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Abstract. We discuss a model where a spontaneous quantum collapse is induced by the gravitational
interactions, treated classically. Its dynamics couples the standard wave function of a system with the
Bohmian positions of its particles, which are considered as the only source of the gravitational attraction.
The collapse is obtained by adding a small imaginary component to the gravitational coupling. It predicts
extremely small perturbations of microscopic systems, but very fast collapse of QSMDS (quantum super-
positions of macroscopically distinct quantum states) of a solid object, varying as the fifth power of its
size. The model does not require adding any dimensional constant to those of standard physics.

A well-known difficulty in quantum mechanics is that
the dynamical equations (Schrödinger or von Neumann
equations) seem to predict the possible occurrence of
quantum superpositions of macroscopically distinct states
(QSMDS) [1,2] that are never observed, for instance the
creation of Schrödinger cats [3,4]. To solve the difficulty,
von Neumann [5,6] suggested to introduce a quantum col-
lapse postulate, which is nowadays part of most introduc-
tory textbooks on quantum mechanics.

Several authors have proposed to relate quantum col-
lapse to the effects of gravity. One can for instance assume
that gravity is the source of a random noise acting on
the state vector, and that this noise projects QSMDS
onto one of its components localized in space. In refer-
ences [7,8], Diosi discusses the introduction of a stochas-
tic term in the Schrödinger (or von Neumann) equation
that efficiently destroys QSMDS; see also references [9,10].
In reference [11], Penrose notes that the energy differ-
ence associated with different mass distributions leads to
a violation of energy conservation, and suggest that this
violation is spontaneously canceled by some random pro-
jection mechanism. Other contributions may be found in
references [12–15]. Reviews of this class of theories can be
found in Section 3-B of reference [16] and in reference [17].

Here we propose a model of the quantum dynamics that
also provides a collapse, but with equations that are com-
pletely deterministic; gravity is treated as a classical field
originating from the Bohmian positions of the particles. In
classical physics, gravity already plays a special role, since
it determines the curvature of space-time. In our model,
we attribute to gravity another special feature, which is
to introduce small non-Hermitian component in the evo-
lution equation of the state vector. Nothing in this model
is stochastic; the only source of randomness is the initial
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randomness of the Bohmian position, as in the de Broglie-
Bohm (dBB) theory [18–23]. This model is in the line
of a general view where space-time remains classical,
and where the source of the curvature of space-time
is the Bohmian positions of the particles; the various
quantum fields propagate inside this classical space-time
frame.

Combining elements from dBB and spontaneous col-
lapse [24,25] theories is not a completely new idea.
Reference [26] proposes to localize the wave function
around the Bohmian positions, but with no real change
of the Schrödinger dynamics; moreover, gravity plays no
role in the localization process. References [27,28] con-
sider a back action of the Bohmian positions on the wave
function, but with a stochastic term, as in standard spon-
tanous collapse theories [24,25].

For the sake of simplicity, here we discuss only spinless
non-relativistic particles (including spins within a Pauli
theory is nevertheless not particularly difficult). As in
references [29,30], we use a dynamics involving an
“expanded description” of the physical system: to the
standard wave function Ψ defined in the configuration
space, we add (in the same space) a mathematical point Q,
whose coordinates are determined by the Bohmian posi-
tions qn of all its particles. Incidentally, and in contrast
with the usual interpretations of the de Broglie-Bohm
(dBB) theory, we make no particular assumption concern-
ing the physical reality of these positions; they can be seen,
either as physically real, or as a pure mathematical object
appearing in the dynamical equations.

The equations of this dynamics are given in Section 1. In
Section 2 we discuss the predictions of the model in various
situations, showing that it introduces no significant change
for microscopic systems while it rapidly projects QSMDS
onto one of its localized components. A conclusion is given
in Section 3.
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1 Modified quantum dynamics

We assume that the Hamiltonian H of a physical system
is the sum of its internal Hamiltonian Hint (including the
kinetic energy of the particles and their mutual interac-
tions) and of a gravitational Hamiltonian HG, due to the
attraction of external masses with mass density nG(r):

H = Hint +HG (1)

with:

HG = −gGm

∫
d3r Ψ†(r)Ψ(r)

∫
d3r′

1

|r− r′|nG(r′) (2)

In this relation, g = 1 in standard theory, G is Newton’s
constant, m the mass of the particles, and Ψ(r) the
quantum field operator of the particles contained in the
physical system. With external sources of gravity, this
Hamiltonian is completely standard. If nG(r′) is set equal
to quantum local density average 〈Ψ†(r)Ψ(r)〉, we obtain
the usual Schrödinger-Newton equation [31].

