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ABSTRACT: Robust quantum energy storage devices are essential to realize powerful next-
generation batteries. Herein, we provide a proof of concept for a loss-free excitonic quantum
battery (EQB) by using an open quantum network model that exhibits exchange symmetries
linked to its structural topology. By storing electronic excitation energy in a symmetry-
protected dark state living in a decoherence-free subspace, one can protect the charged EQB
from environment-induced energy losses, thereby making it a promising platform for long-
term energy storage. To illustrate the key physical principles and potential functionality of this
concept, we consider an open quantum network model of a para-benzene-like structure. We
demonstrate through numerical simulations the immunity of the charged EQB to
environmentally induced losses and further show how to harness the stored energy by
adding a symmetry-breaking perturbation (SBP) to the network. We also investigate the
impact of static disorder and temperature fluctuations of the SBP on the performance of the
EQB during its storage and discharge phases. Apart from the cases with very strong static disorder, the performance of the EQB
is essentially unaltered, thereby demonstrating the robustness of the proposed EQB.

1. INTRODUCTION

Growth in the global demand for renewable energies has
intensified the need for robust and efficient batteries for energy
storage.1−4 Indeed, over the last several decades, significant
progress has been made in battery technologies based on
classical electrochemical working principles, which are now in
wide use. More recently, there has been a great interest in
developing a new class of batteries, known as quantum batteries
(QBs), whose operation relies on quantum mechanical working
principles.5−17 By exploiting genuinely quantum effects, the
desire has been to devise batteries with unique properties,
capable of outperforming their conventional classical analogues.
Although considerable efforts have been devoted to designing

strategies for maximizing the stored energy and average charging
power of QBs,7−9 the microscopic models used to study them
have been primarily based on closed quantum systems following
unitary dynamics. However, it is inevitable that a quantum
system will interact with its surrounding environment, thereby
suffering decoherence and dissipation processes.18−20 Such
processes can have detrimental effects on a system’s quantum
coherences and quantum correlations, which are crucial
resources for QBs.5−9 Hence, any realistic modeling of QBs
must accurately take into account open-system effects. Very
recently, an important step in this direction was taken in refs 14
and 21, in which a QB device was modeled as an open quantum
system during its charging process.
From a practical standpoint, a logical step forward would be to

now consider a charged QB during the storage phase as an open
quantum system. Throughout this phase, open charged QBs are
expected to experience fluctuations and dissipation due to their
coupling to the surrounding environments. Therefore, to
achieve long-time energy storage in real QBs, one must design

open QBs that are resistant to decoherence and energy loss over
time.
The use of quantum states that are less sensitive to

environmental perturbations to achieve passive protection of
quantum resources has a long history in the field of quantum
information processing.22 A prominent example is that of a
decoherence-free subspace (DFS), i.e., a subspace of the
system’s Hilbert space inside which the dynamics is purely
unitary.23−29 As a result of this property, DFSs have emerged as
useful structures for the preservation of quantum information.
Despite the conceptual differences between the protection of
quantum information and storage of energy, herein, we will show
that DFSs can be used to develop a passive protection scheme
for charged QBs.
In this study, we focus on an excitation energy storage device

as a platform for an open charged QB andmodel it in terms of an
open quantum network (OQN). Previously, OQNs have been
used in studies of excitation energy transfer (EET) in natural and
artificial photosynthetic complexes.30−34 To introduce a passive
protection scheme, we consider OQNs exhibiting exchange
symmetries linked to their structural topologies. Owing to the
symmetries, we show that these OQNs can host dark states
(DSs) living in DFSs and that the invariant nature of the DSs, in
principle, allows one to eliminate energy losses due to
dissipation. In other words, the use of symmetry-protected
DSs effectively decouples the battery from its environments,
making it possible to perfectly store the excitation energy. This
setup gives rise to the concept of a loss-free excitonic QB (EQB).
Therefore, in contrast to conventional electrochemical batteries,
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this charged EQB does not “discharge” over time in the presence
of environments, a remarkable feature stemming from the
quantum nature of the system. A stable QB based on a three-
level system has been recently proposed in ref 35, a design which
bears some resemblance to our loss-free EQB. However, this
proposal relies on slowly varying (adiabatic) driving fields and
exploits the stimulated Raman adiabatic passage protocol36 to
ensure adiabatic evolution of a dark state, in direct contrast to
our symmetry-protected scheme. To harness the stored energy,
we couple the EQB to a symmetry-breaking perturbation (SBP).
Breaking the structural symmetry effectively restores the
coupling of the system to its environments, thereby allowing
excitonic energy to flow out of the EQB toward the exit site of
the network and ultimately to be utilized.
To understand the impact of structural imperfections and

their effects on the exchange symmetry on the performance of
the proposed EQB, we study the effects of static disorder on the
EQB in both the storage and discharging phases, i.e., without
and with the SBP, respectively. We find that when the EQB is
subject to a diagonal (local site energy) disorder during its
storage phase, energy leakage occurs but only under a significant
level of disorder. On the other hand, when the EQB is subject to
an off-diagonal disorder during its storage phase, we observe
redistribution of the stored energy within the battery, along with
an insignificant amount of energy leakage. Remarkably, the
discharging process is unaffected by (even a pronounced) static
disorder. We attribute the robustness of the discharging
efficiency to the fact that the SBP already completely breaks
the structural symmetry, making the EQB essentially insensitive
to fluctuations in the on-site energies and nearest-neighbor
electronic couplings. We also consider the role of temperature
fluctuations of the SBP, which could occur due its finite size. We
find that the EQB essentially maintains its ideal functionality
under small temperature fluctuations. These studies highlight
the utility of a loss-free EQB.
The paper is organized as follows. First, in Section 2, we

present the general framework for modeling open EQBs in terms
of OQNs. We then introduce an exchange symmetry, which
allows the OQNs to host DFSs and DSs, and describe the
underlying working principle of a loss-free EQB. In Section 3, we
present a proof-of-concept illustration based on a minimal
model of an open EQB and demonstrate the robustness of this
EQB with detailed simulations under various conditions in
Section 4. We summarize our observations in Section 5.

