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Quantum mechanics beautifully accounts for the behaviour 
of microscopic systems, while in an equally beautiful but 
radically different way classical mechanics accounts for the 

behaviour of macroscopic objects. The reason why the quantum 
properties of microscopic systems—most notably, the possibility of 
being in the superposition of different states at once—do not seem 
to carry over to larger objects has been the subject of a debate that 
is as old as quantum theory itself, as exemplified by Schrödinger’s 
cat paradox1.

It has been conjectured that the superposition principle, the 
building block of quantum theory, progressively breaks down 
when atoms glue together to form larger systems2–7. The reason 
is that the postulate of wave function collapse (introduced by von 
Neumann, and now part of the standard mathematical formulation 
of the theory, according to which the quantum state of a system 
suddenly collapses at the end of a measurement process), though 
very effective in describing what happens in measurements, clearly 
has a phenomenological flavour. There is no reason to believe that 
measurements are so special as to temporarily suspend the quantum 
dynamics given by the Schrödinger equation and replace it with a 
completely different one. More realistically, if collapses occur at all, 
they are part of the dynamics: in some cases, they are weak and can 
be neglected; in some other cases, such as in measurements, they 
become strong and rapidly change the state of a system. Decades 
of research in this direction has produced well defined models 
accounting for the collapse of the wave function and the breakdown 
of the quantum superposition principle for larger systems5,8–10, and 
now the rapid technological development has opened the possibility 
of testing them11. One question is left open: what triggers the col-
lapse of the wave function?

In his lectures on gravitation, Feynman discusses how a break-
down of the quantum superposition principle at a macroscopic scale 
leaves open the possibility that gravity might not be quantized12. 
Along this line of thinking, Penrose (and Diósi, independently)  

suggested that gravity, whose effects are negligible at the level of 
atoms and molecules, but increase substantially at the level of mac-
roscopic objects, could be the source of the wave function collapse: 
“My own point of view is that as soon as a ‘significant’ amount of 
space-time curvature is introduced, the rules of quantum linear 
superposition must fail”13. When a system is in a spatial quantum 
superposition, a corresponding superposition of two different 
spacetimes is generated, as illustrated in Fig. 1. Penrose then gives 
arguments14–16 as to why nature ‘dislikes’ and, therefore, suppresses 
superpositions of different spacetimes; the more massive the system 
in the superposition, the larger the difference in the two spacetimes 
and the faster the wave function collapse.

Even without proposing a detailed mathematical model, 
Penrose provides a formula that estimates, in non-relativistic and 
weak-gravitational-field limits, the expected time τDP of the collapse 
of a quantum superposition14:

τDP ¼ _

ΔEDP
ð1Þ

where ΔEDP measures how large, in gravitational terms, the super-
position is. Given a system with mass density μ(r), in the simple case 
of the centre of mass being in a superposition of two states displaced 
by a distance d,

ΔEDPðdÞ ¼ �8πG
Z

dr
Z

dr0
μðrÞ μðr0 þ dÞ � μðr0Þ½ 

jr� r0j ð2Þ

Equations (1) and (2), which are valid in the Newtonian limit, were 
previously proposed by Diósi17,18, following a different approach. For 
a point-like μ(r) = mδ(r − r0), with m the mass of the particle and δ 
the Dirac delta distibution, equation (2) diverges because of the 1/r 
factor, leading to an instantaneous collapse, which is clearly wrong. 
To avoid this problem, one has to smear the mass density. This is 
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implemented in different ways by Diósi and Penrose. Diósi sug-
gests introducing a new phenomenological parameter, measuring 
the spatial resolution of the mass density19,20; Penrose instead sug-
gests that the mass density of a particle is given by μ(r) = m∣ψ(r, t)∣2  
(ref. 15), where ψ(r, t) is a stationary solution of the Schrödinger–
Newton equation21,22. For either choice, we will call the size of the 
particle’s mass density R0.

