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Quantum states of matter—such as solids, magnets and topo-
logical phases—typically exhibit collective excitations (for 
example, phonons, magnons and anyons)1. These involve the 
motion of many particles in the system, yet, remarkably, act 
like a single emergent entity—a quasiparticle. Known to be 
long lived at the lowest energies, quasiparticles are expected 
to become unstable when encountering the inevitable con-
tinuum of many-particle excited states at high energies, 
where decay is kinematically allowed. Although this is cor-
rect for weak interactions, we show that strong interactions 
generically stabilize quasiparticles by pushing them out of 
the continuum. This general mechanism is straightforwardly 
illustrated in an exactly solvable model. Using state-of-the-
art numerics, we find it at work in the spin-1 2∕  triangular-lat-
tice Heisenberg antiferromagnet (TLHAF). This is surprising 
given the expectation of magnon decay in this paradigmatic 
frustrated magnet. Turning to existing experimental data, we 
identify the detailed phenomenology of avoided decay in the 
TLHAF material2 Ba3CoSb2O9, and even in liquid helium3–8, one 
of the earliest instances of quasiparticle decay9. Our work 
unifies various phenomena above the universal low-energy 
regime in a comprehensive description. This broadens our 
window of understanding of many-body excitations, and pro-
vides a new perspective for controlling and stabilizing quan-
tum matter in the strongly interacting regime.

It is a fundamental insight of quantum mechanics that energy 
levels repel. This is commonly illustrated by letting two levels with 
unperturbed (‘bare’) energies ±Eb interact with one another through 
a coupling γ:
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The resulting energies of Ĥ are γ± +E b
2 2 . Hence, repulsion leads 

to a minimal separation of the levels of 2|γ|, no matter how small the 
initial separation 2|Eb|.

A natural question is whether this extends to the case of a dis-
crete level coupled to a continuum of states. The question might 
seem moot, because the common expectation is that a bare level 
inside a continuum will be dissolved by interactions. At best, it will 
become a finite-lifetime resonance. At worst, no hint of it remains.

If the bare level represents a quasiparticle, its broadening and 
disappearance in the many-particle continuum is known as qua-
siparticle decay. In the case of non-topological quantum magnets 
(for a detailed review, see ref. 10)—where quasiparticles go under the 
name of magnons or spin waves—the expectation of magnon decay 

has, surprisingly only recently, been borne out in inelastic neutron 
scattering experiments11–15 (see below).

We show that this expectation of quasiparticle decay is wrong if 
interactions are strong. Rather, with increasing interaction strength, 
an infinitely long-lived state re-emerges out of the continuum of 
states. This happens via a simple generalization of the familiar level 
repulsion, equation (1), for a bare state |ψ〉 with bare energy Eb cou-
pled to a continuum of states |φα〉 with bare energies Eα above a 
threshold energy Eth. Physically, this model represents states with 
a fixed value of total momentum (the continuous index α corre-
sponds to the relative momentum of two-particle states).

Concretely, for large enough coupling |γ|, there is a single dis-
crete state |ψ*〉 with an energy below the continuum, E* < Eth (see 
Methods). Moreover, the contribution of the unperturbed state |ψ〉 
to this final discrete state, denoted by the weight Z = |〈ψ|ψ*〉|2, can 
be large, and the weight approaches Z → 1

2
 for large |γ| if the con-

tinuum has finite support.
This is experimentally important: a vanishing Z implies that 

the state |ψ*〉 bears little relationship to the original quasiparticle. 
However, a large Z ensures that any experimental set-up for detect-
ing the original quasiparticle |ψ〉 also detects |ψ*〉. Hence, while the 
existence of |ψ*〉 and finiteness of Z for this simple model have been 
pointed out before16, its phenomenology, and in particular its rel-
evance to quasiparticles in strongly interacting quantum systems, 
seems to have been under-appreciated.

Figure 1 illustrates what inelastic neutron scattering would mea-
sure for a system described by this solvable model (see Methods). It 
shows the weight of the bare state |ψ〉 on the true eigenstates. The ini-
tially flat bare level (dashed line) is coupled to a continuum (shaded 
region). For weak interactions, the physics depends on the number 
of states the bare level encounters on entering the continuum. This 
is encoded in the density of states (DOS), ν(E). In this example we 
treat the case of the two-particle continuum of non-interacting par-
ticles with a parabolic dispersion (although any dispersion can be 
accommodated); its onset satisfies ν(Eth + δE) ≈ (δE)D/2 − 1 in D spa-
tial dimensions (see Supplementary Information).

