
Scaling the Hartree-Fock Matrix Build on Summit
Giuseppe M. J. Barca

Research School of Computer Science
Australian National University

Canberra, Australia
giuseppe.barca@anu.edu.au

David L. Poole
Departmet of Chemistry and Ames Laboratory

Iowa State University
Ames, IA, United States

davpoole@iastate.edu

Jorge L. Galvez Vallejo
Department of Chemistry and Ames Laboratory

Iowa State University
Ames, IA, United States

jg4@iastate.edu

Melisa Alkan
Department of Chemistry and Ames Laboratory

Iowa State University
Ames, IA, United States

alkan@iastate.edu

Colleen Bertoni
Leadership Computing Facility
Argonne National Laboratory
Lemont, IL, United States

bertoni@anl.gov

Alistair P. Rendell
College of Science and Engineering

Flinders University
Adelaide, Australia

alistair.rendell@flinders.edu.au

Mark S. Gordon
Department of Chemistry and Ames Laboratory

Iowa State University
Ames, IA, United States

mgordon@iastate.edu

Abstract—Usage of Graphics Processing Units
(GPU) has become strategic for simulating the chem-
istry of large molecular systems, with the majority
of top supercomputers utilizing GPUs as their main
source of computational horsepower. In this paper, a
new fragmentation-based Hartree-Fock matrix build
algorithm designed for scaling on many-GPU archi-
tectures is presented. The new algorithm uses a novel
dynamic load balancing scheme based on a binned
shell-pair container to distribute batches of significant
shell quartets with the same code path to different
GPUs. This maximizes computational throughput and
load balancing, and eliminates GPU thread divergence
due to integral screening. Additionally, the code uses
a novel Fock digestion algorithm to contract electron
repulsion integrals into the Fock matrix, which exploits
all forms of permutational symmetry and eliminates
thread synchronization requirements.The implementa-
tion demonstrates excellent scalability on the Summit
computer, achieving good strong scaling performance
up to 4096 nodes, and linear weak scaling up to 612
nodes.

Index Terms—GPU, Hartree-Fock, Summit

I. Introduction
The Hartree-Fock (HF) method is a central pillar of

quantum chemistry (QC) calculations [1]. Nearly all other
QC methods rely on HF as a starting point or building
block. The computational focus, and the primary bottle-
neck, of the HF process is the evaluation of the many
complex two-electron repulsion integrals (ERIs) and the
multiplication of these integrals by the density matrix
to form the Fock matrix. The number of ERIs scales as
O(N4), where N – the number of basis functions – is

proportional to the number of atoms. The number of basis
functions grows rapidly with the size of the molecular sys-
tem of interest, rendering the evaluation and processing of
the corresponding integrals computationally challenging.
Therefore, creative algorithms are needed in order to apply
HF and related methods to large molecular systems that
require exascale computing to be feasible [2].

One such (very successful) type of method is fragmen-
tation, in which the system of interest can be divided
into multiple fragments in such a way that each fragment
calculation can be performed on a separate node (or group
of nodes) while still retaining acceptable accuracy [3].

1 EHF = 0;
2 forall fragments and fragment pairs do
3 Guess initial D matrix;
4 Compute Hcore;
5 F = Hcore;
6 repeat
7 for ERI batches {ab|cd} do
8 Compute ERI (αβ|γδ) ∈ {ab|cd};
9 Fαβ +=

∑
γδ
Dγδ

[
(αβ|γδ)− 1

2 (αδ|γβ)
]
;

10 end
11 Diagonalize F and obtain new D;
12 until converged;
13 EHF += 1

2
∑

αβ
(Hcore

αβ + Fαβ);
14 end
15 Subtract fragment energies from EHF ;

Algorithm 1: A fragmentation-based HF algorithm.

Pseudocode for a fragmentation-based HF algorithm is
shown in Alg. 1. Here we assumed usage of a second order
many-body expansion, which involves only up to fragment-

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

pair interactions (see Section II B). For each fragment
and fragment pair the algorithm performs an iterative
HF calculation. The most computation-intense stages are
the evaluations of the ERIs, and combining them with
the density matrix D, to form the elements of the Fock
matrix F (lines 8-9). The latter stage (line 9) is called the
digestion of the ERIs. Both stages scale as the number
of integrals, i.e. as O(N4) with system size. Although
ERI screening techniques have been developed that reduce
such scaling to O(N2) asymptotically with system size, the
scaling prefactor is so large that the ERIs cannot be stored
in main memory, and they must be recomputed in batches
at each SCF iteration and digested on the fly in order to
avoid I/O overhead.

In this work, an algorithm which performs a scalable and
efficient build of the Fock matrix, for fragmentation-based
HF methods, on distributed heterogeneous architectures
with many GPUs is presented. Manifold GPU-accelerated
codes have been developed for the Hartree-Fock method
[4]–[14], although very few run on multiple GPUs [7]. The
novel contributions in this work are:

• A double-stream digestion algorithm that uses full
symmetry and at the same time eliminates explicit
GPU thread synchronization.

• A novel dynamic load balancing scheme for achieving
high parallel efficiency in the integral computation
and digestion, both across threads of the same GPU
and across multiple GPUs.

• Integration of the screening of the integrals within the
dispatch of shell quartets. This systematic screening
circumvents the use of any conditional statement in
the device code and eliminates GPU thread diver-
gence and related underutilization.

• An integral code based on optimized recursive ap-
proaches that minimize the computational cost per
class of integrals specifically for the GPU architec-
ture. This allows optimal usage of the complex GPU
memory hierarchy, thereby maximizing performance.

• Code optimized for the computation of each class is
generated in the form of CUDA kernels. These highly
optimized kernels are one of the keys for the efficient
computation of the integrals on the GPU and they
account for over 20,000 lines of CUDA code.

Section II describes required notation (II-A), and intro-
duces the many-body expansions (II-B) and the Hartree-
Fock method (II-C). In Section III, based on state-of-the-
art GPU implementations of the Fock build, we discuss
the unresolved algorithmic challenges for achieving high
scalability and performance. Sections IV and V present
our scalable HF algorithm and discuss how it addresses the
above-mentioned challenges, while Section VI examines
the effect of various optimizations on its performance.
Finally, Section VII presents an overview of the Summit
supercomputer at Oak Ridge National Laboratory and
scaling results of our code on this platform.

All code was written in C++, and uses the Message
Passing Interface (MPI) for distributed-memory paral-
lelization and CUDA C as a GPU port path. All timings
are in seconds.

II. Background
This section contains notation and background on the

HF computation that is needed to understand the imple-
mentation presented in Sections IV and V.

A. Basis functions, shells and integrals
Quantum chemical calculations are performed by

approximating the wave function (solution to the
Schrödinger equation which is unfortunately not directly
solvable), which describes the electronic behavior, with a
combination of contracted Gaussian basis functions.

A contracted Gaussian basis function (CGF)

|α) =
KA∑
i=1

ϕa
α,i(r), (1)

is a sum of primitive Gaussian functions (PGFs)

ϕa
α,i(r) ≡ |α]i =
Di

A(x−Ax)ax(y −Ay)ay (z −Az)aze−λi|r−A|2 (2)

KA is the degree of contraction and is typically between 1
and 20. A primitive is defined by its contraction coefficient
Di

A, exponent λi, atomic center A = (Ax, Ay, Az), angular
momentum vector a = (ax, ay, az) and total angular
momentum a = ax + ay + az. For conciseness, we will
usually suppress the primitive index i.

CGFs are classified in different types based on the total
angular momentum value a of their primitives: we will use
only s-, p- and d-type CGFs which have a = 0, a = 1
and a = 2, respectively. Depending on the atomic elements
within the molecule, a variable number of CGFs – from 1 to
over 50 – is placed at each atomic center. This also implies
that the number of basis functions N grows linearly with
the number of atoms.