A direct test of equation (1) requires creating a large superposi-
tion of a massive system, to guarantee that τDP is short enough for the 
collapse to become effective before any kind of external noise dis-
rupts the measurement (see ref. 23 for an alternative approach). One 
of the first proposals in this direction was put forward by Penrose 
himself and collaborators24, who suggested a set-up for creating a 
spatial superposition of a mirror of mass ~10−12 kg that, accord-
ing to equation (2), has a decay time of order τDP ≃ 0.002–0.013 s  
(Supplementary Information), which is competitive with stan-
dard decoherence times. The major difficulty in implementing 
this and similar proposals consists in creating a superposition of 
a relatively large mass and keeping it stable for times comparable 
to τDP. To give some examples, the largest spatial superposition 
so far achieved25 is about 0.5 m, but the systems involved are Rb 
atoms (mass = 1.42 × 10−25 kg), which are too light. In matter-wave 
interferometry with macromolecules26, states are delocalized over 
distances of hundreds of nanometres, and masses beyond 25 kDa 
(~10−23 kg), but still not enough. By manipulating phononic states27, 
collective superpositions of an estimated 1016 carbon atoms (mass 
~ 10−10 kg) are created over distances of 10−11 m, but the lifetime of 
phonons is of the order of ~10−12 s, which is too short. These num-
bers show that keeping the superposition time, distance and mass 
large enough still poses huge technological challenges. Research 
towards creating larger and larger superpositions is very active28–34, 
but further development is needed to reach the required sensitivity.

Here we show how to test gravitational-related collapse in an 
indirect way, by exploiting an unavoidable side effect of the collapse: 
a Brownian-like diffusion of the system in space. The reason is the 
following. Although Penrose refrains from proposing any detailed 
dynamics for the collapse, as suggested in refs. 14,15 and used explicitly 
in ref. 16, the simplest assumption is that the collapse is Poissonian, 
as for particle decay. This minimal requirement, together with the 
collapse time given in equations (1) and (2), implies the following 

Lindblad dynamics for the statistical operator ρ(t) describing the 
state of the system (Supplementary Information):

dρðtÞ
dt ¼ � i

_ H; ρðtÞ½  � 4πG
_

R
dx
R
dy 1

jx�yj

M̂ðyÞ; M̂ðxÞ; ρðtÞ
   ð3Þ

which is equivalent to the master equation derived in refs. 17,18. The 
first term describes the standard quantum evolution while the sec-
ond term accounts for the gravity-related collapse. In equation (3) H 
is the system’s Hamiltonian and M̂ðxÞ ¼

P
nμnðx; x̂nÞ

I
 gives the total 

mass density, with μnðx; x̂nÞ
I

 the mass density of the nth particle, 
centred around x̂n

I
. Taking for example a free particle with momen-

tum operator p̂, the contribution of the second term to the aver-
age momentum hpi  Tr½p̂ρ

I
 is zero, while the contribution to the 

average square momentum 〈p2〉 increases in time. This is diffusion.
This diffusion causes a progressive heating of the system19, 

specifically a steady temperature increase. Assuming a mass 
distribution of the nuclei with an effective R0 ~ 10−15 m, the 
heating rate for a gas of non-interacting particles amounts to 
dTðtÞ=dt ¼ 4

ffiffiffi
π

p
m0G_=3kBR3

0  10�4 K s�1

I
 (kB is Boltzmann’s 

constant and m0 the nucleon mass), which is in contradiction with 
experimental evidence35. The value R0 ~ 10−14 m is also excluded by 
gravitational wave detection experiments36. However, neither result 
includes the possibility of dissipative effects, which are always asso-
ciated with fluctuations, and may lead to equilibrium instead of a 
steady growth in temperature.

Whether at thermal equilibrium or not, particles will keep fluc-
tuating under the collapse dynamics. Since matter is made up of 
charged particles, this process makes them constantly radiate. 
Therefore, a detection of the collapse-induced radiation emission is 
a more robust test of the model (cf. ref. 37), even in the presence of 
dissipative effects.

Starting from equation (3), we computed the radiation emission 
rate, that is the number of photons emitted per unit time and unit 
frequency, integrated over all directions, in the range of wavelength 
λ ∈ (10−5–10−1) nm, corresponding to energies E ∈ (10–105) keV. The 
reason for choosing this range can be understood in terms of a semi-
classical picture: each time a collapse occurs, particles are slightly 
and randomly moved. This random motion makes them emit radia-
tion, if charged. When their separation is smaller than λ, they emit 
as a single object with charge equal to the total charge, which can 
be zero for opposite charges as for an atom. In contrast, when their 
separation is larger than λ, they emit independently. Therefore, in 
order to maximize the emission rate, electrons and nuclei should be 
independent (λ < atomic radius), while protons in the same nucleus 
should behave coherently (λ > nuclear radius). This is achieved by 
considering the emission of photons with wavelength in the range 
mentioned above. In this range, the coherent emission of protons 
contributes with a term proportional to (Ne)2 (N is the atomic num-
ber), while electrons contribute incoherently with a weaker term 
proportional to Ne2. For this reason, and also because in the range 
of energies considered in our experiment the electrons are relativis-
tic, while our derivation is not, to be conservative we will neglect the 
contribution of the electrons to the emission rate.