1.1 Evolution of the state vector

We now leave standard quantum mechanics by making
two non-standard assumptions. First, we assume that HG

actually describes the internal gravitational attraction of
the system, and that nG(r) is determined by the Bohmian
positions qn of the N particles of the system:

nG(r) = m

N∑
n=1

δ(r− qn) (3)

Incidentally, one could also perform a spatial average over
a distance aL, as usual in GRW and CSL [24,25] theories,
and write for instance:

nG(r) =
m

π3/2a3
L

N∑
n=1

e−(r−qn)2/α2
L (4)

Nevertheless, in what follows, we will only use the simpler
form (3). Similarly it has been proposed in reference [32]
to study chemical reactions (within standard quantum
mechanics) by an approximation where the nuclei are
treated classically, and where the backreaction of the
quantum electrons on the nuclei is obtained by sampling
the Bohmian positions of the electrons over their quantum
distribution.

Second, as in reference [33], we assume that the dimen-
sionless constant g has a small imaginary part ε:

g = 1− iε (5)

(one could choose any small number, for instance ε =
α, the fine structure constant). This introduces an
antiHermitian part in HG:

HG = H0
G + iL (6)

where H0
G is the Hermitian part of HG:

H0
G = HG(ε = 0) (7)

and where L is the localization operator:

L = εGm

∫
d3r Ψ†(r)Ψ(r)

∫
d3r′

1
|r− r′|

nG(r′) (8)

This operator is diagonal in the position representation.
It is the second quantized form of the sum of N single
particle potentials taking large values in the vicinity of
the Bohmian positions, in the regions of space where the
gravitational attraction by these positions is strong. With
(3), this expression becomes:

L = εGm2

∫
d3r Ψ†(r)Ψ(r)

N∑
n=1

1
|r− qn|

(9)

In [29] we introduced a localization operator where the
quantum operator Ψ†(r)Ψ(r) is coupled to the Bohmian
positions with a Gaussian spatial average of range aL.
Here the Gaussian spreading function is replaced by a
gravitational type of coupling that is proportional to the
inverse distance.

The state vector |Φ(t)〉 evolves according to:

i~
d
dt
|Φ(t)〉 = [Hint +HG] |Φ(t)〉 (10)

If ε 6= 0, the norm of |Φ(t)〉 does not remain constant. We
can nevertheless introduce the normalized ket

∣∣Φ(t)
〉
:

∣∣Φ(t)
〉

=
1√

〈Φ(t) |Φ(t)〉
|Φ(t)〉 (11)

and set:

DΦ(r) =
〈
Φ(t)

∣∣Ψ†(r)Ψ(r)
∣∣Φ(t)

〉
(12)

This normalized state then evolves according to:

i~
d
dt

∣∣Φ(t)
〉

=
[
Hint +H0

G + iεGm

∫
d3r

∫
d3r′

[
Ψ†(r)Ψ(r)−DΦ(r)

] 1
|r− r′|

nG(r′)
] ∣∣Φ(t)

〉
(13)

To summarize, the two non-standard ingredients of our
model are:

– the use of the Bohmian positions to define a density
of matter in ordinary space; this density is the source
of the classical gravitational field involving the usual
Newton constant G.

