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Information is physical but information is also processed in finite time. Where computing protocols are
concerned, finite-time processing in the quantum regime can dynamically generate coherence. Here we
show that this can have significant thermodynamic implications. We demonstrate that quantum coherence
generated in the energy eigenbasis of a system undergoing a finite-time information erasure protocol yields
rare events with extreme dissipation. These fluctuations are of purely quantum origin. By studying the full
statistics of the dissipated heat in the slow-driving limit, we prove that coherence provides a non-negative
contribution to all statistical cumulants. Using the simple and paradigmatic example of single bit erasure,
we show that these extreme dissipation events yield distinct, experimentally distinguishable signatures.
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Landauer’s principle states that any logically irreversible
computation produces entropy, which dissipates heat to
noninformation bearing degrees of freedom [1]. This basic
principle not only sets an ultimate physical limit to
information processing but also forms the foundation of
the thermodynamics of computation [2,3] and information
[4–8], while playing a pivotal role in the resolution of the
Maxwell demon paradox [9,10]. The most elementary
logically irreversible process is the erasure of one bit of
information, which dissipates an amount of heat q ≥
kBT lnð2Þ to the environment, where kB is Boltzmann’s
constant and T is the temperature. This fundamental lower
bound on dissipated heat is known as the Landauer limit.
In reality, any physical implementation of information

erasure takes place under nonequilibrium conditions, where
a possibly microscopic system (information bearing degree
of freedom) is manipulated in finite time while in contact
with a heat bath. In this setting, fluctuations become
significant, and path-dependent thermodynamic quantities,
such as heat and work, are described by probability
distributions [11–16]. This has important consequences
for heat management in nanoscale devices, which must be
designed to tolerate large and potentially destructive
fluctuations. As information processing technology
encroaches on the small scale where quantum effects take
hold, it thus becomes crucial to understand how quantum as
well as thermal fluctuations contribute to dissipation during
the erasure process.
Minimizing dissipation typically requires slow driving in

order to remain in the quasistatic regime. This has been
highlighted by the first generation of experiments aiming to
experimentally study information erasure near the
Landauer limit on both classical [17–22] and quantum
[23–26] platforms. In particular, the probability distribu-
tions of work and heat during a finite-time protocol were

extracted in pioneering experiments on Brownian particles
confined by tunable double-well potentials [18,19]. In the
quasistatic regime, it was found that the dissipated heat
approaches the Landauer limit on average [18], while its
probability distribution becomes Gaussian [19] with a
variance constrained by the work fluctuation-dissipation
relation [27]. However, experiments exploring the full heat
statistics of quasistatic erasure have so far been limited to a
classical regime, leaving open the question of how quantum
effects influence the heat distribution.
Here we demonstrate that quantum coherence is always

detrimental for the attainability of the fundamental Landauer
limit during slow erasure protocols. More precisely, we
prove that quantum coherence generated in the energy
eigenbasis of a slowly driven system yields a non-negative
contribution to all statistical cumulants of the dissipated heat
and renders the associated probability distribution non-
Gaussian. Coherent control therefore increases the overall
likelihood of dissipation above the Landauer bound due to
the heat distribution developing a significant skewness. We
exemplify this general principle by studying the erasure of
one bit of information stored in a quantum two-level system,
as illustrated schematically in Fig. 1. We find that quantum
fluctuations generate distinct and, in principle, experi-
mentally distinguishable signatures in the heat statistics,
consisting of rare events with extreme dissipation q ≫ kBT.
Despite their rarity, the significance of such processes is clear
in light of the many billions of bits that are irreversibly
processed each second in modern computer hardware. Aside
from unambiguously demonstrating a quantum effect in
information thermodynamics, our findings imply that control
strategies designed to suppress quantum fluctuations may be
necessary to mitigate dissipation in miniaturized information
processors, in agreement with results from single-shot
statistical mechanics [28].
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Erasure protocol.—We note that Landauer’s principle
for finite quantum baths [29–33] has recently been experi-
mentally explored in Refs. [23,24]. In this work, we
consider an erasure protocol where a controllable quantum
system with encoded information is continuously con-
nected to noninformation bearing degrees of freedom
modeled as an infinite heat bath. Specifically, information
encoded in a quantum system of finite dimension d,
described by a maximally mixed state Î=d, is erased by
bringing the system to its ground state j0ih0j, resulting in a
decrease in information entropy ΔS ¼ − log d. This is
achieved by slowly varying a control Hamiltonian Ĥt over
a finite-time interval t ∈ ½0; τ� while the system is weakly
coupled to a thermal reservoir at inverse temperature
β ¼ 1=kBT. We assume Markovian dynamics generated
by an adiabatic Lindblad equation [34], _̂ρt ¼ Ltðρ̂tÞ, where
the generator Lt obeys quantum detailed balance with
respect to the Hamiltonian Ĥt at all times [35]. This
condition ensures a thermal instantaneous fixed point,
Ltðπ̂tÞ ¼ 0, where π̂t ¼ e−βĤt=Trðe−βĤtÞ. Erasure can be
realized by first taking an initial Hamiltonian with Ĥ0 ≃ 0
relative to the thermal energy kBT, then increasing its
energy gaps until they far exceed kBT. If one assumes that
the system is in equilibrium at the end of the process, this
results in effective boundary conditions ρ̂0 ¼ π̂0 ≃ Î=d
and ρ̂τ ¼ π̂τ ≃ j0ih0j.
Heat statistics.—Having introduced our erasure proto-

