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The dimensionality of an electronic quantum system is deci-
sive for its properties. In one dimension, electrons form a 
Luttinger liquid, and in two dimensions, they exhibit the quan-
tum Hall effect. However, very little is known about the behav-
iour of electrons in non-integer, or fractional dimensions1. 
Here, we show how arrays of artificial atoms can be defined by 
controlled positioning of CO molecules on a Cu (111) surface2–4, 
and how these sites couple to form electronic Sierpiński frac-
tals. We characterize the electron wavefunctions at different 
energies with scanning tunnelling microscopy and spectros-
copy, and show that they inherit the fractional dimension. 
Wavefunctions delocalized over the Sierpiński structure 
decompose into self-similar parts at higher energy, and this 
scale invariance can also be retrieved in reciprocal space. 
Our results show that electronic quantum fractals can be 
artificially created by atomic manipulation in a scanning tun-
nelling microscope. The same methodology will allow future 
studies to address fundamental questions about the effects 
of spin–orbit interactions and magnetic fields on electrons 
in non-integer dimensions. Moreover, the rational concept of 
artificial atoms can readily be transferred to planar semicon-
ductor electronics, allowing for the exploration of electrons 
in a well-defined fractal geometry, including interactions and 
external fields.

Fractals have been investigated in a wide variety of research 
areas, ranging from polymers5, porous systems6, electrical storage7 
and stretchable electronics8 down to molecular5,9–11 and plasmonic12 
fractals. On the quantum level, fractal properties emerge in the 
behaviour of electrons under perpendicular magnetic fields; for 
example, in the Hofstadter butterfly13 and in quantum Hall resistiv-
ity14,15. In addition, a multi-fractal behaviour has been observed for 
the wavefunctions at the transition from a localized to delocalized 
regime in disordered electronic systems16–18. However, these sys-
tems do not allow one to study the influence of non-integer dimen-
sions on the electronic properties. Geometric electronic fractals, in 
which electrons are confined to a self-similar fractal geometry with 
a dimension between one and two, have been studied only from a 
theoretical perspective. For these fractals, a recurrent pattern in the 
density of states as well as extended and localized electronic states 
were predicted19–22. Recently, simulations of quantum transport in 
fractals revealed that the conductance fluctuations are related to the 
fractal dimension23, and that the conductance in a Sierpiński fractal 
shows scale-invariant properties24–26.

Here, we report how to construct and characterize, in a controlled 
fashion, a fractal lattice with electrons: the electrons that reside on 
a Cu(111) surface are confined to a self-similar Sierpiński geometry  

through atomic manipulation of CO molecules on the Cu(111) 
surface. The manipulation of surface-state electrons by adsorbates 
has been pioneered by Crommie et al.27 and has been used to cre-
ate electronic lattices ‘on demand’, such as a molecular graphene2, 
an electronic Lieb lattice3,28, a checkerboard and stripe-shaped lat-
tice29, and a quasiperiodic Penrose tiling4. We characterized the first 
three generations of an electronic Sierpiński triangle by scanning 
tunnelling microscopy and spectroscopy, acquiring the spatially and 
energy-resolved electronic local density of states (LDOS). These 
results were corroborated by muffin-tin calculations as well as tight-
binding simulations based on artificial atomic s-orbitals coupled in 
the Sierpiński geometry.

The Sierpiński triangle with Hausdorff dimension log(3)/
log(2) =  1.58 is presented in Fig. 1a. We define atomic sites at the 
corners and in the centre of the light blue triangles, as shown in 
Fig. 1b for the first generation G(1)10,30. G(1) has three inequivalent 
atomic sites, indicated in red, green and blue, which differ by their 
connectivity. A triangle of generation G(N) consists of three trian-
gles G(N− 1), sharing the red corner sites. The surface-state elec-
trons of Cu(111) are confined to the atomic sites by adsorbed CO 
molecules, acting as repulsive scatterers. Figure 1c shows the experi-
mental realization of the first three generations of the Sierpiński tri-
angle and Fig. 1d shows the relation with the artificial atomic sites. 
The distance between neighbouring sites is 1.1 nm, such that the 
electronic structure of the fractal will emerge in an experimentally 
suitable energy range2.

