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The methods that add dispersion energies to interaction energies computed using density-functional
theory (DFT), known as DFTþDmethods, taper off the dispersion energies at distances near van der Waals
minima and smaller based on an assumption that DFT starts to reproduce the dispersion energies there. We
show that this assumption is not correct as the alleged contribution behaves unphysically and originates to a
large extent from nonexchange-correlation terms. Thus, dispersion functions correct DFT in this region for
deficiencies unrelated to dispersion interactions.
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In the standard Kohn-Sham (KS) implementation of
density-functional theory (DFT), all electron correlation
effects are included in the exchange-correlation energy. The
existing semilocal functionals fail to describe interactions
that involve regions separated by several angstroms or more
due to problems with long-range correlations of electronic
motion [1]. The semilocal generalized gradient approxi-
mations (GGAs) cannot describe such correlations due to
the limited range of the exchange-correlation hole, on the
order of 1 Å [2]. One can say that these methods are myopic
with the range of vision of about 1 Å. An important
question is at what separations inter-region correlation
effects are (partly) reproduced by GGAs. Since dispersion
interactions result from long-range electron correlations
and can be precisely defined as functions of intermolecular
separations R, these interactions provide an excellent case
study to answer this question.
As an example, consider the interaction energy of Ar2,

shown in Fig. 1, calculated using various DFT methods, as
well as the Hartree-Fock (HF) method and symmetry-
adapted perturbation theory (SAPT) [3–6]. The benchmark
interaction energies are from the coupled cluster method
with single, double, and noniterative triple excitations
[CCSD(T)]. We have also plotted the dispersion energy

Edispx ¼ Eð2Þ
disp þ Eð2Þ

exch−disp þ Eð3Þ
disp þ Eð3Þ

exch-disp; ð1Þ

where EðiÞ
disp (EðiÞ

exch-disp) are the ith-order SAPT dispersion
(exchange-dispersion) energies. These results, as well all
other results here, were obtained with extrapolations to the
complete basis set limit. All DFTmethods included in Fig. 1
fail to recover the interaction energy essentially at all
separations, most prominently in the asymptotic region
where they decay too fast (exponentially rather than as
the sixth inverse power ofR), which clearly can be attributed
to the missing dispersion energy. For R roughly in the range

3–5 Å, most DFT interaction energies still differ dramati-
cally from accurate values, but in a few cases the predictions
are reasonable. The latter is sometimes interpreted as a
partial recovery of the dispersion interactions [7–10],
although the size of the exchange-correlation hole is still
small compared to this range of R’s. Finally, for R smaller
than about 3 Å, DFT interaction energies start to agree with
the benchmark. However, this is mainly because Edispx

becomes a small fraction of the total interaction energy,
only 12% in magnitude at R ¼ 1.5 Å.

FIG. 1. Performance of various DFT methods for Ar2: B3LYP
[11], SCAN [12], TPSS [13], PBE0 [14,15], PBE [14], rPW86-
PBE [14,16] as used in Ref. [17], PW91 [18–20], revPBE-PW92
[19,21] as used in Ref. [22], and LDA in the Perdew-Wang
parametrization [19]. CCSD(T), SAPT, and HF interaction
energies are also shown, as well as the dispersion energy
Edispx. For details of calculations, see the Supplemental Material
[23], which includes Refs. [24–45].

PHYSICAL REVIEW LETTERS 121, 113402 (2018)

0031-9007=18=121(11)=113402(6) 113402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.113402&domain=pdf&date_stamp=2018-09-12
https://doi.org/10.1103/PhysRevLett.121.113402
https://doi.org/10.1103/PhysRevLett.121.113402
https://doi.org/10.1103/PhysRevLett.121.113402
https://doi.org/10.1103/PhysRevLett.121.113402


