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The evolution with a complex Hamiltonian generally leads to information scrambling. A time-reversed
dynamics unwinds this scrambling and thus leads to the original information recovery. We show that if the
scrambled information is, in addition, partially damaged by a local measurement, then such a damage can
still be treated by application of the time-reversed protocol. This information recovery is described by the
long-time saturation value of a certain out-of-time-ordered correlator of local variables. We also propose a
simple test that distinguishes between quantum and reversible classical chaotic information scrambling.
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In complex strongly correlated systems, local informa-
tion spreads quickly over the whole system. This process
is characterized by exponentially fast changes of the
out-of-time ordered correlators (OTOCs) [1–4], such as
the following correlator of local operators W and V with
specific time ordering:

FðtÞ ¼ hW†ðtÞV†ð0ÞWðtÞVð0Þi: ð1Þ

After OTOCs saturate, initially local information becomes
encoded into global entanglement, hindering the data from
local measurements.
It can be hard to recover this information if the scram-

bling path is not completely known or if the final state is
partly damaged. For instance, a single qubit thrown into a
black hole is quickly dispersed and lost behind the horizon.
With the resource of early Hawking radiation, only a few
qubits of information emitted from the black hole are
needed to reconstruct the lost qubit [5] but there is no
simple recipe for how to do this without considerable
knowledge about the system [6–8].
In order to suggest a solution to similar problems, we

consider a practically accessible scenario for information
scrambling and unscrambling. Let us describe this scenario
as a hypothetical application of a quantum processor, such
as the one in the quantum supremacy test [9], for hiding
quantum information. Our processor can be simpler than
that in Ref. [9] because we require that only one of the
qubits can be prepared and measured, which is suitable for
experiments with liquid-NMR quantum computers [10,11].
Let Alice have such a processor that implements fast

information scrambling during a reversible unitary evolu-
tion of many interacting qubits. She applies this evolution
to hide an original state of one of her qubits, which we call

the central qubit. The other qubits are called the bath. To
recover the initial central qubit state, Alice can apply a
time-reversed protocol.
Let Bob be an intruder who can measure the state of the

central qubit in any basis unknown to Alice, as shown in
Fig. 1. If her processor has already scrambled the infor-
mation, Alice is sure that Bob cannot get anything useful.
However, Bob’s measurement changes the state of the
central qubit and also destroys all quantum correlations
between this qubit and the rest of the system. According to
the no-hiding theorem [12], information of the central qubit
is completely transferred to the bath during the scrambling
process. However, Alice does not have knowledge of the
bath state at any time. How can she recover the useful
information in this case?
In this Letter, we show that even after Bob’s measure-

ment, Alice can recover her information by applying the
time-reversed protocol and performing a quantum state
tomography with a limited amount of effort. Moreover,
reconstruction of the original qubit will not be influenced

FIG. 1. The protocol: Alice prepares the central qubit with the
gate P, and applies the scrambling unitary Û. Bob measures the
central qubit in any basis defined by the gate R, with S flipping
the qubit to the corresponding post measurement state. Alice is
still able to reconstruct the encoded information via a single
decoding unitary Û†.
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by Bob’s choice of the measurement axis and the initial
state of the bath.
This effect cannot be explained with semiclassical

intuition. Indeed, classical chaotic evolution magnifies
any state damage exponentially quickly, which is known
as the butterfly effect. The quantum evolution, however, is
linear. This explains why, in our case, the uncontrolled
damage to the state is not magnified by the subsequent
complex evolution. Moreover, the fact that Bob’s meas-
urement does not damage the useful information follows
from the property of entanglement correlations in the
scrambled state [12]. Hence, the information recovery
effect can be used in practice to distinguish quantum
scrambling from the scrambling achieved via classical
chaotic dynamics.
Suppose that the process in Fig. 1 is realized in a system

of qubits (spins-1=2’s). The system starts from an initial
product state, ρ0 ¼ jiihij ⊗ ρB. Here, the central qubit state
jii encodes the information to be scrambled and recovered,
whereas ρB of the bath qubits can be an arbitrary pure or
mixed state.
After a unitary evolution during time t1, a projective

measurement along a random axis is applied to the central
spin, without collecting any data from the measurement
outcome. Then, the system evolves backward in time
during t2, followed by a state tomography for the central
spin. We claim that when t2 ¼ t1, the final measurements
contain information that can be used to fully reconstruct the
initial state of the central qubit.
Two remarks are in order. First, the recovery of damaged

information is a generic effect insensitive to the detailed
dynamics, as long as the unitary evolution is complex
enough to scramble the information. Thus, for any initial
state, after the scrambling process the reduced density
matrix of the central qubit becomes maximally mixed. For
instance, the desired scrambling unitary can be generated
by a chaotic many-body Hamiltonian, or be comprised by
random two-qubit unitaries on a quantum circuit. Second,
the initial information is fully recovered at the moment
t2 ¼ t1, i.e., right after the backward unitary becomes
conjugated to the forward unitary, but it will be useful
to explore what happens for t2 ≠ t1.
Let P̂r be the projection operator for Bob’s measurement

on the central qubit. There are two complementary histories
in which, after Bob’s measurement, the central spin state is
projected to the subspace described by either P̂r or Î − P̂r.
The probability for Alice’s projective measurement P̂f at
the final time moment is