Figure 1e presents the experimental LDOS at the red, blue and 
green atomic sites in the G(3) Sierpiński triangle (indicated by the 
open circles in Fig. 1c). The differential conductance (dI/dV) spec-
tra were normalized by the average spectrum taken on the bare 
Cu(111) surface, similar to ref. 2. The onset of the surface-state band 
is located at V =  − 0.45 V. We focus on the bias window between 
− 0.4 V and 0.3 V. Around V =  − 0.3 V the LDOS on the red, green 
and blue sites is nearly equal, whereas slightly above V =  − 0.2 V, 
the red sites exhibit a distinct minimum, while the green and blue 
sites show a considerably higher LDOS. At V =  − 0.1 V, the blue sites 
show a minimum, whereas the red and green sites exhibit a pro-
nounced maximum in the LDOS. At V =  + 0.1 V, the blue sites show 
a larger peak in the differential conductance, whereas the green and 
red sites exhibit a smaller peak. The experimental LDOS is in good 
agreement with both the tight-binding (see Fig. 1f) and muffin-tin 
simulations (see Supplementary Information). This finding cor-
roborates that our design leads to the desired confinement of the 
two-dimensional electron gas to the atomic sites of the Sierpiński 
geometry. In addition, it allows us to characterize the wavefunctions 
of the chosen Sierpiński geometry in detail.
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Figure 2 shows experimental wavefunction maps obtained at 
different bias voltages and a comparison with simulations using a 
tight-binding and muffin-tin model. In a thought experiment, we 
will discuss how electrons can be transported across the set-up 
between a source and a drain at arbitrary positions. At a bias voltage 
of − 0.325 V, the red (R), green (G) and blue (B) sites all have a high 
LDOS, and this also holds between the sites. Hence, from a chemi-
cal perspective, this wavefunction has strong bonding character, 
yielding an excellent conductivity from source to drain along (R–B–
G–B–R)-pathways. At V =  − 0.2 V, the red sites that connect the G(1) 
triangles have a low amplitude: the wavefunction of the G(3) trian-
gle partitions into nine parts, each corresponding to a G(1) triangle. 
The self-similar Sierpiński geometry thus leads to a subdivision of a 
fully bonding wavefunction delocalized over the G(3) Sierpiński tri-
angle at − 0.325 V in self-similar G(1) parts at − 0.2 V, demonstrating  

self-similar properties of the LDOS itself. At the latter bias volt-
age, the conductivity along (R–B–G–B–R)-pathways suffers from 
the lower amplitude on the red sites (except the red corner sites). 
At V =  − 0.1 V, the LDOS shows a marked minimum on the blue 
sites and a peak at the green and red sites. From the tight-binding 
calculation, we find that the wavefunction has nodes on the blue 
sites, corresponding to a non-bonding molecular orbital from a  
chemical perspective. It is clear that the conductivity along the 
(R–B–G–B–R)-pathway mediated by nearest-neighbour hopping 
has vanished, and that electrons have to perform next-nearest-
neighbour hopping between the red and green sites to propagate. 
These results connect with the theoretically calculated transmis-
sion of a Sierpiński carpet on a hexagonal lattice, which exhib-
its a gap in the conductivity although there is a high DOS in the 
system23. Finally, at V =  + 0.1 V, all blue sites in the G(3) Sierpiński 
structure have a high amplitude, whereas the red and green sites 
exhibit a low amplitude. Again, the conductivity between source 
and drain is suppressed. We note that the LDOS maps of the three 
generations G(1)− G(3) show the same features (see Supplementary 
Information), which is a consequence of the self-similarity of the 
geometry. We study this scale-invariance of the wavefunction in 
more detail with the box-counting method.

To determine whether the electronic wavefunctions inside the 
Sierpiński structure inherit the scaling properties of the Sierpiński 
geometry, we determine the fractal dimension of the wavefunction 
maps at different energies. We calculate the box-counting dimen-
sion (also called the Minkowski–Bouligand dimension) for both 
the experimental and simulated muffin-tin LDOS maps using 

= → ∕
D lim r

N r
r0

log ( )
log(1 )

, with N the number of circles required to cover 

the contributing LDOS and r the radius of these circles. In this 
procedure, N is counted for various r, and subsequently the fractal 
dimension is given by the slope of the log–log plot for N(r). The 
method is presented in Fig. 3a, and more details are given in the 
Supplementary Information. Figure 3b shows the box-counting 
dimension obtained experimentally (dark orange) and theoreti-
cally (light orange) for the wavefunction maps acquired at different 
energies (see, for example, Fig. 2). For comparison, we also show 
the dimension obtained from the wavefunction maps of a square 
lattice (dark and light blue, for the experiment and theory, respec-
tively), realized in the same way and measured in the same energy 
window3. The difference between the experimental and simulated 
maps is ascribed to a more gradual contrast in the simulation, 
where also contributions of the tip density of states do not play 
a role. Fluctuations in the calculated dimension at higher energy 
occur due to the nodes that appear in the maps at higher energies.  
These nodes are not included as a part of the fractal set (LDOS 
amplitude is below the counting threshold) and therefore the cal-
culated dimension is affected as the energy is increased. It can be 
clearly seen that the box-counting dimension of the Sierpiński tri-
angle is close to the theoretical Hausdorff dimension 1.58 (orange 
solid line), whereas the square lattice has a dimension close to 2 
(blue solid line). From these results, we conclude that the wave-
functions inherit the fractal dimension and therefore the scaling 
properties of the geometry to which they are confined, and that this 
dimension can be non-integer.

