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We provide the first example of local quantum energy conditions in quantum field theories that are not
Lorentz invariant. We focus on field theories in two dimensions with infinite-dimensional symmetries, like
the ones governed by the Bondi–van der Burg–Metzner–Sachs group that appear in the context of flat space
holography. Reminiscent of holographic results on the quantum null energy condition, we prove that our
new energy conditions saturate for states in the field theory that are dual to vacuum solutions of three-
dimensional Einstein gravity with a vanishing cosmological constant.
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Introduction.—Among the various local energy condi-
tions the quantum null energy condition (QNEC) [1] has
attracted a considerable amount of interest over recent
years [2–9] including various proofs [10–12]. This is due to
the fact that, given certain assumptions, notably unitarity,
QNEC can be shown to hold universally for quantum
field theories (QFTs) in dimensions D ≥ 2 [13], unlike any
other local energy condition. For the special case of two-
dimensional conformal field theories (CFT2) QNEC takes
a particularly simple form

2πhT ��i ≥ S00 þ 6

c
S02; ð1Þ

where hT ��i denotes expectation values of null projections
of the energy-momentum tensor for a given state, c > 0
is the central charge of the unitary CFT2, and S is the
entanglement entropy (EE) of an arbitrary interval where
one of the end points coincides with the locus at which the
stress tensor is evaluated. Primes denote variations with
respect to deformations of this end point into the same null
direction as used for the projection on the left hand side
of (1).
Lorentz invariance plays an important role for QNEC,

as the appearance of the word “null” suggests. However,
there are QFTs that do not exhibit Lorentz invariance, for
example the worldsheet theory of tensionless strings
[14–17] and Galilean [18,19] or warped conformal field
theories [20], and hence the very notion of “null” need not
exist in non-Lorentz-invariant QFTs. This means that

QNEC cannot be universally true for such QFTs. It is
interesting to investigate whether inequalities analogous
to (but different from) QNEC hold for such theories.
To distinguish such energy conditions from the specific
case of QNEC we shall refer to them generally as quantum
energy conditions (QECs).
The main goal of the present Letter is to establish the first

example of such a QEC for a specific class of non-Lorentz-
invariant field theories. One of the main tools we shall use
is holography, which we briefly review now.
Holography and flat space limit.—The holographic

principle has played a vital role in deepening our under-
standing of quantum gravity. A particularly famous avatar
of such a correspondence is the celebrated anti–de Sitter/
conformal field theory (AdS=CFT) correspondence that
relates type IIB superstring theory on AdS5 ⊗ S5 toN ¼ 4
supersymmetric Yang-Mills theory on its boundary [21].
Roughly a decade after the dawn of AdS=CFT, Ryu and
Takayanagi provided a holographic interpretation of entan-
glement entropy (EE) [22,23] (see [24] for a covariant
formulation) showing a deep relation between gravity and
quantum information.
While AdS=CFT is an immensely successful example of

a holographic correspondence, there have been intense
efforts to find other instances where the holographic
principle [25,26] is realized. Perhaps one of the most well
developed examples relates gravity in asymptotically flat
spacetimes in three spacetime dimensions with QFTs that
are invariant under the Bondi–van der Burg–Metzner–
Sachs [27–29] (bms3) algebra whose nonvanishing com-
mutation relations are given by (n, m are integers)

½Ln; Lm� ¼ ðn −mÞLnþm þ cL
12

nðn2 − 1Þδnþm;0 ð2aÞ

½Ln;Mm� ¼ ðn −mÞMnþm þ cM
12

nðn2 − 1Þδnþm;0: ð2bÞ
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The generators Ln and Mn are called “superrotations” and
“supertranslations,” respectively. What makes flat holog-
raphy such a fertile ground (see, e.g., [30–40]) is that many
basic concepts from AdS=CFT can still be applied with
slight modifications or even directly obtained from limits of
vanishing cosmological constant, Λ → 0 [41].
We can now sharpen our main goal, namely to provide

nontrivial evidence for the existence of QECs for bms3
invariant QFTs exploiting flat holography.
Our strategy for achieving this is to first derive equations

that can be interpreted as saturated versions of such putative
inequalities, which we achieve by uniformization methods,
reminiscent of conceptually similar methods used in a
CFT2 context. We then make use of the limit of vanishing
cosmological constant in the gravity dual to the CFT2