ProbðP̂fÞ ¼
Z

½dr�ProbðP̂f; P̂rÞ þ ProbðP̂f; Î − P̂rÞ; ð2Þ

where ProbðP̂f; P̂rÞ is the joint probability that both Alice
and Bob find unit measurement outcomes for their measu-
rement operators. Note that, since we do not collect results

of the Bob’s intermediate measurements, his complemen-
tary measurement outcome contributes to ProbðP̂fÞ as well.
The integral over r in Eq. (2) accounts for averaging over
an arbitrary distribution of possible directions for Bob’s
measurement axes.
Let Ûðt1Þ be the evolution operator for the time-forward

protocol during time t1 and Û†ðt2Þ be the evolution
operator for the time-reversed protocol during time t2.
The probability of the nonzero outcome for the intermedi-
ate measurement P̂r and the corresponding post measure-
ment state ρr are then given by

ProbðP̂rÞ ¼ trP̂rρðt1ÞP̂r;

ρr ¼ P̂rρðt1ÞP̂r=ProbðP̂rÞ; ð3Þ

where ρðt1Þ ¼ Ûðt1Þρ0Û†ðt1Þ is the system state at time t1.
The probability for the final measurement P̂f, conditioned
on the system being projected to the post measurement
state ρr, is

ProbðP̂fjP̂rÞ ¼ trðP̂fÛðt2ÞρrÛ†ðt2ÞP̂fÞ: ð4Þ

This gives the desired joint probability ProbðP̂f; P̂rÞ ¼
ProbðP̂fjP̂rÞProbðP̂rÞ. Since the system is initially in the
state ρ0 ¼ jiihij ⊗ ρB, the joint probability can be
expressed in a compact form:

ProbðP̂f; P̂rÞ ¼ hP̂rðt1ÞP̂fðt1 − t2ÞP̂rðt1ÞP̂ii: ð5Þ

Here, the ensemble average is defined as h•i≡ trð• Î ⊗ ρBÞ.
Equation (5) shows that the effect of Bob’s interference
on the information that Alice obtains after applying the
time-reversed protocol is described by a two-time OTOC of
projection operators.
Let us now express this OTOC (5) in terms of Pauli

operators, using the identity σ̂ϕ ≡ 2P̂ϕ − Î. We are
interested in long scrambling times and t2 ∼ t1. The second
order spin correlators, such as hσ̂fðt1Þσ̂ii, decay quickly
with time. Hence, we can safely neglect all such correlators
except the ones that depend on t1 − t2 ≪ t1. The joint
probability is then

ProbðP̂f; P̂rÞ ¼
1

4
þ 1

16
hσ̂fðt1 − t2Þσ̂ii

þ 1

16
hσ̂rðt1Þσ̂fðt1 − t2Þσ̂rðt1Þσ̂ii: ð6Þ

For t1 ¼ t2, the second term on the right-hand side in
Eq. (6) is independent of the evolution unitary. All such
details are hidden in the third term. At t1 ¼ t2, this
four-point correlator becomes a standard spin OTOC, i.e,

FðtÞ ¼ hσ̂rðtÞσ̂iσ̂rðtÞσ̂fi: ð7Þ

PHYSICAL REVIEW LETTERS 125, 040605 (2020)

040605-2



For finite t and for a small bath this correlator has a
nontrivial system-specific behavior that obscures the con-
tribution of hσ̂fðt1 − t2Þσ̂ii in Eq. (6). However, we are
interested in the typical complex unitary evolution that
scrambles information. Hence, we claim that FðtÞ saturates
to a universal value that is described by its average over an
ensemble of random unitaries. This average can be evalu-
ated as an integral over all unitaries with respect to the Haar
measure [13,14], i.e.,

F̄ ¼
Z
Haar

dUtr½U†σrUσiU†σrUσfρB�; ð8Þ

where ρB is the initial state of bath qubits. The integral
can be further calculated using the identity for Haar
unitaries [7]:

Um1n1U
�
m0

1
n0
1
Um2n2U

�
m0

2
n0
2

¼ δm1m0
1
δm2m0

2
δn1n01δn2n02 þ δm1m0

2
δm2m0

1
δn1n02δn2n01

N2 − 1

−
δm1m0

1
δm2m0

2
δn1n02δn2n01 þ δm1m0

2
δm2m0

1
δn1n01δn2n02

NðN2 − 1Þ ; ð9Þ

where N is the dimension of the Hilbert space. After
summing over all indices and using a trivial identity
trðσ̂f;i;rÞ ¼ 0, the average reduces to