Finally, we show how the self-similarity of the wavefunction maps 
is reflected in momentum space. The Fourier-transformed wave-
function map at V =  − 325 mV (Fig. 4a) exhibits distinct maxima at 
k =  1.9 nm−1 (turquoise), k =  1.0 nm−1 (red) and k =  0.5 nm−1 (yellow). 
These maxima correspond to the next-nearest-neighbour distances 
between the artificial atomic sites (see Fig. 1), the side of a G(1) trian-
gle, and the side of a G(2) triangle in real space, respectively. We then 
transform parts of the Fourier map back into real space (Fig. 4b–d). 
The data inside the turquoise circle recover the full G(3) Sierpiński 
triangle, as shown in Fig. 4b. Transforming the values inside the red 
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Fig. 1 | Geometry of the Sierpiński triangle fractal. a, Schematic of 
Sierpiński triangles of the first three generations G(1)–G(3). G(1) is an 
equilateral triangle subdivided into four identical triangles, from which the 
centre triangle is removed. Three G(1) (G(2)) triangles are combined to 
form a G(2) (G(3)) triangle. b, Geometry of a G(1) Sierpiński triangle with 
red, green and blue atomic sites. t and t′  indicate nearest-neighbour and 
next-nearest-neighbour hopping between the sites in the tight-binding 
model. c, Constant-current STM images of the realized G(1)–G(3) Sierpiński 
triangles. The atomic sites of one G(1) building block are indicated as a 
guide to the eye. Imaging parameters: I =  1 nA, V =  1 V for G(1) and G(2) 
and 0.30 V for G(3). Scale bar, 2 nm. d, The configuration of CO molecules 
(black) on Cu(111) to confine the surface-state electrons to the atomic sites 
of the Sierpiński triangle. e, Normalized differential conductance spectra 
acquired above the positions of red, blue and green open circles in c  
(and equivalent positions). f, LDOS at the same positions, simulated  
using a tight-binding model with t =  0.12 eV, t′  =  0.01 eV and an overlap 
s =  0.2. a.u., arbitrary units.
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circle, however, results in a Sierpiński triangle of generation 2, while 
the size is retained (see Fig. 4c). Analogously, transforming the data 
inside the yellow circle yield a first-generation Sierpiński triangle (Fig. 
4d). This shows that the G(3) wavefunction contains Fourier terms of 
the previous generations. The self-similar features of the Sierpiński tri-
angle are thus inherently encoded in momentum space.

We have demonstrated a rational concept of building electronic 
wavefunctions with a fractional dimension from artificial atomic 
sites that couple in a controlled way. We discussed the wavefunctions 
that form by coupling the s-orbitals of artificial atoms in the single-
electron regime. Although this study represents the simplest case, it 
already exhibits several aspects of fractal confinement. The emergent 
fractionalization of the wavefunction at the single-particle level has 
profound implications and opens a series of interesting questions for 
future investigation: Do electrons in D =  1.58 behave like Luttinger 