– the introduction of a small imaginary part in G, so
that the dynamics becomes irreversible and collapses
QSMDS, as we see below.
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1.2 Evolution of the Bohmian positions

We assume that the Bohmian positions qn evolve accord-
ing to the usual Bohmian equation of motion:

dqn (t)
dt

=
}
m

−→
5nξ (r1, r2, . . . , rN ) (14)

where ξ (r1, r2, . . . , rN ) is the phase of the wave function
Φ (r1, r2, . . . , rN ), and

−→
5n the gradient taken with respect

to rn = qn. Equivalently, this equation can also be writ-
ten:

dqn (t)
dt

=
}

im DΦ(r)
〈
Φ(t)

∣∣Ψ†(r) ∇rΨ(r)

−∇rΨ†(r) Ψ(r)
∣∣Φ(t)

〉
(15)

The condition of “quantum equilibrium” means that,
when averaged over many realizations of an experiment,
the distribution of the Bohmian positions in configuration
space coincides with the modulus square of the wave func-
tion. In standard dBB theory with the usual Schrödinger
equation, if this condition is satisfied at the initial time, it
is also satisfied at any time. But this property no longer
holds in our case, since we have modified the dynamics of
the wave function. Nevertheless, in reference [30] we dis-
cuss why the relaxation process studied by Towler, Russell
and Valentini [34,35] should ensure that this condition is
still valid to an excellent approximation, except in a very
short transient time during the appearance (and almost
immediate collapse) of a QSMDS.

2 Discussion

We now discuss the effect of the localization term on the
state vector. The situation is similar to that already con-
sidered in references [29,30] except that, here, the time
constants of the collapse mechanism arise from a gravi-
tational energy coupling the quantum particles with their
Bohmian positions. We discuss only the simpler version (3)
of the model, which introduces no fundamental parame-
ter aL, but similar conclusions apply as well if a non-zero
value of aL is chosen.

2.1 Negligible effects on microscopic systems

Consider first the non-relativistic Schrödinger equation of
the electron and proton in a Hydrogen atom, ignoring the
spins for the sake of simplicity. Each of the two particles
is subjected to two attractions:

– the usual Coulomb attraction, which introduces the
usual two-body potential in the Schrödinger equation
for the wave function.

– the gravitational attraction, appearing as a one-body
attractive potential towards the position of an addi-
tional variable: the electron is attracted towards the
Bohmian position qp of the proton, and conversely the
proton is attracted towards the Bohmian position qe
of the electron.

The ratio X between the Coulomb and gravitational
interactions is very large:

X ' q2

4πε0

1
Gmemp

' 1039 (16)

where ε0 is the permittivity of vacuum, q the electronic
charge, me the mass of the electron and mp the mass of
the proton. This enormous value of X ensures that the
gravitational component plays no role in practice: we just
recover the well-known fact that the gravitational attrac-
tion remains completely negligible in the Hydrogen atom.
The divergences of nG(r) when r = qn do not create any
special problem: as in the standard theory of the Hydro-
gen atom, they only introduce kinks in the wave function,
but these kinks are 1029 times less pronounced than those
introduced by the Coulomb potential; in practice, they
have no effect. Moreover, the statistical distribution of qp
and qe over many realizations coincides with the corre-
sponding quantum distributions. Clearly, changing in this
way the center of gravitational attraction has no practical
consequence. In addition to this change, the model intro-
duces a small imaginary component to the gravitational
part of the Hamiltonian, which introduces an even more
negligible perturbation.

Another example illustrates why, in most cases, the
localization term has a very small effect. If

∣∣Φ(t)
〉

is an
eigenstate of the Hamiltonian Hint + H0

G, the average
energy

〈
Hint +H0

G

〉
remains constant:

d
dt
〈
Hint +H0

G

〉
= 0 (17)

More generally, if
∣∣Φ(t)

〉
is an eigenstate of A at time t,

the localization term has no effect on the derivative of the
average value of A at time t:

d
dt

∣∣∣∣
loc

〈
Φ(t)

∣∣A ∣∣Φ(t)
〉

= 0 (18)

This is because, if a is the eigenvalue of A, we have:

d
dt

∣∣∣∣
loc

〈
Φ(t)

∣∣A ∣∣Φ(t)
〉

=
2εGm

}

∫
d3r

∫
d3r′〈

Φ(t)
∣∣ [Ψ†(r)Ψ(r)−DΦ(r)

]
A
∣∣Φ(t)

〉
× 1
|r− r′|

nG(r′)

=
2εaGm

}

∫
d3r

∫
d3r′[〈

Φ(t)
∣∣Ψ†(r)Ψ(r)