obeying QNEC (1) and show that QECs also exist for bms3
invariant QFTs.
Flat space vacuum solutions.—States in a CFT2 dual to

vacuum solutions to three-dimensional Einstein gravity
with negative cosmological constant, the so-called Bañados
geometries [42], saturate QNEC (1) [9]. Thus, it is natural
to expect that geometries corresponding to the flat limit of
these geometries provide a good starting point to look for
the saturated version of a putative QEC for bms3 invariant
QFTs. In the following we compute the holographic
entanglement entropy (HEE) for these spacetimes and
derive equations that can be interpreted as a bms3 version
of the saturated expression (1).
The flat space limit of the Bañados solutions in AdS3

written in retarded Bondi coordinates 0 ≤ r < ∞, −∞ <
u < ∞, φ ∼ φþ 2π is given by metrics [43]

ds2¼MðφÞdu2−2dudrþ2N ðu;φÞdudφþ r2dφ2; ð3Þ

where 2 _N ¼ M0. Here and in what follows dot denotes ∂u
and prime denotes ∂φ.
The solutions (3) include flat space cosmologies (FSC)

[44,45] for the constants M > 0, N ≠ 0, global flat space
for M ¼ −1, N ¼ 0, as well as the null orbifold [46–48]
for M ¼ N ¼ 0 and φ → x with −∞ < x < ∞. The
metric (3) depends on the retarded time u and thus one
would have to resort to covariant holographic methods as
proposed in [49] in contrast to other established methods
such as, e.g., [50–52] in order to compute HEE.
Alternatively, one can also make use of the fact that the
spacetime (3) is locally diffeomorphic to the null orbifold
and map a boundary interval in the null orbifold to a
boundary interval in (3). This procedure yields the HEE of
(3) from the null orbifold HEE. The same strategy was
employed to compute (H)EE for CFT2 states dual to
Bañados solutions in AdS3 [53,54]. We intend to use the
same method and thus need to establish a uniformization
map.
Uniformization and flat Hill’s equation.—Consider finite

diffeomorphisms

U ¼ −2
Z

ν

μ3
dφ −

2ν2

μ2R
; x ¼

Z
1

μ2
dφþ 2ν

μR
; ð4aÞ

R ¼ rμ2 þ 2ðνμ0 − _νμÞ; ð4bÞ

with _μ ¼ 0, _ν ¼ μ0, where, in addition, the functions μ and
ν satisfy the bms3 equivalent of Hill’s equation [55]

μ00 −
M
4

μ ¼ 0; ν00 −
M
4

ν −
N
2
μ ¼ 0: ð5Þ

It should be noted that by replacing
R ðdφ=μ2Þ → ξ and

−2
R ðν=μ3Þdφ → ζ it is obvious that these equations

describe precisely how the energy-momentum operators
transform under finite bms3 transformations [39,51].
The diffeomorphism (4) with (5) provides a uniformiza-

tion map, as it locally maps any metric of the form (3) to the
null orbifold

ds2 ¼ −2dUdRþ R2dx2: ð6Þ
One way of obtaining (4) is to make a radial expansion
ansatz for the finite diffeomorphism, solve the resulting
differential equations order by order, and then guess the
finite form of the resulting series expansion [57].
Since the Eqs. (5) are second order differential equations,

each of these equations has two linearly independent
solutions μ1;2 and ν1;2. A convenient choice of normaliza-
tion for later purposes turns out to be

μ1μ
0
2−μ01μ2 ¼ 1; μ1ν

0
2−μ01ν2þν1μ

0
2−ν01μ2¼ 0: ð7Þ

Uniformization of holographic entanglement entropy.—
The EE of a bms3 invariant field theory defined on an
infinitely long strip at zero temperature with central charges
cL and cM, entangling interval Δx and ΔU, as well as the
UV cutoffs ϵx and ϵU, is given by [50,52]