2. GENERAL FRAMEWORK
2.1. Modeling an Open Quantum Battery. To lay down

the general framework for the loss-free EQB, we consider EET of
a single Frenkel exciton37−39 in an OQN with N sites. The
Hilbert space of the network itself is spanned by the site basis
states {|n⟩}, where each state corresponds to the excitation being
localized on site n. In this site basis, the network can be described
in terms of the following Hamiltonian (setting ℏ = 1)

∑ ∑̂ = | ⟩⟨ | + | ⟩⟨ |
= ≠

H E n n J n mN
n

N

n
n m

n m
1

,
(1)

where En is the on-site energy of site n and Jn,m is the excitonic
coupling strength between sites n and m. Here, we adopt a
single-excitation manifold for describing the EET in the OQN
and thus the EQB is limited to storing one exciton at a time. The
single-excitationmanifold is commonly used in the study of EET
in light-harvesting complexes due to the fact that exciton

recombination is typically much slower (on the order of
nanoseconds) than the exciton transfer times (on the order of
picoseconds).30,40 One can further generalize the present
theoretical framework to systems involving multiple-excitation
manifolds,39 thereby increasing the energy storage density.
In our open network, selected (outer) sites are coupled to heat

baths; we refer to these sites as surface sites (SSs). The
remaining (interior) sites do not directly interact with the
surrounding environment, and they are referred to as bulk sites
(BSs). The sum of the bath and network−bath interaction
Hamiltonians is given by

∑ ∑ ω
ω

̂ + ̂ = ̂ + ̂ − | ⟩⟨ |
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Here, each SS is coupled to an independent bosonic heat bath
containing M oscillators at a temperature T, with P̂n,j, R̂n,j, and
ωn,j as the mass-weighted momentum, position, and frequency
of the jth oscillator, respectively, and Cn,j as the network−bath
coupling coefficient between the nth SS and jth oscillator of the
attached heat bath. We assume the EQB to be in a factorized
initial state ρ̂tot(0) = ρ̂N(0) ⊗ ρ̂B(0), where ρ̂N(0) is the initial
state of the network and ρ̂B(0) ∝ e−βĤB is the initial bath state,
taking a canonical form characterized by an inverse temperature
β ≡ 1/T (setting kB = 1). The bath frequencies, {ωn,j} and
coupling coefficients, {Cn,j} are determined by a spectral density,
assumed to be identical for all SSs, of a Debye−Drude form

ω λ= ωω
ω ω+

J( ) 2 b
c

2
c
2 , where λb is the bath reorganization energy

and ωc is the cut-off frequency.41

2.2. Exchange Symmetry and Working Principle. We
now focus onOQNs that possess exchange symmetries linked to
their structural topologies, as characterized by a unitary
symmetry operator Π̂, satisfying

[Π̂ ̂ ] = [Π̂ | ⟩⟨ |] = ∀ ∈H n n n, 0, , 0 SSsN (3)

i.e., Π̂ generates invariant permutation operations between BSs
of the OQN.We denote by {|ψα

(k)⟩} and {uα} the eigenstates and
eigenvalues of Π̂, respectively, where α = 1, 2, ..., L (L≥ 1) and k
can take the values 1, ..., dα (dα ≥ 1). Here, L is the number of
distinct eigenvalues of Π̂with 1≤ L≤N and dα is the dimension
of the eigenspace corresponding to the eigenvalue uα satisfying
∑α=1

L dα = N. Since ĤN and Π̂ share a common eigenbasis
according to eq 3, we may decompose the Hilbert space of
the OQN as

= ⊕α α=
L

1 (4)

where ψ= {| ⟩ ∈ [ ]}α α αk d, 1,k( ) and the corresponding
operator space ( ) is

= ⊕ ⊕α α αα= ′= ′( ) L L
1 1 (5)

where ψ ψ= {| ⟩⟨ | ∈ [ ] ∈ [ ]}αα α α α α′ ′ ′n d m d, 1, , 1,n m( ) ( ) and
has the dimension dαdα′. One can show that the existence of
Π̂, together with the properties in eq 3, guarantees that the
composite dynamics generated by the total Hamiltonian ĤN +
ĤB + ĤNB leaves the αα′ subspaces invariant;

42 i.e., an operator
belonging to the operator subspace αα′ cannot be mapped onto
operators in other subspaces during the time evolution
generated by the total Hamiltonian.
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Among the diagonal operator subspaces { }αα , in which
physical density matrices with unit trace live, one-dimensional

subspaces ψ ψ= | ⟩⟨ |αα α α
(1) (1) , i.e., diagonal subspaces with dα =

1, are of particular appeal because the dynamics maps them onto
themselves. Such subspaces, also known as DFSs, have proven
useful in the fields of quantum information and quantum
computing for preventing dissipation and dephasing due to the
interaction with the environment.23,24,26,28,43−49 The state |ψα

(1)⟩
is known as a dark state (DS). Owing to a DS’s immunity to
environmental effects, a sensible charging protocol for the EQB
would then be to initialize the OQN in one of its symmetry-
allowed DSs, i.e., ρ̂N(0) = |ψα

(1)⟩⟨ψα
(1)|. Experimentally, the

stimulated Raman adiabatic passage technique may be used to
prepare dark states.36 As the dynamical generator of the
composite dynamics will leave |ψα

(1)⟩⟨ψα
(1)| invariant, we should

have ρ̂N(t) = |ψα
(1)⟩⟨ψα

(1)| as well. Therefore, the excitation energy
stored in the initial DS will be protected against bath-induced
dissipation processes as long as the exchange symmetry of the
OQN is maintained.
To discharge the EQB, we introduce a SBP onto the network.