The photon emission rate dΓt/dωk per unit frequnecy ωk is dis-
cussed in Methods and derived in Supplementary Information. The 
calculation is lengthy. In a nutshell, starting from equation (3), we 
compute the expectation value of the photon number operator at time 
t, that is haykνakνit

I
, to the first perturbative order. By taking the time 

derivative, summing over the photon’s polarizations ν and integrating 
over all the directions of the emitted photon, we eventually obtain

dΓt

dωk
¼ 2

3
Ge2N2Na

π3=2ε0c3R3
0ωk

ð4Þ

+
a b

Fig. 1 | the Diósi–Penrose (DP) model of gravity-related wave function 
collapse. a, According to quantum gravity, a spatial quantum superposition 
of a system (red sphere) generates a superposition of different spacetime 
curvatures (grey sheets), corresponding to the possible different locations 
of the system. Penrose argues that a superposition of different spacetimes 
is unstable and decays in time, making the system’s wave function also 
collapse. He provides an estimate for the time of collapse as given in equation 
(1), which is faster for a larger system, similar to that suggested earlier by 
Diósi. b, The master equation of the DP model (equation (3)) predicts not 
only the collapse of the wave function, but also an omnipresent Brownian-like 
diffusion (represented by the grey arrow) for each constituent of the system. 
When the constituents are charged (protons and electrons), the diffusion 
is accompanied by the emission of radiation (wavy orange lines), with a 
spectrum that depends on the configuration of the system. This is given by 
equation (4) in the range ΔE = (10–105) keV of photon energies. The predicted 
radiation emission is faint but potentially detectable by an experiment 
performed in a very low-noise environment. We performed such an 
experiment to rule out the original parameter-free version of the DP model.
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where G, e, ε0 and c are constants of nature with the usual meaning 
and Na is the total number of atoms. We leave R0 as a free param-
eter to be bounded by experiments. Clearly, the number of emitted 
photons increases with Na, as there are more protons affected by the 
noise. The factor N2 accounts for the quadratic dependence on the 
atomic number, which substantially increases the predicted effect.

We performed a dedicated experiment to test this model of 
gravity-related collapse by measuring the spontaneous radiation 
emission rate from a germanium crystal and the surrounding 
materials in the experimental apparatus. The strong point of the 
experiment is that there was no need to create a spatial superposi-
tion, since according to equation (3) the collapse-induced diffusion 
and the associated photon emission occur for any state, including 
localized states of the system. The experiment was carried out in 
the low-background environment of the underground Gran Sasso 
National Laboratory of INFN. The Gran Sasso Laboratory is par-
ticularly suitable for high-sensitivity measurements of extremely 
low-rate physical processes, since it is characterized by a rock 
overburden corresponding to a minimum thickness of 3,100 m 
w.e. (metres water equivalent). The environmental emissions are 
generated by the rock radioactivity and the residual cosmic muon 
flux. Given that the cosmic radiation flux is reduced by almost six 
orders of magnitude, the main background source in the Gran 
Sasso Laboratory consists of γ-radiation produced by long-lived 
γ-emitting primordial isotopes and their decay products. They are 
part of the rocks of the Gran Sasso mountains and the concrete used 
to stabilize the cavity.

The set-up consisted of a coaxial p-type high-purity germa-
nium detector surrounded by a complex shielding structure, 
with the outer part made of pure lead and the inner part made of 
electrolytic copper. The germanium crystal is characterized by a 
diameter of 8.0 cm and a length of 8.0 cm, with an inactive layer 
of 0.075 mm of lithium-doped germanium all around the crystal.  
The active germanium volume of the detector is 375 cm3. The 
outer part of the passive shielding of the high-purity germanium 
detector consists of lead (30 cm from the bottom and 25 cm from 
the sides). The inner layer of the shielding (5 cm) is composed of 
electrolytic copper. The sample chamber has a volume of about 
15 l ((250 × 250 × 240) mm3). The shield together with the cryo-
stat are enclosed in an air-tight steel housing of 1 mm thickness, 
which is continuously flushed with boil-off nitrogen from a liquid 
nitrogen storage tank, in order to reduce the contact with external 
air (and thus radon) to a minimum. The experimental set-up is 
schematically shown in Fig. 2 (see also refs. 38,39). The data acquisi-
tion system is a Lynx digital signal analyser controlled via GENIE 
2000 personal computer software, both from Canberra-Mirion. 
In this measurement, the sample placed around the detector was 
62 kg of electropolished oxygen-free high-conductivity copper in 
Marinelli geometry.

