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Wigner’s friend1 is a thought experiment that illustrates 
what is perhaps the thorniest foundational problem in 
quantum theory: the measurement problem2,3. In the 

thought experiment, we consider an observer (the ‘friend’) who 
performs a measurement on a quantum system. In accordance 
with the state update rule, the friend assigns the eigenstate corre-
sponding to their observed outcome to the measured system. The 
friend is assumed to be inside an isolated laboratory that can be 
coherently controlled by a second experimenter, Wigner, who is 
capable of performing arbitrary quantum operations on the friend’s 
laboratory and all of its contents. Although this may be possible, 
in principle, it would be a truly Herculean task if the friend were 
a macroscopic observer like a human, as we have chosen for our 
illustrations and discussions below. For this reason, Wigner is often 
called a ‘superobserver’. However, there is good reason to think that 
quantum mechanics would allow control of the type required if the 
friend were an artificial intelligence algorithm in a simulated envi-
ronment running in a large quantum computer. Wigner describes 
the laboratory and all of its contents as a unitarily evolving quantum 
state, in accordance with the rule for state evolution applicable to 
isolated systems. The case when the friend’s system is prepared in 
a superposition state leads to an apparent contradiction between 
the friend’s perspective and that of Wigner, who does not ascribe 
a well-defined value to the outcome associated with his friend’s 
observation. For a more in-depth description of the Wigner’s friend 
thought experiment, see Supplementary Section A.

Although decoherence can ‘save the appearances’ by explain-
ing the suppression of quantum effects at the macroscopic 
level, it cannot solve the measurement problem: ‘we are still left  
with a multitude of (albeit individually well-localized quasiclassi-
cal) components of the wave function, and we need to supplement  

or otherwise to interpret this situation in order to explain why 
and how single outcomes are perceived’2. Proposed resolutions  
have radical implications: they either reject the idea that measure-
ment outcomes have single, observer-independent values4–7 or 
postulate faster-than-light8,9 or retrocausal effects10,11 at a hidden 
variable level. Alternatively, some theories postulate mechanisms 
to avoid macroscopic superpositions, such as modifications to uni-
tary quantum dynamics12 or gravity-induced collapse13. Here we 
rigorously demonstrate that radical revisions of such types are in 
fact required.

Our work is inspired by the recent surge of renewed interest 
in the Wigner’s friend problem14–20. In particular, Brukner14 intro-
duced an extended Wigner’s friend scenario (EWFS) with two spa-
tially separated laboratories, each containing a friend, accompanied 
by a superobserver who can perform various measurements on 
their friend’s laboratory. Each friend measures half of an entangled 
pair of systems, establishing correlations between the results of the 
superobservers’ subsequent measurements.

In the context of this EWFS, Brukner14,15,20 considered three 
assumptions: ‘freedom of choice’, ‘locality’ (in the sense of ‘parameter 
independence’21) and ‘observer-independent facts’ (OIFs). The last 
of these means that propositions about all observables that might be 
measured (by an observer or a superobserver) are ‘assigned a truth 
value independently of which measurement Wigner performs’14.

In other words, the OIF assumption is equivalent to the assump-
tion of Kochen–Specker non-contextuality22,23 (KSNC). From these 
assumptions, Brukner derived a Bell inequality for the correlations 
of the superobservers’ results, which could be violated in quantum 
mechanics (if the superobservers could suitably manipulate the 
quantum state of the observers). A recent six-photon experiment17, 
using a set-up where the role of each friend is played by a single 
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photon, successfully violated such a Bell inequality derived from 
Brukner’s assumptions.

Although the EWFS background for this result was novel, the 
derived Bell inequality can be obtained from the assumptions of 
‘freedom of choice’ and KSNC, without considering the friends’ 
observations, and without using ‘locality’ (which follows from Bell’s 
stronger notion of local causality24, which in turn follows from KSNC 
in any Bell scenario25). Furthermore, the Kochen–Specker theorem22 
already establishes that KSNC + ‘freedom of choice’ leads to contra-
dictions with quantum theory. As discussed in refs. 19,20,26, this casts 
doubt on the implications of Brukner’s theorem with regard to any 
assumption specifically about the objectivity of the friends’ observa-
tions—one can respond to Brukner’s theorem simply by maintaining 
that ‘unperformed experiments have no results’27.

Nevertheless, there is a subtle but important difference between 
a standard Bell scenario in which one of two incompatible observ-
ables are chosen at random to be measured by each party and 
the scenario introduced by Brukner. In the latter, in one of four 
experimental runs, all four observables involved in the experi-
ment are being measured—one by each observer in the scenario. 
This suggests that the counterfactual reasoning in the OIF/KSNC 
assumption could be avoided by replacing it with a suitable weaker 
assumption. Indeed, Brukner discusses a weaker assumption—‘that 
Wigner’s and Wigner’s friend’s facts coexist’—before settling on 
‘The assumption of ‘observer-independent facts’ [which] is a stron-
ger condition’14.

In this Article we derive a new theorem, based on the intuition in 
the preceding paragraph around Brukner’s EWFS. It uses metaphys-
ical assumptions (that is, assumptions about physical theories) that 
are strictly weaker than those of Bell’s theorem or Kochen–Specker 
contextuality theorems, and thus opens a new direction in experi-
mental metaphysics. Our first two assumptions are, as per Brukner, 
‘freedom of choice’ (which we make more formal using the con-
cept of ‘No-Superdeterminism’ defined in ref. 24) and ‘Locality’ (in 
the same sense as Brukner; see also ref. 24). Our third assumption is 
‘Absoluteness of Observed Events’ (AOE), which is that an observed 
event is a real single event and not relative to anything or anyone. 
Note that capitalization is used for assumptions formally defined in 
this paper.