For computational convenience Gaussian functions are
grouped into shells. A primitive shell, indicated with the
symbol |a], is a set of PGFs sharing the total angular mo-
mentum a, the same exponent λi and center A. Similarly, a
contracted shell |a) is a set of CGFs sharing the same PGFs
and total angular momentum. There are (a+ 1)(a+ 2)/2
functions in a shell with total angular momentum a. For
example, a contracted p-type shell |a = 1) ≡ |1) is a set
of three CGFs {px, py, pz} with the same PGFs and with
angular momentum vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively.

Shells are then coupled to form shell pairs, which model
the one-electron density. A contracted (primitive) shell
pair is the set of CGF (PGF) pairs obtained by the
tensor product |ab) = |a) ⊗ |b) (|ab] = |a] ⊗ |b]). For
example, a |11) shell pair is the set of 9 CGFs pairs

{pxpx, pxpy, . . . , pzpy, pzpz} obtained by the tensor prod-
uct of two |1) shells.

Finally, primitive and contracted shell pairs are fur-
ther coupled into shell quartets |abcd] = |ab] ⊗ |cd] and
|abcd) = |ab)⊗|cd). These are used to model the Coulomb
interaction between two electrons via the following two-
electron repulsion integrals of CGFs

(αβ|γδ) =
KA∑
i

KB∑
j

KC∑
k

KD∑
l

[αβ|γδ]ijkl (3)

which are sums of primitive ERIs

[αβ|γδ]ijkl ≡ [αβ|γδ] =∫∫
ϕa
α,i(r1)ϕb

β,j(r1) 1
|r1 − r2|

ϕc
γ,k(r2)ϕd

δ,l(r2)dr1dr2

(4)

As for shells, total angular momentum values are used
to indicate contracted and primitive classes of integrals
(ab|cd) and [ab|cd], respectively. For example, (22|10) de-
notes a class of 6 × 6 × 3 × 1 = 108 contracted integrals
that arise from two d shells, a p shell and an s shell.

Since the ERI couple four basis functions, their num-
ber grows as O(N4). Even for modest molecular sizes,
this poses a very significant computational challenge. For
example, using the pcSeg0 basis set [15] for a 200-water
cluster results in 2600 basis functions and, formally, in
O(1013) ERIs. In this study, we will deal with systems
with over 9000 water molecules.

B. Many body expansion
A many-body expansion (MBE) decomposes the en-

ergy of the system into a set of fragment energies and
corrections involving pairwise and higher-order fragment
interactions. The general MBE for a set of non-covalently
bonded clusters is

E =
NF∑
I

EI +
NF∑
I<J

∆EIJ +
NF∑

I<J<K

∆EIJK + ... (5)

where, EI represents the energy of fragment I, the pa-
rameter NF is the number of fragments, and the different
∆Ex represent the correction for the n-body interaction.
Lower order interactions are subtracted from the higher
order ones to avoid double counting of the energies, e.g.
∆EIJ = EIJ − EI − EJ .

It is visible that MBEs are an embarrassingly parallel
approach, allowing quantum chemistry to target large sys-
tems with reasonable accuracy. MBE expansions truncated
at a certain degree have been shown to provide accurate
results. In this work, a simple MBE expansion truncated
at the second level (fragment-pair interactions) is used
to showcase a scalable fragmentation approach for the
accelerated Hartree-Fock algorithm.

C. Restricted Hartree-Fock
The Restricted Hartree-Fock (RHF) method solves the

following generalized matrix eigenvalue problem

FC = SCε (6)

for a molecule whose electrons are all paired, where the
molecular orbital (MO) coefficient matrix C contains un-
known coefficients that describe the MOs in a chosen one-
electron atomic orbital basis {φaα(r)} with N CGFs. The
elements of the S matrix are the atomic orbital overlaps,
while ε is a diagonal matrix of orbital energies, and F is
the Fock matrix with elements

Fαβ = Hcore
αβ +

N∑
γδ

Dγδ

[
(αβ|γδ)− 1

2(αδ|γβ)
]

(7)

The Hcore
αβ terms account for the electronic kinetic energy

and the electronic-nuclear attraction, while Dγδ are ele-
ments of density matrix defined as

Dαβ = 2
Ne/2∑
i

CαiCβi (8)

where Ne is the number of electrons.
The Fock matrix elements in Eq. (7) depend on the MO

coefficients – namely the solution to the problem – via
the density matrix elements. Thus, Eq. (6) is solved using
an iterative scheme called the Self-Consistent Field (SCF)
procedure. During each SCF iteration a new Fock matrix
is formed, and, as mentioned in Section I, this involves
recomputing and digesting the ERIs on the fly. Because
of the large number of ERIs, which scales as O(N4) with
system size, efficient implementations rely on the use of up-
per bounds in order to avoid the evaluation of numerically
insignificant integrals, that is integrals whose magnitude
is smaller than a user-defined accuracy threshold τ . One
of the most successful ERI screening approaches uses the
following Cauchy-Schwartz inequality [16]

|(αβ|γδ)| ≤ IabIcd ∀(αβ|γδ) ∈ (ab|cd) (9)

where Iab = max
|αβ)∈|ab)

(αβ|αβ)
1
2 . Since Eq. (9) applies to

all the integrals (αβ|γδ) within a given class (ab|cd), for a
given accuracy τ the computation of the entire class can
be skipped if IabIcd ≤ τ .

Once the ERIs are computed and digested, the gener-
alized eigenvalue problem in Eq. (6) is solved to yield a
new MO coefficient matrix C, which is used to form the
associated density matrix (Eq. (8)), and hence to form
the Fock matrix in the next iteration. The procedure is
repeated until the Fock matrix is converged.

III. Algorithmic challenges and related work
Designing an efficient distributed and GPU-accelerated

implementation of Alg. 1 involves several computational
challenges.

The first algorithmic challenge is to balance two kinds
of intrinsically heterogeneous workloads across parallel
execution units. Fragments and fragment pairs are systems
with different numbers of atoms, therefore carrying hetero-
geneous computational costs. For each fragment or frag-
ment pair, the computational bottleneck of the HF method
is the evaluation of ERIs. The most efficient algorithms for
the evaluation of ERIs compute the integrals in classes.
Since integral classes contain very dissimilar numbers of
integrals, utilization of these approaches involves uneven
workloads.

1 for α = 1, . . . , N do
2 for β = α, . . . , N do
3 p = α(α+ 1)/2 + β;
4 for γ = 1, . . . , N do
5 for δ = γ, . . . , N do
6 q = γ(γ + 1)/2 + δ;
7 if p ≤ q then
8 Compute (αβ|γδ);
9 Fαβ ← Dγδ(αβ|γδ);

10 Fγδ ← Dαβ(αβ|γδ);
11 Fαγ ← Dαγ(αβ|γδ);
12 Fαδ ← Dαδ(αβ|γδ);
13 Fβγ ← Dβγ(αβ|γδ);
14 Fβδ ← Dβδ(αβ|γδ);
15 end
16 end
17 end
18 end
19 end

Algorithm 2: Näıve ERI digestion algorithm.

A second challenge is associated with the full exploita-
tion of the following permutational symmetry rules for the
ERIs:

(αβ|γδ) = (αβ|δγ) = (βα|γδ) = (βα|δγ)
= (γδ|αβ) = (γδ|βα) = (δγ|αβ) = (δγ|βα) (10)

Using these equalities leads to up to eight-fold savings in
the number of integrals. However, this symmetry is often
either partially or fully neglected in existing GPU codes to
avoid potential significant thread synchronization during
the digestion of the ERIs [4]–[8]. In fact, if only symmetry-
unique integrals are computed, then each integral must
contribute to the formation of up to six elements of the
Fock matrix, as shown in Alg. 2.

Parallelization over the α, β, γ, δ loops in Alg. 2 leads to
potential race conditions as each (αβ|γδ) can contribute to
identical elements of the Fock matrix. For example, all in-
tegrals with the same α and β indices, and different γ and
δ will be assigned to different threads but will contribute
to the same Fock matrix element Fαβ . Previous attempts
to exploit full symmetry and eliminate race conditions
used either a combination of mutual exclusion objects
(mutexes) and locks [9] or atomic operations [10], both
incurring high synchronization costs, thereby impinging on
the GPU parallel performance and code scalability.