col, we now discuss the full counting statistics of the
dissipated heat. In the weak-coupling limit, heat is unam-
biguously identified with the change in energy of the

reservoir [36]. For Lindblad dynamics with detailed
balance, the evolution may be unraveled into quantum-
jump trajectories [37], where heat exchange is associated
with the emission and absorption of energy quanta by the
driven quantum system [38–41]. Operationally, each tra-
jectory represents an individual run of an experiment in
which the environment is continuously monitored by direct
detection of the emitted and absorbed quanta [42]. This is
formally described by a set of coarse-grained time points at
which measurements occur, τ ≥ tN ≥ � � � ≥ t1 ≥ t0 ¼ 0,
separated by an increment δt much smaller than the
characteristic timescale of dissipation. The system evolu-
tion from time tn → tnþ1 is given by the quantum channel
T n ≔ eδtLtn ¼ P

xn T xn , where T xnð·Þ ¼ K̂xnðtnÞð·ÞK̂†
xnðtnÞ

form a set of Kraus operators satisfyingP
xn K̂

†
xnðtnÞK̂xnðtnÞ ¼ Î and xn labels the distinguishable

outputs of the detector. Each trajectory of the open system
is then specified by its measurement record, i.e., a sequence
of the form Γ ≔ fx0;…; xNg occurring with probability

pðΓÞ ≔ 1

d
h0j

YN
n¼0

T xnðÎÞj0i: ð1Þ

To ensure detailed balance [40,43], the Kraus operators are
taken to satisfy ½Ĥt; K̂xðtÞ� ¼ −ℏωxðtÞK̂xðtÞ, where ℏωxðtÞ
are differences between the eigenvalues of Ĥt. Thus, ωx >
0 (ωx < 0) represents a detected emission (absorption)
while ωx ¼ 0 represents no detection. This assumption
ensures that heat entering the environment may be iden-
tified along each trajectory Γ, being given by the sum of
these energy changes:

qðΓÞ ≔ −
XN
n¼0

ℏωxnðtnÞ: ð2Þ

We note that in the weak-coupling regime this is equivalent
to the outcome of a two-point measurement of the envi-
ronment’s energy at the beginning and end of the protocol
[44–46]. The average heat flux is given by h _qi ¼ TrðĤt

_̂ρtÞ,
consistent with well-known results for weak-coupling
Lindblad dynamics [47].
It is convenient to define the excess stochastic heat,

q̃ðΓÞ ≔ qðΓÞ − kBT log d; ð3Þ
which quantifies the additional heat in excess of the
Landauer bound. The full statistics of excess heat can be
obtained from the cumulant generating function (CGF),
evaluated in the continuum limit δt → 0:

