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Superadiabatic population transfer in a three-level
superconducting circuit
Antti Vepsäläinen, Sergey Danilin, Gheorghe Sorin Paraoanu*

Adiabaticmanipulation of the quantum state is an essential tool inmodern quantum information processing. Here, we
demonstrate the speedup of the adiabatic population transfer in a three-level superconducting transmon circuit by
suppressing the spurious nonadiabatic excitations with an additional two-photon microwave pulse. We apply this
superadiabatic method to the stimulated Raman adiabatic passage, realizing fast and robust population transfer from
the ground state to the second excited state of the quantum circuit.
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INTRODUCTION
The ability to accuratelymanipulate the state of quantum systems is one
of the prerequisites for high-fidelity quantum information processing
(1). The adiabatic control of quantum states is based on slowly modify-
ing the energy eigenstates of gapped systems; if the condition for adia-
batic following is satisfied, the system remains in its instantaneous
eigenstate at any moment in time. Techniques that are generically re-
ferred to as shortcuts to adiabaticity (2) aimat achieving faster operation
times through a guided evolution of the system toward the desired final
state, bypassing the restriction of the adiabatic theorem.

For adiabatic quantum computing (3), quantum annealing (4, 5),
and holonomic quantum computing (6–8), shortcuts to adiabaticity
would be one important route to quantum advantage (9). In quantum
thermodynamics, the suppression of interlevel transitions during adia-
batic cycles could lead to engines with increased efficiency (10),
providing novel insights into the foundations of the third law of ther-
modynamics (11–13). Furthermore, inmultilevel quantum information
processing (14), shortcuts to adiabaticity can be used for robust gates
(15) and efficient initial state preparation.

Superadiabatic protocols (also called transitionless driving) (16–19)
are a type of shortcut to adiabaticity based on counterdiabatic driving—
designed such that they suppress nonadiabatic excitations; in conse-
quence, the system follows the instantaneous Hamiltonian eigenstate at
any time during evolution. These protocols are universal, and the ro-
bustness against errors is inherited from the corresponding adiabatic
process. However, a major difficulty in implementing them stems from
the fact that the superadiabatic control drive uses complex couplings
with externally controlled and stable Peierls phases (20). In optical set-
ups, this would require lasers with exquisitely low phase noise. This is
why so far superadiabatic protocols have been demonstrated only in
simple configurations, involving either two levels (21, 22) or two control
fields (23–25).

Here, we show that the required phase stability can be achieved in
the microwave regime using circuit quantum electrodynamics as the
experimental platform (26). We use the first three states of a super-
conducting transmon circuit (27) to transfer population between the
ground state and the second excited state. This is an important task in
quantum control of multilevel systems, where fast and efficient state
preparation serves as an initial step for many algorithms (28, 29). We
achieve this by using three microwave pulses: Two of them realize the
stimulated Raman adiabatic passage (STIRAP) (30–32), while the third
is a two-photon process creating the counterdiabatic Hamiltonian,
which forces the system to follow its instantaneous eigenstate even
though the adiabatic condition is violated. This type of driving, called
loop configuration (33), results in an externally controlled gauge-
invariant phase and implements the superadiabatic STIRAP (saSTIRAP)
protocol (34, 35).

For a three-level system in the ladder configuration, the resonant
STIRAP Hamiltonian can be written as

H0ðtÞ ¼ ℏ

2
W01ðtÞeif01 j0
� �

1j þ W12ðtÞeif12 j1
� �

〈2j þ h:c:� ð1Þ

where W01(t) and W12(t) describe the Rabi coupling of the microwave
drive pulses to the transmon in the frame rotating with the drive fre-
quencies. The drives have a Gaussian shape (32)

W01ðtÞ ¼ W01exp½�t2=ð2s2Þ �;
W12ðtÞ ¼ W12exp½�ðt � tsÞ2=ð2s2Þ� ð2Þ

where ts is the lag between the two pulses. In the experiment, we use two
intermediate frequency microwave tones with externally controlled
phases, f01 and f12, which are digitally mixed with the pulse envelopes
W01(t) and W12(t) using an arbitrary waveform generator (see the Sup-
plementary Materials for details). The pulses are further mixed in an
analog IQ mixer with a local oscillator tone wLO/(2p) = 6.92 GHz
to produce two signals that resonantly drive the 0–1 and 1–2 transi-
tions of the three-level system at frequencies w01/(2p) = 6.99 GHz and
w12/(2p) = 6.62 GHz (see Fig. 1).

