-

larities that arose in Fermi and non-Fermi liquids. These had not been seen

in holographic models previously, but they were here.

67His first two papers he signed, ‘Almuhairi’.
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11.4 More odds and ends

11.4.1 AdS hierarchies

In AdS5×S5, the AdS5 and S5 lengths are equal. More generally, in all simple

examples, the AdS and compactification radii are of the same order. But in

the landscape, there should be a dense spectrum of compactifications with

positive and negative cosmological constants. The latter would include some

with AdS radius much larger than their compactification radii. Silverstein

and I set out to find such solutions. After discussing general constraints, the

strategy we hit upon was to add 7-branes to the compactification, because

they add a negative term to the energy density. We found some ansatze

of the desired form, but I do not know if we really succeeded: there were

some singularities that went beyond my limited understanding of F-theory.

Silverstein was optimistic, but I was by nature more skeptical. It may be

that the solutions we sought were more sporadic, disordered sums of positive

and negative energies.

11.4.2 Wilson loops

Ray, Yee, and Maldacena had shown that a Wilson loop in the CFT was

dual to a string worldsheet ending on the boundary loop. More precisely,

this was true for a BPS Wilson loop, which has a scalar piece as well as the

vector potential. I had mused over the fact that the ordinary Wilson loop,

with vector potential only, was a perfectly good operator, and so should be

calculable on the AdS side as well. Perhaps in connection with AdS/CM,

I pursued this with my student Sully. It was fairly easy to figure out what

was going on. The string for the BPS loop satisfied Dirichlet conditions,

the position being fixed by the direction of the scalar on the loop. It was

then easy to guess that the loop without the scalar was dual to a string with

Neumann boundary conditions. Indeed, that fit with all the symmetries. As

a further check, we considered loops that interpolated between the two limits,

and showed that there was a nice flow between the simple loop operator in
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the UV and the BPS loop in the IR.

Unfortunately, when we put our short paper on the arXiv, we learned that

Alday and Maldacena had noted this some time before. The renormalization

part was new, however. So we rewrote the paper, expanding the RG part

(adding in strings that were Dirichlet in some directions and Neumann in

others) and resubmitted. But I did not have any application in mind for

this, and indeed the paper has only reviewed four citations. But I liked it,

as a new application of the RG, and a new corner of AdS/CFT.

11.4.3 Scale and conformal

Almost 25 years earlier, I had built on Zamolodchikov’s 1+1 RG irreversibil-

ity theorem to prove that under broad conditions, scale symmetry would

imply conformal symmetry in 1+1 dimensions as well. In the time since,

people had occasionally tried, without success, to generalize Zamolodchikov’s

result to four dimensions. But around this time, there was a renewed focus

on quantum field theory, and Komargodski and Schwimmer (KS) succeeded

in proving the 3+1 dimensional irreversibility theorem. So it was natural

to ask whether in 3+1 dimensions scale invariance again implied conformal

invariance. Fortunately, there were two outstanding quantum field theorists

at the KITP for an LHC workshop, Markus Luty and Riccardo Rattazzi. We

first spent some time understanding the KS derivation, which was much more

intricate than the 1+1 Zamolodchikov theorem. We then examined how the

KS theorem might be used to generalize my 1+1 argument.

It was an enjoyable project, with various twists and turns and with all

three of us contributing key insights. In the end, we did obtain a theorem,

but it was not quite as general as in 1+1: it held for perturbative theories,

but for nonperturbative theories a technical assumption was needed, though

it seemed plausible. A bit of excitement arose when another group at the

same time announced a counterexample, a perturbative theory that was scale

invariant but not conformal invariant. After some time, it was recognized
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that their theory was actually conformal. It was an impressive calculation,

though, and in sorting this out we much improved our own analysis. Also,

the two groups jointly managed to understand a classic paper by Osborn,

which turned out to have gotten to many of the key results long before.

12 Firewall days, 2012-2015

12.1 Schrodinger’s cat in a black hole

If Schrodinger’s cat were behind the horizon of an AdS black hole, not yet

fallen to the singularity, could we determine its state by a measurement in

the dual CFT?68 A gauge/gravity dualist would naturally answer ‘yes.’ The

CFT is a complete description of the dual black hole, so this information

should be available. Indeed, with my students Heemskerk and Sully, and my

colleague Don Marolf, we showed how to get it.69

The basic idea, integrating the field equation in the AdS bulk, was worked

out by Bena and others noted earlier. It had been refined in a series of papers

by Hamilton, Kabat, Lifschytz, and Lowe (HKLL). Our group was the first

to apply it to a normal (one-sided) black hole, but it seemed to work just fine.

