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Abstract
The theory of general relativity predicts the existence of closed time-like curves
(CTCs), which theoretically would allow an observer to travel back in time
and interact with their past self. This raises the question of whether this could
create a grandfather paradox, in which the observer interacts in such a way
to prevent their own time travel. Previous research has proposed a framework
for deterministic, reversible, dynamics compatible with non-trivial time travel,
where observers in distinct regions of spacetime can perform arbitrary local
operations with no contradiction arising. However, only scenarios with up to
three regions have been fully characterised, revealing only one type of process
where the observers can verify to both be in the past and future of each other.
Here we extend this characterisation to an arbitrary number of regions and find
that there exist several inequivalent processes that can only arise due to non-
trivial time travel. This supports the view that complex dynamics is possible in
the presence of CTCs, compatible with free choice of local operations and free
of inconsistencies.

Keywords: closed time-like curves, causality, time

1. Introduction

The dominant paradigm in physics relies on the idea that systems evolve through time accord-
ing to dynamical laws, with the state at a given time determining the entire history of the
system.
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General relativity challenges this view. The Einstein equations, describing the relationship
between spacetime geometry and mass-energy [1], have counterintuitive solutions containing
closed time-like curves (CTCs) [2–17]. An event on such a curve would be both in the future
and in the past of itself, preventing an ordinary formulation of dynamics according to an ‘initial
condition’ problem. The question then arises whether some more general type of dynamics is
possible.

Although it is an open question whether CTCs are possible in our Universe [18–22], consid-
ering dynamics beyond the ordinary temporal view is relevant to other research areas as well.
In a theory that combines quantum physics with general relativity, it is expected that spacetime
loses its classical properties [23, 24], possibly leading to indefinite causal structures [25–27].
In a quite different direction, it has been suggested that quantum physics could be reduced to
some kind of ‘retrocausal’ classical dynamics [28–39].

The main problem arising when abandoning ordinary causality is the so called ‘grand father
paradox’ [40]: a time traveller could kill her own grandfather and thus prevent her own birth,
leading to a logical inconsistency. A popular approach holds that the grandfather paradox
makes CTCs incompatible with classical physics, while appropriate modifications to quan-
tum physics could restore consistency [41–56]. A common feature of the proposals within this
approach is that they postulate a radical departure from ordinary physics even in regions of
space-time devoid of CTCs, or in scenarios where the time travelling system does not actually
interact with anything in the past [57, 58].

A different approach is the so called ‘process matrix formalism’, which takes as a starting
point the local validity of the ordinary laws of physics and asks what type of global processes
are compatible with this assumption [59–74]. This framework enforces that all operations that
would normally be possible in ordinary spacetime should still be available in local regions.
First considered in the quantum context, this approach has been applied to classical physics
too, with the remarkable discovery of classical processes that are incompatible with any causal
order between events [75–77].

In reference [78], a classical, deterministic version of the formalism was proposed as a
possible model for CTCs. In this model, one considers a set of regions that do not contain any,
but might be traversed by, CTCs. Agents in the regions receive a classical state from the past
boundary, perform an arbitrary deterministic operation on it, and then send the system through
the future boundary. Dynamics outside the regions determines the state each agent will observe
in the past of the respective region, as a function of the states prepared by other agents. A simple
characterisation was found for all processes involving up to three regions; furthermore, it was
found that, for three regions, all non causally ordered processes are essentially equivalent.

In this work, we extend the characterisation of deterministic processes to an arbitrary num-
ber of regions. We provide some simple interpretation of the characterisation: when fixing
the state on the future of all but two regions, the remaining two must be causally ordered,
with only one directional signalling possible. We show, by explicit examples, that there are
inequivalent, non causally ordered quadripartite processes, which cannot be reduced to tri-
partite ones. Our results show that CTCs are not only compatible with determinism and with
the local ‘free choice’ of operations, but also with a rich and diverse range of scenarios and
dynamical processes.

2. Deterministic processes

This section aims to revise and summarise the approach of reference [78] and the results that
are relevant to the full characterisation of arbitrary deterministic, classical processes.
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In ordinary dynamics, a process is a function that maps the state of a system at a given
time to the state at a future time. Operationally, we can think of the state in the past as a
‘preparation’ and the one in the future as the outcome of a ‘measurement’. The functional
relation between preparation and measurement is typically dictated by the dynamics of the
system. For example, field equations determine the field on a future space-like surface as a
function of the field on a past space-like surface. In a globally hyperbolic spacetime4, the
functional relation between preparation and measurement corresponds to fixed deterministic
dynamics once initial conditions have been set on a Cauchy surface.

The first studies of dynamics in the presence of CTCs focussed on spacetime geometries in
which a formulation of dynamics as an initial condition problem could be retained [80–82].
In these studies, CTCs only exist in the future of a spacelike surface on which initial con-
ditions could be set. Surprisingly, these studies found that all cases studied had at least one
self-consistent solution. This surprising result suggests there may not be any conflict between
the existence of CTCs and logical consistency. However, if the spacetime is threaded by CTCs,
it is not in general possible to find a spacelike surface to set global initial conditions.

