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Quantum gas microscopes for ultracold atoms can provide 
high-resolution real-space snapshots of complex many-body 
systems. We implement machine learning to analyse and 
classify such snapshots of ultracold atoms. Specifically, we 
compare the data from an experimental realization of the 
two-dimensional Fermi–Hubbard model to two theoretical 
approaches: a doped quantum spin liquid state of resonat-
ing valence bond type1,2, and the geometric string theory3,4, 
describing a state with hidden spin order. This technique 
considers all available information without a potential bias 
towards one particular theory by the choice of an observable 
and can therefore select the theory that is more predictive 
in general. Up to intermediate doping values, our algorithm 
tends to classify experimental snapshots as geometric-string-
like, as compared to the doped spin liquid. Our results dem-
onstrate the potential for machine learning in processing the 
wealth of data obtained through quantum gas microscopy for 
new physical insights.

The phase diagram of the Fermi–Hubbard model and its con-
nection to high-temperature superconductivity have been the sub-
ject of a vast amount of theoretical and experimental studies in the 
past decades5,6. While a large number of theories exist, each with 
its own merits, a unifying analytic understanding is nonetheless 
still lacking. In the regime of low temperatures and finite doping, 
even numerical simulations become increasingly difficult. In recent 
years, tremendous progress has been made in using ultracold atoms 
to study quantum magnetism in the Fermi–Hubbard model7–15. 
These ultracold atom experiments are now exploring finite doping 
regimes of the phase diagram where no consensus on a theoretical 
description and the most appropriate way to experimentally charac-
terize the system exists.

All information about the quantum state of the system is con-
tained in the many-body density matrix, where the number of 
degrees of freedom scales exponentially with the system size. A 
measurement collapses the quantum state, such that only a projec-
tion of it can be accessed. Repeated projective measurements pro-
vide a plethora of data, which in the past have mostly been analysed 
to obtain conventional observables such as one- and two-point cor-
relation functions, which are also traditionally measured in solids. 
However, measurements performed in quantum gas microscopes 
contain considerably more information. Therefore, the need arises 
for new methods to analyse the data that take all available informa-
tion into consideration and hence use the capabilities of quantum 
gas microscopes to their full extent.

In this work, we employ machine-learning techniques to charac-
terize the large amount of data produced by quantum gas microscopy  

of the doped Fermi–Hubbard model. Recently, machine learning 
has emerged as a new tool in condensed matter physics. Its main 
applications so far include representing the wavefunctions of corre-
lated many-body states16–19, the determination and characterization 
of a phase transition20–29, quantum state tomography30 and, most 
recently, a mode of hypothesis testing for experimental scanning 
tunnelling microscopy data31. Here, we take an alternative route and 
use a convolutional neural network (CNN) to classify experimental 
data at finite doping into different theoretical categories to deter-
mine which theory describes the system best on the microscopic 
level (see Fig. 1). This approach provides insights into the underly-
ing microscopic structures of the state, which may be inaccessible to 
conventional observables but can be essential for gaining a deeper 
understanding of the emergent physics.

The experimental data that we analyse with our machine-learn-
ing algorithm have been measured with a quantum gas microscope 
for ultracold lithium atoms in an optical lattice and are available in 
ref. 32. This system is modelled by the Fermi–Hubbard Hamiltonian
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where the first term describes tunnelling with amplitude t of spin-
1/2 fermions between nearest-neighbour sites of a two-dimensional 
(2D) square lattice. The second term corresponds to on-site interac-
tions of strength U between fermions with opposite spin; U ≈ 8t in 
the experiment15. The half-filling limit of the 2D Hubbard model is 
comparably well understood and can be approximately described 
for large interactions by the Heisenberg Hamiltonian with superex-
change coupling J = 4t2/U (ref. 33). Starting from high temperatures 
T > J, on decreasing the temperature, antiferromagnetic correlations 
with increasing correlation length emerge. We now investigate the 
decrease of antiferromagnetic correlations with doping by compar-
ing the snapshots obtained from the quantum gas microscope to 
two different theories, a doped resonating valence bond (RVB) liq-
uid1,2 and the geometric string theory3,15,34 over a wide range of dop-
ings. Before presenting our results, we provide a brief account of the 
two theories from which we numerically sample snapshots of the 
many-body density matrix.

In the RVB picture, the ground state of the doped Hubbard 
model is described as a superposition of different spin-singlet cov-
erings of the lattice, through which deconfined chargons can move 
freely. Our simulations for this π-flux theory are based on a mean-
field parton Hamiltonian ĤMF with free spin-12 fermions hopping 
on a square lattice with a magnetic flux of π per plaquette1,2,35. A 
Gutzwiller projection of the corresponding thermal density matrix 
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Hρ ̂ ≅ β− ̂e MF removes double occupancies in accordance with a large 
on-site interaction ≫U t.