Unlike OIF, AOE makes no claim about hypothetical measure-
ments that were not actually performed in a given run. Furthermore, 
AOE is necessarily (though often implicitly) assumed even in stan-
dard Bell experiments24. For convenience, we will call the conjunc-
tion of these three assumptions ‘Local Friendliness’ (LF). This 
enables us to state our theorem.

Theorem 1: If a superobserver can perform arbitrary quantum 
operations on an observer and its environment, then no physical 
theory can satisfy Local Friendliness.

By a ‘physical theory’ we mean any theory that correctly predicts 
the correlations between the outcomes observed by the superob-
servers Alice and Bob (Fig. 1), who can communicate after their 
experiments are performed and evaluate those correlations. The 
proof of Theorem 1 proceeds by showing that LF implies a set of 
constraints on those correlations (that we call ‘LF inequalities’) that 
can, in principle, be violated by quantum predictions for an EWFS 
scenario. Thus, like Bell’s theorem and Brukner’s theorem, our theo-
rem is theory-independent—we use (like Bell and Brukner) quan-
tum mechanics as a guide for what may be seen in experiments, but 
the metaphysical conclusions hold for any theory if those predic-
tions are realized in the laboratory. (This is unlike the theorem of 
ref. 16, which is a statement about the standard theory of quantum 
mechanics.) Note also that, unlike in Brukner’s theorem, all three 
assumptions going into LF are essential for the theorem, and so are 
the friends’ observations.

For the specific EWFS Brukner considered—involving two 
binary-outcome measurement choices per superobserver—the set 

of correlations allowed by our LF assumption is identical to the 
set allowed by the assumptions of Bell’s theorem, commonly referred 
to as the local hidden variable (LHV) correlations. However, in gen-
eral, LF and LHV do not give identical constraints. Indeed, already 
for a slightly more complicated EWFS with three binary-outcome 
measurement choices per superobserver, we show that the set of 
LF correlations is a strict superset of the set of LHV correlations. 
Moreover, it is possible for quantum correlations to violate a Bell 
inequality (an inequality bounding the set of LHV correlations) 
while satisfying all of the LF inequalities. We also prove that the new 
LF inequalities we derive can nevertheless be violated by quantum 
correlations. We demonstrate these facts in an experimental simula-
tion where the friends are represented by photon paths.

We now proceed to explain the EWFS in more detail, before pre-
senting our results and discussing their implications.

The extended Wigner’s friend scenario. Let us consider the bipar-
tite version of the Wigner’s friend experiment that was introduced 

I’m Alice

x a

c

d

by

I’m Charlie

I’m Debbie

I’m Bob

Fig. 1 | Concept of the extended Wigner’s friend scenario. The friends, 
Charlie and Debbie, measure a pair of particles prepared in an entangled 
state, producing the outcomes labelled c and d, respectively (from their 
perspective). The superobservers, Alice and Bob, perform space-like 
separated measurements labelled x and y, with outcomes labelled a and b, 
on the entire contents of the laboratories containing Charlie and Debbie, 
respectively. Credit: Icons of people, Eucalyp Studio under a Creative 
Commons licence (https://creativecommons.org/licenses/by/3.0/).
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by Brukner, involving two superobservers, Alice and Bob, and their 
respective friends, Charlie and Debbie (Fig. 1). Charlie and Debbie 
each have one particle from an entangled pair, and make a measure-
ment on it, yielding outcomes c and d, respectively.

In each iteration of the experiment, Alice and Bob randomly and 
independently choose one out of N ≥ 2 measurements to be per-
formed in space-like separated regions subsequent to a space-like 
hypersurface containing the measurements of both Charlie and 
Debbie, as shown in Fig. 2d. The settings are respectively labelled 
x ∈ {1, …, N} and y ∈ {1, …, N}, with corresponding outcomes a 
and b (we do not assume anything about the number of possible 
outcomes at this stage). For the specific EWFS depicted in Fig. 2, if 
x = 1, Alice simply opens Charlie’s laboratory and directly asks him 
for his outcome c, then assigns her own outcome as a = c, as shown 
in Fig. 2a.

For x ∈ {2, …, N}, Alice performs a different measurement on 
Charlie’s laboratory as a whole. In particular, we will consider mea-
surements such that Alice restores the laboratory to a previous state, 
thereby erasing Charlie’s memory (Fig. 2b), and then proceeds to 
measure the particle directly (Fig. 2c). Bob and Debbie operate in 
a similar fashion.

From this experiment we can measure (as frequencies) the 
empirical probabilities ℘(ab∣xy), using only the information avail-
able at the end of the experiment, namely, the values for a, b, x and 
y. Unless x = 1, all records for the value of c are erased when Alice 
performs her measurement, so in general that information cannot 
be accessed at the end of the experiment, and likewise with the value 
of d on Bob’s side. A detailed quantum-mechanical description of 
the EWFS is provided in the Methods.

Formalization of the LF assumptions. Within a bipartite Wigner’s 
friend experiment, what constraints do the LF assumptions imply 
for the probabilities ℘(ab∣xy) observed by Alice and Bob for out-
comes a and b, given settings x and y? To determine this rigorously 
we need to formalize our three assumptions.

Assumption 1 (Absoluteness of Observed Events (AOE)): An 
observed event is a real single event, and not relative to anything 
or anyone.