In the STIRAP protocol, the system follows adiabatically one of the
instantaneous eigenstates of the above Hamiltonian, called the dark
state, jDðtÞi ¼ cosQðtÞeif12 j0i � sinQðtÞe�if01 j2i , where Q(t) =
tan−1[W01(t)/W12(t)] changes slowly from 0 to p/2. This implies that
the pulse driving the 1–2 transition is counterintuitively applied before
the 0–1 pulse, enabling the population to be transferred directly to the
second excited statewithout exciting the intermediate state |1〉 at any time
in between. However, if the change in the amplitudes of the control
signals is too abrupt, the system gets diabatically excited away from
the state |D(t)〉, reducing the transferred population and therefore
limiting the fidelity of the process.

The spurious excitations of STIRAP can be canceled using the super-
adiabaticmethod (16–19).The idea is todesign anewcontrolHamiltonian,
which evolves the system through the adiabatic states given by the STIRAP
Hamiltonian in Eq. 1, even when the adiabatic condition is not fully
satisfied (16). The form of the counterdiabatic Hamiltonian can be
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found by reverse Hamiltonian engineering (19, 34, 35) (see the Sup-
plementary Materials for the derivation), requiring the addition of a
third control pulse given by

HcdðtÞ ¼ ℏ

2
W02ðtÞe�if20 j0� �

〈2j þ h:c:� ð3Þ

with Rabi coupling

W02ðtÞ ¼ 2 _QðtÞ ð4Þ

and a phase f20 that must satisfy the relation f01 + f12 + f20 = − p/2 (36).
For the STIRAPpulse amplitudes given inEq. 2 and assumingW01 =W12,
the shape of the counterdiabatic pulse can be evaluated as (35)

W02ðtÞ ¼ � ts
s2

1

cosh � ts
s2 ðt � ts=2Þ

� � ð5Þ

To experimentally create the microwave pulse implementing the
counterdiabatic Hamiltonian, we use a two-photon process generated by
a third microwave drive field with frequency w2ph = (w01 + w12)/2 and
phase f2ph, which couples into the 0–1 and 1–2 transitions with re-
spective Rabi couplings W2ph and

ffiffiffi
2

p
W2ph. The factor

ffiffiffi
2

p
is a conse-

quence of the almost harmonic energy level structure of the transmon
circuit, which results in a higher dipole coupling for higher transitions
(27). The low anharmonicity also leads to selection rules that prevent
us from using a direct 0–2 drive to implement the counterdiabatic
Hamiltonian. The chosen drive frequency results in detunings ± D from
both the 0–1 and 1–2 transitions, D = w01 − w2ph = (w01 − w12)/2, thus
Vepsäläinen et al., Sci. Adv. 2019;5 : eaau5999 8 February 2019
satisfying the two-photon resonance condition. The two-photon driv-
ing generates an effective Rabi coupling W02ðtÞ ¼

ffiffiffi
2

p
W2

2ph=ð2DÞ and
phase f20 = − 2f2ph − p, which can be obtained from perturbation
theory (15, 37). In addition, two-photon driving creates small ac-Stark
shifts to all the energy levels, which appear as dynamic detunings of the
drive frequencies from the transitions.We compensate for this effect by
slightly tuning the phases of all the drive pulses during the evolution (see
Methods for details).
 on F
ebrua

em
ag.org/
RESULTS
Efficient transfer of population
To demonstrate that the superadiabatic protocol corrects for the non-
adiabatic losses even when the adiabaticity condition for STIRAP is not
satisfied, we experimentally compare the two methods in Fig. 2. Here,
the peak STIRAP amplitudes W01 and W12 were chosen as W01/(2p) =
W12/(2p) = 25.5MHz, the separation of the two STIRAP pulses is ts/s =
−1.5, and the widths of the Gaussian pulse shapes are s = 20 ns. During
STIRAP, there is a significant population in state |1〉 due to the violation
of the adiabatic condition, which results in transitions between the in-
stantaneous eigenstates of the system. Consequently, the population p2
is only 0.8 after the pulses. In the saSTIRAP experiment, there is almost
no population in state |1〉 and p2 reaches 0.96, which is very close to the
ideal performance, demonstrating the power of the superadiabatic
method. The result is supported by the numerical simulation, shown
with solid lines (see Methods for details). The dashed lines show a
simulation with the same parameters but without decoherence, result-
ing in p2 = 0.9997 and confirming that most of the remaining losses in
the saSTIRAP experiment are caused by the energy relaxation of the
qutrit (with rates G01 = 0.6 MHz and G12 = 0.83 MHz, obtained by
independent measurements).