You take the operators inside the black hole, and integrate first backward

through the horizon and then spatially to the boundary to get the CFT

operators.

There were various subtleties, the most notable perhaps being that some

of our construction required boundary operators out of time order, which

mapped to ‘time folds’ in the bulk. We were not thinking about chaos at the

time, but now these play a wide role. A second version of the paper had two

additions. It was at this point that Sully joined, and added the appendix

68I am talking about a one-sided black hole that formed from collapse of ordinary matter,
so we know its initial state.

69I first met Marolf when he was a 16 year old student looking for a grad school in
physics. I was happy he chose Austin, though I missed the chance to take him as a
student. But it worked out quite well, as he became my colleague at UCSB, in time to do
some great work together. But I still think of him as 16.
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working out the Green’s function in detail. And, we added a note that the

construction worked only before the Page time, because of the firewall, which

had just been found.70

12.2 Bits, branes, black holes

In spring 2012 the KITP ran a ten week workshop on ‘Bits, Branes, and

Black Holes.’ This was directed at the basic questions of quantum gravity:

the emergence of spacetime, the connection of area with entropy, the black

hole information problem, and so on. For me, I would have said that the

central problem was to find the nonperturbative construction of the bulk

theory, with the black hole information problem as a key clue.

At the beginning of the program, Ted Jacobson and I were asked to

present our perspectives on the information problem. I presented it much

as I have noted in the last chapter: gauge/gravity duality showed us that

information was not lost, and black hole complementarity (BHC) showed us

there was no paradox. But there was still the problem of finding Hawking’s

mistake: how exactly does the information get out?71

I thought that what I had said was common lore, but I was surprised.

The conservation of information was indeed nearly universally held. But

the second part, black hole complementarity, was not. Perhaps the widest

response on this was simply not knowing precisely what BHC meant. So I set

as my immediate goal, to make a simple model of BHC that would answer

this.

70Heemskerk had a nice followup on this, extending it from scalar fields to gauge fields.
When he first took QFT with me, he had a clear interest in the fundamentals, and he got
to do some nice work in this area. But he also wanted to make contact with experiments,
and I could not promise him that. So after his Ph.D. he moved to biophysics, studying
the development of cells with Shraiman.

71Just to be clear, I like to refer to ‘Hawking’s mistake,’ but it is meant to be ironic.
He may have been wrong about the answer, but he was right about the importance, and
the subtlety, of the question. And his ‘mistake’ has challenged countless theorists for 40
years.
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There were some nice models of the quantum mechanics of black holes

that seemed useful here. These ‘bit models,’ due to Samir Mathur and Gid-

dings, were just bits in a line, with rules for what happens when a bit evapo-

rates from the black hole. These simple models showed the original paradox:

either information could not escape from the black hole, or it had to travel

much faster than light. So I sent my now-seasoned students, Sully72 and

Almheiri, to find a bit model that accounted for BHC. The idea was to break

up the bit system into smaller systems, each of which was as much as a single

observer could see, and with some kind of junction condition between them.

But this failed almost at once.

The problem was that there was a single observer who could see both

copies of the information, the one inside and the one outside the black hole,

thus violating QM. The original thought experiments that went into BHC

had seemed convincing, but a striking paper by Hayden and Preskill, bringing

in ideas from quantum information theory, led people to think more clearly

about the possible measurements that can be made. So my students and I

became more puzzled each week. I was certain that such a basic violation

of black hole complementarity must be ruled out, and surely someone at the

KITP program could straighten us out. But no one could.

In fact, our own colleague, Don Marolf, had come to the same conclusion

by a somewhat different route, thinking about ‘mining’ the black hole rather

than just throwing things into it. So AMPS joined forces. The fact that we

had come to the same result by different arguments, and that no one could

easily rebut it, increased our faith in it. Eventually we tested it on two of

the originators of BHC, Preskill at the program conference and Susskind by

email. I put off contacting Susskind because I expected the response “yes,

I thought about this ten years ago, and here is what you’re missing” — I

had gotten that from him on other points before. But Preskill and Susskind

72Sully did not always seem enthusiastic about some of our earlier projects, but jumped
into emergent spacetime and quantum information. He has done some excellent work since
going as a postdoc to Stanford and now to McGill.
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had the same reaction that we had had: first ‘this can’t be true,’ and then

realizing a week or two later that there was no easy rebuttal.