KqðuÞ ≔ ln
X
fΓg

e−uq̃ðΓÞpðΓÞ: ð4Þ

This provides the cumulants according to κk ¼
ð−1Þk dk

duk
KqðuÞju¼0, where κ1 ¼ hqi − kBT log d is the

FIG. 1. Schematic of the erasure protocol and our main results.
An intelligent being (demon) performs erasure through a con-
trolled process that resets a physical bit of information to a fixed
reference state. In this example, the bit is encoded in the position
of a particle confined by a double-well potential. Classically,
erasure is performed by raising the potential of one well until
thermal fluctuations drive the particle into the lower-energy state,
at the cost of dissipating some heat into the environment.
Quantum mechanics allows the particle to coherently tunnel
under the barrier as well as hop over it, leading to large quantum
fluctuations in the dissipated heat.
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average excess heat, κ2 ¼ VarðqÞ ¼ hq2i − hqi2 is the
variance, and so forth.
Role of coherence in erasure.—We now come to the

main finding of our work, namely that quantum coherence
generates additional dissipation during information erasure.
We focus on protocols close to the quasistatic limit, where
the dissipation approaches the Landauer bound. This
requires the Hamiltonian to be driven slowly relative to
the relaxation timescale of the dynamics, implying that
the system state remains close to equilibrium at all times.
We may therefore use an expansion of the form
ρ̂t ≃ π̂t þ τ−1δρ̂t, with δρ̂t a linear-order perturbation to
the equilibrium state π̂t.
Neglecting corrections of order Oðτ−2Þ, we find that the

full statistics of excess heat in the slow-driving limit can be
separated into a classical and quantum part (see
Supplemental Material [48]):

KqðuÞ ¼ Kd
qðuÞ þKc

qðuÞ: ð5Þ

Because of the additivity of the CGFs we may interpret the
total excess heat as a sum of two independent random
variables, q̃ðΓÞ ¼ q̃dðΓÞ þ q̃cðΓÞ, with q̃dðΓÞ described by
a classical (diagonal) CGF Kd

qðuÞ and cumulants of q̃cðΓÞ
given by the quantum (coherent) CGF Kc

qðuÞ. These
different contributions to the heat statistics relate directly
to the different ways a quantum state can evolve, through
changes to either the populations or the coherences in the
energy eigenbasis [48]. Specifically, the classical CGF is
given by

Kd
qðuÞ¼kBTðu−kBTu2Þ

Z
τ

0

dt
∂
∂tS(DĤs

ðρ̂tÞkπ̂s)js¼t; ð6Þ

where Sðρ̂kσ̂Þ ¼ Tr(ρ̂ lnðρ̂Þ) − Tr(ρ̂ lnðσ̂Þ) is the quantum
relative entropy and DĤt

ð·Þ ¼ P
n jntihntjð·Þjntihntj

denotes the dephasing map in the instantaneous energy
eigenbasis fjntig of Ĥt. Equation (6) expresses the fact that
classical contributions to the excess heat occur when the
system populations deviate from the instantaneous
Boltzmann distribution. Furthermore, the quantum CGF
can be identified as

Kc
qðuÞ ¼ −ukBT

Z
τ

0

dt
∂
∂t S1−ukBT(ρ̂tkDĤs

ðρ̂tÞ)js¼t; ð7Þ

where Sαðρ̂jjσ̂Þ ¼ ðα − 1Þ−1 ln Trðρ̂ασ̂1−αÞ for α ∈ ð0; 1Þ ∪
ð1;∞Þ represents the quantum Renyi divergence. The
function Sα(ρ̂tkDĤt

ðρ̂tÞ) can be interpreted as a proper
measure of asymmetry with respect to the instantaneous
energy eigenbasis [58], which is closely related to the
amount of coherence contained in the state [59]. The first
cumulant of Eq. (7) is proportional to the relative entropy of
coherence [60], which has previously been identified as a
quantum contribution to average entropy production in
open [61–63] and closed [64] systems. A similar division

into classical and quantum components was obtained in
Ref. [65] for work statistics in the slow-driving limit.
Remarkably, the splitting embodied by Eq. (5) puts

constraints of nonclassical origin on the full statistics of
dissipated heat. To see this, let us first convert the diagonal
part Kd

qðuÞ into a probability distribution via an inverse
Laplace transform. This yields a Gaussian distribution with
mean and variance connected by hq̃di ¼ 1