The third challenge is associated with the screening of
ERIs. As discussed in Section II-C, in order to reduce
the computational effort, it is essential to screen out
numerically insignificant integrals using, for example, the
Cauchy-Schwartz inequality. Previous implementations all
assigned different GPU threads to either the computation
of single integrals or single integral classes. In these ap-
proaches, after a coarse-grained screening stage, integrals
were more finely screened directly on the GPU [4]–[10],
leading to thread-divergent execution paths and GPU
resources underutilization (threads idle because of insignif-
icant integrals).

A fourth challenge is related to the minimization of
the FLOP cost for the evaluation of the ERIs. Effi-
cient algorithms evaluate ERIs in classes via recursive
approaches. This is because integrals within the same
class share a large number of recursive intermediates.
The pursuit of an optimal strategy to form the integrals
within a given (ab|cd) class using the minimum number
of recursive intermediates leads to NP optimization (tree-
search) problems. In order to devise efficient algorithms for
ERI evaluations, one must solve such tree-search problems
and generate optimal codes that compute all the integrals
within each different integral class using only the smallest
set of recursive intermediates [17].

The fifth and last algorithmic challenge concerns the
maximization of usage of the computational capabilities
of each GPU for the evaluation of the ERIs, which is
the bottleneck of the HF. For extracting maximum per-
formance from GPUs, an efficient use of the complex
memory hierarchy must be implemented. More specifically,
this involves: i) enforcing coalesced and 128-byte aligned
(cached) global memory transactions, ii) maximizing usage
of shared memory (user-controlled cache), with coalesced
memory transactions while at the same time minimizing
banks conflicts, iii) optimizing register usage.

The algorithm described in the following Sections aims
to address all of these challenges, thereby leading to
scalable code with an optimal parallel efficiency.

IV. Load Balancing Fragment Calculations
In order to address the load balancing issue arising

from heterogeneous fragment and fragment pair sizes, the
algorithm uses a multilayer parallel scheme to distribute
fragments to different nodes and GPUs. The code starts
at the highest parallel level by accepting the coordinates
of each of the monomers as an input. From these input
monomers, a fragment queue is generated on each rank.
This fragment queue stores each fragment and each unique
fragment pair, sorted by the number of atoms within
the fragment or pair, with the largest molecular system
occurring first.

After the fragment queue is generated, the MPI ranks
are divided into MPI groups via communicators. One MPI
rank is set as the “super-master” rank, existing within its
own MPI group. The rest of the MPI ranks are divided

into MPI groups. Each MPI group has a master rank and a
number of slave ranks associated with it, with the number
of overall ranks per group being equivalent to the number
of GPUs per group, a variable which is set at run time.

Once the MPI groups are generated, the fragments
are distributed using a dynamic load balancing master-
slave scheme, with the super-master serving as the master
process and the masters of each other MPI group serving
as the “slave” processes. A fragment, represented by an
integer value, is sent from the super-master to the master
of a worker MPI group. The master of that MPI group,
in turn, broadcasts the fragment integer value to the
slave processes in its own group. Finally, the MPI group
performs the HF calculation on the fragment. Once the
fragment calculation is complete, the master of the MPI
group sends a message to the super-master informing of
fragment completion, at which point it receives another
fragment from the super-master. This process is repeated
until all fragments have been computed.

MPI group

processes

Master?

Send shell pair batches {ab| and

|cd} to slaves
Receive from master

Compute ERI batch {ab|cd}

Digest ERI batch {ab|cd}

Completed

shell pairs?

Send end signal to slaves

End signal?

No

Reduce !!"# and !$%&

Yes

NoYes

No

Yes

Gather Fock matrix

on master

Diagonalization

Form shell-pair binned container

Fig. 1. The accelerated Fock build algorithm.

V. The Accelerated Fock Build Algorithm

Figure 1 shows the overarching computational scheme
of our RHF algorithm. Each MPI process within the MPI
group assigned to a given fragment or pair is attached to a
different GPU. The GPUs managed by an MPI group can
be on a single node or on multiple nodes. For our current
implementation, we target NVIDIA V100 GPUs and use
CUDA as a programming model.

The algorithm for each MPI group begins by pairing the
contracted shells |a) in the basis set into shell pairs |ab).
The permutational symmetry relationship |ab) = |ba) is
exploited to form only symmetry unique shell pairs. These
are further screened using traditional shell pair screening
[17] to select only the O(N) numerically significant shell
pairs out of their O(N2) total number.

While being formed, significant shell pairs are classified
by type tab and size sab. Shell pairs with the same type
have the same total angular momenta a and b, and the
same contraction degree KAB = KAKB . The type index
tab is represented as an integer between 1 and the number
of shell pair types nT . The shell pair size sab is defined as

sab =
{

int (− log10 Iab) Iab ≤ 1
0 Iab > 1

(11)

with int() being the integer part function, and Iab is the
Cauchy-Schwartz bound factor. Based on the traditional
Cauchy-Schwartz upper bound, Eq. (11) enables to screen
out numerically insignificant integrals using the relation-
ship

|(αβ|γδ)| ≥ τ ↔ sab + scd ≤ − log10(τ) (12)
where the notation ↔ indicates necessity and sufficiency,
and τ is a positive user-defined accuracy threshold smaller
than one. We used τ = 10−10.

Significant shell pairs with the same size and type are
gathered into batches, indicated with the notation |ab},
and suitably inserted in the data structure shown in Fig. 2,
which is a “binned” shell-pair-batch container. A batch can
contain up to Nmax

ab shell pairs, where Nmax
ab is a parameter

chosen at run time.
As shown in Fig. 2, each (tab, sab) bin can contain mul-

tiple batches |ab}, each identified by a local batch index
gab. This provides a bijection whereby each (tab, sab, gab)
triple maps to one and only |ab} and vice versa.

Once each process has formed the shell-pair binned
container, the computation of two-electron integrals is
parallelized over the GPUs associated with the MPI group
by using a master-slave dynamic load balancing algorithm.
The master process distributes pairs of batches of “bra”
and “ket” shell pairs ({ab|,|cd}) to the slave processes, each
attached to a different GPU. The assignment of batch
pairs is performed with minimum overhead via only the
two triplets of integers (tab, sab, gab) and (tcd, scd, gcd).

The implementation fully exploits the eight-fold per-
mutational symmetry of the ERIs, dispatching only the
symmetry-unique batch pairs.

The integral class screening is also performed at the
batch-pair indices distribution stage. For two given batch
pair index triplets (tab, sab, gab) and (tcd, scd, gcd), we select
from the binned container only sizes sab and scd that
satisfy Eq. (12). This systematic screening circumvents the
use of any conditional statement in the device code and
eliminates GPU thread divergence and underutilization
due to insignificant integral classes.

In order to achieve an optimal workload balance both
across GPU threads spawned on the same device and
among different GPUs, shell pair batches are dispatched
according to a greedy algorithm such that: i) integral
classes are computed in a decreasing computational cost
order, so that, for a large-enough system, all GPUs work
at the same time on the same class type (with uniform
angular momentum and degree of contraction); ii) only
integral classes with the same computational cost are
computed on a single GPU.

Once a slave process receives the (tab, sab, gab) and
(tcd, scd, gcd) triplets, it transfers the corresponding {ab|
and |cd} batches data from the host memory to that of its
attached GPU. Therefore, the GPU computes the batch
{ab|cd} of all the integrals classes arising from the shell
quartets given by the {ab| ⊗ |cd} product. In the spirit
of Ufimtsev’s 1T1CI mapping [5], [6], each GPU thread
is assigned to the calculation of a single contracted class.
This ensures that all the threads spawned on the GPU
treat integral classes with exactly the same computational
cost with perfect load balance.