As a result, the reduced density matrix leaves the dark-state
subspace, i.e., ρ̂N(t) ≠ |ψα

(1)⟩⟨ψα
(1)|. As we will show later, the

application of the SBP causes the excitation energy stored in the
initial DS to be transferred from the bulk sites to the surface sites
and eventually out to a sink connected to one of the SSs (termed
the exit site). Here, the SBP (denoted by P for perturbation) is
represented by a set ofM harmonic oscillators and the network−
SBP interaction Hamiltonian is assumed to have a bilinear
form,50 such that

∑ γ̂ + ̂ = ̂ + Ω ̂ −
Ω

̂
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
H H p r S

1
2 k

M

k k k
k

k
P NP

2 2
2

2

(6)

where Ŝ is a network operator consisting of projection operators
|n⟩⟨n| with n ∈ BSs (the exact form of Ŝ is chosen in such a way
that the exchange symmetry is completely broken by the SBP).
Here, p̂k, rk̂, andΩk are the mass-weighted momentum, position,
and frequency of the kth oscillator, respectively, and γk is the
coupling strength between the kth oscillator of the SBP and the
network. The bilinear coupling to the SBP is characterized by a

Debye−Drude spectral density ω λ=
ωω

ω ω+
J( ) 2 p

p
2

p
2 , where λp is

the reorganization energy and ωp is the cut-off frequency (λp
should be small as the SBP simply acts as perturbation to the
EQB). When including the SBP, the initial condition for the
composite system should be ρ̂tot(0) = ρ̂N(0) ⊗ ρ̂B(0) ⊗ ρ̂P(0),
where ρ̂P(0)∝ e−βPĤP assumes a canonical form characterized by
an inverse temperature βP≡ 1/TP. In this case, we only consider
the effect of a single SBP but the general conclusions are
expected to be the same when multiple SBP elements (each of
which acts locally on a BS) are used.
Given the excitonic nature of the QB, which stores excitons

and the associated excitation energy, it is meaningful to use the
so-called transfer efficiency of the EET to monitor the
performance of the EQB during the storage and discharging
stages. The transfer efficiency is defined as the population
transferred to the sink due to an irreversible trapping process
(with a rate κ) from the exit site of the network,30,51 i.e.

∫η κ ρ= ⟨ | ̂ ′ | ⟩ ′t e t e t( ) 2 ( ) d
t

0 N (7)

where ⟨e|ρ̂N(t)|e⟩ is the population at the exit site and the
trapping rate, κ, is set to 1 ps−1, which is typical for EET
population transfer dynamics.52

3. PROOF OF CONCEPT
3.1. Model. To illustrate the key features of the proposed

EQB, we consider an OQN model of a para-benzene-like
structure coupled to two heat baths (see inset of Figure 1a for an

illustration of the network). We emphasize that in this work, we
do not attempt to realize the proposed idea using molecular
systems. Rather, as suggested in ref 35, the EQB could be
realized using artificially engineered systems, e.g., super-
conducting units. The quantum network is described by the
following Hamiltonian

∑ ∑̂ = | ⟩⟨ | + | ⟩⟨ |
= ⟨ ⟩

H E n n h n m
n

n
n m

N
1

6

, (8)

where En is the on-site energy of site n, h is the nearest-neighbor
electronic coupling strength, and the sum over ⟨n, m⟩ is carried
out over nearest-neighbor sites with cyclic boundary conditions.
We note that in Hückel’s theory for a benzene molecule,42,53 En
= ε for all n. However, in our model, the quantum network is
coupled to heat baths (through the SSs) and the on-site energies
of the SSs are in general different from each other and from those
of the BSs. Here, we adopt the following configuration, where
sites 1 and 4 are the SSs and site 4 is the exit site (the numbering
convention can be found in the inset of Figure 1a).
In the absence of the SBP, the OQN exhibits exchange

symmetry generated by the following unitary operator

Figure 1. Time-dependent site populations for the OQN during (a)
storage (without the SBP, χ = 0) and (b) discharge (with an SBP that is
coupled to sites 2 and 3, χ = 1). Results for sites 1, 2, 3, 4, 5, and 6 are
represented by squares, circles, diamonds, upward-pointing triangles,
left-pointing triangles, and right-pointing triangles, respectively. The
insets illustrate the setups used in the simulations. A time step ofΔt = 1
fs and an ensemble of 1 × 104 trajectories are used to obtain converged
DECIDE results. The bath and SBP parameters are chosen as T = 300
K, Tp = 300 K, λb = 35 cm−1, λp = 10 cm−1, ωc = ωp = 106 cm−1, ωmax =
50ωc, and M = 100.
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Π̂ = [ | ⟩⟨ | + | ⟩⟨ | ] ⊗ [ | ⟩⟨ | + | ⟩⟨ | ]i iexp ( 2 6 6 2 ) exp ( 3 5 5 3 )
(9)

which corresponds to two independent, yet simultaneous,
permutation operations exchanging the states of sites 2 and 6, as
well as those of sites 3 and 5, or equivalently, a 180° rotation
around the axis connecting sites 1 and 4. After this operation, the
structure of the OQN remains unaltered. Due to the existence of
this symmetry operator, the system possesses two DFSs with the
corresponding DSs |ψα

k⟩ and eigenvalues uα
42,50

ψ

ψ

| ⟩ = | ⟩ + | ⟩ − | ⟩ − | ⟩ = +

| ⟩ = | ⟩ + | ⟩ − | ⟩ − | ⟩ = −

u E h

u E h

1
2

( 5 6 2 3 ),

1
2

( 3 6 2 5 ),

1 1 B

2 2 B (10)