∣∣Φ(t)
〉
−DΦ(r)

]
× 1
|r− r′|

nG(r′) = 0 (19)

The situation is therefore different from that obtained
with GRW and CSL theories [24,25], where the localiza-
tion mechanism constantly transfers energy to all particles
at a small rate: in our model, if the system is in a sta-
tionary state, thermal equilibrium for instance, its energy
remains constant. The reason for this difference is that, in
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GRW and CSL theories, the random localization process
involves a noise that is discontinuous in time, and there-
fore has a very broad spectrum (infinite in the case of
a Wiener process); it cannot be treated as a first order
perturbation and, for instance, the Ito term has to be
included. In our model, the localization term is contin-
uous and has a limited frequency spectrum (determined
by the motion of the Bohmian positions); since the cou-
pling constant is very small, it can be treated by first order
perturbation theory, and has a much softer effect.

2.2 Fast resolution of QSMDS

Assume now that the quantum state describes a QSMDS
situation, for instance a measurement pointer (or any
macroscopic object) in a superposition of two quantum
states localized in two different regions of space. By con-
trast, the Bohmian positions remain grouped together,
forming a cluster that occupies only one of these regions
of space. Therefore, in the two branches of the state vec-
tor, a strong mismatch then occurs between the quantum
density of particles and the Bohmian density (but with a
different sign), so that the effect of the localization opera-
tor L on these branches is significantly different. To eval-
uate its consequences we can, in (13), ignore the normal-
ization term in DΦ(r), which affects both branches in the
same way and does not change their relative amplitude. In
the “full component” where the Bohmian density accom-
panies the quantum density, the localisation term in the
right hand side of (10) multiplies the wave function by a
number that is of the order of (half of the absolute value
of) the self-gravitational energy Esg of the pointer, mul-
tiplied by the constant ε; in the “empty component”, it
multiplies the wave function by an energy that is negligible
with respect to this self-gravitational energy. Altogether,
the differential effect takes place with a time constant of
the order of:

τcollapse '
}

ε|Esg|
(20)

with:

|Esg| ' G
M2

L
(21)

where M is the mass of the pointer and L its size (we
assume that the two wave packets of the pointer are sepa-
rated by approximately its size, or more). If, for instance,
L = 0.1 mm and M = 10−6 g, and assuming ε = 10−3, we
find:

τcollapse ' 10−6 s (22)

We note that Esg varies as the fifth power of the
size of the pointer (at constant density). For instance, if
L = 1µm, we obtain a long collapse time τcollapse ' 104 s.
In experiments such as those of reference [36], very large
molecules could fly on different path without being col-
lapsed if the duration of the flight is shorter than this
time. The model thus predicts a relatively sharp border
between small objects that can reach and stay in a quan-
tum superposition of remote states, and larger ones that
almost immediately get projected onto one single loca-
tion. As discussed in [30], the origin of this projection

is the cohesive internal force of solid objects, which forces
the Bohmian positions to remain clustered together; gases
that do not have this internal cohesion do not undergo
the same effect. Interestingly, in the correlated worldline
(CWL) theory of quantum gravity [37,38], fifth powers of
the masses also appear in the mutual binding energy for
paths.

2.3 Large systems

In most situations (except, of course, during the appear-
ance of a QSMDS), the space distribution of Bohmian
variables accurately coincides with the quantum space dis-
tribution DΦ(r). Assuming that the gravitational attrac-
tion originates from the distribution of Bohmian positions
is not very different than assuming that the source of
attraction is the quantum distributionDΦ(r). The effect of
the localization term will then just be to (slowly) localize
the macroscopic system inside itself, or to move towards
region of lower gravitational potential. This term should
have no observable effect, except maybe on very long time
and space scales such as those considered in astrophysics;
its effect is somewhat reminiscent of the attraction of the
so called dark matter.

We note in passing that macroscopic quantum superposi-
tions of states that do not produce different spatial distribu-
tions of masses are not reduced by the localization process of
the model. For instance, if the flow of electrons in a super-
conducting ring is in a superposition of two states having
rotations in opposite directions, no significant collapse takes
place. Fast collapse occurs only to resolve QSMDS involving
different gravitational fields, as suggested by Penrose [11].