SEE ¼ cL
6
log

Δx
ϵx

þ cM
6

�
ΔU
Δx

−
ϵU
ϵx

�
: ð8Þ

The dual gravitational description for this expression is
given by a Wilson line [50,51] (or certain geodesics [52])
attached to the boundary of the null orbifold (6). Thus one
can obtain EE for a highly excited state that is dual to (3) by
applying the diffeomorphism (4) to the boundary interval
points (and the corresponding cutoffs) of (8).
For large R and taking into account the normalization (7)

the boundary coordinates transform as

U ∼
μ1ν2 − μ2ν1

μ22
; x ∼ −

μ1
μ2

: ð9Þ

Applying this diffeomorphism to the initial (xi, ui) and final
points (xf, uf) of the intervals Δx ¼ xf − xi and Δu ¼
uf − ui (8) also means that one has to rescale the UV
cutoffs appropriately as
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ϵU ¼ ϵu

μi2μ
f
2

− ϵφ
μi2ν

f
2 þ μf2ν

i
2

ðμi2μf2Þ2
; ϵx ¼

ϵφ

μi2μ
f
2

; ð10Þ

where ϵu and ϵφ are the UV cutoffs for the coordinates used
in (3). Introducing

lu ≔ μi1ν
f
2 − μf1ν

i
2 þ μf2ν

i
1 − μi2ν

f
1 ; ð11aÞ

lφ ≔ μi1μ
f
2 − μf1μ

i
2 ⇒ _lu ¼ l0

φ ð11bÞ

establishes the uniformized result for (H)EE

SEE ¼ cL
6
log

lφ

ϵφ
þ cM

6

�
lu

lφ
−
ϵu
ϵφ

�
: ð12Þ

This is our first key result.
Holographic example.—Inserting the values of M and

N that correspond to flat space cosmologies, global flat
space, and the null orbifold (12) reproduces precisely the
known expressions in the literature. For example, setting
M ¼ −1 and N ¼ 0, solving Flat Hill’s equation (5)
subject to the normalizations (7) yields the solutions μ1¼
αcosðφ=2Þ, ν1¼γcosðφ=2Þþuμ01, μ2¼ð2=αÞsinðφ=2Þ, ν2¼
−ð2γ=α2Þsinðφ=2Þþuμ02 for some constants α and γ.
Plugging these solutions into (12) with (11) gives

SEE ¼ cL
6
log

�
2 sinðΔφ

2
Þ

ϵφ

�
þ cM

6

�
Δu
2

cot

�
Δφ
2

�
−
ϵu
ϵφ

�

ð13Þ
in agreement with HEE of global flat space [50,58].
For later purposes we define separately the contributions

that arise when either cL or cM vanish,

SL ≔
cL
6
log

lφ

ϵφ
; SM ≔

cM
6

�
lu

lφ
−
ϵu
ϵφ

�
ð14Þ

in terms of which (12) reads SEE ¼ SL þ SM.
Entanglement entropy and BMS transformations.—One

particularly useful byproduct of the uniformization pro-
cedure above are the relations (9) and (10) that give a
precise way to determine how the EE of a bms3 invariant
QFT on an infinitely long strip transforms under finite
BMS transformations. After rewriting these equations one
can directly determine the transformation behavior of SL
and SM under infinitesimal supertranslations and super-
rotations that generate the bms3 algebra.
For that purpose, we take finite BMS transformations

x → ξðφÞ; U → ζðu;φÞ; ð15Þ
where _ζ ¼ ξ0. These transformations map a set of coor-
dinates ðx;UÞ to a new set ðφ; uÞ. For a given set of
entangling intervals Δu and Δφ this change of coordinates
affects the UV cutoffs ϵx and ϵU as

ϵx ¼
ϵφ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0i þ _ζi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0f þ _ζf

q
; ð16aÞ

ϵU ¼ ϵu
ϵx
ϵφ

þ ϵ2φ
4ϵx

ðζ0iðξ0f þ _ζfÞ þ ζ0fðξ0i þ _ζiÞÞ: ð16bÞ

Here ξi=f ≡ ξðφi=fÞ, ζi=f ≡ ζðui=f;φi=fÞ, and ðui;φiÞ and
ðuf;φfÞ denote the initial and final end points of the
entangling interval, respectively.
The EE (8) transforms accordingly as