We first discuss weak coupling γ. In high dimensions (D ≥ 3), the 
quasiparticle straightforwardly enters the continuum and decays 
(Fig. 1, top right). In lower dimensions, the entrance behaviour is 
delicate. For our particular model, the state cannot enter the con-
tinuum at all due to the discontinuous onset of the DOS16. Instead, 
its spectral weight Z is transferred into a decaying mode in the con-
tinuum. Detecting the residual quasiparticle requires very sensitive 
and high-resolution measurements (for example, neutron spin echo 
spectroscopy; see below). This singular behaviour may be regular-
ized in a more complete model, allowing the state to terminate9, 
which need not affect Fig. 1 (top left) at the resolution shown.
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The main focus of the present work is on large coupling γ, where 
we find that the quasiparticle re-emerges for any D (Fig. 1, bottom), 
accompanied by the weight Z → 1

2
, in agreement with our general 

claim.
How widely applicable is this mechanism of avoided quasipar-

ticle decay? Note that the fact we assumed γ to be independent of 
α is not important, because in the full solution, γ2 and the DOS 
always appear together. For example, in a system with SO(3) spin 
symmetry, the coupling constant vanishes near the threshold as 
γ δ δ+ ≈E E E( )th  (ref. 17). This leads to a different power of the 
onset of γ2ν(E), which amounts to shifting the effective dimension-
ality D → D + 2. Similarly, one could effectively include direct inter-
actions within the continuum by using a renormalized DOS.

There are, however, two essential implicit assumptions. First, 
there is space below the continuum into which to be repelled. This 
is not applicable to Fermi liquids, for example, where the contin-
uum starts directly above the ground-state energy over an extended 
region in momentum space. Second, the model does not actually 
treat the situation where the continuum is made of the same quasi-
particles that it repels, making it exactly solvable. This should be a 
good approximation if the quasiparticle trying to enter the contin-
uum has its momentum k well-separated from those quasiparticles 
whose momenta q and k − q make up the continuum at that point. 
As discussed below, this turns out to be the case in the TLHAF.

Before considering the challenging TLHAF, we verify our  
predictions in a tunable, yet numerically tractable, fully many-body 
quantum system. This consists of two spin-1

2
 chains: one a perfect 

paramagnet in a field, Ĥ Ŝ= − ∑3 n n
z

0
(A)

A, , the other an ordered quan-
tum Ising ferromagnet, Ĥ Ŝ Ŝ Ŝ= − ∑ ++J g(4 2 )n n

x
n

x
n

z
0
(B)

B, B, 1 B,
. The 

ground state of the paramagnet has all spins pointing up (a flipped 
spin is a dispersionless magnon). The ferromagnet is ordered along 
the x direction, with freely moving domain wall quasiparticles.

Inter-chain coupling can allow the magnon to decay into a  
pair of domain walls, illustrated in Fig. 2a. For this, consider the 

interaction γ Ŝ Ŝ= ∑H 4 n n
x

n
z

int A, B, . Our numerical data obtained using  
the dynamical density matrix renormalization group method 
(DMRG)18–20 (Fig. 2b) confirms the resulting familiar magnon decay 
for weak interactions. Crucially, as advertised, strong interactions pre-
vent quasiparticle decay, and the magnon re-emerges from the con-
tinuum unscathed. For precise values of the parameters, see Methods.

We now turn to the paradigmatic spin-1
2
TLHAF, which describes 

a wide range of frustrated quantum spin materials (see ref. 21 for 
a recent overview). Its ground state is ordered, with neighbouring 
spins forming a 120° angle22,23. However, away from the lowest ener-
gies24, the status of its magnon excitations remains unsettled due 
to the uncontrolled nature of the available analytic and numerical 
methods10,24–26. The most venerable of these is perhaps spin wave 
theory (SWT), an expansion in inverse spin, 1/S.