So we wrote up our results. Three of the principles of BHC cannot all

hold: (i) Hawking radiation ends up pure, (ii) there was no drama (violation

of effective field theory) outside the horizon, and (iii) there was no drama for

an observer falling through the horizon. So what gives? Not (i): None of us

thought that this gave any evidence for information loss, given the problems.

My conservative inclination was that some subtle breakdown of effective field

theory at distances of order the black hole scale would fix things, violating

(ii). Marolf was sure this did not work, and there had to be drama at

the horizon, which he named the ‘firewall,’ violating (iii). I tried to make

models of how (ii) might break down, but I failed. So I had to go along

with Marolf conclusion, that perhaps the most conservative resolution was

that the infalling observer ‘burns up’ at the horizon. Another intuition he

had was that the interior stopped when the black hole’s ‘quantum memory’

became full. So perhaps a ‘bit wall’ would have been more accurate.

12.3 Personal notes

Before continuing with the physics, a few personal notes.

The three times that I shook up the field — D-branes, the string mul-

tiverse, and firewalls — might give you the impression that I am a radical,

but it is not by design. Rather, I think I am more like Dirac, with a knack

for how theory fits together and the philosophy ‘one must be prepared to

follow up the consequences.’ But of course we know that even Dirac did take

some time to accept what he had predicted, and so did I. It took me nearly

ten years of playing with D-branes before recognizing their importance. And

with both the multiverse and the firewall, my inclination was to soft-peddle

the results, and it took brilliant young collaborators, Bousso and Marolf, to

push things forward.

The second note is a mention of the many others who have proposed
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modifications of the black hole interior. Chapline, Hohlfeld, Laughlin, &

Santiago and Mazur & Mottola made such arguments, but I don’t think their

physics made sense. Braunstein had an argument and conclusions resembling

ours, but his black hole Hilbert space was not correct. But the one who

certainly did something correct, and important, was Samir Mathur.

Mathur had devoted a large part of his career to the information problem,

even after most string theorists accepted ‘AdS/CFT + BHC’ and moved on.

He was most known for the idea of fuzzballs, modifications of the black hole

horizon from higher dimensional brane configurations. It was proposed that

this was the resolution of the information problem. The issue for me was

that almost all his arguments were based on nearly supersymmetric black

holes. It did not seem that there was any extension to Schwarzschild black

holes. But along the way, Mathur sharpened the information paradox.

In particular, he originated the argument that black hole complementarity

violates strong subadditivity of the entropy, which was one of the arguments

that AMPS gave. I am sorry that our first and second versions did not

acknowledge him on this; I think that because we found his central story

about fuzzballs unpersuasive, we did not pay careful enough attention to the

rest. Indeed, you might wonder what is the difference between a ‘fuzzball’

and a ‘firewall’. What we had in mind was the horizon ending as a sea of

bits, rather than some geometric structure that extends further.

12.4 Following up

It was fun to have once again kicked over the hive and watched the bees

swarm. Though I was a bit peeved that, after we had spent three months

looking for flaws, within two weeks people were writing papers explaining

why we were wrong without having fully thought through our arguments.

But happily the best of them, Raphael Bousso and Daniel Harlow, each

recognized their error and withdrew their paper. Susskind did the same,

then changed back again, and by now is out on some perpendicular axis.

142



Of course, we only had an argument by contradiction, not a proof or

even a calculation of what happens in the interior. Even on the question of

what time the firewall forms, we had only an upper bound, the Page time.

I had no good ideas for this, so I spent the next year or more reading what

everyone else wrote in response to us. Various alternatives to the firewall were

developed and ideas were exchanged, with a workshop every few months:

Stanford, CERN, KITP.

AMPSS, the original AMPS group plus Douglas Stanford, a KITP grad

fellow from Stanford, wrote a followup in which the arguments were clarified

and sharpened. We also pointed out problems with various alternatives to the

firewall. One advance was to put the black hole in AdS, where the boundary

conditions gave greater control. Black holes normally do not decay in AdS

space, but by coupling to an additional heat bath (as in the earlier work of

my student Rocha) one could do controlled thought experiments. We also

found a simplified argument for the firewall. In its original form a very fast

quantum computer was needed. We showed that even without this there was

a paradox, using the butterfly effect.

