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Integer factorization using stochastic magnetic 
tunnel junctions
William A. Borders1,8, Ahmed Z. Pervaiz2,8, Shunsuke Fukami1,3,4,5,6,7*, Kerem Y. Camsari2*, Hideo Ohno1,3,4,5,6,7 &  
Supriyo Datta2

Conventional computers operate deterministically using strings of 
zeros and ones called bits to represent information in binary code. 
Despite the evolution of conventional computers into sophisticated 
machines, there are many classes of problems that they cannot 
efficiently address, including inference, invertible logic, sampling 
and optimization, leading to considerable interest in alternative 
computing schemes. Quantum computing, which uses qubits to 
represent a superposition of 0 and 1, is expected to perform these tasks 
efficiently1–3. However, decoherence and the current requirement for 
cryogenic operation4, as well as the limited many-body interactions 
that can be implemented, pose considerable challenges. Probabilistic 
computing1,5–7 is another unconventional computation scheme that 
shares similar concepts with quantum computing but is not limited 
by the above challenges. The key role is played by a probabilistic bit (a 
p-bit)—a robust, classical entity fluctuating in time between 0 and 1, 
which interacts with other p-bits in the same system using principles 
inspired by neural networks8. Here we present a proof-of-concept 
experiment for probabilistic computing using spintronics technology, 
and demonstrate integer factorization, an illustrative example of 
the optimization class of problems addressed by adiabatic9 and 
gated2 quantum computing. Nanoscale magnetic tunnel junctions 
showing stochastic behaviour are developed by modifying market-
ready magnetoresistive random-access memory technology10,11 
and are used to implement three-terminal p-bits that operate at 
room temperature. The p-bits are electrically connected to form a 
functional asynchronous network, to which a modified adiabatic 
quantum computing algorithm that implements three- and four-
body interactions is applied. Factorization of integers up to 945 is 
demonstrated with this rudimentary asynchronous probabilistic 
computer using eight correlated p-bits, and the results show good 
agreement with theoretical predictions, thus providing a potentially 
scalable hardware approach to the difficult problems of optimization 
and sampling.

The field of adiabatic quantum computing9 (AQC) solves complex 
optimization problems by constructing networks of qubits in which the 
inter-qubit interactions are engineered to make the overall energy E 
reflect the cost function for the problem. One such algorithm12 frames 
integer factorization of a given number F as an optimization problem 
by writing each of its factors X and Y in binary form and defining the 
cost function E = (XY − F)2
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with x0 = 1, y0 = 1 and P, Q denoting the number of bits needed to repre-
sent X and Y, respectively, so that the lowest energy state corresponds to 
the configuration of qubits {xp, …, x1, yq, …, y1} that makes XY equal to F.  

In general, E involves terms of the form xpyqxrys, requiring up to four-
body interactions. This algorithm does not require coherence, but needs 
auxiliary bits to represent many-body interactions when implemented 
using AQC13,14. In probabilistic computing, many-body interactions 
are implemented electrically, removing the need for extra components.

Individual p-bits are stochastic building blocks with a normal-
ized output mi that takes on the values 0 and 1 with probabilities P0 
and P1, respectively. These probabilities are controlled by their nor-
malized inputs Ii; for Ii = 0 they are equal (P0 = P1 = 0.5), large +Ii 
pins the output mi to 1 (P0 = 0, P1 = 1) and large −Ii pins mi to 0 
(P0 = 1, P1 = 0). This is similar to the behaviour of a binary stochastic 
neuron, a well known concept in the field of stochastic neural net-
works and machine learning15, which has an input–output relation 
mi = ϑ[σ(Ii) – r], where ϑ is the unit step function, σ is the sigmoidal 
function, r is a random number uniformly distributed between 0 and 
1, and the input Ii is obtained from the synaptic function (described 
below). Thus, the p-bit requires a natural element that is substantially 
unstable but controllable. A magnetic tunnel junction (MTJ), widely 
recognized as a critical building block of nonvolatile magnetoresistive 
random-access memory (MRAM)10,11, has potential to be used as the 
stochastic element in p-bits16 if its thermal stability can be sufficiently 
reduced. In this work, we build stochastic MTJs and demonstrate an 
experimental proof  of concept of probabilistic computing, in which an 
eight-p-bit network performs integer factorization of values up to 945.

The building block of the p-bit, the MTJ, comprises ferromagnetic 
free and reference layers separated by an insulating tunnel barrier 
(Fig. 1a). Previous studies have used the switching probability17 and 
fluctuation rate18 of the free-layer magnetization of separate MTJs to 
show random-number generation and population coding, respectively. 
Here we show that complex optimization problems can be generally 
addressed using the correlation among multiple naturally stochastic 
MTJs. The stack consists of a CoFeB/MgO structure with a perpen-
dicular magnetic easy axis10, a de facto system of MRAM technology 
(see Methods section ‘MTJ fabrication’). In general, an MTJ is charac-
terized by its tunnelling magnetoresistance, which switches between 
high and low values by varying the angle between the magnetization 
direction of the two ferromagnetic layers19. The high (antiparallel, 
AP) and low (parallel, P) resistance states (RAP, RP) are separated by 
an energy barrier E such that stored information is retained for a time 
τ = τ0exp[E/(kBT)] following Arrhenius’ law, where τ0 is the attempt 
time (τ0 ≈ 1 ns)20, kB is the Boltzmann constant and T is the temper-
ature (Fig. 1b). Nonvolatile memory applications require stable MTJs 
with a retention time τ of the order of years11, whereas our p-bit exper-
iments require stochastic MTJs with retention times on the millisec-
ond scale. Figure 1c shows the measured τ as a function of the CoFeB 
free-layer thickness for different nominal diameters of the MTJ pillar. 
For each junction diameter D (CoFeB thickness tCoFeB), the times-
cale of stochasticity decreases with increasing tCoFeB (decreasing D).  
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The behaviour is understood by considering the energy barrier for mag-
netization reversal. Because interfacial magnetic anisotropy is domi-
nant in this system10, increasing the free-layer thickness will reduce 
the total perpendicular magnetic anisotropy energy, mainly owing 
to an increase in the demagnetizing energy, which favours in-plane 
magnetization. Furthermore, decreasing D also decreases the energy 
barrier for magnetization reversal, as reported in previous studies21. 
Importantly, by varying only the ferromagnetic free-layer thickness 
for arbitrary sizes of the MTJs used in typical MRAM fabrication, we 
are able to manipulate the stochasticity of the MTJ so that it is suitable 
for p-bit experiments (see Methods section ‘MTJ characterization’). 