Once computed, the ERIs in the {ab|cd} batch are
digested directly on the GPU using an algorithm that
adopts two Fock matrices Fbra and Fket. More details on
the ERI evaluation and their digestion are presented in
Sections V-A and V-B, respectively.

Since the ERIs are formed and digested on the GPU, the
algorithm minimizes the host-device data transfer, which
is a well-known bottleneck for heterogeneous architectures.

The algorithm is iterated until all the significant bra-ket
batch pairs are distributed and the master sends an end
signal to all the slaves. Therefore, the slaves reduce their
Fbra and Fket matrices into a single partial Fock matrix
on the GPU. The partial Fock matrices from each slave’s
GPU are then transferred to the slave’s host memory and
gathered on the master where they are reduced to form
the full Fock matrix F.

A. Evaluation of two-electron integrals
Once data for the {ab| and |cd} batches is transferred

from the host to the GPU memory, NabNcd threads are
spawned on the GPU, where Nab and Ncd are the number
of shell pairs (ab| and (cd| within batches {ab| and |cd},
respectively. Each thread is assigned to the evaluation of
an entire contracted integral class (ab|cd) ∈ {ab|cd}: as
discussed later in this Section, this allows to minimize the
computational cost associated with each integral class by
using, for each thread, established recursive approaches
[17]–[19].

The parallelization is performed by assigning to each
thread block a single bra shell-pair (ab| ∈ {ab|, and a
BLOCKDIM number of kets |cd) ∈ |cd}, where BLOCK-
DIM is the size of a thread block.

Pseudocode for a GPU integral computation kernel
is shown in Alg. 3. A number of arrays (pointers) are
passed to the kernel, each containing data for contracted

…

Shell pair type index tab

(0,0) (0,0) … (nT,0)

⋮ ⋮ ⋮

…(0,9) (1,9) (nT,9)

…Sh
el

l p
ai

r s
ize

 in
de

x
s a

b

Shell pair batch index gab

!" ! !" " !" #!"

(tab,sab)

(nT,10)(1,10)(0,10)

Fig. 2. The shell-pair batch binned container.

shell pairs (ab| (Aglt , AB
gl
t) or primitive shell pairs [ab|

(P glt , U
gl
P , ζ

gl) within batch {ab|, as well as data for |cd)
(Cglt , CD

gl
t) and |cd] (Qglt , U

gl
Q , η

gl) in batch |cd}. Defi-
nitions for the various parameters are discussed in the
caption of Alg. 3. The superscript “gl” emphasizes that
the arrays reside in the global memory of the GPU, while
for conciseness we used the subscript t = {x, y, z}.

All threads within a given block access data for the same
(ab| and its corresponding [ab|, which is stored in shared
memory (line 6-13) to achieve minimal latency and higher
bandwidth. Since all threads in a warp access exactly the
same (ab| and [ab| data, reads are performed by a single-
thread broadcast avoiding any memory bank conflicts.

Threads within a block access data for different |cd)
and all the primitives |cd] associated with it. This is too
much data to be stored in shared memory, hence it must
be read from global memory. For efficiency, the global
memory arrays are structured so that threads within the
same warp can retrieve their data in a single coalesced
memory transaction. For example, Cglt stores contiguously
data for different |cd), which is accessed by contiguous
threads within the same warp. Furthermore, based on
the BLOCKSIZE and Ncd values, the arrays are padded
to ensure 128-byte aligned access, therefore maximizing
bandwidth utilization.

On line 17 and 22, loops for contracting over |cd] and
[ab|, respectively, are started. The innermost loop is chosen
to be over [ab| to grant most frequent reads from the
shared memory arrays, as opposed to the |cd] data that
resides in global memory. From line 27 data from the bra
and ket primitive pairs is combined to form the ERIs. Each
thread uses a variation of the Head-Gordon-Pople (HGP)
algorithm [20], that we developed and optimized for GPU,
for the evaluation of the integrals within a contracted given
class (ab|cd). For each of the primitive quartets [ab|cd] in a

1 global void kernel a b c d(
KAB , Aglt [], ABglt [], P glt [], UglP [], ζgl[],
KCD, Cglt [], CDglt [], Qglt [], UglQ [], ηgl[], ERIsgl[])

2 {
3 gthreadIdx = blockIdx.x * BLOCKSIZE + threadIdx.x;
4 compute ab offset, cd offset;
5 compute cd threadIdx, ERI offset;
6 shared Asht = Aglt [ab offset+blockIdx.x];
7 shared ABsht = ABglt [ab offset+blockIdx.x];
8 shared UshP [KAB], P sht [KAB], ζsh[KAB];
9 if threadIdx.x < KAB then

10 UshP [threadIdx.x] = UglP [ab offset∗KAB+threadIdx.x];
11 P sht [threadIdx.x] = P glt [ab offset∗KAB+threadIdx.x];
12 ζsh[threadIdx.x] = ζglt [ab offset∗KAB+threadIdx.x];
13 end
14 syncthreads();
15 Ct = Cglt [gthreadIdx];
16 CDt = CDglt [gthreadIdx];
17 for kcd = 1, . . . ,KCD do
18 UQ = UglQ [cd offset+cd threadIdx+Ncd ∗ kcd];
19 Qt = Qglt [cd offset+cd threadIdx+Ncd ∗ kcd];
20 η = ηgl[cd offset+cd threadIdx+Ncd ∗ kcd];
21 QCt = Qt − Ct;
22 for kab = 1, . . . ,KAB do
23 UP = UshP [kab];
24 Pt = P sht [kab];
25 ζ = ζsh[kab];
26 PAt = Pt −Asht ;
27 [0](m) ← UP , UQ, Pt, Qt, η, ζ;
28 [e0|f0](m) ← [0](m), QCt, PAt, ζ, η; (VRRs)
29 (e0|f0)(m) += [e0|f0](m);
30 end
31 end
32 (ab|cd)← (e0|f0)(0), ABsht , CDt; (HRRs)
33 stride =NabNcd+padding;
34 for (αβ|γδ)i ∈ (ab|cd) do
35 ERIsgl[ERI offset+i∗stride] = (αβ|γδ)i;
36 end
37 }

Algorithm 3: A generic GPU integral kernel. The
superscript “gl” emphasizes that the arrays reside in
the global memory of the GPU, while t = {x, y, z}. For
a given contracted shell pair (ab|: ABt = At−Bt, with
A = (Ax, Ay, Az) being the geometric centre of shell
|a). For a given primitive shell pair [ab|ij contributing
to a contracted shell pair (ab|: ζ = λi+λj , Pt = (λiAt+
λjBt)/ζ, UP = (

√
π/ζ)3/2e−(|A−B|2)λiλj/ζ . Analo-

gously, for a given primitive shell pair [cd|kl contribut-
ing to a contracted shell pair (cd|: η = λk + λl, Qt =
(λkCt + λlDt)/η, UQ = (

√
π/η)3/2e−(|C−D|2)λkλl/η.

significant class, the algorithm begins by computing some
“fundamental generalized integrals”, indicated with the
[0](m) notation. For each given quartet [ab|cd] all [0](m)

with m ∈ [0, . . . , L], where L = a + b + c + d, must be
computed. In order to be computed, the [0](m) quantities
require geometric (atom positions) and basis-set-specific

factors (Pt, Qt, UP , UQ, ζ and η), as well as the evaluation
of the following generalized Boys function

Fm(T) =
∫ 1

0
t2m exp (−t2T) dt (13)

with T = ηζ |P −Q|2/(η + ζ).
The computation of the generalized Boys function with

m = L is done via a modified cubic Chebyshev interpola-
tion developed by Gill et al. [21], requiring only 14 FLOPs.
The interpolation coefficients are stored in a lookup table
which is transferred from the host memory to the constant
memory of each GPU at the beginning of the calculation.
The table contains 72 MB of data, and its transfer time is
negligible. The remaining Fm(T) functions with m ∈ [0, L)
are computed using downward recurrence [21].