In an EWFS, the assumption of AOE implies that, in each run of 
the experiment—that is, given that Alice has performed measure-
ment x and Bob has performed measurement y on some pair of sys-
tems—there exists a well-defined value for the outcome observed 
by each observer, that is, for a, b, c and d. Formally, this implies that 
there exists a theoretical joint probability distribution P(abcd∣xy) 
from which the empirical probability ℘(ab∣xy) can be obtained 
while also ensuring that the observed outcomes for x, y = 1 are con-
sistent between the superobservers and the friends.
•	 AOE (in the EWFS of Fig. 2): ∃ P(abcd∣xy) s.t.

 i. ℘(ab∣xy) = Σc,dP(abcd∣xy) ∀ a, b, x, y
 ii. P(a∣cd, x = 1, y) = δa,c ∀ a, c, d, y
 iii. P(b∣cd, x, y = 1) = δb,d ∀ b, c, d, x

Here, we do not assume that all statements about results have 
truth values independently of which measurement ‘Wigner’ (whom 
we call Alice) performs. Instead, the assumption of AOE only entails 
assigning truth values to propositions about observed outcomes. In 
particular, Alice’s measurement outcome Ax (which in our notation 
corresponds to the value of a when she performs the measurement 
labelled by x) for x ≠ 1 has a value only when she performs that 
measurement. However, A1 is different in that it has a value even 
when x ≠ 1, because it is encoded in c, which is actually measured 
by Charlie in every run. All this is in keeping with Peres’ dictum 
‘unperformed experiments have no results’27; AOE is the assump-
tion that performed experiments have observer-independent (that 
is, absolute) results.

The No-Superdeterminism assumption is a formalization of 
the assumption of ‘freedom of choice’ used in derivations of Bell 
inequalities. It is the assumption that the experimental settings can 
be chosen freely, that is, uncorrelated with any relevant variables 
prior to that choice. For added clarity, here we formulate it, follow-
ing ref. 24 as follows.

Assumption 2 (No-Superdeterminism (NSD)): Any set of events 
on a space-like hypersurface is uncorrelated with any set of freely 
chosen actions subsequent to that space-like hypersurface.

In the EWFS, this implies that c and d are independent of the 
choices x and y:
•	 NSD (in the EWFS and under Assumption 1): P(cd∣xy) = P(cd) 

∀ c, d, x, y

Finally, the assumption of Locality prohibits the influence of 
a local setting (such as x) on a distant outcome (such as b). It is 
the assumption that Bell, in 196428, and many others subsequently, 
also called ‘locality’24, and which Shimony called ‘parameter inde-
pendence’21; that is, in the formalization of ref. 24, the following 
assumption.

Assumption 3 (Locality (L)): The probability of an observable 
event e is unchanged by conditioning on a space-like-separated free 
choice z, even if it is already conditioned on other events not in the 
future light-cone of z.

In the EWFS, this implies:
•	 L (in the EWFS and under Assumption 1):

P(a∣cdxy) = P(a∣cdx) ∀ a, c, d, x, y
P(b∣cdxy) = P(b∣cdy) ∀ b, c, d, x, y

What is your outcome?

x = 1 x = 2, 3

x = 2, 3

a = c

It is c.

C

T
im

e

Space

A

a

B

X Y

DC

a b

c d

Fig. 2 | A specific bipartite Wigner’s friend experiment. a, When x = 1, 
Alice opens Charlie’s laboratory and asks him his outcome. b, Alternatively, 
for x = 2, 3, she may restore the laboratory to a previous state. c, She then 
proceeds to ignore Charlie, and performs a measurement directly on the 
particle. d, Space–time diagram illustrating the time ordering of the events 
within the experiment—C (D) is Charlie’s (Debbie’s) measurement, X 
(Y) is the event of Alice’s (Bob’s) choice of measurement setting, A (B) is 
Alice’s (Bob’s) measurement. Credit: Icons of people, Eucalyp Studio under 
a Creative Commons licence (https://creativecommons.org/licenses/
by/3.0/).
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Note that one could alternatively formulate Assumptions 2 and 
3 as a single, equivalent assumption, which has previously been 
coined ‘local agency’ in the context of Bell’s theorem24. Within the 
definitions of L and NSD, c, d play the formal role of the hidden 
variables λ in the usual derivation of Bell inequalities. However, we 
emphasize again that those correspond to observed events, and note 
that we make no assumption about hidden variables predetermin-
ing all measurement outcomes.

We call the set of correlations ℘(ab∣xy) that satisfy Assumptions 
1–3 the LF correlations.

Properties of LF correlations. Our key findings about the prop-
erties of LF correlations are as follows. (1) LF correlations are a 
superset of LHV correlations, and in general a strict superset, as we 
will show quantitatively in the next section. (2) LF correlations can 
always be characterized by a finite set of inequalities. (3) For N = 2 
measurement settings and any number of measurement outcomes, 
LF correlations are the same as LHV correlations. (4) For N = 3 
measurement settings and O = 2 outcomes, we fully characterize the 
LF correlations by deriving the associated inequalities and we show 
that they are a strict superset of LHV correlations (as illustrated in 
Fig. 3). We provide the derivations to these results in the Methods.

For N = 3 measurement settings and O = 2 outcomes, the set 
of LF correlations is a polytope with 932 facets. The facets can be 
grouped into nine inequivalent classes, each represented by a dif-
ferent inequality (provided in the Methods). These classes can be 
further grouped into categories, according to the measurement set-
tings involved, and whether the facets are Bell facets29. In Table 1, we 
list the categories of LF facets, ignoring all positivity facets, that is, 
the constraints that probabilities cannot be negative.