To form the building block for stochastic neural networks, we connect 
the stochastic MTJs with standard n-type metal–oxide–semiconductor  
(NMOS) transistors to obtain a three-terminal p-bit (Fig. 2a). The out-
put voltage for the ith p-bit, VOUT,i, from this composite unit can be 
written in terms of the input voltage VIN,i in a form similar to the ideal 
binary stochastic neuron described above:
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where VDD is the supply voltage, V0,i is the scaling voltage determined 
by the transistor, ν0,i is the offset voltage (1.95 V in this experiment). 
Figure 2b shows the time-averaged output voltage as the input voltage 
is swept from 1.5 V to 2.4 V, where each point is averaged over 700 ms  
with a fixed input voltage. Figure 2c shows the time-varying output 
voltage for specific input voltages, displaying stochastic behaviour 
centred at 1.95 V, but becoming deterministic as the input changes by 
about ±75 mV, a consequence of spin-transfer torque22–24 (see Methods 
section ‘p-bit construction’).

These p-bits can be used to perform useful functions by intercon-
necting them so that the ith p-bit is driven by a synaptic input Ii that is 
a function of all the other outputs {m1, …, mN}. Boltzmann machines 
represent a subset of such networks for which Ii can be obtained from 
an energy function E using the relation Ii = −∂E(m1, …, mN)/∂mi. 

Such networks will visit different configurations with probabilities 
given by the Boltzmann law P(m1, …, mN), which are proportional 
to exp[−E(m1, …, mN)], so configurations with the lowest energy E 
occur with the highest probability. This property makes the networks 
naturally suited for solving optimization problems, similar to the way 
that AQC solves them, where the correct solution minimizes a cost 
function identified for E and is used to calculate the synaptic inputs Ii. 
Unlike in machine-learning schemes, these synaptic inputs are analyt-
ically deduced and not learned.

Experimentally we connect eight p-bits following a general architec-
ture presented previously25 (Fig. 3a). A microcontroller reads the output 
voltage of each p-bit and is programmed to calculate the inputs Ii for 
a given cost function E. The result is converted into analogue voltages 
using a digital-to-analogue converter (DAC). Together, the microcon-
troller and DAC function as the synaptic weight logic that determines 
Ii, reading in digital outputs from the p-bits and feeding back analogue 
inputs (see Methods section ‘p-circuit construction’). Although the 
main experiment that we describe here demonstrates integer factoriza-
tion, this methodology can be applied to other optimization problems, 
such as invertible Boolean logic, for which the objective is to determine 
all the possible inputs when the logic output is known (see Methods 
section ‘p-bit-based implementation of an invertible AND gate’).

In the case of integer factorization, we use the cost function repre-
sented by equation (1) to evaluate the input functions. We first test the 
factorization of 35 using four p-bits (P = 2, Q = 2) (see Methods section 
‘Factorization algorithm’). In our algorithm, the synaptic inputs include 
nonlinear terms that effectively enforce both three p-bit and four p-bit 
interactions, in addition to the customary linear terms arising from two 
p-bit interactions. Accordingly, an integer up to 2n+2 can be encoded 
according to equation (1) with n p-bits using the current algorithm, a 
relation that requires fewer bits than current AQC schemes, mainly 
owing to the added flexibility provided by nonlinear synapses14 that 
could be useful in other optimization problems as well. Figure 3b gives 
the three-dimensional histograms of the time fluctuations (see Methods 
section ‘Factorization algorithm’) for pairs of numbers {x2, x1, 1} and 
{y2, y1, 1}, depicted below the uncorrelated state that is obtained when 
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Fig. 1 | Characteristics of stochastic magnetic tunnel junctions.  
a, Measurement setup of a stochastic MTJ, with a stack structure that 
is only slightly modified from current MRAM technology. A current is 
passed from the free layer to the reference layer, a time-averaged signal 
is read on the voltmeter, and a time-domain signal is measured on the 
oscilloscope. b, The energy profile between the P and AP states of the 
magnetization orientation of the MTJ for typical MRAM technology 
and for the MTJs used in the p-bits for this work. c, Experimental results 
showing the retention time τ of MTJs with varying thickness of the CoFeB 