In the above equation, the reference to k has been omitted
because dα = 1. It can be readily checked that |ψ1⟩ and |ψ2⟩ are
eigenstates of both Π̂ and ĤN and that they are annihilated by
the network−bath interaction Hamiltonian ĤNB, thereby
satisfying a sufficient condition for the existence of a dark state.48

As mentioned earlier, the EQB is initialized in a DS so we
choose the initial state of the OQN to be

ρ ψ ψ̂ = | ⟩⟨ |(0)N 1 1 (11)

with |ψ1⟩ given by eq 10; ρ̂N(0) = |ψ2⟩⟨ψ2| is also a valid choice.
In the absence of a SBP, the OQN is expected to undergo
dissipationless dynamics, leading to a time-independent reduced
density matrix, i.e., ρ̂N(t) = |ψ1⟩⟨ψ1|. Accordingly, the site
populations, which reflect the distribution of electronic
excitation energy across the network, will be

⟨ ̂ ⟩ = ⟨ ̂ ⟩ =
∀ ∈

∀ ∈

l
m
oooo

n
oooo

P t P
n

n
( ) (0)

0, SSs,

1
4

, BSsnn nn

(12)

where ̂ = | ⟩⟨ |n nnn is the projection operator of site n, the
ensemble average of which defines the site population. In other
words, the initially injected electronic excitation energy is
uniformly distributed among the four BSs and stored in the bulk
states indefinitely. It is worthwhile to mention that the time
independence of the site populations results from the exchange
symmetry of the OQN only and it does not hinge upon the
specific values of the network parameters. To discharge the
EQB, we attach to it a SBP and take Ŝ = |2⟩⟨2| + |3⟩⟨3| in eq 6,
which breaks the exchange symmetry completely (see inset of
Figure 1b). With the SBP in place, |ψ1⟩ is no longer a dark state
and therefore over time, population builds up in the SSs, as
expected; i.e., the exciton stored within the bulk states is
transferred to the SSs.
3.2. Methodology. For open quantum systems with large

numbers of degrees of freedom in their environments, full
quantum simulations of the composite quantum dynamics are
not feasible. Furthermore, in EET systems, the reorganization
energy is usually of the same order ofmagnitude as the electronic
coupling, which hinders the utility of perturbative methods such
as the Redfield equation. To simulate the quantum dynamics of
our OQN with and without the SBP, we employ the recently
developed mixed quantum-classical method known as the
deterministic evolution of coordinates with initial decoupled
equations (DECIDE).54 It treats the OQN quantum mechan-
ically and the environment in a classical-like fashion. Previously,
it was shown that for the EET dynamics of the Fenna−

Matthews−Olson complex, DECIDE yields results for the time-
dependent site populations that are in very good agreement with
numerically exact simulations, at both low and high temper-
atures.54 Thus, it is expected that DECIDE could reliably
capture the EET dynamics of the OQNmodel with and without
the SBP. DECIDE also provides a computationally tractable way
of assessing the impact of weak static disorder in the OQN on
the EET dynamics, as it allows one to readily perform thousands
of simulations of independent disordered OQN configurations
for achieving numerical convergence.
Using the DECIDE method, which relies on a partial Wigner

transform55,56 over the environments’ (viz., thermal baths and
the SBP) degrees of freedom, the composite dynamics is
governed by the following Weyl-ordered, partially Wigner-
transformed Hamiltonian

χ

̂ = ̂ + ̂ { } + { } { }

+ [ { } { } + ̂ { } ]

H H H R H P R

H p r H r

( ) ( , )

( , ) ( )

n j n j n j

k k k

W N NB , B , ,

P NP (13)

Here, {·} denotes a set of bath position or bath momentum
variables. The flag χ is either 0 or 1, corresponding to the OQN
without or with the SBP, respectively. The generalized
coordinates of the OQN are taken to be the ̂ = | ⟩⟨ |n mnm
operators, whereas the coordinates of the thermal baths and
SBP are simply their respective position and momentum
variables. According to DECIDE, the time evolution of
these coupled coordinates is prescribed by the following set of
coupled first-order differential equations (FODEs)

= [ ̂ ̂ ]ββ ββ′ ′t t i H td ( )/d ( , ) ( )nm nmW a n d dX β β ′ ( t ) / d t =

−({ĤW,X})
ββ′(t),54 where [·,·] and {·,·} are the commutator

and Poisson bracket, respectively, X = ({Rn,j}, {Pn,j}, χ{rk},
χ{pk}) and {|β⟩} = (|1⟩, |2⟩, ..., |6⟩)

∑ ∑

∑

∑

∑

∑

δ δ

δ δ

χ δ δ

χ δ δ

ω δ δ

χγ

= [ ̂ − ̂ ]