Quantum violations. We now search for quantum violations of 
the LF inequalities. To demonstrate that the set of LF correlations 
is strictly larger than the LHV correlations, we seek a state and mea-
surement choices such that a violation of a Bell non-LF inequality 
is exhibited without a violation in any of the LF inequalities. For 
experimental convenience, we consider two-qubit photon polariza-
tion states of the form

ρμ ¼ μ Φ�j i Φ�h j þ 1� μ

2
ð HVj i HVh j þ VHj i VHh jÞ ð1Þ

where Φ�j i ¼ ð HVj i � VHj iÞ=
ffiffiffi
2

p

I
, 0 ≤ μ ≤ 1, and H and V denote 

horizontal and vertical polarizations, respectively.
In Fig. 4 we display quantum violations for inequalities of all 

the categories in Table 1 for states ρμ. The specific inequalities and 
measurements considered are described in the Methods. Each of the 
inequalities considered is violated by some ρμ. In addition, we deter-
mine the strongest violations of the genuine LF inequalities allowed 
in quantum theory; those results are provided in Supplementary 
Section B.

In summary, if quantum measurements can be coherently per-
formed at the level of observers, quantum mechanics predicts the 
violation of the LF inequalities in EWFSs. This proves Theorem 1.

Experiment. We study the EWFS with three measurement settings 
(N = 3) in an experiment where the systems distributed between 
the two laboratories are polarization-encoded photons, the friends 
are photon paths within the set-up and the measurements by the 
superobservers are photon-detection measurements. Because the 
qubit composed of the two photon paths that represents each of our 
friends would not typically be considered a macroscopic, sentient 
observer as originally envisioned by Wigner, our experiment is best 
described as a proof-of-principle version of the EWFS. The experi-
ment lets us demonstrate the key properties of LF inequalities and 
its results generalize provided that quantum evolution is, in prin-
ciple, controllable on the scale of an observer. A fully rigorous dem-
onstration that the LF assumptions are untenable would require, in 
addition to a more plausible ‘observer’, implementing shot-by-shot 
randomized measurement settings and closing separation, effi-
ciency and freedom-of-choice loopholes, similarly to the case of Bell 
inequality violations30–32.

Our experimental set-up, which comprises a photon source and 
a measurement section, is illustrated in Fig. 5. The photon source, 
shown in the left half of Fig. 5, is designed to generate the quantum 
state ρμ of equation (1) with a tunable μ parameter. Details about 
this spontaneous parametric downconversion source are provided 
in the Methods.

The measurement section of the experimental set-up, shown in 
the right half of Fig. 5, consists of two copies of an apparatus, one 
belonging to Alice and Charlie and the other to Bob and Debbie. 
The measurement section serves two purposes. The first is to per-
form quantum state tomography to characterize the generated 
quantum state, as detailed in the Methods and Supplementary 
Section D. The second purpose is to perform the measurements of 

NS LF LHV

Fig. 3 | A two-dimensional slice of the space of correlations, illustrating 
the correlations discussed in this work. The solid areas depict a hierarchy 
of models: LHV28 correlations (green) are a subset of LF correlations (green 
and orange), which in turn are a subset of no-signalling39 correlations (NS, 
green, orange and purple). The red line bounds the correlations allowed 
by quantum theory on this slice. Note that, although the set of quantum 
correlations includes the LHV set, it does not include the LF set. Further 
details of this plot are discussed in Supplementary Section C).

Table 1 | Categories of inequalities for three binary-outcome 
measurement settings per party

Label Measurement 
settings

LF inequality? Bell facet?

Brukner (1 i, 1 j) Yes Yes

Semi-Brukner (1 i, 2 3) Yes Yes

Bell non-LF (2 3, 2 3) No Yes

I3322 (1 2 3, 1 2 3) Yes Yes

Genuine LF (1 2 3, 1 2 3) Yes No

The column ‘Measurement settings’ refers to the settings that appear in each inequality, with i, 
j ∈ {2, 3}. The third column specifies whether it is an LF inequality, and the fourth column specifies 
whether it is a facet of the Bell polytope. Each category represents inequalities with the same form 
up to arbitrary relabelling of measurement settings (for i, j ≠ 1), outcomes and parties. The labels 
referring to each inequality are ‘Genuine LF’ for inequalities that are not facets of the LHV polytope 
for this scenario, ‘I3322’ for a type of Bell facet for the case of three binary-outcome measurement 
settings per party37 and ‘Brukner’, ‘Semi-Brukner’ and ‘Bell non-LF’ are inequivalent classes of 
CHSH-type inequalities38. Brukner inequalities are the type of inequalities considered by Brukner14. 
A semi-Brukner inequality has a simpler experimental realization than a Brukner inequality, as it 
only requires one of the parties to measure a friend (setting 1). Bell non-LF inequalities are Bell 
facets, but unlike the other categories, are not facets of LF.
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the four observers, Charlie, Debbie, Alice and Bob. The friend’s pro-
jective polarization measurement result is encoded in the photon 
path after the QWP, HWP and beam displacer BD1. Alice and Bob 
can perform different positive-operator valued measures (POVMs) 
on their respective system + friend, which depend on their mea-
surement settings and are described in the Methods.

The experimental results are shown in Fig. 4. The μ values cover 
the full range of interest, from none of the inequalities being vio-
lated (at low μ), to the violation of all inequalities (at high μ). The 
experimental data demonstrate the sequential violations of the Bell 
non-LF, semi-Brukner and genuine LF inequalities. The data points 
corresponding to μ = 0.80 and μ = 0.81 are of particular significance, 
as they demonstrate that it is possible to violate Bell inequalities 
without violating any LF inequalities. (We can be confident of this 
because we verified that none of the 932 LF inequalities is violated.)