2
βVarðq̃dÞ, as

expected for a classical process in the slow-driving limit
[66]. It follows that the classical heat distribution obeys the
Landauer bound, hq̃di ≥ 0. Turning to the quantum con-
tribution, no such straightforward expression can be
obtained for the distribution Pðq̃cÞ due to the complicated
dependence of the quantum covariance (7) on the counting
field u. Despite this, one may prove that the cumulants of
q̃c are all monotonically nondecreasing in time [48]:

ð−1Þk dk

duk
_Kc
qðuÞju¼0 ≥ 0; ∀ k: ð8Þ

This immediately implies that coherence imparts a non-
negative contribution to the mean heat dissipated during
erasure, i.e.,

hqi ¼ kBT lnðdÞ þ hq̃di þ hq̃ci; with hq̃ci ≥ 0: ð9Þ

Furthermore, all higher cumulants are also non-negative,
implying increased fluctuations that will generally exhibit
positive skew and kurtosis. As a consequence, the overall
heat distribution can be highly non-Gaussian, in stark
contrast to the classical case.
These results have profound repercussions for the

erasure of information stored in a quantum system.
Manipulating such a system in finite time typically
generates coherence due to the presence of several non-
commuting terms in the Hamiltonian, a feature which is
unavoidable for certain physical architectures. Not only
does this lead to a greater energetic cost on average, it also
increases the probability of large fluctuations where a
quantity of heat q ≫ kBT lnðdÞ well above the Landauer
bound is dissipated into the surroundings.
Example: Qubit erasure.—To illustrate our findings, we

consider an elementary example of erasure where informa-
tion is stored in a quantum two-level system described by
the Hamiltonian

Ĥt ¼
εt
2
ðcos θtσ̂z þ sin θtσ̂xÞ: ð10Þ

This generic Hamiltonian describes the low-energy dynam-
ics of a particle in a double-well potential [67] or a
genuinely discrete information storage device such as a
charge or spin qubit [68]. Thermal dissipation is modeled
by a bosonic heat bath described by an adiabatic Lindblad
master equation [34] in the limit of slow driving and weak
coupling [48]. Stored information is erased by increasing

PHYSICAL REVIEW LETTERS 125, 160602 (2020)

160602-3



the energy splitting εt from its initial value, ε0 ≈ 0, to a final
value, ετ ≫ kBT, leaving the qubit in its ground state with
near-unit probability. The mixing angle θt encapsulates the
competition between energetic bias ðσ̂zÞ and coherent
tunneling ðσ̂xÞ. If θt is constant, Eq. (10) describes a
classical bit. Conversely, when _θt ≠ 0—which will gen-
erally be the case, e.g., for quantum double-well systems—
the protocol is noncommuting.
In Fig. 2 we plot the first four cumulants of the heat

distribution, comparing a quantum protocol to a classical
process with identical εt but _θt ¼ 0. These analytical results
are derived in the slow-driving limit at order Oðτ−1Þ [48].
We show in Fig. 2(a) that the mean excess heat [Eq. (3)]
takes small but nonzero values in the erasure regime,
ετ ≫ kBT, reflecting the entropy produced in this finite-
time process. While the quantum and classical protocols
show similar dissipation on average, they differ signifi-
cantly in their fluctuations. The inset of Fig. 2 shows
the Fano factor, F ¼ Varðq̃Þ=hq̃i, which is increased
by quantum fluctuations above the classical value,
F ¼ 2kBT þOðτ−2Þ, that follows from the fluctuation-
dissipation relation. The most significant difference arises
in higher-order statistics: the nonclassical nature of the heat
distribution is witnessed by its third and fourth cumulants,
shown in Fig. 2(b). These imply significant skewness and
kurtosis and signal the presence of non-Gaussian tails in the
distribution.
To reveal the microscopic origin of these tails, we

simulate individual runs of the erasure protocol using
the quantum-jump trajectory approach [48]. A trajectory
is described by a pure state jψ ti undergoing continuous
time evolution interspersed by stochastic jumps,
jψ ti → j � εti, where Ĥtj � εti ¼ � 1