The difficulty associated with setting global initial conditions in spacetimes threaded by
CTCs raises the question as to whether there exists a more general description of a process
which can describe dynamics without global initial conditions. The existence of such processes
could be used to model dynamics incompatible with the existence of a Cauchy surface. Of
course, the non-existence of a Cauchy surface (and therefore the spacetime being non-globally
hyperbolic), does not immediately imply the presence of CTCs. However, the development of
such a generalised type of process in reference [78] provides a framework to describe dynamics
compatible with non-trivial time travel in a non-globally hyperbolic spacetime. The remain-
der of this section reviews how such a generalised process can be constructed to distinguish
whether the process is compatible with spacetimes containing CTCs (or more generally non-
trivial time travel in a non-globally hyperbolic spactime), while remaining consistent with free
choice, locality and the absence of a grandfather paradox.

In order to generalise the ordinary characterisation of a process as a function with initial
conditions, we consider N spacetime regions (which we henceforth refer to as local regions
or regions), in which agents can perform arbitrary operations. In particular, each agent will
observe a state coming from the past of the region and prepare a state to send out through
the future. The key assumption is that the actions of the agents in the regions are independent
from the relevant dynamics governing the exterior of the regions. In other words, agents retain
their ‘freedom of choice’ to perform arbitrary operations. However, the system’s dynamics,
together with the spacetime’s geometry, constrains the system’s behaviour outside the regions.
Therefore outside the spacetime regions, the dynamics is completely deterministic and fixed,
once appropriate boundary conditions have been specified. In this approach, a process should
determine the outcomes of measurements performed by an agent, as a function of the opera-
tions performed by the others. In this way, we define a process as a generalised model for the
dynamics connecting distinct space-time regions.

We shall assume that the regions in which the agents act are connected, non-overlapping,
and their boundaries can be divided into two subsets (one ‘past’ and one ‘future’) that do
not contain time-like pieces. This ensures that, in a CTC-free spacetime (or more generally, a
globally hyperbolic spacetime), each region is either in the future, in the past, or space-like to
any other, so a violation of causal order between the regions can be attributed to a lack of causal

4 A spacetime is said to be globally hyperbolic if and only if it contains a Cauchy surface, namely a closed, acausal
surface such that every inextendible causal curve passes through it once (where acausal means that no causal curve
starts and ends on the surface) [79].
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order in the background spacetime5. Furthermore, we shall restrict to local regions that do not
contain CTCs, or more generally we require that these localised regions are indistinguishable
from localised regions in a globally hyperbolic spacetime. We also assume that any timelike
curve which enters through the past (future boundary) exits through the future boundary (past
boundary). This enables a simple characterisation of local operations in the regions as functions
from past to future boundary.

Besides the above conditions, we do not make any further assumption on the spacetime
geometry or causal structure, nor on the dynamics of the physical system on which the agents
act. The approach only treats abstractly the functional relations between degrees of freedom
and only requires that local agents retain their freedom to choose arbitrary operations, without
generating any logical inconsistency.

Our goal is to understand whether such abstract constraints are compatible with processes
that can only be realised through non-trivial causal relations (causal relations that can only
arise due to non-trivial time travel in a non-globally hyperbolic spacetime). By causal relations
between regions, here we mean the possibility for agents acting in the regions to exchange non-
faster-than-light signals between each other. In a globally hyperbolic spacetime (and under the
assumptions we have made on the local regions), signalling is a one-way relation: if an agent
A can signal to an agent B, then B cannot signal to A. Therefore, any process where causal
relations do not define a partial order among the regions would be due to non-trivial time
travel in a non-globally hyperbolic spacetime.

In keeping with previous literature, and to simplify the discussion, in the following we
assume that CTCs are responsible for non-trivial causal relations, such that the local regions
do not contain any, but may be traversed by CTCs. However, these non-trivial causal relations
could in principle emerge in other non-globally hyperbolic spacetimes without CTCs, such as
causal but not strongly causal spacetimes [79].