In a second followup, Marolf and I added some new arguments and ob-

servations. There was a common question, does the firewall invalidate the

calculation of Hawking radiation? The usual calculation does depend on the

geometry behind the horizon, but causality would seem to say that events

behind the horizon could not affect the radiation. By a statistical argu-

ment, we showed that the radiation was unaffected. We also returned to the

Schrodinger’s cat question. We showed that the firewall argument also made

it impossible to see what is behind the horizon of an AdS black hole in the

dual CFT. This seems to contradict the general assumption about the CFT

seeing the whole interior, but makes sense if spacetime ends at the firewall.

What surprised me was how many were willing to modify quantum me-

chanics in order to avoid the firewall. QM was not one of the explicit as-

sumptions of black hole complementarity, it was implicit. So I thought of
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this as a new alternative, ‘quantum drama.’ They differed from Hawking’s

modification of QM, which was visible in measurements outside the black

hole. These, including final state conditions (Lloyd and Preskill), limits

on quantum computation (Harlow and Hayden), ER=EPR (Maldacena and

Susskind), and state-dependent observables (Papadodimas and Raju), could

be restricted to observations behind the horizon. It is possible that one of

these is true, but there are issues with each. I particularly had an issue with

state-dependence. It sounds benign: aren’t observables always state depen-

dent? Well, not in this way, which required that the Born rule of quantum

mechanics be modified. So Don and I wrote another paper, making this clear.

Any of these modifications of quantum mechanics might turn out to be

correct, but if you are going to modify QM you have a lot of explaining to do.

Of course the other alternative, a modification of the geometry, also needs

a lot of explaining. There were various ways this might be implemented:

fire (AMPS), fuzz (Mather), strings (Silverstein), ‘nonviolent nonlocality’

(Giddings). As I have noted before, I am a natural agnostic, willing to

examine any possibility.

12.5 Branes

The black hole information problem still seemed like the best insight into the

nature of quantum gravity, but after a while the issues seemed to solidify.

Perhaps we had to wait for a new insight, as with AdS/CFT. So I was ready

for a break. Happily, D-branes still had their puzzles.

My collaborator Karch was still working on AdS/CM, and his student

Sichun Sun came to the KITP as a grad fellow with a puzzle. Consider in-

tersecting 0123 and 0145 D3-branes. The 01 intersection degrees of freedom

carry a U(1) charged scalar. Duality then requires also a U(1) magnetically

charged degree of freedom, but where could it come from: was it a indepen-

dent field on the intersection, or a solitonic monopole? Neither seemed to

make sense: there was no independent magnetic degree of freedom on the
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branes, but a 1+1 dimensional intersection did not seem to leave room for a

3+1 dimensional magnetic soliton.

So, together with my latest student Eric Mintun, we figured this out in

four steps: (1) the N = 2 implied that on a 1+1 dimensional intersection

the scalar couples to the magnetic dipole in addition to the electric potential;

(2) the 1+1 dimensions allowed higher dimensional interactions, and SUSY

required them, thus leading to a 1+1 dimensional soliton; (3) there was a log

divergence in the classical action, which could be treated by the usual process

of renormalization (always nice to learn new wrinkles in renormalization, this

from Goldberger and Wise); (4) because of the log, the effective field theory

did not make sense up to infinite energy, one needed the branes. So lots of

cool field theory in a simple system.

Thinking about this new application of renormalization led to clarifying

an old puzzle of mine. The motion of a brane depends on its interactions

with other branes. But how does one treat the self-interaction, which is

often divergent? What is often done is ignore it, introducing the notion

of a probe brane. This was not a controlled approximation. But having

understood the classical renormalization of branes, it became clear that they

should be understood in the language of effective field theory, with no probe

approximation needed. And as I was working this out with Mintun and an

excellent undergrad Philip Saad, the perfect application came along.

Having followed the development of the KKLT model, and participat-

ing in part of it, I was puzzled by claims that it was unstable. I tried to

understand the arguments (which, incidentally, were largely due to my own

former students Bena and Grana) but I could not. So when their student (my

grand-student) Andrea Puhm came to Santa Barbara as a postdoc, I tried

once again to understand the issues. And, they were nicely resolved by the

new interpretation of branes: there was no way for a dangerous singularity

to arise. So Mintun, Puhm, Saad, a new student Ben Michel, and I wrote up

both the correct interpretation of branes and the stability of KKLT.
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Getting involved in KKLT led to much more correspondence, and even-

tually an invitation to speak at SUSY15. Many people had arguments, or

intuitions, that these de Sitter vacua could not exist. The stakes were high.