We consider the spin-1
2
 TLHAF







∑Ĥ δ δ Ŝ Ŝ= − ̂ ⋅ ̂ −J S S(1 )
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z z
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where a small easy-axis anisotropy (δ = 0.05) slightly gaps out 
the massless Goldstone modes, making the model more numeri-
cally tractable. Here, Ŝn

loc is the spin in the basis of the rotating  
(local) frame.

For this value of δ, SWT predicts magnon decay24 over a large 
region of momentum space (region shaded with dotted lines in the 
inset of Fig. 3a). A magnon with momentum k is then predicted to 
decay into two magnons with momenta q and k − q, where q ≈ K, 
the corner of the Brillouin zone. However, small spin and non-col-
linear order—breaking all symmetries and thus allowing for many 
interaction terms—generate strong quantum interactions. This sug-
gests an alternative to the expected scenario of magnon decay.

A recent advance in numerically simulating the dynamics of 
two-dimensional (2D) quantum systems27,28 allows us to directly test 
the prediction of magnon decay in equation (2). Figure 3a shows 
the out-of-plane dynamical spin structure factor along the A–B line 
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Fig. 1 | Avoided quasiparticle decay in a solvable model. The bare level |ψk〉 
(horizontal short-dashed line) is coupled to a continuum (hashed dotted 
lines). The left (right) column is representative of a continuum of gapped 
particles in dimensions D = 1, 2 (D ≥ 3). At weak coupling, we observe a 
decaying mode in the continuum (long-dashed line), with near-entrance 
behaviour depending on the dimensionality. For strong interactions, the 
outcome is independent of dimension: a renormalized quasiparticle ∣ψ*

k
 is 

pushed out, whose weight ∣ ∣ ∣ψ ψ= *Zk k k
2 approaches 1

2
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Fig. 2 | Avoided decay in an ising ladder. a, A paramagnet (PM) with 
magnon-like excitation (red arrow) and an Ising ferromagnet (FM) where 
the quasiparticles are domain walls. By coupling the two chains, a magnon 
can decay into two domain walls (red dots). b, The dynamic structure 
factor. The horizontal dashed line is the bare magnon dispersion (set by 
Ĥ0

(A)) and the shaded region (dotted lines) denotes the continuum of 
two domain walls (kinematic combinations of the numerically obtained 
dispersion). At low coupling strength, the magnon decays. For strong 
interactions, the magnon is pushed below the continuum.
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(blue line, inset) obtained from dynamical DMRG (see Methods). 
Becaue SWT predicts decay into a K-magnon, the dotted line shows 
the numerically obtained two-magnon energy εq + εK, with q along 
the orange line in the inset. The dashed curve is the SWT predic-
tion of the magnon in the non-interacting limit 1/S → 0 (LSWT),  
travelling deep into the two-magnon continuum. However, the 
numerically obtained S = 1

2
 dispersion is pushed out completely—a 

crisp instance of avoided magnon decay.
The dispersion is known to have a local minimum at the mid-

point M of the Brillouin zone edge. This appears at higher order in 
SWT and in series expansion methods24–26, as confirmed in Fig. 3c. 
Our novel prediction is that the avoided decay must in turn induce 
a local minimum at the midpoint Y1 of the magnetic Brillouin 
zone edge. This is apparent in Fig. 3a,c. More precisely, absence of 
magnon decay implies the strong constraint ε ε ε∣ − ∣ ≤M Y K1

, which we 
find to be satisfied in our numerics, and in disagreement with SWT.

Intriguingly, this phenomenology has already been observed in 
experiments. The magnetic material Ba3CoSb2O9 is well described 
by the TLHAF with a small easy-plane anisotropy. Figure 4a shows 
recent inelastic neutron scattering data2. Because this is sensitive 
to the full dynamical spin structure factor, it picks up copies of the 
magnon dispersion translated by K. Figure 4a thus shows two bands: 
the bottom one (ε1) centred at M and the top one (ε2) centred at Y1. 
Neither decay, and both exhibit a local minimum, in agreement with 
the phenomenology of Fig. 3. For comparison, Fig. 4b shows the 
numerically obtained data for the model described by equation (2) 
along the same momentum cut (see Supplementary Information). 
We can thus directly reinterpret apparently unrelated experimental 
features as being linked through avoided quasiparticle decay.