This means that the correlations consistent with LF assumptions 
are a superset of the correlations consistent with an LHV model. 
The case of μ = 0.87 is the first of the plotted datasets where a con-
tradiction with the LF assumptions occurs, through the first viola-
tion of an inequality associated with LF. Finally, the two highest μ 
values verify that the genuine LF inequality can also be violated. All 
the experimental data points, except for the case of μ = 0.81, are at 
least two standard deviations away from 0, thus attesting the viola-
tion or non-violation of the inequalities with statistical significance. 
This covers all the regions we show in terms of (non-)violation of 
different inequalities, because the dataset at μ = 0.81 belongs to 
the same region as μ = 0.80. Along with the experimental data, the 
results predicted for the design measurement directions and input 
states of equation (1) are shown by solid lines. However, because 
the inequalities are device-independent, our conclusions are inde-
pendent of which states and measurement directions were actually 
employed in the experiment.

Implications of violating LF inequalities. It is interesting to 
compare the assumptions that go into the LF no-go theorem with 
those for Bell’s theorem. First, we note that the AOE assumption is 
implicit in the derivation of Bell inequalities (see ref. 24 for a deri-
vation in which it is explicitly included as ‘macroreality’). If, as is 
common, we also formulate Bell’s theorem using the other two 

assumptions of LF, namely NSD and L, then an additional assump-
tion is required. The minimal extra assumption required is ‘outcome 
independence’21, which in the bipartite scenario is the requirement 
that P(a∣bxyλ) = P(a∣xyλ), P(b∣axyλ) = P(b∣xyλ) ∀ a, b, x, y, λ (c.f. 
the definition of L in the section ‘Formalization of the LF assump-
tions’). Hence, the LF assumption is strictly weaker than the set of 
assumptions for Bell inequalities. Thus, the conclusions we could 
derive from an empirical violation of the LF inequalities are strictly 
stronger.

One popular way to accommodate the violation of Bell inequali-
ties is to reject outcome independence (which is violated by oper-
ational quantum theory24) while maintaining L and NSD. Our 
theorem shows that this strategy does not extend to the EWFS. If 
the LF inequalities were violated empirically, then, to maintain L 
and NSD, one would have to reject AOE.

It is important to keep in mind that it is much harder to satisfy 
the conditions for an experimental violation of the LF inequalities 
than of Bell inequalities. A fully convincing demonstration would 
require a strong justification for the attribution of a ‘fact’ to the 
friend’s measurement. This, of course, depends on what counts as 
an ‘observer’ (and as a ‘measurement’). Because conducting this 
kind of experiment with human beings is physically impractical, 
what do we learn from experiments with simpler ‘friends’?

Wigner’s own conclusion from his thought experiment was that 
the collapse of the wave function should happen at least before it 
reaches the level of an ‘observer’. The concept of an ‘observer’, how-
ever, is a fuzzy one. Objective collapse theories12 attempt to restore 
the absolute reality of observed events by postulating modifica-
tions to the quantum dynamics to guarantee that collapse occurs 
before a quantum superposition reaches the macroscopic level. In 
other words, this resolution requires observed events to correspond 
to sufficiently macroscopic irreversible physical processes. In that 
case, the LF inequalities would not be violated with actual observers. 
Clearly, our experiment (and that of ref. 17) did not probe collapse 
theories. Therefore, an open possibility is that the LF assumptions 
are valid, but that nature forever forbids the observation of violation 
of LF inequalities with observers, whether because of objective col-
lapse or some other limitation on coherent quantum control.

A challenge to the above resolution of the LF no-go theorem 
could come from experiments involving AI (artificial intelligence) 
agents in a quantum computer. If universal quantum computa-
tion and strong AI are both physically possible, it should be pos-
sible to realize quantum coherent simulations of an observer and 
its (virtual) environment, and realize an extended Wigner’s friend 
experiment. The experiment can even be conducted with a single 
friend, which would already allow testing semi-Brukner inequali-
ties (equation (18)). Towards the goal of challenging the LF no-go 
theorem, experiments can test agents of increasing complexity; an 
experimental violation of LF inequalities with a given class of physi-
cal systems as ‘friends’ implies that either the LF assumptions are 
false or that class of friends is not an ‘observer’.

Among interpretations of quantum mechanics that allow, in 
principle, the violation of LF inequalities, Theorem 1 can be accom-
modated in different ways. Interpretations that reject AOE include 
QBism6,7, the relational interpretation5 and the many-worlds inter-
pretation4. Bohmian mechanics8,9 violates L but not the other 
assumptions. There are some advocates for giving up NSD (either 
due to retrocausality10, superdeterminism11 or other mechanisms), 
but, as yet, no such theory has been proposed that reproduces all the 
predictions of quantum mechanics.

Finally, it was brought to our attention that the LF polytopes have 
been independently studied under the name of ‘partially determin-
istic polytopes’33, from an information-theoretic motivation: they 
are connected to the problem of device-independent randomness 
certification (see, for example, refs. 34–36 and references therein) in 
the presence of no-signalling adversaries.
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Methods
Quantum-mechanical description of the EWFS. We consider two superobservers, 
Alice and Bob, and their respective friends, Charlie and Debbie. Charlie and 
Debbie are in possession of systems SA and SB respectively, with associated Hilbert 
spaces HSA

I
 and HSB

I
, and initially prepared in a (possibly entangled) state ρSASB

I
. For 

simplicity, we suppose these systems are spin-1/2 particles, and that they perform a 
measurement of the z-spin of their particles. We denote everything in Charlie’s lab 
except SA as system FA, with Hilbert space HFA

I
, and FB, HFB

I
 for Debbie’s lab.

According to Alice, Charlie’s measurement of SA in the basis f �1j iSA ; þ1j iSAg
I

 
is described by a unitary UZA

I
 acting on HFA HSA

I
. Alice’s x = 1 measurement 

(corresponding to opening the box and asking Charlie what he saw) can be 
described by a POVM f cj i ch jFA

 ISAgc
I

, where cj iFA

I
 (c ∈ {−1, +1}) represents the 

state of Charlie after seeing outcome c and ISA
I

 is the identity operator on HSA
I

. The 
theorem makes no assumption about the form of the measurements that Alice 
performs for x ∈ {2, 3}, but in our experimental realization, we consider the class 
of measurements that reverse the evolution UZA

I
 that entangled FA with SA (Fig. 