Most methods displayed in Fig. 1 can be brought to
agreement with CCSD(T) by adding a negative correction,
which, at very large R, is simply the dispersion energy. At
shorter R, the dispersion energy has to be tapered differ-
ently for each DFT method. This observation led to a
family of methods supplementing DFT interaction energies
by a “dispersion” correction referred to as DFTþD type
methods [7–10,46–49]. These methods became enor-
mously popular and perform reasonably well, see, e.g.,
Ref. [43], showing that some DFTþD methods reproduce
benchmark interaction energy curves with a median
unsigned percentage error of only 4%–5%. Only SAPT
based on DFT [SAPT(DFT)] [50,51] performed better, with
an error of 2%.
In DFTþD, to taper the magnitude of dispersion energy

in the region of van der Waals (vdW) minimum and at
smaller R, one uses switching functions fitted to the total
interaction energies computed using accurate wave func-
tion methods on a set of dimers. They are called in literature
“damping functions,” but are substantially different from
the conventional damping functions used to account for the
charge-overlap effects neglected in the asymptotic expan-
sions [5,52–55]. This is shown in Fig. 2 on an example of a
popular dispersion correction, called D3BJ [9,49,56]. The
correction without switching is shown as D3(no switching).
The changes of D3(no switching) values due to switching
are quite significant at all R. For example, D3BJ(PBE) is
reduced in magnitude by a factor of almost 2 at the vdW
minimum, RvdW ¼ 3.76 Å, as compared to D3(no switch-
ing). This reduction is strikingly different from the physical

damping of the asymptotic dispersion energy Eð2Þ
disp;as, as

shown by the ratio of this quantity to Eð2Þ
disp amounting to

about 1.06. The D3BJ switching is also too large to account
for the exchange-dispersion effects, included in the curve

Eð2Þ
disp þ Eð2Þ

exch-disp. This curve defines an upper limit for the
physical damping of the asymptotic expansion, the damp-
ing which accounts for the exchange and charge-overlap
effects and thus removes the singularities of 1=Rn terms.
The significant additional amount of damping displayed
by the D3BJ curves is therefore unphysical. One may
notice that, for R > 4 Å, several dispersion functions, in
particular, D3BJ(revPBE), are “antidamped.” This is an
artifact of D3BJ (for explanations, see the Supplemental
Material [23]).
The standard explanation for the extent of switching off of

asymptotic dispersion energies in DFTþD is that this has to
be done to avoid double counting, since DFT methods start
to recover dispersion effects at small R [7–10]; i.e., the
conjecture of such recovery is fundamental in the con-
struction of DFTþD. It implicitly assumes that errors of
DFT result almost exclusively from the dispersion compo-
nent, which is certainly true for large R in dispersion-
dominated dimers where the DFT interaction energy is
exponentially small. However, at smaller separations, the
errors not related to dispersion can be large. To demonstrate
this behavior, we show in Fig. 3 the ratio of interaction
energies from different DFT methods to the CCSD(T)

interaction energies, as well as the ratio Edispx=E
CCSDðTÞ
int

for Ar-Liþ. Surprisingly, all DFT methods overestimate the
magnitude of interaction energy by about 10%–25% atRvdW
(2.4 Å) where the dispersion energy amounts to only 5% of

ECCSDðTÞ
int . Thus, if one accepts the hypothesis that DFT

FIG. 2. The dispersion corrections D3BJ [multiplied by R6] for
Ar2 corresponding to various DFT functionals compared to

Eð2Þ
disp þ Eð2Þ

exch-disp and to the dispersion energy from the asymptotic

expansion, Eð2Þ
disp;as. The latter quantities were computed using

SAPT(DFT) to be at the same level of theory as D3 (see the
Supplemental Material [23], which includes Refs. [57–64]).