In contrast, magnon decay has been observed experimentally in 
a spin-2 TLHAF13. This is consistent with 1/S being a measure of the 
interaction strength, and avoided decay requiring strong interactions.

Level–continuum repulsion was also recently observed29 in the 
gapped spin–orbit-coupled frustrated magnet BiCu2PO6. This nicely 
fits our theoretical framework: its 1D nature suggests a sharp discon-
tinuous onset of the bare two-magnon DOS (γ ν δ δ+ ≈ ∕E E E( ) 12

th ),  
preventing a smooth quasiparticle entry into the continuum.  
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Fig. 3 | Avoided decay in the spin- 11
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 tLhAF with δ = 0.05. a, Inset: the 
Brillouin zone (the dashed line delineates the magnetic Brillouin zone). 
Linear spin wave theory (LSWT) predicts magnon decay in the shaded 
region, dominated by the process q → (q − K) + K. The black arrows illustrate 
that Y1 = M + K; hence decay is possible if ε ε ε> +Y M K1

. Main panel: the  
out-of-plane dynamical spin structure factor along the blue line in the inset.  
The dotted line represents the two-magnon states consisting of a magnon 
along the orange line (inset) and a K-magnon. The dashed line is the magnon  
dispersion from LSWT. We see avoided decay, where the level-continuum 
repulsion induces a local minimum near Y1. b,c, The LSWT prediction for 
the dispersion relation (b) and the numerical result (c). The dispersion is 
most heavily renormalized where LSWT predicts decay (see inset of a). 
The local minimum at M induces a local minimum at Y1 (white arrows).
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Fig. 4 | Avoided quasiparticle decay, genuine decay and level–continuum repulsion in experimental data for the tLhAF material Ba3cosb2O9, 
piperazinium hexachlorodicuprate (Phcc) and superfluid helium. a, Inelastic neutron scattering data and LSWT comparison for Ba3CoSb2O9 (see 
Methods for details)2. The neutron data pick up all magnon bands related by momentum K; the lower branch (ε1) goes through M, the higher branch (ε2) 
through Y1 (see Fig. 3 for Brillouin zone labelling). Similar to Fig. 3, magnon decay is avoided, with the local minimum near M inducing a local minimum 
near Y1. b, For comparison, we show the numerically obtained dispersion for the model described by equation (2) with δ = 0.05, taking J = 1.67 meV as 
in ref. 2 and including bands related by momentum K. We stress that this Hamiltonian does not directly model the experiment: the former (latter) has a 
small easy-axis (easy-plane) anisotropy. The similarity between a and b is evidence of the robustness of our proposed mechanism. c, A scenario where the 
quasiparticle does decay: inelastic neutron scattering data11 for PHCC. The white shaded region denotes the two-magnon continuum. The black line traces 
the magnon, which decays into the continuum. d, Black dots are the phonon–roton dispersion of superfluid helium extracted from refs. 4,5. Inset: single-
particle weight extracted from refs. 6,7 (see Methods). Our solvable model implies that the level approaches the continuum exponentially in the bare level: 

∝ − − × ×*E b k Eexp( )k k
bare  (solid red line). Here, ε Δ= −* *E : 2k k roton and ε Δ= −E : 2k k

bare bare
roton, with the bare level εk

bare estimated by fitting the roton minimum to 
a parabola. Moreover, the weight is predicted to go to zero proportional to the level approaching the continuum, that is, ∣ ∣≈ × × *Z a k Ek k , as confirmed in the 
inset. In both cases, we find that a kfit roton and b kfit roton are comparable to the (inverse) bandwidth, in testament to the strong interactions.
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This is in contrast to the quasiparticle decay observed11 in the 2D 
PHCC. Because the latter is spin–rotation symmetric, our earlier argu-
ment implies the effective dimensional shift D = 2 → D = 4. Hence, 
γ ν δ δ+ ≈E E E( )2

th , consistent with the smooth entry in Fig. 4c.
Finally, we consider the iconic quasiparticle dispersion of super-

fluid helium (Fig. 4d). Although it was originally thought that the 
quasiparticle would enter the two-roton continuum9, it is now 
known that the dispersion instead flattens off, consistent with the 
discontinuous onset of the two-roton DOS3,8 (see Supplementary 
Information). Here, we add the following quantitative insights. 
First, the distance to the continuum is exponentially small in the 
bare energy (red curve). Second, the quasiparticle weight Z decays 
to zero linearly with this distance; the high-quality data of refs. 4–7 
allow us to extract this information to confirm this prediction (inset, 
Fig. 4c). In fact, these two seemingly unrelated predictions are uni-
fied in our theory via the Hellmann–Feynman theorem, yielding 
dE*/dEb = Z (see Methods). Incidentally, avoided decay can also be 
found for smaller momenta30.