2b), followed by a measurement on SA alone (Fig. 2c). This can be described by a 
POVM with elements UZA ðIFA  Eajx

SA ÞU
�1
ZA

I
, where IFA

I
 is the identity on HFA

I
 and 

Eajx
SA
I

 is the positive operator associated with outcome a for measurement x that 
Alice performs directly on SA. Bob’s POVM elements are defined analogously. Thus, 
the maximum violation of the inequalities can be sought simply in measurements 
acting on the Hilbert spaces HSA

I
 and HSB

I
; given that Charlie and Debbie start in a 

known product state in the Hilbert space of HFA HFB
I

, there is no advantage in 
considering arbitrary measurements on HFA HSA

I
 and HFB HSB

I
.

LHV correlations as a subset of LF correlations. Recall that a set of correlations 
has a LHV model if and only if there exists a probability distribution P(λ) over a set 
of variables λ ∈ Λ such that

}ðabjxyÞ ¼ Σλ2ΛPðajxλÞPðbjyλÞPðλÞ ð2Þ
for all values of the variables a, b, x, y. We now derive the general form for an LF 
model. From AOE and NSD, we have that

}ðabjxyÞ ¼AOE
X

c;d

PðabcdjxyÞ ¼NSD
X

c;d

PðabjcdxyÞPðcdÞ ð3Þ

From Locality, we can decompose the first term on the right-hand side in two ways:

PðabjcdxyÞ ¼ PðajbcdxyÞPðbjcdxyÞ¼L PðajbcdxyÞPðbjcdyÞ ð4Þ

or

PðabjcdxyÞ ¼ PðajcdxyÞPðbjacdxyÞ¼L PðajcdxÞPðbjacdxyÞ ð5Þ
Note, however, that we cannot further reduce these expressions with Locality alone, 
reinforcing the fact that Locality is a weaker assumption than local causality (which 
leads to an LHV model). However, by construction, when x = 1 we have a = c, and 
when y = 1, b = d. Then, if x = 1, P(a∣bcdxy) = δa,c, and if y = 1, P(b∣acdxy) = δb,d. 
When taking this, along with equations (4) and (5), into account, we obtain from 
equation (3)

}ðabjxyÞ ¼

P
c;dδa;cPðbjcdyÞPðcdÞ ifx ¼ 1

P
c;dδb;dPðajcdxÞPðcdÞ ify ¼ 1

P
c;dPNSðabjcdxyÞPðcdÞ ifx≠1; y≠1

8
><
>:

ð6Þ

where PNS(ab∣cdxy) denotes some joint probability distribution that satisfies the 
condition of Locality. For any fixed values of c and d, it is easy to see that the set 
of PNS(ab∣cdxy) is simply the no-signalling polytope with one less measurement 
setting for both Alice and Bob39 (thus the NS subscript). In general, because of 
the additional structure given by the first two lines of equation (6), the set of LF 
correlations only forms a subset of the no-signalling polytope.

To see that LHV correlations are also LF correlations, we first recall from ref. 
29 that correlations of the form of equation (2) can always be decomposed in terms 
of the extreme points of the set of such correlations. To this end, it is expedient to 
write the hidden variable as λ ¼ ðλA1 ; λB1 ; λA2 ; ¼ λBN Þ

I
, with λAx

I
 and λBy

I
 parameterizing 

all possible local deterministic strategies, that is

PðajxλÞ ¼ δa;λAx ; PðbjyλÞ ¼ δb;λBy ð7Þ

We may now rewrite equation (2) as

}ðabjxyÞ ¼
X

λ

δa;λAx δb;λBy PðλÞ ð8Þ

This is now readily cast in the form of equation (6) if we set λA1 ¼ c
I

 and λB1 ¼ d
I

. For 
example, if x = 1, we get

}ðabjx ¼ 1; yÞ ¼
P

c;d;λA2 ;¼ ;λBN
δa;c δb;λBy Pðcdλ

A
2 ¼ λBN Þ

¼ P
c;d;λBy

δa;c δb;λBy Pðcdλ
B
y Þ

¼
P

c;d δa;c
P

λBy
δb;λBy PðλBy jcdÞ

h i
PðcdÞ

¼
P

c;d δa;c PðbjcdyÞPðcdÞ

ð9Þ

which is clearly of the form given in the first line of equation (6). The proof for the 
y = 1 case is completely analogous.

Similarly, for the case where x ≠ 1, y ≠ 1, we can again make use of λA1 ¼ c
I

, 
λB1 ¼ d
I

 and equation (8) to arrive at

}ðabjxyÞ ¼
P

c;d;λA2 ;¼ ;λBN
δa;λAx δb;λBy Pðcdλ

A
2 ¼ λBNÞ

¼
P

c;d;λAx λ
B
y
δa;λAx δb;λBy Pðcdλ

A
x λ

B
y Þ

¼
P

c;d

P
λAx ;λ

B
y
δa;λAx δb;λBy PðλAx λBy jcdÞ

h i
PðcdÞ

¼
P

c;d PðabjcdxyÞPðcdÞ

ð10Þ

From the second last line of equation (10) and the fact that a (b) is entirely 
decided by λAx

I
 (λBy
I

), we see that P(ab∣cdxy) in the last expression satisfies 
the condition of locality (that is, ∑aP(ab∣cdxy) does not depend on y while 
∑bP(ab∣cdxy) does not depend on x). Thus, starting from LHV correlations for 
x ≠ 1, y ≠ 1, we recover the last line of equation (6).