SL ¼ cL
6
log

2ðξf − ξiÞ
ϵφ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0i þ _ζi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0f þ _ζf

q ; ð17aÞ

SM ¼ cM
6

�
ζf − ζi
ξf − ξi

−
ϵu
ϵφ

−
ζ0f

ξ0f þ _ζf
−

ζ0i
ξ0i þ _ζi

�
; ð17bÞ

where we used again the definitions SL and SM, see (14).
From this transformation behavior it is straightforward to

determine that under infinitesimal transformations com-
prising superrotations generated by σ and supertranslations
generated by η,

ξðφÞ ¼ φþ σðφÞ; ζðu;φÞ ¼ ηðφÞ þ uξ0ðφÞ; ð18Þ

the EE transforms as

δSL ¼ S0Lσ−
cL
12

σ0; δSM ¼ S0Mσþ _SMζ−
cM
12

ζ0: ð19Þ

These transformation equations are our second key result.
The first equality shows that SL transforms like an
anomalous weight-0 scalar in a chiral half of a CFT2

(see, e.g., [59]) under superrotations and is inert under
supertranslations. The second equality shows that SM
transforms nontrivially both under superrotations (again
with weight-0) and supertranslations.
On a sidenote, in analogy to the CFT2 case (see, e.g.,

[60–62]) the result (17) also implies that SL=M satisfies the
bms3 versions of Liouville’s equation [43],

ϵ2φ∂φ1
∂φ2

SL ¼ cL
6
e−ð12=cLÞSL ; ð20aÞ

ϵ2φ∂φ1
∂φ2

SM ¼ 2

�
SM þ cM

6

ϵu
ϵφ

�
e−ð12=cLÞSL : ð20bÞ

Saturation equations.—In similar spirit to QNEC (1) a
natural ansatz for a saturated QEC in bms3 invariant QFTs
is to linearly combine all possible second derivatives
and quadratic powers of first derivatives of EE (12) [or
equivalently (14)] so that they reproduce the expectation
values of the energy-momentum operators in this QFT.
For cL ≠ 0 ≠ cM, there is a unique combination:
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2πhT Mi ¼ _S0M þ 6

cM
_S2M;

2πhT Li ¼ S00L þ 6

cL
S02L þ S00M þ 12

cL
S0LS

0
M: ð21Þ

The derivatives in (21) are understood to be taken with
respect to one of the boundary end points, i.e., either (xi, ui)
or (xf, uf). The expectation values of the energy-momen-
tum operators in terms of the charges M and N are (see,
e.g., [63])

2πhT Mi ¼
cM
24

M; 2πhT Li ¼
cL
24

Mþ cM
12

N : ð22Þ

The saturation equations (21) are our third key result. They
suggest that QECs in bms3 invariant QFTs, if they exist,
are inequality versions of (21).
The saturation equations (21) are related to the bms3

equivalent of Hill’s equation (5) by the redefinitions μ ¼
exp½ð6=cLÞSL� and ν ¼ ð6=cMÞSMμ. This provides a cross
check on the validity of the saturation equations (21).
QECs as a flat space limit of QNEC.—Two-dimensional

CFTs and their gravity duals in AdS3 are extremely well
studied, which is why on the gravity side the limit of
vanishing cosmological constant Λ ¼ −ϵ2 → 0 was used
extensively in the past in order to gain a better under-
standing of bms3 invariant QFTs. See, e.g., [41,64–69].
Following this philosophy we take now the flat space

limit of (1). In a CFT2 EE splits into two chiral parts as
SEE ¼ Sþ þ S−, where

S� ¼ c�

12
log

�
l�

δ�

�
2

: ð23Þ

Here c� > 0 denote the central charges of the CFT and δ�

the respective UV cutoffs. The functions l� only depend
on x�, respectively, and encode the entangling interval.
See, e.g., [54] for more details on the precise form of l�.
The central charges, UV cutoffs, entangling intervals, and
the derivatives appearing in (1) are related to their flat space
counter parts via

c� ¼ 1

2

�
cM
ϵ

� cL

�
; δ� ¼ ϵφ � ϵϵu; ð24aÞ

l� ¼ ϵlu � lφ; ∂� ¼ 1

2

�∂u

ϵ
� ∂φ

�
: ð24bÞ

The chiral conditions ∂∓S� ¼ 0 imply ð1=cMÞ _SM ¼
ð1=cLÞS0L as well as ð1=cLÞ _SL ¼ ðϵ2=cMÞS0M. It can be
readily checked that the combination [70] limϵ→0ðSþ − S−Þ
precisely reproduces (12), which provides an additional
cross check of our earlier results.