If string theory had no such vacua, perhaps string theory was wrong. If it

had too few vacua, perhaps the anthropic argument would be ruled out. But

looking at the objections, most of them were clearly wrong; some appealed to

no-go arguments that were known to be irrelevant even when they were first

written down. The most interesting objection had to do with the fact that the

KKLT construction required both 10-dimensional and 4-dimensional analy-

sis. By careful treatment of scales, we showed that this could be justified in

effective field theories.73

One more brane puzzle began with Michel studying different duality

frames in string moduli spaces. When Puhm joined us, she brought the

Saclay point of view on fuzzballs as well as KKLT. In hearing about the sim-

plest (2-charge) case, we realized that the duality frames had not been fully

taken into account. So this became a nice exercise for Michel, Puhm, another

postdoc Fang Chen, and me: the Journey to the Center of the Fuzzball. We

followed the different duality frames as we went down the throat, ending up

with a geometry different from that previously assumed.74 Sticking to the

highly supersymmetric two-charge geometry meant that we were not close

to addressing the fundamental questions, but perhaps we learned something

that will be useful down the road.

As an aside, some speakers will refer to their work as a game. I have

never liked this: physics is never a game for me. Everything is directed at

the big questions, even if circuitously. This is why I am in this field, not to

play games. And why is the public paying us?

73It is worth noting, though, that without a nonperturbative construction of string
theory (a.k.a. quantum gravity), the KKLT construction is still a conjecture. It is an-
other argument, beyond the information problem, that we are missing a nonperturbative
construction of gravity.

74We later learned that Martinec and Sahakian had done this first for the zero spin case,
not in the context of the fuzzball.
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12.6 Precursors and Chaos

Though the firewall puzzle was largely on hold for me, there were many re-

lated questions to follow now. Some were motivated by the firewall, but many

were motivated by the AdS/CM connection, and by ideas from quantum in-

formation. The discovery of the Ryu-Takanagi (RT) formula generated an

enormous wave of interest in the relation between entropy and geometry.

Ryu and Takanagi did their work at the KITP, and even came into my office

at an early stage to ask what it might mean. But having little intuition

for entropy, and perhaps some skepticism about the result, I was of little

help, and I missed my chance to be an early adopter. Actually, I have not

worked on RT yet. Many people jumped into it, and I avoid doing things

that other people could do. Perhaps I will wait until they move on, and then

look around for what might have been missed.

So my last paper with Almuhairi was motivated by AdS/CM, but ended

up having some relevance to quantum gravity - it’s all connected. I had been

puzzled by 0+1 conformal theories, which often came up in finite density sys-

tems. When the transverse directions were compact, the symmetry implied

that the low energy density of states had to be of the form Aδ(E)+B/E. But

the A term comes only from zero energy, and the B term has a divergence and

can’t continue down to zero energy. So how could there be dynamical states

in such systems, as there seemed to be? So we looked at a simple model,

based on the CGHS model. I did not work on the first wave of CGHS, twenty

years earlier, so I was happy to get a chance to study it. What we found was

that the interactions broke the conformal symmetry. This has some current

relevance because it happens in the SYK model (below).75

The bulk to boundary operator map was an ongoing interest for me,

most recently in the Schrodinger cat question. I had played with it many

times, as had others, but I had a sense that all we were doing was to rewrite

the AdS/CFT dictionary of Gubser, Klebanov, Polyakov, and Witten. So

75Almuhairi went to Stanford as a postdoc, and did some remarkable work just below.
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I was excited by a paper of Almheiri, Harlow, and Dong, which presented

something new, perhaps for the first time in twenty years, casting it in terms

of quantum information rather than differential equations. In studying the

paper, postdoc Vladimir Rosenhaus, Mintun, and I realized that in their nice

toy model the quantum information argument could be rewritten in terms

of gauge symmetry. I think now that our result was just a special case, but

sometimes one just has to throw one’s hat into the ring.76

Following up on the firewall paradox, Shenker and Stanford began study-

ing the growth of small perturbations to black holes and the butterfly effect

(chaos). This was interesting, and I followed their work for a while until I

had an idea of my own. Their papers, like many others, focused on equilib-

rium black holes, shown by Israel and Maldacena to correspond to two-sided

black holes. I was used to the original information problem, with its one-

sided state, and so I wanted to see how chaos would manifest there. I quickly

realized that it explained something that I had wondered about for a long

time.