FIG. 3. Ratio of DFT interaction energies and Edispx to
CCSD(T) interaction energy for the Ar-Liþ complex.
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approximations recover a part of the dispersion energy near
RvdW, they recover 200%–500% of this quantity for Ar-Liþ.
This does not appear reasonable and, therefore, the only
option is to attribute these errors to the dispersionless
component of the DFT interaction energy. In the
Supplemental Material [23], similar results are shown for
Ar-proton. Although there is no dispersion energy involved
in this case, DFT interaction energies have significant
negative errors at almost all separations included.
To further analyze the issue, let us divide the exact

interaction energy into the dispersion contribution and the
remainder, which we will call the dispersionless interaction
energy,

Edl ¼ ECCSDðTÞ
int − Edispx: ð2Þ

Edl does not contain any of the intermonomer electron
correlation effects, as these are, by definition, included in
Edispx. However, it still contains some intramonomer
correlation effects on interaction energies. Another quan-
tity, Eextra, is defined as

Eextra ¼ EDFT
int − Edl: ð3Þ

Thus, Eextra represents the dispersion energy recovered by a
given DFT functional, if any, as well as errors of DFT
approximations unrelated to dispersion energies. The ratio
Eextra=Edispx for Ar2 is plotted in Fig. 4. The following
observations can be made. (a) The ratio is tiny in the
asymptotic region for all methods. (b) While there is a
considerable spread in the values of this ratio near RvdW, the
values are again very close to each other for the shortest
separations shown (except for HF, LDA, and dlDF [65]).
(c) The ratio Eextra=Edispx reaches the value of 1 near
R ¼ 2 Å for most methods, but does not remain constant

and continues to increase further for shorter separations (for
the special case of SCAN, see the Supplemental Material,
which includes Refs. [66,67]). Thus, all functionals give
Eextra larger in magnitude than Edispx at these R’s, which
means these methods need a positive dispersion correction
in this region. This behavior is a strong indicator that DFT
approximations do not reproduce dispersion energies at the
separations included in Fig. 4. If the dispersion energies
were reproduced for the right reasons, i.e., because the
exchange-correlation holes start to overlap, the behavior
should be as shown in the inset of Fig. 4. (d) For B3LYP
and revPBE-PW92, the ratio is negative in some regions,
which means that the corresponding correction should be
larger than the true dispersion energy. (e) Almost all DFT
methods “recover” a significant portion of the dispersion
energy at separations somewhat larger than RvdW, which is
well beyond the region where any overlap of exchange-
correlation holes is possible. (f) An interesting example is
provided by the HF curve since, by definition, the HF
method cannot give any dispersion energy. Yet, EHF

int is not
equal to Edl since the HF method also neglects intra-
monomer correlation effects in interaction energies. One
may wrongly think that the HF method reproduces about
23% of the dispersion energy at 1.5 Å. Clearly, all these
findings indicate that Eextra given by the DFT methods
included in Fig. 4 cannot be considered to represent the
dispersion energy. In contrast, Fig. 3 of the Supplemental
Material shows that Eextra computed using wave function
methods is approximately constant with R.
To get insights into the origin of Eextra, we plot in

Fig. 5 the ratios Eextra=Edispx, ΔEc=Edispx, ΔEx=Edispx, and
ΔExc=Edispx ¼ ðΔEx þ ΔEcÞ=Edispx, where ΔEx (ΔEc) is
the contribution of the exchange (correlation) energy to the
interaction energy and is obtained by subtracting the sum of
exchange (correlation) energies of monomers from the
dimer exchange (correlation) energy (exact exchange is
not included in ΔEx). One may assume that, if any
component of DFT reproduces the dispersion energy, it
should be mainly ΔEc, but ΔEx can also contribute [68,69].
Let us discuss these ratios for the SCAN functional. The
behavior of ΔEc is reasonably physical as the ratio
ΔEc=Edispx increases gradually with the decrease of R
from zero to about one near R ¼ 2.5 Å (but then starts to
decrease). However, ΔEc=Edispx is, in general, different
from Eextra=Edispx by up to a factor of 2. Thus, effects other
than correlation are equally important. In contrast to
ΔEc=Edispx, ΔEx=Edispx changes rapidly with R, ranging
from −1 to 3.5, the behavior clearly rooted in LDA. The
negative sign for separations somewhat larger than Rvdw,
i.e., positive ΔEx, means that the notion that ΔEx could
contribute to dispersion energy for such R is not true for
SCAN as the dispersion energy is, by definition, a negative
quantity. Furthermore, in the region where ΔEx is positive,
ΔEc is almost zero, but Eextra=Edispx reaches values as highFIG. 4. Comparison of Eextra=Edispx for Ar2.
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as 0.5. This means that the nonexchange-correlation
(non-xc) components of Eextra “reproduce” dispersion.
For other functionals in Fig. 5, the relations are generally
more chaotic and, in particular,ΔEc=Edispx andEextra=Edispx