In Fig. 3, we show the performance of the superadiabatic protocol
for a wide range of STIRAP parameters. We explore the parameter
space (ts, s) by varying the STIRAP pulse width s and the normalized
STIRAP pulse separation |ts|/s, as shown in Fig. 3A. The optimal pulse
separation for STIRAP is ts/s = −1.5 (31). In the upper part of the
plot, the STIRAP fidelity is low because the separation of the pulses
ry 11, 2019
A

C D

B

Fig. 1. Schematic of the experiment. (A) Loop driving for saSTIRAP: A counter-
diabatic drive with effective Rabi frequency W02 (dashed purple arrow) is applied in
parallel with a STIRAP sequence consisting of pulses W01 and W12, which are res-
onant with the respective transitions 0–1 and 1–2. The counterdiabatic drive is a
two-photon process realized by an off-resonant pulse (detuning D with respect to
the first transition), which couples with strengths W2ph and

ffiffiffi
2

p
W2ph into the

corresponding transitions. (B) Schematic of the timings and shapes of the pulses.
The last pulse is the measurement pulse applied to the resonator. (C) Schematic
(including the IQ mixers used for driving and measurement) and optical image of
the transmon. (D) Geometric representation of the Hamiltonian on a three-site
plaquette with Peierls hopping and resulting gauge-invariant phase F = f01 +
f12 + f20.
Fig. 2. Comparison between STIRAP and saSTIRAP. Time evolution of the popula-
tions p0, p1, and p2 during STIRAP (diamonds) and saSTIRAP (circles). The solid lines
show the corresponding simulation, which includes decoherence. A simulation for
the ideal case without decoherence is presented with dashed lines. The experiment
was performed with the parametersW01 =W12 = 25.5 MHz, ts/s = − 1.5, and s = 20 ns.
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is too large, whereas for small s the adiabatic condition is not satisfied.
STIRAP also fails for too small pulse separations; some high-fidelity
population transfer seen around ts = 0 in the experiment is not due to
STIRAP but is driven by the holonomic gate studied in (8, 38). The
experiment can be compared to a numerical simulation, which repli-
cates the results accurately (right panel in the figure). Figure 3B de-
monstrates that, by adding the counterdiabatic drive, we are able to
counteract the diabatic losses for almost all the STIRAP parameters.

The performance of the protocol can be further characterized by
comparing its transfer speed to the quantum speed limit at the maxi-
mum counter-diabatic pulse coupling. We follow a convention where
the duration of the saSTIRAP protocol is defined as the time lapse be-
tween an initial state with population 0.99 in the ground state and a
final state with population 0.9 in the second excited state (35). This
corresponds to initial and final mixing angles of Qi = 0.03 p and Qf =
0.4 p, respectively. For calculating the quantum speed limit, we use
the Bhattacharyya bound (39) for the two-level subspace spanned by
the states |0〉 and |2〉 under the maximal experimentally accessible
two-photon Rabi drive Wmax

02 =ð2pÞ ¼ 48 MHz. We take the initial and
final states with the same populations as above, which results inT0:9

QSL ¼
2arccosj〈DðqiÞjDðqf Þ〉j=Wmax

02 ≈ 7:7 ns. The quantum speed limit can
be compared to the transfer times for the saSTIRAP protocol, which
are shown by the overlaid solid lines in Fig. 3B. The transfer times are
the fastest (TsaSTIRAP ≈ 2.0TQSL) in the upper left corner of the panels
corresponding to s = 10 ns and |ts/s| = 3. However, as we approach that
point, the STIRAP fidelity is also reduced and, in consequence, the pop-
ulation transfer occurs predominantly due to the counterdiabatic driv-
ing. Thus, the population transfer will start to be increasingly sensitive
to the amplitudes of the pulses. To improve the robustness, the strength
of the STIRAP part must be increased by reducing ts/s or by increasing
s, which leads to a reduction of transfer speed. The trade-off is impor-
Vepsäläinen et al., Sci. Adv. 2019;5 : eaau5999 8 February 2019
tant for the potential applications of the superadiabaticmethod andwill
be analyzed later in greater detail.