free layer tCoFeB and diameter D. The retention time τ is determined at 
an applied current of I50/50, which induces equal fluctuation time of the 
MTJ magnetization in the AP and P states. Square symbols represent the 
average of the retention time for 10 MTJs at each D and tCoFeB. Transparent 
circles represent the retention time for each device. The right-most panels 
show the effect of varying the free-layer thickness on the stochasticity 
for devices of the same size. Note that reducing the thickness below 
1.8 nm results in a stable binary device suitable for nonvolatile memory 
applications30.
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all input functions are set to zero. Although the p-bits fluctuate inde-
pendently in the uncorrelated state (top panel), non-zero input to the 
network results in two peaks observed at (5, 7) and (7, 5), showing 
that 35 is factorized into 5 and 7 correctly (bottom panel). Figure 3c 
shows the three-dimensional histogram obtained with the input func-
tions appropriate for factorizing 161 using six p-bits with P = 4 and 
Q = 2, where the correct factor (23, 7) shows a prominent peak (bottom 
panel). Similarly, Fig. 3d shows an eight-p-bit network factorizing 945 
(P = 5, Q = 3). Using p-bit models, we also simulate the factorization 
process and obtain agreement with experimental results using a single 
fitting parameter (see Methods section ‘Experiment versus simulation’). 
We also investigate the influence of varying MTJ parameters such as RP, 
RAP, I50/50, shift and distortion of the response of MTJs, and retention 
time τ. Response variations are corrected by adjusting the bias voltage 
ν0,i (see Methods section ‘Factorization experiment calibration’) and 
variations in the retention time of the MTJs have little effect provided 
that the synapse is faster than the fastest p-bit (see Methods section 
‘Effect of p-bit parameter variation on system performance’). Owing 
to the relative ease of these methods, we expect robust and repeatable 
results for networks on even larger scales.

Next, we compare the demonstrated probabilistic computing sys-
tem with its quantum counterpart. The present approach uses an algo-
rithm that is similar to AQC but does not perform annealing, which 
normally requires coherence. Compared to AQC, the present scheme 
has a threefold advantage: it operates at room temperature, it can be 
implemented using existing highly scalable MRAM technology and it 
is relatively easy to incorporate complex many-body interactions into 

the scheme. Further, we note that for a subclass of quantum systems, 
quantum annealing can be approximated with replicated p-bit net-
works26. This class of systems is commonly referred to as ‘stoquastic’9.  
The approximation becomes systematically more accurate upon 
increasing the number of replicas. The increased number of p-bits is 
offset by their comparably lower implementation costs (see Methods 
section ‘Comparison between p-bit and quantum computing’).

Probabilistic computing can also be executed using conventional com-
plementary metal–oxide–semiconductor (CMOS) circuits. Our p-bit 
implementation uses three transistors and one MTJ, whereas CMOS-
based probabilistic computing with digital random-number generators 
(RNGs) requires more than a thousand transistors to perform the same 
function. A quantitative comparison shows an energy advantage by a 
factor of 10 and an area advantage by a factor of 300 (see Methods section 
‘Comparison between MTJ-based p-bit and CMOS-based alternatives’).

We should note that there are deterministic algorithms implemented 
on a fully digital CMOS system that specializes in performing factor-
ization. However, this system takes a substantially greater amount of 
time to reach the exact solution as the problem size increases27. On 
the other hand, when algorithms that produce approximate solutions 
are acceptable, there is interest in hardware that enables probabilistic 
computing methods. Because the purpose of this study was to establish 
a system that is suitable for solving optimization problems in general, 
these factors mentioned above are very attractive, particularly consid-
ering the energy and surface area advantages.

In summary, this work serves as a proof-of-concept demonstration of 
an asynchronous probabilistic computer similar to the one envisioned 
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Fig. 2 | Experimental demonstration of a p-bit. a, Electrical schematic 
of a p-bit using a stochastic MTJ with an NMOS transistor, a comparator 
and a resistor, extending the design presented in ref. 16 to handle device-
specific variations. A stochastic MTJ (S-MTJ) has a free layer with a 
relatively low energy barrier (ΔE ≈ 15kBT) so that thermal noise makes it 
fluctuate between its stable states, one being parallel (P) to the fixed layer 

and the other being anti-parallel (AP). b, Time-averaged VOUT, 〈VOUT〉, 
as a function of the applied input, fitted to the sigmoidal function. Each 
point is averaged over 700 ms with 2,000 or more sampling points for each 
data point shown. c, Time snapshots of VOUT for three different inputs 
VIN, showing the preferred state of a p-bit (high or low) as a function of its 
input voltage.
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by Feynman1, which is realized through a slight modification of embed-
ded MRAM technology currently at the level of 8 Mb and above28 and 
which could find applications in the areas of optimization, sampling, 
and machine learning. An important aspect of this demonstration is 
the asynchronous operation of p-bits without any forced sequencing, 
unlike typical software implementations of Boltzmann machines, which 
require individual neurons or p-bits to be updated sequentially29. This 
asynchronous feature allows the parallel operation of a large number of 
p-bits, leading to an unconventional computing paradigm.
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Fig. 3 | Experimental demonstration of integer factorization.  
a, A photograph of a printed circuit board for an eight-p-bit circuit, 
interconnected through a microcontroller and a DAC. b–d, The 
uncorrelated (top) and correlated (bottom) state of the system when four, 
six and eight p-bits are used to factorize 35 = 5 × 7 = 7 × 5 (P = 2, Q = 2 
with four p-bits; b), 161 = 23 × 7 (P = 4, Q = 2 with six p-bits; c) and 