− ̂ + ̂ +

+ ̂ + ̂ +

− ̂ + ̂ +

+ ̂ + ̂ +

=

= − + ̂ +

=

= −Ω + ̂ + ̂

ββ ββ

ββ

ββ

ββ

ββ

ββ ββ

ββ ββ ββ

ββ ββ

ββ ββ ββ

′

=
=

′

′

′

′

′

′ ′

′ ′ ′

′ ′
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t
t i V t V t

i
C R t t t R t

i
C R t t t R t

i
C R t t t R t

i
C R t t t R t

t
R t P t

t
P t R t C t

t
r t p t

t
p t r t t

d
d

( ) ( ) ( )

2
( ( ) ( ) ( ) ( )) ( )

2
( ( ) ( ) ( ) ( )) ( )

2
( ( ) ( ) ( ) ( )) ( )

2
( ( ) ( ) ( ) ( )) ( ),

d
d

( ) ( ),

d
d

( ) ( ) ( )( ),

d
d

( ) ( ),

d
d

( ) ( ) ( ) ( )

nm
l

ln lm v mv nv

j
n j n j nm nm n j n n

j
m j m j nm nm m j m m

k
k k nm nm k n n

k
k k nm nm k m m

n j n j

n j n j n j n j nn n n

k k

k k k k

1

6

1

6

, , , ,1 ,4

, , , ,1 ,4

,2 ,3

,2 ,3

, ,

, ,
2

, , ,1 ,4

2
22 33

(14)

where the coherent coupling isVnn = En +∑j=1
M Cn,j

2 /(2ωn,j
2 )(δn,1 +

δn,4) + χ∑k=1
M γk

2/(2Ωk
2)(δn,2 + δn,3) with δn,m as the Kronecker

delta function, and Vnm = h. Given the completeness condition
∑ ̂ == 1n nn1

6 , there are 36 × [35 + 2(2 + χ)M] coupled FODEs
for the network, bath, and SBP matrix elements. When χ = 0, the
equations of motion for the SBP variables rk

αα′ and pk
αα′ are

decoupled from the rest and therefore we do not need to
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propagate them in the simulations. From the above equations of
motion, we see that the coordinates of the BSs, SSs, and baths are
always coupled, irrespective of the initial conditions of the
quantum network. This fact further highlights the open
character of the proposed loss-free EQB during the storage
phase.
The system−bath coupling coefficients and the frequencies of

the bath harmonic oscillators are determined by discretizing the
Debye−Drude spectral densities of the baths to yield57

λ ω ω π ω=C M2 arctan( / )/( )n j n j, b max c , (15)

whereωn,j = tan(j arctan(ωmax/ωc)/M)ωc. Similarly, to simulate
the Debye−Drude spectral density of the SBP, the following
expression for the system−SBP coupling coefficients is used

λ ω ω π= ΩC M2 arctan( / )/( )k kp max p (16)

where Ωk = tan(j arctan(ωmax/ωp)/M)ωp. In this study, we
assumed that the SBP has the sameωmax and the same number of
harmonic oscillators M as the other heat baths.
The time-dependent population of site n can be obtained

according to58

∫∑ ρ ρ⟨ ̂ ⟩ =
ββ

ββ β β

′

′ ′XP t t( ) d (0) ( ) (0) (0)nn nn N E,W
(17)

The initial distribution of the environment is ρE,W(0) = ρB,W(0)
if χ = 0 and ρE,W(0) = ρB,W(0)ρP,W(0) if χ = 1. Here
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and an analogous expression for ρP,W(0) are the partially
Wigner-transformed thermal equilibrium states for the baths
and the SBP, respectively.59 Since ρE,W(0) is a normalized
distribution function for the environments’ coordinates, we can
perform trajectory-based molecular dynamics simulations to
compute the time-dependent site populations in eq 17 as
follows: We generate a swarm of independent classical-like
trajectories starting from different X(0) sampled from the
partially Wigner-transformed environmental initial distribution
ρE,W(0) and the same initial values of the matrix elements ββ′

nm
(viz., =(0) 1nm

nm and the initial values of the remaining matrix

elements are zero). Each trajectory of ββ′ t( )nn is obtained by
integrating eq 14 using the standard fourth-order Runge-Kutta
method.60 Finally, we average ββ′ t( )nn over the ensemble of

trajectories, taking into account the weight ρN
β′β(0) (determined

by the initial state of the network ρ̂N(0)), and then sums over the
indices ββ′ to obtain ⟨ ̂ ⟩t( )nn for site n.

4. RESULTS AND DISCUSSION
4.1. Demonstration of the Working Principle: Storage

andDischarge.As the loss-free character of the proposed EQB
is independent of parameters (see eq 12), for demonstration
purposes, we choose the following parameters: E1 = 250 cm−1,
Ei∈{2,3,5,6} = 200 cm−1, E4 = 0 cm−1, and h = −60 cm−1. The
energy gaps between the SSs and BSs establish energy barriers to
direct the flow of population toward the exit site (i.e., site 4)

when discharging the EQB (cf. the bias voltage in traditional
lithium-ion batteries, for example).
The simulated time-dependent site populations of the OQN

in the storage (χ = 0) and discharging (χ = 1) phases are shown
in Figure 1. From Figure 1a, it is evident that the site populations
are indeed time-independent in the absence of the SBP, even
though the SSs are coupled to thermal baths. Populations take
values according to eq 12, implying that the electronic excitation
energy can be completely stored within the bulk states of the
EQB for an arbitrary long time. In other words, the EQB is loss
free. To harness the stored excitation energy, we attach a
symmetry-breaking reservoir, which nonlocally acts on sites 2
and 3 of the OQN. This element breaks the exchange symmetry
and thus allows us to populate the exit site 4. As can be seen from
Figure 1b, the populations of all sites now vary with time. The
populations of the BSs decrease as a function of time, whereas
the population of site 4 increases (the population of site 1 first
increases, and then it saturates due to the energy structure of the
network, which directs the excitation energy flow toward site 4).
Thus, DECIDE, although an approximate method, is capable of
reproducing the exact result without the SBP and it (at least)
qualitatively reproduces the expected trends when the SBP is
enacted.
The energy gap between the two SSs (1 and 4) mimics the