We use Monte Carlo sampling techniques to generate snapshots 
in the Fock basis of the projected mean-field density matrix. To take 
into account virtual charge fluctuations present in the larger physi-
cal Hilbert space, we introduce doublon–hole pairs into the snap-
shots on neighbouring sites with probability 4t2/U2 determined by 
second-order perturbation theory. The overall energy scale in the 
mean-field Hamiltonian is fixed such that the nearest-neighbour 
spin correlator at half-filling matches the experimental value. This 
approach has been shown in ref. 15 to lead to good agreement of spin 
correlations for all relevant doping values. Our results are robust 
under small variations in the overall energy scale.

In the underdoped regime, the geometric string theory describes 
the fermionic charge carriers as bound states of two partons36–38: a 
heavy spinon and a light chargon (see also refs. 4,39–41). Their internal 
structure is described by a fluctuating geometric string of displaced 
spins connecting the spinon to the chargon3,34. To derive the prop-
erties of this string, the frozen spin approximation is assumed, in 
which the spin background does not change with doping but the 
anti-ferromagnetic order is hidden by the hole motion.

Each hole displaces the spins along the string by one site, which 
leads to an increase in spin interaction energy proportional to the spin 
correlations in the undoped system and a decrease of the overall stag-
gered magnetization. The distribution of the geometric string length 
is obtained from a microscopic calculation of the motion of a single 
hole at a given temperature and Hubbard parameter U/t (ref. 15).

To generate snapshots for the geometric string theory, we start 
from the experimental data at half-filling and for each doping value 
place the corresponding number of holes independently into the snap-
shots. The holes are then moved independently from one another in 
random directions through the antiferromagnet for a number of sites 
that is sampled from the theoretical string length distribution.

The experimental images contain information about only one 
spin species, while the other spin species as well as doublons and 
holes are detected as empty sites. Hence, before comparing our the-
oretical images to experimental results, the second spin species and 
doubly occupied sites are converted to empty sites in the theoretical 
data. All data used in this analysis are obtained for a temperature of 
T = 0.6J ± 0.1J, which corresponds to the currently lowest tempera-
tures available in the experiment.

We now train a CNN to distinguish snapshots from the follow-
ing classes: experimental data, geometric string theory and π-flux 
theory, all at 9% doping.

The performance of our neural network is visualized in Fig. 2. In 
this plot, the x axis displays the actual class of a snapshot and the y 
axis shows the probability for the neural network to sort it into the 
different classes. The accuracy for the classification of images, which 
corresponds to the weighted average of the diagonal entries, is 47%. 
This indicates that a classification of the experimental snapshots as 
one of the theories is in principle possible, since otherwise the CNN 
would be able to distinguish experimental data from either theory 
with a high accuracy. The main source of confusion for the CNN is 
the similarity between the experimental and the geometric string 
theory data, while a differentiation of the π-flux theory snapshots is 
more successful. Taking the first two categories together, the accu-
racy of the classification increases to 69%. This is a first indication 
that the geometric string theory resembles the experimental data at 
9% doping more closely than π-flux theory.

One of the most powerful features of neural networks is their 
ability to generalize to new situations not encountered during train-
ing. We make use of this property by first training a CNN to distin-
guish between snapshots from π-flux and geometric string theory at 
a fixed doping value; a task for which the CNN achieves a precision 
above 70%. Here, the precision is defined as the percentage of snap-
shots classified as a theory that actually belong to the said theory. 
The precision of the CNN can be further improved by increasing 
the system size, detecting holes and increasing the size of the train-
ing set (see Supplementary Information). Subsequently, we show 
experimental data to the CNN to sort them into one of the two the-
ory categories. The classification of experimental data then reveals 
how similar these snapshots are to the theoretically simulated data.

As shown in Fig. 3, the neural network classifies a majority of 
the experimental snapshots as geometric string theory over a broad 
range of doping values up to about 15%, even though conventional 
spin and charge correlation functions coincide equally well with 
experimental results in that regime for both theories15. For larger 
dopings, the experimental data cannot be unambiguously classified 
(see also Supplementary Information).