For more than twenty years, ’t Hooft had been presenting what he said

was the black hole S-matrix. This did not make sense to me: it was in

the framework of the quantum field theory of GR, with no information from

string theory or other completion. But Susskind had told me that one should

always pay attention to ’t Hooft, so I kept this in mind. In fact what he

had calculated was not the S-matrix but the butterfly effect, the change in

observables under a small change of state. This could be seen from the time-

ordering of the operators. As a side effect, it gave a new and more physical

derivation of the firewall.77

The subject became more interesting when Alexei Kitaev showed that the

chaos in black holes had a characteristic Lyapunov exponent, and that there

76Mintun is now a postdoc at British Columbia.
77I was pleased to learn recently from Stanford that his work with Shenker had been

spurred by our discussion of the butterfly effect and the firewall during our work on
AMPSS.
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was a 0+1 matrix model, the SYK model, that exhibited this. This had some

similarity with my old 0+1 models with Iizuka and Okuda, so with postdoc

Rosenhaus, student Michel, and visiting KITP grad fellow Josephine Suh, we

looked at whether these models, designed to capture some of the behavior

of black holes, might exhibit chaos with the right Lyapunov exponent. Not

surprisingly they did not, being too simple.

Kitaev is famous for not publishing his work, or delaying for years. There

was a lot of interest in it, which had appeared only in talks. But Rosenhaus

was a dogged calculator, and began to reproduce Kitaev’s results, pulling me

in. So we obtained the spectrum and four-point functions of the SYK model,

reproducing Kitaev’s work and getting some new results. Rosenhaus went

on with Gross to develop a variety of extensions and variations. They are

well-matched, liking to talk and calculate for hours on end.

With a new student, Alex Streicher, I was trying to understand the lat-

est from Papadodimas and Raju. This led to a study of the analytically

continued partition function. On a trip to Stanford, we found that Shenker

and his students were working on the same thing. Eventually, with the ad-

dition of numerical types, the group grew to nine, Cotler, Gur-Ari, Hanada,

Polchinski, Saad, Shenker, Stanford, Streicher, and Tezuka.

12.7 Well, that sucks

On Nov. 30, 2015 I gave a talk “General Relativity and Strings” at the

meeting to celebrate the 100th anniversary of GR. It was held at Harnack

House in Berlin, where Einstein often worked and spoke. I was scheduled to

speak also the following week in Munich, at a rather different meeting. This

was to address whether such theories as strings and inflation were in fact

theories. I was looking forward to it, I felt that there were important points

that were long overdue to be put forward. My paper, ‘String Theory to the

Rescue,’ presented the case that string theory, though often criticized, was

in fact a great success.
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Unfortunately I never gave the second talk, because three days after my

talk at Harnack House I suffered a seizure that sent me to the hospital.78 I

was found to have brain cancer. After many months of surgery, treatment,

and recovery, I can write, as you see, but I still do not know whether I will

be able to do physics again.

So Rosenhaus finished our last two papers, doing an outstanding job. The

other members of the group of nine finished their work and graciously kept

my name on the paper, though I was only involved early on. My student

Michel developed collaborations with co-advisor Srednicki as well as several

other faculty, students, and postdocs, and will be moving to UCLA as a

postdoc. My youngest students, Streicher and Milind Shyani both found

new advisors, at Stanford, who graciously stepped in. I have always thought

highly of Stanford, forming sort of a West Coast axis with us in our interest

in the important questions.

13 Epilogue

It is interesting to go through one’s life like this. It has taken a rather linear

path, from the How and Why Wonder Books to today, with few deviations.

I have not achieved my early science fiction goals, nor explained why there

is something rather than nothing, but I have had an impact on the most

fundamental questions of science. But it was a close thing: at the age of 40

you could say that I had not lived up to my potential. And if someone else

had stepped in during the six or more years between my finding D-branes

and figuring out what they were good for, that might still be true.

How far are we from finding the fundamental theory of physics, and what

will we learn from it? Again, I am an agnostic, and not good at predicting

things. I only follow my nose. Happily my nose is very busy, with the firewall,

78David Gross graciously presented my talk, but it was not the same.
You can read the original at https://arxiv.org/pdf/1512.02477.pdf, with follow-up
https://arxiv.org/pdf/1601.06145.
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chaos, entanglement, and quantum information. So we may be close, or we

may still have big steps ahead. I hope to help figure this out.
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