The next step is to rewrite the QNEC inequalities (1) as

2πhT ��i ¼ ∂2
�S

� þ 6

c�
ð∂�S�Þ2 þ c�a�; ð25Þ

where a� ≥ 0. The components of the CFTenergy-momen-
tum tensor T �� are related to their bms3 counterpart via
[16,63]

T M ¼ ðT þþ þ T −−Þϵ; T L ¼ T þþ − T −−: ð26Þ

Linearly combining the right hand sides of (25) as in (26)
and taking the limit ϵ → 0 requires a and b to scale
with ϵ as

a� ¼ 1

2
ðβ � ϵαÞ ð27Þ

in order to obtain a finite result, namely

2πhT Mi ¼ _S0M þ 6

cM
_S2M þ cM

2
β; ð28aÞ

2πhT Li ¼ S00L þ 6

cL
S02L þ cL

2
β

þ S00M þ 12

cL
S0LS

0
M þ cM

2
α: ð28bÞ

From (27) and the conditions a� ≥ 0 it is evident that
also β ≥ 0 has to hold in the limit ϵ → 0. The sign of
α ¼ ðaþ − a−Þ=ϵ, however, is in general not fixed in this
limit. In fact there is even a very simple example showing
that α can be either positive or negative.
Adding matter is one way to drive QNEC out of

saturation in a CFT. For holographic CFTs this can be
achieved for example by considering shock waves as in,
e.g., [8]. A special case of such shock waves is described by
the following metric in Poincaré coordinates,

ds2

l2
¼ dz2 þ dxþdx−

z2
þ h��ðx�; zÞðdx�Þ2: ð29Þ

In the dual CFT either of these shock waves result in a
chiral nonsaturation of QNEC. After computing EE holo-
graphically using the metric (29) and taking the appropriate
derivatives one obtains (25) with either aþ ≥ 0 and a− ¼ 0
for hþþ ≠ 0 or aþ ¼ 0 and a− ≠ 0 for h−− ≠ 0. This simple
example shows that α in general can be either positive or
negative in the limit of a vanishing cosmological constant.
Flat space QECs.—Taking into account the results from

the previous section and the three key results, we propose
the following inequalities to hold for bms3 invariant QFTs
with central charges cM and cL.
Theories with cM ¼ 0 are essentially a chiral half of a

CFT2, and hence, assuming unitarity (in particular cL > 0),
the following inequality has to be obeyed
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2πhT Li ≥ S00L þ 6

cL
S02L : ð30Þ

This inequality resembles the QNEC inequality (1).
For generic theories with cM ≠ 0, one has instead

2πhT Mi ≥ _S0M þ 6

cM
_S2M: ð31Þ

The two QECs above are our main result.
Summary and further developments.—Our derivation

of the uniformization result for entanglement entropy
(12), its transformation properties (19), the saturation
equations (21), and our arguments leading to the quantum
energy conditions (30), (31) were all based on holographic
considerations and on calculations done on the gravity side.
The main reason why we are sure that the same results must
hold on the field theory side is that the key ingredient in
all our considerations were the symmetries (2), that by
definition govern any bms3 invariant QFT. Still, it could be
worthwhile to rederive all our statements intrinsically from
a field theoretic perspective, using, e.g., properties of
Galilean conformal field theories [18,32]. This will be
particularly interesting for appearances of bms3 sym-
metries beyond flat space holography such as tensionless
bosonic string theory, see, e.g., [17,71,72].
The quantum energy conditions (30), (31) are expected

to play a similar role for the understanding of bms3
invariant QFTs as the quantum null energy condition for
Lorentz-invariant QFTs. It would be rewarding to translate
relativistic results based on the quantum null energy
condition to corresponding results in bms3 invariant QFTs.
Finally, what we have provided was merely the first

example of quantum energy conditions in a specific class
of non-Lorentz-invariant field theories. However, there are
very likely more examples to be discovered. Candidate
theories that plausibly will exhibit such inequalities are
warped CFTs [20], which share relevant features with two-
dimensional CFTs and bms3 invariant QFTs, in particular
an infinite set of symmetries.
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