F̄ ¼ hσiσfi=ðN2 − 1Þ≡ trðσiσf ⊗ ρBÞ=ðN2 − 1Þ: ð10Þ

We need this formula only for N ≫ 1 because then a single
typical unitary produces the effect that coincides with the
average of the OTOC. The large denominator, for N → ∞,
makes this OTOC decay to zero. Since this happens for
random unitary evolution, the same is true for sufficiently
long scrambling times and sufficiently large baths, so the
fourth order correlator in Eq. (6) also vanishes.
After averaging over random unitaries, the joint prob-

ability ProbðP̂f; P̂rÞ is the same as ProbðP̂f; Î − P̂rÞ, so the
final probability is twice that of ProbðP̂f; P̂rÞ for any
distribution of Bob’s measurement axes. Equation (6)
reduces then to

ProbðP̂fÞ ¼
1

2
þ 1

8
hσ̂fðt1 − t2Þσ̂ii: ð11Þ

This is the main result of our work. It shows that Alice’s
measurement probability at t2 ¼ t1 can be used to construct
the initial state of the central qubit, i.e., ρi ¼ ðÎ þ σ̂iÞ=2.
This information returns to the central qubit during a short
central spin lifetime, as it is described by a second order
spin correlator. The state of the central qubit at t2 ¼ t1 is

ρfðt2 ¼ t1Þ ¼
1

4
Î þ 1

2
ρi: ð12Þ

Note that the central qubit ends up in a partially mixed state.
However, distinct initial states are transformed to distinct
final states, i.e., the map is injective. Hence, the initial state
can be extracted from the final state statistically, using
quantum state tomography. Importantly, this can be done
with any precision using only a finite ensemble of our
system because the coherent contribution in Eq. (12) is not
suppressed by the complexity of the unitary evolution.
The model of a nuclear spin bath.—Our discussion of

information recovery is applicable to all systems that show
quantum information scrambling [15]. Thus, this effect
should be possible to demonstrate with a processor that
was used in the quantum supremacy test [9], as well as in
simulations of the SYK model [2,16] driven according to
the protocol in Fig. 1.
As an example of that the Haar random unitary provides

a correct description of the behavior of OTOCs, we studied
numerically the nuclear spin-bath model. This model has
been frequently used to describe interactions of a solid state
qubit with nuclear spins [17,18]. Its Hamiltonian is

H ¼
XNs

i¼1

X
α

Jαi S
αsαi ; α ¼ x; y; z; ð13Þ

where the couplings Jαi are independent Gaussian distrib-
uted random numbers with zero mean and standard
deviation J. Here, the central spin-1=2, S, interacts with
the bath of Ns spins-1=2’s, si. We simulated the
Schrödinger equation with this Hamiltonian numerically
to obtain the effect of the unitary evolution.
In our simulations, the central spin starts from the j↑i

state, i.e., σi ¼ σz in Eq. (11). The bath spins are prepared
in a maximally mixed state. This corresponds to a common
situation of practically infinite temperature for nuclear
spins. Figure 2 (top left) shows the obtained final
Alice’s probability of a nonzero measurement result for
σf ¼ σz and a fixed randomly chosen σr. It does show the
echo effect along the t1 ¼ t2 line, in perfect quantitative
agreement with Eq. (11). No additional averaging over
Bob’s measurement axes and parameters Jαi is needed for
a quantitative agreement with Eq. (11). We also verified
numerically for Ns ¼ 10 (not shown) that the same
universal result is obtained for several other choices of
the initial density matrix of the spin bath.
It is instructive to compare the echo in OTOCwith another

type of spin echo, which is induced by a similar protocol, in
which the backward evolution Û†ðt2Þ is replaced by the
forward one Ûðt2Þ. The joint probability is then described by
the correlator (5) with t2 replaced by −t2, i.e.,

Prob2ðP̂f; P̂rÞ ¼ hP̂rðt1ÞP̂fðt1 þ t2ÞP̂rðt1ÞP̂ii: ð14Þ

This correlator can be measured in solid state systems by
standard means, for example, it was studied experimentally
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in semiconductor quantum dots [19] (see also Ref. [20]). As
we show in Fig. 2 (top right), the final probability (14) also
shows an echo effect near t2 ¼ t1. However, this echo
originates from a finite scrambling rate and therefore decays
at large times, in sharp contrast to the echo in the OTOC.
Quantum vs classical scrambling.—Our observation can