2.1. The process function

In order to develop the formalism for classical, deterministic dynamics of local regions in
the presence of CTCs, we will assign the boundaries of these local regions classical state
spaces. The state spaces Ai and Xi describe the physical degrees of freedom localised on
the past and future boundaries respectively of a local region i. For example, they may cor-
respond to a field defined on the background spacetime. In this case, a state in one of the
classical state spaces we have defined, would be a function on the boundary of the local
region, describing a space-like field configuration. Individual states will be denoted as ai ∈ Ai,
xi ∈ Xi. A classical, deterministic operation in the local region will be denoted by the function
f i : Ai →Xi (figure 1). The function fi transforms the input state ai from the past bound-
ary to the output state xi at the future boundary. Therefore, the function fi maps between
the physical degrees of freedom on the past and future boundaries respectively. The func-
tion fi physically corresponds to the local operation an agent can perform on the input state
in a particular spacetime region. Therefore, in order to allow freedom of choice over the
operations that an agent can perform in a local region of spacetime, we do not impose any
additional condition on the function fi, apart from requiring that it satisfies the definition
of a function. As a result, the local functions fi are not required to be invertible. Allowing
the local operations performed by experimenters to be non-invertible functions represents
the experimenters’ ability to delete information by accessing a reservoir not included in the

5 If we were to consider timelike boundaries, it would be possible to have time-like curves which exit a region, cross
into another one, and then go back to the original region, all within a globally hyperbolic spacetime.
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Figure 1. A local bounded region i of spacetime with a past and a future boundary. The
boundaries do not contain time-like pieces. A local operation in the region is represented
by a function fi, which maps the input state ai containing the physical degrees of freedom
on the past bundary, to the output state xi containing the physical degrees of freedom on
the future boundary.

physical degrees of freedom of interest. We denote Di := { f i : Ai →Xi} to be the set of all
possible functions in region i. In order to refer to a collection of objects for all regions, we drop
the index. For example, the set of all possible inputs for N distinct local regions will be denoted
A ≡ A1 × · · · × AN .

We will use the notation A\i = A1 × · · · × Ai−1 ×Ai+1 × · · · × AN , a\i =
{a1, . . . ai−1, ai+1, . . . , aN}, etc, to denote collections with the component i removed.
Appropriate reordering will be understood when joining variables, for example in expressions
as a = ai ∪ a\i, f(a) = f(ai, a\i), and so on.

One of the requirements of a deterministic framework for local regions in the presence of
CTCs, is that the framework must be able to predict the state on the past boundary of each
local region. In the presence of CTCs, the state on the past boundary of each local region can
depend on all local operations (In a CTC free spacetime, the state on the past-boundary of
a region would only depend on operations in its past). The dependence on local operations
can be described with a function ω ≡ {ω1, . . . ,ωN} : D →A which maps the local operations
performed in each region to the input state on the past boundary of each local region [78]. The
function ω will be henceforth labelled as a process.

The function ω will remain general, only being restricted by a weak form of locality.
Locality requires that, once the state at the boundary of a region is fixed, the details of what
happens inside the region should not be relevant to the exterior dynamics. The local field
equations typically used in physics all satisfy this requirement. In order to formalise this
requirement for locality, for every processω there must exist an additional functionw : X →A
such that6

ω ( f ) = w ( f (ω( f ))) ∀ f ∈ D. (1)

We will henceforth refer to a function that satisfies the above consistency condition as a
process function (figure 2). The process function maps the output state on the future bound-
aries to the input states on the past boundaries of all regions. In a field theory without the
presence of CTCs, which is compatible with a causally ordered spacetime, the process func-
tion would describe how the field on the future boundary of a region is mapped to the
resulting field on the past boundary of a second local region, where the first region is in
the causal past of the second region. In the presence of CTCs, the process function repre-
sents more general constraints on the boundary configurations of the field, which now can all

6 Reference [78] defined deterministic processes through a different but equivalent self-consistency condition.
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Figure 2. A process function w can be applied to model the interaction of distinct
localised space-time regions with CTCs. A non-trivial dependency of each region’s
input on the other regions’ outputs implies that the process function can only arise in
the presence of CTCs.

potentially depend on each other. In this way, the process function generalises the notion of
dynamics, so that it applies to spacetimes which contain CTCs, as well as spacetimes that
are absent of CTCs. The process function can therefore be used identify the causal rela-
tions that can arise only in the presence of CTCs, without any reference to CTC solutions
of the Einstein field equations. This is significant because it enables us to determine what
types of non-trivial causal relations are possible without the development of a logical incon-
sistency such as a grandfather paradox. The investigation of these causal relations with the
process function formalism provides a promising platform to investigate whether these non-
trivial causal relations can be achieved in specific spacetime geometries. Hence, the con-
sideration of the causal relations in the process function formalism will provide a step in
the direction of addressing how CTCs can be physically realised without any grandfather
paradox.

It has been shown in reference [78], that a necessary and sufficient condition for a process
function is that w ◦ f has a unique fixed point for every local operation f:

∀ f ∃! a such that w ◦ f (a) = a. (2)

In the following, we will work with process functions, rather than processes, and use the fixed
point condition (2) as the defining property.