2.4 Measurements

When an apparatus M is used to measure a quantum sys-
tem S, both physical systems become entangled under the
effect of their mutual interaction. The state vector then
splits into several branches, each containing a state of S
that is an eigenstate of the measured observable. During
the first stages of measurement, as long as the entangle-
ment remains microscopic, the localization term plays no
special role. But, when the entanglement involves states of
M involving significantly different distributions of masses
in space, for instance different positions of a pointer, then
the fast collective collapse takes place: all branches but
one of the state vector vanish. The collapse process is
therefore initiated inside the measurement apparatus, but
immediately propagates back to S by a standard quan-
tum nonlocal effect. This is, for instance, what happens in
a Bell experiment. No collapse therefore occurs before a
significant part of the measurement apparatus M is part
of the entanglement. The result of measurement is deter-
mined by the initial Bohmian positions of all particles and,
as discussed in [39], in some cases the result is primarily
determined by the initial Bohmian positions of the mea-
surement apparatus.

This scenario fits rather well with an old quotation by
Pascual Jordan1: “observations not only disturb what has

1 As quoted by Bell in [40].
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to be measured, they produce it. In a measurement of posi-
tion, the electron is forced to a decision. We compel it to
assume a definite position; previously it was neither here
nor there, it had not yet made its decision for a definite
position. . . ”.

2.5 No signaling

When introducing nonlinearities in quantum dynam-
ics, one should be careful about avoiding superluminal
communications [42–44]. In the GRW [24] and CSL [25]
versions of modified Schrödinger dynamics, nonlinearity
and stochasticity compensate each other to cancel super-
luminal signaling. Similarly, the nonlinear Schrödinger-
Newton equation can be made compatible with the
no-signaling requirement by changing it to a stochastic
differential equation [45]. Here, the situation is somewhat
different: the nonlinearity is not introduced as a term cou-
pling the state vector directly to itself, but by the reaction
of Bohmian positions onto the wave function; the stochas-
ticity does not arise from a random process constantly
acting on the wave function, but from the random values
of the initial Bohmian positions.

In order to ensure that the Hamiltonian HG(ε = 0)
is nonsignaling, we introduce a retarded potential into in
equation (2):

nG(r′)⇒ nG(r′, t− |r− r′|
c

) (23)

where c is the speed of light. We then just have to
check that the localization term proportional to ε is also
nonsignaling.

Assume that the system, described by the density oper-
ator ρ(t) = |Ψ(t)〉 〈Ψ(t)|, is made of two remote subsys-
tems A and B, respectively occupying regions of space SA
and SB , and described by the partial density operators
ρA(t) and ρB(t). We denote {|nA〉} an ensemble of states
of A providing an orthonormal basis, and {|nB〉} a similar
basis for system B; for instance, nA and nB are abbrevi-
ated notations for the positions of the NA particles that
are inside SA, and NB particles inside SB , repectively. The
evolution of the matrix elements of ρA(t) introduced by
the localization term in ε is given by:

d
dt

∣∣∣∣
loc

〈nA| ρA(t) |n′A〉 =
2εGm

}
∑
nB

〈nA, nB |∫
d3r

∫
d3r′

[
Ψ†(r)Ψ(r)−DΦ(r), ρ(t)

]
+

nG(r′, t− |r− r′|
c

) |n′A, nB〉 (24)

where [C,D]+ denotes the anticommutator of C and D.
We now assume that system A is microscopic, but that

B is macroscopic, and that at some time it is driven to
a QSMDS, for instance because a quantum measurement
is performed in this region B. We are interested in the
possible effects on the partial density operator ρA(t) of
the resolution of this QSMDS by the localization opera-
tor. The operator in the right hand side of (24) contains

the sum of four contributions: LAA, LBB , LAB and LBA.
Here the first index A (or B) indicates that the integra-
tion variable r′ lies in region SA (or SB), which determines
the source of localization; the second index indicates that
the integration variable r lies in region SA (or SB), which
determines the target of the localization process. Since we
assume that A is microscopic, we can ignore LAA, which
is local and remains extremely small since A is micro-
scopic. We are actually only interested in the terms hav-
ing a macroscopic source, in other words in the effects of
LBB and LBA.