In conclusion, away from the universal low-energy regime, the 
excitations of many-body systems are not as unstructured as perhaps  
expected. Aside from the general message that interactions can  
prevent or even undo quasiparticle decay, our model can be used 
to derive functional relationships between a priori unrelated quan-
tities to extract fundamentally interesting information such as the 
strength of interactions from experiment, as showcased for super-
fluid helium. Our work also implies that the existence of quasipar-
ticle decay is not the default option, but instead places considerable 
constraints on underlying physical processes.

All of these insights, taken together, suggest the possibility of using 
interactions to control, in particular to stabilize, the behaviour of quan-
tum matter by employing, rather than combatting, strong interactions.
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Methods
Exactly solvable model. We couple a bare state |ψ〉 with bare energy Eb to a 
continuum of states |φα〉 with bare energies Eα, that is, Ĥ Ĥ γ= + ̂V0 , where

∫Ĥ ψ ψ α φ φ= ∣ ⟩⟨ ∣ + ∣ ⟩⟨ ∣α α αE Ed (3)0 b

∫ α ψ φ φ ψ̂ = ∣ ⟩ ⟨ ∣ + ∣ ⟩ ⟨ ∣α αV d ( ) (4)

The continuous label α satisfies 〈φα|φβ〉 = δ(α − β) and the density of states of the 
continuum is denoted as ν(E). For convenience, we define our origin to be at the 
onset of the continuum (in the notation of the main text, Eth = 0).

It is useful to consider the single-particle Green’s function 
ψ Ĥ ψ= ∣ − ∣−G E E( ) ( ) 1

. One can derive that G(E)−1 = E − Eb − γ2g(E) where we have 
defined ∫ ε= ν ε

ε−
g E( ) : d

E
( )

. A detailed derivation can be found in the Supplementary 
Information. Note that = −∞

→−∞

−G Elim ( )
E

1  and γ= − −
→

− −
− G E E glim ( ) (0 )

E 0

1
b

2

. Because G′(E) > 0, the existence of a (unique) pole at E* below the continuum 
(that is, E* < 0) is equivalent to G(0−)−1 > 0, which on its turn is equivalent to 
γ2 > Eb/|g(0−)|. If ν(0+) ≠ 0 (that is, the DOS has a discontinuous onset), then the 
integral defining |g(0−)| diverges, so any non-zero γ will give rise to a pole below 
the continuum. We note that an equivalent treatment can be found in ref. 16.

To obtain the single-particle weight Z = |〈ψ|ψ*〉|2 (where |ψ*〉 is the 
wavefunction with energy E* < 0), consider that the weight of the delta function 
δ(E − Eb − γ2g(E)) is given by the inverse derivative of its argument, that is 

=
γ− ′

Z
*g E

1
1 ( )2 . Moroever, for large |γ|, we have the relationship E* = γ2g(E*). In 

particular, from this one can derive that E* → −∞ as |γ| → ∞. We thus have that











= − ′
γ∣ ∣→∞ →−∞

−

Z
E g E

g E
lim lim 1

( )
( )

(5)
E

1

To evaluate this, we need the asymptotic behaviour of g(E). If ν(E) has finite 
support, then ∫ ν ε ε≈g E( ) ( )d

E
1  as |E| → ∞. Plugging this into equation (5), we 

obtain Z → 1
2
 as claimed in the main text.

If ν(E) is not bounded but instead decays as ν(E) ≈ β/Eα with α > 0 as E → +∞, 
then by the theory of Stieltjes this transforms33








∼

∼
∼β α

β α
β≈

− ∕∣ ∣ < ≠
∣ ∣ ∕ =

>
α

→−∞g E
E

E E
( )

if 0 1

(ln ) if 1
( 0) (6)E

min(1, )

From these asymptotics, we obtain






α
α α

=
∕ ≥
∕ + < < .γ∣ ∣→∞

Zlim
1 2 if 1,
1 (1 ) if 0 1

(7)

Note that this is lower bounded by 1
2
. In particular, for ν ∝ ∕E E( ) 1 , we obtain 

Z → 2
3
 as |γ| → ∞.