An important property of process functions is that an observer in a localised region cannot
use it to send information back to herself. Intuitively, this prevents paradoxes, such as an agent
attempting to warn her past self to avoid a particular event, thus removing the motivation for
her to warn her past self. Formally, this means that the input of each local region is independent
of the output of the same region. If we consider a single local region, the only process function
for this sole local region which satisfies the fixed point condition (2) is a constant: w (x) = a.
Therefore, an agent in a local region being unable to interact with her past is a feature of
all process functions. In this way, the absence of a grandfather paradox is a direct result of
condition (2). This feature of process functions imposes the constraint that each component of
a process function w has to be independent of the output of the same region:

wi(x) = wi(x\i), (3)

6
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where, x\i is the set of outputs of all regions except the ith region. Note that equation
(3) implies that a process function can be described in terms of a set of functions w1 : X\1 →
A1, . . . , wn : X\n →An.

2.2. Reduced processes

Before we go into detail about the characterisation of process functions, we must firstly make
some important definitions and consider some important properties of process functions.

Definition 1. Consider a function w : X →A, such that, for each region i = 1, . . . ., N,
wi(x) = wi(x\i). For a particular local operation f i : Ai →Xi we define the reduced function
w fi : X\i →A\i on the remaining regions through the composition of w with f i:

w fi
j

(
x\i

)
:=w j

(
x\i, f i

(
wi

(
x\i

)))
, i 	= j. (4)

This definition is important for formalising the intuition that if we fix the operation for a par-
ticular local region, there should still exist a process for the remaining regions. The definition of
the reduced function plays an important role in the investigation of the properties of multipartite
process functions.

Lemma 1 (Lemma 3 in reference [78]). Given a functionw : X →A, such that, for each
region i = 1, . . . , N, wi(x) = wi(x\i), we have

(a) If w is a process function, then w fi is also a process function for every region i and
operation fi.

(b) If there exists a region i such that, for every local operation fi, w
fi is a process function,

then w is also a process function.

Following the result of this lemma, we can conclude that w is a process function if and only
if the corresponding reduced function w fi is also a process function.

Definition 1 can be modified to apply to a process in which we fix a particular region’s
output instead of fixing a particular local operation. These processes are of interest because
they correspond to the subset of reduced functions where the fixed operation f i is a constant.
A constant is a valid choice of the function because we do not require it to be invertible.

Definition 2. Consider a function w : X →A, such that, for each region i = 1, . . . ., N,
wi(x) = wi(x\i). For a particular region’s output xi ∈ Xi, we define the output reduced func-
tion wxi : X\i →A\i on the remaining regions to denote the function in which we have fixed
the output of the ith region:

wxi (x\i) :=
{
w1(x\1), . . . .wi−1(x\{i−1}),

wi+1(x\{i+1}), . . .wn(x\n)
}
.

(5)

It is clear that an output reduced function is also a reduced function according to definition
1, due to the output reduced function corresponding to the case where the local operation in
each region is restricted to be a constant. We can apply definition 2 to denote wx\{i, j} as the
output reduced function in which we fixed the outputs of all regions except regions i and j.

While definitions 1 and 2 are similar, the distinction between the reduced function and the
output reduced function is important for the characterisation of multipartite process functions.

2.3. Signalling

In order to understand how different parties in distinct regions of spacetime signal to each other
we must define what it means for one observer to signal to another observer.

7
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Equation (3) describes how an observer in a local region can not signal to their own past.
This is consistent with the following definition of no-signalling.

Definition 3. Given a process function w : X →A, we say that region j cannot signal to
region i if

wi(x j, x\ j) = wi(x′j, x\ j) ∀ x ∈ X , x′j ∈ X j, (6)

which we can abbreviate as wi(x) = wi(x\ j).

We define signalling as the negation of definition 3.
Signalling is useful to establish whether a process is compatible with a given causal struc-

ture, as a region can only signal to regions in its future. This definition of signalling is con-
sistent with the aim of constructing the framework such that in a spacetime without CTCs,
signalling between regions defines a relation of partial order. However, the presence of CTCs
does not automatically allow arbitrary signalling, as the consistency condition (2) imposes
strong constraints on the process function.

As we will show below, it is convenient to characterise process functions in terms of a more
refined notion of signalling. In general, the possibility to signal from a region to another can
depend on the outputs of all other regions. It is useful to capture this as follows:

Definition 4. Given two regions i and j, a process function w : X →A, and an output state
x̃\i, j ∈ X\i, j, we say that j cannot signal to i conditioned on x̃\i, j if

w
x̃\i, j
i (x j) = w

x̃\i, j
i (x′j) ∀ x j, x′j ∈ X j. (7)

For example, for certain process functions w, there can exist x\{i, j} ∈ X\{i, j} such that each

of the components w
x\{i, j}
i and w

x\{i, j}
j are a constant. In these cases neither region can signal

to the other. However, there may also exist another choice of outputs x′\{i, j} ∈ X\{i, j} such that
signalling occurs between regions i and j.

We now have a framework which describes general deterministic dynamics in the presence
of CTCs. This framework is characterized by the process function w which maps the output
states on the future boundary of each local region to the input states on the past boundary of
each local region. Condition (2) allows freedom of choice for the operations performed by the
observer in each region. Condition (3) guarantees that there is no paradox resulting from the
operations performed in the presence of CTCs. In order to further understand communication
between observers in the presence of CTCs, we must develop a characterisation of the process
function w which describes how these observers can communicate.