945 = 63 × 15 (P = 5, Q = 3 with eight p-bits; d). The x and y axes show 
the factors X and Y (see Methods section ‘Factorization algorithm’). All 
statistics are taken over a window of 15 s with over 2,000 sampling points. 
Each separate factorization experiment was performed more than twice to 
ensure reproducibility.
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Methods
MTJ fabrication. The MTJs are fabricated with a stack structure as follows, from 
the substrate side: Ta(5)/Pt(5)/[Co(0.3)/Pt(0.4)]7/Co(0.3)/Ru(0.45)/[Co(0.3)/
Pt(0.4)]2/Co(0.3)/Ta(0.3)/Co18.75Fe56.25B25(1)/MgO(1.1)/Co18.75Fe56.25B25(tCoFeB)/
Ta(5)/Ru(5)/Ta(50) (Fig. 1a). The numbers in parentheses are the nominal thick-
nesses in nanometres. The thickness of the free layer of CoFeB, tCoFeB, is adjusted to 
view the change in the fluctuation of the MTJ magnetization. All films are depos-
ited on a thermally oxidized silicon substrate by d.c. and radiofrequency magnetron 
sputtering at room temperature. The stacks are then processed into circular MTJs 
with nominal junction size varied from 40 to 80 nm in diameter by electron beam 
lithography and argon ion milling. The samples are annealed at 300 °C in vacuum 
for an hour under a 1.2 T perpendicularly applied magnetic field. MTJs are then 
cut out from wafers and bonded with wires to IC sockets to be placed in the p-bit 
circuit board.
MTJ characterization. First, the MTJ resistance is measured by sweeping the cur-
rent from negative to positive values, and the time-averaged and high-frequency 
signals are read across a voltmeter and oscilloscope, respectively (Fig. 1a). We 
measured an approximate tunnel magnetoresistance ratio of 100% fluctuating 
between RP = 7–11 kΩ and RAP = 12–19 kΩ. The current at which the resistance 
switches by half is determined to be I50/50, which is the bias current at which the 
MTJs will spend equal time in the AP and P states. To determine τ, we perform 
retention time measurements31 when the MTJ is in either the AP or the P state 
using voltage measurements from the oscilloscope (Fig. 1b). To ensure reliable 
collection of data, each point is measured with a constant current on the oscil-
loscope at a sampling rate set ten times faster than the fastest fluctuation time of 
the MTJ. The retention time values are determined from approximately 1,000 to 
10,000 switching events per device. The retention times used in this work range 
from 1 ms to 100 ms, which is suitable to match with the sampling rate of the 
microcontroller and DAC used to determine the inputs for each p-bit. For these 
purposes, we choose a free-layer thickness of 1.9 nm and different MTJ diameters 
(Fig. 1c).
p-bit construction. The p-bit is constructed following the circuit proposed pre-
viously16 with two changes to the design: First, we use an additional resistance 
RSOURCE attached to the source of the NMOS transistor to restrict the current 
through the MTJ branch to values in the stochastic range around I50/50 (which is 
around 5–10 μA). This produces voltage fluctuations V ≈ 30–50 mV. On the basis 
of measured values of I50/50, and RP, RAP for every MTJ, an RSOURCE value for each 
MTJ is calculated according to:

= − −
+

/
R V

I
R R R

2 (3)SOURCE
DD

50 50
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AP P

where VDD is the supply voltage and RNMOS represents the drain-to-source resist-
ance of the NMOS transistor.

Extended Data Fig. 1b shows the measured RNMOS versus VIN characteris-
tics for a 2N7000 (T0-92-3 package) NMOS with drain resistance RD = 9.8 kΩ, 
source resistance RS = 9.6 kΩ and VDD = 200 mV to mimic the p-bit circuit used 
in our experiment. The value of RNMOS is chosen so that the p-bit is centred at 
VIN = 1.95 V, as shown in Fig. 2b. This value of VIN is optimized considering the 
transistor characteristics. A smaller value of VIN makes the sigmoidal characteris-
tics sharper because the current through the MTJ changes rapidly for small changes 
in VIN, pinning the MTJ. If we choose values of VIN greater than 1.95 V, the p-bit 
does not get saturated properly to VDD.

Second, to achieve better gain, we use comparators (AD8692, 8-SOIC package) 
instead of the inverters used previously16. The drain of the NMOS is connected to 
the negative terminal of the comparator and a voltage VREF is given as an input to 
the positive terminal. The comparator has a biasing current of 1 pA, which is 3–4 
orders of magnitude lower than the current passing through the MTJ, ensuring 
that it does not load the MTJ branch. VREF is chosen so that when I50/50 is flowing 
through the MTJ branch, VREF is centred at the drain voltage VDRAIN. Under these 
conditions, VREF can be calculated according to:

= −
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/V V I R R
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p-circuit construction. We have constructed our p-circuits following the general 
architecture described previously25 which is shown in Extended Data Fig. 2. An 
Arduino microcontroller (Mega 2560) is used to read the output voltages of each 
p-bit as binary inputs and is programmed to implement the synaptic weights. These 
are then converted into analogue voltages using a DAC (PMOD DA4) that has eight 
channels, each with 12-bit resolution. The DAC also has an internal 2.5 V reference 
allowing a resolution of 2.5/4096 ≈ 6.1 mV. An important design consideration 
is to ensure that the interconnect delay—that is, the time it takes to update the 
inputs—is shorter than the retention time of the p-bits25 (see Methods section 

‘Effect of p-bit parameter variation on system performance’). The DAC uses a Serial 
Peripheral Interface (SPI) protocol to communicate with the microcontroller and 
has a worst-case interconnect delay of 150 μs for eight p-bits, which is lower than 
the retention time of the MTJs used in this manuscript. We use an oscilloscope 
(MSO-X-3014T, Keysight) to collect the output voltages for all p-bits. The oscillo-
scope can read up to 16 digital voltages and is connected to a computer using the 
Keysight BenchVue oscilloscope software.
Factorization algorithm. To minimize the cost function E, we construct a network 
of binary stochastic neurons with the ith neuron driven by an input Ii obtained 
from evaluating −∂E(m1, …, mN)/∂mi, where mi is the output of the ith neuron. 
This approach is similar in spirit to AQC12 and a large amount of effort has gone 
into identifying appropriate cost functions for different problems of interest32; 
many of these formulations can also be adapted to design p-bit networks. The  
optimization-problem-based approach in this scheme is different from those in pre-
vious studies8,25, in which integer factorization is cast as an inverse multiplication 
problem, which typically requires more p-bits to factor numbers of the same size.