In fact, LBB is clearly the most important term. It
looks local since it corresponds to a localization occur-
ring entirely in region SB by the collective spontaneous
localization process discussed in Section 2.2; nevertheless,
since it acts on the density operator ρ(t), which is a non-
local object if systems A and B are in an entangled state,
this term can introduce quantum nonlocality (in particu-
lar violations of the Bell inequalities). For instance, if the
measurement is performed on two spin 1/2 particles in a
singlet spin state, as soon as a single spin measurement is
performed in region SB along a direction u, the localization
term will cancel one component of the singlet state; which
component is cancelled depends on the result of measure-
ment. In other words, in a single realization of the exper-
iment, the spin state in region S − A will immediately be
projected onto the opposite spin state on the same direc-
tion u. It is nevertheless well-known that this nonlocatity
does not imply any possible superluminal communication –
this is the famous “peaceful coexistence between quantum
mechanics and relativity” [46]. Indeed, if we consider the
average over many realizations, the density matrix of sys-
tem A remains completely independent of u. Technically,
while in the right hand side of (24) nG fluctuates in region
B from one realization to the next, on average it can be
replaced by the local density associated with the standard
(non-collapsed) solution of the Schrödinger equation; this
provides the average effect of the localization on the density
operator of A. So, term LBB ensures that we recover the
usual nonlocal quantum correlations between the remote
subsystems A and B, the violation of the Bell inequalities,
etc., but without any superluminal communication.

We finally have to consider the effect of the term LBA.
It also implies that the measurement result obtained in
region SB may influence the evolution of the density oper-
ator ρA(t), but the effect is much weaker that that of LBB
since it tends to zero when the distance between regions
SA and SB increases. Again, the average of this effect over
many realizations is obtained by replacing nG by the stan-
dard quantum density in space. It is not signaling because
of the delay |r− r′| /c appearing in the right hand side
of (24): whatever is done to change the Bohmian density
inside subsystem B cannot affect the evolution of sub-
system A at any time earlier than the minimum delay
required by relativity.

For the sake of simplicity, we have assumed that A
is microscopic and B macroscopic, but the discussion
could easily be generalized to the case where both are
macroscopic. Our general conclusion, therefore, is that the
model is nonsignaling, at least in all situations that we
have considered.

https://www.epjd.epj.org
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2.6 Differences and similarities with GRW/CSL
theories

In the dynamical equations of the model, we have assumed
that the Bohmian position of every particle is the source
of gravity acting on all other particles. This is of course
necessary for the Hermitian part of the Hamiltonian
(obtained with ε = 0) if one wishes to reproduce the usual
effects of gravity. But we have also assumed that this is
true for the antihermitian term (term in ε), introducing in
this way “mutual collapse terms”. As a consequence, our
localization term in the dynamical equation is similar to
a two-body interaction term. By contrast, the localization
term of GRW or CSL theories is rather described by a
single-particle potential: the state vector is subjected to
the effect of random localization terms acting on all par-
ticles independently, with a probability rule that depends
on the values of the wave function at the positions of all
particles. In other words, in our model the collapse is a col-
lective effect, by contrast with GRW/CSL theories. This
difference has several consequences.

A first consequence is that, within our model, the local-
ization rate varies roughly proportionally to the square
of the number of particles involved in a QSMDS. There-
fore, much smaller values of the collapse coupling constant
can be used, without losing a very fast collapse rate of
QSMDS. In particular, this explains why the undesirable
heating effects initially predicted in [8] with a gravitational
collapse do not occur here.

Another consequence is that, as discussed in Section 2.1,
the localization process of this model is intrinsically softer
than that of GRW and CSL, which have a very short
correlation time and therefore a broad spectrum (actu-
ally infinitely broad); here, the gravitational attraction
towards Bohmian position is continuous in time, so that it
can be treated perturbatively to first order (for instance, it
does not introduce Ito terms). As discussed in Section 2.3,
for large solid bodies, we obtain an effect of localization
that is much weaker than that of GRW/CSL theories [30],
so that it should be more difficult to detect experimen-
tally (each particle in a solid is localized only inside a
large body).