Gauge-invariant phase
Loop driving with complex couplings between each pair of states results
in a nontrivial synthetic gauge structure on the triangular plaquette
formed by the three states, previously studied theoretically in (36, 40);
related schemes have been proposed for cold atom lattices in (41). See
Fig. 1D for a simple illustration.

In Fig. 4, we demonstrate experimentally that, in a three-level trans-
mon, the dynamics of the system is determined by the gauge-invariant
phaseF = f01 + f12 + f20.We present the population transferred to state
|2〉, when one of the phases f01, f12, or f2ph is kept fixed, while the other
two are varied. The populations are measured at a time t = 20 ns after
the maximum of the 0–1 drive pulse, and the two-photon pulse is set
to satisfy Eq. 4. The experiment shows that the transferred popula-
tion to state |2〉, p2, depends only on f01 + f12 + f20 = F and not on
each phase separately (36). This allows us to choose the gauge f01 =
f12 = 0 and use f20 = F = −2f2ph − p as the externally controlled
gauge-invariant phase.

In this gauge, the full Hamiltonian of the system reads

HðtÞ ¼ ℏ

2
½W01ðtÞj0i〈1j þW12ðtÞj1〉 2jh

þ W02ðtÞe�iFj0i 2j þ h:c:h � ð6Þ

thus simplifying the problem significantly (see also the Supplemen-
tary Materials).
 on F
ebruary 11, 2019
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Fig. 3. Correction of the nonadiabatic losses with the saSTIRAP protocol.
(A) Population p2 in the state |2〉 for the STIRAP process with W01/(2p) = W12/(2p) =
25.5 MHz as a function of the pulse width s and the normalized pulse separation
|ts|/s. (B) Population p2 for the corresponding saSTIRAP process. The left plots are
experiments, while the right ones are the corresponding simulation results. The
solid black lines show the transfer time t0:9tr in nanoseconds to achieve the pop-
ulation p2 = 0.9 in saSTIRAP.
Fig. 4. Control of the system dynamics with the gauge-invariant phase. Un-
der loop driving, the phase F is a gauge-invariant quantity, in analogy with lattice
gauge theories, where it is typically produced by an applied magnetic field. The
three-dimensional plot shows lines of constant population p2 in the state |2〉, in
the orthogonal planes (f12, f2ph) (with f01 constant), (f01, f2ph) (with f12 constant), and
(f12, f01) (with f2ph constant). The gauge-invariance relation f01 + f12 − 2f2ph − p = F
corresponds to tilted planes that intersect the axes. Note also that the periodicity along
the f2ph axis is twice that of the periodicity along the axes f01 and f12 as a result of
two-photon driving. In the experiment, we hadW01/(2p) =W12/(2p) = 25.5 MHz, ts =
−30 ns, and s = 20 ns.
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Robustness properties
STIRAP is known to be insensitive to changes in the amplitudes of the
drive fields. The crucial question is whether this robustness extends to
the amplitude of the counterdiabatic field, as for the practical applica-
tions of the protocol its resilience to errors is a critical feature
distinguishing it from the nonadiabatic methods. First, we introduce
the area of the counterdiabatic pulse

A02 ¼ ∫
∞

�∞dtW02ðtÞ ð7Þ

and we define STIRAP pulse area as

A ¼ ∫
∞

�∞dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

01ðtÞ þW2
12ðtÞ

q
ð8Þ

which is the measure of adiabaticity of STIRAP according to the global
adiabatic conditionA ≫ p=2(31). In Fig. 5, we show the population of
state |2〉, p2, as a function of the counterdiabatic pulse area and its phase.
The saSTIRAP process reveals its useful properties for the parameter
values inside the area outlined with blue dashed-line ellipses, where
the pulse areasA02 are close to p, as expected fromEq. 5. For the param-
eters ðA02; f2phÞ inside the ellipses, p2 is a rather slow-varying function
ofA02, indicating that saSTIRAP is robust against errors in the area of
the counterdiabatic pulse. In contrast, population transfer can also take
place for values ðA02; f2phÞ outside the ellipses, but without robustness
against variations ofA02. The right panel shows a corresponding nu-
merical simulation, whichmatches the pattern seen in the experiment
quite well. From the simulation, we can also see that the maximum
transfer occurs around an optimal phase, which is very close to the
ideal f2ph = −p/4 + np. In the experiment, a small shift exists in the
phases due to the phase imbalance of the IQmixer (see Fig. 1C) used to
combine the driving pulses (more details available in the Supplementary
Materials).