For each number that is factored, the corresponding function is programmed 
into the synaptic function Ii, as explained below.

We start from a cost function of the form in equation (1)14,33–36, which is sim-
plified to:
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using the property of binary digits that b2 = b.
In this cost function, the numbers X and Y are assumed to be odd numbers, 

because large semiprimes of interest are always odd; this is implemented by setting 
x0 and y0 to 1. For a four-p-bit network, P = 2 and Q = 2 so that the cost function 
for F = 35 from equation (5) is obtained as below, where I0, an arbitrary constant 
that controls overall strength of coupling, is chosen to be 1.

= − . − . − . − . − − . − .

− + . + + . + + .

E x x y y x y x y x y
x y x y y x y y x x y x x y x x y y

0 3 0 7 0 3 0 7 1 4 0 6
0 3 0 3 0 7 (6)

1 2 1 2 2 1 2 2 1 1

1 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 1 2

where the coefficients are rounded off to have one significant digit. By evaluating 
−∂E(m1, …, mN)/∂mi, we obtain the input functions Ii:

= . + . + . − . − . − . − .I y y y y x y x y x y y0 7 1 0 1 4 1 0 0 3 1 0 0 7 (7a)x 2 1 2 1 2 1 1 1 2 1 1 2

= . + . + . − . − . − . − .I y y y y x y x y y x y0 3 0 6 1 0 0 3 0 3 1 0 0 7 (7b)x1 1 2 1 2 2 1 2 2 1 2 2

= . + . + . − . − . − . − .I x x x y x y x x x x y0 3 0 6 1 0 0 3 1 0 0 3 0 7 (7c)y1 1 2 1 2 2 2 1 2 1 2 2

= . + . + . − . − . − . − .I x x y x y x x x x y x0 7 1 0 1 4 0 3 1 0 1 0 0 7 (7d)y2 1 2 1 1 1 1 1 1 2

Similar cost functions—but with many more terms—can be obtained for the 
eight-p-bit experiment in which P = 4 and Q = 4. These cost functions and the 
resulting input functions are not listed here but are available upon request from 
the authors. Extended Data Fig. 3 shows the output of four p-bits x2, x1, y2, and y1 
as a function of time, which are then used to collect the statistics shown in Fig. 3b.
Factorization experiment calibration. We begin by establishing an uncorrelated 
state for the p-circuit as a reference for the experiment. To offset variations, we 
first measure the average sigmoidal response of each p-bit used in our experiment. 
Extended Data Fig. 4 shows six such responses (15-s averages per point) for the 
six p-bits used in our experiment. Initially, we choose a value for RSOURCE so that 
each sigmoid is centred at 1.95 V, and measure the average output. Any shifts in 
the average outputs from 1.95 V (due to variations in transistor characteristics and 
MTJ parameters) are adjusted as individual synaptic biases to centre the average 
response. Once these are set to obtain average responses that are aligned, they are 
not varied and an uncorrelated state for the system is established, as shown in Fig. 2 
and in Extended Data Fig. 4b. After establishing the reference state, only the inter-
connect strengths between p-bits are changed for the remainder of the experiment.
Comparison between MTJ-based p-bit and CMOS-based alternatives. As noted 
in equation (2), the MTJ-based p-bit used in this work evaluates the function 
mi = ϑ(σ(Ii) – r). Below we compare this evaluation to a digital-CMOS-based evalu-
ation of the same function. As mentioned in the main text, the problem of factoriza-
tion can be addressed with fully digital deterministic algorithms that do not require 
this function. However, the aim of this work is to demonstrate a broad approach 
to optimization and sampling problems using a network of p-bits interacting  
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asynchronously, in which high precision is not the primary figure of merit. With 
this in mind, we do not consider the deterministic algorithm and present below 
a functionality-based comparison between MTJ-based and CMOS-based proba-
bilistic computers. To evaluate the same function mi = ϑ(σ(Ii) – r) digitally using 
CMOS, one could use37,38 an RNG for r, a look-up table for σ(Ii) or a comparator 
for the step function ϑ.

In this section, we compare the energy and area of a CMOS-based pseudo-ran-
dom-number generator (PRNG) to the MTJ-based p-bit (Extended Data Fig. 5). 
The look-up table and comparator would further add to the area of the CMOS-
based p-bit. However, we note that the MTJ-based p-bit requires a DAC to interface 
with digital synapses. In principle this would not be needed for synapses imple-
mented with analogue devices.

Extended Data Fig. 5 shows that the CMOS-based PRNG requires an energy 
consumption an order of magnitude higher and requires an area several orders 
larger compared to the MTJ-based p-bit in this work. Details of the models used 
are described below.
CMOS-based RNG. True RNGs operate specialized circuits using thermal noise 
from CMOS-based sources such as cross-coupled inverter pairs to produce true 
random bits39. However, inducing true randomness in conventional hardware typ-
ically requires high levels of energy consumption and large cell area. On the other 
hand, a PRNG-based approach that uses linear-feedback shift registers (LFSRs) 
offers a low-cost solution at the expense of reduced random bit quality37.