2
εtj � εti. Each jump

transfers a quantum of energy ℏω ¼∓ εt to the environ-
ment. The main panel of Fig. 3 shows the heat distribution

obtained by numerically sampling many such trajectories
for a quantum process. While the bulk of the distribution is
centered around the Landauer bound, we find a few rare
trajectories featuring a very large heat transfer, which are
associated with nonadiabatic transitions occurring during
the driving protocol. For example, consider an emission at
some time, which leaves the system in its instantaneous
ground state. As the eigenbasis of the Hamiltonian rotates,
the state at some later time comprises a superposition of
both energy eigenstates. The finite population of the excited
state thus opens the possibility for a second emission to
occur, potentially leading to massive overall heat transfer.
An example of such a trajectory is shown in the inset of
Fig. 3. On the contrary, during a classical protocol the state
adiabatically follows the Hamiltonian eigenstates between
jumps. This implies that an emission can only be followed
by an absorption and vice versa, such that the contributions
of these alternating events to the heat statistics largely
cancel. We note that, apart from these rare trajectories, the
heat distributions sampled from quantum protocols are very
similar to their classical counterparts, with the bulk of the
distribution approaching a Gaussian form as τ increases
[48]. The excess skewness and kurtosis of the quantum heat
distributions can therefore be attributed entirely to rare,
nonadiabatic processes such as the one illustrated in Fig. 3.
Even though such events are statistical outliers, they may

have severe consequences for nanoscale heat management.
For the data shown in Fig. 3, roughly one trajectory in every
thousand involves a nonadiabatic transition. However, the
maximum heat dissipated in a single trajectory is more than
30 times larger than the Landauer limit, whereas for the
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FIG. 2. Heat statistics of slow-driving processes. (a) Mean
excess heat (main) and Fano factor, F (inset). (b) Third cumulant
(main) and fourth cumulant (inset) of the heat distribution,
demonstrating non-Gaussian statistics. Solid lines show a
quantum protocol with εt ¼ ε0 þ ðετ − ε0Þ sin2ðπt=2τÞ and
θt ¼ πðt=τ − 1Þ, dashed lines show the corresponding classical
protocol with identical εt but θt ¼ 0. The initial energy splitting is
ε0 ¼ 0.02ετ and the protocol duration is τ ¼ 250=γ̄, where γ̄ is a
characteristic thermalization rate given by the time average of
γt ¼ 1

2
ℏ−1αεt cothðβεt=2Þ, with α ¼ 0.191 the coupling to an

Ohmic bath.
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FIG. 3. Quantum-jump trajectory simulation of the coherent
qubit erasure protocol of Fig. 2, with βετ ¼ 20. Main panel: heat
distribution over 3 × 104 trajectories, with the Landauer bound
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trajectory with large heat transfer, q ¼ 19.1kBT (black arrow).
Stochastic jumps in the otherwise continuous evolution of hσ̂zi
(upper inset) are associated with the emission of energy quanta
ℏω ¼ �εt to the environment (lower inset). Nonadiabatic
quantum evolution allows for two consecutive emissions and
consequently extreme dissipation.
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analogous classical protocol it is less than 4 times larger.
This illustrates that quantum coherence drastically
increases the probability of extreme heat fluctuations
during the process of information erasure. Such events
could damage or disrupt small-scale quantum hardware
with a low threshold of tolerance for heat dissipation. These
are truly quantum fluctuations, in the sense that uncertainty
in the transferred heat is increased by the existence of a
coherent superposition state of the system together with the
quantization of energy exchanged with the environment. In
the context of qubit erasure, these quantum fluctuations are
experimentally distinguishable from thermal fluctuations
since only the former involve consecutive emission or
absorption events.
The results presented here can be applied to other logic

operations implemented on physical hardware. Indeed, we
expect that unique energetic fingerprints may also be
discovered in other control protocols that process informa-
tion in the quantum regime. Fast protocols that push the
system far from equilibrium [69] are especially important
for computing at high clock speed but are also expected to
incur even greater heat fluctuations. Recently developed
methods to describe dissipation in driven open quantum
systems [70–73] could be used to address this problem in
future work.
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