In Fig. 1, we plot the weight of the bare state |ψ〉 on the excited states; 
that is A ψ δ= ∑ ∣ ∣ ∣ −E n E E( ) : ( )n n

2
. We calculate it from the identity 

A = −
π

+E G E i( ) Im ( 0 )1 . A straightforward calculation (included in the 
Supplementary Information) gives

A










π
Γ

γ Γ
ν

δ γ ν
= − − +

≠

− − =
E

E
E E g E E

E

E E g E E
( )

1 ( )
( ( )) ( )

if ( ) 0

( ( )) if ( ) 0
(8)b

2 2 2

b
2

where Γ(E) := γ2πν(E). Within the continuum (that is, ν(E) ≠ 0), equation (8) can 
qualitatively be interpreted as a Lorentzian with an energy-dependent half-width 
at half-maximum (HWHM) Γ(E), and an energy-dependent mean Eb + γ2g(E). 
Note that for g(E) to be well-defined in the continuum, one has to interpret it as a 
Cauchy principal value.

More precisely, for the left column of Fig. 1, we consider the DOS






ν
ν

= <
∕ >

E
E

E E
( )

0 if 0
if 0

(9)
0

which is what one expects for the two-particle continuum of a 1D gapped model 
(see Supplementary Information). A straightforward calculation gives








∫ν ε
ε ε

ν
=

−
=

−
π
−

<

>

∞
g E

E
E

E

E
( ) d

( )
if 0

0 if 0
(10)0

0

0

We set ν0 = 1. In the top left panel of Fig. 1, we take γ = 0.2, whereas in the bottom 
left panel, γ = 0.7. We consider the hypothetical scenario where the onset of 

the continuum is at ωmin = 2 − cos(k), where k can physically be thought of as 
(total) momentum. Moreover, we take the bare level to be flat, ωb = 2. In terms 
of our earlier variable, where the DOS has its onset at E = 0, we can thus say that 
Eb = ωb − ωmin = cos(k).

For the right column of Fig. 1, we consider the DOS








ν
ν

=
< <

− ≤ ≤
E

E E E

E E E E E
( )

0 if 0 or

( ) if 0
(11)

m

m m0

which is what one expects for the two-particle continuum of a 3D gapped model 
(see Supplementary Information). This has a square-root onset at E = 0 and a 
square-root termination at E = Em. We obtain








ν
ν

=
π − ∕ < <
π − ∕ − − ∕

g E
E E E E
E E E E E

( )
( 2) if 0
( 2 1 ) otherwise

(12)m m

m m

0

0

Given our earlier results, we know that there will not always be an 
isolated state below the continuum. Instead, there is a threshold value 
γ ν= ∕∣ ∣ = ∕ π−E g E E(0 ) 2 ( )mth b b 0 . If Eb > 0, an isolated state exists below the 
continuum if and only if |γ| > γth.

We again consider ν0 = 1, ωmin = 2 − cos(k) and ωb = 2, but now we also have to 
choose an upper threshold energy: ωmax = 5 + cos(k). The top right panel of Fig. 1 
has γ = 0.2, whereas the bottom right panel has γ = 0.5. We note that the minimum 
interacting strength for which there is a state below the continuum for all  
values of k is

γ
ν

=
π

× ∕ + ∣ = ∕ π ≈ .=k2 1 (2 3sec( )) 2 5 0 357k
0

0

Finally, with regard to Fig. 1, we mention that we also plot the real part of 
complex poles when they exist. We see that their location nicely agrees with where 
the intensity of A E( ) is largest. Moreover, the data in Fig. 1 have been convoluted 
with a Gaussian with σ = 0.025 (in units shown). This is to give the delta function 
outside the continuum a visible width.