We implement a 32-bit LFSR to form the PRNG that is composed of 32 D-type 
flip flops with three separate two-input XOR gates. Each XOR requires 14 tran-
sistors. Each D-type flip flop is composed of 36 transistors, which includes eight 
NAND gates (four transistors each) and two inverters (two transistors each). 
Therefore, the 32-bit LFSR requires 1,194 transistors in total. Each transistor is 
implemented using a minimum size (nfin = 1) 14 nm high performance fin field 
effect transistor HP-FinFET model obtained from a predictive technology model40. 
The details of the LFSR are shown in Extended Data Fig. 5. This circuit is simu-
lated in the HSPICE circuit-simulator software with a clock frequency of 10 GHz 
(τCLK = 100 ps). We note that because we are computing the energy per random 
bit, we average the active power over many clock cycles and so the exact clock fre-
quency that is used in the circuit becomes irrelevant. The energy per random bit is 
obtained by integrating the total supply current (multiplied by the supply voltage) 
over one clock cycle. The energy per random bit for the 32-bit LFSR is about 20 fJ, 
as shown in Extended Data Fig. 5.
MTJ-based p-bit. For the MTJ-based p-bit simulation, we use the design proposed 
previously16 with an MTJ of negligible energy barrier and with an autocorrelation 
time of about 100 ps for an arbitrarily chosen magnetization direction denoted 
as m(t). The MTJ is modelled as a variable conductance with GMTJ(t) = G0[1  
+ m(t)TMR/(2 + TMR)], where TMR is the tunnelling magnetoresistance with a 
value of around 110%, close to the experimental value of TMR in our experiments. 
The average MTJ conductance G0 (where G0

−1 = 23.4 kΩ) is chosen to match the 
transistor conductance when VIN = 0. This makes the sigmoidal response of the 
p-bit symmetric around zero. The instantaneous magnetization m(t) is calculated 
by a stochastic Landau–Lifshitz–Gilbert (LLG) equation solver as a separate circuit 
in HSPICE. The stochastic LLG solver takes spin current as an input and produces 
m(t) at each time step. The spin current is assumed to be proportional to the instan-
taneous charge current flowing through the MTJ, multiplied by a spin polarization 
P that in turn is assumed to be related to TMR by TMR = 2P2/(1 − P2) (ref. 41).

The energy per random bit for the MTJ-based p-bit is calculated by computing 
the average power drawn from the supplies, VDD × (ISUPPLY1 + ISUPPLY2), for a given 
period (t = 100 ns) and multiplying this average by the autocorrelation time of 
the low-barrier magnet to estimate the energy per random bit to be about 2 fJ per 
random bit. Extended Data Fig. 5c shows the difference in energy per random bit 
and the transistor count for the p-bit-based and hardware CMOS-based schemes.
Comparison between p-bit and quantum computing. The optimization algorithm 
used in this work is similar to an AQC algorithm that can run on quantum comput-
ing hardware. It has been shown26 that a system of x qubits, if they belong to a class 
of ‘stoquastic’9 systems, can be efficiently emulated with x × r p-bits when using the 
Suzuki–Trotter decomposition, where r (about 10–100) is the number of replicas, 
each comprising x p-bits. Increasing the number of replicas systematically reduces 
the error compared to the exact solution; the increased number of p-bits is offset by 
their relative cheapness. Although many groups are working towards implementing 
1,000 qubits, p-computers with density around 1 Gb could be a relatively near-term 
goal using embedded MRAM technology operating at room temperature. However, 
we note that the replicated p-bit approach to quantum computing is established only 
for a subset of quantum Hamiltonians that do not suffer from the ‘sign-problem’ 
associated with negative probabilities, and are commonly referred to as ‘stoquastic’9.

A recent experiment14 performed on a D-Wave machine (D2000Q) used the 
same factorization algorithm—but with additional qubits to reduce the problem 
to two-body interactions—and factored 15 and 21 using four logical qubits, and  
factored 143 using 12 logical qubits. In general, O(log2(F)) logical qubits are 

required to factor an integer F. The increased number of qubits is a result of addi-
tional logical qubits in the Hamiltonian used to reduce the problem. By contrast, 
our demonstration factors numbers up to 945 with eight p-bits at room temper-
ature and is estimated to be able to factorize 2n+2-sized integers, with n p-bits.
Comparison of AQC and p-bits. We first describe the typical system—the transverse 
Ising Hamiltonian—that demonstrates an AQC algorithm for factorization and 
then present an emulation of this system with p-bits.

We show in Extended Data Fig. 6 that the results of an exact solution of the 
quantum many-body Hamiltonian can be accurately obtained by a replicated net-
work of p-bits. The transverse Ising Hamiltonian for the factorization problem 
HQ is given as:

∑ ∑ ∑

∑

σ σ σ σ σ σ σ σ σ

Γ σ

= −





+ +

+






< < < < < <
H J K L

(8)
i j

ij
i j k

ijk
i j k l

ijkl

X
i

Q i
z

j
z

i
z

j
z

k
z

i
z

j
z

k
z

l
z

i
x

where Jij, Kijk and Lijkl represent the interactions obtained from the cost function 
E = (XY − F)2 in equation (1), and ΓX is the (dimensionless) transverse magnetic 
field that is used as an annealing parameter. The quantum system described in 
equation (8) can be mapped to a classical system with networks of p-bits. The 
classical Hamiltonian HC for a classical system with r replicas is expressed as:
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where J⊥ is the local transverse coupling between replicas with periodic boundary 
conditions; J⊥ = −1/(2β)ln[tanh(ΓXβ/r)] where β is the dimensionless inverse 
temperature.

In AQC, the system is prepared at a low temperature and the transverse mag-
netic field starts from a high value to initialize the system in its ground state. The 
magnetic field is then slowly reduced to keep the system in its ground state so that 
the ground state of the classical Ising Hamiltonian is reached.