The measured emission spectrum, corresponding to a 
data-taking period of about 62 days (August 2014 and August 2015), 
is shown in Fig. 3, where emission lines generated by residual radio-
nuclides present in the set-up materials are also visible. In particu-
lar, the region of the 60Co lines (corresponding to the shaded green 
area highlighted in the total plot) is enlarged in the inset.

Data analysis was carried out to extract the probability distri-
bution function (pdf) of the R0 parameter of the model. Different 
from previous investigations40,41, we perform not only the dedi-
cated experiment but also an accurate Monte Carlo (MC) charac-
terization, with a validated MC code based on the Geant4 software 
library, of the experimental set-up, which allowed us to compute 
the background originating from known sources, determining the 
contribution of each component of the set-up; the background 
simulation is described in greater detail in Methods. The residual 
spectrum was then compared with the theoretical prediction for the 
collapse-induced radiation, to extract a bound on R0.

The experimental and the MC simulated spectra agree to 
88% in the energy range ΔE = (1,000–3,800) keV, whereas in the 
low-energy region there are larger deviations. This is mostly due 
to the impossibility of perfectly accounting for the residual cosmic 
rays and the bremsstrahlung caused by 210Pb and its daughters in the 
massive lead shield. The energy range falls within the interval previ-
ously discussed for the validity of the theoretical model. Therefore, 
we take ΔE as the energy region of interest (ROI) for the following 
statistical analysis; the ROI is represented by the grey area in Fig. 3. 
In Fig. 4 the measured spectrum is compared, in the ROI, with the 
simulated background distribution. The total number of simulated 
background counts within ΔE is zb = 506 events, to be compared 
with the measured number zc = 576 events. The reason for this low 
rate is the fact that the detector set-up is especially designed for 
ultralow-background measurements. The spectrum in Fig. 3 only 
contains ‘real’ events, as the digital data acquisition system has a 
filter rejecting noise events by their pulse shape, with efficiency bet-
ter than 99%.

Then, we estimated the number of signal events that would be 
measured during the acquisition time, generated in the materials of 
the apparatus as collapse-induced photons. To this end the detec-
tion efficiencies, which are shown, for the set-up components that 
give an appreciable contribution, in Supplementary Fig. 1, were 
taken into account.

Given the rate in equation (4) the expected signal contribution zs, 
which is a function of the parameter R0, turns out to be

zsðR0Þ ¼
X

i

Z

ΔE

dΓt

dE


i

TϵiðEÞ dE ¼ a

R3
0

ð5Þ

where T is the total acquisition time of the experiment, ϵi(E) is the 
energy-dependent efficiency function for the ith component of the 
set-up and a ~ 1.8 × 10−29 m3. By substituting the values zc, zb and zs 
in the pdf of the parameter R0 the following constraint is obtained:

R0>0:54 ´ 10�10 m ð6Þ

with probability 0.95. The data analysis is extensively described in 
Supplementary Information, where the pdf is explicitly derived.
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Fig. 2 | Schematic representation of the experimental set-up. The 
experimental apparatus is based on a coaxial p-type high-purity germanium 
detector, with the dimensions of 8.0 cm diameter and 8.0 cm length; the 
active volume is 375 cm3. The detector is shielded by layers of electrolytic 
copper and pure lead. The inner part of the apparatus consists of the 
following main elements: 1, germanium crystal; 2, electric contact; 3, plastic 
insulator; 4, copper cup; 5, copper end-cup; 6, copper block and plate; 7, inner 
copper shield; 8, lead shield. In order to minimize the radon contamination 
an air-tight steel casing (not shown) encloses the shield and is continuously 
flushed with boil-off nitrogen from a liquid nitrogen storage tank.
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It is important to stress that the energy range in which spontane-
ous photon emission is expected extends from the upper threshold 
of the detector sensitive region (3.8 MeV) to 100 MeV (according to 
the emission rate given in equation (4)). A fraction of these primary 
photons could be degraded in energy due to Compton scattering, 
thus producing additional events in the ROI. Such a process would 
result in a stronger lower bound on R0. We made an estimate of the 
improvement (I) on the bound by considering the limiting case in 

which all the primary spontaneously emitted photons generated in 
the ith component of the set-up, in the energy range (3.8–100) MeV, 
are degraded, due to scattering, to the energy Emax; eff

i
I

 within the 
ROI, corresponding to the maximal detection efficiency for the ith 
material. We obtain I ~ 1.620, which is not sizable (even under the 
exaggerated assumptions we considered); this is mainly due to the 
fact that spontaneous emission decreases with energy as 1/E.