To explicitly compare saSTIRAP with the direct nonadiabatic pro-
cess, we show in Fig. 6 the transferred population as a function of the
areaA of the STIRAP pulses andA02 of the counterdiabatic pulse. The
phase f2ph is tuned to yield themaximumpopulation in state |2〉 at each
value of the STIRAP areaA. In the presence of only the counterdiabatic
Vepsäläinen et al., Sci. Adv. 2019;5 : eaau5999 8 February 2019
pulse (along the horizontal axis whereA ¼ 0), the population transfer,
as expected, occurs in a rather narrow range of A02 values around p.
When the area of the STIRAP pulses is increased (at approximately
A ≈ 2p), the range of values ofA02 where the transfer occurs enlarges
significantly. This demonstrates the advantage that the superadiabatic
method offers: It has better fidelity than STIRAP while being less sen-
sitive to the variation inA02 than a raw p pulse. Theoretically, the fidelity
of STIRAP approaches unity only in the limit of infinite pulse area (the
adiabatic condition is fully satisfied), whereas ideal saSTIRAP has unit
fidelity for all the values of the STIRAP pulse area.

Figure 6 also demonstrates that, even though the maximal effec-
tive two-photon coupling is smaller than the direct 0–1 and 1–2
couplings, it does not severely restrict the speed of the method, be-
cause the optimal two-photon pulse area A02 ¼ p is usually signif-
icantly smaller than the STIRAP area A required to provide the
demanded robustness. This is also an advantage over rapid adiabat-
ic passage (42, 43), where a much stronger two-photon pulse on the
0–2 transition would be needed.
METHODS
Three-level quantum tomography
The state of the qutrit was obtained by three-level quantum tomogra-
phy, where the diagonal elements of the density matrix were calculated
– – /2 0 /2
0

1

– – /2 0 /2
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Fig. 5. Robustness of saSTIRAP against variations in the counterdiabatic pulse
parameters. Population p2 in the state |2〉 as a function of the area of the counter-
diabatic pulse and the gauge-invariant phase. The experimental result is shown in
the left panel with the corresponding simulation in the right panel. The parameters
used in the experiment are ts = −30 ns, s = 20 ns, andA ¼ 4:2p. Note thatA02 ¼ 0
corresponds to pure STIRAP. The blue dashed-line ellipses represent the areas where
saSTIRAP is robust against changes in parameters A02 and f2ph.
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Fig. 6. Comparison between saSTIRAP and nonadiabatic population transfer.
Transferred population p2 (experiment) as a function of the STIRAP pulse area
A defined in Eq. 8 and the two-photon pulse area A02 from Eq. 7. We also show
isopopulation lines (from 0.1 to 0.8 in steps of 0.1 and from 0.8 to 1.0 in steps of
0.01) obtained from the simulations, showing agreement with the data and deli-
neating the same region of high transfer as that obtained from the experiment. In
this experiment, the peak STIRAP Rabi frequencies were increased from zero to W01/
(2p) = W12/(2p) = 40 MHz. Similarly, the two-photon pulse amplitude was varied from
zero toW2ph/(2p) = 77MHz. The horizontal axis withA ¼ 0corresponds to two-photon
Rabi driving, whereas the vertical axis withA02 ¼ 0 corresponds to standard STIRAP.
In the experiment, the STIRAP pulse separation was ts = −30 ns and the pulse width
was s = 20 ns.
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from the averaged IQ traces of the cavity response (44). The mea-
sured trace

rmeasðtÞ ¼ ∑
i¼0;1;2

piriðtÞ ð9Þ

is a linear combination of calibration traces corresponding to states |0〉,
|1〉, and |2〉withweight factors p0, p1, and p2, which give the occupation
probability of each state. Here, t is the time from the beginning of the
measurement pulse. Using the least squares fit of the calibration traces
to the measured trace, we can extract the most likely occupation prob-
abilities for the three-level system.