Here, instead of performing annealing that requires a continuous change of 
the transverse magnetic field, we perform two static simulations, for factoring 
161 = 23 × 7 using a small ΓX (corresponding to a ‘cold’ system close to the ideal 
solution) and using a large ΓX (corresponding to a ‘hot’ system close to thermal 
equilibrium).

We compare the results obtained by exactly solving the quantum system with 
those obtained by a classical simulation of p-bits. We note that quasi-static quan-
tum annealing can also be performed using p-bits, but our purpose here is to show 
the correspondence between the exact quantum and the replicated classical system.
Exact quantum solution. For a small number of qubits, the many-body quantum 
Hamiltonian described in equation (8) can be solved exactly by methods of equi-
librium statistical quantum mechanics:

⟨ ⟩
β

β
=

−

−
S

S H
H

tr[ exp( )]
tr[exp( )]

(10)op Q

Q

where 〈S〉 is the expectation value of an observable corresponding to the operator 
Sop ‘tr’ represents trace. In this case, we choose Sop to correspond to all possible 
spin configurations corresponding to the different factors of the problem. We 
choose an inverse temperature of β = 25 and two magnetic fields ΓX = 0.1 and 
ΓX = 0.5. For each spin configuration [y2 y1 x4 x3 x2 x1], where (yi, xi) ∈ {−1, +1},  
we compute the corresponding operator Sop to calculate the equilibrium  
probability.
Replicated p-bit simulation. The mapped classical system is simulated by first 
obtaining the current vector Ii for the ith p-bit in the system from the classical 
Hamiltonian in equation (9) by Ii = −∂HC/∂mi. The same inverse temperature, 
β = 25 is chosen with r = 45 replicas and all p-bits are sequentially updated accord-
ing to mi = sgn[tanh(βIi) – rand(−1, 1)], where rand is a number that that is 
uniformly distributed between −1 and +1. For each magnetic field ΓX = 0.1 and 
ΓX = 0.5 that enters J⊥, N = 2 × 106 time steps are chosen and a probability of 
each state is obtained using time averaging of the state of the system for the entire 
duration N of the simulation over all replicas r. Although the exact solution and the 
replicated p-bit simulation do not seem to show complete agreement at each state, 
the error can be systematically reduced by choosing a larger number of replicas; 
the error of the system scales as O(1/r2).
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Experiment versus simulation. In this section, we compare our experimental work 
with ideal simulations performed using software. The simulation updates all p-bits 
every ∆t, flipping the ith p-bit with probability Pi = 1 – exp(−∆t/τi), where the 
dwell time τi of the ith p-bit depends on the inputs Ii obtained from the synaptic 
function: τi = τ0,iexp(±Ii). Here τ0,i is the zero-bias dwell time, and Ii is positive if 
it is parallel to the state of the p-bit and negative if it is anti-parallel. Extended Data 
Fig. 7a shows six simulated p-bits of an ideal system in which the average outputs 
versus inputs for all p-bits are identical. The retention times of the p-bits are much 
greater than the interconnect delay (about 1,000 times greater) such that τinter ≪ τN, 
where τN is the smallest zero-bias dwell time among all p-bits.

By contrast, Extended Data Fig. 7b shows experimentally observed average 
behaviour of six p-bits where the device variations of the MTJs affect the align-
ment and shape of the average response. Using a simple correction in the synaptic 
weights (see Methods section ‘Factorization experiment calibration’), experimental 
results of factorizing 161 (shown in Extended Data Fig. 7d) are fitted to computer 
simulations (Extended Data Fig. 7c) using a single fitting parameter I0 = 5.
Effect of p-bit parameter variation on system performance. We investigate 
simulations using device parameter variations obtained from our experiments 
and elaborate on how to effectively mitigate them within certain limits. Extended 
Data Fig. 8 shows the effect of variations in retention times of the free layer on the 
overall performance of the system. In these simulations, the retention times for 
p-bits is varied from τN to 4τN in all of the three cases shown. We conclude from 
our simulations that in general, for all p-bits that have retention times much slower 
than the interconnect delay (τinter = τN), the system will operate properly.

Extended Data Fig. 8c suggests that when τN = 101 × τinter the system fails to 
operate correctly. The exact boundary where the system stops working is a function 
of the type (linear versus nonlinear) and size (fan-in) of the synapse and the overall 
size (number of p-bits) of the system and in general requires a systematic study 
using a large number of p-bits.

Extended Data Fig. 9 shows the effect of variations of other MTJ parameters 
(RP, RAP, TMR, I50/50) that are important for p-bit operation. Variations manifest 
themselves as either a misaligned average response of the p-bits or a distorted shape 
of the average behaviour of a p-bit. We correct the former in our experiments by 
measuring this shift and by adding an appropriate constant d.c. bias to the synaptic 
weights for each p-bit. The results of this procedure are simulated in Extended 
Data Fig. 9d–f. For all our experiments this procedure was performed to achieve 
an ‘unbiased reference state’, which is the first step of the factorization process. This 
process can be automated, for example using a control loop feedback mechanism 
such as a proportional–integral–derivative (PID) controller. The latter variation—
the distortions in the shape of the average behaviour—are harder to correct, but in 
general their adverse effects on system operation seem minimal.