Our experiment sets a lower bound on R0 of the order of 1 Å, 
which is about three orders of magnitude stronger than previ-
ous bounds in the literature36,42; see Fig. 5. If R0 is the size of the 
nucleus’s wave function as suggested by Penrose, we have to con-
front our result with known properties of nuclei in matter. In a 
crystal, R0 ¼

ffiffiffiffiffiffiffiffiffi
hu2i

p

I
 where 〈u2〉 is the mean square displacement 

of a nucleus in the lattice, which can be computed by using the 
relation43,44〈u2〉 = B/8π2, where B = 0.20 Å2 is the Debye–Waller factor 
for the germanium crystal45, cooled to liquid nitrogen temperature. 
One obtains R0 = 0.05 × 10−10 m, which is more than an order of mag-
nitude smaller than the lower limit set by our experiment. Therefore, 
we conclude that Penrose’s proposal for a gravity-related collapse of 
the wave function, in the present formulation, is ruled out.

Of course, alternatives are always possible. Following Diósi, one 
option is to leave R0 completely free; however, this comes at the 
price of having a parameter whose value is unjustified, apparently 
disconnected from the mass density of the system as well as from 
gravitational effects. Another option is to change the way the col-
lapse is modelled (Poissonian decay), thereby adding extra terms 
and parameters to take into account a more complex dynamics, as 
done for other collapse models46–48. This kind of extension has not 
been envisaged in the literature so far. Our result indicates that the 
idea of gravity-related wave function collapse, which remains very 
appealing, will probably require a radically new approach.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary information,  

1,000500

1,160
0

5

10

15K-40

Co-60

ROI

20

25

1,180 1,200 1,220 1,240 1,260 1,280 1,300 1,320 1,340

1,500 2,000 2,500 3,000 3,500See
inset

E (keV)

E (keV)

2

4

6

8

10

12

14

16

18

20

22

24

0

C
ou

nt
s 

ke
V

–1

C
ou

nt
s 

ke
V

–1
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Fig. 4 | Comparison between the measured and the simulated background 
spectra. The measured emission spectrum is shown in the ROI as a 
dark-grey histogram, with error bars representing 1 s.d. The simulated 
background distribution is shown in green for comparison. The simulation 
is based on a Geant4 validated MC characterization of the whole detector. 
The MC has as input the measured activities of the residual radionuclides 
for each material present in the experimental set-up. The simulation 
accounts for the emission probabilities and the decay schemes, the photon 
propagation and interactions in the materials of the apparatus and the 
detection efficiencies (Methods).
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Fig. 5 | Lower bounds on the spatial cutoff R0 of the DP model. According 
to Penrose, R0 = 0.05 × 10−10 m for the germanium crystal used in the 
experiment (red circle on the horizontal scale). Our experiment sets a 
lower bound on R0 at 0.54 × 10−10 m (green bar and arrow), which is one 
order of magnitude larger than predicted following Penrose’s argument. 
Therefore, this parameter-free version of the DP model is excluded. 
The figure shows also previous lower bounds in the literature, similarly 
based on the monitoring of the Brownian-like diffusion predicted by 
the DP model. They refer to data analysis from gravitational wave 
detectors36 (R0 ≥ (40.1 ± 0.5) × 10−15 m, red bar and arrow) and neutron 
stars42 (R0 ≳ 10−13 m, blue bar and arrow). The figure shows the range of 
hypothetical values of R0, from the size of a nucleus (red-blue cluster) to 
beyond that of an atom (green halo surrounding the red–blue nucleus).
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Methods
Calculation of the radiation emission rate. We summarize the main steps for 
deriving equation (4) for the emission rate of the main text. The starting point is 
the quantum mechanical formula for the radiation emission rate

d
dωk

Γt ¼
k2

c

X
ν

Z
dΩk

d
dt

haykνakνit ð7Þ

where haykνakνit
I

 gives the average number of photons emitted at time t with wave 
vector k and polarization ν. The time derivative accounts for the fact that we are 
computing a rate; the integration over the solid angle Ωk, and polarizations of the 
photons for the fact that we are interested in the total number of photons emitted in 
a given energy range, independently from these degrees of freedom; and the factor 
k2

c  for the density of wave vectors with modulus k.
The expectation value haykνakνit