aremuch farther from each other than for SCAN.We believe
the important finding of this analysis is that it always
requires significant non-xc contributions to explain the
difference between ΔExc=Edispx and Eextra=Edispx. In the
Supplemental Material, which includes Refs. [70–72],
we present similar results for LRC-ωPBEh [70] and
wB97 [71], range-separated hybrid functionals, as well as
analyze the non-xc contributions and the dependence on
density.
Figure 6 shows Eextra=Edispx for Ar-HF and ðH2OÞ2. The

results for Ar-HF are very similar to Ar2, but significant
differences are seen for the water dimer, especially at large
R. This is because at these R’s the interaction energy is
dominated by the electrostatic component and errors in this
component [unavoidable since the dipole moments given
by the methods studied are a few percent different from the
CCSD(T) ones] could be several times larger than Edispx, as
the latter quantity amounts to only 1% of Eint at R ¼ 10 Å.
If semilocal DFTapproximations do not recover Edispx in

the range of R’s relevant for intermolecular interactions,
the excessive damping of the dispersion corrections in
DFTþD methods is unwarranted, in particular since one

type of physical interaction (long-range electron correla-
tion) is used to fix errors in another type of interaction
(electrostatic, polarization, and first-order exchange that do
not involve long-range correlations). One way to go around
this problem is to add the physical dispersion energy at all
R’s to those DFT methods that give interaction energies
close to Edl, such as revPBE-LDA or rPW86-PBE. These
functionals were paired with nonlocal density functionals

FIG. 5. The ratios Eextra=Edispx, ΔEx=Edispx, ΔEc=Edispx, and ΔExc=Edispx for the argon dimer.

FIG. 6. The ratios Eextra=Edispx for Ar-HF and ðH2OÞ2.
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in Refs. [17] and [22], respectively. One may mention here
that the exchange functional rPW86 was parametrized in
Ref. [16] to give interaction energies similar to the HF ones,
in order to be applied with nonlocal density functionals.
The fact that nonlocal functionals typically do not include
excessive damping supports our thesis that such damping
should be avoided. Another nearly dispersionless func-
tional is the APF functional of Ref. [73]. Possibly the best
choice is to use DFT methods optimized on Edl, such as
dlDF [65], since this part of the interaction energy contains
physical components not involving long-range electron
correlations, so that a semilocal DFT should be able to
accurately recover Edl for good physical reasons. The
observations made in the present Letter may guide develop-
ment of future DFTþD methods as well as of nonlocal
functionals.
In conclusion, we have shown that the claim that

semilocal DFT methods recover a significant portion of
dispersion energies at separations of vdW minima cannot
be defended. For dispersion-dominated dimers, numerical
results might suggest otherwise, since Eextra changes from
zero at R → ∞ to a value close to Edispx at some R
somewhat smaller than RvdW. We show, however, that
Eextra does not have physical characteristics expected of
dispersion energy. A major failure is that, after becoming
equal to Edispx, Eextra continues to increase in magnitude as
R decreases. Furthermore, Eextra originates only in a small
part from ΔEc, whereas the major contributions come from
ΔEx and from the non-xc components of the functionals.
The non-xc terms should not reproduce dispersion energies
(or any correlation effects), so this behavior is unphysical.
We also demonstrate that DFT gives poor interaction
energies, even for systems with no or very small dispersion
interactions, such as Ar-proton and Ar-Liþ. These obser-
vations show that DFT approximations have severe accu-
racy problems other than their inability to recover
dispersion energies. Thus, our final conclusion is that
the success of DFTþD methods is mainly due to cancella-
tions of various errors in the exchange and non-xc
components by the dispersion functions; i.e., the results
are right mostly for wrong reasons.
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