The ability of the neural network to distinguish π-flux from geo-
metric string theory on the level of individual images indicates that 
the physical structure of these states is different. We can further 
improve the accuracy of our classification by taking into account 
the information that an entire set of measurements belongs to the 
same physical state. When the CNN sorts each snapshot into one of 
the two categories with probabilities p and 1 − p, the entire sample 
is classified by the category in which the majority is sorted. As the 
number of shots in each category follows a binomial distribution, 
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Fig. 1 | Classifying quantum gas microscope snapshots of the doped Fermi–Hubbard model with CNNs. a, A schematic of the conjectured phase  
diagram of the finite-size 2D Fermi–Hubbard model. We use snapshots of the many-body quantum state at fixed doping and temperature as input data for 
the CNN. b, The main building block of CNNs, which are conventionally used to analyse visual imagery, is the convolutional layer with a set of learnable 
filters Mi as parameters42. At each possible position of a given filter in the input image, the inner product between the filter and the input data is computed. 
This yields a 2D activation map of the filter. During training, the network learns to set the entries of the filters such that the corresponding value in the 
activation map is high when specific types of pattern are detected. The convolutional layer is followed by a fully connected layer, which then sorts the data 
into the different categories.
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the probability to make a wrong classification of the entire sample 
decays exponentially with the number of snapshots. Therefore, the 
entire experimental dataset at any doping value below ~15% would 
be classified as geometric string theory data with almost 100% prob-
ability (see Supplementary Information). When the input to the 
network consists of four snapshots from the same category, the pre-
cision is already above 80% and the fraction of experimental images 
classified as string theory at low dopings increases significantly (see 
Supplementary Information).

Moreover, our algorithm also classifies the low-temperature 
experimental snapshots to geometric string theory rather than 
experimental high-temperature data, again up to doping values of 
about 15% (see Supplementary Information for details).

In summary, we have demonstrated that CNNs provide a power-
ful tool to analyse the large amount of experimental data obtained 
from quantum gas microscopes. Individual snapshots can be classi-
fied to theoretical predictions and we can thereby determine which 
theory fits best. We apply this method to the Fermi–Hubbard model 
on a square lattice and find that on a microscopic level the experi-
mental data more closely resemble the geometric string theory with 
short-range hidden order than the π-flux RVB theory in the regime 
of low doping. Our analysis suggests a qualitative change of this 
behaviour between 15 to 20% doping.

Conventional observables, such as the staggered magnetization 
or two-point spin correlation functions, hardly allow for a distinc-
tion between the theories under consideration and it depends on 
the chosen observable which theory will be favoured15. By contrast, 
the CNN searches for patterns in the collection of snapshots in an 
unbiased way without specifying certain physical observables and 

with that searches for structure in the many-body density matrix. 
Turning this argument around, it remains an interesting open chal-
lenge to understand how the CNN classifies the snapshots, which 
we plan to address in a future work.

In this work, we compared two theories out of many potential 
candidates to the experimental data. In future work, the investigation 
of a larger class of theories will provide us with further information 
about the structure of the quantum state of the 2D Fermi–Hubbard 
model. Straightforward extensions include the comparison of snap-
shots from the Fermi–Hubbard model to different RVB states or 
predictions by quantum dimer models38. Examining completely 
different parameter regimes or even models could reveal additional 
insights. Current experiments have been performed at compara-
bly high temperatures, where no d-wave pairing or charge order is 
expected. Once colder temperatures are achievable, it will be inter-
esting to compare geometric string theory to theoretical models 
with different types of order parameter built.

The analysis of snapshots from quantum gas microscopy with 
machine-learning techniques has the capability to reveal microscopic 
mechanisms and hidden order in the considerable amount of avail-
able data. Machine learning of quantum many-body states, perhaps 
possible through experimental snapshots, offers prospects to find the 
most predictive theory among a multitude of competing theories.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0565-x.

Data availability
The data that support the plots within this paper and other findings 
of this study are available from the corresponding author upon rea-
sonable request. The raw data are available in ref. 32.
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Fig. 2 | Classifying single snapshots of the many-body density matrix.  
a, Randomly chosen snapshots from the experiment and the two theories. 
Coloured sites are occupied by one spin species; grey sites represent 
the other spin species, holes and doublons. b, The CNN is trained to 
identify to which dataset category any given snapshot belongs. Here, we 
consider experimental data, geometric strings and snapshots from π-flux 
theory, all at 9% doping. c, The probabilities show how a sample of 400 
snapshots that have not been used during training is classified. While the 
π-flux theory is recognized comparably well, a clear separation between 
experimental data and geometric strings is not possible. The standard 
errors of the mean over ten repetitions of the process are shown by the 
error bars (see Supplementary Information for details).
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(orange) at each doping value. After the training sequence, experimental 
images at the same doping are shown to the network. b, The average of 
the resulting classification of the experimental data at the corresponding 
doping value. The inset shows the precision for the trained classes on 
a subset of data not used for training. The vertical error bars show the 
standard errors of the mean over ten repetitions of the process and are 
smaller than the plot markers. The horizontal error bars for the doping are 
obtained as described in the Supplementary Information.
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