2.4. Characterization of process functions

The simplest and most intuitive process functions are causally ordered ones. For example,
consider three observers in three distinct regions, which we label regions 1, 2 and 3 respec-
tively. If there exists causal order between these regions such that 1 ≺ 2 ≺ 3, then the process
function is given by w1(x) = a (constant), w2(x) = w2(x1) and w3(x) = w3(x1, x2). For such
causally ordered process functions condition (2) is satisfied. However, these trivial, causally
ordered process functions are compatible without the presence of CTCs. The generality of the
process function allows it to model spacetime without causal order as well, such as the non-
trivial causal relations which arise due to the presence of CTCs. We are interested in whether
non-trivial process functions exist in the presence of CTCs. The existence of non-trivial pro-
cess functions would add support to the argument that CTCs can exist without a violation of
locality or the creation of a grandfather paradox. This is because conditions (2) and (3) restrict

8
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process functions to avoid such inconsistencies. In order to answer whether non-trivial process
functions exist in the presence of CTCs, we must develop a characterization of process func-
tions for an arbitrary number of regions. In other words, we want to find a way to tell whether
a generic function w : X →A satisfies the fixed point condition (2).

Reference [78] characterised process functions with up to three regions. For a single region,
condition (3) requires that the process function has to be a constant: w(x) = a∀ x. Bipartite
process functions are characterized by three conditions:

(a) w1(x1, x2) = w1(x2) ,
(b) w2(x1, x2) = w2(x1) ,
(c) at least one of w1(x2) or w2(x1) is constant.

It is clear that (a) and (b) follow from condition (3), while (c) follows from condition (2).
As a result, bipartite process functions only allow one-way signalling.

In order to characterise tripartite process functions, we must consider three distinct regions
which we label 1, 2 and 3. This process function has three components a1 = w1(x2, x3),
a2 = w2(x1, x3) and a3 = w3(x1, x2). Reference [78] proves the following characterisation of
tripartite process functions, where the output variable of one region ‘switches’ the direction of
signalling between the other two regions.

Theorem 1 (Tripartite process functions, theorem 3 in reference [78]). Three functions
w1 : X2 ×X3 →A1, w2 : X1 ×X3 →A2, w3 : X1 ×X2 →A3 define a process function if and
only if each of the output reduced functions

wx3 (x1, x2) := {w1(x2, x3),w2(x1, x3)} , (8)

wx1 (x2, x3) := {w2(x1, x3),w3(x1, x2)} , (9)

wx2 (x1, x3) := {w1(x2, x3),w3(x1, x2)} (10)

is a bipartite process function for every x3 ∈ X3, x1 ∈ X1, x2 ∈ X2 respectively.

The properties defined in theorem 1 describe that, for every fixed output of one of the
regions, at most one-way signalling is possible between the other two regions. Our goal is
to prove a similar characterisation of multipartite process functions in terms of conditional
signalling.

3. Characterization of multipartite process functions

We are now ready to prove our core result: a characterisation of arbitrary multipartite process
functions that generalises theorem 1. There are in fact two distinct (but equivalent) ways to
generalise theorem 1: given an N-partite process function, one can check if all N − 1 partite
functions, obtained by fixing one output, are valid process functions. Alternatively, one can fix
all but two outputs, and check if the remaining two regions are at most one-way signalling. Let
us start with the first generalisation.

Theorem 2 (N-partite process function). P[N ] : N functions w1 : X\1 →A1, w2 : X\2 →
A2, . . . , wN : X\N →AN, define a process function w if and only if:

for every xi ∈ Xi, the output reduced function wxi is an N−1 partite process function, for
all i ∈ 1, 2, . . . , N.

9
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Proof. Consider N space time regions, with the ith region’s input states denoted as ai ∈ Ai

and its output states denoted as xi ∈ Xi. We know that if w is a process function, then the output
reduced function wxi must also be a valid process function, as we recognise that all output
reduced functions are also reduced functions and can therefore apply point (a) of lemma 1.
This proves one direction of the theorem.

In order to complete the proof, we need to prove the converse as well: if wxi is a valid N−1
partite process function for i ∈ 1, 2, 3, . . . ., N, then w is a valid N-partite process function.
The proof will proceed by induction. Firstly, we will prove P [3], and then the implication
P[N−1] ⇒ P[N]. P [3] is proven simply by applying theorem 1. Next, we assume the induc-
tion hypothesis is true for the P[N−1] case: for N−1 partite function w, if wxi is a valid
N−2 partite process function for all i ∈ 1, 2, 3, . . ., N−1, ⇒ w is a valid N−1 partite process
function.