I
 is computed starting from the master equation 

(3) of the main text, which it is convenient to rewrite in the following form35:

dρðtÞ
dt ¼ � i

_ H; ρðtÞ½  þ
R
dQ
P

n;n0
~Γn;n0 ðQÞ

e
i
_QxnρðtÞ e� i

_Qxn0 � 1
2 e�

i
_Qxn0 e

i
_Qxn ; ρðtÞ

n o  ð8Þ

where Q is an integration variable with the dimension of momentum, xn is the 
position operator of the n-th particle, and

~Γn;n0 ðQÞ ¼ 4G

π_2
~μnðQÞ~μn0 ðQÞ

Q2 ð9Þ

with

~μðQÞ ¼ 1

2π_3

Z
dy μðyÞ e� i

_Qy ð10Þ

the Fourier transform of the mass density μ(y).
We move to the Heisenberg picture, introducing the adjoint master equation of 

equation (8), which for a generic operator O takes the form49

d
dt OðtÞ ¼ i

_ H;OðtÞ½  þ
R
dQ
P

k;k0
~Γk;k0 ðQÞ

e�
i
_Qxk0 OðtÞ e i

_Qxk � 1
2 OðtÞ; e� i

_Qxk0 e
i
_Qxk

n o  ð11Þ

H is the sum of three contributions:

H ¼ HS þ HR þ HINT ð12Þ

The first term is

HS ¼
X

j

p2j
2mj

þ VðxjÞ þ
X

i < j
Uðxj � xiÞ

 !
ð13Þ

where the sums run over all particles of the system; V is an external potential and 
U the potential among the particles of the system. We focus on the emission from 
a crystal; therefore, the sum will run over all the electrons and the nuclei of the 
system (given the energy range of the emitted photons we consider, we do not  
need to resolve the internal structure of the nuclei by considering their protons). 
The free electromagnetic Hamiltonian is

HR ¼
X

ν

Z
dk _ωk

1
2
þ ayk;νak;ν

 
ð14Þ

where ωk = kc and ak,ν, a
y
k;ν

I
 are, respectively, the annihilation and creation operators 

of a photon with wave vector k and polarization ν. The last term describes the 
usual interaction between the electromagnetic field and the particles (at the 
non-relativistic level):

HINT ¼
X

j
� ej
mj

 
AðxjÞ  pj þ

X
j

e2j
2mj

A2ðxjÞ ð15Þ

where ej and mj are the charge and the mass of the jth particle of the system and 
A(x) is the vector potential, which can be expanded in plane waves as

AðxÞ ¼
Z

dk
X

ν
αk εk;ν ak;ν e

ikx þ εk;ν ayk;ν e
�ikx

h i
ð16Þ

with αk = [ℏ/2ε0ωk(2π)3]1/2, εk;ν  k ¼ 0
I

 and εk;ν
I

 the (real) polarization vectors.  
Note that in equation (15) the term proportional to pj ⋅ A(xj) is missing because  
we are working in the Coulomb gauge where ∇ ⋅ A = 0, implying εk;ν  k ¼ 0

I
; 

therefore, this term contributes in the same way as the term A(xj) ⋅ pj and the two 
can be added.

Starting from equation (11), haykνakνit
I

 is computed and then inserted in 
equation (7) to find the rate. The calculation is long but conceptually simple: 
the integral form of equation (11) is expanded perturbatively up to the second 

order (the first-order terms give no contribution), similarly to what is usually 
done when the evolution operator is expanded using the Dyson series. Then one 
has to compute the nine terms resulting from this expansion. The calculation is 
fully reported in Supplementary Information; here we give the physical picture 
underlying the calculations, which proved to be successful when applied to other 
models of spontaneous wave function collapse40,50–53.

We can understand the mechanism of radiation emission in terms of 
a semiclassical picture. Each time there is a collapse, particles are ‘kicked’, 
corresponding to an acceleration with associated radiation emission. The radiation 
emitted from different particles may add coherently or incoherently, and to 
understand under which conditions these occur it is instructive to study the radiation 
emission from two charged particles in the context of classical electrodynamics.

Suppose the two particles are accelerated by the same external force. At a point 
x very far away from the charges, the values of the emitted radiation crucially 
depends both on the distance L between the particles and the wavelength λ of 
the emitted radiation. If the charges have opposite signs, when L ≪ λ, given 
x ≫ L, λ, the electric fields E1(x) generated by the positive charge and E2(x) 
generated by the negative charge will be the same, just with opposite sign, due to 
the opposite value of the charges. Then in this case Etot(x) = E1(x) + E2(x) ≃ 0, and 
because the emitted radiation is proportional to ∣Etot(x)∣2 there is almost a full 
cancellation of the radiation field. In contrast, if both charges have the same sign, 
Etot(x) = E1(x) + E2(x) ≃ 2E1(x), hence the emitted radiation becomes four times 
larger than that emitted by a single charge. In more informal terms, we can say 
that for L ≪ λ a detector at x sees the charges as if they are sitting at the same point. 
This leads to a coherent emission, which suppresses the radiation emitted when the 
particles have opposite charges and maximizes it when they have the same charge.