liquids? Do they exhibit the fractional quantum Hall effect in the 
presence of a strong perpendicular magnetic field, or is the behav-
iour hybrid between 1D and 2D? How does charge fractionalization 
manifest when the wavefunction is itself already fractional? Recent 
theoretical work already addresses parts of these questions and cor-
roborates the potential of electrons in fractal lattices, showing that 
the Sierpiński carpet and gasket host topologically protected states 
in the presence of a perpendicular magnetic field31. Furthermore, the 
design of artificial-atom quantum dots coupled in a fractal geometry 
can also be implemented in semiconductor technology, thus mak-
ing it possible to perform spectroscopy and transport experiments 
under controlled electron density. This would form a versatile plat-
form to explore fractal electronics with several internal degrees of 
freedom, such as orbital type, Coulomb and spin–orbit interactions, 
as well as external electric and magnetic fields.
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Fig. 2 | Wavefunction mapping. a–d, Differential conductance maps acquired above a G(3) Sierpiński triangle at bias voltages − 0.325 V, − 0.200 V,  
− 0.100 V and + 0.100 V. Scale bar: 5 nm. e–h, LDOS maps at these energies calculated using the tight-binding model. i–l, LDOS maps simulated using the 
muffin-tin approximation. As a guide to the eye, a G(1) building block is indicated, in which a larger radius of the circles corresponds to a larger LDOS at an 
atomic site, whereas no circle indicates a node in the LDOS.
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Methods
Scanning tunnelling microscope experiments. The scanning tunnelling 
microscopy and spectroscopy experiments were performed in a Scienta Omicron 
LT-STM system at a temperature of 4.5 K and a base pressure around 10−10–
10−9 mbar. A clean Cu(111) crystal, prepared by multiple cycles of Ar+ sputtering 
and annealing, was cooled down in the scanning tunnelling microscope head. 
Carbon monoxide was leaked into the chamber at p ≈ 3.10−8 mbar for 3 min and 
adsorbed at the cold Cu(111) surface. A Cu-coated tungsten tip was used for 
both the assembly and the characterization of the fractal. The CO manipulation 
was performed in feedback at I =  60 nA and V =  50 mV, comparable to previously 
reported values32,33, and was partly automated using an in-house-developed 
program. Scanning tunnelling microscopy was performed in constant-current 
mode. A standard lock-in amplifier was used to acquire differential conductance 
spectra (f =  973 Hz, modulation amplitude 5 mV r.m.s.) and maps (f =  273 Hz, 
modulation amplitude 10 mV r.m.s.) in constant-height mode. The Fourier analyses 
were performed using the software Gwyddion.

Tight-binding calculations. The atomic sites in the first three generations of the 
Sierpiński triangle34 are modelled as s-orbitals, for which electron hopping between 
nearest-neighbour and next-nearest-neighbour sites is defined. The parameters 
used are es =  − 0.1 eV for the on-site energy, t =  0.12 eV for the nearest-neighbour 
hopping and t′ /t =  0.08 for the next-nearest-neighbour hopping, similar to 
previously reported values2. Furthermore, we included an overlap integral s =  0.2 
between nearest-neighbours and solved the generalized eigenvalue equation 
H|ψ〉  =  ES |ψ〉 , where S  is the overlap-integral matrix. The LDOS is calculated at 
each specific atomic site and a Lorentzian energy-level broadening of Γ  =  0.8 eV is 
included to account for bulk scattering. For the simulation of the LDOS maps, the 
same energy-level broadening was used and the LDOS at each site was multiplied 
with a Gaussian wavefunction of width σ =  0.65a, where a =  1.1 nm is the distance 
between two neighbouring sites.

Muffin-tin calculations. The surface-state electrons of Cu(111) are considered  
to form a 2D electron gas confined between the CO molecules, which are  
modelled as filled circles with a repulsive potential of 0.9 eV and radius  
R =  0.55a/2. The Schrödinger equation is solved for this particular potential 
landscape, and a Lorentzian broadening of Γ  =  0.8 eV is used to account  
for the bulk scattering.

Box-counting method. The Minkowski–Bouligand35 or box-counting method 
is a useful tool to determine the fractal dimension of a certain image, but has 
to be handled with care. In particular, as has been shown previously36, the size 

of the boxes needs to be chosen within a certain radius. More specifically, the 
largest box should not be more than 25% of the entire image and the smallest 
box is chosen to be the point at which the slope starts to deviate from the 
linear regime in the log(N) versus log(1/r) plot. Redundant features such as the 
background Friedel oscillations were removed by applying a mask. Furthermore, 
the wavefunction maps are not binary, and therefore it is necessary to specify the 
threshold value above which the pixels are part of the fractal set. The threshold 
is a certain percentage of the maximum amplitude of the wavefunction map at a 
specific energy. The error introduced by the choice of the threshold is accounted 
for by performing the calculation procedure for several threshold percentages: 
between 45% and 65% for the experimental wavefunction maps, and 60%, 75% 
and 90% for the top, centre and bottom of the error bar for the simulated  
(muffin-tin) LDOS maps (see Supplementary Information for the differences in 
the LDOS for these thresholds). The differences in threshold between experiment 
and simulation arise because the maps from the simulation are more pronounced 
than the experimental ones. In addition, due to the dependence on the tip,  
the experimental maps cannot always be directly compared to each other  
(see Supplementary Information). Another error sets in by determining the  
slope of the log–log plot and specifying which radii are taken into account.  
In Fig. 3b, the error bars therefore show the maximum value of these two 
independent errors.

Data availability
All data is available from the corresponding authors upon reasonable request. The 
experimental data can be accessed using open-source tools.
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