Our model does not require to postulate a probability
rule for the random localization field, without any other
justification than recovering the Born rule: the correla-
tions between the motions of the Bohmian position, guided
as usually by the wave function in the configuration space,
are sufficient to ensure a spatial localization of large mas-
sive objects, while the constant relaxation towards quan-
tum equilibrium [35] automatically leads to the Born rule.

Pearle and Squires have remarked that the rate of col-
lapse of GRW and CSL theories should be proportional to
the mass, indicating a possible relation between collapse
and gravitation [47]. To connect our model with these the-
ories, one can modify it by assuming, for instance, that the
Bohmian position of each particle is the source of local-
ization for this particle only. The collapse then loses its
collective properties and the model becomes more simi-
lar to GRW and CSL, maybe even equivalent. If it were
equivalent, this would mean that the constant randomness
of GRW and CSL theories, contained in their “probabil-

ity rule”, can also be interpreted within a deterministic
dynamics in terms of random initial values of the Bohmian
positions. We have not explored this question.

2.7 EEQT theory

The Event-Enhanced-Quantum-theory (EEQT) [48] pro-
poses a similar method to describe individual quantum
systems and to explain why, in a measurement pro-
cess, “potential properties of a quantum system become
actual”. It also enhances the standard quantum descrip-
tion of a system by replacing the usual space of states by a
family of spaces, labelled with an index α, representing the
pure state of a classical system C. An “event” is defined
by a change of the value of α. Operators are labelled by
two indices α and α′, and not necessarily self-adjoint, as
the non-Hermitian localization term we have introduced.
A back action of the classical system is also introduced.
Under these conditions, α plays a role in EEQT theory
that is similar to the role of Bohmian positions in our
model. The main difference is that the evolution of α is
not deterministic, but given by a Markov process.

3 Conclusion

We have introduced two basic postulates: the source
of gravitation is the Bohmian density of particles, not
the quantum density; the gravitational coupling con-
stant includes a small imaginary component. With these
two assumptions, predictions that are compatible with
presently known facts are obtained, including the appear-
ance of single results in experiments. The dynamics is such
that the mathematical objects (wave function and posi-
tions) constantly follow the physical observations closely;
there is no need to update the value of the wave func-
tion in order to include new information. For instance,
if a sequence of measurements is performed on the same
quantum object, its state vector automatically includes the
information obtained in the previous measurements; there
is no need to add a state vector reduction by hand, or to
keep empty components of the state vector. As discussed
in [30] in more detail, the model remains compatible with
a whole range of possible interpretations and ontologies.

In this model, the quantum collapse is nothing but
a consequence of the internal cohesion of macroscopic
objects and of their gravitational self-attraction [30]. The
mutual attraction between the particles of the object
forces all Bohmian positions to remain grouped together,
because they have to occupy regions of the configura-
tion space where the many particle wave function does
not vanish, a consequence of standard dBB theory. We
then assume that these positions collapse the state vector
around them: in equation (13), the source of gravitational
attraction is the Bohmian density, instead of the quan-
tum density DΦ(r) appearing in the Schrödinger-Newton
equation, discussed in detail for instance in [31]. As early
as in 1965, Bohm and Bub [49] proposed to introduce a
collapse dynamics involving hidden variables (the compo-
nents of a vector in the dual space of the Hilbert space
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in their case). As mentioned in the introduction, Pen-
rose [11] suggested in 1996 that, when a QSMDS involving
different spatial distribution of masses (and therefore dif-
ferent space-time configurations) creates an energy fluctu-
ation ∆E, the QSMDS spontaneously decays in a time
of the order of ~/∆E. The spontaneous collapse arises
because of an energy mismatch between two (or more)
components of the QSMDS. In this model, the primary
origin of the collapse is a mismatch between two densities
of space, the quantum density and the Bohmian density;
this in turn creates a mismatch of gravitational energy in
different components of the QSLMDS and achieves Pen-
rose’s scheme, but without any particular general relativis-
tic effect. Recently, Tilloy has proposed a modification of
the GRW theory where the sources of a classical gravi-
tational field are the collapse space-time events of that
theory [50].