On the other hand, let us now consider the case L ≫ λ. Still assuming 
x ≫ L, λ, the two electric fields E1(x) and E2(x) have in general different 
intensities. In fact, if we label by x1 (x2) the distance between the point 
x and the point where the first (second) particle is located, we have 
∣x1 − x2∣ ~ L. Then the electric fields oscillate many times in the distance 
∣x1 − x2∣. Therefore, even if at a given point x they perfectly cancel, at a 
nearby point x + dx they add constructively. As for the intensity, one has 
IðxÞ / jEtotðxÞj2 ¼ jE1ðxÞj2 þ jE2ðxÞj2 þ E

1ðxÞE2ðxÞ þ E1ðxÞE
2ðxÞ

I
, and when we 

integrate over a spherical surface of radius ∣x∣, to find the total emission rate, the 
last two terms average to zero due to the fast oscillating behaviour, and we obtain 
that the two particles emit independently.

Going back to the calculation in the main text, since the distance between 
electrons and nuclei is of the order of 1 Å, while the wavelength of the photons we 
are considering in the experiment is much smaller (3.3 × 10−3 < λ < 1.2 × 10−2 Å),  
we are precisely in the second situation described above, so electrons and nuclei 
emit independently. In contrast, protons in the same nucleus are much closer than  
the smallest wavelength of the photons we are considering, which explains why 
they emit coherently. As a result, the emission rate from the crystal is given by 
equation (4) of the main text, where the emission from the electrons is neglected 
and the incoherent emission from all atoms in the crystal is considered.

As a final note, in the DP model there is another reason for the incoherent 
radiation by electrons and nuclei, as long as R0 ≪ L (which holds in our case).  
The gravitational fluctuations, underlying the decoherence term of equation 
(3), which accelerate the charges, become uncorrelated beyond the range R0: the 
electrons and the nuclei are accelerated by uncorrelated kicks, resulting in an 
induced incoherent emission.

Statistical analysis. Each component of the experimental apparatus was 
characterized by means of MC simulations54 based on the Geant4 software library 
(verified by participating in international proficiency tests organized by the IAEA). 
The simulations were used to determine (1) the expected background due to residual 
radionuclides in the materials of the set-up and (2) the expected spontaneous 
radiation emission contribution to the measured spectrum. More detail follows.

 1. The MC simulation of the background is based on the measured activities 
of the residual radionuclides, in all the components of the set-up. The simu-
lation accounts for the emission probabilities and the decay schemes, the pho-
ton propagation and interactions in the materials of the apparatus, and the 
detection efficiencies. The obtained spectrum is compared with the measured 
distribution in Fig. 4.

 2. The efficiency, as a function of the energy, for the detection of spontaneously 
emitted photons was obtained by generating 108 photons, for each component 
of the set-up, in steps of 200 keV (that is 15 points in the ROI ΔE = E1–
E2 = (1,000–3,800) keV). The ϵi(E) were then estimated from polynomial fits 
of the corresponding distributions. Given the rate in equation (4) one expects 
to measure a number of events

Z

ΔE

dΓt

dE


i

TϵiðEÞ dE ð17Þ

due to the spontaneous emission by protons belonging to the ith material during T. 
Summing over all the materials, the total signal contribution (see equation (5)) is 
obtained: zsðR0Þ ¼ a=R3

0
I

.
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The stochastic variable, representing the total number of photon counts 
measured in the range ΔE, follows a Poisson distribution:

pðzcjΛcÞ ¼
Λzc
c e�Λc

zc!
ð18Þ

with Λc the corresponding expected value. Two sources contribute to the measured 
spectrum: a background (b) originated by all known emission processes, together 
with a potential signal (s) due to spontaneously emitted photons induced by the 
collapse process. The total number of counts, respectively zb and zs, that would 
be measured in the period T were estimated according to steps (1) and (2). The 
corresponding independent stochastic variables can be also associated with Poisson 
distributions, whose expected values (Λb and Λs) are then related by

ΛcðR0Þ ¼ Λb þ ΛsðR0Þ ¼ zb þ zsðR0Þ þ 2 ð19Þ

where the dependence on R0 is explicitly shown.
The pdf of Λc(R0) can then be obtained from equation (18) by applying the 