Owing to the ease of implementing compensation for device variations, as well 
as the recently reported market-ready MRAM showing lower levels of variation42 
compared to the experimental values obtained in this work, variation effects are 
not expected to become an issue as the size of the p-bit network scales.
p-bit-based implementation of invertible AND gate. A three-p-bit circuit of the 
type shown in the main text can implement an AND gate using x2, x1 as input p-bits 
and y1 as an output p-bit with a cost function of the form7,13

= + − −E x x y I y x x x y x y( , , ) (3 2 2 ) (11)1 2 1 0 1 1 2 1 1 2 1

which minimizes the energy for configurations {x2, x1, y1} that satisfy the truth 
table. We use the same method as the main text to obtain the inputs Ix2, Ix1, Iy1:

= − +I I x y( 2 )x 2 0 1 1

= − +I I x y( 2 )x1 0 2 1

= − + +I I x x( 3 2 2 )y1 0 1 2

Extended Data Fig. 10a, b shows the direct mode of operation for the AND 
gate, with applied inputs leading to an output consistent with the inputs of any 
CMOS-based Boolean gate. Extended Data Fig. 10a, b shows a time snapshot and 
statistics for the three p-bits when both inputs are pinned to 1 by adding a large 

input voltage. The statistics for the direct mode of operation match well with the 
Boltzmann law (see main text) with the constant I0 adjusted to 0.25.

A more interesting case is the inverted mode, in which an output is pinned and 
the inputs resolve themselves to be consistent with the applied output. Extended 
Data Fig. 10c shows a time snapshot of the p-bits when the output p-bit is pinned 
to 0. In this case, all three possible combinations of inputs appear, as shown by the 
statistics in Extended Data Fig. 10d.

The final case is when all p-bits are left floating. Extended Data Fig. 10e shows 
a time snapshot acquired for such a case, and Extended Data Fig. 10f shows the 
statistics. In this case the system goes through the four states consistent with the 
truth table of an AND gate.
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Extended Data Fig. 1 | p-bit construction. a, A diagram of the ideal response of a stochastic MTJ as used in this work and the parameters used to 
characterize the MTJ. b, The measured drain current IDS as a function of VIN of a 2N7000 NMOS transistor used in our p-bit demonstration.
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Extended Data Fig. 2 | Block diagram of an asynchronous p-circuit.  
A microcontroller reads the outputs voltages VOUT of all p-bits and 
computes the synaptic weights, which are then converted to the analogue 

input voltages VIN for each p-bit, using a DAC that communicates with the 
microcontroller.
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Extended Data Fig. 3 | Experimentally observed time snapshots. a–c, Experimentally observed time snapshots of the four p-bits used to factorize 35 (a, 
b). These snapshots are combined to create x and y (c), which fluctuate between 7 × 5 and 5 × 7.
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Extended Data Fig. 4 | Calibrating the experimental system. Calibrating 
a reference state using synaptic weights. a, The experimentally observed 
time-averaged output of six p-bits versus applied inputs (which are 

misaligned). b, The output is corrected using synaptic biases leading to the 
reference state shown. Each data point in a and b are taken as an average 
over a time window of 15 s with 2,000 or more sampling points.
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Extended Data Fig. 5 | Comparison between the MTJ- and CMOS-based 
energy per random bit and cell area. a, An MTJ-based p-bit simulated 
with the stochastic LLG model (s-LLG, dotted box). b, A 32-bit LFSR. The 

look-up table (LUT) and the digital comparator of the CMOS p-bit are not 
included in the comparison. INV, inverter; DFF, D-type flip flop.
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Extended Data Fig. 6 | Computing with p-bits versus AQC. a, A 
representation of how an array of six Ising spins in a qubit array can be 
replicated with an array of p-bits. b, A comparison of both approaches for 
factoring 161 = 23 × 7. For a system of six Ising spins, there are 64 states. 
At higher magnetic fields (ΓX = 0.5) both systems are ‘disordered’ and the 

correct peak is not pronounced. At lower magnetic field (ΓX = 0.1) the 
correct peaks emerge with a high probability. The states (yi, xi) have been 
converted to binary variables si from the bipolar variables mi by defining 
si = (mi + 1)/2 and the states [y2 y1 x4 x3 x2 x1] are expressed in decimal on 
the x axis.



Letter reSeArCH

Extended Data Fig. 7 | Simulation versus experiment. a–d, We simulate 
the ideal experiment when all p-bits are perfectly aligned (a), using an 
idealized p-bit model which produces the results shown in c. Each data 
point is taken as an average over a time window of 15 s with 2,000 or more 
sampling points. The presence of device variations leads to a non-ideal 

system of misaligned p-bits (b), which is corrected using synaptic biases, 
allowing the experiment to approach the correct results (d). The time-
averaged statistics in b are collected over a time window of 15 s with 2,000 
or more sampling points.
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Extended Data Fig. 8 | Simulation of variations of τN. The τ of six p-bits is varied from a minimum value of τΝ to a maximum value of 4τΝ. Variations 
between p-bits do not affect system operation providing that τinter = τN.
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Extended Data Fig. 9 | Simulations of variations of MTJ parameters. 
a–c, The variation of MTJ parameters results in the misalignment of the 
average responses of the p-bits (a), which results in a biased reference  
state (b). When such a system is used for factorizing 161 the observed 

results are incorrect (c). d–f, The shifts in the average responses are 
corrected using synaptic biases (d), which correct the reference state (e) 
and factorization results (f).
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Extended Data Fig. 10 | Invertible AND gate operation. a, b, Time 
snapshot for the direct mode of operation when the inputs x2 and x1 have 
both been pinned to 1 (a); the statistics collected for 60 s (b). c, d, Time 
snapshot for the p-bits operating the AND gate in inverted mode when the 

output y1 is pinned to 0 (c); the statistics collected for 60 s (d). e, f, Time 
snapshot for the p-bits operating the AND gate in floating mode (e); the 
statistics collected for 60 s (f). All statistics shown are collected over a time 
window of 60 s with 2,000 or more sampling points.
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