For an arbitrary N-partite function w we assume wxi to be a valid N−1 partite pro-
cess function for all i ∈ 1, 2, 3, . . . , N. As a result, by applying (a) of lemma 1, it is easy
to see that the reduced function (wxi ) f1 is a valid N−2 partite process function for i 	= 1.
Here, our choice of specifying region 1 as opposed to any of the other regions which
are not the ith region, when fixing the local operation f1 : A1 →X1, is arbitrary. Now,
the order in which operation is fixed does not affect the resulting function, i.e. we have
(wxi ) f1 = (w f1 )xi .

In order to see this, we start by considering the definition of the reduced function.
Definition 1 states that for each component of a function w, the reduced function w f1 is given
by the composition of w with f1, w f1

j

(
x\1

)
:=w j

(
x\1, f1

(
w1

(
x\1

)))
, 1 	= j. If we also fix

the output of region i ∈ 2, . . . , N, to be xi, then the corresponding output reduced function has
components

(w f1 )xi
j

(
x\{1,i}

)
:= w f1

j

(
x\{1,i}, xi

)
= w j

(
x\1, f1

(
w1

(
x\1

)))
,

where we recall that x\{1,i} ∪ xi = x\1.
Now it is easy to see that if we fix the output xi before we fix the function f1, we arrive at

the same expression:

(wxi
j ) f1

(
x\{1,i}

)
:= wxi

j

(
x\{1,i}, f1

(
wxi

1

(
x\{1,i}

)))
= w j

(
x\{1,i}, xi, f1

(
w1

(
x\{1,i}, xi

)))
= w j

(
x\1, f1

(
w1

(
x\1

)))
.

Now, we can apply P[N−1] to show that if (w f1 )xi is valid N−2 partite process function,
thenw f1 must be a valid N−1 partite process function. Finally, we can apply point (b) of lemma
1 to conclude that w is a valid process function, thus completing the proof.

�

Theorem 2 can be applied as a simple framework to check if a multipartite function is
indeed a valid process function. As we will see later, it is easier to apply theorem 2 to verify
a valid multipartite process function than check that condition (2) is satisfied. The potential
for the application of theorem 2 as a method for verifying the validity of multipartite process

10
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functions can easily be seen by noticing that theorem 2 implies that fixing the outputs of all
regions except 2, reduces the remaining output reduced process function to a bipartite function.

Corollary 1. N functions w1 : X\1 →A1, w2 : X\2 →A2, . . . ,wN : X\N →AN, define a pro-
cess function w if and only if wx\{l, j} is a valid bipartite process function for all l, j ∈
1, 2, 3, . . . , N, l 	= j, and N � 3.

Proof. We know that if w is an N-partite process function, then for all i ∈ 1, 2, . . . , N, wxi

must also be a valid process function by applying either point (a) of lemma 1, or theorem 2
directly. We use the same logic to prove that for all i, k ∈ 1, 2, . . . , N, i 	= k, (wxi )xk must be a
valid N−2 partite process function. Repeating the argument until we have fixed the output of
all regions except two proves that if w is an N-partite process function, then wx\{l, j} is a valid
bipartite process function, proving one direction of the corollary.

In order to prove the converse, we begin by noting that we can write an arbitrary bipartite
function as an output reduced tripartite process function: wx\{ j,l} =

(
wx\{i, j,l}

)xi for i 	= j 	= l.
If, for all distinct j, l ∈ 1, 2, 3, . . . , N, wx\{ j,l} is a valid bipartite process function, then by
theorem 2, for all distinct i, j, l ∈ 1, 2, 3, . . . , N, wx\{i, j,l} must be a valid tripartite process
function. We can repeat this argument in order to conclude that for all distinct i, j, k, l ∈
1, 2, 3, . . . , N, wx\{i, j,k,l} must be a valid quadripartite process function. We can keep applying
the same argument until we conclude that w is a valid N-partite process function, thus proving
the reverse direction of the corollary and hence concluding the proof. �

Corollary 1 explicitly demonstrates the condition that fixing the output of all regions except
two arbitrarily picked l, j ∈ 1, 2, . . . , N determines the direction of signalling between regions l
and j, and hence the remaining output reduced process function is a bipartite process function:

wx\{l, j} (xl, x j) := {wl(x j, x\{l, j}),w j(xl, x\{l, j})},

where at least one of the two component functions w
x\{l, j}
l , w

x\{l, j}
j is a constant. The validity

of a multipartite process function can be checked by ensuring that, for all l, j ∈ 1, 2, 3, . . . , N,
wx\{l, j} is a valid bipartite process function.

Theorem 2 and subsequently corollary 1 demonstrates that multipartite process functions
can at most be conditionally one-way signalling between any pair of regions. In other words,
fixing the output of all regions except two, allows at most one-way signalling between the two
remaining regions.