bias voltage in traditional chemical batteries. We therefore
expect that a larger energy gapwill be advantageous in enhancing
the performance of the EQB. To explore this possibility, we take
E1 = 400 cm−1 instead of E1 = 250 cm−1, with the other site
energies fixed. The resulting time-dependent site populations of
the OQN, with and without the SBP, are depicted in Figure 2.
First, in panel (a), we confirm that the population dynamics
during the storage phase is independent of the parameters we
choose, since the exchange symmetry is preserved. As for the

Figure 2.Time-dependent site populations for theOQNduring storage
(a) and discharge (b) under a larger bias of E1 = 400 cm

−1, instead of the
choice of E1 = 250 cm−1. Results for sites 1, 2, 3, 4, 5, and 6 are
represented by squares, circles, diamonds, upward-pointing triangles,
left-pointing triangles, and right-pointing triangles, respectively. A time
step of Δt = 1 fs and an ensemble of 1 × 104 trajectories are used to
obtain converged DECIDE results. The other parameters are the same
as those in Figure 1.
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discharge phase, comparing Figure 2b with Figure 1b, we find
that for the larger bias, the population accumulating in time at
site 1 is indeed largely suppressed, whereas more population can
be extracted from the bulk and directed toward the exit site 4.
Although here we only consider two sets of parameters, we
should emphasize that similar conclusions can be reached with
other choices of parameters. Together, the results in Figures 1

and 2 demonstrate the underlying working principles of the EQB
and highlight its potential functionality.
How general and flexible is the proposed EQB? The actual

values of the parameters E1, EBS, E4, and h are in fact arbitrary, as
any choice would satisfy the symmetry requirements of the EQB.
Moreover, the intersite coupling h does not need to be uniform;
the setup operates under reduced symmetry as long as it satisfies
J1,2 = J1,6, J3,4 = J4,5, and J2,3 = J5,6. Realizations of the EQB are

Figure 3. Role of diagonal disorder on the storage stage of the EQB. (a−f) Time-dependent populations of the six sites for the OQN without an SBP
under various diagonal disorder widths, δ = 0 cm−1 (solid), δ = 0.2 cm−1 (square), δ = 2 cm−1 (circle), and δ = 20 cm−1 (triangle). An average over 1000
uniformly distributed random disorders is performed to achieve convergence (error bars are much smaller than the symbols). For each sample, a time
step ofΔt = 1 fs and an ensemble of 1 × 104 trajectories are used to obtain converged DECIDE results. Parameters are the same as those in Figure 1a.

Figure 4. Role of diagonal disorder on the discharge stage of the EQB. (a−f) Time-dependent populations of the six sites for the OQN with the SBP
acting on sites 2 and 3 under various diagonal disorder widths, δ = 0 cm−1 (solid), δ = 0.2 cm−1 (square), δ = 2 cm−1 (circle), and δ = 20 cm−1 (triangle).
An average over 1000 uniformly distributed randomdisorders is performed to achieve convergence (error bars aremuch smaller than the symbols). For
each sample, a time step ofΔt = 1 fs and an ensemble of 1× 104 trajectories are used to obtain convergedDECIDE results. The parameters are the same
as those in Figure 1b.
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possible with engineered devices for which an appropriatemodel
Hamiltonian can be devised35 and whose environments may be
controlled. However, even in such cases, achieving perfect
structural symmetry is highly unlikely due to experimental
limitations and static/dynamic disorder. In the following
subsections, we therefore assess the impact of energy disorder
(diagonal and off-diagonal), as well as temperature fluctuations
of the SBP.
4.2. Effects of Diagonal Disorder. We consider the effect

of static diagonal disorder on the OQN by shifting the energy of
each site, En, by ΔEn, which is randomly chosen from a uniform

distribution of width δ, i.e.,Δ ∈ − δ δÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑE ,n 2 2
. The corresponding

EET properties are calculated by averaging over 1000
realizations of the disorder, with each sample requiring
1 × 104 trajectories to obtain converged DECIDE results.
Results for the site populations, during storage and discharge, for
different values of δ are shown in Figures 3 and 4, respectively.
First, we examine the role of static diagonal disorder on the

storage phase in Figure 3.We observe that as long as the disorder
is weak (viz., δ = 0.2, 2 cm−1), it does not degrade the excitation
energy storage performance, underscoring the robustness of the
proposed EQB. Only once we increase the width δ to 20 cm−1,
which corresponds to a strong diagonal disorder (recall that the
energy of the bulk sites is 200 cm−1), are the structural symmetry
and associated exchange symmetry non-negligibly broken.
Consequently, we observe energy leakage from the BSs (2, 3,
5, 6) while the SSs (1, 4) gain population in time, rendering the
OQN unsuitable for long-term excitation energy storage.
Nevertheless, we point out that the magnitude of population
loss is only of the order of 10−2 within the considered time
window.
Next, in Figure 4, we study the role of static diagonal disorder