Hence any correlation that satisfies equation (2) will also satisfy equation (6). 
Yet, the opposite is not necessarily true. Therefore, LHV correlations are a subset of 
LF correlations.

Characterization of LF correlations. Consider a general scenario with N 
measurement settings per party, with O outcomes each. Note that we can always 
rewrite equation (6) in the form

}ðabjxyÞ ¼

P
λδa;cðλÞP

ðjðλÞÞ
Ext ðbjyÞPðλÞ if x ¼ 1

P
λδb;dðλÞP

ðjðλÞÞ
Ext ðajxÞPðλÞ if y ¼ 1

P
λP

ðjðλÞÞ
Ext ðabjxyÞPðλÞ otherwise

8
>><
>>:

ð11Þ

where λ is a variable that determines the values of c(λ), d(λ) and that of a variable 
j(λ) that labels the (finitely many) extreme points of the no-signalling polytope 
with N − 1 inputs and O outputs per party, and PðjÞ

ExtðajxÞ ¼
P

bP
ðjÞ
ExtðabjxyÞ

I
 and 

PðjÞ
ExtðbjyÞ ¼

P
aP

ðjÞ
ExtðabjxyÞ

I
 are the marginal distributions of these extremal boxes.

It is easy to see from the above that this set of correlations is convex. That is, 
for any two points }1ðabjxyÞ

I
and }2ðabjxyÞ

I
, both satisfying the LF conditions, any 

convex combination }0ðabjxyÞ ¼ α}1ðabjxyÞ þ ð1� αÞ}2ðabjxyÞ
I

, with 0 < α < 1, 
also satisfies those conditions. The set of LF correlations is therefore a polytope.

For the two-measurement-setting case (N = 2), the PðjÞ
ExtðabjxyÞ
I

 now refer only 
to the case x = y = 2, and the extreme points are now simply deterministic functions 
for a, b. Thus, we recover an LHV model for any value of O, yielding the same 
inequalities Brukner derived for N = O = 2.

Next, we consider the LF polytope for the N = 3, O = 2 scenario. Without loss 
of generality, we label the outcomes as a, b ∈ {+1, −1}. From equation (11), the set 
of LF correlations }!¼ f}ðabjxyÞga;b¼± 1;x;y¼1;2;3

I
 is the convex hull of the extreme 

points f P!
ðλÞ
ðabjxyÞgλ

I
 defined by

PðλÞðabjxyÞ ¼

δa;cðλÞδb;dðλÞ : x ¼ y ¼ 1

δa;cðλÞP
ðjðλÞÞ
Ext ðbjyÞ : x ¼ 1; y≠1

PðjðλÞÞ
Ext ðajxÞδb;dðλÞ : x≠1; y ¼ 1

PðjðλÞÞ
Ext ðabjxyÞ : x≠1; y≠1

8
>>>>><
>>>>>:

ð12Þ

Because there are four combinations of (c, d) corresponding to 22 local 
deterministic strategies for the first inputs, and 24 extreme points for the 
aforementioned no-signalling polytope39, we thus end up with 96 points in this set.

By writing the components of these points in a text file and feeding the latter 
into the freely available software PANDA—which allows one to transform between 
the two representations of a polytope using the parallel adjacency decomposition 
algorithm41—we obtain the complete set of 932 LF facets for this scenario. Many 
of these inequalities can be transformed from one to another under a relabelling 
of parties (Alice ↔ Bob), inputs (x = 2 ↔ x = 3 and/or y = 2 ↔ y = 3) and/or outputs 
(a = +1 ↔ a = −1 and/or b = +1 ↔ b = −1). With the exception of the settings 
for x = 1 and y = 1, the rest of these labellings are arbitrary. Taking advantage 
of this arbitrariness, we may group the obtained facets into the following nine 
inequivalent classes (written in terms of correlators, where Ai is a random variable 
representing the measurement result for x = i and taking values {−1, +1}; similarly 
for Bj):

 1. Genuine LF facet 1 (appearing 256 times among the 932 facets):

�hA1i � hA2i � hB1i � hB2i
�hA1B1i � 2hA1B2i � 2hA2B1i þ 2hA2B2i

�hA2B3i � hA3B2i � hA3B3i � 6 ≤
LF
0

ð13Þ

 2. Genuine LF facet 2 (appearing 256 times):

�hA1i � hA2i � hA3i � hB1i
�hA1B1i � hA2B1i � hA3B1i � 2hA1B2i

þhA2B2i þ hA3B2i � hA2B3i þ hA3B3i � 5 ≤
LF
0

ð14Þ
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 3. Bell I3322
37 with marginals over inputs 1 and 2 (appearing 256 times):

�hA1i þ hA2i þ hB1i � hB2i
þhA1B1i � hA1B2i � hA1B3i � hA2B1i

þhA2B2i � hA2B3i � hA3B1i � hA3B2i � 4 ≤
LF
0

ð15Þ

 4. Bell I3322 with marginals over inputs 2 and 3 (appearing 64 times):

�hA2i � hA3i � hB2i � hB3i
�hA1B2i þ hA1B3i � hA2B1i � hA2B2i

�hA2B3i þ hA3B1i � hA3B2i � hA3B3i � 4 ≤
LF
0

ð16Þ

 5. ‘Brukner inequality’: Bell-CHSH for inputs 1 and 2 of Alice and inputs 1 and 
3 of Bob (appearing 32 times):

hA1B1i � hA1B3i � hA2B1i � hA2B3i � 2 ≤
LF
0 ð17Þ

 6. ‘Semi-Brukner’ inequality: Bell-CHSH for inputs 2 and 3 of Alice and inputs 
1 and 2 of Bob (appearing 32 times):