Once the fundamental integrals are computed, they are
stored in the SM registers. Therefore, on lines 28-29,
starting from the [0](m) quantities each thread uses the
Obara-Saika vertical recurrence relations (VRRs) [22], [23]
to compute a number of intermediate primitive classes of
the kind [e0|f0], with e ≤ a+ b and f ≤ c+ d, which are
some of the ingredients required for the computation of
the desired contracted integral class (ab|cd).

As they are formed, the [e0|f0] intermediates are con-
tracted on the fly into (e0|f0) using Eq. (3).

Finally, on line 32, horizontal recurrence relations
(HRRs) [17] are used to transform the contracted (e0|f0)
classes into the desired (ab|cd). Since the HRRs rely
directly on contracted intermediates for building angular
momentum on two out of the four Gaussian centers, their
usage greatly reduces the FLOP count [17].

All the integrals within a given (ab|cd) class share all
the [0](m) and a potentially large number of recursive in-
termediates. In order to minimize the number of recursive
intermediates required by the HGP algorithm, a heuristic
approach in tandem with the sieve method [24] was used
to solve the necessary NP tree search problem.

On lines 34-36 in Alg. 3 the integrals are stored in the
global memory array ERIgl. This array is padded and
structured so that the stores are performed in one aligned
and coalesced memory transaction by each warp.

Since the optimal recursive strategy is different for each
class, a code generator was written that implements the
optimal solution of our tree search for each integral class.
Therefore, code optimized for the computation of each
class is generated in the form of CUDA kernels. These
highly optimized kernels are one of the keys for the efficient
computation of the integrals on the GPU and they account
for over 20,000 lines of pre-generated CUDA code. Once a
batch-pair is received, based on the class type a scheduler
launches the corresponding kernel on the GPU.

B. Double-stream digestion
Once computed, a batch {ab|cd} of ERIs is stored in

the GPU main memory. To perform the digestion of the

{"# $%
Nab Ncd na nb nc nd ERIs

“bra” stream

thread #1 thread #p thread #P

thread #1 thread #r thread #R

Q = Ncdncnd

P = Nabnanb

R = NanaNdnd

S = Nbnb

2
… …

thread #1 thread #q thread #Q

thread #1 thread #r thread #R

P = Nabnanb

Q = Ncdncnd

R = NanaNcnc

S = Ndnd

“ket” stream

Fig. 3. The double-stream digestion algorithm. The algorithm uses two CUDA streams that execute in parallel on the GPU. The “bra”
stream loops over the basis-function pairs |γδ), which are associated with the q ∈ [1, . . . ,Q] index. For each |γδ), P = Nabnanb GPU threads
are launched, each mapped to a unique |αβ) and to a corresponding p ∈ [1, . . . , P] index. Each thread performs a complete digestion of their
assigned (αβ|γδ) integrals into the Fbra

αβ elements, and a partial digestion into the K1αδβ and K2βδα buffer elements. Once the execution of
this kernel has completed, a new kernel is launched with R = NanaNdnd threads. Each thread performs the reduction of K1αδβ into Fbra

αδ
for a different αδ index pair by summing over β, which is associated with index s ∈ [1, . . . , S]. In the “ket” stream the roles of |γδ) and |αβ)
pairs are swapped.

{ab|cd} integrals, we adopt the double stream algorithm
shown in Fig. 3.

In order to store the digestion intermediates, the algo-
rithm uses a “bra” and a “ket” Fock matrix, Fbra and
Fket, and four exchange 3D buffers K1, K2, K3, K4.
While the Fock matrices scale as N2 in memory, the four
exchange buffers scale as O(1); the K1 and K2 both with
dimensions (Ndnd) × (Nabnanb), and K3 and K4 with
dimensions (Nana) × (Ncdncnc) and (Nbnb) × (Ncdncnd),
respectively. The Nab and Na parameters are the number
of shell pairs and the number of unique shells |a) in a batch
|ab}, while na is the number of basis functions within shell
|a).

As shown in Fig. 3, the algorithm uses two CUDA
streams that execute in parallel on the GPU. The “bra”
stream loops over the Ncdncnc basis-function pairs |γδ)

within batch |cd}. For each |γδ) we launch Nabnanb GPU
threads. Each thread is mapped to a different basis-
function pair |αβ) within the “bra” shell pair batch |ab}.
Each thread performs a complete digestion of their as-
signed (αβ|γδ) integrals into the F bra

αβ elements, and a
partial digestion of the ERIs into the K1αδβ and K2βδα
buffer elements.

Then NanaNdnd threads are spawned on the GPU, each
performing the reduction of K1αδβ into F bra

αδ elements
for a different αδ index pair by summing over the third
dimension of K1 (associated with index β). Similarly (not
shown in Fig. 3), NbnbNdnd threads are launched, each
reducing K2βδα into a F bra

βδ element for a different βδ
index pair. This is a synchronization-free process as each
thread writes to a different element of Fbra, K1 and K2. In
parallel, the “ket” stream performs an analogous algorithm

where the roles of the bra batch |ab} and the ket batch |cd}
are inverted.

Our double-stream digestion minimizes redundant com-
putation by fully exploiting symmetry and eludes explicit
thread synchronization altogether.

VI. Performance optimization
In the fragmentation-based HF algorithm, the vast ma-

jority of the execution time is spent computing and digest-
ing the ERIs. For this reason, most of our optimizations
were devoted to maximizing the performance of these
computational stages on the GPU.

The NVIDIA profiling tools were used to analyze the
ERI kernels’ performance. Profiling data revealed that
the host-device data transfer had a minor impact (3-5%)
on the total computation time, therefore we focused on
improving the computational performance of the kernels.

Using nvprof, we conducted more detailed profiler anal-
yses that unveiled low global memory load and write effi-
ciencies. For example, the (ps|ps) kernel, which accounts
for most of the ERI computation time for a 150-water
cluster when using the pcSeg0 basis set, showed only a
29% and 25% global memory load and write efficiency,
respectively. This could be tracked down to the fact that
the global memory arrays which were passed to the ERI
kernels in Alg. 3, were not structured for 128-byte aligned
and coalesced access. For example, each thread within
a given thread block read Qt data as Qglt [cd offset +
kcd + threadIdx.x ∗ KCD]. This caused each thread in a
warp to read from global memory with a KCD stride,
resulting often in uncoalesced reads. Additionally, the [ab|
primitives pair data was not loaded in shared memory but
read from global memory as for |cd] primitives, with the
ordering of the kab and kcd loops being inverted compared
to that in Alg. 3. Furthermore, the ERIsgl array was not
structured to enable 128-byte aligned and coalesced writes.
Each thread would write all the integrals within the class
at contiguous locations, resulting for all kernels except
those for (ss|ss) classes into uncoalesced and potentially
misaligned writes.

The profiling results led us to optimize memory transac-
tions, enforcing coalesced and aligned global memory loads
and writes, and increasing the use of shared memory, to
yield the algorithm described in Section V-A.

Table I shows timings for the evaluation of the ERIs be-
fore and after memory transaction optimizations by using
a different maximum number of registers per thread for a
maximum shell pair batch size Nmax

ab = 1920. The results
in Table I were obtained on a 150-water cluster using the
pcSeg0 basis set (1950 basis functions). The maximum
number of registers per thread was set at compile time
through the nvcc “-maxregcount” flag.

The optimized kernels show a maximum speedup of
4.6× against the unoptimized version for 160 registers.
This significant amelioration is indicative of more efficient
memory transactions, where, for example, for the (ps|ps)

Max registers Unopt time (s) Opt time (s) Max occupancy
32 7.535 1.636 92%
40 7.363 1.626 66%
80 6.991 1.591 33%
160 6.821 1.561 28%

TABLE I
Effect of memory optimizations on execution time for
various numbers of maximum registers per thread and

maximum achieved warp occupancy. The maximum shell pair
batch size is Nmax

ab = 1920.