during the discharge stage, with the SBP attached. Here, even a
strong disorder only leads to a minor impact on the population
dynamics. Therefore, diagonal disorder does not strongly affect
the performance of the EQB during the discharging phase,
although strong disorder during the storage phase makes the
EQB unstable. We attribute this difference to the fact that the
SBP completely breaks the structural symmetry, thereby making
the EQB less sensitive to diagonal disorder.
To complement the simulations of the population dynamics

under various degrees of static diagonal disorder, we calculate
the transfer efficiency, defined in eq 7, as a way of assessing the
impact of diagonal disorder on the efficiency of the excitation
energy transfer to the sink of the EQB. In Figure 5, we show
results for the transfer efficiency of the EQB with (χ = 1) and
without (χ = 0) the SBP under various levels of diagonal
disorder. In a perfectly symmetric OQN without the SBP, the
transfer efficiency is identically zero, implying that the energy is
stored in the bulk and cannot be harnessed through the exit site.
Only a strong diagonal disorder (20 cm−1) can induce nonzero
transfer efficiency in the absence of the SBP. In contrast, in the
symmetry-broken OQN (χ = 1), the transfer efficiency remains
almost the same under different degrees of diagonal disorder. It
should be noted that our total simulation time for obtaining the
transfer efficiency is limited to a value for which η(t) ≪ 1, to
ensure the validity of the definition of the time-dependent
transfer efficiency in eq 7. This is because our equations of
motion for the subsystem do not contain a non-Hermitian term
responsible for exciton trapping from the exit site to the sink.
4.3. Effects of Off-Diagonal Disorder.We now investigate

the effect of static off-diagonal disorder, which mimics the

fluctuations in the excitonic coupling strength due to non-
Condon effects. This is accomplished by adding to the nearest-
neighbor electronic coupling strength, h, a contribution ΔVnm,
which is randomly chosen from a uniform distribution of width

σ, i.e., Δ ∈ − σ σÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑV ,nm 2 2
. Also, to pinpoint the effects of off-

diagonal disorder, the site energies are held fixed. The
corresponding EET properties are calculated by averaging
over 1000 configurations of the disorder, with each sample
requiring 1 × 104 trajectories to obtain converged DECIDE
results. The results for the time-dependent site populations, with
and without the SBP, for different values of σ are displayed in
Figures 6 and 7, respectively.
During the storage phase, we observe in Figure 6 that under a

very weak off-diagonal disorder (σ = 0.1 cm−1), the EQB is
essentially loss free. The populations of the BSs only begin to
deviate from their optimal values of 0.25 for an intermediate
degree of disorder, viz., σ = 1 cm−1. Interestingly, however, if we
further increase the width of the off-diagonal disorder by an
order of magnitude to σ = 10 cm−1, there is no significant
additional degradation in the performance of the EQB. Only a
very small amount of the stored energy is leaked out of the bulk
of the EQB. Contrasting this with the diagonal disorder case in
Figure 3, we observe here two distinct differences: (i) The
populations of the BSs do not follow a specific trend; some sites
gain population, whereas others lose population (at least for the
time period considered), implying that the EQB prefers to
redistribute the stored excitonic energy among the BSs rather
than leak it to the SSs, even in the presence of strong off-diagonal
disorder. (Note that σ = 10 cm−1 is of the same order of
magnitude as the bare electronic coupling strength h.) (ii) The
overall effect of the off-diagonal disorder is significantly smaller
than that of the diagonal disorder. Even with a strong off-
diagonal disorder, e.g., σ = 10 cm−1, the deviation from the ideal
EQB storage value is only on the order of 10−4. This difference
can also be observed by comparing the efficiency result in Figure
8 with that in Figure 5.

Figure 5. Time-dependent transfer efficiency, η(t), for OQNs without
an SBP (χ = 0) and with an SBP acting on sites 2 and 3 (χ = 1) for
various diagonal disorder widths δ = 0 cm−1 (solid), δ = 0.2 cm−1

(square), δ = 2 cm−1 (circle), and δ = 20 cm−1 (triangle). An average
over 1000 uniformly distributed random disorders is performed to
achieve convergence (error bars are much smaller than the symbols).
For each sample, a time step of Δt = 1 fs and an ensemble of 1 × 104

trajectories are used to obtain converged DECIDE results. The bath
and SBP parameters are the same as in Figure 1.
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We next turn to the EQB in its discharging stage. As can be
seen from Figure 7, the site populations are negligibly affected by
the static off-diagonal disorder. Together, Figures 4 and 7 reveal
that the proposed EQB is quite insensitive to structural
fluctuations when an SBP is attached and can maintain its
optimal efficiency during the discharging process in the presence
of strong static disorder, whether diagonal or off-diagonal. This

can also be observed by comparing the efficiency result in Figure
8 with that in Figure 5.

4.4. Effects of SBP Temperature. From an experimental
point of view, the SBP (which is realized here by attaching a heat
bath) may only contain a finite number of degrees of freedom
and hence its temperature may fluctuate and deviate from that of
the two attached heat baths. To maintain the functionality of the

Figure 6. Role of off-diagonal disorder on the storage stage of the EQB. (a−f) Time-dependent populations of the six sites for the OQN without an
SBP under various off-diagonal disorder widths, σ = 0 cm−1 (solid), σ = 0.1 cm−1 (square), σ = 1 cm−1 (circle), and σ = 10 cm−1 (triangle). An average
over 1000 uniformly distributed random disorders is performed to achieve convergence (error bars are much smaller than the symbols). For each
sample, a time step of Δt = 1 fs and an ensemble of 1 × 104 trajectories are used to obtain converged DECIDE results. Parameters are the same as in
Figure 1a.