Ising ladder. In Fig. 2b, we plot the dynamical spin structure factor 
S ∫ω σ σ= ∣ ̂ ̂ ∣ ω

π −k t t( , ) 0 ( ) (0) 0 e dxx
A k
x

A k
x i t1

2 , ,  of the spin-
1
2  ladder defined in the 

main text. This quantity is very useful, as similarly to A E( ) considered in the 
solvable model, it tells us about weight on energy eigenstates. More precisely, 
S ω δ ω ω σ= ∑ − ∣⟨ ∣ ̂ ∣ ⟩∣k n( , ) ( ) 0xx

n n A k
x

,
2. We calculated these dynamical spin–spin 

correlations by first using DMRG to obtain the ground state18 and subsequently 
time-evolving σ ∣0A k

x
,  using a matrix-product-operator-based method19,20. We 

found that a timestep truncation of dt = 0.1 and a low bond dimension of 
χ = 30 was enough to achieve converged results. We used linear prediction34 
and multiplication by a Gaussian to soften the effects of Fourier-transforming a 
finite-time window. This introduces an effective broadening corresponding to a 
convolution with a Gaussian with σ = 0.055 in the units shown in Fig. 2.

The values of the parameters for the top panel in Fig. 2b are gB = 0.5, JB = 1 
and γ = 0.3. If we now ramp up the coupling strength γ, however, this effectively 
renormalizes the parameters of the Ising chain. This is because Ĥint is not purely an 
interaction term: it contains an Ŝz on the Ising chain, which attempts to condense 
the domain walls and cause a phase transition. To prevent this, while ramping 
up γ we also change parameters JB and gB such that the location of the continuum 
(shaded region in Fig. 2b) remains roughly unchanged. Thus, for the bottom 
panel, we arrive at gB = 0.9, J = 3 and γ = 3.4. The location of the continuum was 
determined by numerically extracting the dispersion of a single domain wall.

Dynamics of the TLHAF. In Fig. 3a, we consider the out-of-plane dynamical 
spin structure factor S ∫ω σ σ= ∣ ̂ ̂ ∣ ω

π − t tk( , ) 0 ( ) (0) 0 e dyy y y i t
k k

1
2  of the Hamiltonian 

in equation (2), where we take the 120° order to be in the x–z plane. This can be 
obtained by the methods mentioned in the case of the Ising ladder (including 
linear prediction), extended to the case of cylindrical geometry (for more details, 
see refs. 27,28). For the data in this work, the cylinder has circumference Lcirc = 6, 
taking the periodic direction to be along one of the primitive vectors. We checked 
that while the multimagnon continuum still has a dependence on Lcirc, the single-
magnon dispersion is better converged in Lcirc—at least for the middle- and high-
energy modes of interest. One way we checked this is by comparing the energies at 
points that are equivalent in 2D but not on the cylinder geometry, and finding that 
they agree.

Due to the absence of continuous symmetry in the ground state, the large 
coordination number of the lattice and the fact that the isotropic point has 
three Goldstone modes, it is numerically challenging to time-evolve this highly 
entangled state. For this reason we are limited in the bond dimensions that we 
can reach: χ = 450 for the long-time dynamics necessary for resolving high-energy 
modes, and χ = 800 for short-time dynamics for low-energy modes (see discussion 
in the following).
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The numerical parameters for Fig. 3a correspond to a timestep truncation 
dt = 0.05J, bond dimension χ = 450 and an effective Gaussian broadening with 
σ = 0.077J. The dotted line in Fig. 3a is the sum εq + εK, where q is along the orange 
line in the inset. Here εq was obtained by tracing the peak of the spectral function 
along that slice, and εK is a low-energy feature that could not be resolved with bond 
dimension χ = 450. Instead, we went up to χ = 800, which limited the time window 
we could obtain, leading to larger effective broadening. However, because the low-
energy mode is well-separated from other (relevant) modes, one can still reliably 
extract the energy from a broad response. From a scaling in bond dimension, we 
then obtained εK ≈ 0.3J for the value δ = 0.05. This extrapolation is represented 
visually in the Supplementary Information. This is markedly lower than the LSWT 
prediction, ε ≈ . J0 41K

LSWT .
The magnon dispersion in Fig. 3c was obtained by tracing the low-energy peak 

of the spectral function, having verified that the magnon branch was resolved 
enough for this to be sensible. At low energies, this was supplemented by the 
aforementioned approach where we could go up to χ = 800. Due to the cylindrical 
geometry on which our method is based, the dispersion we obtain is continuous 
along one direction and discrete along the other. We then superimposed the 
momentum cuts along three different orientations and subsequently interpolated 
this to the full 2D Brillouin zone (see Supplementary Information). The fact that 
where these cuts intersected they agreed is a confirmation that the circumference 
Lcirc = 6 is large enough for the single-magnon dispersion to resemble the true 
2D result. As a sanity check for our interpolation method, we verified that it 
gives the correct result when applied to the LSWT dispersion, as shown in the 
Supplementary Information .