BLOCKSIZE
Evaluation time (s)

Nmax
ab = 2560 Nmax

ab = 1920
32 1.626 1.619
64 1.605 1.575
128 1.577 1.561
256 1.599 1.577

TABLE II
Effect of thread block size (BLOCKSIZE) on ERI

evaluation time.

kernel the global memory load and write efficiencies im-
proved to 67.78% and 99.5%, respectively.

Our profiling study also showed that the performance of
the optimized kernels is mainly limited by a large number
of registers used on a per-thread basis (up to 160), which
results in a maximum achieved warp occupancy of 28%. In
order to enhance occupancy, we systematically decreased
the maximum number of registers. However, as shown
in Table I, although decreasing the number of registers
does improve the achieved occupancy, it also results in
longer execution times. The worsening of performance is
due to an increasing register spilling as the register count
is lowered, which causes a very high local memory traffic
overhead. The register spilling effect is so strong that even
if the 32-register configuration yields a 92% maximum
occupancy, the execution is up to ∼ 10% slower than when
using 160 registers.

Table II shows timings for the evaluation of the ERIs
using the optimizations discussed so far and 160 registers
per thread (on the same molecular system) as the thread
block size is varied. Changes in the thread block size lead
to minimal time differences for both Nmax

ab = 2560 and
Nmax
ab = 1920. However, as ERIs need to be calculated at

every step of an SCF calculation even minimal execution
time differences can lead to appreciable delays for the
MBE based calculations, therefore we used a block size
of 128.

Finally, an optimization with respect to the maximum
batch size Nmax

ab was performed. Figure 4 shows the Fock
build time for different Nmax

ab and for systems composed
of 30 (blue line), 40 (yellow line) and 50 glycine (red line)
units, each poly-glycine (C2H3NO)n bearing 7n+3 atoms,

Fig. 4. Single-GPU Fock build timings for different choices of max-
imum shell pair sizes Nmax

ab for polyglycine (C2H3NO)n molecules
with 30, 40 and 50 monomer units.

where n is the number of monomers.
For smaller problem sizes, e.g. 30 glycine units, the

dependence on the batch size is not as drastic, although
a decrease in execution time is observed as the batch size
grows. However, for the largest problem size (50 glycine
units) the calculation with batch size 2560 was 1.27×
faster than when a batch size of 768 was adopted. This is
because larger systems generate more shell pairs, thereby
filling larger batches which enable better GPU usage.
Heuristically, we observed that a 1920 batch size yields
optimal or near-optimal performance for most (large)
molecular systems.

VII. Results

A. The Oak Ridge Summit System

All results presented in this work were obtained on
the Summit system at the Oak Ridge National Labo-
ratory. Summit is a 200-petaFLOP supercomputer with
4,608 compute nodes. Each of the nodes consists of 2
IBM Power9 CPUs and 6 NVIDIA Volta V100 GPUs.
Each Power9 processor is connected to three V100 GPUs
via NVIDIA’s dual NVLink interconnect with a peak
bandwidth of 25 GB/s per link, resulting in 100 GB/s
of peak bidirectional bandwidth between the CPU and
GPU. Each Summit node contains two 22 SIMD multi-core
(SMC) Power9 processors with a total of 512GB of DDR4
memory. Each V100 has a 6MB L2 cache and 16 GB HMB2
memory with a peak bandwidth of 900 GB/s. The basic
building block of a V100 is a streaming multiprocessor
(SM), which consists of 32 double-precision and 64 single-
precision CUDA cores. With 80 SMs, each V100 can
achieve 7.8 TFLOP/s of double-precision floating-point
performance.

100.%

96.1%

96.4%

96.3%

94.1%

90.5%

82.9%

69.5%

60.1%���� ���

���� ���

� � � � �� �� �� ��� ��� ��� ���
�
���
�
���
�

�

�

�

�

��

��

��

���

���

���

����

����

����

������ �� �����

�
��
��
�
�

Fig. 5. Strong scaling (log-log scale) of the fragmentation-based Fock
build code for two different water clusters from one up to 4096 nodes
on Summit (89% of the machine). The numbers labeled in orange are
the parallel efficiencies of the 9188 H2O calculations normalized to
the 16-node performance.

B. Strong scaling
Figure 5 shows the speedup of the Fock build code while

running on an increasing number of Summit nodes to
execute calculations on 2165-H2O (6495-atom) and 9188-
H2O (27,564-atom) clusters using the pcSeg0 basis set,
yielding a total of 28,145 and 119,444 basis functions,
respectively.

In all calculations each MPI group was mapped to a
single node, thereby using all of the 6 GPUs available on
it.

The 2165-water cluster was split into 33 fragments with
∼195 atoms each, yielding 561 fragment pairs. Using this
molecular system, the HF was strong scaled from one up
to 256 nodes. The code shows a slightly superlinear strong
scaling from one up to 128 nodes. At 256 nodes (1536
GPUs) the code shows a 93.8% parallel efficiency, with a
240.0× speedup with respect to the execution on one node.
The 256-node calculation took 26 seconds.

The 9188-water cluster was split into 115 fragments with
∼250 atoms each, yielding 6670 fragment pairs. The 16-
node calculation was used as a performance baseline as
calculations on a lower number of nodes could not be
executed to completion due to a 2-hour resource allocation
limit on Summit. The code shows a good strong scaling
performance, with a > 80% parallel efficiency up to 1024
nodes or 6144 GPUs.

The largest calculation - using 4096 nodes (24,576 V100
GPUs) - shows a 60.1% parallel efficiency, with a 154×
speedup with respect to the 16-node run, or a 2463×
speedup with respect to the extrapolated single node run

Fig. 6. Strong scaling of single-MPI-group executions with respect
to the number of GPUs. Calculations were performed on a 200-water
cluster (600 atoms) using the pcSeg0 basis set (2600 basis functions).
The red dashed line indicates the number of GPUs used for results
in Fig. 5.

time. The calculation took 20.5 seconds. The performance
deterioration for this calculation arises not because of
increased communication between the MPI processes, but
because the number of nodes becomes too large compared
to the number of fragment pairs in the chosen molecular
system, with each fragment pair calculation running in
less than 20.5 seconds. In such circumstances, each node
receives only a few (∼1.6) fragment pairs and the parallel
work load becomes fragile and easily unbalanced.

Figure 6 shows the speedup of single-MPI-group execu-
tions with respect to the number of GPUs. The code used
only one MPI group to perform the Fock build for a large
fragment with 200 water molecules. The implementation
shows an excellent scalability with respect to the number
of GPUs, with the 12-GPU calculation yielding a 94%
parallel efficiency with respect to the single-GPU execu-
tion. The 6-GPU configuration, which is the one adopted
to obtain all the results in Fig. 5, has a ∼97% parallel
efficiency.

In order to provide a baseline performance measure, we
compared the execution time of our code with the QUICK
GPU code [10] when using a single GPU (QUICK does not
currently support multi-GPU execution). Our code showed
a 2.4× and a 3.8× speedup with respect to QUICK, when
executing the HF algorithm for a 200-water cluster and an
80-glycine system using the pcSeg0 basis set, respectively.
We also compared our single-GPU execution time with the
widely used GAMESS computational quantum chemistry
package [25]–[27] running in parallel on the 21 cores of one
Power9 CPU. The calculation yielded a 62.4× speedup.

Fig. 7. Weak scaling of Fock build code from 1 to 612 nodes on
Summit. Blue dots represents node weak speedups with respect to
the single node execution. Yellow dots represent weak speedups with
a 122-node calculation as a reference.

C. Weak scaling
Figure 7 shows the weak scaling of Fock build code from

one to 612 nodes on Summit. In order to obtain the weak
scaling data we timed the Fock build for calculations on
water cluster systems with an increasing number NF of
equal size fragments. Since we use a second order MBE
the total computational workload is proportional to the
square of the number of basis functions; thus, increasing
the number of nodes as the square of the system size
will result in an approximately constant workload across
nodes. Two reference systems were chosen - one using a
72-water cluster on a single node, and one using a 925-
water cluster on 122 nodes. The weak scaling efficiency and
speedup can be computed using the following equations:

efficiencyn = runtimer
runtimen

, speedupn = efficiencyn ∗n, (14)

where r refers to the reference system used and n is the
number of nodes used.