Figure 7.Role of off-diagonal disorder in the discharge stage of the EQB. (a−f) Time-dependent populations of the six sites for the OQNwith the SBP
acting on sites 2 and 3 under various off-diagonal disorder widths, σ = 0 cm−1 (solid lines), σ = 0.1 cm−1 (square), σ = 1 cm−1 (circle), and σ = 10 cm−1

(triangle). An average over 1000 uniformly distributed random disorders is performed to achieve convergence (error bars are much smaller than the
symbols). For each sample, a time step ofΔt = 1 fs and an ensemble of 1 × 104 trajectories are used to obtain converged DECIDE results. Parameters
are the same as those in Figure 1b.
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EQB, it is desirable that the SBP does not significantly alter the
population dynamics of the network in the presence of a small
temperature difference. To check whether our setup satisfies this
criterion, we vary the temperatureTp of the SBP to create a small
temperature gradient between the OQN and SBP and study the
resulting EET properties. Comparisons between the time-
dependent site populations for different temperatures of the SBP
are shown in Figure 9. As can be seen, the population dynamics
remains almost the same regardless of the temperature
difference between the SBP and OQN. A comparison of the

transfer efficiency of the EQB for different Tp’s is shown in
Figure 10. It is clear that the transfer efficiency of the EQB is
essentially independent of the temperature of the SBP reservoir.
These results confirm the role of this attached bath as a
symmetry-breaking perturbation to the dynamics of the OQN.

5. SUMMARY
In this paper, we tackled the challenge of achieving long-term
energy storage in quantum batteries subject to environmental
effects. Resorting to an open quantum system setup, we
proposed an excitonic quantum battery that is loss-free during
its storage phase. This was made possible by preparing the
quantum battery in a symmetry-protected dark state living in a
decoherence-free subspace. Due to the passive symmetry

Figure 8.Time-dependent transfer efficiency, η(t), for OQNs without a
SBP (χ = 0) and with a SBP acting on sites 2 and 3 (χ = 1) for various
off-diagonal disorder widths, σ = 0 cm−1 (solid), σ = 0.1 cm−1 (square),
σ = 1 cm−1 (circle), and σ = 10 cm−1 (triangle). An average over 1000
uniformly distributed random disorders is performed to achieve
convergence (error bars are much smaller than the symbols). For
each sample, a time step of Δt = 1 fs and an ensemble of 1 × 104

trajectories are used to obtain converged DECIDE results. The bath
and SBP parameters are the same as those in Figure 1.

Figure 9. (a−f) Time-dependent populations of the six sites for the OQNwith the SBP acting on sites 2 and 3 for different SBP temperatures,Tp = 330
K (solid), Tp = 300 K (square), and Tp = 270 K (circle). A time step ofΔt = 1 fs and an ensemble of 1 × 104 trajectories are used to obtain converged
DECIDE results. The other parameters are the same as in Figure 1b.

Figure 10. Time-dependent transfer efficiency, η(t), for different
temperatures of the SBP, Tp = 330 K (solid), Tp = 300 K (dashed), and
Tp = 270 K (dashed-dotted). A time step ofΔt = 1 fs and an ensemble of
1 × 104 trajectories are used to obtain converged DECIDE results. The
other parameters are the same as in Figure 1b.
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protection, the excitonic energy can be stored for long times
even in the presence of thermal environments that may
substantially couple to the OQN, a highly desirable feature for
energy storage applications. The EQB is discharged by attaching
to it a symmetry-breaking perturbation, here in the form of a
thermal reservoir, which destroys the dark state.
To illustrate the potential functionality and working

mechanism of the proposed EQB, we studied an OQN with a
para-benzene-like structure, for which one can easily construct
an exchange symmetry operator and symmetry-protected dark
states. Numerical results for this model, generated using the
recently developed DECIDE method, demonstrated the
possibility of realizing a loss-free EQB. We also investigated
the effects of diagonal and off-diagonal disorders on the storage
and discharge phases of the EQB and the effect of varying the
SBP temperature on the discharging process. Our simulation
results showed that the proposed EQB is rather robust against
perturbations to the structural symmetry.
Before concluding, it is worth commenting on a related

research endeavor to understand the role of molecular structure
and symmetry on the electrical conductance of molecules (see
refs 53, 61−66, for example). Specifically, constructive and
destructive interference effects, emerging from interfering
electron pathways, were examined in refs 53, 61−66 to devise
nontrivial molecular-based circuits. Although the majority of
studies in the area of molecular electronics consider a steady-
state behavior and ignore decoherence effects, ref 53 focused on
the time-dependent electrical currents in para- and meta-
substituted benzene molecules under the influence of
decoherence. In this study, it was demonstrated that in the
absence of decoherence, para-substituted benzene supports high
currents whereas meta-substituted benzene suffers from a
destructive interference effect and essentially acts as an insulator.
However, once decoherence is included (using a probe), the
interference pattern is disrupted and conductance is restored in
meta-substituted benzene. This behavior parallels our exploita-
tion of the benzene molecule symmetry to store the excitonic
energy and our use of a symmetry-breaking perturbation to
release it.
Although we have not attempted to maximize the transfer

efficiency of the EQB, this can, in principle, be done by exploring
the parameter space and identifying optimal parameter sets.
Extensions to this work could include applying the working
principles to more complicated networks, such as those
encountered in artificial light-harvesting complexes,67−69

modeling open charged EQBs by means of Lindblad master
equations with symmetries,42,48−50,70 investigating ways of
initializing the EQB in a dark state, and optimizing the
charging/discharging processes.
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