We present a detailed analysis of the convergence of our results in both bond 
dimension and cylinder circumference in the Supplementary Information.

Experimental data for the TLHAF. In the inelastic neutron scattering data for 
Ba3CoSb2O9 in Fig. 4a, the momentum cut is along K–K′. In the inset of Fig. 3a,  
K′ is shown as a corner point of the (first) Brillouin zone. However, in the 
experiment2, K′ was taken in the second Brillouin zone (which differs from the 
other choice by a reciprocal lattice vector). This difference has no bearing on 
the bands one picks up, so for our purposes this distinction is irrelevant. It does, 
however, affect the precise value of the intensity. This explains why Fig. 4a is not 
left–right symmetric.

Subtleties near and at the isotropic point of the TLHAF. The decay process 
k → K + (k − K) accounts for the complete decay region (as predicted by LSWT) 
only at the isotropic point (δ = 0). For δ ≠ 0, this process represents the core of the 
decay region, which is then slightly extended by considering k → q + (k − q) with 
q ≈ K. One consequence is that the minimum predicted by the principle of avoided 
decay is only precisely at Y1 at the isotropic point. Indeed, in Fig. 3c one can see 
that the minimum (for δ = 0.05) has been slightly shifted inward, albeit not very 
substantially so.

Interestingly, at the isotropic point δ = 0, absence of decay is equivalent to 
the magnon dispersion εk being periodic with respect to the magnetic Brillouin 
zone—which is three times smaller than the original Brillouin zone. (This can be 
derived from the fact that εK = 0 for δ = 0). This powerful criterion might help to 

figure out the extent of (avoided) decay at the isotropic point, be it using numerical 
or experimental methods.

Relationship between Eb, E* and Z. In the main text, we alluded to the general 
relationship dE*/dEb = Z. This is a general property of our model. To prove this, 
first rewrite

ψ Ĥ ψ ψ Ĥ ψ= ∣ ∣ = ∣ ∣E
E E E

d *
d

d
d

* * * d
d

* (13)
b b b

where we used the Hellmann–Feynman theorem to move the derivative inside.  
The proof is finished by noting that equation (3) implies ψ ψ= ∣ ⟩ ⟨ ∣Ĥ

E
d
d b

.

Predictions for helium. Finally, we make a few comments relevant to the case of 
superfluid helium. As shown in the Supplementary Information, the two-roton 
continuum has a jump discontinuity . Hence, let us consider the case where 
ν(E) has a discontinuous onset ν0. A straightforward computation then shows 
that g(E) ≈ ν0 ln(−E) + const, for E small and negative. Hence, remembering the 
condition we derived above (E* = Eb + γ2g(E*)), we see that as E* → 0−, we have 
the functional relationship ν0 ln(−E*) = Eb + const, that is, E* ∝ exp(−Eb/ν0). Using 
the fact (see Supplementary Information) that ν0 ≈ 1/k, we obtain the formula 
mentioned in the main text. Using the general relationship dE*/dEb = Z, we also 
directly obtain the other prediction. In particular, this means that the values of a 
and b (the parameters mentioned in the caption of Fig. 4) should be equal. However, 
it does not make sense to expect this for the experimental data, as the weight Z 
extracted in that setting is usually only defined up to a global multiplicative factor.

Experimental data for helium. With regard to the experimental data for 
helium, the quasiparticle dispersion relation was straightforwardly extracted 
from refs. 4,5. The weight, however, is more subtle (refs. 6,7 show the data as 
a function of momentum, which we extracted and interpolated). We then 
evaluated this interpolated function at the same momenta for which refs. 4,5 
quoted values for the energy. This allowed us to plot Z as a function of energy 
in the inset of Fig. 4d.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.

code availability
Details about the DMRG code are provided in the Methods and in the 
Supplementary Information.
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