be used to additionally validate quantum supremacy tests
such as in Ref. [9]. There is only a finite depth for precise
simulations of classical chaotic motion with classical
digital computers because of the exponential increase of
round-off errors [21]. Therefore, a classical analog com-
puter with nonlinear interactions between its components
can evolve reversibly to a state that cannot be predicted
with classical digital computers. Hence, to validate quan-
tum supremacy, an additional test may be needed to prove
that we deal with a quantum scrambled state at the end
rather than with a state generated by classical chaos [22].
In the classical case, a small change of the state vector at

the end of the forward protocol would be quickly magnified
during the backward time evolution. Thus, the state at the
end of our control protocol would be strongly different
from the initial one.
To illustrate this, we simulated the evolution of interact-

ing classical spins with the same Hamiltonian (13) subject
to the classical Landau-Lifshitz equations [23]. The state of
a classical spin is specified by a three dimensional unit
vector. Our initial state for the central spin is a unit vector
pointing along the z axis. Bath spins start from random
directions. Instead of quantum projective measurements,
we assumed that classical measurements were invasive.

Namely, a measurement resets the classical spin to be
directed either along or opposite to the measurement axis
with probabilities cos2 ðθ=2Þ or 1 − cos2 ðθ=2Þ, respec-
tively, where θ ∈ ½0; π� is the angle between the central
spin vector and the direction of the measurement axis. The
time-reversed dynamics was induced by changing the sign
of all spin coupling constants.
Figure 2 (bottom) shows the evolution of the z compo-

nent of the central classical spin during the time of the
protocol. As expected, an intermediate invasive measure-
ment of only the central spin has lead then to a state with
unrecoverable initial information, in sharp contrast to the
quantum case.
IBM-Q experiment.—To verify that our predictions are

robust against weak natural decoherence that is always
present in modern quantum computers, we performed an
experiment with the IBM-Q five-qubit processor. The main
programmed system consisted of one central and two bath
qubits. We also added an ancillary qubit to effectively
realize measurement by entanglement of this and the
central qubit.
The quantum circuit is the same as in Fig. 1. Here, the

three qubit unitary is given by

Û ¼ I ⊗ j01ih00j þ σx ⊗ j00ih01j
− iσy ⊗ j11ih10j − σz ⊗ j10ih11j; ð15Þ

with the corresponding quantum circuit realization shown
in Fig. 3 (top) [24]. It maps any initial state jii of the target
qubit to the maximally mixed state, provided that the input
states of the bath qubits are jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. This
unitary is not a typical Haar random unitary, since its
scrambling effect depends on the bath’s initial state.
Consequently, the four point correlator at t2 ¼ t1 in
Eq. (6), i.e., hÛσ̂rÛ

†σ̂fÛσ̂rÛ
†σ̂ii, is not zero, even after

averaging σ̂r over random Pauli matrices (corresponding to
random intermediate projective measurements). Instead, it
makes the above four point correlator vanish when σ̂r is
averaged over the Pauli group. Thus, if we include the
identity operator as part of the intermediate measurement,
the rest of the protocol and the final result will not change.
The central qubit starts at j0i. We perform the final

measurements along three orthogonal directions, corre-
sponding to j0i, ðj0i þ j1iÞ= ffiffiffi

2
p

, and ðj0i þ ij1iÞ= ffiffiffi
2

p
.

The theoretical probabilities for these final measurements
are 0.75, 0.5, and 0.5, respectively. Figure 3 shows the
statistics of the final measurements, obtained with the
IBM 5-qubit processor, from which we inferred the initial
state 0.992j0i − ð0.082 − 0.101iÞj1i. This corresponds to
0.983 fidelity, which means that natural decoherence was
not detrimental.
The effect of damaged information recovery should

be accessible for verification in more complex systems
using capabilities in the generation of random unitary

FIG. 2. Top: Final measurement probabilities obtained from
numerical simulations of the model (13) with quantum spins. Left
and right panels correspond to the final probabilities deduced
from the joint probability (5) and (14), respectively. Bottom:
Dynamics of the z component of the central spin vector in model
(13) with all classical spins. The green bar marks time t1 with
invasive measurement of the central spin. Black dashed curve and
blue solid curve correspond to the cases with and without
intermediate invasive measurement, respectively. Ns ¼ 10 and
Ns ¼ 30 for quantum and classical simulations, respectively.
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evolution [9–11]. In addition, we showed that this effect is
described by the long-time saturation values of OTOCs.
This observation reveals a novel domain of applications for
such unusual correlators.
This effect becomes very counterintuitive if we interpret

unitaries U and U† in Fig. 1 as, respectively, backward and
forward time travel operators. Then, the intermediate Bob’s
measurement is expected to lead to the same butterfly effect
as the one in the famous Ray Bradbury’s story “A Sound
of Thunder” [26]. In that story, a character used a time
machine to travel to the deep past, stepped on an insect
there, and after returning to the present time found a totally
different world. In contrast, our result shows that by the end
of a similar protocol the local information is essentially
restored.
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