4. Examples

The above characterisation of process functions allows us to consider specific examples that
cannot occur in an ordinary, causally ordered spacetime. An example of a such a process func-
tion in three spacetime regions was first presented in reference [77]. This tripartite process
function can easily be extended to a quadripartite process function through the addition of a
fourth party either in the past or future of the other three parties. However, the existence of
the fourth party in the process function does not require the presence of CTCs. In the case
where the fourth party is in the future of the other three parties, this simply corresponds to a
fourth region where causal order exists from the other three parties to the fourth party. As a
result, there is significant motivation to find quadripartite process functions incompatible with
causal order between any subsets of parties (this is analogous to the ‘genuinely multipartite
non-causal correlations’ studied for quantum processes [70]).

Here, we present examples of such quadripartite process functions. Consider four parties in
local regions of spacetime in the presence of CTCs. In this analysis, we simplify the classical

11
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Table 1. Inputs of region 3 and region 4 (denoted a3 and a4 respectively), for every possi-
ble combinations of the outputs of region 1 and region 2 (denoted x1 and x2 respectively).
The displayed signalling structure is true regardless of which two regions we choose to
fix the outputs, due to the symmetry between different components of equation (12).

Output of Output of Input of Input of Direction of
region 1 (x1) region 2 (x2) region 3 (a3) region 4 (a4) signalling

0 0 0 x3 3 signals to 4
0 1 x4 ⊕ 1 0 4 signals to 3
1 0 0 0 No signalling
1 1 0 0 No signalling

state spaces Ai and Xi to be binary state spaces. A physical example of what these binary
variables may represent is that a 0 or 1 could correspond to the existence or non-existence of a
particle on the boundary of the spacetime region. As discussed previously, we do not consider
any specific spacetime or dynamical law, but simply investigate what processes are logically
possible.

We define input variables a1, a2, a3, a4 ∈ {0, 1}. We define output variables x1, x2, x3,
x4 ∈ {0, 1}. We define the binary addition operator a ⊕ b: a, b ∈ {0, 1}→ {0, 1} as

a ⊕ b =

{
0, a = b

1, a 	= b.
(11)

Using the above notation, we define the quadripartite process function w: (x1, x2, x3, x4) →
(a1, a2, a3, a4) as

a1 = x4(x2 ⊕ 1)(x3 ⊕ 1)

a2 = x1(x4 ⊕ 1)(x3 ⊕ 1)

a3 = x2(x1 ⊕ 1)(x4 ⊕ 1)

a4 = x3(x2 ⊕ 1)(x1 ⊕ 1).

(12)

Applying either theorem 2 or corollary 1, one can check that this is a valid process function.
Equation (12) defines a process function in which the input of each region depends non-trivially
on the output of the other three regions. In this process, the output of two regions sets the
direction of signalling between the other two. For example, table 1 displays the resulting inputs
of regions 3 and 4 for all the possible combinations of the outputs of regions 1 and 2.

Here it is clear that, depending on the choice of outputs for an observer in region 1 and
another observer in region 2, the communication between regions 3 and 4 can either be non-
existent (neither region can signal to each other), or at most one-way signalling. As a result,
equation (12) is characterised by conditional signalling. For example, if the outputs of regions 1
and 2 are chosen to be x1 = 1, x2 = 0 respectively, then neither one of the observers in regions
3 and 4 can signal to each other. However, if the output of region 1 and region 2 are chosen
to be x1 = 0 and x2 = 0 respectively, then an observer in region 3 can signal to an observer in
region 4. Crucially, there exist combinations of outputs such that each observer can signal to
any observer in another region.

Our analysis of the signalling between regions in the output reduced process function is
demonstrating that when we consider a subset composed of just two regions, there can only
be at most one-way signalling between these two regions. This ensures that our assumption
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of locality and the absence of a grandfather paradox is satisfied, which we have formalised in
condition (2). However, we stress that in our quadripartite examples, each region can signal to
any other for some value of the remaining regions’ output. This is not possible in a spacetime
without CTCs. Indeed, in the absence of CTCs, there would be one region that is either in the
causal past or space-like from each of the other regions. In this case no other region would be
able to signal to it, regardless of the output of the other regions.

It was found in reference [77] that, up to relabelling of parties or of inputs/outputs, there
exists only one non trivial tripartite process function with binary inputs and outputs that is
compatible with the presence of CTCs and incompatible with any causal order. In other words,
all non-trivial tripartite functions compatible with the presence of CTCs are equivalent after
a relabelling of parties or of states7. However, this is not true for quadripartite process func-
tions. There exists many quadripartite process functions that are not related to one another by
relabelling of party or of states. An example of a non-trivial quadripartite process function not
related to the one given in equation (12) up to relabelling is

a1 = x2(x3 ⊕ x4)

a2 = x3(x4(x1 ⊕ 1) ⊕ 1)

a3 = x4(x1 ⊕ 1)(x2 ⊕ 1)

a4 = x1(x2 ⊕ 1)(x3 ⊕ 1).