Bayes theorem:

~p ΛcðR0ÞjpðzcjΛcðR0ÞÞð Þ ¼ pðzcjΛcðR0ÞÞ  ~p0ðΛcðR0ÞÞR
D pðzcjΛcðR0ÞÞ  ~p0ðΛcðR0ÞÞ d½ΛcðR0Þ

ð20Þ

with D the domain of Λc and ~p0
I

 the prior distribution. R0 is constrained by the 
requirement R0>Rmin

0 ¼ 10�14

I
 m, which implies an upper bound on Λc (see 

equation (19)). We then used a Heaviside function for the prior

~p0ðΛcðR0ÞÞ ¼ θðΛmax
c � ΛcðR0ÞÞ ð21Þ

with Λmax
c ¼ ΛcðRmin

0 Þ
I

. From equation (20) the pdf of Λc(R0) is

~p ΛcðR0Þð Þ ¼ Λzc
c e�Λc θðΛmax

c � ΛcÞR Λmax
c

0 Λzc
c e�Λc dΛc

ð22Þ

In order to obtain the bound given in equation (6) we then have to solve the 
following integral equation for the cumulative pdf:

~P Λcð Þ ¼ γðzc þ 1; ΛcÞ
γðzc þ 1;Λmax

c Þ ¼ 0:95 ð23Þ

which yields Λc< �Λc ¼ 617
I

. As a consequence

ΛcðR0Þ ¼ ΛsðR0Þ þ Λb<617 ) a

R3
0

þ Λb þ 1<617 ) R0>
a

616� Λb

� �1=3

ð24Þ

The analysis was performed in the energy range E1–E2 in which all the 
hypotheses of the model, for the spontaneous emission of protons, are fulfilled. 
However, the energy range in which spontaneous photon emission is expected, 
according to equation (4), extends up to 100 MeV. A fraction of spontaneously 
emitted photons with energy E ∈ E2–E3 = (3.8–100) MeV could be degraded in 
energy due to Compton scattering, thus contributing to Λs(R0); for this reason we 
estimated the corresponding I to the bound in equation (6). Any improvement in 
the description of the expected background (or signal) contribution would lead 
to a larger value of Λb (or a), and from equation (24) one can infer that this would 
translate into a stronger bound on R0.

Regarding Λb, since the MC simulation is based on the measured activities, we 
do not expect a contribution to photon emission, at energies higher than 3.8 MeV, 
originating from radionuclide decays.

The total number of spontaneously emitted photons that are generated in the 
materials of the detector in the energy range E2–E3 is given by

X
i

Z E3

E2

dΓt

dE


i

T dE ¼
X

i

Z E3

E2

N2
i NaiβT

1

R3
0E

dE ¼ b

R3
0

>0 ð25Þ

where Ni and Nai are, respectively, the number of protons contained in each atom 
and the number of atoms of the ith material, while the constant β is defined as

β ¼ 2
3

Ge2

π3=2ε0c3
ð26Þ

Let us denote by f the fraction of these photons which, due to Compton scattering, 
produce events in the ROI and are detected. The total signal contribution then 
turns out to be

zsðR0Þ ¼
a

R3
0

þ fb

R3
0

>
a

R3
0

ð27Þ

Since a + fb > a, the contribution of the spontaneous emission in the range E2–E3 
improves the bound on R0 by a factor ½ðaþ fbÞ=a1=3

I
.

We extracted the maximal I under the extreme—nonetheless most 
conservative—assumption that all the primary spontaneously emitted photons 
generated in the ith material, in the energy range E2–E3, are degraded, due to 
scattering, to the energy Emax; eff

i 2 E1

I
–E2, which corresponds to the maximal 

efficiency for the corresponding material (see Supplementary Fig. 1). The total 
signal contribution then amounts to

zsðR0Þ ¼
P

i

R E2

E1

dΓt
dE


i
TϵiðEÞ dE þ

P
i ϵ

max
i

R E3

E2

dΓt
dE


i
T dE

¼ ð1:756þ 5:712Þ ´ 10�29ð Þ m3

R3
0
¼ aþfb

R3
0

ð28Þ

which corresponds to I ~ 1.620. The improvement is not sizable, as stated in the 
main text, even under the exaggerated assumptions we considered.

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.

Code availability
The MC simulation is based on Geant4 code, which is freely accessible at http://
geant4.web.cern.ch/support/download. Experimental details used within the 
simulation code as part of this study are protected by a non-disclosure agreement 
with the manufacturing company, but the results of the simulation are available for 
this paper.
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