The calibration traces inevitably include the effect of relaxation,which,
if left uncompensated, can lead to an artificial overestimation of the state
population in both STIRAP and saSTIRAP. However, since we know the
relaxation rates, we can correct for this effect bymodifying the calibration
trajectories to include some contribution from the lower states, described
by errors zij with i < j. The measured trajectory rj is then given by

rjðtÞ ¼ 1� ∑
i<j
zij

� �
~r jðtÞ þ ∑

i<j
zij~r iðtÞ ð10Þ

with ~r iðtÞ describing the unknown ideal responses of state |i〉. From the
above equation, the ideal responses can be solved iteratively, yielding

~r0ðtÞ¼ r0ðtÞ;
~r1ðtÞ ¼ r1ðtÞ � z01~r0ðtÞ

1� z01
;

~r2ðtÞ ¼ r2ðtÞ � z02~r0ðtÞ � z12~r1ðtÞ
1� z02 � z12

ð11Þ

We used z01 = 0.01, z12 = 0.01, and z02 = 0.02, which are obtained
by comparing a reference Rabi experiment to a corresponding
simulation with known energy relaxation rates.

Dynamical phase correction
The off-resonant two-photon driving produced parasitic ac-Stark shifts
of the energy levels, which we compensated for by using dynamically
adjusted phases. Following (15), the ac-Stark shifts can be calculated from
the second-order perturbation theory as ~EnðtÞ ¼ En þ 〈njVðtÞjn〉 þ
∑k≠n

〈kjVðtÞjn〉
En�Ek

, where V(t) consists of the off-diagonal elements of
the two-photon drive Hamiltonian V ¼ ℏW2phðtÞðj0i〈1jeif2phþffiffiffi
2

p j1〉 2jeif2ph þ h:c:Þ=2�
in the frame rotating with the drive. The en-

ergies En are the detunings of the drive from the 0–1 and 1–2 transi-
tions, E0 = 0, E1 = ℏD, and E2 = 0. The resulting ac-Stark shifts en,k =
~Ek − ~En − (Ek − En) are e01(t) = ℏ|W2ph|

2/D, e12 = − 5ℏ|W2ph|
2/(4D), and

e0,2 =−ℏ|W2ph|
2/(4D). To compensate for the shifts in the energy levels,we

dynamically modified the phases of all the three drives as fnkðtÞ → fnk þ
∫t�∞dtenkðtÞ=ℏ.As a result, the frequencies of the drivesmatched the ac-
Stark shifted qutrit transition frequencies at all instants of time.

Numerical simulations
The system was modeled with the Hamiltonian

HsimðtÞ ¼ H0 þ ℏW2phðtÞ=2ðj0i〈1jeiðf2phðtÞ�DtÞ

þ
ffiffiffi
2

p
j1〉〈2jeiðf2phðtÞþDtÞ þ h:c:Þ ð12Þ

in the frame rotating with the STIRAP drives. Here, H0 is the STIRAP
Hamiltonian given in Eq. 1, and the evolution of the system was solved
Vepsäläinen et al., Sci. Adv. 2019;5 : eaau5999 8 February 2019
from the Lindbladmaster equation
:
rðtÞ ¼ �i½HsimðtÞ; rðtÞ�=ℏþ ∑i¼0;1

Gi;iþ1ðjii〈iþ 1jrðtÞjiþ 1〉 ij � 1
2 ðji

� �
〈ijrðtÞ þ rðtÞji〉 ijÞÞh , where r(t)

is the densitymatrix of the systemandGi,i + 1 are the energy relaxation rates
(obtained by independent qubit characterization measurements).
CONCLUSIONS
We have demonstrated a speedup of population transfer in STIRAP by
introducing an additional counterdiabatic two-photon control pulse
that corrects for nonadiabaticity. The process was controlled by the
pulse amplitudes and by a gauge-invariant phase. We have character-
ized the robustness of the process with respect to the counterdiabatic
field and evaluated the trade-off between the speed of the process and
the insensitivity to control parameters.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/2/eaau5999/DC1
Experimental setup and sample
Reverse engineering of the counteradiabatic drive
Synthetic Peierls couplings on the triangular plaquette
Fig. S1. Electronics, cryogenics, and sample schematic.
Fig. S2. Pulse sequence for saSTIRAP.
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