Depending on one’s point of view, the role of the
Bohmian positions can be seen as more, or less important,
than in standard dBB theory. In the dynamics, they cer-
tainly play a more active role than in dBB theory, where
the positions do not appear in the dynamical equation giv-
ing the evolution of the state vector, but just follow the
spatial variations of the wave function. Here, the Bohmian
positions act as mathematical attractors of the state vec-
tor |Φ(t)〉 through the gravitational term (including its
small dissipative component in ε). This introduces a non-
linearity in the dynamics of |Φ(t)〉. Nevertheless, as we
have seen, in most situations this change has very little
effect on the evolution of |Φ(t)〉 – except in situations
where QSMDS appear, which are then rapidly projected
by this term. The model therefore illustrates how the addi-
tion of a single additional variable to the standard equa-
tions, namely a point position in the configuration space,
allows one to significantly enrich the dynamics and to take
into account collapse situations.

From a purely interpretative point of view, one can see
this continuous attraction as a pure mathematical ingre-
dient to replace the stochastic fields of GRW and CSL
theories, as well as their probability rule. One can then
hold a view where the Bohmian positions are just mathe-
matical objects creating this attraction, and where phys-
ical reality is directly represented, for instance, by the
quantum density DΦ(r). But it is also perfectly possible
to consider that all the individual Bohmian positions of
the particles provide a direct representation of reality, as
usual in dBB theory.

This model is in the line of calculations where grav-
ity is treated classically, within general relativity. This
remains compatible with a classical structure of space-
time, in which the various quantum fields (electromag-
netic for instance) propagate (semi-classical gravity [51]);
such schemes are sometimes useful in quantum cosmo-
genesis [53–55]. The circularity of the defintion of time
in quantum theory [17] is avoided. A standard approach
to semi-classical gravity is to use a quantum average
of the energy momentum tensor operator to construct
the Einstein tensor [56–58]. Nevertheless, paradoxes may
then arise: for instance, if a body is in a quantum
superposition of two locations, each localization of the
body attracts the other. Also, as discussed by Eppely

and Hannah [59], one could in principle measure directly
the modulus of the wave function, and therefore obtain
superluminal signaling. Other arguments have been built,
involving thought interference experiment, to discuss pos-
sible inconsistencies, or to plead in favor of a semi-classical
theory of gravitation [60–64]. In our model, as in that
of reference [50], the paradoxes arising from of delocal-
ized sources of gravity disappear: in each realization of
an experiment, the source of gravitation always remains
localized in space (since it originates from the Bohmian
positions). Of course, in most situations (when no QSMDS
occurs) it is practically equivalent to take the Bohmian
positions, or the average quantum density of particles, as
the source of gravity, due to the quantum equilibrium con-
ditions. In this sense, the predictions of this model are very
similar to those of the theory of semiclassical gravity pro-
posed by Tilloy and Diosi [13], the major difference being
that their approach is based on a stochastic spontaneous
localization, while no random perturbation is invoked in
the present article.

At this stage, the model remains very elementary, in
particular because its treatment of gravity remains sim-
ply Newtonian, not Einsteinian: for instance, it does not
include gravitational waves. The hope is that the model
could be an approximation of some more elaborate theory,
compatible with general relativity. One could also specu-
late about a possible generalization to a quantum treat-
ment of a gravitational field, still having its sources in the
Bohmian positions of the particles. One hope could be to
find a justification of the complex value of the coupling
constant by analogy with electromagnetic spontaneous
emission, also taking into account the intrinsic nonlinear
character of general relativity. This, of course, remains
completely speculative. As it is, the model is definitely in
the line of a semi-classical treatment of gravity.

The author is grateful to Antoine Tilloy, Lajos Diosi, Philip
Pearle and Nicolas Gisin for useful comments and suggestions.

References

1. A.J. Leggett, “Macroscopic quantum systems and the
quantum theory of measurement”, Suppl. Prog. Theor.
Phys. 69, 80 (1980)

2. A.J. Leggett, “Probing quantum mechanics towards the
everyday world: where do we stand”, Phys. Scr. T102, 80
(2002)

3. E. Schrödinger, “Die gegenwärtige Situation in der Quan-
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