The Fock build code achieves excellent weak scaling
results. With the one-node system as a reference, the
code displays superlinear scaling with the weak-scaling
speedups. The largest system, with 2086 water molecules,
reaches a speedup of ∼653× at 612 nodes. Using the
122-node system as a reference, the code demonstrates
linear scaling, with slightly superlinear speedups for nearly
every calculation involved. At 612 nodes, the weak-scaling
speedup reaches ∼625×. The one case where speedup is
not higher than ideal is at 484 nodes, where the speedup
is ∼476×.

VIII. Conclusions
In this work, a new fragmentation-based Fock build

algorithm for many-GPU architectures was presented. The

new algorithm implemented an number of innovations
compared to previous GPU-based HF matrix build algo-
rithms. Among these, a novel dynamic balancing scheme
that allows to achieve high parallel efficiency in the compu-
tation and digestion of the ERIs both across threads of the
same GPU and across multiple GPUs. The scheme also in-
tegrates the screening of the integrals within the dispatch
of shell quartets, thereby eliminating thread divergence
due to numerically insignificant integral classes. The Fock
digestion step is performed with a double-stream algo-
rithm that both takes advantage fully of permutational
symmetry, and maximizes GPU throughput by completely
eliminating thread synchronization requirements.

Benchmarks show that the new Fock build code demon-
strates very good performance on one of the fastest su-
percomputers in the world, Summit. Strong-scaling cal-
culations on a 2165-water cluster demonstrate nearly su-
perlinear scaling up to 256 Summit nodes (or 1536 V100
GPUs), with superlinear scaling achieved for up to 128
nodes (768 V100 GPUs). Strong scaling calculations on a
9188-water cluster demonstrate good scaling up to 89%
of entire Summit machine, with a 60.1% efficiency on
4096 Summit nodes (24,576 V100 GPUs). Finally, weak-
scaling calculations on various-sized water clusters up to
612 nodes showed efficiencies of over 100% and more-than-
ideal speedups (up to 650×) for nearly all weak-scaling
calculations performed. Single-GPU benchmarks against
the QUICK quantum chemistry code running on GPU
show speedups between 2.4× and 3.8×, while showing a
speedup of 62.4× against the GAMESS software package
running in parallel on the 21 cores of a single P9 CPU.

Overall, the new Fock build algorithm performs very
well on Summit.

IX. Acknowledgements

This research was supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration. C. Bertoni
was supported by the Argonne Leadership Computing
Facility, which is a U.S. Department of Energy Office of
Science User Facility operated under contract DE-AC02-
06CH11357.

References

[1] A. Szabo and N. S. Ostlund, Modern quantum chemistry: intro-
duction to advanced electronic structure theory. Mineola, N.Y:
Dover Publications, 1996.

[2] M. S. Gordon, G. Barca, S. S. Leang, D. Poole, A. P.
Rendell, J. L. Galvez Vallejo, and B. Westheimer, “Novel
computer architectures and quantum chemistry,” The Journal
of Physical Chemistry A, 05 2020. [Online]. Available: https:
//doi.org/10.1021/acs.jpca.0c02249

[3] M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko,
“Fragmentation Methods: A Route to Accurate Calculations on
Large Systems,” Chemical Reviews, vol. 112, no. 1, pp. 632–672,
jan 2012. [Online]. Available: https://doi.org/10.1021/cr200093j

[4] K. Yasuda, “Two-electron integral evaluation on the graphics
processor unit,” Journal of Computational Chemistry, vol. 29,
no. 3, pp. 334–342, feb 2008. [Online]. Available: http:
//doi.wiley.com/10.1002/jcc.20779

[5] I. S. Ufimtsev and T. J. Mart́ınez, “Quantum Chemistry
on Graphical Processing Units. 1. Strategies for Two-
Electron Integral Evaluation,” Journal of Chemical Theory
and Computation, vol. 4, no. 2, pp. 222–231, feb 2008. [Online].
Available: https://pubs.acs.org/doi/10.1021/ct700268q

[6] I. S. Ufimtsev and T. J. Martinez, “Quantum Chemistry
on Graphical Processing Units. 2. Direct Self-Consistent-
Field Implementation,” Journal of Chemical Theory and
Computation, vol. 5, no. 4, pp. 1004–1015, apr 2009. [Online].
Available: https://pubs.acs.org/doi/10.1021/ct800526s

[7] G. Shi, V. Kindratenko, I. Ufimtsev, and T. Martinez, “Direct
self-consistent field computations on GPU clusters,” in Proceed-
ings of the 2010 IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2010, 2010, pp. 1–8.

[8] N. Luehr, I. S. Ufimtsev, and T. J. Mart́ınez, “Dynamic
Precision for Electron Repulsion Integral Evaluation on
Graphical Processing Units (GPUs),” Journal of Chemical
Theory and Computation, vol. 7, no. 4, pp. 949–954, apr
2011. [Online]. Available: https://pubs.acs.org/doi/10.1021/
ct100701w

[9] A. Asadchev and M. S. Gordon, “New Multithreaded Hybrid
CPU/GPU Approach to Hartree–Fock,” Journal of Chemical
Theory and Computation, vol. 8, no. 11, pp. 4166–4176, nov
2012. [Online]. Available: https://pubs.acs.org/doi/10.1021/
ct300526w

[10] Y. Miao and K. M. Merz, “Acceleration of Electron Repulsion
Integral Evaluation on Graphics Processing Units via Use
of Recurrence Relations,” Journal of Chemical Theory and
Computation, vol. 9, no. 2, pp. 965–976, feb 2013. [Online].
Available: https://pubs.acs.org/doi/10.1021/ct300754n

[11] T. Yoshikawa and H. Nakai, “Linear-scaling self-consistent
field calculations based on divide-and-conquer method using
resolution-of-identity approximation on graphical processing
units,” Journal of Computational Chemistry, vol. 36, no. 3, pp.
164–170, jan 2015. [Online]. Available: http://doi.wiley.com/
10.1002/jcc.23782

[12] K. Yasuda and H. Maruoka, “Efficient calculation of
two-electron integrals for high angular basis functions,”
International Journal of Quantum Chemistry, vol. 114,
no. 9, pp. 543–552, may 2014. [Online]. Available:
http://doi.wiley.com/10.1002/qua.24607

[13] S. Choi, O.-K. Kwon, J. Kim, and W. Y. Kim, “Performance
of heterogeneous computing with graphics processing unit
and many integrated core for hartree potential calculations
on a numerical grid,” Journal of Computational Chemistry,
vol. 37, no. 24, pp. 2193–2201, sep 2016. [Online]. Available:
http://doi.wiley.com/10.1002/jcc.24443

[14] J. Kalinowski, F. Wennmohs, and F. Neese, “Arbitrary Angular
Momentum Electron Repulsion Integrals with Graphical
Processing Units: Application to the Resolution of Identity
Hartree–Fock Method,” Journal of Chemical Theory and
Computation, vol. 13, no. 7, pp. 3160–3170, jul 2017. [Online].
Available: https://pubs.acs.org/doi/10.1021/acs.jctc.7b00030

[15] F. Jensen, “Segmented contracted basis sets optimized for
nuclear magnetic shielding,” Journal of Chemical Theory and
Computation, vol. 11, no. 1, pp. 132–138, 01 2015. [Online].
Available: https://doi.org/10.1021/ct5009526