(13)

It is easy to see that the signalling structure between the four components of equation (13)
is different from the signalling structure between the four components of equation (12). For
example, if we fix the outputs of regions 2 and 3 to be either x2 = 1, x3 = 0 or x2 = 1, x3 = 1,
then an observer in region 4 can signal to an observer in region 1. As a result, equation (13) has
produced a scenario in which there are two distinct choices for outputs for two components
of the process function which result in the same signalling direction (region 4 to region 1).
This scenario does not exist for any choices for the outputs of two distinct components of the
process function described by equation (12).

We have shown that there exist distinct non-trivial quadripartite process functions that are
compatible with the presence of CTCs and incompatible with any causal order. A numerical
search for other quadripartite process functions satisfying theorem 2 revealed a large number of
non-equivalent quadripartite process functions. In this paper we have presented two examples
of such process functions. In comparison to tripartite process functions, quadripartite process
functions allow a greater variety in the ways different regions can communicate without causal
order in the presence of CTCs.

Of course, one of the main question is whether the abstract examples we have found can be
realised as concrete physical systems in some appropriate space-time geometry. Although a full
answer is beyond the scope of this work, it is always possible to construct a simplified model
that implements any process function. Indeed, it was proven in reference [78] that every process
function can be extended to a reversible one, possibly adding extra regions and degrees of
freedom. This, in turn, implies that there exist reversible physical processes implementing the
function. A prominent example is the ‘billiard ball model’ of computation [83]. In this model, 0

7 This is not strictly true beyond binary state spaces (for example, the continuous variables example presented in
reference [78] cannot be relabelled to be a three bits function). However, theorem 1 implies that all non-causally-
ordered tripartite process functions have the same causal structure, in the sense that the output space of each party can
be divided in two subsets, with states within each subset corresponding to a fixed direction of signalling between the
two other parties.
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Figure 3. Spatial diagram of a physical realisation of an acausal process function.
The example is that of a wormhole spacetime, similar to reference [81]: the metric is
Minkowski everywhere, except for eight cylindrical regions (the wormholes’ ‘mouths’,
appearing as spheres in a spatial section, which are the black coloured circles in the
picture), which are pairwise identified. A time delay between the mouths causes a world-
line entering an upper mouth to exit the corresponding lower mouth at an earlier time in
Minkowski coordinates, forming CTCs. Just above each of the lower mouths is a local
region, labelled i = 1, . . . , 4, where an agent can either receive (ai = 1) or not receive
(ai = 0) a billiard ball along a prescribed world-line (the picture shows the projection of
the world-lines on a time slice containing the local regions). The agents can then choose
whether or not to send a billiard ball out of the local region. This intervention is repre-
sented by the function fi, while the output is xi = 1, 0. In the space between the regions
and the upper mouths is a ‘billiard ball computer’ [83], which implements the process
function w. The properties of the process function ensure that a unique solution for the
presence or absence of a ball at each point of the considered worldlines exists for each
choice of local operations.

(1) represents the absence (presence) of a billiard ball. Through appropriate collisions, which
might involve reflecting walls or additional balls, it is possible to implement any functional
relation between initial and final state. To turn this into a time-travelling model, it is sufficient
to embed the computation into a spacetime with CTCs, such that the output of the computation
is mapped identically to the input of the respective local regions, which are themselves in the
past of the collision region. An example with four wormholes, based on the spacetimes in
reference [81], is depicted in figure 3.

If the dynamics outside the four local regions in figure 3 is determined by acausal process
functions, such as equation (12) or equation (13), then the agents can communicate with each
other, while verifying to be in the past, present and future of each other. As these functions
satisfy the self consistency condition (2), they guarantee that, for every choice of local oper-
ations, there is a consistent solution. Therefore, the agents can signal to each other without
causal order and without any logical inconsistency. It is an open question how generic is this
situation and what are the spacetimes and physical systems for which nontrivial, self-consistent
time travel is possible.

5. Conclusions

We have developed a characterisation of deterministic processes in the presence of CTCs for
an arbitrary number of localised regions. Our proofs have demonstrated that non-trivial time
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travel between multiple regions is consistent with the absence of a logical paradox as long as
once the outputs of all but two regions are fixed, at most one-way signalling is possible.

The most significant result of our work is our discovery of distinct non-trivial quadripartite
process functions which are compatible with the presence of CTCs. This demonstrates that
when multiple local regions communicate with each other in the presence of CTCs, there is a
broad range of communication scenarios which still allow freedom of choice for observers in
each region without the development of a logical inconsistency such as a grandfather paradox.
The range of distinct communication scenarios which are consistent with the presence of CTCs
proves that the way CTCs allow multiple observers in distinct regions to communicate is not
overly restricted by a conflict between locality, freedom of choice, and logical consistency. As
a result, we have demonstrated that there is a range of scenarios in which multiple observers
can communicate without causal order in a classical framework. Our results are derived in an
abstract framework, that does not depend on the details of the dynamics or of the space-time
geometry. Further studies will be necessary to find genuine physical scenarios realising the
acausal processes we have discovered.
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