�hA1B2i þ hA1B3i � hA3B2i � hA3B3i � 2 ≤
LF
0 ð18Þ

 7. Positivity for input 1 of Alice and input 1 of Bob (appearing four times):

1þ hA1i þ hB1i þ hA1B1i≥0 ð19Þ

 8. Positivity for input 1 of Alice and input 2 of Bob (appearing 16 times):

1þ hA1i þ hB2i þ hA1B2i≥0 ð20Þ

 9. Positivity for input 2 of Alice and input 2 of Bob (appearing 16 times):

1þ hA2i þ hB2i þ hA2B2i≥0 ð21Þ

Note that some Bell facets for this scenario are not facets of LF and thus do 
not appear in the list above, for example, the Bell-CHSH inequalities that do not 
include any input 1 for either party:

hA2B2i � hA2B3i � hA3B2i � hA3B3i � 2 ≤
LHV

0 ð22Þ

Inequalities and measurements considered in the experiment. For each category, 
the inequalities we considered in our experiment were genuine LF (equation (13)), 
I3322 (equation (15)), Brukner (equation (17)), semi-Brukner (equation (18)) and 
Bell non-LF (equation (22)).

Here we use Ax ∈ {+1, −1} as the random variable for Alice’s outcome a when 
she chooses setting x, and similarly By. That is, the expectation values are calculated 
from the empirical probabilities }ðabjxyÞ

I
.

We restrict ourselves to projective measurements in the X–Y plane of the Bloch 
sphere (with states Hj i

I
 and Vj i

I
 on the z axis). In particular, Alice’s measurement 

results are represented by operators of the form Ax ¼ 2Πa¼1
x � Hj i Hh j � Vj i Vh j

I
, 

with Πa¼1
x ¼ ϕx

�� �
ϕx
� ��

I
 being the projector onto the state

ϕx
 

¼ 1ffiffiffi
2

p Hj i þ eiϕx Vj i
� 

ð23Þ

Bob’s corresponding operators are chosen to be By ¼ 2Πb¼1
y � Hj i Hh j � Vj i Vh j

I
, 

with Πb¼1
y ¼ βyihβy

���
���

I

 being the projector onto

βy


E
¼ 1ffiffiffi

2
p Hj i þ eiðβ�ϕyÞ Vj i

 
ð24Þ

For each value of the tetrad (ϕ1, ϕ2, ϕ3, β), and for each category in Table 1, 
we find the smallest value of μ for which one of the inequalities in that category 
is violated. We then pick a tetrad that makes the gap between these values of μ 
conveniently large. The values we choose are ϕ1 = 168°, ϕ2 = 0°, ϕ3 = 118° and 
β = 175°. For the inequality in each category that is violated first, we display the 
values of the left-hand side as a function of μ in Fig. 4.

Spontaneous parametric downconversion source. The source is made up of an 
imbalanced pump-beam interferometer (one arm of the interferometer is longer 
than the other) and two orthogonally oriented (sandwiched) BiBO crystals42, which 
are pumped by a 404-nm continuous-wave laser diode to produce spontaneous 
parametric downconversion. The relative pump power in the interferometer arms 
determines the μ parameter of the state and is controlled by the HWP after the 
laser. When all the pump power is in the short arm, the first term of the quantum 
state, the singlet state, is generated (after a local polarization rotation in the fibre). 
Conversely, when all the pump power is in the long arm, only the second term, a 
mixed state, is generated. The beams in both arms are recombined in the NPBS to 
pump the sandwiched crystal, generating the desired quantum state.

The polarization in the short arm is rotated to diagonal by a HWP and an 
additional birefringent element is used to pre-compensate the temporal walk-off in 

the downconversion. The polarization in the long arm is also rotated to diagonal by 
a HWP and a birefringent crystal decoheres the horizontal and vertical polarization 
components completely, which is necessary to generate the mixed part of the state.

Quantum state tomography. To allow tomography, the motorized mirrors are 
moved out of the beam paths and the measurements are carried out using the last 
QWP, HWP and PBS on each side. As part of the tomographic state reconstruction, 
the known unitary transformations of the first QWP and the BD interferometer 
are accounted for, such that the quantum state straight after the fibre is obtained. 
Typically, ~22,000 coincidences are collected per tomography. The implemented 
μ values are estimated by comparing the reconstructed states with the set of 
target states ρμ, and finding the μ values that maximize the fidelity (for details, see 
Supplementary Section D).

Experimental implementation of measurements. The measurements of the 
EWFS are realized in the following way. When measurement setting 1 is chosen, the 
motorized mirror is inserted to reveal the photon path within the interferometer, 
that is after BD1, and this corresponds to Alice asking Charlie his measurement 
outcome (or Bob asking Debbie on the other side). This comprises the first of the 
possible POVMs, illustrated in Fig. 2a. When measurement settings 2 or 3 are 
chosen, Alice (Bob) first reverses Charlie’s (Debbie’s) measurement (Fig. 2b) by 
removing the mirror between the two BDs and thereby closing the interferometer, 
and then proceeds to measure the polarization after the interferometer with the 
QWP after BD2 removed (Fig. 2c). This two-step procedure corresponds to Alice 
(Bob) implementing one of her (his) other two POVMs, depending on which one 
of two settings of the last HWP is used. Single photons are detected with APDs and 
coincidences are recorded with counting modules. The overall observed rate of 
counts in the apparatus is ~550 coincidences and 21,000 singles per second.

To obtain the expectation values required for the inequalities being tested 
at each μ value, we performed the nine sets of measurements that arise from 
combining the three independent measurement settings on Alice’s and Bob’s sides. 
The typical number of counts per measurement set is 91,000 coincidences.
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