[16] J. L. Whitten, “Coulombic potential energy integrals and
approximations,” The Journal of Chemical Physics, vol. 58,
no. 10, pp. 4496–4501, 1973. [Online]. Available: https:
//doi.org/10.1063/1.1679012

https://doi.org/10.1021/acs.jpca.0c02249
https://doi.org/10.1021/acs.jpca.0c02249
https://doi.org/10.1021/cr200093j
http://doi.wiley.com/10.1002/jcc.20779
http://doi.wiley.com/10.1002/jcc.20779
https://pubs.acs.org/doi/10.1021/ct700268q
https://pubs.acs.org/doi/10.1021/ct800526s
https://pubs.acs.org/doi/10.1021/ct100701w
https://pubs.acs.org/doi/10.1021/ct100701w
https://pubs.acs.org/doi/10.1021/ct300526w
https://pubs.acs.org/doi/10.1021/ct300526w
https://pubs.acs.org/doi/10.1021/ct300754n
http://doi.wiley.com/10.1002/jcc.23782
http://doi.wiley.com/10.1002/jcc.23782
http://doi.wiley.com/10.1002/qua.24607
http://doi.wiley.com/10.1002/jcc.24443
https://pubs.acs.org/doi/10.1021/acs.jctc.7b00030
https://doi.org/10.1021/ct5009526
https://doi.org/10.1063/1.1679012
https://doi.org/10.1063/1.1679012

[17] P. M. Gill, “Molecular integrals over gaussian basis functions,”
ser. Advances in Quantum Chemistry, J. R. Sabin and
M. C. Zerner, Eds. Academic Press, 1994, vol. 25, pp.
141 – 205. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0065327608600192

[18] G. M. J. Barca and P. M. W. Gill, “Two-electron integrals
over gaussian geminals,” Journal of Chemical Theory and
Computation, vol. 12, no. 10, pp. 4915–4924, 10 2016. [Online].
Available: https://doi.org/10.1021/acs.jctc.6b00770

[19] G. M. J. Barca and P.-F. Loos, “Three- and four-electron
integrals involving gaussian geminals: Fundamental integrals,
upper bounds, and recurrence relations,” The Journal of
Chemical Physics, vol. 147, no. 2, p. 024103, 2017. [Online].
Available: https://doi.org/10.1063/1.4991733

[20] M. Head-Gordon and J. A. Pople, “A method for two-
electron gaussian integral and integral derivative evaluation
using recurrence relations,” The Journal of Chemical Physics,
vol. 89, no. 9, pp. 5777–5786, 1988. [Online]. Available:
https://doi.org/10.1063/1.455553

[21] P. M. Gill, B. G. Johnson, and J. A. Pople, “Two-electron
repulsion integrals over Gaussian s functions,” International
Journal of Quantum Chemistry, vol. 40, no. 6, pp. 745–752,
dec 1991. [Online]. Available: http://doi.wiley.com/10.1002/
qua.560400604

[22] S. Obara and A. Saika, “Efficient recursive computation of
molecular integrals over cartesian gaussian functions,” The
Journal of Chemical Physics, vol. 84, no. 7, pp. 3963–3974,
1986. [Online]. Available: https://doi.org/10.1063/1.450106

[23] ——, “General recurrence formulas for molecular integrals
over cartesian gaussian functions,” The Journal of Chemical
Physics, vol. 89, no. 3, pp. 1540–1559, 1988. [Online]. Available:
https://doi.org/10.1063/1.455717

[24] P. M. W. Gill, M. Head-Gordon, and J. A. Pople, “An
efficient algorithm for the generation of two-electron repulsion
integrals over gaussian basis functions,” International Journal
of Quantum Chemistry, vol. 36, no. S23, pp. 269–280, jun
1989. [Online]. Available: http://doi.wiley.com/10.1002/qua.
560360831

[25] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert,
M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga,
K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and
J. A. Montgomery, “General atomic and molecular electronic
structure system,” Journal of Computational Chemistry,
vol. 14, no. 11, pp. 1347–1363, 1993. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540141112

[26] M. S. Gordon and M. W. Schmidt, “Chapter 41 - advances in
electronic structure theory: Gamess a decade later,” in Theory
and Applications of Computational Chemistry, C. E. Dykstra,
G. Frenking, K. S. Kim, and G. E. Scuseria, Eds. Amsterdam:
Elsevier, 2005, pp. 1167 – 1189.

[27] G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta,
N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour,
A. O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic,
K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas,
J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch,
D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop,
K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen,
L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J. L.
Galvez Vallejo, B. Westheimer, M. W loch, P. Xu, F. Zahariev,
and M. S. Gordon, “Recent developments in the general atomic
and molecular electronic structure system,” The Journal of
Chemical Physics, vol. 152, no. 15, p. 154102, 2020. [Online].
Available: https://doi.org/10.1063/5.0005188

http://www.sciencedirect.com/science/article/pii/S0065327608600192
http://www.sciencedirect.com/science/article/pii/S0065327608600192
https://doi.org/10.1021/acs.jctc.6b00770
https://doi.org/10.1063/1.4991733
https://doi.org/10.1063/1.455553
http://doi.wiley.com/10.1002/qua.560400604
http://doi.wiley.com/10.1002/qua.560400604
https://doi.org/10.1063/1.450106
https://doi.org/10.1063/1.455717
http://doi.wiley.com/10.1002/qua.560360831
http://doi.wiley.com/10.1002/qua.560360831
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540141112
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.540141112
https://doi.org/10.1063/5.0005188

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
All calculation and scalability benchmarks for code were run on
the Oak Ridge Summit system. The code was built using gcc/6.4.0,
cuda/9.2.148 and IBM spectrum MPI 10.3.1.2. The code was run
using the corresponding libraries.

We ran strong scaling benchmarks for the Fock build code from
1 up to 4096 nodes of Summit. For each node, we used all the 6
NVIDIA Volta V100 GPUs available. We also ran benchmarks for
strong scaling the code with respect to the number of GPUs within
a single MPI group as described in section VII-B of the manuscript.

We ran weak scaling benchmarks for the Fock build code from 1
up to 612 nodes of Summit.

We ran several optimization benchmarks, which are described
in detail in Section VI of the manuscript.

ARTIFACT AVAILABILITY
Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID:

https://zenodo.org/record/3877610\#.XtrR0i2r2_s↪→

Artifact name: SC20 Summit Fock Build
Citation of artifact: 10.5281/zenodo.3877610

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit system

Operating systems and versions: Linux Red Hat 7.6

Compilers and versions: gcc/6.4.0

Applications and versions: nvprof/9.2.148

Libraries and versions: cuda/9.2.148 and IBM spectrum MPI
10.3.1.2

ARTIFACT EVALUATION
Verification and validation studies: All benchmarks were per-

formed at least in triplicates. The accuracy and exactness of the
code were verified by computing the Hartree-Fock energy of the
systems involved using the GAMESS program and cross-checking

agreement at very high precision (nanoHartree level). All integrals
were also cross-checked against reference values obtained GAMESS
with an agreement within 10−12. Finally, the code uses Ctest to au-
tomatically verify at build time the agreement with benchmark
suite of high precision reference energies and two-electron integral
values.

Accuracy and precision of timings: As above mentioned, all
benchmarks were performed at least in triplicates using C++ high-
precision timers.

Used manufactured solutions or spectral properties: N/A

Quantified the sensitivity of results to initial conditions and/or pa-
rameters of the computational environment: During our benchmarks
and validation studies, we occasionally observed variations in the
timings always of the order of microseconds. All our results are
in seconds and hence not affected by this kind of computational
environment oscillations. We did not experience hardware faults
during our large runs.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. N/A

	Introduction
	 Background
	 Basis functions, shells and integrals
	 Many body expansion
	 Restricted Hartree-Fock

	 Algorithmic challenges and related work
	 Load Balancing Fragment Calculations
	 The Accelerated Fock Build Algorithm
	 Evaluation of two-electron integrals
	 Double-stream digestion

	Performance optimization
	 Results
	The Oak Ridge Summit System
	Strong scaling
	Weak scaling

	Conclusions
	Acknowledgements
	References

